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Abstract

Algebraically, surface fibrations correspond to extensions of surface groups 

via their long homotopy exact sequences. First, it is proved tha t any group 

can be constructed by at most finitely many group extensions where the 

kernel and quotient correspond to finite free products of free groups and 

surface groups. This rigidity theorem has the im portant corollary tha t the 

group of all automorphisms of an extension of surface groups has finite index 

in the automorphism group of the fundamental group of a surface fibration.

The Baer-Nielsen theorem for surfaces is extended to show tha t the natu­

ral homomorphism from the homotopy classes of diffeomorphisms of surface 

fibrations maps surjectively onto the outer automorphism group of their fun­

dam ental group.

The virtual cohomological dimension of the outer automorphism groups of 

poly-surface and poly-free groups is calculated when the image of the operator 

homomorphism of the extension is finite. Using pure diffeomorphisms, this 

dimension is obtained when the image of the operator homomorphism is 

generated by Dehn twists about separating circles in a surface. A bound is 

also given on the virtual dimension of the automorphism group in all cases.

Finally, it is shown the mapping class group of a Stallings fibration M is 

not rigid in the sense that the automorphism group of the long homotopy 

exact sequence of M does not have finite index in the automorphism group 

of the fundam ental group of M. The virtual cohomological dimension of the 

m apping class group of the trivial Stallings fibration is calculated to be 6g-5 

where g is the genus of the fibre, whereas Stallings fibrations constructed 

from pseudo-Anosov diffeomorphisms are shown to have finite mapping class 

groups.
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Introduction

The aim of this thesis is to consider how far results from the theory of 

surfaces can be extended to theorems concerning surface fibrations. The 

research was m otivated by attem pts to generalise the Baer-Nielsen theorem 

on the outer automorphisms group of surface groups and Harer’s theorem 

which calculated the virtual cohomological dimension of the mapping class 

group of an orientable surface.

The closed 2-manifolds with genus g > 2  are known as hyperbolic surfaces 

since their universal cover is the hyperbolic disc. By considering fibrations 

with fibre and base space given by (hyperbolic) surfaces we construct the 

surface fibrations of the title. Much of the topology of surface fibrations can 

be derived from algebraic information, most notably, their long homotopy 

exact sequence which reduces to an extension of surface groups (fundamental 

groups of surfaces). In the course of writing this thesis, it became clear 

tha t many of the algebraic techniques for these poly-surface groups could be 

applied to poly-free groups. These results point towards the usefulness of 

our techniques for infinite group theorists.

The first chapter is an outline of some essential background m aterial from 

group theory necessary for the algebraic aspects of this thesis. In Chapter 2 

we shall consider group extensions where the kernel and quotient correspond 

to finite free products of free groups and surface groups (both orientable and 

nonorientable). Free groups and surface groups are brought together under 

the unifying framework of (torsion-free) Fuchsian groups. Our aim is to show 

that any group can be constructed by at most finitely many group extensions 

of this type. The approach taken is to consider a sufficient set of conditions 

for this rigidity theorem to hold and we then go on to prove tha t they are 

satisfied by the class of iterated extensions of finite free products of torsion-



free Fuchsian groups. The rigidity theorem has the im portant corollary tha t 

the group of automorphisms of the extension leaving the kernel invariant has 

finite index in the automorphism group of the extension. We shall use this 

fact frequently in all other chapters.

In the 1920’s, Baer and Nielsen proved that the natural homomorphism 

from the group of diffeomorphisms of a surface to the outer automorphism 

group of its fundamental group is surjective and has a kernel given by the 

diffeomorphisms homotopic to the identity. Waldhausen later generalised this 

theorem to the class of sufSciently large 3-manifolds. We will examine how 

far the Baer-Nielsen theorem extends to surface fibrations in Chapter 3. The 

chapter begins by expounding the elementary properties of fibrations and 

simplicial sets. The category of simplicial sets provides a naturally occurring 

category for homotopy theory which eases the exposition of the proofs in 

this chapter. We then create a theory of fibre smoothing which enables us to 

smooth our surface fibrations to smooth fibre bundles in order to prove our 

generalisation of the Baer-Nielsen theorem. In particular we show tha t for 

a certain class of group extensions known as characteristic extensions, the 

natural homomorphism

7ro(Diff (Xr)) Out (T)

is surjective, where X r  is a smooth manifold with 7Ti(Xr) =  T. This is 

generalised to iterated surface fibrations before the last section of the chapter 

which considers non-characteristic extensions of surface groups. In this case 

we prove tha t the image of the above homomorphism is a subgroup of finite 

index in Out (F).

Chapter 4 investigates the automorphism groups of certain poly-Fuchsian 

groups; in particular, we shall consider extensions of free groups and of 

orientable surface groups. This research was motivated by theorems due 

to Barer and Culler/Vogtmann who investigated the outer automorphism



groups of surface groups and free groups respectively, and calculated the vir­

tual cohomological dimension in each case. In this chapter, we extend their 

results to outer automorphism groups of poly-surface and poly-free groups 

in the case where the image of the operator homomorphism of the exten­

sion is finite. When the image of the operator homomorphism is infinite, 

the problem seems to be far more complex. However, we are able to give a 

bound on the virtual dimension of the automorphism group for all cases. The 

purpose of the final section is to calculate an exact sequence for the outer 

automorphism group of an extension consisting of centreless groups. This 

reduces the calculation of the v.c.d. of the outer automorphism group to the 

corresponding calculation for the ends of the exact sequence. In the next 

chapter we shall use the results of this section to calculate the v.c.d. in a 

particular case where the image of the operator homomorphism is generated 

by certain diffeomorphisms about separating circles in the surface.

The final chapter brings together much of the work from previous chapters 

and applies results from Thurston’s classification of surface diffeomorphisms. 

We begin by collecting together various kinds of surface diffeomorphisms 

and quoting Thurston’s classification. The second section studies certain 

subgroups of the mapping class group of a surface using Ivanov’s work on 

pure diffeomorphisms which are variations upon pseudo-Anosov diffeomor­

phisms for disconnected surfaces. Using this work, we calculate the v.c.d. of 

the quotient of the exact sequence from the previous chapter. The final sec­

tions consider the applications of our techniques to the study of 3-manifolds; 

in particular, Stallings fibrations which are fibrations of surfaces over the 

circle. The aim of Section 3 is to demonstrate tha t, in general, the mapping 

class group of a Stallings fibration M  is not rigid in the sense tha t the au­

tomorphism  group of the long homotopy exact sequence of M  does not have 

finite index in Aut (7Ti(M)). We also calculate the virtual cohomological di­



mension of the mapping class group of the trivial Stallings fibration. The 

final section then proves that when a Stallings fibration is constructed by a 

pseudo-Anosov diffeomorphism, then its mapping class group is finite.

I would like to thank my supervisor Dr. F.E.A. Johnson, for the help he 

has given me during the writing of this thesis.



Chapter 1 

Prelim inary results from group 

theory

1.1 Torsion-free Fuchsian groups

Let T> denote the class of torsion-free Fuchsian groups, which consists of all 

torsion-free discrete lattices of finite covolume in PGL2(i?). T) is the disjoint 

union T  U U S~  where

(i) .F is the class of free groups of finite rank n > 2;

(ii) S'^ is the class of fundamental groups of closed orientable surfaces whose 

universal cover is given by the hyperbolic plane and hence have genus g > 2 .  

These groups have the following presentation:

s+  = (;^1, . . . ,  y . , . . .  r ,  : n
:=1

(iii) S~  is the class of fundamental groups of closed nonorientable surfaces 

with the following presentation:

E ;  = { C o , . . . , C , : f [ C f ) .
i=0

The following properties are well-known and can be found in the references 

by [Kat] and [Bea]:



Proposition 1.1 (Properties of torsion-free Fuchsian groups)

Let G be a torsion-free Fuchsian group so that G belongs to T  U <$+ U S ~ . 

Then

(I): G is nontrivial and has trivial centre.

(II): The rank of G, denoted rh(G), is given by rkÇE)^) =  2n fo r  € 

r^ (E “ ) =  n +  1 for  E “ € S~ and rk{Fn) = n for Fn G .7^.

(III): The Euler characteristic ofG , denoted x{G), is given by %(E+) =  

2 — 2n, x (^n  ) =  1 — n and x i^ n )  =  1 — n. In particular %(G) ^  0 for  

G e D .

(IV): I f  H  C G is a subgroup of finite index then H  £ V .

(V): I f  N  <G is a nontrivial normal subgroup of infinite index, then N  

is a free group of infinite rank.

An im portant result in the theory of Fuchsian groups is the Riemann-Hurwitz 

theorem which relates the rank of a subgroup of finite index in a Fuchsian 

group to its index. For the purposes of Chapter 2, it will be necessary to 

generalise the formula to free products of Fuchsian groups. Here we state  the 

original result (see for example [LS] Chapter III):

Theorem  1.2 (The Riem ann-H urwitz formula) I f  G £ V  and N  is a

finitely generated normal subgroup of G, then N  has finite index j { N )  in G 

given by the Riemann-Hurwitz formula:

where 6 is equal to 1 when G is a free group, and equals 2 when G is a surface 

group (6 is the cohomological dimension of G; see Section 5).
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1.2 Free products

The free product of groups is the coproduct in the category of groups. Specif­

ically; let {Ga}be a family of groups, G a group and let —> G be

homomorphisms. Then (G, {z*}) is called a free product of the groups {G&}

if for every group H  and homomorphisms fa  : Ga —> H  there is a unique 

homomorphism f  : G H  such tha t fa = ia f  for all a.

An alternative way to view this definition is to write the groups in the 

product in term s of generators and relations:

Let A  and B  be groups with presentations A  =  (o i , . . .  ; r i , . . . )  and B  =

(61, . . .  ; 5i , . . . )  respectively, with disjoint sets of generators. The free product 

A *  B  0 Î A  and B  is the group

A * B  =  (o i , . . .  61, . . .  ; T i,. . .  5 i , . . .)

Using this alternative definition it is clear that free groups - which have no 

relations - are closed under the free product operation, thus motivating the 

nomenclature. The following result is simple to prove:

Proposition 1.3 I f  {G ,{ia}) and {H ,{ja}) are both free products of the 

family o f groups {Ga} then there is a unique isomorphism f  : G H  such 

that i a f  =  ja for  all a.

We shall make use of the following well-known theorems in the proof of 

the rigidity theorem 2.11. The proofs can be found in [LS] Chapter III.

Theorem  1.4 (Grushko-Neum ann) Let F  he a free group, and let there 

be a homomorphism (f) : F  *A,- of F  onto Then there is a factorisation 

of F  as a free product, F  = *F{, such that <t>{Fi) = A,-.

In particular, the following corollary will be most useful:

11



C o ro lla ry  1.5 I f  G = Ai * ^ An and the rank of Ai is vi, then the rank

of G is Ti + Tn.

T h e o re m  1.6 (K u ro sh  S u b g ro u p  T h e o re m ) Let H  he a subgroup of the 

free product G = *A€aĜ A' Then H  is a free product of the form

H  = Ho*  n  {dxGxdf'^)

where Hq is a free group, dx varies over a set of [H, Gx)-double coset repre­

sentatives and A varies over A.

Furthermore, i f  H  has finite index in G, the rank of the free group H q is 

Z )a g a (^  — mx) +  1 — m  where mx is the number of { H ,  Gx)-double cosets in 

G.

The concept of a free product may be considered as a generalisation of 

the familiar concept of a free group. As we have already observed in the first 

section, a finitely-generated normal subgroup in a free group has finite index. 

Thus we may expect a similar result to hold for free products. The following 

generalisation was proved by [Ban] and will be useful in the next chapter.

T h e o re m  1.7 (B . B au m slag ) Let G be the free product of two nontriv­

ial groups. I f  a finitely generated subgroup H  contains a nontrivial normal 

subgroup o f G then H  has finite index in G.

1.3 Subgroups of finite index

Throughout this thesis we shall consider subgroups of finite index within 

groups. Recall first tha t a subgroup H q in G is a characteristic  (respectively, 

fully-invariant)  subgroup of G if a((7) <= G for all a  belonging to the auto­

morphism group (resp. endomorphism group) of G. Note tha t fully-invariant 

subgroups are characteristic since Aut (G) C End(G).
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The following lemmas will prove invaluable in several places and so we 

include proofs below (see [Neu] and [Iv2],p.80).

L e m m a  1.8 Let G be any group containing a subgroup o f finite index K .  

Then G has normal subgroup H  of finite index such that H  d  K  <Z G

P ro o f  : Let {gt)t£T be an arbitrary set of representatives of left cosets of

K .  T  is a finite set since K  has finite index in G. Define

H  = f ]  g tK g f^
teT

This has finite index in G since it is a finite intersection of subgroups of 

finite index in G which has finite index by Poincare’s lemma. Therefore, it 

suffices to show that it is a normal subgroup of G. For any g in G, the cosets 

ggsK  and ggtK  derived from distinct left cosets of K  are equal if and only 

if {ggt)~^ggs G K', that is, gf^gs G K  which is impossible since gs and gt 

are distinct coset representatives. Analogously the right cosets K{ggt)~^ are 

all distinct and the sets {gtKgf^ : t E T ]  and {ggtK(ggt)~^ : t E T ]  are 

equivalent. Therefore

gHg-'^ =  5T ( n  gj< gf^) g~^

= r\(9gt)K{ggt)~'^

=  H

and H  is à normal subgroup of G. □

Let F  be a free group on the set x i ,X 2 ,-- - and let W be a nonempty 

subset of F. l î w  = and g i , . . .,gr are elements of a group G,

then the value of u; at (^ i , . . .  ^r) is given by

w (9 i ,-^g r )  = gi - - g r -  

13



The class of all groups G such tha t W{G)  =  1 is the variety of groups de­

termined by W .  The subgroup of G generated by all values of words in W  

is the verbal subgroup of G determined by W  and every verbal subgroup of 

a group is fully-invariant. The converse is not true in general, but for free 

groups, every fully-invariant subgroup is verbal.

L e m m a  1.9 (see [N eu], p .112) Let G be a finitely generated group con­

taining a normal subgroup N  of finite index in G. Then there exists a sub­

group L where L contained in N  which is a fully-invariant subgroup of finite 

index in G.

P r o o f  : Let G =  Q.[Fk) be a presentation of G where Fk denotes a free

group of rank and let S  be the complete inverse image of N  in Fk so tha t 

a (5 )  =  W. As jV is normal in G, it follows tha t S  is normal in Fk and 

further, [F)t : S] =  [o(jFt) : o(5")] =  [G : Æ] showing th a t S  has finite 

index in Fk. Consider the variety of groups generated by the finite group 

F k/S .  The free group of rank k of this variety we shall denote by Fk. This 

is finite since the free groups of finite rank of a variety generated by a finite 

group are finite and furthermore, F k /S  is a factor group of Fk. Therefore, 

putting Fk = F kjV ,  then V is a verbal subgroup of Fk of finite index in Fk, 

and V  is contained in S. Therefore, a ( y )  is a verbal subgroup, and hence a 

fully invariant subgroup of a{Fk) which is of finite index in a{Fk) = G and 

contained in ol[S) =  N .  Writing L  =  a ( y )  gives the result. □

Combining these results gives

L e m m a  1.10  (F in ite  in d e x  lem m a) Let G be a finitely generated group 

containing a subgroup N  of finite index. Then G has a normal subgroup of 

finite index L contained in N ,  and therefore, a characteristic subgroup H  

such that H  C L C N  C G, where H  has finite index in G.

14



1.4 Group extensions and the Eilenberg-Mac 

Lane Theorem

A group extension of K  by Q is a short exact sequence

where i and tt are group homomorphisms. By a morphism of group extensions 

is m eant a triple of homomorphisms (a , /?, 7 ) such tha t the following diagram 

commutes:

[ a  0 3  i  7

1 K ' a  Q' ^  \

A morphism of the form (l/c,yd, 1q) is called a congruence and group ex­

tensions are normally classified up to congruence. By the 5-lemma, (3 is an 

isomorphism. To each group extension there exists a unique homomorphism, 

called the operator homomorphism, constructed as follows:

Consider a transversal function s : Q ^  G with the property

57T =  1.

This is generally not a homomorphism but we can create a homomorphism 

by conjugating automorphisms of K .  Suppose we have two automorphisms of 

K , a  and a ',  defined by transversals s and s' respectively. Observe tha t since 

any two transversals differ by an element of K ,  we may put s(t) =  x's'{t) 

where x' G K .  By writing =  o l[ x )  =  we obtain a function

Ip : Q Aut (K), and similarly a'{x) = ip't{x) = s'{t)~^xs'{t). Rearranging,

'ip[{x) = s'{t)~'^s{t)'ipt{x)s{t)~'^s'{t)

= {s{q)~'^x's{t)}(l)t{x){s{t)-'^x'~'^s{t)}

— g~^(pt{x)g where g = s{t)~^x'~^s{t)

15



proving tha t any two ÿ ’s differ by an inner automorphism of K .  This we 

may write as

ÿ((T)(Inn (K)) =  ^((x)(Inn (K))

and hence there is an unique homomorphism <j>t[x) =  ^t(a;)(Inn (K)) called 

the operator homomorphism and

<t>:Q-^ Out (K).

Two fundamental questions we may ask about group extensions are whether 

there is an extension corresponding to a given operator homomorphism 0 , 

and, given at least one extension realising 4>i what other extensions realise (j). 

These questions may be interpreted as questions about certain cohomology 

groups as below (for a detailed account of this see [Mac] Chapter IV).

By an abstract kernel is meant a triple ( /i , Q, consisting of groups K, Q 

and a homomorphism (f) : Q Out K.

T h e o re m  1.11 (T h e  E ilen b e rg -M acL an e  T h e o re m ) An abstract kernel 

(/lT, Q, (f)) corresponds to a group extension i f  and only i f  the obstruction be­

longing to

H \ Q ,  Z{K ))

vanishes where Z(K) denotes the centre of K .

Given that the abstract kernel (Æ, Q, (j)) corresponds to an extension, the 

congruence classes of extensions are in 1 — 1-correspondence with the elements 

of the second cohomology group

h H Q ,z {k ))

In later chapters we will also consider various properties of the automor­

phism group of an extension. This group is closely related to the group of 

congruences of an extension as we shall now describe:

16



Let Aut (S) be the group of automorphisms which preserve S] th a t is, 

the group of those automorphisms a  : G G ioi which there exist autom or­

phisms ax^OLQ making the following commute:

1 K  -4 G ^  Q -> 1

I  œk i  û; I  aq

1 _  K  G ^  Q -> 1

There is a homomorphism p : Aut [E) —> Aut (K) x Aut (Q) given by p[a) =  

{otKi otq) for which the kernel corresponds to the group of self-congruences of 

E, denoted C{E). This consists of automorphisms of G making the following 

diagram commute:

1 —> K  —y G —y Q —y 1

i  1k  i  «  i  1q

1 K  G Q - ^ 1

It is clear that the homomorphism p gives rise to an exact sequence

1 G{E) Aut [E) A  Aut (K) x Aut (Q). (1.1)

Proposition 1.12 The group C{E) of self-congruences of an extension E is 

isomorphic to the group of 1-cocycles

where Z (K )  denotes the centre of K .

P roof : If a : G G is a self-congruence of 5, we can define a function Za

by

za{g) = oL{g)g~^

We will show that the values of this function belong to Z (K ) .  F irst, observe 

tha t Ci{g)g~^ is an element of K  if a  is a self-congruence, since

T̂ {ô {g)g~̂ ) = 7r(a(5r))7r(5f- )̂

=  T^{g)T^{g~^) = 1 

17



where tt is the projection tt : G ^  Q implying tha t ct{g)g~^ belongs to 

ker(7r) =  K .  If we choose an element k G then g~^kg also belongs to K  

so th a t a{g~^kg) =  g~^kg since the self-congruence a  restricts to the identity 

on K .  Upon rearrangement, this equation states tha t

koL{g)g~^k~^ =  ol{9)9~^

which proves tha t for any k in Za[kg) =  Za{g). Therefore,

Za{9) = ^a{k9) =  OL{k)a{g)g~'^k~'^

=  kza{g)k~'^

and so the function Za takes G to the centre of K .

This in turn  gives rise to a function Za Q by letting Za{q) =

Za{h) if 7r{h) = q. The 1-cocycle condition for a function (j) is that

^(^ 1̂ 2) =  4>{9i)9i4>{92)9\^ •

The next step in the proof is to show that z^ is a 1-cocycle as is demonstrated 

below:

Za{pq) =  Gc[pq){pq)~^

=  a(p )a (ç )ç”V ^

=  Za[p)pza{q)p~^

Thus, Za is an element of the group of 1-cocycles of Q with elements in Z {K )  

denoted Z^{Q, Z{K )) .  Moreover, the mapping from C{S) to Z^{Q, Z (K ))  

given by a  Za is an isomorphism of groups. □

P u tting  together all of the results on cohomology groups for centreless groups 

gives:

18



Corollary 1.13 (Centreless groups) Suppose K  has trivial centre, then 

both of the cohomology groups H^{Q, and H^{Q, Z (K ))  are trivial and

hence there is a unique extension (up to congruence) realising the abstract 

kernel Moreover the group of congruences Z^(Q, Z{K ))  is trivial

and the exact sequence (1.1) simplifies to give an injection

Aut {£) Aut (K) X Aut (Q)

Observe tha t torsion-free Fuchsian groups all have trivial centre and so the 

above corollary applies when we go on to consider extensions of surface groups 

and free groups in later chapters.

1.5 Cohomological dimension

A group r  is said to have finite cohomological dimension cd (F) if, for all 

F —modules M  and all integers i >  n, the cohomology group jET‘(F ;M ) =  0. 

If the group has torsion then cd (F) =  oo; however, we may still obtain 

a meaningful invariant if it has a torsion-free subgroup Fq of finite index. 

J-P. Serre has shown that all such subgroups have the same cohomological 

dimension and this dimension is called the virtual cohomological dimension 

of F , vcd (F).

Below we shall state many elementary properties for these concepts for 

which the main reference is [Ser].

Proposition 1.14 (Properties of the cohomological dim ension)

(i): 0 <  cd (F) <  oo and cd (F) =  0 i f  and only i fT  = {!}. I f T  is a group

of type FL (see Section 7) then cd (F) <  oo

(ii): Let F' be a subgroup o fT . Then cd (F') <  cd (F)

(iii): I f  cd (F) <  oo and F' is a subgroup of finite index in F, then cd (F') =

cd(r)

19



(iv): I fT '  is a normal subgroup o fT ,  then

cd ( r )  <  cd ( r ')  +  cd ( r / r )

Proposition 1.15 (Properties of the virtual c.d.)

(i): vcd (r )  = 0  i f  and only i fT  is a finite group.

(ii): I fT '  is a subgroup o fT  then vcd (P )  <  vcd (F).

(iii):IfT is a group without torsion then vcd (P) =  cd (P).

(iv): I f  G and H  are virtually torsion-free then vcd (G x H) =  vcd (G) +  

vcd (H).

Lemma 1.16 Let K  be a torsion-free group and let Q be a virtually torsion- 

free group giving rise to an extension \ K  - ^ G —̂ Q - ^ 1 .  Then G is 

also virtually torsion-free and further

vcd (G) <  cd (K) +  vcd (Q)

Proof : Since Q is virtually torsion-free, it has a torsion-free subgroup of

finite index denoted Let G^ be the extension of by K .  Note th a t we

can guarantee that exists since the operator homomorphism (j>' :

Out (K) corresponding to the extension

1 /P 1

is just the restriction of the original operator homomorphism (j). Using prop­

erties of the cohomological dimension, it follows that

cd(G °) <  cd (K )-f cd (Q°)

< cd (K) -f vcd (Q)

Finally, it is clear tha t has finite index in G since [G : G°] =  [Q : □
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1.6 Duality groups

Bieri and Eckmann introduced the notion of a duality group in [BE]. G 

is an n-dimensional duality group with respect to a right G—module C if 

there is an element e G Hn{G;C)  such tha t the cap-product with e induces 

isomorphisms

for all integers k and all left G —modules A. ^  dj2Aote. Uxe 

A Poincaré duality group is a duality group with respect to Z  (for more 

on these see [JW]). Surface groups and free groups are both examples of 

Poincare duality groups. The following properties are dem onstrated in [BE] 

and [Ser] respectively.

P ro p o s it io n  1.17 (P ro p e r t ie s  o f d u a lity  g ro u p s)

(i) : I f  G is torsion-free and H  is a subgroup o f finite index, then G is a 

duality group if  and only i f  H  is a duality group.

(ii): I f  G /K  = Q and Q and K  are duality groups, then G is a duality group 

and cd G =  cd K +  cd Q.

As before, there is a notion of a virtual duality group which has a subgroup 

of finite index which is a duality group. The following lemma strengthens 

the lemma in the previous section on virtually torsion-free groups:

L e m m a  1.18 Let K  he a duality group and let Q he a virtual duality group 

with finite virtual cohomological dimension. Let G he formed hy the extension 

1 — >1.  Then

vcd (G) =  cd (K) -f vcd (Q)

P r o o f  : Let denote a duality group of finite index in Q. W rite G° for

the extension of K  by (again we know th a t this extension exists since the
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corresponding operator homomorphism is just the restriction of the original 

operator homomorphism). Then is a subgroup of finite index in G and 

furtherm ore it is a duality group with

cd (G°) =  cd (K) +  cd (Q°)

□

1.7 Groups of type FL

Let R  be any ring with identity. A (left) i?-module M  is said to be free if it 

can be written as a direct sum of copies of R. M  is said to be a projective 

(left) i^-module if it is a direct summand of a free i?-module.

A resolution of a left B-module M  is a long exact sequence of left i?-modules 

C =  {Ci}j>o together with an epimorphism e: Cq M:

• • • —> C2 —̂ G\ —> Co —> Af —> 0

If the resolution C consists of free (resp. projective) modules then it is said 

to be a free (resp. projective) resolution. A group F is said to be of type 

FL  if the F—module Z  has a finite free resolution. Following Serre [Ser], we 

obtain the following result for groups of type FL:

Lem m a 1.19 (i) I fT i  and F2 are of type FL, then so is Fi * F2 and, more­

over, il  ^  1)̂  r3  4) ^  r^ÇoLx^onj

x ( F i  * F 2 ) =  x ( F i )  +  x (F2)  — 1

(ii) I f  J{ and G /K  are both o f type FL, then G is also o f type FL and

x(G ) =  x(A:)%(G/A:)

(iii) I f  D is of type FL, and is a subgroup of finite index in D, then 

is also o f type FL and moreover

X(D°) =  [D : D°]x(D)
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The importance of groups of type FL to topologists is explained by the 

following correlation to Eilenberg-MacLane spaces:

Given a group G, a path-connected space Y  is said to be an Eilenberg- 

MacLane space K[G^n)  if

{G if n =  m 

0 if n 7  ̂ m

As an example, observe tha t since 77, ( 5 )̂ =  0 for ç >  2 and 7Ti(5 ^) =  Coo it 

follows th a t the circle is a K{Coo-> !)• In the category of CW-complexes such 

a space exists and is unique up to homotopy equivalence. Wall proved tha t 

every finitely presented group G of type FL has a finite K[G ,  1) (see [Wal]). 

Similarly we may ask when there exists a manifold of type K{G^ 1):

T h e o re m  1.20  (F .E .A . Jo h n so n  [Jo h l])  Let G be a group. Then there 

exists an n-manifold of type K{G, 1) for  some n i f  and only i f  G is countable 

and has finite cohomological dimension.

In particular it is shown that we may choose the Eilenberg-MacLane space 

to be locally compact.
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Chapter 2 

Extensions of free products of 

torsion-free Fuchsian groups

In this chapter we shall consider group extensions where the kernel and quo­

tient correspond to free products of free groups and surface groups (both 

orientable and nonorientable). We shall assume throughout th a t the number 

of summands in the free product is finite. Our aim is to show th a t any group 

can be constructed by at most finitely many group extensions of this type. 

This rigidity theorem has the im portant corollary tha t the group of all auto­

morphisms of the extension which leave the kernel invariant has finite index 

in the automorphism group of the extension. We shall make frequent use of 

this fact in later chapters.

The first result we prove is a Riemann-Hurwitz type formula for finite 

free products of torsion-free Fuchsian groups. This generalises the usual 

Riemann-Hurwitz formula 1.2 which corresponds to the case n =  1.

P ro p o s it io n  2.1 Let D be a finite free product of n torsion-free Fuchsian 

groups and let he a subgroup of finite index in D with [D : =  j .  Then

. _  rk{D^) -  6 
^ -  rk(D) -  S
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where S = n i f  D contains a free group as a summand, and ^ =  n -f 1 i f  no 

summands o f D are free groups.

P ro o f: Let {Ga} be a finite family of torsion-free Fuchsian groups, and

define a free product structure D = (G, {z^}) on this family. We have stated 

in Chapter 1 tha t all free product structures on a family of groups are iso­

morphic, thus we may fix the order of the summands and take D  to be of 

the form

D =  * - ' - * * ^kr+l ^kr+s

where denote free groups, orientable surface groups and nonori-

entable surface groups respectively. Note that since free groups are closed in 

the category of free products of groups, we may take a single free summand 

in the free product.

Let n be the total number of summands in the free product D  and define 6 

to be n if A:o 0 and n -f 1 otherwise. This 6 will play the same role the 

cohomological dimension played in the Riemann-Hurwitz formula 1.2 . By 

repeated use of lemma 1.19 we have that

x { ^ )  =  x(-^Ao) +  x(Siti) +  • • • +  -  (^ +  5)

=  (1 — ^0) +  (2 — 2ki) -f . . .  -f (1 — kr+s) — (r -f s)
r r + s

— r -{■ 1 — ko — 2 ^  ki — ^  kj
«=1 j = r + l

Similarly, using the corollary to  the Grushko-Neumann theorem 1.4, 

rk{D) = rk{Fko ) +  r A : ( E - h  . . .  -f )
r r+5

=  ko F 2 ' ^ k i  -i- ^  kj s
t = l  i = r + l

and together these yield tha t

rk{D) = —x { D ) r s  1 (2 .1)
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This may be rewritten in terms of the constant 8 defined earlier as follows

rk[D)  =  - x { D )  4- 8

since if D  has no free summand then n = r -{■ s and n =  r  +  s +  1 otherwise. 

Similarly we have tha t the subgroup with n ' summands, satisfies

rk{D^) = - x ( D ^ )  +  8'

where 8' = n' oi n' I.

By examining the Kurosh subgroup theorem (Proposition 1.6) for the finite 

index case, we observe tha t n' > n since the summands of range over 

a set (A) which has n elements, therefore 8' > 8. Lemma 1.19 gives the 

relationship

X(D°) =  j{x (D ))  

where j  is the index of D° in D] from this we obtain

rk{D°) - S '  _  . 
r k ( D ) - S

The result follows by the observation that 8' > 8. □

2.1 K  — 6-Factorisations

Let /C, Q be classes of groups and let G be some finitely generated group. 

By a /C — Q-factorisation of G, denoted K ,  we mean a normal subgroup K  

of G for which K  ^  )C and G jK  G Q. The isomorphism class of G /K  is 

the quotient type of the factorisation. Our aim is to show that with suitable 

restrictions on the classes JC and Q, a given group G has at most finitely 

many K — Q-factorisations.
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Let V  denote the class of all finite free products of torsion-free Fuchsian 

groups, and let T)'̂  denote the class of iterated extensions of finite free prod­

ucts of torsion-free Fuchsian groups; that is, is the class of groups formed 

by extensions

where G and D £T>.

We shall show in particular that a group G has at most finitely many 

'pn-i _  ^-factorisations. In this section we shall give a suitable set of condi­

tions on the class of quotient groups Q and prove that these are satisfied by 

the class T> of all finite free products of torsion-free Fuchsian groups.

Define p{G) =  rk{Hi{G] 2 )) .  Clearly p{G) < rk{G).

C o n d itio n s  on th e  class Q

Q l: If Q E Q and is a subgroup of finite index in Q, then E Q.

Q2: Let Q E Q and let C Q be a subgroup of finite index. Then 

p{Q^) ^  P{Q) with equality if and only if is isomorphic to Q.

Q3: If Ç ' C Ç is a nontrivial normal subgroup of infinite index, then Q' is 

infinitely generated.

Q4: Each Q E Q is  finitely generated and of type FL.

Q5: For all Q E Q, x{Q) f  0-

Q 6 : For all Q G Q, there exist subgroups of Q with arbitrarily large index.

Q7: Given a finitely generated group G, then the number of distinct iso­

morphism types of groups in Q onto which G can map epimorphically 

is finite.

We shall call a class of groups a Riemann-Hurwitz class if it satisfies 

conditions Q l  to Q7. The name is derived from the fact th a t we require a
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Riemann-Hurwitz type formula for this class in order to prove our finiteness 

results.

T h e o re m  2.2 The class T> of finite free products of torsion-free Fuchsian 

groups satisfies conditions Q l  to Q 7 and so is a Riemann-Hurwitz class.

P ro o f  o f Q l  : We need to prove th a t V  is closed with respect to subgroups 

of finite index. The proof relies heavily on the form of a subgroup of finite 

index in the free product D = *aga-C^a as given by the Kurosh subgroup 

theorem 1.6; precisely,

D° = F,*{*x,i,(D°n{dxDxd-,^)

where Fk is a free group of finite rank and d\ ranges over a set of {D^,Dx)~ 

double coset representatives. The total number of double cosets D^xDx  is 

finite since has finite index in D  and so is indeed a finite free product. 

Hence it suffices to show tha t each fl dxDxdf^  G V:

S u b -le m m a  2.3 The summand  D dxDxdf^ is a subgroup of finite index 

in Dx-

P r o o f  : Since dxDxdff^ = Dx, we shall consider the isomorphic subgroup

n  Dx and show that this has finite index in Dx. The finite index lemma 

1.10 states tha t a subgroup D^ of finite index in a finitely-generated group D  

contains a subgroup D% which is normal in D. Thus the lemma will follow 

if we can show tha t D% fl Dx has finite index in Dx- Clearly

D x /D x n D % ^ D x D % /D %

and this is a subgroup of D/D%  which is finite and so [Dx : Dx fl D%] is 

finite. □
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Using these lemmas, we have shown that the subgroup of finite index 

in jD is a finite free product where each summand is a subgroup of finite index 

in a torsion-free Fuchsian group. As a finite index subgroup of a torsion-free 

Fuchsian group is again a torsion-free Fuchsian group, we have th a t is 

a member of V .  Hence V  is closed under subgroups of finite index and so 

satisfies condition Q l. □

Proof of Q2 : The proof essentially follows from Proposition 2.1. This

generalised the Riemann-Hurwitz formula to subgroups of finite index m  

in a free product of n torsion-free Fuchsian groups, denoted D, giving the 

formula
^  rk{D^) -  6 

r k { D ) - 6

where 8 = n \i D  contains a free group as a summand, and n -f 1 otherwise. 

Rearranging we obtain

rk{D^) >  rk{D) -j- (m -  l){rk{D) -  8)

Each summand has rank >  2 and so rk{D) > 2n > n 1 >  6 . Also the 

index [D : D^] =  m > 1 and so the term  (m — l){rk{D)  — 8) is non-negative. 

Hence

rk{D^) > rk{D)

Observe further that equality is obtained either when m =  1 so th a t is 

not a proper subgroup, or when rk{D) =  2n =  n -f 1 = 8 .  These equalities 

imply tha t n =  1 and 6 =  2 so that D is a surface group with rank =  2 

which is impossible under our restrictions. Hence equality is only obtained 

if = D. Since p{D) <  rk{D) the condition Q2 holds for the class V .  □

Proof of Q3 : Let Q Ç: V  and let Q' be a nontrivial norm al subgroup

of infinite index in Q. Here the proof splits into two cases: suppose first tha t
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Q is a free product of at least two nontrivial groups. In this case we use a 

theorem of B. Baumslag [Bau]:

T h e o re m  2.4 (B . B au m slag ) Let G he the free product o f two nontriv­

ial groups. I f  a finitely generated subgroup H  contains a nontrivial normal 

subgroup o f 0  then H  has finite index in G.

It im mediately follows tha t if Q' is a finitely generated normal subgroup of Q 

then Q' has finite index in Q or, in other words, normal subgroups of infinite 

index in Q are infinitely generated as required.

At this point it is worth observing tha t Baumslag^s theorem together 

with our generalised Riemann-Hurwitz formula 2.1 for free products yield 

the following generalisation of the original Riemann-Hurwitz theorem to free 

products of torsion-free Fuchsian groups:

T h e o re m  2.5 (G e n e ra lise d  R ie m a n n -H u rw itz  th e o re m )  I f  G is a free 

product o f finitely many torsion-free Fuchsian groups containing N , a finitely 

generated normal subgroup, then N  has finite index j  in G satisfying

. ^  rA:(7V) -  6 
^ -  rk{G) -  6

where 6  = n i f  G contains a free group as a summand, and 6  = n -\-l i f  no 

summands of G are free groups.

The second case occurs when Q consists of a single torsion-free Fuchsian 

group. Then a normal subgroup of infinite index is a free group of infinite 

rank and so is clearly infinitely generated. Hence in either case we have tha t 

a nontrivial normal subgroup of infinite index in Q is infinitely generated as 

required. This proves condition Q3. □
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Proof of Q4 : It is clear from the definition that finite free products

of finitely generated groups are again finitely generated. The fact that free 

products of groups of type FL are also of type FL follows from Lemma 1.19. 

Since surface groups and free groups are both finitely generated and of type 

FL, the above observations show that all groups in the class T> are also finitely 

generated and of type FL, giving condition Q4.

Proof of Q5 : Writing the general form of a group D E V  &s 

D =  * . . .  * E j. * E;^^^ * . . .  *

the Euler characteristic becomes

r r+a

x { D )  =  r  1 — ko — — X/ ^3'
t = l  j = r + l

As we are only considering Fuchsian groups for which ko, k{ and kj are all 

>  2, it follows tha t %(D) <  —1 — 3r — 2s. Hence %(D) < —1 (since r, s >  0) 

for all D e V ,  giving condition Q5. □

Proof of Q6 : Let G be an arbitrarily large finite group and let tt de­

note the projection t t  : D G where D ÇlV. Suppose tha t is the kernel 

of 7T. Then is a normal subgroup of D  such that D /D ^ = G. V  is closed 

with respect to subgroups of finite index by condition Q l, and so Ç: V  

with [D : D°] =  \G\ which is arbitrarily large.

Corollary 2.6 A group D £ 'D has a subgroup with arbitrarily large 

Euler characteristic.

Proof of Q7 : Given a finitely generated group G of rank r, we must prove 

tha t the number of distinct isomorphism types of V  onto which G can map 

epimorphically is finite. Consider the number of groups D eT> with a given 

rank r'. Each summand of D  has rank at least 2 and so there are at most
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r '/2  summands. Further there are three types of summands (free, surface 

orientable and nonorientable) and each summand has rank <  r ' . Hence the 

number of groups with rank =  r' is bounded above by (3/)'"'/^. Now, G has 

rank r  and the number of epimorphic images of G is given by the number of 

groups in V  with rank <  r  which is finite. This proves condition Q 7 and so 

we have proven that %) is a Riemann-Hurwitz class. □

A JC — Q-factorisation of a group G is said to be stable if p{K) < p{G /K ).  

Using the properties of the Riemann-Hurwitz class Q, we now prove a unique­

ness result for stable JC — Q-factorisations. This will be essential in proving 

the Rigidity theorem in the next section.

Lem ma 2.7 (Stability Lemma) Let G he a group and let Q he a Riemann- 

Hurwitz class of groups. Suppose thatJC is a class o f finitely generated groups. 

Then given two stable JC — Q-factorisations K i , K 2 associated to the same 

quotient type Q £ Q so that

p{Ki) < p{Q) f o r i  = 1,2

then K i = K 2 -

P roof : Given the projections pi : G —> G /K i  for i = 1,2, we have that

Pi{K 2 ) is a normal subgroup of G /K \ = Q; so, a priori, either

(A) Pi{K 2 ) has finite index in G /K i  ; or

(B) Pi{K 2 ) is nontrivial with infinite index in G fK i  ; or

(C) pi(A:2) =  i.

Suppose (A) holds implying tha t P\{K2 ) G Q by Q l. Note first tha t since 

abelianisation preserves surjectivity, the induced map in homology

(p i) .:I f i(Æ 2 ;Z ))-^ F f i(p i(R :2 ) ;Z )
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is surjective so tha t p{pi(K 2 )) <  p{K2 ))’ Since pi{K 2 ) has finite index in 

G /K i  =  Q then by condition Q2, p{Q) < p{pi(K 2 ))  ̂ Hence p{Q) < p{K2 ) 

contradicting the stability assumption.

If (B) holds then P i(K 2 ) is nontrivial with infinite index in Q. Us­

ing condition Q3, we have tha t p i{K 2 ) is infinitely generated and hence 

tha t H i{pi{K 2 ’i ^ ) )  is infinitely generated. This gives a contradiction since 

H i(K 2 ]2 ) is finitely generated and the induced map in homology (pi)* is 

surjective.

By exhaustion, we have tha t p i{K 2 ) =  1, which implies tha t

I<2 C kerpi =  K i

By repeating the above argument with pi instead of p2? and K 2 instead of 

K i,  we obtain the opposite inclusion. Hence K i = K 2 - ^

2.2 Rigidity for extensions of finite free prod­

ucts of torsion-free Fuchsian groups

We wish to show that any group G has at most finitely many )C — Q- 

factorisations given certain restrictions on the classes K. and Q. This section 

considers the problem of finding sufficient conditions on the class of groups 

K  belonging to the kernel of the extension, in order for the result to hold. 

After stating the conditions, we go on to prove that they are satisfied by the 

class T>̂  of iterated extensions of finite free products of torsion-free Fuchsian 

groups. The Rigidity theorem which states tha t there are only finitely many 

K  — Q-factorisations, is proved at the end of this section.
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C o n d itio n s  on th e  class K,

K I: Each K  £ K  is finitely generated and of type FL.

K 2: For each integer m, p(G) = rk{Hi{G; Z ))  is bounded on the class

/Cm = {K G /C : x (K ) = “m}.

K 3: K, is closed under isomorphism.

If a class of groups K  satisfies conditions K I  to K 3, then we shall call K 

a controlled class. This name is derived from the fact tha t we need to control 

the num ber of elements in this class with a given rank in order to prove the 

Rigidity theorem.

Consider a sequence of subgroups ( G r ) o < r < n  of a group G satisfying:

(i) {1} = Go C Gi C . . .  C Gn = G\ and

(ii) Gr G r̂+i &nd Gr+ifGr G for each r.

Then we say tha t G has a poly-V filtration of length n and we denote the 

class of all such groups by P " .

T h e o re m  2.8 The class P "  of iterated extensions of finite free products of 

torsion-free Fuchsian groups is a controlled class.

P r o o f  : The proof comes down to showing tha t the class satisfies the

above conditions. It is clear from the definition tha t finite free products and 

extensions of finitely generated groups are again finitely generated. The fact 

tha t free products and extensions of groups of type FL are also of type FL fol­

lows from Lemma 1.19. Since surface groups and free groups are both finitely 

generated and of type FL, the above observations show that all groups in the 

class P ”' are also finitely generated and of type FL, giving condition K I . 

The class P  is closed under isomorphism. Given a set of groups, there is a 

unique free product up to isomorphism and so it is evident tha t the class P "
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is also closed under isomorphism. Hence it is enough to prove condition K2.

Proof of K2 : Since p[D) =  rk{H \{D \Z ))  < rk{D), it suffices to show

that the class

= {D e  V" : x (D ) = - m }

has bounded rank.

Proposition 2.9 I f  D e V  then

rk{D) < [3/2(1 +  |x(D)|)J 

where [xj denotes the integer part of x.

Proof : As we observed in Proposition 2.1, any group D Ç: T> may be

w ritten in the form:

* • • • * ^ tr  * '^kr+i * • • • *

and by comparing the rank and the Euler characteristic of D  we obtain the 

relation 2.1

rk{D) = —x{D) +  r  +  5 +  1.

In order to obtain the result, it is necessary to find a bound on the value of 

r  +  s in terms of %(D), observing that

x{D) =  r  +  l — A:o +  2 ^  ki +  kj.
1=1 t = r + l

The surfaces we are considering satisfy k{, kj > 2 and so

X { D )  < r  +  1 -  2(2r) -  2s

and upon rearranging we have

2(r +  s) <  |x(D )| -  r  +  1.
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Since r  >  0 and the value of r  +  5 is an integer this gives

r  +  . <  [ l / 2 ( |x p ) |  +  l)J 

Combining with our earlier equation 2.1 gives the desired result. □

R e m a rk s

(i) If x(jD) =  —{2k — 1), then the bound becomes rk{D) < 3k and this is

attained by D =  Sg * .^. * .
k

(ii) If x(D ) =  —2k then the bound becomes rk{D) <  3A; +  1 and this is 

attained by D =  E2 * . y  * ü j  * .
Jt-i

(iii) For convenience, we shall use the bound rk{D) <  2 +  3/2|% (D)|.

P ro p o s itio n  2.10 I f  G G then rk{G) < (2 +  3 /2 |x (6 ')l)"-

P ro o f  : Let (Gr)o<r<n be a poly-{D filtration on G and write Qi = Gi/Gi+i. 

Since Qi G P  we know that rk{G) <  2 +  3 /2 |% (^)| from the above re­

marks. Given a group extension (1 K  H  ^  Q 1), then rk{H ) < 

rk{K )rk{Q )  and so

rk{G) < rk{Q i) . . .  rk{Qn)

< (2 +  3 /2 |x (Q i) |) . . .(2  +  3 /2 |x ( W |)

Applying Lemma 1.19 (ii) repeatedly to our exact sequence, we have tha t 

X { G )  = x (Q i) • • -x(Qn) and so, for each 2, |x(Q i)| <  |x(G )| which allows us 

to obtain the required inequality. □

Using the above proposition and the observation tha t for all G, p{G) < 

rk{G)^ we see tha t p is bounded on the class P ”’ and hence it is clearly 

bounded on the class

V l  = { D € V ' ' -  x{D)  =  -m } .
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This proves tha t the class T>'̂  satisfies condition K 2  and hence we have shown 

th a t is a controlled class. □

Theorem  2.11 (The R igidity theorem ) Let 1C be a controlled class of 

groups and let Q he a Riemann-Hurwitz class o f groups. Then every group 

admits at most a finite number of JC — Q-factorisations.

P roof : First, observe tha t if a group is not finitely generated then it

adm its no 1C — Q-factorisation, and so we may assume that all our groups 

are finitely generated. From now on, we shall fix a group G and a quotient 

type Q and let {K\)xe^  be a collection of /C — Q-factorisations of 0  all with 

the quotient type Q, so tha t for all A G A, G /K \  = Q.

For each A choose an isomorphism

hx : G /K x  —̂ Q-

Since Kx  and Q are both finitely generated and of type FL using the con­

ditions K I and Q4 respectively, then by Lemma 1.19, the same is also true 

for G and further, for all A

x(G) = x i K M Q ) -

Condition Q5 ensures tha t x{Q) ^  0 and so has a constant value for

all A G A. Invoking condition K2, which states tha t the set {p{G) : G G JCm} 

is bounded on the class Km =  { K  G K : %(K) =  m ,m  G Z}; we see tha t p 

is bounded on the class (Ka)a6A, and hence that

{p{Kx) : A) G A} is a finite set.

W rite R  =  ma.x{p{Kx : A G A}. Since Q has subgroups of arbitrarily large 

index (Q 6),and since for any proper subgroup of finite index Q' C Q we have
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that p{Q') > p{Q) (Q2), we may choose a subgroup of Q with arbitrarily 

large p. Let be a subgroup of some finite index j  in Q for which p{Q^) > 

so tha t for all A G A,

(2 .2)

Let p\  be the projection p\ : G G /K \  and define

Then G \  is a subgroup of index j  in G. As G is finitely generated, it has 

only finitely many subgroups of index j ,  so we shall write H i , . .. ,H m  for 

the distinct subgroups arising from some G\. Partition A into equivalence 

classes A i , . . . ,  Am by the requirement:

A G A,- if, and only if G\ =  Hi

For each A belonging to some Ai, we have G x /K \ = and by equation

2.2 ,we see that K \  is a stable K — Q-factorisation of G\. Hence, using 

the Stability Lemma 2.7, Ai consists of a single element and so the set A = 

{Ai , . . . ,  Am} is finite. This proves that G has only finitely many K — Q- 

factorisations with a given quotient type Q.

Now, given a finitely generated group G, condition Q7 tells us that the 

number of distinct isomorphism types of groups in Q onto which G can map 

epimorphically is finite, and so there are only finitely many quotient types 

for G. This proves the Rigidity theorem. □

2.3 Consequences of rigidity

In this section we shall show that the set of all poly-ÿ  filtrations of a group 

is finite. By applying the Rigidity theorem 2.11 we conclude tha t any group 

G has at most a finite number of — D-factorisations.
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Given a group denote the set of poly-D filtrations of length n by Fn{G) 

and let F(G)  be the set of all poly-D filtrations of G. Clearly, F[G) =

U„>1 i"n(G).

Proposition 2.12 For any group G, F[G) is a finite set.

Proof : We have demonstrated that the class of finite free products of

torsion-free Fuchsian groups P  is a Riemann-Hurwitz class and also tha t P ’’ 

is a controlled class. Hence the Rigidity theorem proves th a t there are at 

most finitely many V'  ̂— D-factorisations of a group G. This proves th a t the 

set Fr+i{G) is finite. If G has infinite cohomological dimension, then it has 

no poly-%) filtrations, so suppose that G has finite cohomological dimension 

cd{G) = k. In this case Fn(G) =  0 when n > k and so F{G) = U^=i ^r{G) 

which we have shown is a finite set. □

The following set of corollaries will be used in the proofs of theorems 

in later chapters and served as the motivation for attem pting to prove the 

Rigidity theorem for the class V.  First we require a further definition.

Let Q = {Gr)o<r<n be a poly-D filtration on a group G. Then the au­

tomorphism group of G, denoted Aut(G'), has a subgroup A u t(^ ) consisting 

of all the automorphisms a  GAut(G) such that a{Gr) =  Gr for each r, 

0 < r < n.

Corollary 2.13 Let Q =  (Gr)o<r<n be a poly-V filtration on a group G. 

Then Aut[Q) is a subgroup of finite index in Aut{G).

Proof : Let G  have a po\y-V  filtration Q =  ( G r ) o < r < n  and consider an

automorphism a  G Aut(G). The image of Q  under an automorphism of G  is 

again a poly-%) filtration given by

a{Ç) =  (a(Gr))o<r<n
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and so the orbit of Q under a  is contained in F(G)  which by the above is a 

finite set. Hence

StabAut(G)(^) =  {a G Aut(G) : a{Q) =  {G)]

=  A ut(^)

has finite index in Aut(G). □

In particular we have the following rigidity theorems for poly-surface and 

poly-free groups:

T h e o re m  2.14 (R ig id ity  o f le n g th  2 p o ly -su rfa c e /p o ly -f re e  g ro u p s)

Let €  be the group extension

e  = K - ^ G - ^ Q - ^ 1 )

where K  and Q are both either fundamental groups of orientable surfaces with 

genus > 2  or free groups with rank > 2. Then the group o f automorphisms 

A ut(£) =  {a G A ut(G ); ol[K) =  Â } is a subgroup of finite index in Aut((9).

This gives us a useful corollary for the virtual cohomological dimension of 

the outer automorphism group of the extension which justifies the use of the 

word rigidity. Recall tha t the outer automorphism group of G is the quotient 

group

“  -  sSrly
P ro p o s it io n  2.15 Given an extension of torsion-free Fuchsian groups K  

and Q , S  = {1 —̂ K - ^ G ^ Q —̂ 1 ), the outer automorphism group of the 

extension Out (S) is a subgroup of finite index in Out (G).

P r o o f  : The Rigidity theorem states tha t for the above extension, Aut [S) 

is a subgroup of finite index in Aut (G); thus, using the finite index lemma
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1.10, Aut (G) has a characteristic subgroup Auto (^) of finite index which is 

contained in Aut [S). As K  is a normal subgroup of G, the group of inner 

automorphisms of the extension

Inn {S) = { a e  Inn (0 ) : a(K ) =  K}

is equal to Inn (G). Hence

Aut (G) _  Aut (G )/Inn (G)
Auto (^) Auto (5^)/Inn (G)

^  Out (G)
Outo {S)

which is a finite group proving that Onto {€) has finite index in Out (G) and 

therefore Out {S) is a subgroup of finite index in Onto (G). □

C o ro lla ry  2.16 (R ig id ity ) Given the above exact sequence S, then

vcd (Out (£ )̂) =  vcd (Out (G))

P r o o f  : If Out (G) is virtually torsion-free, then it has a torsion-free

subgroup of finite index Onto (G). Let Onto (S) =  Out (S) fl Outo (G) 

so tha t Outo (6") is torsion-free. By Poincare’s lemma, the intersection of 

finitely many subgroups of finite index also has finite index, so Outo {€) 

has finite index in Out (G) and is torsion-free. Therefore, cd (Onto {€)) = 

cd (Outo (G)).

If Out (G) is not virtually torsion-free then all subgroups of finite index 

have torsion so vcd (Out (G)) =  vcd (Out (£ )̂) =  oo. □.
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Chapter 3 

Extending the Baer-Nielsen  

theorem  to surface fibrations

In this chapter we shall consider closed 2-manifolds with genus g >2 .  These 

are known as hyperbolic surfaces since their universal cover is the hyperbolic 

disc and in many respects they represent generic surfaces, the only orientable 

exceptions to this class being the sphere and torus. By considering fibrations 

with fibre and base space given by (hyperbolic) surfaces we construct the 

surface fibrations of the title. In the 1920’s, Baer and Nielsen proved that 

the natural homomorphism from the group of diffeomorphisms of a surface 

to the outer automorphism group of its fundamental group is surjective and 

has a kernel given by the diffeomorphisms homotopic to the identity. This 

may be w ritten algebraically as

7To(Diff (2«)) ^  Out (%i(E«))

where denotes a surface of genus g (see Epstein [Eps] for a modern trea t­

ment of this work). Waldhausen ([Wald]) later generalised this theorem to 

the class of sufficiently large 3-manifolds which includes Stallings fibrations 

(surface fibrations over the circle). These shall be considered further in the
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final chapter.

We will examine how far the Baer-Nielsen Theorem extends to surface 

fibrations. By considering group extensions where the kernel and quotient 

correspond to surface groups (i.e. fundamental groups of surfaces) denoted 

by T,g and

1 Tig T E/i —>• 1,

then it will be demonstrated tha t for a certain class of group extensions 

known as characteristic extensions, there is a surjective homomorphism

7ro(Diff (Xr)) Out (T)

where X r  is a smooth manifold with 7ri(Xr) =  F. The last section of this 

chapter considers non-characteristic extensions of surface groups. In this case 

we prove tha t the image of the above homomorphism is a subgroup of finite 

index in Out (P).

Let % be a smooth closed manifold and let 'H{X)  denote the monoid of 

all homotopy equivalences of X .  Below we dem onstrate the natural homo­

morphism from this monoid to the outer automorphism group of 'Ki {X):

P ro p o s it io n  3.1 There exists a natural homomorphism

(j) : 'H{X)  — Out (7ri(X,*))

P ro o f  Given a homotopy equivalence a : X  X  , there is an induced map 

in homotopy:

o* : 7Ti(%,*) 7ri(X ,a(*)).

Let Pa • * o;(*) be a path  beginning at the base point and let A €

7Ti(X, a(*)) be a loop based at a(*); then

q IpI =  Pl^Apc, : 7Ti(%, *) 7Ti(X, *)
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is an automorphism. Now consider a different path : * —» a(*) such that

=  q â ^ M a  : 7T i ( X ,  * )  - >  7T i ( X ,  * )

is also an automorphism of the fundamental group. It follows tha t

{ v Z \ a V 0 i ^ \ p Z \ a )  = qZ"Po.{p-a^Pa)pZ\a

~  Qot 

— qM

and also (pZ^qa){*) =  *? so th a t pâ^Ça is a loop embedded in X  based at *. 

Therefore it belongs to 7Ti(X, *) giving tha t conjugation by p~^Qa is an inner 

automorphism of 7Ti(A’, *). So, if we factor Aut (7Ti(X, *)) by Inn (7Ti(X, *)) 

then the image of a  in Out (7Ti(X)) is independent of the path chosen. In 

this way we obtain a well-defined homomorphism

<l> : n { X ) Ont (7Ti(X,*))

as stated. □

The kernel of this natural homomorphism

0 : 7i{X) Out (7ri(X))

is the path-com ponent of homotopy equivalences homotopic to the identity 

which we shall denote by 'Hq{X).  The group of diffeomorphisms of X , 

Diff (X), is contained in the monoid of self-homotopy equivalences 7i{X). 

The aim of this chapter is to strengthen the above proposition to show that 

the natural map from Diff (X) to Out (X) is surjective for a large class of 

surface fibrations. We shall analyse the problem algebraically in terms of 

extensions of surface groups by surface groups and consider necessary condi­

tions on the kernel of the extension.
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3.1 Fibrations and fibre bundles

A (Hurewicz) fibration is a map p : E  B  which has the homotopy lifting 

property for every space; that is, given maps f  : X  E  and F  : X  x  I  B

where for all x in X , F{x,  0) =  pf{x)  then there exists a map F '  making the

following diagram commute:

X  xO - A  E
F'

i  /  i v

X x l  B

F  is the total space of the fibration, B  is the base space and for b E B^ 

is the fibre over b.

A surface fibration p : X r  —> is a (Hurewicz) fibration where both the

base space E^ and the fibre E^ =  p~^{(r) (for a G E^) are surfaces. To every 

fibration p : F  B  with fibre F  there is associated a long homotopy exact 

sequence of homotopy groups:

• ■ • ! r , ( F )  7t, ( F )  ^  7 r , ( F )  A  ^  ■

• • • —> 7To(jP) —> ‘ïïq(^F) —> 7To(.S) —> 1.

For surface fibrations, the long homotopy exact sequence reduces to a short 

exact sequence of surface groups:

l - ^ 7 r i ( E ' ) - ^ 7 r i ( X r ) - > 7 r i ( E 2 ) - . l .

More generally, a 2n-dimensional surface fibration is a fibration where the 

base space is a surface and the fibres are (2n — 2)-dimensional surface fibra­

tions.

Im portant examples of fibrations are given by fibre bundles. The con­

struction of fibre bundles is outlined below for which the standard reference
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is Steenrod [Ste] (see also Husemoller [Hus] for a different treatment):

By a coordinate bundle we mean a collection

E

B = i I p

B

where F, E  and B  are the fibre, bundle space and base space respectively and 

the map p : E  B  is a. projection of E  onto B ,  together with an effective 

topological transformation group G of F  called the structure group of the 

bundle satisfying the following relationships:

(i): there is a family {Vj} of open sets covering B  called the coordinate 

neighbourhoods indexed by a set J ,  and

(ii): for each j  in J ,  there is a homeomorphism

^ r - V j  X F  p - \ v , )

called the coordinate function. These satisfy

(iii): for x e V j ,  f  e  F,

(iv): if we define the map (j)ĵ x • F  -> p~^{x) by <^j>(/) =  then for

each i , j  in J  and each x G ViC\Vj, the homeomorphism

coincides with the operation of an (unique) element of G, and

(v): for each pair i , j  in J ,  the map

gji ' ViOVj G

defined by gji{x) = is continuous. The functions gji are the coordi­

nate transformations of the bundle.
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Two coordinate bundles B  and B' are said to be strictly equivalent if they 

have the same E,  F, G and their coordinate functions {(f>j}, satisfy 

the condition tha t for a; G Vj fl V%

coincides with the operation of an element of G, and the map we obtain

9 kj : Vj n V , ' - ^  G

is continuous.

Now a fibre bundle is defined to be an equivalence class of coordinate bun­

dles under this equivalence relation. The following weaker notion of equiva­

lence is the one most suitable for the classification theorem used in Section 

4 of this chapter;

Two coordinate bundles B  and B' with the same B ,F ,G  are equivalent 

if there exists a map B B' which induces the identity map on B.  Fibre 

bundles having the same F, G are equivalent if they have representative 

coordinate bundles which are equivalent.

3.2 Simplicial homotopy theory: construct­

ing fibrations from group extensions

Let £̂  =  (1 —> r  —> G —> ( 3 —) - l ) b e a  short exact sequence of groups. An 

7i-realisation of is a Hurewicz fibration

X y —> X q 

^ =  S i p

Xg

in which the base space, fibre space and to tal space are homotopy equivalent 

to CW-complexes and the long homotopy exact sequence of (  reduces to S.
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The framework for constructing ?Y-realisations is given by simplicial sets 

and Kan complexes as exemplified in the references [Cur] and [GZj. The 

category of simplicial sets provides a naturally occurring category for homo­

topy theory which eases the exposition of the proofs in this chapter. The

definitions of simplicial sets together with some necessary m aterial is now

outlined.

Let O  be the category of finite ordered sets [n] =  {0, 1, . . . ,  n} with mor-

phisms given by order-preserving maps. A simplicial set A" is a contravariant

functor from O to the category of sets where

Kn = K ({ 0 ,1 , . . .  ,n}) =  A'([n]) 

di = A"(the map which skips i)

Si = Æ (the map which repeats i).

The maps di and s,- are called the/ace maps and degeneracy maps respectively 

and satisfy the following relations:

didj =  dj-idi for i < j

Sj-idi for i < j  

diSj =  < Id  for z = / , /  -f 1

Sjdi.i  for i^j-f 1
SjSj — Sj^jSi

More generally, if C is some category then a simplicial C-object is a con­

travariant functor from the category of finite ordered sets to C.

The standard n-simplex A[n], is the simplicial set with vertices 0, 1, . . . ,  n 

where

(A[n])g =  {(uo,. . .  ,Ug) : 0 <  uo <  . . .  <  Ug < n}

Let in = (0, 1, . . . ,  n) G (A[n])„ and let A^[n] be the sub complex of A[n] 

generated by all di(in) for i ^  k. A simplicial set is a Kan complex if every
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map /  : A^[n] -4 K  has an extension g : A[n] K .  Observe th a t a simplicial 

group is a Kan complex.

A simplicial map /  : /v —> L is a family of functions fn  : Kn Ln th a t 

commute with the face and degeneracy maps. We may represent an element 

X in Kn by a map fx  : A[n] —> K .  Elements x^y  in Kn are homotopic 

[x y) if their representing maps fx  and fy are homotopic relative to the 

interior of A[n]. We shall call a Kan complex m inim aliix  ^  y implies x = y.

A simplicial map p : E  B  is a, fibre map if given /  : A*[n] E  and 

g : A[n] B  with p f  = g there exists an extension of /  to a map

f ' : A [ n ] —̂ E  with p f  = g; tha t is, the following diagram commutes:

/  ^ F
/ '

i / i p

A[n] 9 J F

The fibre map is said to be minimal if given two extensions f ' , f "  then 

f {dkin)  = f''{dkin)- A sequence of simplicial maps F  -4 ^  B  is a fi­

bration if p is a surjective fibre map and i maps F  bijectively to p~^{*)- 

Thus a minimal Kan fibration is a (surjective) minimal fibre map between 

Kan complexes. A fibre map p : E  B  is a fibre bundle map if p is onto and 

for each 6 G Fn, the representing map for 6, / t  : A[n] —> F  induces a fibration 

p' : E '  A[n] which is isomorphic to the fibration F  x A[n] —> A[n] with 

fibre F .

The relationship between minimal fibrations and fibre bundles is given by 

the following theorem ( [Cur] p. 164):

T h e o re m  3.2 I f  p : E  B  is a minimal fibration onto a connected base 

then p is a fibre bundle.
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If G is a simplicial group, define a simplicial set W G  by

(W G ) n  =  { {9n- l ,  ■ ’ ■ jgo) • 9i ^

(^o{9n—l I ' ' ' 9o) — {9n—2f' ' '^9o)

dii^9n—\  5 • • • ? 5 0̂ )  —  {^di—\ 9 n —\  5 Id o ts^  d()9n—i ’ 9 n —i —l  ? 9 n —i —2 j • • • ^ o )

(5̂71—1 )•••) 5̂0) — î î—l9n—l^^dots^SQ9n—i:9n—i—l j ‘ '-9o)

W G  is a Kan complex and a K{G,1). Furthermore, W G  is a classifying 

space for G and there is a classifying bundle called the Eilenherg-MacLane 

principal simplicial G-bundle

G - ^  W G  

I

W G

where the total complex VFG is defined by

{WG)n =  Gn X Gn-\ X . . .  X Gq 

di{^9n-) • • • 5 5 0̂ )  {,di9ni  • • • 5 ^ 0 5 ^ n —i '  9 n —i—l i 9 n —i—2j  • • • 90^

'  '  ' ) 6 0̂ )  —  ( ‘Si'5^715 • • • 5 ^ 0 5 ^ n — t ?  5 ^ n — i —1 j • • • 5 0̂ )

and G acts on the left of VFG by

9 ‘ ( ^ 71) • • • 75^0) —  { 9  ' 9n^ ' ‘ ‘ j 9o)

for g in (^7i, - - - ,^o) in WGn- Note that W G  is a contractible Kan 

complex.

Using the W  functor there is the following classification of simplicial fibre 

bundles given in [Cur] p. 162.

Theorem  3.3 There is a 1 - 1  correspondence between the homotopy classes 

of maps [B, WG] and G-equivalence classes o f G-bundles with base B  and 

fibre F .
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Corollary 3.4 (I) The set of fibre homotopy equivalence classes of fibrations 

with base B  and fibre S  are in 1-1 correspondence with homotopy classes of 

maps [B, yVHÇE)].

Corollary 3.5 (II) There is a 1 - 1  correspondence between smooth equiva­

lence classes o f locally trivial fibre bundles over B  with fibre S  and homotopy 

classes o f maps [jB, WDifF (D)].

So far we have considered objects in the category SS of simplicial set with 

morphisms given by simplicial maps. Now, define TOP to be the category of 

topological spaces Y, . . .  with morphisms consisting of all continuous maps 

f  : X  Y .  We shall define a sub category of TOP tha t will prove to be more 

useful in the context of simplicial sets. A topological space is X  is compactly 

generated if every subset tha t intersects all compact subsets of % in a closed 

set is itself closed. Let CG denote the category with objects all compactly 

generated Hausdorff spaces and morphisms consisting of continuous functions 

between them. As an example, all locally compact spaces are in CG.

In TO P, the inverse limit of two objects %, Y  is the direct product X  x 

Y . We shall denote the inverse limit in CG by {X  x Y )cG ‘ In certain 

circumstances these two notions coincide; in particular:

Lem m a 3.6 I f  X  is a compactly-generated Hausdorff space and Y  is locally 

compact then

X  X y  =  (X  X y)cG

P roof : See [GZ], p.47.

We shall define an Euclidean simplex ^[n] C to be the topological

space

S[n] =  {(xo, . . . ,  a:„) : Exi  =  1, Xi > 0}
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Define the maps e : 8 [n — 1] —> S[n] and 77 : <5[n +  1] by

• • • 5 ^n—1 ) — (^Oî • • • 5 15 0, 5 • • • ^n—1 )
f]i ( ^ 0 ) • • • ) ^ n +1  )  —  ( ^ 0 ? • • • ? " h  ^ i + l  5 • • • ? ^ n +1  )  •

Given K  a simplicial set, let R K  be the topological space

R K  = U  (6[dimT],z)
xeK

and define an equivalence relation on R K  by {p,x) ~  {y,q)  if either

i) : d{X =  y and e,(ç) =  p, or,

ii) : SiX =  y and r]i{q) =  p.

Then \K\ = R K /  ~  is the geometric realisation of the simplicial set K .  Note 

that geometric realisation is a functor | — | from the category of simplicial 

sets SS to C G  ( [GZ], p.49).

A morphism Y  X  of SS is trivial if there exists a complex F  and an

isomorphism a : X  x F  = Y  such that /  « a  =  p, where p is the canonical

projection oi X  x  F  onto X .  F  is called the fibre of / .  /  is said to be locally 

trivial if for each simplex a  : A[n] —> X ,  the projection of the pullback 

A[n] Xcrj Y  onto A[n] is trivial.

Similarly, a morphism u : L K  of C G  is trivial with fibre T  if there 

exists an isomorphism jd : {K  x  T ) c g  — L  such that u • /? is the canonical 

projection, u is locally trivial if every point x  in K  has an open neighbourhood 

U such tha t u induces a trivial morphism from u~^{U) into U. If K  is 

connected then all fibres of u are isomorphic and we say tha t u is locally 

trivial with fibre F.

These definitions of local triviality are compatible with respect to the 

geometric realisation functor as shown by the following ([GZ], p .55):
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T h e o re m  3.7 The geometric realisation functor | — | : SS —)■ C G  takes a 

locally trivial morphism with fibre F  into a locally trivial morphism with fibre 

\F\.

The fact that locally trivial morphisms occur frequently is dem onstrated by 

the following theorem ([GZ],p.l27):

T h e o re m  3.8 Every minimal fibration is locally trivial

Using the theory of simplicial sets we are now in a position to construct 

Hurewicz fibrations from group extensions.

T h e o re m  3.9 I f  S  = {1 K  G Q 1 ) is a short exact sequence of 

discrete groups with Q countable of finite cohomological dimension, then S  

has an TL-realisation. That is, there is an Hurewicz fibration (  =  (X q  X q )  

with fibre X k  where X k , X g , X q  are homotopy equivalent to CW-complexes 

and such that the long homotopy exact sequence of  ̂  is S.

P ro o f  : Given a group homomorphism p : G Q, there is a simplicial

map p' : W G  ^  W Q  defined by

p ' [ g n - \ , . . . , g o )  =  {pg n - \ , • • • V 9 q)

and furthermore, the induced map p* : 7ri(WG) t^\{WQ) is p (see R.O. 

Hill Jr. [Hil], p .410). \i  S  — K  G ^  Q 1 ) \s exact then

p' \ W G  W Q  gives a minimal Kan fibration

W K W G  

W S  =   ̂ I p'

WQ
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which is locally trivial by Theorem 3.8 . Taking the geometric realisation of 

W £  gives a fibration in the category C G

\WS\ =  <

\W K \ |W G|

I po

\ m \

which is locally trivial since the geometric realisation of a locally trivial fibra­

tion is locally trivial (Theorem 3.7). As Q  is countable of finite cohomological 

dimension, we may choose a locally compact CW-complex X q  of homotopy 

type K{G^ 1) by F.E.A. Johnson’s Theorem 1.20 and the homotopy equiva­

lence /  : X q —> |W(3| induces a (locally trivial) fibration

\ m \ E

I  Pi  

X q .

The fact that (  is locally trivial in the category C G  implies tha t for all 

neighbourhoods U C  X q  , there exists a map

q : P i  {U) {U X CG-

Furthermore, {U x \W K \)co  — U x  |W Q| because X q  is locally compact and 

|WA"| belongs to C G  (Lemma 3.6). Thus (  is locally trivial in the category 

of topological spaces T O P  and is a Hurewicz fibration. □

3.3 Fibre sm oothing

A discrete group F is said to be smoothable  if the Eilenberg-MacLane space 

of the group, /F(F, 1) is homotopy equivalent to a smooth closed manifold
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X r  called a smooth model for F, Given an exact sequence of groups S  =  

( 1 —>F G Q 1) with Q countable of finite cohomological dimension 

, we shall choose the canonical "K-realisation as constructed in the previous 

section:
K ( G , i )

-I i

m i ) -

We shall say tha t F has the fibre smoothing property if for all extensions of 

the form S  where Q is smoothable with a smooth model X q , the associated 

7^-realisation (  is fibre homotopy equivalent to a smooth fibre bundle:

X r E

i

^<3

where the fibre is a smooth finite dimensional manifold of homotopy type

m i ) .

In the course of our proof of the main theorem it will be necessary to prove 

tha t certain extensions of surface groups have the fibre smoothing property. 

The proof of this fact relies on the im portant result tha t surface groups have 

the fibre smoothing property which is due to F.E.A. Johnson (e.g. [Joh4]).

F irst, let B ^ { X )  { B^ { X ) )  denote the equivalence classes of continuous 

(smooth) fibre bundles over X  with fibre F.  The following is standard (see 

e.g. [BL]):

P ro p o s it io n  3.10 Let T> he a smooth closed surface and let X  be a smooth 

manifold. Then

B l { X )  S  B ^ { X )

That is, any continuous fibre bundle over X  with fibre E is smoothly equiva­

lent to a smooth fibre bundle over X  with fibre E.
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T h e o re m  3.11 (F .E .A . Jo h n so n ) The fundamental groups of surfaces of 

genus >  2 possess the fibre smoothing property.

S ke tch  P r o o f  : Let E be a fixed smooth closed surface and denote its

fundam ental group by 7Ti(E) =  G. The monoid of homotopy equivalences 

of E, 7^(E), maps to Out (G) by Proposition 3.1 and has kernel given by 

the path-component 7io{X) containing the identity. In [Got] the following 

theorem is proved:

T h e o re m  (G o ttl ie b ) : I f X  is a path-connected aspherical man­

ifold with centre Z{'Ki {X))  =  1 then the path-component of the 

space of continuous mappings from X  X  containing the iden­

tity is contractible.

Therefore it follows that 'Hq{X)  is contractible since Z{G) = 1 when G is a 

surface group. Together with the fact that the Eilenberg-MacLane classify­

ing space functor W  preserves homotopy equivalences (see [Cur] p .114) this 

proves tha t there is a homotopy equivalence

kV7f(E) -  W Out (G).

The set of fibre homotopy classes of fibrations with fibre E over a CW- 

complex X  we shall denote by Fy.{X). This set is naturally equivalent to 

[A, W'H(E)] by Corollary 3.4 which is isomorphic to [A, W O ut (G)] by the 

above.

The Baer-Nielsen Theorem states tha t the map from Diff (E) to Out (G) 

is surjective and has kernel given by the diffeomorphisms homotopic to the 

identity Diff o(E). Applying the classifying space functor to the resulting 

exact sequence gives a fibration

W D i f f o ( E ) - ^  W D i f f ( E )

i

W Out (G)
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In Earle and Eells paper [EE] a fibre bundle description of Teichmuller theory 

is given and it is shown that Diff o ( S )  is contractible and therefore WDiff ( E ) o  

is contractible since W  preserves homotopy equivalences. Hence there is a 

homotopy equivalence WDiff (S) W O ut (G). From the above proposition, 

we know that the set of smooth equivalence classes of smooth fibre bundles 

with fibre S over a smooth connected manifold X ,  denoted B ^ { X ) ,  is na t­

urally equivalent to the set of based homotopy classes [X, BDiff (S)j. Thus 

we have a chain of equivalences:

Fe {X)  ^  [X, W7f(E)] =  [X, W O ut (G)j =  [X, WDiff (E)j ^  (X)

These equivalences give us tha t the category of smooth fibre bundles with 

fibre S coincides with the category of fibrations with fibre S. In particular, 

the space 7Y(E)/Diff (E) is contractible. Hence, given a smooth manifold X  

and a fibration with fibre E

E

I

X

then (  is fibre homotopy equivalent to a smooth locally trivial fibre bundle 

with fibre diffeomorphic to E and moreover, this fibration is unique up to 

smooth equivalence. Hence we have proved tha t surface groups possess the 

fibre smoothing property. □

In order to prove that surface fibrations possess the fibre smoothing prop­

erty we require an extra condition on the kernel of the associated group ex­

tension. A subgroup K  of a group G is said to be characteristic in G if given 

any automorphism of G, o: : G —> G, then a[ K)  =  K.  Observe the following 

properties of characteristic subgroups: If G\  is characteristic in G2 and G2

57



is a normal subgroup of G3, then G\ is also a normal subgroup of G3 . Fur­

ther, let S  be the extension 1 —> r — >1.  If E is a characteristic 

subgroup of r then there is a factorisation of the extension E into two group 

extensions;

£1 =  (1 E G A 1)

£*2 =  (1 —> r/E —> A —> Q —> 1)

where A =  G /E .

T h e o re m  3.12 Let V he a group extension 1 —> E i —̂ F —> E 2 —>1 where 

E l, Eg are surface groups and Ei is characteristic in T. Let G he the semi- 

direct product G = T XaGoo where a  : F —̂ F is an automorphism of T,  so 

that G is a split extension

£̂  =  (1 —>F —> G ^  Cqo —̂ 1)

Then the canonical fihration of the extension E

7F(F ,1)-^  K { G , 1 )

i

is fihre homotopy equivalent to a smooth fihre bundle

X r  —>■ X g

I

where the fihre X r  is a smooth finite dimensional manifold of homotopy type 

K( V, \ ) .

P r o o f  : First, construct the semi-direct product G =  F XaGoo  as below:

Let a  be an automorphism of F and construct the split extension

1
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where 5 is a splitting homomorphism s  : Coo G. Thus we may write

for all X in F, o;(a;) =  s ( t ) x s { t ) ~ ^  where Coo is generated by t .  Since Ei is 

characteristic in F, the extension E factorises to give extensions

5 i  =  (1 E l  G  G / E i  - >  1)

^2 — (1 —̂ F /E i —> G /E i —> Coo —̂ 1)

Note th a t the cohomological dimension of Coo is 1 whilst G has cohomological 

dimension 5. To see this, observe that F is an extension of surface groups 

which are duality groups of dimension 2 and thus F has dimension 4 and 

G is an extension of F by Coo- This means that G /E i has cohomological 

dimension 3. Hence the quotients of these extensions are both countable 

groups with finite cohomological dimension and they have ?i-realisations by 

Theorem 3.9. Applying the Eilenberg-MacLane classifying space functor we 

obtain fibrations

K(G,  1) 

i

/ - r ( G /s „ i )

K ( G I T . u l )

6  =  S i

Since both of these fibrations have fibres corresponding to Eilenberg-MacLane 

spaces of surface groups, we may invoke the fibre smoothing property for 

surfaces and obtain smooth fibre bundles
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Y

6  =  ^ iP l

E

E

IP2

where tti{¥)  =  S i, 7Ti(Z) =  S 2, E  is homotopy equivalent to Æ (G /S i, 1) 

and p i, p2 denote the bundle projections. It is well known tha t Kifioo-, 1) — 

S^. Since pi : X q  E  and p2 : ^   ̂ 5"̂  both have compact fibres, put

p = Pi o p 2 : X g  and then p~^{x) = {p2Pi)~^{x) where a: G 5^ also has

compact fibre. Furthermore, since the tangent map Tp ; T X g |x~^ TS^  |p(j;) 

is surjective, then the map p gives rise to a smooth fibre bundle:

C = ^  i

The fibre X  is itself fibred over Z  with fibre Y  :

%

i

Z

If we examine our original extension £̂  =  ( l - ^ - S i ^ r  -4  S 2 —> 1) then 

again we have an extension whose kernel is given by a surface group and we 

can invoke the fibre smoothing operation to obtain a smooth fibre bundle 

over S^ with fibre S^ as above. Moreover, this fibre bundle is unique up 

to smooth equivalence since surfaces have a unique differentiable structure. 

Hence the manifold X  is smoothly equivalent to the surface fibration Xp. □
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3.4 Surjectivity of the natural homomorphism

This section is devoted to proving tha t the natural homomorphism from 

the group of diffeomorphisms of a surface fibration maps surjectively onto 

the outer automorphism group of its fundamental group. The proof brings 

together work from the previous sections in order to construct a fibration 

over the circle from a group extension and then to smooth this to a smooth 

fibre bundle. The bulk of the remaining work is then to classify such fibre 

bundles using Steenrod’s work on the classification of bundles over spheres.

T h e o re m  3.13 Let S  he the group extension (1 —> Ei —> T —> S 2 —> 1) 

where Ei and Eg are surface groups and Ei is a characteristic subgroup of 

r .  Suppose X y is a closed manifold with T as its fundamental group. Then 

the natural homomorphism

7ro(Diff (Xr)) Out (F)

is surjective.

P r o o f  : The idea of the proof is to construct a homotopy class of diffeo­

morphisms from an outer automorphism of T. Let a  be an automorphism of 

r  and construct the split extension

1 —> r  G ^  Coo — 1

where s is a splitting homomorphism s : Coo —̂ G. Thus we may write for 

all X in r ,  a{x) = s(t)xs{t)~^  where Coo is generated by t. The quotient of 

this extensions Coo is a countable group with finite cohomological dimension 

and thus has realisations by Theorem 3.9. So we may apply the Eilenberg- 

MacLane functor K { —, 1) to this extension to obtain a fibration

K { T ,1 ) - ^  K{G ,1)

^ = i  I
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which by the previous theorem on fibre smoothing is fibre homotopy equiv­

alent to a smooth fibre bundle

X r  X g

I

where X r  is a smooth model for F with the homotopy type of a Æ(F, 1). This 

fibre bundle has a structure group given by Diff (Xp). It is now necessary 

to classify such fibre bundles and the following theorem is adapted from 

Steenrod [Ste] p .99:

T h e o re m  3.14 (C lassifica tion  o f b u n d le s  over th e  c irc le) The equiva­

lence classes o f bundles over with structure group G are in 1 — 1 corre­

spondence with 7To{G).

S k e tch  P ro o f  : Let be the end-points of a diameter of and let Ei,

E 2 be the closed semicircles of determined by 5°. For i =  1,2, let V{ be 

an open 1-cell on containing E{. These Vi cover and their intersection 

is an equatorial band containing 5'°. Mark a point Xq on 5°. We shall 

say th a t a coordinate bundle B over is in normal form  if its coordinate 

neighbourhoods are Vi, 14, and 5̂12(2:0) =  e, the base point of S^. Now, any 

bundle B  is strictly equivalent to a bundle in normal form. Assuming that B 

is a bundle in normal form we shall consider the restriction of the coordinate 

transform ation which maps 5° to G:

T  — Qi2 |s"“  ̂ •

T  is called the characteristic map of B and any map T  : (S^^xq) —> (G, e) is 

the characteristic map of some bundle over in normal form.

The classification theorem will follow from the following claim:
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Let B' be bundles over in normal form with the same fibre and 

structure group and let T  and T ' be their characteristic maps. Then B and 

B' are equivalent i f  and only i f  there exists an element a E G and a homotopy 

r  -  a~^Ta.

This is proved in Steenrod [Ste] p.97-8. Now, given elements in the 

same component of G, joined by a curve gt, say, 0 <  i <  1, then

h{g,t) = gf^ggt is a homotopy of the inner automorphism corresponding to 

go into the inner automorphism corresponding to g\ keeping e fixed. There­

fore go and g\ give rise to equivalent bundles. Hence the group of path  com­

ponents 7To(G) is in 1 — 1 correspondence with equivalence classes of bundles 

over the circle. □

By using this classification theorem we may deduce tha t the equivalence 

classes of smooth fibre bundles of the form

i

are in 1 — 1 correspondence with elements of the group of path components

7ro(Structure group) =  7To(Diff Xr).

The final step is to show that inner automorphisms of F give rise to equivalent 

extensions and thus correspond to the same element of 7To(Diff Xp). Suppose 

we have two automorphisms of F, a  and a ', defined by transversals s and 

s' respectively. Observe tha t since any two transversals differ by an element 

of F, we may put s{t) =  x's'{t) where x' G F. By writing (j)t{x) =  a{x)  =  

s{t)~^xs{t) we obtain a function (j) : Coo Aut (F), and similarly a'{x) =  

ÿ((z) =  5 '(t)“ ^a:s'(t). Rearranging,

(l>'t{x) = s'{t)~'^s{t)(l)t(x)s{t)~'^s'(t)

63



=  {s{t) ^x's{t)}(f)t{x){s{t) ^x' ^s{t)}

= g~^<l)t{x)g where g =  s{t)~^x'~^s{t)

proving tha t any two 0 ’s differ by an inner automorphism of F. This we may 

write as

*(T)(Inm (r)) =  «i'.(x)(Inn (F))
and hence there is a well-defined homomorphism ^t{x) =  0f(x)(lnn (P)) (the 

operator homomorphism). From this it is clear tha t inner automorphisms 

give rise to the same operator homomorphism and moreover, as F has trivial 

centre, each congruence class of extensions to a unique operator

homomorphism. Conversely, there exists an extension corresponding to each 

operator homomorphism (these statements follow from the corollary to the 

Eilenberg-MacLane theorem 1.11). Therefore, inner automorphisms give rise 

to equivalent extensions as required.

And so we have shown that (up to conjugacy) every automorphism of F 

gives rise to a fibre bundle over which in turn corresponds a homotopy 

class of diffeomorphisms 7To(Diff (X r)). Hence the natural homomorphism 

from 7To(Diff (X r )) to Out (F) is surjective. □

3.5 Generalisation to poly-surface groups

By taking the extension of a surface group by a surface group we obtain a 

poly-surface group of length 2. Iterating these extensions with surface groups 

as quotients and kernels given by poly-surface groups of length n — 1 gives a 

poly-surface group of length n.

In this section, the previous theorem will be generalised to poly-surface 

groups and thus to iterated surface fibrations. As before, we shall need extra
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conditions on the kernels of the extensions:

Given a class of groups C, we may write poly-C groups of length n as 

filtrations of length n. By this we mean a sequence of

(i) 1 =  Go Gi < . . .  < Gn =  G

{ii) For all 0 <  r  <  n -  1, g c.
Gf

Such a filtration is called characteristic if in addition, each Gr is a charac­

teristic subgroup of Gr+i.

Theorem  3.15 Let T be a poly-surface group of length n constructed from

a characteristic filtration of surface groups and let Q be a smoothable group

with smooth model X q . Construct the semi-direct product extension S  = 

( 1 - ^ r  — > ( 5 - ^ 1 )  from an automorphism a  : G G so that 

G = V X a Q ‘ Then the canonical fibration of the extension S

K {G ,l)

e =  i i

K { Q ,  1)

is fibre homotopy equivalent to a smooth fibre bundle

X r  —> X g

i  = { I

X q

where the fibre X r  is a smooth finite dimensional manifold of homotopy type

In other words, T has the fibre smoothing property.

Proof : The proof is by induction on the length of the poly-surface fil­

tration. It is im portant to note tha t the earlier proof for the case n = 2 

actually showed th a t F has the fibre smoothing property since interchanging
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the quotient group Coo with any other smoothable group will not alter the 

outcome.

Suppose th a t all (characteristic) poly-surface groups of length k — 1 have 

the fibre smoothing property and let F be a poly-surface group of length k 

derived from a characteristic filtration. Thus F belongs to an extension of 

the form

1 —> Fi —> F —> 5j —> 1

where E is a surface group and F% is a poly-surface group of length k —1 which 

is characteristic in F. This implies that the extension S  may be factorised 

into two extensions:

=  (1 -y Fi C -> C /F i 1)

£*2 — (1 —̂ E —> GJV\ —> Q —> 1).

In order to obtain fibrations corresponding to these extensions we require 

their quotients to be countable groups of finite cohomological dimension. 

This is autom atically true for Q since we assumed that Q was a smoothable

group. The cohomological dimension of Coo is 1 whilst G has cohomological

dimension 2^ -f 1 since it is an iterated extension of k surface groups which 

are duality groups of dimension 2 by Coo- Therefore C /F i has dimension 3. 

Hence the quotients of these extensions are both countable groups with finite 

cohomological dimension and thus they have ?i-realisations by theorem 3.9. 

Applying the Eilenberg-MacLane classifying space functor to both of these 

extensions we obtain fibrations

6  =  ' i

K i G I T u l )
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K { G IT u l )

6  = s i

The fibration (2 has fibre corresponding to the Eilenberg-MacLane space of a 

surface, and so we may invoke the fibre smoothing property for surfaces and 

obtain a smooth fibre bundle ( 2  as before. The fibre of (1 is a poly-surface 

group of length k — 1 which has the fibre smoothing property by the induction 

hypothesis. Therefore, (1 may be smoothed to give a smooth fibre bundle 

as below.

%

iP l

E 2

Y E 2

lP2

X q

where 'K\[X) =  Fi and 7Ti(F) =  E. In this way, by a similar m ethod to the 

case for a poly-surface group of length 2, we may construct a smooth fibre 

bundle
X y  —> X q

iP i  

X q

where X y is fibred over E with fibre given by Xpi- This argument demon­

strates tha t the poly-surface group F constructed from a characteristic filtra­

tion of length k possesses the fibre smoothing property. The theorem follows 

by induction and our earlier proof for a (characteristic) poly-surface group 

of length 2. □
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C o ro lla ry  3.16 L e tX r  be an iterated surf ace fibration of dimension 2n with 

7Ti(AV) =  r  where F is a poly-surface group constructed from a characteristic 

filtration of length n. Then the natural homomorphism

7To(DifF (Xr)) Out (F)

is surjective.

P ro o f  : In the above theorem, consider the case where Q =  Coo and

construct from an automorphism of F the semi-direct product G = V X  

in the following way: let s be a splitting homomorphism s : Coo G and 

write for all x  in F, a{x) = s{t)xs{t)~^ where Coo is generated by t. Referring 

to the work in Section 2, we see that this (split) extension 6  ̂ =  (1 — F - 4' 

G —> Coo —̂ 1) has a %-realisation corresponding to a fibration

^ R : ( r , i ) - .  j^ (G ,i)

C = i i

whose long homotopy exact sequence coincides with S. Now apply the fibre 

smoothing property proved in the above theorem to obtain a smooth fibre 

bundle (  fibre homotopy equivalent to

X r X g

i

51

where X r  is a smooth model for F with the homotopy type of a K{T,  1). By 

the classification theorem for bundles over the circle, the class of such fibre 

bundles is in 1 — 1 correspondence with elements of 7To(DifF (Xp). Hence, given
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an automorphism of T we have constructed an element of the homotopy class 

of dilfeomorphisms of Furthermore, inner automorphisms of F give rise 

to the same homotopy class of diffeomorphisms as before. Thus, we have 

proved th a t if F is a poly-surface group constructed from a characteristic 

filtration then the natural homomorphism

7 T o ( D i f f  (Xr)) Out {€)

is surjective. □

3.6 Non-characteristic extensions of surface 

groups

The above theorems only apply to extensions £  of surface groups for which 

the kernel S i is a characteristic subgroup of F. However we may still obtain 

a similar result for non-characteristic extensions.

Let the automorphism group of the extension Aut {£) be the subgroup of 

Aut (F) such tha t

Aut {£) =  {a € Aut (F) : a (S i)  =  Si}

In Chapter 2 it was shown tha t this subgroup has finite index in Aut (F) 

(Theorem 2.14) and similarly for Out (£’). In this section we shall prove the 

following:

T h e o re m  3.17  Let S  he the extension (1 —> S i —̂ F S 2 —> 1) where S i 

is not necessarily characteristic in F. Let X r  he a smooth closed connected
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manifold with fundamental group 7ri(Xr) =  F. Then the natural homomor­

phism

7 T o ( D i f F  (Xr)) —  ̂ Out {S)

is surjective.

P roof : Let a  be an automorphism of the extension so tha t ct G Aut {E).

Consider the semi-direct product extension constructed by a

1 — F —> G —> Coo —̂ 1

and denote this by F XaC'oo- Explicitly we write for all T G F, a(x) =  

s{t)xs(t~^)  where 5 is the splitting homomorphism and t is a generator of 

the infinite cyclic group Coo- The proof will follow from earlier results if we 

can show that Ei is a normal subgroup of the semi-direct product F

Sub-lem m a 3.18 The surface group Ei is a normal subgroup of the semi- 

direct product F XaCoo where a  is an automorphism of the extension E.

Proof :

Denote the elements of the semi-direct product F X aC oo  by (7 ,^) where 

7 G F and t G Coo- The normal subgroup F is naturally included in F XaCoo  

by the mapping

7 h-> (7 , 1)

and since E% C F, we may write all elements of E% in the form (<7,1). For 

brevity we shall denote the conjugating homomorphism of the semi-direct 

product by (j). Then

= (7 # ) (< ^ )7 " \  1)
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To complete the proof that Ei is a normal subgroup of F X  aCoo it suffices to 

show tha t is an element of S i .  But ( f ) { t ) {a)  =  s { t ) a s { t ~ ^ )  =  Oi[cj)

and since a  G Aut { € )  we have tha t a ( a )  G S i. Hence

where a '  G S i. However, this is an inner automorphism of S i by elements in 

F and S i is invariant under all inner automorphisms of F since it is a normal 

subgroup of F. This proves the sub-lemma. □

By using this lemma we may see clearly that the extension 5  =  (1 —>• F —>■ 

G —> Coo —> 1) factorises to give the extensions

£ î =  (1  —> S i  —> G  —> ( 7 / S i  —> 1 )

£2 =  (1 ^2 G/E:  -> Coo 1)

The kernels of both of these extensions are given by surface groups and 

so we may invoke the fibre smoothing theorem as before. The rest of the 

proof is identical to the earlier proof in the characteristic case except for the 

fact tha t we are now considering Aut (S) instead of Aut (G). □

Now we shall generalise this theorem to poly-surface groups and thus to 

iterated surface fibrations to obtain the following result:

Proposition 3.19 An iterated surface fibration X, corresponding to an iter­

ated extension of surface groups S, gives rise to a surjective homomorphism

7 T o ( D i f f  X) Out [E]

where Out [E) is a subgroup of finite index in Out (7Ti(X)).

Proof : The proof is inductive on the length of the poly-surface filtration.

E is an extension of the form

1 Fi F S 1
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where Pi is a poly-surface group of length k — I and E is a surface group. 

Now, let a  be an automorphism of this extension so th a t a  G Aut {€) and 

consider the semi-direct product extension constructed by a , P X aC oo  

before. We need to show th a t Pi is a normal subgroup of the semi-direct 

product P XaCoo'-

L e m m a  3.20 The surface group P% is a normal subgroup o f the semi-direct 

product P XaCoo where a  is an automorphism of the extension S.

The proof of this result is identical to the case above where P is a poly-surface 

group of length 2. This implies tha t the extension S  may be factorised into 

two extensions:

6:1 =  (1 - ,  Pi - ,  G G /T i  1)

=  (1 E —̂ G /Ti  —> Coo —̂ 1)'

The cohomological dimension of Coo is 1 whilst G has cohomological dimen­

sion 2k -{■ I since it is an iterated extension of k surface groups which are 

duality groups of dimension 2 by Coo- Therefore G /T i  has dimension 3. 

Hence the quotients of these extensions are both countable groups with fi­

nite cohomological dimension and thus they have TY-realisations by theorem 

3.9. Applying the Eilenberg-MacLane classifying space functor to both of 

these extensions we obtain fibrations

i

K(G/rul )
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The fibration (2 has fibre corresponding to the Eilenberg-MacLane space of a 

surface, and so we may invoke the fibre smoothing property for surfaces and 

obtain a smooth fibre bundle (2 as before. The fibre of (1 is a poly-surface 

group of length k — \  which has the fibre smoothing property by the induction 

hypothesis. Therefore, (1 may be smoothed to give a smooth fibre bundle 

as below.

%

I  Pi 

E 2

Y E 2

IP2

where 7Ti(%) =  Ti and 7Ti(y) =  E. Now construct a smooth fibre bundle

X r  X q 

i P i

where X r  is fibred over E with fibre given by X r -̂ . The theorem follows by 

induction and the proof for a non-characteristic poly-surface group of length 

2. □
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Chapter 4 

The virtual cohomological 

dimensions of poly-Fuchsian 

automorphism groups

This chapter shall investigate the automorphism groups of certain poly- 

Fuchsian groups; in particular, we shall consider extensions of free groups 

and of orientable surface groups. This research was motivated by theorems 

due to Harer and Culler/ Vogtmann who investigated the outer automorphism 

groups of surface groups and free groups respectively.

In 1986, Harer calculated the virtual cohomological dimension of the m ap­

ping class group of an orientable surface in his paper [Har]. The proof con­

sidered equivariant actions of the mapping class group on the Teichmiiller 

space of markings on the associated Riemann surface.

T h e o re m  4.1 (H a re r , 1986) Lei be a closed orientable surface of genus 

g with r boundary components. Write 7ri(S^’̂ ) =  o.nd denote the map­

ping class group o f the surface by Out (Eg^r)- Then Out (Eg,r) is a virtual 

duality group in the sense of Bieri and Eckmann and furthermore, its virtual
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cohomoîogical dimension satisfies

vcd (Out (Eg)) = 4 ^  — 5 when r =  0, and 

vcd (Out (Eg,r)) =  4^ +  2r  — 4 otherwise

An analogous theorem was proved in the same year for the outer autom or­

phism group of a free group (see [CV]):

T h e o re m  4.2 (C u lle r  and  V o g tm an n ) LetFn denote a free group of rank 

n > 2 .  Then the outer automorphism group Out (Fn) is virtually torsion-free 

and its virtual cohomoîogical dimension satisfies

vcd (Out (Fn)) =  2n -  3

(Note that in the case of free groups, it is as yet unknown whether or not 

Out (Fn) is a virtual duality group).

In this chapter, we shall extend these results to poly-surface and poly- 

free groups in the case where the image of the operator homomorphism of 

the extension is finite. When the image of the operator homomorphism is 

infinite, the problem seems to be far more complex. However, we are still able 

to achieve some results in this situation using Thurston’s theory of surface 

diffeomorphisms. This will be explored further in the next chapter.

4.1 Automorphisms of direct products

The first result concerns the nature of the direct product of automorphism 

groups of surface groups and free groups. Recall tha t the wreath product 

H  f  (Jn is defined to be the semi-direct product X  (Jn where (Jn is the 

symmetric group on n elements, denotes the n —fold direct product of

H  and the action of the symmetric group (Jn on H  is by

( j ( / l l ,  . . . , / i n )  —  ( / i ( y - l  ( 1 ) ,  • • • 5 / i ( 7 - l  ( z i ) ) '
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We shall make use of the following result from [Joh3].

T heorem  4.3 (F.E.A. Johnson) Let K ,Q  be distinct surface groups or 

distinct free groups. Then the injective group homomorphism

\\ : Aut (K) X  Aut (Q) —> Aut (K x  Q)

given by ([](ai, a2))(-si, ^2) =  (ai(5 i), 02(52)) is in fact a group isomorphism. 

I f  K  = Q, then the injective group homomorphism

1] : Aut (K )/(J2 -► Aut (K ^ )

defined by a2))(si,S j) =  (a i(s» -i(i)),a2('S»-'(2))) w a group isomor-

phism.

C orollary 4.4 I f  g ^  h, then Out (Eg) x  Out (Eh) =  Out (Eg x  Eh). I f  

g = h, then Out (Eg) / ( J 2 — Out (Eg x  Eg)

In fact we shall give a new proof of this corollary for surface groups 

E j,E /i when [g h) > 3. Recall tha t the class of complete groups consists 

of all centreless groups for which the outer automorphism group is trivial. A 

theorem by Ivanov proves that if Eg >  3 then

Out (Out (Eg)) =  1.

For a thorough analysis of this result see John M cCarthy’s paper [McC]. 

This theorem  together with the well-known fact tha t the centre of Out (Eg) is 

trivial (e.g. [Ivl]) show that the mapping class group of a surface is a complete 

group. Dyer and Formanek dem onstrated analogously tha t Aut (Fn) is a 

complete group in [DF] (and thus an analogous proof could be performed for 

free groups).

For complete groups there is the following characterisation of Holder and 

Baer ( [Rob] p .398): a group G is complete if and only if whenever 0  = N
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and N  < H  then it follows tha t Æ is a direct factor of H, Hence it is suffi­

cient for us to prove tha t Out (Eg) and Out (Eh) are normal subgroups of 

Out (Eg X Eh). This is elementary to show and completes the proof. □

Corollary 4.5 For a direct product o f two (not necessarily distinct) surface 

groups (Y.g^'Eh), or free groups {Fm,Fn),

v c d  (Out (Eg X Eh)) =  4(g - f  h) -  10 

v c d  (Out (Fm X Fn)) =  2(m - f  n )  -  6

Furthermore, Out (Eg x Eh) is a virtual duality group.

P roo f : First, let us suppose that g ^  h. Then we have tha t Out (Eg x Eh) =  

Out (Eg) X Out (Eh). By Harer’s theorem 4.1 Out (Eg) is virtually torsion- 

free and so it has a torsion-free subgroup of finite index which we shall call

Onto (Eg). Furthermore vcd (Out (Eg)) =  cd (Outo (Eg)). Putting these

results together we have

vcd (Out (Eg X Eh)) =  vcd (Out (Eg) x Out (Eh))

=  cd (O uto (Eg)) 4- cd (O uto (Eh))

=  vcd (Out (Eg)) 4- vcd (Out (Eh))

=  {ig -  5) 4- (4/i -  5)

Analogously, when m  ^  n, Out (F ^ x F„) =  Out (Fm) x Out (Fn). The 

theorem of Culler and Vogtmann 4.2 states that Out (Fm) has a torsion- 

free subgroup of finite index denoted Onto {Fm) such tha t vcd (out(Fm) =  

cd (Outo (Fm)). Hence

vcd (Out (Fm X Fn)) =  Vcd (Out (Fm) X Out (F n ))

=  cd (Outo (Fm)) 4- cd (Outo (Fn))

=  (2t7î — 3) 4" (2tî — 3)
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W hen g = h, hy the above corollary Out (Eg x Eg) =  Out (Eg) f  (J2 - But

Out (Eg) X Out (Eg) is a subgroup of index 2 of the group Out (Eg) f  (J2

and so both of these groups have the same virtual cohomoîogical dimension; 

tha t is,

vcd (Out (Eg X Eg)) =  vcd (Out (E g ) /^ 2)

=  vcd (Out (Eg) X Out (Eg))

=  cd (Outo (Eg)) +  cd (Outo (Eg))

=  8^  — 10

Similarly, when m =  n. Out (Fm x Fm) =  Out (Fm) f  O' 2 and Out (Fm) x 

Out (Fm) is a subgroup of index 2 of the group Out (Fm) Therefore,

v c d  (Out (Fm X Fm )) =  v c d  (Out (F m ) fo 2 )

=  vcd (Out (Fm) X Out (Fm ))

=  4m — 6

Furthermore, Outo (Eg) x Outo (E/i) is a (trivial) extension of two duality 

groups and so is again a duality group by Bieri and Eckmann with finite 

index in Out (Eg x Eh). This implies that Out (Eg x Eh) is a virtual duality 

group. □

By the Baer-Nielsen Theorem for surfaces, there is an isomorphism

7To(Diff (E«)) ^  Out (Eg)

and so both of these groups are referred to as the mapping class group of a 

surface. However, for a surface fibration X r  with 7Ti(%r) =  F the mapping 

class group is defined as the homotopy classes of self-diffeomorphisms and we 

have only demonstrated that the natural homomorphism between this group 

and the outer automorphism group of F is surjective, not isomorphic. Since
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the m ajority of techniques used in this chapter are algebraic in nature, we 

shall focus our attention upon the group Out (F). First however, from the 

above result, we can make the following deduction about the mapping class 

group of the direct product of two surfaces (cf. [Joh3] p .357):

P ro p o s it io n  4 .6  Let E* denote the closed surface o f genus i, with funda­

mental group S j. Then

vcd (7To(DifF (S« X  E’')) =  4(g +  h) -  10

P r o o f  : The inclusion j  : Diff (E*) x  Diff (E*') <—> Diff (E® x  E*') induces

a corresponding map between classifying spaces

j  : W(DilF (E®) x  Diff (E*")) ^  W (Diff (E® x  E'*))

(here W  is the Eilenberg-MacLane classifying space functor - see Chapter 3). 

This together with the induced natural maps : Diff (Y) Out (7ri(Y)) 

gives rise to the following homotopy commutative diagram:

WDiff (E«) X WDiff (E^) Â  W(Diff (E«) x  Diff (E^)) -4 WDiff (E« x  E^)

J, Ai J, A2 i  A3

W O ut (Eg) X  W O ut (Eh) W (O ut (Eg) x  O ut (Eh)) A  W O ut (Eg x  Eh)

where h and i are homotopy equivalences and A; =  W(li ). In the proof of

Theorem 3.11, it was shown tha t there is a homotopy equivalence WDiff (E®) ~  

W O ut (Eg) and so Ai has a homotopy right inverse. Hence A2 has a homotopy 

right inverse tha t we shall call p. Then

J/ = j  o p o  W(t| )

is a homotopy right inverse for A3. This proves tha t

vcd (7ro(Diff (E® x  E^)) =  vcd (Out (Eg x  Eh))

as required. □
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4.2 The v.c.d. of the automorphism group of 

a poly-Fuchsian group

The following is a corollary to the theorems by Barer (4.1) and Culler/Vogtmann 

(4.2) which shall prove useful in this section:

Proposition  4.7 Given a surface group T>g of genus g > 2 or a free group 

Fn o f rank n > 2, then the virtual cohomoîogical dimensions of their auto­

morphism groups are

vcd (Aut (Eg)) =  4 ^ - 3  (4.1)

vcd (Aut (Fn)) <  2n — 2 (4.2)

respectively.

P ro o f : Given a group K  there is a natural exact sequence 1 Z(A") —>

K  — Inn (K) —> 1 from which we deduce that when the centre of K  is trivial

(as is true for the surface groups and free groups under consideration), there 

is an isomorphism Inn (K) =  K. In this case, the automorphism group of K  

may be written as an extension

1 —»• A' —> Aut (K) —> Out (K) —> 1.

W hen K  is given by a surface group then we know that Out (Eg) has a 

torsion-free subgroup Outo (Eg) of finite index which is a duality group and 

has cohomoîogical dimension 4^ — 5. Also Eg has cohomoîogical dimension 

2 and is also a duality group (indeed a Poincare duality group). Hence the 

extension of Eg and Out (Eg) is again a duality group which we shall denote 

by Auto (Eg) and its cohomoîogical dimension is given by

cd (Auto (Eg)) =  cd (Eg) -f cd (Outo (Eg))

=  2 -f- Ag — 5
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(this equation follows from Bieri-Eckmann - see Theorem 1.17). Auto (S^) is

a subgroup of finite index in Aut (Sg) and so this shows tha t vcd (Aut (Eg)) =

4 g - 3 .

Now consider the case where K  is a free group Fn of rank n > 2. This 

group is centreless so the exact sequence above still holds so that

1 —> Fn —> Aut (Fn) —> Out (Fn) —̂ 1.

The proof differs here from the surface case because it is unknown whether or 

not Out (Fn) is a virtual duality group. However, it is virtually torsion free 

by Theorem 4.2 and so we may form the extension of with the torsion-free 

subgroup of finite index Onto (Fn) to give

1 —> Fn Auto (Fn) —> Outo (Fn) —> 1

where Auto (Fn) is also torsion-free and has finite index in Aut (Fn). Then 

by a result of Serre [Ser] (Theorem 1.14:

cd (Auto (Fn)) < cd (Fn) +  cd (Outo (Fn))

Free groups are Poincare duality groups and have cohomoîogical dimension 

equal to 1. Also cd (Outo (Fn)) =  2n — 3 by Culler and Vogtmann [CV] 

giving that

vcd (Aut (Fn)) =  cd (Auto (Fn))

< cd (Fn) + cd (Outo (Fn))

= 1 -f- 2n — 3

as stated. □
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Proposition 4.8 (vcd (Aut (poly-Fuchsian group))) Let S be an ex­

tension S = {I K  G Q 1) where K ,Q  are either (orientable) 

surface groups with genus >  2 or free groups of rank >  2 .

(I): I f K , Q  are surface groups of genus g^h respectively, then

vcd (Aut (G)) <  4(g +  h) — 6.

(II): I f  K ,Q  are free groups of rank m ,n  respectively, then

vcd (Aut (G)) <  2(m +  n) — 4.

(III): I f  K  = Tig and Q = Fn or vice versa, then

vcd (Aut (G)) <  4g -t- 2n — 5.

Proof : Using the corollary to the Rigidity theorem 2.16, it suffices to

calculate vcd (Aut (£ )̂) in each case. Since K  has trivial centre whether it is 

a surface group or a free group there is an injection

Aut S  >-> Aut (K) X Aut (Q)

and so Aut {€) = Aut (S) fl (Aut (K) x Aut (Q)) (see Chapter 1, Section 4). 

By the above proposition, in either case, Aut (K) has a torsion-free subgroup 

of finite index we shall denote by Auto (A ). Hence Aut (S) has a torsion-free 

subgroup given by

Auto (^ ) =  A ut (S)  n  (A uto (K ) x  Auto (Q )

We need to show that Auto (^) has finite index in Aut (S). By the finite 

index lemma 1.10, if a group has a subgroup of finite index then this subgroup 

contains a finite index subgroup which is normal in the whole group. For 

Aut (K) and Aut (Q) we shall call these normal subgroups Aut i(K ) and 

Aut i(Q) respectively. Consider the group Aut i{S)  of the form Aut {S) fl
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(Aut i(K ) X Aut i(Q )). This group is normal in Aut (E) since normality is 

preserved by direct products and so we may take the quotient group:

Aut (E) _  Aut (E)
Aut i{E) Aut (£) n  Aut i(K) X Aut i(Q ))

^  (Aut i(K ) X Aut i(Q )) ' (Aut (£))
Aut i(K ) X Aut i(Q)

This quotient group is a subgroup of (Aut (K) x Aut (Q ))/(A ut i(K) x 

Aut i(Q )) which is a finite group since Aut i(K ) and Aut i(Q ) have finite 

index in Aut (K) and Aut (Q) respectively. Therefore Aut i{E) has finite 

index in Aut (E) implying tha t Auto (^) has finite index in Aut (E) as 

required. Note also tha t Auto (E) is clearly torsion-free. Now

vcd (Aut (G)) =  cd (Auto (5))

=  cd (Aut (E) n  (Auto (K) x Auto (Q)))

<  cd (Auto (K) X Auto (Q))

=  cd (Auto (K)) -f cd (Auto (Q))

=  vcd (Aut (K)) -f vcd (Aut (Q)).

By substituting the v.c.d.’s of Aut (Eg) and Aut (Fn) using the previous 

proposition in each case we obtain the desired results. □
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4.3 Calculating vcd (Out (G)) when the im­

age of the operator homomorphism is fi­

nite

In this section, we shall consider an extension of either surface groups 

with genus g > 2  oi free groups Fn of rank n >  2:

for which the operator homomorphism (f) : Q Out (K) has finite image.

Proposition 4.9 Given an extension of surface groups 1 —̂ Ê  —>• (9 ^  

E/i —> 1 where the image of the operator homomorphism is a finite group of 

order j , then G has a subgroup of finite index Go, which is of the form

Go = TigX E t where k = 1 j{h  — 1).

Similarly, given an extension o f free groups \ Fm G ^  Fn  ̂ where 

the image of the operator homomorphism is a finite group of order j , then G 

has a subgroup of finite index Go, which is of the form

Go — Fm X Fk where k = 1 j{n  — 1)

Proof : As far as possible, we shall prove these two statem ents simultane­

ously by considering the exact sequence

with operator homomorphism (j) : Q Out (K). As the image of <j) is finite, 

the kernel of ÿ has finite index in Q and this implies tha t 7r“ ^(ker (^)) is a 

subgroup of finite index in G. Define

Go =  7T“ ^(ker (ÿ)) C G 
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to be this subgroup of index j  in G so that Go is an extension of the form

1 —> K  —> Go — ker (0) —> 1.

The operator homomorphism of this extension (j)' : ker {(j)) —> Out (K) is 

clearly trivial since it is a restriction of (j) and so Go is isomorphic to a direct 

product

Go — K  X ker (<̂ )

When g  is a surface group S/i of genus h , ker {<j>) is a subgroup of index j  

in H/i and so must also be a surface group Hjt, say. Moreover, the genus k is 

given by the Riemann-Hurwitz formula:

. ^  rAi(Et) -  6 
^ -  S

where 8 is equal to the cohomoîogical dimension of This implies tha t

2 — 2k = j{2 — 2h) giving the result in this case.

Now consider the case where Q is a free group of rank n. Again ker {(j)) 

is a subgroup of index j  in T>h and therefore is a free group say. The rank 

k is given by the Riemann-Hurwitz formula:

. _  rk{Fk) -  6 
^ ~  rk{F„) -  S

where 6 is equal to 1 since Fn is a free group. Hence 1 — /: =  j ( l  — n) as 

required. □

T h e o re m  4.10 Let K  and Q be either both surface groups Eg or both free 

groups Fn. Given an exact sequence \ - ^ K - ^ G —̂ Q - ^  \  where the image 

of the operator homomorphism is a finite group of order j , then

vcd (Out (G)) =  cd n  Outo (H )j
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where H  is a subgroup of finite index in G and Outo (H) is a subgroup of 

finite index in Out (H).

In particular, the virtual cohomoîogical dimension of Out (G) is finite.

Proof : By the above proposition, G has a subgroup of finite index Go which 

is a direct product of surface groups or free groups and so we may invoke 

the finite index lemma 1.10 to show th a t G has a characteristic subgroup 

of finite index H  which is contained in Go- It is clear tha t H  is also a 

direct product of either surface groups or free groups and so we may write 

H  = Hs X Ht. Furthermore, H  has trivial centre since surface groups and 

free groups have no nontrivial abelian normal subgroups. The extension 

£’ =  (1 - ^ H - ^ G ^ G / H - ^ 1 )  gives rise to an exact sequence as in Section 

2 :

1 ^  C(£)  Aut {£) A  Aut (H) X  Aut (G /H )

and as before, this simplifies to an injection Aut (S) >-> Aut (H )xA ut (G /H). 

The fact tha t FT is a characteristic subgroup of G implies tha t Aut (£̂ ) =  

Aut (G) and so Aut (G) injects as

p : Aut (G) >-> Aut (H) x Aut (G /H ). (4.3)

We claim tha t vcd (Aut (G)) <  vcd (Aut (H)) in the following way: first 

observe tha t vcd (Aut (G)) <  vcd (Aut (H)) +  vcd (Aut (G /H )) using Propo­

sition 1.15. Now, H  has finite index in G so tha t GJ H  is a finite group and 

hence has a finite automorphism group; tha t is, vcd (Aut (G /H )) =  0 proving 

the claim.

To continue our proof, take the induced homomorphism

p,  : Aut (G )/H  Aut (H )/H  x Aut (G /H ). (4.4)

Because H  has trivial centre. Inn (H) =  H which implies th a t Aut (H )/H  =  

Aut (H )/Inn (H) =  Out (H). Also by Theorem 4.3, Out (H) =  Out (Hg) x
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Out (Ht) and the theorems by Harer 4.1 and Culler/Vogtmann 4.2 show that 

Out (H) has a torsion-free subgroup of finite index Onto {Hs) x Onto {Ht). 

We shall denote this subgroup by Outo {H).

The rest of the proof involves finding a torsion-free subgroup of finite 

index in Aut (G )/H  and projecting this onto Out (G). Consider the group

n Outo {H).

This is clearly torsion-free so it suffices to show that it has finite index in 

Aut (G )/H . Using the induced homomorphism 4.4, let

Aut (G )/H  =  (Aut (G )/H ) n  (Out (H) x Aut (G /H )).

Then, as Onto (H)  has finite index in Out (H) and Aut (G /H ) is a finite 

group, Outo (H)  also has finite index in Out (H) x Aut (G /H ). This shows 

th a t (Aut (G )/H ) fl (Outo (H)) is a subgroup of finite index of Aut (G )/H  H 

(Out (H) X Aut (G /H )) =  Aut (G)/H.

As G has trivial centre, there is an exact sequence 1 —> G —> Aut (G) —> 

Out (G) —> 1 which gives rise to the exact sequence

( G ) - l

The kernel of the projection p is given by the image of G / H  in Aut (G )/H  

which is finite since is a subgroup of finite index in G.  Therefore, by 

projecting a torsion-free subgroup, the kernel must be trivial and hence p 

becomes an isomorphism of groups. By considering the torsion-free subgroup 

(Aut (G )/H ) n  (Outo (H)) which has finite index in Aut (G )/H , it is clear 

tha t

p  n Outo

is also a torsion-free subgroup of finite index in Out (G) as required.

In particular, this proof shows that vcd (Out (G)) <  cd (Outo (H)). Fur­

therm ore, cd (Outo (H)) =  cd (Outo (Hg)) -f cd (Outo (Ht)) =  4(s -f t) — 10
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if are surface groups and =  2(s +  — 6 if are free groups. Also, s > h

and t > \  -\- j {g — 1) and hence vcd (Out (G)) is finite. □

4.4 An exact sequence for Out { S )

The purpose of this section is to calculate an exact sequence for the outer 

automorphism group of an extension consisting of centreless groups. This 

reduces the calculation of the v.c.d. of the outer automorphism group to 

the corresponding calculation for the ends of the exact sequence. Although 

we have been able to find the virtual cohomoîogical dimension for the outer 

automorphism group of poly-Fuchsian groups when the image of the operator 

homomorphism is finite, these methods do not suffice when the operator 

homomorphism has infinite image. In the next chapter we shall use the 

results of this section to calculate the v.c.d. in the case where the image of 

the operator homomorphism is an infinite group generated by certain surface 

diffeomorphisms.

From now on, we shall consider the centreless groups K, Q belonging to 

the extension

E = {1 K  G Q 1).

In this case we have the following lemma:

L e m m a  4.11 For the above extension where Z{ K)  = Z{Q) = 1,

Out (S) ^  ((Aut {S) ) /K) /Q

P r o o f  : First, observe tha t G must also have trivial centre so tha t G =

Inn (G). Thus there is an exact sequence 1 —> G Aut [S) —> Out [E) —> 

1. Quotienting out the kernel by K  gives the exact sequence 1 ^  Q —>
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Aut (^ )/K  Out (£) —> 1 as required. □

T h e o re m  4.12 (E x ac t seq u en ce  fo r O u t (S) )  Let G he a split extension 

of centreless groups K^Q in the exact sequence: 8  =

1); then Out [S) is constructed by an exact sequence:

1 _  Out (s )  ^  ^ # # 1  - 1
ker (j) Im (<p)

where <j) is the operator homomorphism of the extension, StabAut(Q)(^) de­

notes the stabiliser of (j) in Aut (Q), and

Cout(K)(Im(ÿ)) <  Im (proji) <  Nout(K)(Im(<?^))

The proof of this theorem is derived from the following sequence of propo­

sitions. Observe that, since we have constructed 5  as a split extension we 

may take G to be the semi-direct product K  X  where ^  : Q —> Aut (K) 

is the conjugating homomorphism. When Q is a free group then the exact 

sequence S  is always split.

P ro p o s it io n  4.13 Let a  G Aut (K) and j3 G Aut (Q) be automorphisms of 

K  and Q respectively. Then (a , /?) G Aut (K) x Aut (Q) is an automorphism 

of G i f  the following condition holds:

}{q) = a~^ • ^{(3(q)) • a

P ro o f  : G =  {(A:,ç) e  K  x  Q : (^ i,ç i)(/:2, 92) =  (^i<^(?i)(^2),Ç1Ç2)}

( a ,  I d ) { { k i , q i ) { k 2 , 92)) =  ( a ,  ( d ) { k i ,  ç i ) . ( o ,  ^ ) { k 2 ,  Ç2)

=  M ^ i) ,  /^(gi))(«(^2), Id{q2))

=  {oi{h)^{qi){k2), /?(Çi)/?(?2))
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Also,

{oc,/3){{ki,qi){k2,q2)) =  (a ,^ )(^ iÿk i)(^ 2) ,9 i,92 )

=  (a(^i<^(9i)(^2),/?(çi92))

Comparing term s, it is clear tha t

o^{h)H/^(qi)) =  a{ki)a{^{qi){k2))

^W q i) ){ (^ {h ))  = a{^{qi){k2))

= >  Hqi){^2) =  a “ ^((^(/?(çi))(o;(A;2)))

Therefore, for all k G  K ,  given q E Q the following formula holds:

k q )  = • i k P iq ) ) )  • «•

□

Proposition 4.14 Aut (K )xA ut (Q) has a right action on Hom(Q, Aut (K)) 

given by

• ( a ,  p ) ) { q )  =  a ~ \ ^ ( 3) { q ) a

P roof : First, observe tha t • (e, e))(ç) =  e“ ^(<^e)(ç)e =  ^{q) where (e, e)

is the identity of Aut (K) x Aut (Q). Now,

( 0 - (û!i ,A )(û:2,/?2))(ç) = (ÿ- (ai02,AA))k)

=  {aia2)~'^{^/3iP2){q)aia2

=  Oi2^{kP2)(q)oi2 

where <̂ ' =  (<̂  • (q i ,^ i) ) , proving tha t this is indeed a right action. □
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From the section on automorphisms of extensions in Chapter 1, we know 

that since K  has trivial centre, there is an injection

Aut {S) >-)■ Aut (K) X Aut (Q)

Also, we know tha t (a,/?) G Aut (G) must satisfy ^{q) =  a~^ • <^(^(ç)) • a. 

Combining these conditions we see that

Aut [E) =  G Aut (K) X Aut (Q) : <̂ (q) =  0;“  ̂ • <ÿ(/?(q)) • a}

P ro p o s itio n  4.15 Given the extension E = (I ^  K  G Q 1) where 

K  has trivial centre, then the automorphism group of the extension Aut {E) 

has K  as a normal subgroup.

P r o o f  : Define i^ to be an inner automorphism of K  of the form û(a;) =

kxk~^ for X G K .  As before, let a, P be automorphisms of K , Q respectively. 

Then there is a series of mappings between exact sequences:

1 K  ^ G Q -> 1

i a - i i  («,/?)■'

K G Q 1

i  ik i û II

K G Q -4 1

i  a 113

K  -> G -4 Q -> 1

1

1

Concertinaing, we obtain homomorphisms

\ K  G Q -4 1

i  i  II

I K  G Q ^  I

To see this, we just need to note that for k \ ,k 2 G K  with a ( l’i) =  k2 ’.

(a~^ika){ki) = {a~^ik){k2)
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=  a-^{kk2k-^)

=  a~^(k)kia{k)

Therefore (a , /3)~^ik{a, /?) =  2a-i(fc) and so the group of inner automorphisms 

of K  which is isomorphic to K  is closed under conjugation by elements of 

Aut {€), □

Proposition 4.16 The group K  is isomorphic to the subgroup 0/ Aut (S) 

given by

{(ct, 1) G Aut (K) X  Aut (Q) : k G K} 

where Ck denotes conjugation by the element k.

P roof : There is a map a : K  Aut (S) given by A: 1—> 1—> kgk~^}

for k Ç: K , g Çi G. If Ck denotes conjugation by k (so tha t Ck{g) =  kgk~^)^ 

then it is clear that {ck : k K }  =  Inn (K) =  K as i f  has trivial centre. 

Therefore it suffices to prove that K  is contained in the kernel of the map 

r  : Aut {€) Aut (Q) given by r{{g  i-> kgk~^}) = {7r{g) i-> 7r{kgk~^)}

where tt : G Q is the quotient map. Now, 7r{kgk~^) = 7r{g) because

7r{k) = 7r{k~^) = 1 and so the image of r  is the identity automorphism and 

this proves our claim. □

W ith this proposition it is clear that

e  X  Aut (Q) : ÿ(q) =  [a]-V (/8(q ) )w }

where [a] denotes the conjugacy class of a  in Aut (K) and ÿ =  [.]^ so 

tha t Im [(f)) G Out (K). W hat is The conjugating homomorphism of 

an extension depends on the choice of the transversal function from Q to
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G. Two transversal functions differ by an element of K  and further, the 

associated conjugating homomorphism are equal up to inner automorphisms 

of K .  However, the operator homomorphism is only defined up to inner 

automorphisms of K  and since K  has trivial centre. Inn (K) =  K. This shows 

tha t the conjugacy class of the conjugating homomorphism is the operator 

homomorphism which we shall identify with (f).

P ro p o s it io n  4 .17  Q is contained in Aut (S ) /K  by the map q (<ÿ(g), Cg), 

as a normal subgroup.

P r o o f  : It is obvious that (<j){q),Cq) € Out (K) x Aut (Q) and hence we 

just need to show th a t ÿ(/9(i/)) =  [o;](;/î>(y)[a]“  ̂ where ([o],^) =  (ÿ(gr), c,) as 

follows:

=  <t>{c,{y))

To show th a t Q is a normal subgroup of Aut (6")/K, consider the following:

But (^ c ,^ - ') (y )  =  I3(ql3~^(y)q~') =  0(q)y0{q)~^ =  %(,), proving th a t Q is 

invariant under inner automorphisms of Aut (^)/K . □

Consider the projection proj^ : Aut {S)/K  —> Out (K) given by

p ro ji(W ,^ )  =  W-

This will correspond to the projection map of the exact sequence for Out (£’).
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Proposition 4.18 ker(pro jJ =  StabAut(Q)(ÿ),

Cout(7̂ )(Ini(<^)) <  Im (proji) <  Nout(K)(Im(<^))

P roof :

ker(proji) =  {([1],^) G Out (K) x Aut (Q) : (j)  ̂ =

=  {/9 G Aut (Q) \ (j)p = (j)}

— StabAut(Q)(ç^)

where the stabiliser acts on ÿ by the induced right action of Aut (Q) upon 

Horn (Q, Out (K)), given by (ÿ • ^){q) =  (j>{P{q)). Now take æ G Im (ÿ) and 

write X  = (f>{q) for some ç G Q. We have tha t [a]a;[a]”  ̂ =  ÿ(/)(ç)) G Im {</>) by 

the condition on Aut (^ )/K  and this implies that [a] normalises the elements 

of Im {(j)). Conversely, if [a] G Cout(/c)(Im(<^)), then for all q in Q,

[a](f>{q)[a]-'  ̂ = (f){q)

which is derived from projj([a], 1) =  [a]. These results show tha t

Cout(A')(Im((^)) <  Im (proji) <  Nout(K)(Im(ÿ)).

□

Hence we have constructed an exact sequence

1 —> StabAut(Q)(^) Aut (é^)/K —> Im (projj) —> 1

In order to obtain an exact sequence involving Out (S),  it is necessary to 

quotient Aut {€) by Q, and thus, we must establish the image of Q under 

proji. Q =  : q e  Q}, so proji(Q ) =  {ÿ(g) : q e  Q} = Im  (ÿ).

Similarly, ker(proji(Q )) =  {g G Q : 0(ç) =  q} =  ker(ÿ). Therefore, by 

quotienting out by the exact sequence

1 ker(ÿ) —> Q Im (0) 1
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we obtain the required exact sequence from the statem ent of the Theorem:

StabAut(9 )('?̂ ) _  Im (proji) ,
ker(&  ̂ ) Im (ÿ )

where (j) is the operator homomorphism of the extension, and 

Cout(K)(Im(ÿ)) <  Im (proji) <  Nout(K)(Im((?^))

as required. □

This exact sequence reduces the problem of finding the virtual cohomo- 

logical dimension for the outer automorphism group of a poly-Fuchsian group 

to finding the v.c.d.’s of the kernel and quotient of the sequence. In the next 

chapter we shall calculate the v.c.d. of

Im (proji)
Im {(j>)

in the case where the image of the operator homomorphism consists of certain 

diffeomorphisms about separating circles in a surface. This result will require 

background work in Thurston’s theory of surface diffeomorphisms and shows 

the breadth of the problem when the operator homomorphism has infinite 

image.
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Chapter 5 

Pseudo-Anosov  

diffeomorphisms and Stallings 

fibrations

5.1 A menagerie of surface diffeomorphisms

Given a simple closed curve C on a surface E we may construct a homeo- 

morphism of the surface in the following way. Param etrise an annulus in the 

plane by (r, where 1 <  r  <  2 and 0 < 0 <  27t. Then a homeomorphism r  

of the annulus may be defined by

r( r , Û) =  (r,û  — 27rr)

Embed the annulus as a neighbourhood of the curve C and extend the homeo­

morphism by the identity outside the embedded annulus. This gives a home­

omorphism of the surface known as the Dehn twist homeomorphism  about C  

(see figure 5.1).

These homeomorphisms epitomise surface homeomorphisms in the sense 

that all homeomorphisms of a surface can be created by composing a finite
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Figure 5.1: The Dehn twist homeomorphism

number of Dehn twist homeomorphisms. This was proved by Lickorish ( [Lie]) 

who also gave a canonical representation for the generating Dehn twists about 

non-separating circles in the surface.

Here, we shall describe the classification of surface diffeomorphisms due 

to Thurston: The elements of the mapping class group Out (7ri(S )) =  

7ro(Diff (E)) consist of isotopy classes of surface diffeomorphisms. We shall 

call an element of Out (7ri(E)) periodic if it has finite order in the group. For 

these isotopy classes there is the classical theorem due to Nielsen (see, for 

example, Birm an’s article in [Harv]) :

T h e o re m  5.1 (N ie lsen ) An element f  G Out (7Ti(E)) is finite i f  and only 

i f  the isotopy class contains a periodic diffeomorphism F  : E —> E such that

F "  =  Id^

for some n.

A circle on E is nontrivial if it does not bound a disc in the surface 

and cannot be deformed into a boundary component. In this situation, a
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one-dimensional submanifold C of E consists of several pairwise nonisotopic 

circles. If the diffeomorphism F  : E E satisfies

F(C) =  C

for some non-empty one-dimensional submanifold of E consisting of non­

trivial circles then we say tha t F  is a reducible diffeomorphism. An element 

of Out (7Ti(E)); tha t is , an isotopy class of diffeomorphisms of E is called 

reducible if it contains a reducible diffeomorphism and irreducible otherwise.

The main achievement of Thurston’s theory is the existence of pseudo- 

Anosov diffeomorphisms in nonperiodic irreducible isotopy classes (see [Thu]). 

The following description of pseudo-Anosov diffeomorphisms is adapted from 

the book by Casson and Bleiler [CBj:

Recall that a geodesic in the hyperbolic plane 7F is a circle meeting the 

boundary of the hyperbolic plane orthogonally. In the surface E, a geodesic 

is the image of a geodesic in its universal cover. This geodesic is said to be 

simple if it has no transverse self-intersections. By taking a disjoint union L  

of simple geodesics in a surface we obtain a geodesic lamination; the geodesics 

are the leaves of the lamination. The surface E can be decomposed into a 

disjoint union of leaves together with a singular set of points. This decom­

position is called a singular foliation T . Two foliations are transverse if they 

have the same singular set and at all other points the leaves are transverse. A 

transverse measure /z to a singular foliation F  assigns to each arc a  transverse 

to F  a non-positive Borel measure such that:

(i): for a subarc fd of a , p\p is the restriction oi fj,\a.

(ii): If ao,o;i are arcs transverse to F  related by a homotopy a  :

/  X  7 —> E such that a[I  x 0) =  ao? ct(7 x 1) =  a i and a{a x 7)

is contained in a leaf of F  for all a G 7, then p\aQ =  p\ai-
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We are now in a position to give a formal definition of a pseudo-Anosov 

diffeomorphism:

A diffeomorphism of a closed orientable surface is pseudo-Anosov if 

there exist transverse singular foliations equipped with transverse

measures such that:

=  i r S h

for some A > 1.

T heorem  5.2 (T hurston  [Thu])

Every nonperiodic irreducible diffeomorphism of a closed orientable surface 

of genus greater than 2 is isotopic to a pseudo-Anosov diffeomorphism. Ir­

reducible and nonperiodic isotopy classes in Out (7Ti(E)) are called pseudo- 

Anosov isotopy classes.

Related to the concept of a pseudo-Anosov diffeomorphism of a surface 

are pure diffeomorphisms. These were first used by Ivanov (see [Iv2]) in 

connection with his classification of subgroups of the mapping class group of 

a surface. We shall make use of pure diffeomorphisms in the next section; 

first, here is the definition:

By cutting the surface along the 1-submanifold C we obtain a new (possi­

bly disconnected) surface E c. We will call a diffeomorphism F  of the surface, 

a pure diffeomorphism if for some system of circles C the following condition 

is fulfilled:

(Pure Diffeomorphism): All points of C and the boundary of E 

are fixed by F ; F  does not permute the components of E \  C 

and induces on every component of E j a diffeomorphism isotopic 

either to a pseudo-Anosov diffeomorphism or to  the identity.
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The isotopy classes of pure difFeomorphisms are pure elements of the mapping 

class group of the surface.

5.2 Subgroups of the mapping class group

The importance of the concept of pure difFeomorphisms described in the 

previous section lies in the fact that Out (E) contains a subgroup of finite 

index consisting entirely of pure elements. Namely, let m  G Z  he the

kernel of the natural homomorphism:

Out (E) —> Aut (Hi(E;

This subgroup of the mapping class group is known as the congruence sub­

group of level m  and, if m 0, it clearly hcis finite index in Out (E). Serre 

proved tha t the congruence subgroups of level >  3 are torsion-free. This 

result was sharpened by Ivanov in [Iv2]:

T h e o re m  5.3 I f m > 3 ,  then all the elements of I^{m) are pure.

Ivanov used the result to classify subgroups of the mapping class group anal­

ogously to Thurston’s classification of surface difFeomorphisms. From now 

on, we shall tacitly assume that m > 3 and denote the congruence subgroup 

by h .

The theory of pure difFeomorphisms links into the problem oF calculat­

ing virtual cohomological dimensions by virtue oF the following result on 

centralisers of the mapping class group. Ivanov proved a similar theorem 

in [Ivl] and our method of proof is loosely based on his approach. Note 

first, th a t two groups G, H  are called commensurable if they have isomorphic 

subgroups of finite index. We shall notate this hy G H.

T h e o re m  5.4 LetC consist of several pairwise nonisotopic nontrivial circles 

on E and let A{C) be the group generated by Dehn twist homeomorphisms
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about the components of C. Cut E along C and call the resulting (t, say) 

components Eg.̂ î where gi is the genus and r,- is the number of boundary 

components of the surface. Denote the mapping class group o/Eg.,r, by 

Let 7e be the kernel of the homomorphism h : Out (E) —> Aut (Hi(E; 

and write A  = A{C) fl Then

p p p
^  ~  i  5 l ,n j- g2,T2 A . . .  A i

P r o o f  : For convenience, we shall assume that the group A{C) generated

by Dehn twist homeomorphisms about components of C is a subgroup of 

which we denote by A  (note that this is true for all of our applications).

First, let us consider the structure of abelian subgroups of 7%. Let C be a 

system of circles on E. Given some components 7Z of E \  C, suppose we have 

a diffeomorphism F r  : R  R, fixed on the boundary of R  which is isotopic 

to a pseudo-Anosov diffeomorphism. Extend F r  to a diffeomorphism of the 

surface E by the identity and denote the isotopy class of this diffeomorphism 

by / ^ .  Denote the subgroup of Out (E) generated by all and all Dehn 

twists about components of C by II, Then II is abelian and conversely, 

every abelian subgroup of 7% is contained in some subgroup of this type (the 

converse is shown in [Iv2] p .78). However, H is not in general a subgroup of 

7e as is clear when we consider Dehn twists about nonseparating circles.

Consider an element d in the centraliser of A  in 7%, Ci^{A). Then the 

group

{d,A)

generated by d and A  is an abelian subgroup of (since A  is abelian) and is 

contained in an abelian group H constructed in the above manner. Therefore, 

the isotopy class d G Ci^{A) contains a diffeomorphism 7) : E —> E which 

is fixed on C and does not permute the components of E \  C (recall tha t all 

the elements of 7% are pure). This diffeomorphism induces a diffeomorphism
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on the components of T, cut along the system of circles Dc : T>c Sc 

and if we take isotopy classes of such diffeomorphisms, then we obtain a 

homomorphism:

a o :C i^ {A )  Out ( S \ C )  

d I—> [Dc]

where [.] denotes the isotopy class of the diffeomorphism. The kernel of Qq is 

contained in A  because the isotopy classes mapping to the boundary of Sc 

correspond to powers of Dehn twist homeomorphisms about C. Also since 

D  does not perm ute the components of S \  C, the image is contained in 

^gi,ri X • • • X Therefore ûq induces a homomorphism

. %  ( ^ )  X  X  rUC . ^  f L ^  ‘  ̂gt,rt-

In order to prove the theorem, it is sufficient to show th a t a  is injective and 

its image has finite index in Tg^^n X . . .  xTg^^rt-

To prove tha t a  is injective, consider an element d' which is in the kernel 

of qq. This isotopy class may be represented by a diffeomorphism D' which 

is fixed on C and such tha t D j is isotopic to the identity diffeomorphism on 

S \  C. Furthermore, D' is isotopic to a diffeomorphism supported in a small 

neighbourhood of C and thus is isotopic to the composition of several Dehn 

twists about components of C. We have shown that the element d' must be 

an element of the group A  and hence the kernel of ûq =  A proving injectivity. 

By construction, the image of a  is given by

Im (a) =  x  - ' - x I s a , ^

where the are the components of E \  C. However, each is a sub­

group of finite index in Tg.^, and so the image of a  is a subgroup of finite 

index in x . . .  x Tg^^n proving the theorem. □
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Recall tha t in Chapter 4 we constructed an exact sequence for the outer 

automorphism group of the extension of surface groups

This took the form

1 ^  S ta b ^ ,g ) (^ )  ^  ^  1 (5.1)
kerÿ  Ina (0 )

where 0 is the operator homomorphism of the extension, and 

Cout(K)(Im(0 )) <  Im (proji) <  Nout(K)(Im(0 ))

The above theorem now enables us to calculate the virtual cohomological 

dimension of the quotient of this exact sequence for certain situations as 

follows:

Let the image of the operator homomorphism Im (0) be generated by 

Dehn twist homeomorphisms about a system C of separating circles in E. In 

this situation A{C) C /e  and we may identify Im (0) =  A(C) =  with the 

group A.

T h e o re m  5.5 Let Im (0) be generated by a single Dehn twist about a sepa­

rating circle in Then there is a commensuration

Im (p r o j j / lm  (0) ~

Moreover, E^j^n, E^2,r2 connected components o / Eg cut along the

separating circle, then

vcd (Im ( p r o j j / lm  (0)) =  vcd x I^^^^ )

=  4 ^ - 4
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P ro o f  : The group generated by a Dehn twist about a separating circle is

isomorphic to Z  and so

C out(E g)(^ ) <  Im  (p r o ji)  <  N o u t(2 g )(^ ).

Suppose g belongs to Nout(Eg)(-^) and consider the homomorphism

T : Nout(Ep)(^) -> Aut (Z)

given by r(z)  =  gzg~^. The kernel of this homomorphism is given by the 

centraliser subgroup Cout(Eg)(^) and so there is a natural injection

ë f S ë  ̂
From this it is clear that Cout(Eg)(^)/^ is a subgroup of Im (proJi)/Im  (ÿ) 

of index at most 2. Hence it is sufficient to prove tha t C out(Ep)(^)/^ is 

commensurable with C/j,^(A)/A. This will be achieved with the help of the 

following lemma:

S u b - le m m a  5.6 Let B  he a finitely generated group, A  a subgroup of finite 

index. Then for any subgroup S  of B , the centraliser of S  in A, Ca {S), is a 

subgroup of finite index in Cb {S).

P r o o f  : First, using the finite index lemma 1.10, we may consider a nor­

mal subgroup D  of finite index in B  such that D C A  C B . If x E D 

and X centralises 5 , then x E B  (and x centralises S); in other words, 

Cd {S) C Cb {S). Moreover, Cd (S) C D  implies that Cd {S) C Cb {S) fl D 

and conversely, if a: € Cb (S) fl D  then x E D  and x centralises S. Hence 

Cd {S) =  Cb {S) n  D. Now, Cd {S) is a normal subgroup of Cb {S) since for 

all b in Cb (S), 6C d(5)6-i =  CD{bSb~^) = Cd {S). Therefore

_  Cb { S ) - D  B  
=  D
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which is finite. But C d { S )  C C a { S )  C  C b ( S )  and so C a { S )  has finite index 

in C b { S )  proving the sub-lemma. □

The congruence subgroup I^{m)  is a subgroup of finite index in Out (E) 

and hence the above lemma proves C/j, (A) is a subgroup of finite index in 

Cout(Ep)(^)- Thus

Im (p ro j j / lm  (ÿ)

proving the first statem ent.

By Harer’s Theorem 4.1, vcd (Fg_r) =  4g -f 2r — 4 and so

vcd (Tgi.n X Fg2,r2) =  4(gi -f g2) +  2(ri +  r2) — 8.

If Eg is a surface of genus g cut along the single separating curve C, then 

9i 9 2  = 9 and r i T2 =  2 and so

vcd (Im (p ro j j / lm  (ÿ)) =  vcd

=  vcd (Fg^^n X Fgj.rj)

=  4(5r i + 5T2) +  2( r i + r 2) -  8 

=  4 ^ - 4

giving the result. □

C o ro lla ry  5.7 / /  Im (ÿ) is generated by Dehn twists about a system of n 

separating circles C on T>g , then

n(n -f 1)

P ro o f  : In order to generalise the above theorem to a system of n sepa­

rating circles in the surface Eg, we may mimic the above proof. The main
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difference is tha t we no longer know th a t Im (proj^) is commensurable with 

Cout(Eg)('^^) since in this case, the natural injection

SSS ̂
does not have finite image. However, GL^(Z) does have finite cohomological 

dimension given by n[n +  l )/2  and so we may deduce tha t

vcd <  vcd

Now Cout(2g)(Z ")/Z ^ is commensurable with Ci^^[A)IA  where A =  by 

the above sub-lemma and this is commensurable with

^ . p X r  X X r5l.n 52.T-2 ^  ^  ^ gt,Tt

by Theorem 5.4, where is the mapping class group of formed by

cutting along the n separating curves C. The sums

^  9 i  — 9-> —  2 ( f  —  1 )

I I

together with H arer’s theorem 4.1 imply tha t

t
vcd (Tg2 ,r2  X . . .  X Tgt T — 4

t
=  4^ +  4(i — 1) — 4i =  4̂  ̂— 4.

Therefore

vcd (Im (proJi)/Im  (</»)) <  4g — 4 +  n(n -f l) /2 .

□

In fact, since n < g — 1, the virtual cohomological dimension is bounded

by
/ lm (proji)\  (g -  l)(g + 8)
V I m W  j -  2 
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R e m a rk  : This work can be similarly applied to calculate the v.c.d. of

Im (p ro ji)/Im  (ÿ) when Im (ÿ) is generated by any Dehn twists which act 

trivially on homology.

5.3 Non-rigidity of Stallings fibrations

Given a diffeomorphism ÿ of the surface E, we may obtain an oriented 3-

manifold from the cylinder E x J  by identifying

(2 , 0) (<6(z ) ,l )

for every a; € E. This 3-manifold M  is called a Stallings fibration or mapping 

torus. There is a natural fibration M  with fibre E and the long

homotopy exact sequence of this fibration reduces to the following split exact 

sequence:

1 E  Jkf Cc* 1.

Conversely, Stallings [Sta] proved that when a compact 3-manifold M  has

fundam ental group containing a finitely generated normal subgroup E whose 

quotient group is Goo, then E is the fundamental group of a surface embed­

ded in M . By a theorem of Waldhausen ([Wald]), the mapping class group 

7ro(D iff (M)) of a Stallings fibration formed from a closed surface of negative 

Euler characteristic satisfies

7 T o ( D i f f  M) ^  Out (7 r i(M )) .

The aim of this section is to demonstrate that, in general, the mapping 

class group Out (G) of a Stallings fibration M  is not rigid in the sense that 

the automorphism group of the long homotopy exact sequence of M  does not 

have finite index in Aut (G). In particular we show:
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T h e o re m  5.8 Let M  be the Stallings fibration constructed from the trivial 

diffeomorphism <f) = Id  so that the long homotopy exact sequence S  corre­

sponds to the direct product G = T,g x Coo where denotes a surface of  

genus g > 2 .  Then

vcd (Aut (G)) =  Qg — Z 

vcd (Aut (£)) =  4^ — 3

In particular A ui {S) is not a subgroup of finite index in Aut (G).

P ro o f  : The method of proof is to analyse the automorphisms of the exact 

sequences

51 = (1 Coo Coo X 1)

52 — (1 X Coo Coo !)•

The automorphism group of S\ — {a Ç: Aut (G) : a(Coo) =  Coo} fits inside a 

split exact sequence

1 C{Si) -> Aut {El) Aut (Eg) X Aut (C=J -> 1 (5.2)

where C{Si) denote the set of congruences of the extension. From the work

in Chapter 1 we know there is an isomorphism

(7(fi) =; ;;i(E ,,;?((;oo))

=  ^25

The next step is to show that the subgroup Coo is characteristic in C  so 

tha t Aut [S\) — Aut (G). Consider the automorphism a  of Coo x Eg in the 

diagram

1 -4 Coo Coo X Eg —> S . 1

i i  a i

1 Coo Coo X Eg —> S . 1
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From this we can deduce tha t 7ra(C'oo) < However, surface groups have 

no nontrivial abelian normal subgroups and so

Tra(Coo) =  1

giving tha t a(Coo) C Cco- By taking the automorphism a “  ̂ we obtain the 

opposite inclusion and since the automorphism of G was chosen arbitrarily, 

Coo is characteristic in G. Thus the exact sequence 5.2 becomes

1 Aut (G) Aut (Eg) x Z / 2 - ^ 1

using the fact tha t the automorphism group of the infinite cyclic group Coo is 

Z /2 .  In Chapter 4, it was shown that the automorphism group of a surface 

group is a virtual duality group and vcd (Aut (Eg)) =  4g —3 (see Proposition 

4.7). Hence the quotient of the above exact sequence contains a torsion-free 

subgroup of finite index Auto (E^) tha t is a duality group. By Bieri and 

Eckmann 1.17 the extension of by Auto (Eg) is also a duality group 

denoted Auto (C) and its cohomological dimension satisfies

cd (Auto (G)) =  cd (Z^®) +  cd (Auto (Eg))

=  2g Ag — 3.

Therefore vcd (Aut (G)) =  6g — 3 as stated.

Now consider the exact sequence 8 2  = {I Zg Zg x  Coo Coo —»1). 

The automorphism group of the extension is again in an exact sequence

1 —> 0 8̂2) —̂ Aut {82) —̂ Aut (Eg) X Aut (Coo) —̂ 1 '

However, in this case the kernel of 82 has trivial centre meaning th a t the 

group of congruences of 82 is trivial. So the exact sequence above reduces to 

an isomorphism,

Aut (82) =  Aut (Eg) X Aut (Coo).
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As before, the right-hand side has a duality group Auto ( ^ 5) as a subgroup 

of finite index and this has cohomological dimension equal to Ag — 3. There­

fore the virtual cohomological dimension of Aut (^2) is ^9 — 3, proving the 

theorem. Observe also tha t Aut (£2) is a virtual duality group. □

C o ro lla ry  5.9 The mapping class group of the trivial Stallings fibration x 

is virtually torsion-free and has virtual cohomological dimension

vcd (Out (Eg X Coo)) =  6g — 5

where Eg denotes the surface of genus g.

By contrast, given the extension £ ^ = ( 1 —> E g —>EgX Coo Coo —̂ 1),

vcd (Out (5)) =  4g — 5

P r o o f  : First observe tha t the inner automorphisms of S

Inn S = {a G Inn (G) : o(Eg) =  Eg}

=  Inn (G)

since Eg is normal in G. Given an element {g, t) in Eg x Coo then under 

conjugation:

{h,s){g,t){h,s)~'^ = {hgh~^,sts~'^)

= (hgh~^,t)

since sts~^ is in the abelian group Coo, proving that

Inn (Eg X Coo) =  Inn (Eg).

In addition the centre of Eg is trivial and so Inn (Eg) =  Eg. Using this 

result, the natural homomorphism from Aut to Out gives rise to the exact
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sequences:

1 —> Aut (G) —> Out (G) —> 1

1 - 4- Eg — Aut  {S) -H. Out {S) 1

Since Aut (G) and Aut (S) are both virtually torsion-free, from these se­

quences we can construct torsion-free sequences

1 —> Eg —> Auto (G) —> Outo (G) —> 1 (5.3)

1 —> Eg —> Auto (6̂ ) —̂ Outo (^) —̂ 1 (5.4)

where Auto (G) and Auto {S) are torsion-free subgroups of finite index in the 

automorphism groups. Applying Serre’s theorem 1.14 to the first sequence 

and using the above result we deduce that

cd (Auto (G)) <  cd (Eg) -f cd (Outo (G))

6g — 3 ^  2 -h cd (Outo (G))

which proves tha t cd (Outo (G)) > 6g — 5. In order to obtain the oppo­

site inequality we shall use the Lyndon-Hochschild-Serre spectral sequence

associated to the exact sequence 5.3 (see [Bro] p. 171):

T h e o re m  5.10 (L y n d o n -H o ch sch ild -S erre )

For any group extension 1 - ^ K - ^ G —̂ Q —̂ l  and any G-module M , there 

is a spectral sequence of the form

H ^[K ’ M ))  M ).

Let M  be a Z(Outo (G))-module with L7‘̂ (0uto (G); M ) ^  0 where d is 

the virtual cohomological dimension of Out (G) (cf. [Har] p .174). Then from 

the spectral sequence associated to the extension 5.3 we obtain

Z7"+^(Auto (G );M ) ^  ^"(O uto  (G);L7^(Eg;M))

^  if"(O uto (G );M )
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using the fact tha t H^{T,g]M) =  M .  The above result calculated th a t 

cd (Auto (G)) =  6g — 3 and so we may infer tha t vcd (Out (G)) is pre­

cisely Qg — 6.

In the same manner we may use the spectral sequence associated to the 

exact sequence 5.4 to prove tha t vcd (Out (£ )̂) =  4g — 5 as stated. □

5.4 Pseudo-Anosov Stallings fibrations

In this final section we shall calculate the mapping class groups of Stallings fi­

brations constructed from pseudo-Anosov isotopy classes of diffeomorphisms. 

By using Mostow rigidity and a theorem by Thurston we are able to show 

that these groups are finite and so have zero virtual cohomological dimension.

T h e o re m  5.11 (T h u rs to n )  The Stallings fibration constructed via the dif- 

feomorphism (f) admits a complete hyperbolic structure i f  and only i f  (j) is 

isotopic to a pseudo-Anosov diffeomorphism.

For a fairly thorough proof of this result see [McM] pp.50-53. To show tha t 

the automorphism group of a hyperbolic manifold is finite, we shall need to 

invoke the Rigidity theorem by Mostow which was first dem onstrated in [Mos] 

(see p .189):

T h e o re m  5.12 (M ostow  R ig id ity  T h eo rem ) Let G and 0 '  be semisim­

ple analytic centreless groups with no compact factors and let T and F ' be 

discrete subgroups of G and G' respectively such that G /V  and G ' h a v e  

finite volume. Let $ be an isomorphism ^ : F —> F'. Then 0 extends to an 

analytic isomorphism 6 : G G’ provided that there is no analytic homo­

morphism

7t : G - ^  PSL2(7^)
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with 7r(r) discrete.

C o ro lla ry  5.13 (A u to m o rp h ism  ex ten s io n  p ro p e r ty )  Let T be a dis­

crete subgroup in an analytic semisimple centreless group G having no com­

pact factors and suppose that G /T  has finite volume. Suppose further that 

given any epimorphism tt : G PSL2(7^) then 7r(r) is non-discrete in 

P S L ^ ^ ^ ,

Then any automorphism o fV  extends to an automorphism of G .

Now let G be a centreless semisimple Lie group with F a discrete sub­

group in G. Then the pair of groups (P, G) is called a Mostow rigid pair. 

The automorphism extension property implies tha t the outer automorphism 

groups of a Mostow rigid pair are finite. This was originally proved without 

using Mostow rigidity by Borel [Bor]. The proof of this fact using rigidity is 

outlined below (cf. [Joh2]);

P ro p o s it io n  5.14 I f T  and G are a Mostow rigid pair then Out (F) and 

Out (G) are finite groups.

P r o o f  : As G is a centreless group, we may apply Mostow’s rigidity theorem 

to give an homomorphism

Aut (F) —> Aut (G)

a  I— > a

extending the automorphism a  of F to an automorphism of G. Hence we 

have an homomorphism Aut (F) —> Out (G) given by a  i-> [a\. The kernel 

of this homomorphism consists of the automorphisms of F which extend to 

inner automorphisms of G:

a{g)  =  xgx~^ for some a: E G.
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In this case « (7 ) =  x '^x  ̂ for 7 in F and so x  normalises F (i.e. x  G N g ( F ) ) .  

Therefore there is an exact sequence

1 —> Ng(F) —> Aut (F) — Out (G) —> 1.

Furthermore, F i s a  normal subgroup of Ng (F) allowing us to factor through 

by F to give the exact sequence

1 ^  ^  Out (r) ^  Out (G) -* 1 (5.5)

The finiteness of Out (F) will follow from the finiteness of the ends of this 

exact sequence.

Since G is semisimple, the group of Lie automorphisms Aut Lie(G) is a real 

algebraic group with Inn (G) as identity component. However, real algebraic 

groups have only finitely many connected components (see [Rag] p .10) and 

thus

Out ( G )  =  Aut L i e ( G ) / I n n  ( G )

is finite.

Now consider the normaliser N g{T) in the kernel of the exact sequence 

5.5. Let n be an element of the identity component N g{T)q and choose a 

path p{t) contained in this identity component from n =  p(0) to the identity 

1 =  p (l) . This gives rise to a path in F,

which starts at n^n~^ and ends at 7 for any 7 in F. However, F is discrete 

and hence this is a constant path. This implies tha t the identity component 

A^g(F)o is trivial and so A^g(F) is discrete. Since

ArG(I-) (2 
r r

and G /T  has finite volume, it follows tha t N g {T)  must be finite. Therefore 

Out (F) is the extension of two finite groups, and so is itself finite. □
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C o ro lla ry  5.15 The mapping class group of a Stallings fibration constructed 

via a diffeomorphism from a pseudo-Anosov isotopy class is finite.

P r o o f  ; By Thurston’s theorem, a Stallings fibration constructed from a 

diffeomorphism isotopic to a pseudo-Anosov diffeomorphism has a hyperbolic 

structure and so it satisfies Mostow rigidity. Hence its outer automorphism 

group is finite as claimed. □.
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