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Abstract

In this thesis we give a sufficient condition on a Banach space for it to have
the same weak and norm Borel sets and to be a Borel subset of its bidual, when
the latter is endowed with the weak* topology. We also deal with one-to-one
maps between Banach spaces, say from X into Y, when Y has a countable
cover by sets of small local diameter. Under these conditions we are able to
characterize those maps which transfer that property to X. We use this kind of
map to show that certain spaces have a countable cover by sets of small local
diamter and to answer some questions on cp-sums of Banach spaces and on
topological invariants for the weak topology as well as some questions related
to C(K) spaces. We also study the inverses of some of these maps. Finally
we construct injections of this type into co(T') for spaces with Projectional

Resolutions of Identity.
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Introduction

Throughout this thesis two notions will be constantly used. Both of them
were introduced by Jayne, Namioka and Rogers in [12, 13].

Let (X, 7) be a Hausdorff space and let p be a metric on X not necessarily
related to the topology on X.

The space X is said to be o-fragmented by the metric p if, for each £ > 0,

it is possible to write

where each set X; has the property that each non-empty subset of X; has a
non-empty relatively 7-open subset of p-diameter less than e.
We shall say that (X,7) has a countable cover by sets of small local p-

diameter if, for each € > 0, X can be expressed as a union
X=UX, (0.1)

each non-empty X; having the property that each of its points belongs to some
relatively non-empty 7-open subset of p-diameter less than .

Although our aim is to find results on Banach spaces we give the statements,
when possible, in terms of topological spaces and metrics defined on them.

In Chapter 1 we begin by giving the two definitions above as well as several
notions on discrete families in topological and metric spaces. We show that o-

fragmentability and having a countable cover by sets of small local diameter are



equivalent concepts when the topology on the space is generated by a metric.
We also prove that if a topological space (X, 7) has a countable cover by sets
of small local diameter and the metric involved is lower semicontinuous for the
topology 7, then the sets in equation (0.1) can be taken to be differences of 7-
closed sets. When applied to a Banach space we obtain that ifit has a countable
cover by sets of small local diameter, then it has a countable cover by differences
of weakly closed sets of small local diameter. This condition was shown to be
sufficient, by the authors above, to have Borel(X, || - ||) = Borel(X,weak),
see [9], p. 215 and [11], Lemma 2.1. We prove something stronger, we show
that if a Banach space X has a countable cover by sets of small local diameter,
then both X and any || - ||-closed subset of X are Borel subsets of (X**,w*),
and this implies the coincidence of the Borel subsets of X. We finish this
Chapter characterizing both the property of having a countable cover by sets
of small local diameter and the o-fragmentability in terms of decompositions
of || - ||-discrete families into a countable number of relatively weakly discrete
families.

Chapter 2 is concerned with one-to-one maps between Banach spaces (or
rather between topological spaces with metrics defined on them). If T': X —» Y
i1s a one-to-one map, with the Banach space Y having a countable cover by
sets of small local diameter, we prove that X also has such a decomposition

if and only if T maps discrete families from (X, || - ||x) into discretely o-



decomposable families in (Y, || - ||y). (Such a map will be said to be d. o-d.).

Moreover, if we denote by Tj), the metric given by
T".”Y(‘U.,‘U) = HTu - TU“Y)qu € X;

we show that (X, T),) has a countable cover by sets of additive class a (for
the topology Tj,) of small local || - || x-diameter if and only if 7! is of Borel
class a and T is d. o-d.

We also show that (i) o-fragmentability (first proved in [19]), (ii) to have a
countable cover by sets of small local diameter, and (iii) the coincidence of the
weak and norm Borel sets on a Banach space are each topological invariants
for the weak topology. We prove too that the co-sum of Banach spaces which
have countable covers by sets of small local diameter (resp. o-fragmentability)
has a countable cover by sets of small local diameter (resp. o-fragmentability),
(the o-fragmentability case is Theorem 6.1 in [9]), and apply this to the case
of C(K) spaces with their weak topologies with K = U{K,, : n € N}, where
K, Ky, K,, ... are compact spaces, when each (C(K,),weak) has either one of
the properties, [15].

In Chapter 3 we give examples of spaces with countable covers by sets of
small local diameter. We begin by giving a proof that co(I'), for any set I', has
that property (first proved in [13], Corollary 6.3.1). Spaces with Projectional
Resolutions of Identity are also shown to have this property through the con-

struction of d. o-d. maps from these spaces into co(I'). We apply this to three



particular cases: WCD spaces, duals of Asplund spaces and C(K) spaces with
K being a Valdivia compact space. We finish the Chapter showing that spaces
with Markushevich bases can be imbedded into co(I") with an inverse map of

the first Borel class.



Chapter 1

o-fragmentability

1.1 Some definitions and remarks

We start by giving two definitions introduced by Jayne, Namioka and Rogers
which can be found in [9).

Let (X, 7) be a Hausdorff space and let p be a metric on X not necessarily
related to the topology on X.

We define the local p-diameter of a non-empty subset A of X to be the
infimum of the positive numbers € with the property that each point z of A
belongs to a non-empty relatively open subset of A of p-diameter less than e.
Definition 1.1.1 The space X is said to be o-fragmented by the metric p if,

for each € > 0, it is possible to write
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where each set X; has the property that each non-empty subset of X; has a
non-empty relatively open subset of p-diameter less than €.

Definition 1.1.2 We shall say that the family B is a cover of X by sets of
small local p-diameter if each point of X belongs to sets of B having arbitrarily
small local p-diameter.

We shall usually say that X has a countable cover by sets of small local
diameter when both the original topology and the metric on X are clearly
distinguished and it does not create any confusion.

Note that X has a countable cover by sets of small local diameter, if and

only if, for each € > 0, X can be expressed as a union

each non-empty X; having the property that each of its points belougs to some
non-empty relatively open subset of p-diameter less than €.

When X is a Banach space and the metric is the norm metric we shall talk
of the local diameter of a set rather than its local norm-diameter.

We shall give some more definitions which will be of interest later on in
this chapter. The definitions as well as some properties concerning them can
be found in [5, 6].

Definition 1.1.3

1) For € > 0 a family A= {A,},es of subsets of a metric space (X,d) is
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iii )

called e-discrete (or metrically discrete with separating distance ) if

d(y1,y2) > € whenever y; € A,,y2 € A; and s # t.

A family A= {A,},es of subsets of a topological space X is called discrete
if for each ¢ € X there exists an open neighbourhood of z which intersects

at most one element of the family A.

A family A= {A,}.,cs of subsets of a topological space X is called o-
discrete if 1t can be written as a countable union of families each of

which is discrete.

A family A= {A,},cs of subsets of a topological space X is called dis-
cretely o-decomposable (d. o-d., for short) if for each m € N there exists

a discrete family {B{™},es such that

A,= |J Bi™, forall s € S.

m=1

Remark 1.1.4

1)

If A= {A,}scs is a discrete family of subsets of a Banach space X, we
see that it is o-decomposable into a countable set of metrically discrete

families as follows. Define

A" ={zeX:ze€A, and B(:L',l)ﬂ/h:@forallt#s}
n
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forallm > 1 and s € S. Then

A= AN, foralls € S.

n=1

And for each n € N the family A™ = {A(™ : s € S} is (1)-discrete in

X.

2) We will make use of the fact that in a metric space if a family is discrete

in its union, then it is d. o-d. in the whole space.

3) It is also well known that in a metric space any open cover of the space

has a o-discrete open refinement (see for example [16], p. 234).

1.2 o-fragmentability of a metric space

Our first result shows that having a countable cover by sets of small local
diameter, although apparently stronger than o-fragmentability, turns out to
be equivalent to the latter when the topology on the space is given by a metric.

The ideas in the proof are from [9], Theorem 2.4. It reads as follows:

Proposition 1.2.1 Let (X,d) be a metric space and p be another metric de-
fined on X. The following conditions are equivalent:

1) (X, d) is o-fragmented by p;

i) (X, d) has a countable cover by sets of small local p-diameter.

When the sets in i) can be taken to be differences of d-closed sets (or more

generally d-F,-sets), then the sets in 1) can be taken to be d-F,-sets.
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Proof. ii)= i) Is clear by definition.
1)= ii) Given ¢ > 0 there is a decomposition of X given by the o-fragmenta-

bility of the space

Fix = € N. Because of the o-fragmentability, there exists a family of d-open

sets, {U% : 0 < a < pu}, covering C; such that

C:nUL\ U Us#0, and p-diam(C:NUL\ | Up)<e

0<B<ax 0<f<a
for 0 < a < p.

Define

. 1 .
Fi;={z € X :d(2, X \U})> ~}and HL; = (G:nFZ\ U Up).

0<p<a
It is clear that g-diam(H};) < €. Now for a # B the sets HZ; and Hj;, when
non-empty, are separated by d-distance at least 1. So for each n € N the
family {H},: 0 < a < p} is discrete in (X, d).

Set H = U{H};:0 < a < u}. We have

Umr=U U #=U U @nFz\ U Uj)=

n=1 n=10<a<lpy n=10<a<u 0<f<a
= U (CiﬂU‘i\ U Ug)=0,',
0<a<u 0<B<a

and therefore
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Let us see that for each n,2 € N the set H! has local p-diameter less than
e. Take z € H'. We have that for some o, z € HZ,. Since the family
{HZ;: 0 < a < p} is discrete in (X, d) there must be a d-open neighbourhood
V of z such that

VN Hg;=0for §#c.

So

p-diam(V N H}') = p-diam(V N H},) < e.

Now if the C; are differences of d-closed sets, and since the F7; are d-
closed, we have that the H; are differences of d-closed sets. So each H} is

the discrete union of sets which are differences of d-closed sets. Since d-open

sets are F,-sets, it follows that the H’s are also F,-sets. n

1.3 Countable cover by special sets of small

local diameter

The decomposition of the space by means of arbitrary sets given in Definitions
1.1.1 and 1.1.2 can sometimes be improved. It is interesting to find conditions
to impose on the metric so that we could take Borel sets, for example. As in
[9] the condition will be that of the metric being lower-semicontinuous with
respect to the original topology of the space, (i.e. the closed balls being also

closed in the other topology).
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Theorem 1.3.1 Let (X,7) be a topological space and p be a lower semicon-
tinuous metric on X. If (X,7) has a countable cover by sets of small local
p-diameter, then (X, 1) has a countable cover by differences of T-closed sets of
small local p-diameter. Moreover, if the p-topology is stronger than 7, then the

sets can be taken to be p-closed.

Proof. Let € > 0 be any positive number. We shall show that X has a
countable cover by differences of 7-closed sets of local diameter less than e.

Let {UZ : a € A,n € N} be a o-discrete refinement of a cover of X by balls
of diameter less than €. We can suppose that each {U? : @ € A} is metrically
discrete with separating distances 6, > 0.

Forn € N let {C : m € N} be a countable cover of X with local diameter
of each O < 6. Then for each n,m € N the family {UZ N C7 }aca is discrete
in (CZ,7). (Each point in C? has a non-empty relatively open neighbourhood
with diameter less than §,,. This open subset of C7, can intersect at most one
of the U2 N CR’s.)

For each z € UZ N C7, there exists a T-open neighbourhood of z, say U7,
such that

uzsn(UznCr) #9,

Urm N (UzNCR) =0, for B # a.
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Set

Gm= U uzr

zeUrnCyn

Go™ is a T-open set with
Ge" o (UznCy)

and

G2 N(UzNCL) =0 for B # a.

Set M»™ = (UrNC2) "N G2™. It is clear that

X =UUlU mzm).

mﬂaGA

We notice that, since p is 7-lower semicontinuous and
diam(UZ N CP) <k,

we have
diam(U2 N CZ ") <e.

We now show that

U@znczl nezm=U@zncs) n U G
acA ax€A a€d
Since G3™ N (Ug N C.) = 0 for B # a, it is clear that

Ulzncr) nezm = Wznen) 'n U Gz

aEA acA a€A
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Now, we always have
U@zncz) c Uwzner) ™
acA acA
and so we must check that
U@zncn niU emc U Tanes  niU eoml
ach a€A acA a€A
Set B, = UL N CP and G, = G»™ and suppose that there exists
z€ JBa N[l Gal,
a€d acld

such that

z¢ |JB. N[ Gal

a€El acl

Then, since

T € UGa,

acA

there must be Uy, a 7-open neighbourhood of z, such that U, C G,, for some
ag € A and

U0 (U Ba) #0.

acA

Thus U, N By, # 0, since Go, N Bg = 0 for B # ap. Suppose now that there

exists a 7-open neighbourhood V of z such that
Ve N By, = 0.

Take @ 3£ U, NV, C Gq,- Since U, NV, is a T-open neighbourhood of z and

-
z€ |J B« ,
acA
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we have

(U= N V) N (UaBa) # 0,

which implies that U, NV, N B,, # 0. This is a contradiction.

Now we show that for each n,m € N the set

UB. n(U Ga)

a€EA acA

has local diameter less than £. Consider

z€ U Ba N(U Ga)=UBa"nG).

acd acA [

Then there exists agp such that z € G4, and

diam( | Ba O (| Ga) N Gap) = diam( | (Ba ™ N Ga) N Gap) =

acA a€A acA

= diam(Ba, " N Ga,) < diam(B,, ') < &.

So we have

x=U U U mzm),

neN meN acA

where for each n,m € N the set

U azm
acA

is a difference of two 7-closed sets and has local diameter less than €. ]
In [9], Theorem 2.4, the “moreover” part of our theorem was proved for
o-fragmentability. We do not know whether the whole statement in Theorem

1.3.1 holds for o-fragmentable topological spaces or not.
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As a corollary of the previous result we have:
Theorem 1.3.2 Let X be a Banach space. If (X, weak) has a countable cover
by sets of small local norm-diameter, then (X, weak) has a countable cover by
differences of weakly closed sets of small local norm-diameter and also by norm
closed sets of small local norm-diameter.

Proof. Note that by Theorem 1.3.1, for each £ we have

x ={J#Ena),

i=1
where the F; are closed and the G; are open in the weak topology, and therefore
in the norm topology. Now each G; is a F,-set, say G; = U{H;, : n € N},

with the H;,’s being closed sets. So we have

X:U U-FinHi,n’

i=1n=1

and clearly for each 2,n € N the set F; N H;, has local diameter less than ¢.m

1.4 Borel sets

Let (X,|| - ||) be a Banach space. The norm || - || is called a Kadec norm if
the weak and norm topologies agree on {z € X : ||z|| = 1}. It was shown by

Edgar that if a Banach space X admits an equivalent Kadec norm then:
i) Borel(X,|| - ||) = Borel(X,weak), ([3], Theorem 1.1);

ii) X € Borel(X**,weak*), ({4], Corollary 2.3).
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On the other hand, Jayne, Namioka and Rogers proved, ([9], Theorem 2.3),
that a Banach space that admits an equivalent Kadec norm has a countable
cover by sets that are differences of weakly closed sets of small local diameter.

We improve Edgar’s result by showing that a Banach space with the JNR
property verifies ii) above. Moreover, any norm-closed subset of the space is
also a Borel subset of its bidual when considered with the weak* topology,
from which we get i) above as a corollary.

Remark 1.4.0 It was proved in [9], p. 215, and [11] that a topological space
(X, 7) which has a countable cover by differences of 7-closed sets of small local
p-diameter, for some metric p, any p-open set can be written as a countable
union of differences of 7-closed sets and therefore the Borel structures for both
the 7-topology and the p-topology agree.

Theorem 1.4.1 Let X be a Banach space and suppose that (X, weak) has
a countable cover by sets of small local diameter. Then X 1s the countable
intersection of countable unions of differences of w*-closed sets in X** and
therefore X € Borel(X**,w*). Moreover, any closed subset of X 1is of the
same type.

Proof. Let {UZ, : a € A,n € N} be a o-discrete refinement of a cover of
X by balls of diameter less than ;7. We can suppose that each {UZ, : a € A}

is metrically discrete with separating distances 6, > 0.



Chapter 1: o-fragmentability 22

For n,p € N let {CE, : m € N} be a countable cover of X with the
local diameter of each CZ, < &,p. Then for each n,m,p € N the family

{UE,. N CE, }aca is weakly discrete in

U WE.nCE L),

acA

in fact it is discrete in C% .. So for each z € UE,, NCZ_ there exists a w*-open

neighbourhood of z in X**, say UZ'J?, such that
Uz P N(UZ.NCE L) #0,
U n(Ug,NCE ) =0, for f # a.

Set

m,p __ n,m,p
Ga,,n - U Uz,,a' g

zeUE .NCA m

G2 P is clearly a w*-open set with
Gan D (UZ.NCE L)
and
GrPn(Ug,NCE ) =0, for B # a.
Set Mammp = (Um0 Com) N G2,
We show that

X = ﬂ U U{ U Mamns}-

P m n acA

Notice that, since diam(U?, N C?, ) < 1 we have
) ] P

diam(U&n N Chim w‘) <

> R
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Let

2 € X* NN UU(U Manms).

Pp m n acA

For each p € N there exist n,m € N and o € A such that

“'nge

a,n,m?’

m"EE(UZ;;ﬂ(?inﬂ
so there exists ¢, € UL, N CZ_, such that ||z** — z,|| < 7. Thus we have

- 11 Jim 2, = o™

and therefore z** € X.

We now show that

U(@Zan Com) “ nGr#) = U (UEaNChm) 0 | GTE.

€A aEA acA

We have
U@~ nemey = | WE.nCEm) “ 0 | G2,
a€A acA acA

since GoP N (U5, NCE ) =0, for B # a. So we must check that

UWe.nCia) " niU 6m#c U WE.NCEm) * N[l G2l

acA acd a€A acA

Set B, = UZ,, N CE, and G, = G'F, and suppose that there exists

an?

ze B n[U Gl

acd acA

such that

23
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There must be a w*-open neighbourhood U, of z, since

T € UGa,

acA

such that U, C G,, for some ap € A and

U: (U Ba) #0.

acA

Thus U, N By, # 0, since Go, N Bg = 0 for 8 # ao.

Suppose now that there exists a w*-open neighbourhood V, of z such that
‘/I n Bao = @-

Choose U, with § # U, NV, C Gg,. Since U, NV, is a w*-open neighbourhood

of z and

*

z€ |J Ba ,
aEAl

we have

(UNVo)N (Y Ba) #0,

acA

which implies again that U, N V; N By, # 0. This is a contradiction.

If F is a norm closed subset of X, consider the families
{F N Uz,ﬂ n Cfl:,m}aEA

and follow the proof. In this case the vectors z,,’s belong to F' and, since F is
closed, the limit also belongs to F. n
Our next result follows also from Theorem 1.3.2 and Remark 1.4.0 but we

give a shorter proof here by using Theorem 1.4.1.
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Corollary 1.4.1 Let (X, || - ||) be a Banach space with a countable cover by
sets of small local diameter, then Borel(X,|| - ||) = Borel(X,weak).

Proof. Let A be a norm-closed subset of X. By Theorem 1.4.1, A €
Borel(X**, weak*), i.e. there exists B € X**, B € Borel(X**,weak*) and
A = BN X. But the weak topology on X coincides with the restriction to X
of the weak* topology on X** and therefore A is a weak-Borel subset of X. m

At this point we need to give another definition which can be found in [16],

pages 345-346, as well as some basic properties.
Definition 1.4.1 Let Fj be the family of closed sets of a metric space. Suppose
that for an ordinal number «, we have defined the families F¢ for { < a. So
the sets of the family F, are countable intersections or unions of sets belonging
to F¢ with £ < o according to whether « is even or odd (the limit ordinals are
understood to be even). It is known that the transfinite union of this families
gives us the family of all Borel sets.

We can also do the same using open sets. Set Gy to be the family of open
sets. Suppose that for an ordinal number o, we have defined the families G¢
for € < a. So the sets of the family G, are countable unions or intersections
of sets belonging to G¢ with ¢ < a according to whether « is even or odd.

The families F,, with even indices as well as the families G, with odd indices
are countably multiplicative, which means that, given a sequence of sets of the

family, its intersection belongs to the same family. The sets belonging to such
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a family will be said to be of multiplicative class a. Similarly, the families F,
with odd indices as well as the families G, with even indices are additive and
form the additive class o.

Our last result of this section is a generalization of the one mentioned above

from [11]. The ideas for the proof also come from there. It will be used later
on in Chapter 2.
Lemma 1.4.1 Let (X, 1) be a topological space such that any open set is an
F,-set. Let p be a metric on X and suppose that X has a countable cover by
sets of additive class o of small local p-diameter, then each p-open subset of
X 1s of additive class a.

Proof. Let G be a p-open subset of X. Let D,,, m > 1, be a countable
cover of X by sets of additive class a of small local diameter.

Forn > 1 set
1
M(n)={m € N:m >1 and D,, having local diameter less than —}.
n

Then for each n > 1 the family {D,, : m € M(n)} covers X.
Write

Gn={zeX:{y€X:o(y,z)CG}}

For each n > 1 and each m > 1 in M(n), we consider the points £ € G N Dpy,.

1

Since the local p-diameter of Dy, is less than =, we can choose a relatively

open subset U(z) of D, containing = and having p-diameter less than %
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Thus z € U(z) C G. Hence, for m > 1 and m € M(n) the set
Upmm = U{U(z) : 2 € Go. N Dy}

is a relatively open subset of D,,. So for every n,m € N there exist V.,

T-open subsets of X, such that Upm = D NV ;n. Now we have
.‘/n)m = U Fin’m)
=1

where the sets F;"™ are 7-closed in X. Hence

[0

Un,m = U(En,m N Dm):

=1
and therefore the sets Uy ., are of additive class a. They contain G, N D,, and

are contained in G. Hence
U{Upm :n >1, m € M(n)}

is a set of additive class « that coincides with G. [}

1.5 Decomposition of discrete families

To finish this chapter, we will give characterizations of both the property of
having a countable cover by sets of small local diameter and o-fragmentability

which will be of help in Chapter 2.
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Proposition 1.5.1 Let (X, 7) be a topological space and p be a metric on X.

Then the following conditions are equivalent:
1) (X,7) has a countable cover by sets of small local p-diameter;

i) There ezists a decomposition of X,

x=Ua

=1
such that if A= {A,}s;cs 15 a p-discrete family of subsets of X, then for

each s € S there is a decomposition

with A® C C; such that each family {Al},e, is discrete in (C;, T).
Proof. i)= ii) For each n € N, consider
x=cp
=1

where the sets CP* have local p-diameter less than =.
Let A= {4,}.es be a discrete family in (X, p). Then there exist L-discrete

families { AT },cs such that

A, = UA:", fors € S.

m=1

Write {A¥™} = A™ N C™, for m,i € N and s € S and fix i,m € N. Take

z € C™. There exists a 7-open neighbourhood of z, say U, such that

diam(UNCM) < —1——
m
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Therefore U meets at most one element of the family {A4:™},cs. So {A¥™}.cs

is discrete in (C, 7) and we have

<] o0 ©0

A,={ 4ar=U Udnnor = 4m.

m=1 m=11:=1

Set C™ = F, and A»™ = B™. So we have

A,=|J B},B} C Fy,

n=1
and {BT},cs is discrete in (Fy,, 7).
ii)= 1) Given € > 0, let {UZ : a € T'} be a o-discrete open refinement of
an open cover of X by balls of radius less than £. Let {Cyn}oe_; be a countable

cover of X such that for n,m € N,

ur= |J B™™, B CCn

m=1

and {B?™},cr is discrete in (Cp,, 7). Write

Fr=J By
a€cl
Obviously,
X=F

We now show that for each n,m € N, the set F. has local diameter less

than e.

Take z € F:. Then z € BJ™ and therefore there exists a 7-open neigh-

bourhood U of z such that

UNC,N By =0 for a# ao.
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So diam(U N Fy,) = diam(U N By™) < diam(BL™) < €. n
We give an analogous statement for the case of the space being o-frag-

mented. We omit the proof because it follows the same line as the previous

one.
Proposition 1.5.2 Let (X, 7) be a topological space and p be a metric on X.

Then the following conditions are equivalent:

1) (X, 7) s o-fragmented by p;
i) There ezists a decomposition of X,

x=Uac,

i=1
such that if A= {A,}ses is a p-discrete family of subsets of X, then for

each s € S there is a decomposition

A,=J A, A cCC

i=1

such that each family {Ai},cs satisfies the following condition:

foranyi € N, if U{A%:s € S} #0, then for every non-empty
subset A of U{A} : s € S} there ezists a T-open subset U of

X such that UN A C A} for ezactly one s € S.



Chapter 2

One-to-one maps

2.1 Introduction

Suppose we have two Banach spaces X and Y, and a one-to-one map T :
X — Y. If we assume that Y has a countable cover by sets of small local
diameter, what kind of condition do we have to impose on T for X to have
such a cover as well? What can we say about T-!? We shall give some answers
to these questions in this chapter, but first of all we have to fix some notation.

If 71 and 7, are two topologies on a topological space H, we shall say that
7 is stronger than 7;, denoted by 73 < 7, if any 75-open subset of H is also
T1-Open.

Let (X, 1) and (Y, 72) be topological spaces and p;, p2 be metrics defined

on X and Y, respectively. If T': X — Y is a one-to-one map, we define: T,

31
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to be the topology on X given by the family {T~(U) : U ,-open} and T,, to
be the topology on X associated to the metric T o p,, i.e, the family
{T~Y(U) : U pz-open }. Note that if T is 71 -7, continuous (respectively g; -p2
continuous), then T,, < 71 (resp. T,, =X 01).
Definition 2.1.1 We shall say that a map T, as above, is discretely o-decom-
posable, d. o-d. for short, for the pair (p1,p2) if it is one-to-one and it maps
p1-discrete families of subsets of X into py-d. o-d. families of subsets of Y.
These maps were used by Hansell, see [6], where we refer for further proper-
ties, without imposing on the map the condition of being one-to-one. It is easy
to see from Remarks 1.1.4 that g,-d. o-d. families in T'(X) are also p,-d. o-d.

mY.

2.2 d. o-d. maps

We now prove a lemma which will be used in Theorem 2.2.2 below.

Lemma 2.2.1 Let (X, 1) and (Y, 72) be topological spaces and py, pa be metrics
defined on X and Y, respectively. Suppose that there exists a d. o-d. map
T:X — Y for the pair (p1,02). If (Y,72) has a countable cover by sets of

small local py-diameter, then there exists a decomposition of X,

X =&,

=1

such that if A= {A,}cs is a p1-discrete family of subsets of X, for each s € S,



Chapter 2: One-to-one maps 33

then there is a decomposition

A, =J 4%, Al CE,

1=1
such that each family {At},ecs is discrete in the space (E;,T,,).

Proof. Consider the map T : X — Y. Then the family T4 is d. o-d.

Therefore there exit discrete families { B?},cs, p € N, such that

and discrete families { B*?},cs in the space (Cn,72), with
B? = |J B}®, and B} C C,forpe N,s € §.
n=1
Since T is trivially T.,-7 continuous it follows that the family

T~ ({B;*}ses)

is discrete in the space (T71C,, T'72).

It is clear that
A= UT(Br*) = A4,
p=1n=1 1=1

where A} = T~}(B™?), and E; = C,, for somen,p € N.
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We now give the analogous lemma for o-fragmentability.
Lemma 2.2.2 Let (X,71) and (Y, 7;) be topological spaces and let gy, p2 be
metrics defined on X and Y, respectively. Suppose that there ezists a d. o-d.
map T : X — Y for the pair (p1,02). If (Y,72) is o-fragmented by o3, then

there ezists a decomposition of X,

such that if A= {A,},cs 1s a p1-discrete family of subsets of X, then for each

s € S, there is a decomposition

A, =|J A, A CE,

1=1

such that each family {A},cs satisfies the following condition:

for anyi € N, if U{A}:s € S} # 0, then for every non-empty
subset A of U{A% : s € S} there ezists a T-open subset U of X

such that UN A C A for ezactly one s € S.

Theorem 2.2.1 Let (X,71) and (Y,72) be topological spaces and let p,, oz be
metrics defined on X and Y, respectively. Suppose that there ezists a one-to-

one map T : X — Y. Then the following conditions are equivalent:

1) T is d. o-d. for the pair (p1, 02);

i) (X, Ty,) has a countable cover by sets of small local p;-diameter;
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i) (X, T,,) 1s o-fragmented by p;.

Proof. i)= ii) Given € > 0, let {U? : a € T'} be a o-discrete open

€

refinement of an open cover of X by balls of p;-radius less than ;

For every n € N the family {T(UZ)}«er is d. 0-d. in Y. Thus we have

(U = U B

m=1

with {B?™},cr being pp-discrete.

Define E?™ = T~Y(B»™) C UZ. 1t is clear that

x = UEBE™

nm o

We show that for any n,m € N the set

U zzr

acl

has local p;-diameter less than ¢.
So take z € EZ™. Then Tz € BJ™, and so there exists a p;-open set,
say V, such that V N B»™ = @ for a # ag. Now take G = T~}(V), which is

T,,-open, and we have

o1-diam(G N (| J EZ™) = p1-diam(G N E™) < py-diam(UZ™) < €.
o€l

ii)¢ iii) Proposition 1.2.1.
ii)= 1) Because of Proposition 1.5.1, any p;-discrete family, A= {A,}.es

can be decomposed in the following way:

A, = AL

=1
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with the family {A},cs being T,,-discrete in its union. Since T, is a metric
on X, it follows that these families are T,,-d. o-d. in X and so A is also
T,,-d. o-d. Hence the map T is d. o-d. for the pair (py, p2). [
Theorem 2.2.2 Let (X, 71) and (Y, 72) be topological spaces and let py, 02 be
metrics defined on X and Y, respectively, with 7o < p;. Suppose that there
ezists a one-to-one map T : X — Y and that (Y, 72) has a countable cover by

sets of small local p;-diameter. Then the following conditions are equivalent:
1) T is d. o-d. for the pair (p1, 02);
i) (X, T,,) has a countable cover by sets of small local p,-diameter;
iil) (X, T,,) is o-fragmented by p1,
iv) (X, T,,) has a countable cover by sets of small local p,-diameter;
v) (X,Ty,) is o-fragmented by p;.

Proof. i)=iv) For each £ > 0 and p € N, let A, = {A?},cs be discrete
families in X such that U{A, : p € N} is a refinement of a cover of X by balls
of p1-radius less than %.

By Lemma 2.2.1 there exists a number of sets C;, with

x=Uo,

j=1

and decompositions

AP = | JAPP s€ S,p€ N, AB C C;
j=1
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such that each family {A4P7},cs is discrete in (C;, Tr, ).

Now define
BE = 427,
s€eS
It is clear that
x=00s
j=1p=1

We show that the family {B%};, is a countable cover of X by sets of small local
p1-diameter. Let z € B?. Since the family {A%7},¢s is discrete in (C%, Tr,)

there exists a T, open neighbourhood V of z such that
(VNC)N 423 £0,
for some so € S and
(VN C;)N APT =0, for s # so.
If VNC;N APJI = for every s € S, we would have
vne;n(lY 489) =0,
€S

and this would imply that = ¢ B}, which is a contradiction.

So there exists sg € S such that
VNGC;NAR £ 0 and VNC;NAR =0, for s # so.

Now, since AP is contained in a ball of radius less than , p1-diam(AR7) < e.

Since V N C; N APJ = () for s # so, we have



Chapter 2: One-to-one maps 38

p1-diam(V N B?) = gy-diam(V N (| J A%7)) = p1-diam(V N APY) < e.
3€S

iv)=v) Obvious.
v)=riii) Obvious. |
Theorem 2.2.3 Let (X, 71) and (Y, 72) be topological spaces and let o1, g2 be

metrics defined on X and Y, respectively, with 73 =X p5. Suppose that there

ezists a one-to-one map T : X — Y and that (Y, 72) is o-fragmented by p,.

Then the following conditions are equivalent:

1) T is d. o-d. for the pair (g1, 02);
1) (X,T,,) has a countable cover by sets of small local p-diameter;
i) (X,T,,) is o-fragmented by p,;

iv) (X, T,) ts o-fragmented by p,.

Proof. i)=>iv) The same proof as above but using Lemma 2.2.2.
iv)=-iii) Obvious. m
Remark 2.2.1 Note that if in Theorem 2.2.2 (Theorem 2.2.3) the map

is, for instance, 71-7, continuous, then we obtain that (X, ;) has a countable

cover by sets of small local p;-diameter (resp. (X, 71) is o-fragmented by g1).
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2.3 Inverse mappings

We start by recalling a definition from [16].
Definition 2.3.1 A mapping f : X — Y is said to be of Borel class a if,
for every closed subset FCY, the set f~'(F') is Borel of multiplicative class c.
(Equivalently, f~'(G) is of additive class a, for every open set G).

Our next result improves part of a result in [14], Corollary 7.
Theorem 2.3.1 Let X,Y be two Banach spaces and f : X — Y be a con-
tinuous linear injection. Define ¢ = f~' : f(X) — X. Then the following

conditions are equivalent:

1) @ 1is of Borel class o and f is d. o-d.;

i) (X, fily) has a countable cover by sets of additive class  (for the topol-

ogy filly) of small local || - || x-diameter.

Proof. ii)= 1) By Theorem 2.2.2 we have that f is d. o-d.

Now let G be a norm open subset of X. Since the topology fj, in X
verifies that any open set is an F, set, we apply Lemma 1.4.1 and obtain that
G is of additive class a in (X, fjj,)- Hence the set ¢™*(G) is of additive class
ain (f(X),| - |lr) and therefore ¢ is of Borel class a.

)= ii) For n € N let {U? : a € A} be an open o-discrete refinement of an
open cover of X by balls of radius less than . Consider B; = f(UZ). Then

for each n € N the family {B%}4ca is d. 0-d., so for every n,7 € N there exist
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discrete families { B2"}aca such that
Br=|J Bim.
=1

Note that since the sets U? are open in X and ¢ is of Borel class a, the

sets BT = ¢ 1(UZ) are of additive class c.

Now fix i,n € N. The family {B:" N B"}aea is discrete in f(X) and its
sets are of additive class a.

Set

Zin= J (B NBY).
acd
Then Z;, is a discrete union of sets of additive class o and therefore is itself
of additive class a. (For a proof of this fact see [16], page 358, Theorem 1). It
is obvious that
f(X) =UEin
Define C;,, = f}(Ein). The sets C;,’s are of additive class a and they

form a countable cover of (X, fji4)-

i,n

Now take z € Cin and f(z) =y € Ein. So y € Bay N By for only one

ap € A. Thus there exists an open neighbourhood U of y in Y such that

UN(BY N B2) =0 for a # ap.

Write V = f~1(U). V is a fjy,-open neighbourhood of z and
diam(V N C;p) = diam(f (U N E;,0)) = diam(f (U N B&r N BX)) <

< diam(f~Y(B?)) = diam(U2) < e.
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Therefore C;, has local diameter less than e. [}

2.4 Some topological invariants

The following lemma provides us with a useful tool to check when some maps
are d. o-d. For a proof of it see [17].

Lemma 2.4.1 Let X and Y be Banach spaces with norms || - ||x and || - ||y,
respectively. Let T : X — Y be a one-to-one map such that for every bounded
sequence ()52, in X converging to some point x in the Tjj), topology we have
that z,, converges weakly (or pointwise in the case of X being a C(K) space)
tox. Then T is d. o-d.

Theorem 2.4.1 Let (X,|| - ||x) and (Y,|| - ||r) be Banach spaces. Suppose
that there ezists an homeomorphism ¢ : (X,weak) — (Y, weak). Then the

following results hold.

1) (X, weak) has a countable cover by sets of small local || - || x-diameter
if and only if (Y, weak) has a countable cover by sets of small local || - ||y -
diameter.

i1) (X, weak) is o-fragmented by || - || x if and only if (Y, weak) is o-fragmen-

ted by || - [lv-

iii) Borel(X,weak) = Borel(X,| - ||x) if and only if Borel(Y,weak) =

Borel(Y, || - [lv)-
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Proof. In this case it is clear that the conditions in Lemma 2.4.1 are
fullfiled and so our map ¢ and its inverse are d. o-d. Moreover, since there
is weak to weak continuity, by Remark 2.2.1 and Theorems 2.2.2 and 2.2.3, 1)
and ii) hold. To prove iii) assume that Borel(Y,weak) = Borel(Y,| - |v)-

Denote by B(x,|x) the closed unit ball of (X, || - ||x). Bix,x) is & w-
closed subset of X and, since ¢ is a homeomorphism, ¢(B(x,||x)) is @ w-closed
subset of Y. Thus the norm || - ||x is lower semicontinuous on (X, ¢, ). Since

¢ is d. o-d., (X, ¢,) has a countable cover by differences of ¢, -closed sets

of small local || - || x-diameter. So if G is a || - || x-open subset of X, then, see
Remark 1.4.0,
G=J¢,
=1

where C; is the difference of two ¢, -closed sets for every 2 € N.

Set B; = ¢(C;). Then the B;’s are differences of || - [|y-closed sets and
therefore they are w-Borel sets. Thus ¢~'(B;) = C; are w-Borel in X. We
conclude that G is a countable union of weak-Borel sets and therefore is itself

a weak-Borel subet of X. u

2.5 The cy-sum of some Banach spaces

Notation: Let A be a set. We shall denote by |A| the cardinality of the set A.

Definition 2.5.1 Let {X, : n € N} be a sequence of Banach spaces with
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norms {|| - ||» : n € N}. We denote by co{X, : n € N} the Banach space of
all sequences z = (2,)2, with z, € X,,, forn € N, and such that given € > 0

there ezists m € N such that ||z,||, < € forn > m. The norm in this space is
2]l = sup{||zaln : n € N}.

In order to give our next result we need the next proposition. The proof of
part 1) can be found in [9], Theorem 6.1.
Theorem 2.5.1 Let (X, || - ||n)3, be a sequence of Banach spaces. Set X =

co{Xn : n € N}. Then the following results hold.

1) If for each n € N the space X,, is o-fragmented by its norm, then the

space X 1is o-fragmented by its norm.

1) If for each n € N the space X, has a countable cover by sets of small
local || - ||n-diameter, then X has a countable cover by sets of small local

| - ||co-diameter.

Proof. For each n € N, we can find a sequence B, = (E%)%_, of subsets
of X,, such that each point of X,, belongs to sets of B, having arbitrarily small

local || - ||n-diameter. For 7,k € N define
k oo 1
0,’. = {m = (mﬂ)n:l €X: |{CEn : “mn“n > E}I = T‘}.

Denote by P, the canonical projection from X onto X,,. For n € N denote

by m, an element of the form (my, ...,my,) € {1,...,n}".
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For » > 1,k > 1 define
AT = Ckn PN ES )N ...N PN (EE),
for m, = (m4,...,m,), d, = (di, ..., d,) and
1
Ao,k = {33 € X : ”:D”oo S -k':'}

It’s clear that

ll
u Cg

00 U e

E{l, T}N mf‘e{dly oy }N

So we have a countable collection of sets covering X and now we will show

that given z = (2,)%2; € X and € > 0 there exist r, k,d,, m, such that
T € Am"d'

and the local || - ||co- dlam(Am" N <e.

Take k € N such that § < £. Then either |[z]lc < i or there exists
r € N such that z € C'f. In the first case, z € Aox and obviously the local
|| - llo-diameter of Aoy is less or equal than €.

So suppose that there exists r € N such that z € CF, ie., ||zi|; > § for

1= d], ...,d,-. Let

{Ilwsll ~ i

€
6= , =
min >

Now for 2 € {dy, ..., d.} we have that z; € X;. Thus we can find m; € N and

Ei. 3 =z such that the local || - ||;-diam(E}, ) < . Hence there exists a weak
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open neighbourhood of z; in X;, say V;, such that
|- o-diam(Vi N B, ) < &
Set
V=[P (V)
=1
V is a weak open neighbourhood of z in X. We show that
| Jlo-diam(V N Af9) < e.
Takey € V' N A:',:’d’. Fori=d,,...,d,,
1
ly:lls 2 Wealls = lle: = wills[ > +,
so for ¢ & {dy,...,d-}, ||uill: < % Therefore

lz: —villi <8 < —g fori=d,..., d,,

and
1 1 2
lz: —will: < rTE T % < g otherwise.
Hence || - ||co-diam(V N Af,'k”d') < € as required. -

Following the notation in Theorem 2.5.2 below, in [15|, Kenderov and
Moors showed that if the spaces (C(K,),ptwise) are o-fragmentable, then
(C(K), ptwise) is also o-fragmentable. We prove it for the weak topology and
also in the case of countable covers by sets of small local diameter.
Theorem 2.5.2 Let (K,)2, be a sequence of closed subsets of a compact

Hausdorff space K such that K = UK,,. Then the following results hold.
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i) If for each n € N the space (C(K,),weak) is o-fragmentable, then the

space (C(K),weak) is o-fragmentable.

ii) If for eachn € N the space (C(K,),weak) has a countable cover by sets
of small local diameter, then the space (C(K),weak) has a countable

cover by sets of small local diameter.

Proof. Define the map
T:C(K) — co(C(Kn), |l - lleo)

by the formula
1 [ o]
T(f) = (;flKn)n=1'
By Theorem 2.5.1 and Remark 2.2.1, since T is clearly weak to weak con-
tinuous, we only have to show that T is d. o-d.
So take (fm)%_;, f € C(K) and suppose that (T'(fm)) converges to T'(f)
in the norm of ¢y, i.e., given £ > 0 there exists m € N such that for all k > m

we have

IT(fe) = T(Hllo < &,

le.,

1 felk, — S flxollee < € for all n € N.
n n

Now, if z € K, there exists n € N such that z € Kn, and so

%fk(m) — %f(a:)l < e for all k >m.
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Thus f,, converges to f in the pointwise topology and by Lemma 2.4.1 we

conclude that T is d. o-d. u



Chapter 3

Spaces with a countable cover

by sets of small local diameter

We shall give some examples of spaces with countable covers by sets of small
local diameter as well as some with well behaved injections into ¢o(I") for some

set T'.

3.1 The space ¢y(I')
Definition 3.1.1 Let T' be a set. We define co(T') to be the set
co(l)={z € R : foralle >0 |{t €T :|z(t)] > e}| < c0}.

When endowed with the supremum norm, co(T') is a Banach space.

Our next proposition is based on Lemma 3.2 from [22]. It also follows from

48
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[9], Theorem 2.1 b), since ¢o(I') has an equivalent locally uniformly convex
norm and on bounded sets in ¢y(I') the weak and pointwise topologies coincide.
Proposition 3.1.2 (co(T'), pointwise) has a countable cover by differences of

pointwise closed sets of small local diameter.

Proof. Givene > 0, for n € N with £ < £ and k € N we put
n 1
By = {y€all): [ftET: lul > 1} =k}

We show that Bf is the intersection of an open and a closed set in the

pointwise topology. Set
n 1 .
G"(aa,...,0m) ={z € co(T') : |za;| > 1= 1,...,m}, s €T.

and

G* = U G™(a1y. .-, 0m).

m
(a1,.,am)e€r™

G?, is open and clearly Bf = GE\Gry-
We now show that the sets Bf have local diameter less or equal than e.
Let y' € By and let {t € I": |y;| > 2} = {t1,...,tx}. Then there exists

0 < § < £ such that lyil —6>2%,i=1,...,k The set
Uz{yeBl?:Iyél—yhl<51"')|y£k_ytk|<5}

is an open neighbourhood of ¥’ in Bf in the pointwise topology.

Take z € U. Thenforz=1,...,k

1 1
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And since z € Bf and |z,,| > 1,4 =1,...,k, we have |z,| < % for ¢ # ¢,.

So take z,y € U. Let’s show that ||z — y||e < €. Fori € {1,...,k},
|z — yel <z — i, + lys, —vu| S6+8=26<e.

And for ¢t € T with ¢ # ¢;,

2
n

1 1
— < < — — = < g.
| yt|_|‘1’t|+|yt|_n+n <e

3.2 Projectional Resolutions of Identity

Definition 3.2.1 Let X be a Banach space. The density character of X,
denoted by dens(X), is the smallest cardinal number of a dense subset of X.

Definition 3.2.2 Let X be a Banach Space. We denote by p the smallest
ordinal such that its cardinality |u| = dens(X). A projectional resolution of
identity, PRI for short, on X is a collection {P, : wo < a < u} of projections
from X into X that satisfy, for every a with wp < a < pu, the following

conditions:
1) [|Pall =1
1) PyoPg = PgoPy = P, ifwg < a<f < p;

i) dens(P.(X)) < |al;
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iv) U{Ps1(X): ;uo < B < o} is norm dense in P,(X);
v) P, = Idx.

The following lemma lists some properties of the PRI's tha: we will need
later on.
Lemma 3.2.1 Let X be a Banach space and {Py :wo < a < p- b a PRI on

X. We put Payy — Po =T, forwo < a < p. Then the followin; rsults hold,
1) For every z € X, if o is a limit ordinal, wo < o < p, we Fave

Pa(z) = I | - Jim Pa(2).

ii) For every z € X, {||Ta(z)|| : @ € [wo, u)} belongs to co([wo,u)).
Proof. i) Let a be a limit ordinal, wo < o < g, and let z € . If

LS U Pﬂ(X))

B<a

say ¢ € Pg,(X), then Pg(z) = z if B > Bo. Thus, in this case, weheve

Il = Lim Pg(z) = = = Pa(2). (1)

If z € P,(X), by (iv) in Definition 3.2.2, given € > 0 there exists

y € |J Ps(X)

B<a
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such that ||z — y|| < §. For this £ > 0 there must be fo < a such that for any

B, Bo < B < a, we have

1Pa(y) — Pa(y)ll <

w|m

Thus
| Pa(z) — Ps(2)|| < [|Pal2) — Pa(y)ll + | Pa(y) — Pa(w)ll + || Pa(y) — Po(z)l| <

< || Palllle - yll + 1 Pa(y) — Pa()ll + | Pallllz — 4]l <,

whenever 8 > So.

Finally for z € X and 8 < a we have
Py(z) — Pa(z) = Pg(Pa(z)) — Pa(z)

and thus (1) holds for every z € X.

i) If the assertion is false, there exists zo € X, € > 0, and
w<y<a<<...<p
such that for every 7 > 1, ||Tw;(zo)|| > €. Set
a = sup{o; : 1 > 1}.

It 1s clear that

gi_l}; Ps(zo) # Pa(zo),

which contradicts with (i). n
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3.2.1 d. o-d. maps into ¢(I') using PRI

The next theorem is a straightforward adapatation to the case of PRI’s from
that in [22].
Theorem 3.2.1.1 Let p be a class of Banach spaces such that the following

results hold:
1) for every X € p there ezists a PRI on X, {Py : wo < a < u}.
ii) (Payr — Pa)(X) € p.
Then for every X € p there ezists a one-to-one bounded linear map
T:X — co(T),

for some set ', such that for every discrete family A= {A,},cs of subsets of
X, the family TA= {T A,}ses is d. o-d. 1n co(T).

Proof. Let X € p. We proceed by induction on dens(X).

When X is separable, we have that (Bx.,w*) is metrizable and separable.
So let {fn :m > 1} be a dense subset of (Bx«,w*) and define

T:X — co(N) by T(z) = (%fn(m))w_

T is clearly a linear map, and it is one-to-one because (fn).., is dense in Byx..
In order to prove the d. o-d. property we show first that discrete familiesin a

separable Banach space are countable.
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Let A= {A,}scs be a discrete family in X and let {B,},., be an open
base for the topology on X. For each s € S, pick a, € A,. Then there exists
U,, open neighbourhood of a,, such that U, N A; = 0, for ¢ # s. Now for each
s € S there exists n, € N such that a, € B,, C U,. Hence |S| < |N| and
therefore S must be countable.

So let A= {A,}nen be a discrete family and define
B™ = T(A,) and B™ =0, forn #m
Then for every m € N the family {B,(‘"‘)} N is discrete and

T(An) = |J B™ for every n € N.

m=1
So the family T'A4 is d. o-d.

Let x be an uncountable cardinal and X € p such that dens(X) = x.
Suppose that the result is true for every Y € p with dens(Y) < x. Let p be
the smallest ordinal with cardinality |p| = x.

Let {Py:wo < a < pu} be a PRIon X. For any o, wop < a < p, we set
Xa = (Pat1 — Pa)(X). Then X, € p and dens(X,) < |a| < dens(X). Thus

there exist sets I, and one-to-one continuous linear maps
Jo: Xo — co(Ta)

which satisfy the condition that the image of any discrete family in X, is

d. o-d. in ¢o(T').
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Since P,,(X) is separable, there is also Jy : P, (X) — co(N) sharing
these properties. Set

r=nNu |J T.

woLa<lp

and define T : X — £, (T') by
T(z)(n) = Jo(P.y(z))(n) for n € N, and

T(2)(1) = 5ol Pars(2) — Pal@))(7) for 7 € T

T is clearly a linear map and is continuous. We have

1
T2l = sup ||I5Ja(Pata(e) — Pal(2))] <

woLa<lpy

1

— sup ||J (| Pat1(z) — Pa(=)|]) <

<3, 2 ([Pavallliell + I Fafll=ll) <

t\DIl—i

ap (llzll + =) = ll=1l

[\‘)ll—l

We show that T(X) C ¢o(T'). By Lemma 3.2.1, ii), given z € X the set

{ITa(2)]| : @ € [wo, 1)}

belongs to ¢o([wo, 1)), where To = Pay1 — Pa.

So, given any £ > 0, there exist a1, ...,a, € [wo, p) such that
| To;(z)|| > € and ||Tp(z)|| < € for B # ayyi =1,...,n

For each i € {1,...,n}, Jo;(Tai(z)) € co(T's;). Hence there exist 11,...,7m; €
T'a; such that |Jo(Ta(z)(yk)| > € for £ = 1,...,m;. So there is only a finite

collection of vy € T' such that |T'(z)(v)| > ¢, and therefore T'(z) € co(T').
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Now we prove that T is an injection. Take z € X and suppose that
T(z) = 0. We show that Pg(z) =0 for wg < ¢ < p.

For £ = wg, we have Jo(P,,(z)) = 0 and, since Jy is an injection, we
conclude that P, (z) = 0.

Fix €, wo < € < p, and suppose that Py(z) = 0forwy < a < { Iffisa

non-limit ordinal, then ¢ = a + 1 for some a < ¢. Now
Je(Pe(z) — Pa(z)) =0 = Pe(2) =0,

because P,(z) =0 and J; is an injection.

If ¢ is a limit ordinal, we have
Pe(z) = L1£I£1 P,y(z) = 0.
For ¢ = u, since p is a limit ordinal, we have
Pz)=z = l}<mp P.(z) =0,

hence z = 0 and so T is an injection.

Now we introduce some notation. Set ¥, = Py(X) for wy < a < p and
Zo={y€co(T):ye=0forte |J Te}.
a<é<n

Define hy : co(T') — Z4 C o(T") by

hay) = 4’ with 4 0 forte U{le¢:a< €< pl,
aly) =Y With Yy, =

y¢ otherwise.
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Observe that T'Y, C Z, and that the diagram

X —T') Co(].-‘)

Pl | ha

has the property that ho 0T = T o P,.

We prove now that 7" maps discrete families into d. o-d. families.

Fix ¢ < p and suppose that for each a < ¢ the image under T of any
discrete family of subsets of Y, is d. o-d. in co(I'). We show that for any
discrete family A= {A,}scs of subsets of Y the family T'A is d. o-d. in ¢o(T').
We may assume that A is e-discrete for some £ > 0.

The case ¢ = wy is clear, since Y, is separable.

Now let ¢ = @+ 1 be a non-limit ordinal. Take a cover

o
V=VjofY,
7=1
consisting of sets of diameter less than % and such that the families V; are
discrete (cover Y, by open balls of diameter less than § and obtain a o-discrete
refinement). By the inductive assumption the families h;'TV; = TP;V; are

d. 0-d. in ¢o(T') for all j € N.

In order to prove that the family T'A is d. o-d. in ¢o(T') it is sufficient to
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show that for each 7 € N and each U € V;, the family
= {T A%} ,cs, where AY = PZ1(U) N A,,

is d. o-d. in ¢o(T').
Suppose that the last assertion has already been proved. Thus, for every
j € N and every U € V; there exist families {Bg;'),},es, m € N, such that for

every m € N, {Bg,”},es is a discrete family in ¢o(I") and

TAV = U B,

m=1
Now for every j € N the families TP;(V;) are d. o-d., and therefore for every
n € N there exist discrete families {C,(,)}Uev such that for all j € N and
U € V; we have

TP;NU) = U e,

Since V is a cover of Y,, we have

4, = (U T4% = U(U (U BEL) =

j=1 UeV; j=1 UeY; m=1

- UcU (U B.NTE0)) =

j=1 Uey; m=1

~0U B0 Ucty= U (U EE.ncs.

j=1 UeVy; m=1 n=1 smmn=1 UeY;

So we have to see that if we fix 7, m,n € N, then the family

F={U BF,nCFN} es

Uey;
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is discrete.

So take zo € ¢o(I'), since {CI(,?}}UE);J. is a discrete family, there exists an
open neighbourhood of zg, say Ny, which intersects at most one element of the
family. Assume that Ny N CI(,:),J- #  for some Up € V; and Ny N CI(,"]) = { for
U # Uy, U € V;. For U € V; the family {ng&,},es is discrete and therefore
there exists an open neighbourhood of z,, say My, such that My B[(,-’:)j,,o #0
for some sq € S and M, ﬂB[(,';)j,, = ( for s # so.

Take Gy = No N My. Gy is an open neighbourhood of zo which intersects

at most the one set O’L(,’;?j N B[(,::)j,,o and therefore meets at most

U (BE., nC5)).
Uey;

Hence we conclude that the family F is discrete and therefore that T A is
d. o-d.
So we prove that the family T.AY is d. o-d. in ¢o(T'). For z € AV, y € AV,

with s 5 ¢ we have
|Pa2) = Pa(w)]| < 7 and [lo —y]| > e.
(Note that diam(U) < £ and the family {A,}.es is e-discrete.) Therefore
(e~ Pale)) - (v = Palw))ll >

and since

Pa+1(32) =gz for z € Ya+1,
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we conclude that (Pays — Pa)(AY) is a discrete family (in fact, £-discrete) in
X,. Therefore by the inductive assumption, Ja(Pas1 — Pa)(AY) is d. 0-d. in

co(T'a)- Thus the inverse image of this family under the map defined by

d:co(T) — co(Ta)

Yy ~ Yra.
is a d. 0-d. family. The family T.AY is by the definition of T a refinement of

the family

47 (5 e Pars — Pa) )

and therefore is also d. o-d.

Now let ¢ be a limit ordinal. For « € Y we have
l}gg”Tﬂ:II‘a” =0,

by Lemma 3.2.1 i), and we obtain that for any € > 0 and for all z € Y, there

exists a < € such that
|Pa(@) =2l < 7 and | Tapr, | > [Tayr,l, for n > (+)
Fix two rational numbers r > ' > 0 and put
M ={y € co(T) : |lyrrall > 7 and ||y, || <7, for p > o}

We show that the family {M*},<y, is a discrete family in ¢o(I'). Take zo €

co(T") and § = 25, We claim that the ball B(o; §) cannot meet two distinct
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elements of the family. Suppose there exist ¢, 7, say & < 7, such that

B(wzo; 6) N M* # 0 # B(zo;8) N M".

Take

u € B(zo;6) N M™ and v € B(zo; 6) N M.

For y € co(T") write y, = yjr,. We have

r—r

2

|l = vnll < llun — 2o, || + llzo, —vall <6+ 6 =

and
1w = vall 2 gl = lvglll 2~ — .

Hence we have

r—r
O<r—7'< 5

which is absurd.

If we consider the sets
47 = {o € A, |Pale) ~ ol < 2},

then the family {P,(A2)}ses is discrete in Y.
To verify this take zo € Y, and consider the open ball B(zo; §), and suppose

that for ¢ # s the sets

B(zo; %) N Py (A2) and B(zo, g) N P.(Af)
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are both non-empty. Take z; € AS and z; € A such that
Pa(z1) € B(zo; g) N P2(A%) and Pa(z,) € B(zo; g) N PL(A%).
Since the family {A,}¢cs is e-discrete, we have
|Pafe1) = Pa(2)]| < § and ||z — o) > e.
Then
e < |ler — 22|l < |l21 — Pa(a1)l + [ Pa(21) — Pa(2)l| + || Pa(@2) — 22| < i—e,

which is absurd.
So {Pa(AZ)}ses is discrete in Y, and by the inductive assumption the family

{TPa(A2)}secs is d. o-d. in co(T"). Hence
{hS T Pa(A7)}ses = {TAShies

is d. o-d. in ¢o(T').
We conclude that the family {M* N T A%},es is d. o-d. (it is just a refine-

ment of a d. o-d. family). Since the family {M*},<, is discrete, the family

{ Ue(M “NTAbies

is d. o-d.

We check the last assertion. Since {T'A%},es is d. o-d., take

TA? = |J BY)

«,s)
n=1
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with {B )} .5 discrete for every n € N. Then

(U@ nTADhes = {U M N ( U BU))kees =

a<é a<é
={U(U@*n BE))}ses.
n=1 a<¢

We have to show that for every n € N the family

{U (M1 BED)}ees
a<é
1s discrete.
Take & € co(T'). There exists an open neighbourhood N of z which meets
at most one element of the family {M>},<¢, say NNM* #£ 0, and NNMP =
for B # ag, B < €. For this ap, the family {B&’O‘),},Es is discrete. So there

exists an open neighbourhood M of z which intersects at most one element of

this family, say M N B, #£ 0 and M N BM™, =0, s # so.

@Q,30 @0,8

Set V.= NN M. V is an open neighbourhood of z and meets at most

M N B&'g?,o, and therefore V' intersects at most
U (> n BEY,).
a<é
Considering all pairs of rational numbers r > ' > 0, by (x), we cover T'A, by

the sets

U @M>nTAD)

a<é

associated with these pairs. Then the family {T'A,}.cs is d. o-d. and this ends

the induction. |



Chapter 3: Spaces with a countable cover by sets of small local diameter 64

3.2.2 WCD spaces, duals of Asplund spaces and C(K)

spaces

Definition 3.2.2.1

i)

iii)

A Banach space X is called an Asplund space if every convex continuous
function defined on a convez open subset U of X 1s Fréchet differentiable

on a dense Gs subset of U.

A Banach space X 1is called weakly countably determined (WCD) if there
exists a countable collection {K, : n > 1} of w*-compact subsets of X**
such that for every x € X and every u € X**\X there ezists no such

that ¢ € K,,, and u ¢ K, .

Let K be a compact space. K is said to be Valdivia compact if there ezists
a set I and a subset Ko of [0,1]7 such that K is homeomorphic to K, and
Ko N B(I) is dense in Ko, where $(I) is the subset of [0,1]7 consisting
of all functions {z(3) : © € I} such that z(1)=0 except for a countable

number of i’s and [0,1)7 is equipped with its product topology.

We now apply Theorem 3.2.1.1 to these three particular cases of Banach

spaces. The existence of a PRI in these spaces can be found in [2], Chapter 6.

Corollary 3.2.2.1 Let K be a Valdivia compact space. Then there ezists a

map T : C(K) — co(T") with the following properties.
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i) T is a one-to-one bounded linear map.
1) T : (C(K), pointwise) — (co(T'), pointwise) is continuous.
iii) T maps discrete families of C(K) into d. o-d. families of co(T').

Proof. Consider the families {K, : wo < @ < p},{ra : wo < a < p} of Val-
divia compact spaces and continuous retractions that arise in the construction

of a PRI on C(K).
Since w(K,) < |a|, we apply the inductive assumption to C(K,) instead

of Xo. We also can identify C(K,) with Y,. So we obtain
To: C(Ka) — co(Ta)
satisfying conditions 1), ii), iii), and define T as follows
T(f)(n) = Tue(Puo(f))(n) for n € N,

T(£)7) = Tasa(Pasa(F) = Pal))1) 01 7 € Tapa.

Since P, and T, are pointwise continuous, T' is pointwise-pointwise continuous.
We have to go back to the proof of Theorem 3.2.1.1 and to modify a few

things. Where we had
“(Pat1 —Pa)(.AU) 15 discrete in X,

we can put

(Poy1 — P )(AY) is Z— discrete in X,
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and therefore discrete in C(Kqa41) = Yat1.
Then

Tot1(Pots — Pa)(AY)

is d. o-d. in co(Tat1)-

(Since p is a limit ordinal, & + 1 must be less than p and therefore we can
apply the inductive assumption.)

The rest of the proof remains valid. |
Corollary 3.2.2.2 Let X be a weakly countably determined Banach space.
Then there exzists a one-to-one continuous linear map T : X — ¢o(T') such
that the image of any discrete family in X is d. o-d. in co(T).

Proof. Let p be the class of WCD Banach spaces. If X € p, we obtain
a PRI on X, and since being WCD is an hereditary property, we have that
(Pat1 — Pa)(X) = Xq is WCD. Now we can apply Theorem 3.2.1.1 and obtain
the desired result. u
Corollary 3.2.2.3 Let X be an Asplund space. Then there ezists a one-to-
one bounded linear map T : X* — co(T") such that the image under T of any
discrete family in X* is d. o-d. in co(T').

Proof. Let p be the class of duals of Asplund spaces. If X* € p we can

obtain a PRI on X* satisfying

(Pat1 — Pa)(X*) = (Xot1/Xa)"
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Here (Xat1/Xa)* is the dual of an Asplund space, i.e., another element of p-.
and now we only have to apply Theorem 3.2.1.1 to p. |
Due to the existence of equivalent Kadec norms for the three types of
Banach spaces we have considered, our next result is known.
Theorem 3.2.2.2 Let X be a Banach space of one of the following types:
weakly countably determined, the dual of an Asplund space or a C(K) space
with K being a Valdivia compact space. Then (X,weak) has a countable cover by
sets of small local diameter and therefore Borel(X, | - ||) = Borel(X,weak).
Moreover, in the case of X=C(K), we have that (C(K),pointwise) has a count-

able cover by sets of small local diameter and therefore

Borel(X,|| - ||) = Borel(X,weak) = Borel(X, pointwise).

3.3 Markushevich basis.

Definition 3.3.1 Let X be a Banach space. A family {z., fy}yer in X x X* is

called a Markushevich basis (M-basts) if the following conditions are satisfied:

i) span{z,:v €'} = X
i) || fyll =1, for v € T}

iii) fy(zy) =1fory €T and fy(zs) =0 for § #7,7,6 €T}
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iv) N{Ker f,:v €T} ={0}.

Let F be the norm closure of the linear span of {f, : v € I'} in X*. The

formula

lllzlll = sup{f(=) : f € F,|Ifl <1}

defines a new norm on X. The M-basis is said to be norming if the norm ||| |||

is equivalent to the original norm || - |.

Lemma 3.3.1 Let X be a Banach space with a norming M-basis {z., fy} er.
Then there is a continuous linear injection T : X — co(T').

Proof. Consider T' : X — £2(T") defined by T'(z) = (f,(z)). T is clearly
a continuous linear map and, by the definition of M-basis, is an injection. We
now show that T(X) C co(T').

Consider the set K = {f, : 7 € '}U{0}. K is a w*-compact subset of X*.
Define V, = {z* € X* : |z,(z*)| > 3}. V, is a w*-open neighbourhood of f, in
X* such that fs ¢ V, for § £ €T

Now given z € X and ¢ > 0, set U = {z* € X* : |z*(z)| < ¢}. Uis a
w*-open neighbourhood of 0 in X*. Now the family {V, : y € T} UU is a

w*-open cover of K and therefore there exist 71, ...,7, € I' such that

KclUvwuU

J=1
Thus, for v & {71,-y7n},7¥ € ' we have that f, € U, ie., |f,(z)] < € and

therefore T'(z) € co(T'). n
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The next result is part of one in [10], Theorem 1.

Proposition 3.3.1 If X has a norming M-basis, then (X, Tptwise) 1S 0-frag-
mented uSING Tpewise-closed sets.

Theorem 3.3.1 Let X be a Banach space with a norming M-basis. Then there
is a continuous linear injection T : X — co(T") which is d. o-d. and its inverse
is of the first Borel class.

Proof. Define T : X — co(T') by T'(z) = (fy(z)).

It follows from Theorem 2.2.2 and Proposition 3.3.1 that T is d. o-d. and
that (X, Tptwise) has a countable cover by sets of small local diameter. We
show that the equivalent norm ||| - ||| is lower semicontinuous for the Tptwise
topology.

Take {Zo}acr,z € X with |||zs]|| £ 1 and zo — @ in the Tpiwise topology,
ie., fy(za) = fy(z)for every v € T. Since |||z||| = sup{f(z) : f € F, ||f|| <1},

given € > 0 there exists f € F, || f|| < 1 such that
llalll < £(2) + 5.
Since f € F there exists (A1 fy, + ... + Anfy,) such that
£(2) < Mafn (@) + ot dnfra(e) + 3
and there exists ap such that for o >> aq

M fo () + oo A frn(®) € X fo(5) + oo Ao () + 3.
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Thus,
Il < Mfp(@a) + - 4 A fr(a) +€ < llealll +6 < 1+e.

So for any € > 0 we have that [l|z]|| £ 1 4+ € which implies that |||z||| < 1.
Now since ||| - ||| is lower semicontinuous and (X, Tpewise) has a countable cover
by sets of small local diameter, we have by Theorem 1.3.1 that (X, Tpsuwise) has
a countable cover by differences of Tptyise-closed sets of small local diameter.
Since differences of Tyorm-closed sets are T),orm-Fo sets, we have, by Theorem

2.3.1, that T is d. o-d. and its inverse is of first Borel class. [
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