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Abstract

There are striking similarities between the ring of integers and the ring of polynomials

in one variable over a finite field. This thesis explores some of these similarities from an

analytic number theoretic perspective.

It develops a polynomial analogue of techniques for extracting number theoretic in-

formation from analytic functions known as the Selberg–Delange method. A motivating

problem for the original development of this theory was the problem of counting integers

with a prescribed number of prime factors. After presenting the theory in the context

of counting polynomials with a prescribed number of prime factors in arithmetic pro-

gressions and short intervals, a refined version of the method is presented to study some

related quantities in more detail. This work has applications to the study of so-called

prime number races questions for polynomials with a prescribed number of prime factors.

As a prelude to this work on the Selberg–Delange method, an application from the

integer version is given. It concerns the distribution of the values of ω(n), the number of

prime divisors of n, in different residue classes.

We also prove some results concerning the existence and number of prime polynomials

whose coefficients satisfy certain conditions. These can be compared with results about the

existence and number of prime numbers whose digits satisfy certain conditions. In partic-

ular, we study prime polynomials whose coefficients are restricted to a given subset of the

underlying finite field and those whose coefficients satisfy a given linear equation. These

results make use of additive characters and as prelude to them, a result concerning the

correlation of the polynomial analogue of the exponential function with the multiplicative

Möbius function is presented.



Impact Statement

Analytic number theory is characterised by its use of tools from analysis to answer ques-

tions about, and study the properties of, integers. Despite significant effort, many such

questions have remained open for a long time. A notable example is the Riemann hypoth-

esis, a solution to which would surely produce enormous new insights into, amongst other

things, the distribution of the prime numbers.

It has been known for a long time that polynomials in one variable over a finite field

share many salient features with integers. However, many of the polynomial analogues

of open problems about integers have been solved. Certain counterparts to the Riemann

hypothesis are a good example of this. The research presented in this thesis contributes to

our understanding of this analogy by developing tools from analytic number theory and

proving new results about polynomials.

There is a general technique for extracting formulae from analytic functions that

arise in number theory known as the Selberg–Delange method. As well as proving some

polynomial counterparts to known results about integers, we shall introduce a refined

version of this method to exhibit new phenomena concerning sums of Dirichlet characters

over polynomials with a prescribed number of prime factors. We leave as future work the

problem of investigating whether this phenomena holds for integers too.
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Chapter 1

Introduction

One of the most fruitful analogues in

mathematics is that between the

integers and polynomials over a finite

field.

Serge Lang

We start by exploring some structural similarities of integers, permutations and poly-

nomials over a finite field. Some of the key concepts, methods and questions addressed

in chapters 2, 3 and 4 of this thesis are introduced with the aid of an extended example.

We then go on in this introductory chapter to summarise the structure and content of the

rest of the thesis.

1.1 Anatomy and counting primes

The anatomy of integers refers to the internal arithmetic structure, and in particular

multiplicative structure, of integers. For example, the following is a question about the

anatomy of integers.

Question. If n is a typical large integer, and d is chosen uniformly at random from the

divisors of n, how large should we expect d to be relative to n?

We shall return to this question shortly. It should be no surprise that prime numbers

play a fundamental role in the subject. In fact the Prime Number Theorem is perhaps

the most important theorem in this area of analytic number theory. It says that

π(x) ∼
∫ x

2

ds

log s
as x→∞ (1.1)

and makes precise an observation of Gauss that roughly one in every log s numbers of size
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s is prime.

Just as positive integers factor uniquely into primes, monic polynomials in Fq[t] factor

uniquely into monic prime polynomials. Multiplication of integers by ±1 and multiplica-

tion of polynomials by non-zero elements of Fq[t] do not affect multiplicative structure,

so the analogue of a positive integer is a monic polynomial. Let M and P denote the set

of monic polynomials and monic prime polynomials respectively. Let Mn and Pn denote

the subsets of degree n. The analogue of Gauss’s observation, which is in fact also due

to Gauss in the case that q is prime, is that roughly 1 in every n polynomials in Mn is

prime. More precisely,

Pn ∼
|Mn|
n

as qn →∞. (1.2)

In a similar fashion, permutations on the set [n] = {1, 2, . . . , n}, the set of which we denote

Sn, ‘factor’ uniquely into disjoint cycles. If we let Cn denote the set of n-cycles in Sn,

then the analogue of the prime number theorem in this case is particularly nice

Cn =
|Sn|
n

for n ≥ 1. (1.3)

1.1.1 Two limits

To ask the analogous question from the previous section about polynomials, we need to

interpret what it means for a polynomial to be “large”. A good notion of the size or norm

of a polynomial f ∈ Fq[t] turns out to be qdeg f . So f is large if either q or deg f (or both)

is large. It is interesting therefore to consider asymptotic results in the two separate cases

q →∞ and n = deg f →∞.

In the limit q →∞, there is a very close connection between the anatomy of polyno-

mials in Mn and the anatomy of permutations in Sn. In fact, for λ = (λ1, . . . , λn) ∈ Nn

with
∑

j jλj = n, let us say that a permutation σ ∈ Sn has factor type λ if σ has λj

cycles of length j for each 1 ≤ j ≤ n. Similarly, let us say that a polynomial in Mn has

a factor type λ if it has λj prime factors of degree j. Then Lemma 2.1 from [3] implies

that for any given λ, the proportion of polynomials in Mn with factor type λ is equal to

the proportion of permutations in Sn with factor type λ plus a constant of size at most

O(1/q).

However, for the rest of this introduction and most of the thesis we shall be mainly

interested in the large n limit.
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1.1.2 Zeta functions

The following proof of a quantitative form of (1.2) provides a nice opportunity to introduce

the zeta function of Fq[t]. For <s > 1 it is defined to be

Z(s) :=
∑
f∈M

q−sdeg f .

A convenient change of variables we will often use is u = q−s. Since |Mn| = qn, we have

ζq(u) := Z(s) =
∑
n≥0

qnun =
1

1− qu
for |u| < 1/q.

If we now let π(k) = |Pk| then unique factorisation implies the Euler product formula

1

1− qu
=
∏
k≥1

(1− uk)−π(k).

The left hand side clearly has a simple pole at u = 1/q. This is not so clear just from

looking at the right hand side without knowing the π(k), but can be used to deduce

an approximate rate of growth for π(k). In fact the left hand side is simple enough

that it is easy to deduce an exact formula for π(k). One way to do this is to first take

the logarithm converting the product into an easier to manage sum. Then taking the

derivative converting the resulting logarithmic singularity into an easier to manage simple

pole. The result is
qu

1− qu
=
∑
k≥1

kπ(k)uk

1− uk
=
∑
k,d≥1

kπ(k)ukd.

We can then extract an expression with π(k) using Cauchy’s integral formula

1

2πi

∮
qu

1− qu
du

un+1
=
∑
k|n

kπ(k).

Shifting the contour to |u| = R and letting R tend to infinity the left hand side is equal

to the residue at u = 1/q by the residue theorem. Therefore

qn =
∑
k|n

kπ(k)
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and by Möbius inversion using the Möbius µ function

π(n) =
1

n

∑
k|n

µ(k)qn/k.

This formula was known already to Gauss in the case that q is prime. Of course, the use of

Cauchy’s integral formula and the residue theorem to extract the coefficient of un was not

necessary, but it illustrates the general approach which works well in more complicated

situations when simply reading off the coefficient is not possible. We will see this several

times again in different contexts and usually have to work harder to evaluate the resulting

integral.

A broadly similar strategy for counting primes in Z was first put forward by Riemann

using the Riemann zeta function defined for <s > 1 as

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(1− p−s)−1.

There are a number of difficulties which make it significantly harder to actually carry out

than the proof just given for Fq[t]. As with Z(s), one can show that ζ(s) has a simple

pole at s = 1. This immediately implies that there are infinitely many primes. A more

detailed examination of this pole, together with the Euler product representation allows

one to quantity how many primes there are up to some number x. The most common

approach uses the logarithmic derivative of ζ(s)

−ζ
′(s)

ζ(s)
= s

∫ ∞
1

∑
pk≤x

log p

x−(s+1)dx

and Mellin inversion formula

∑
pk≤x

log p =
1

2πi

∫ σ+i∞

σ−i∞
− ζ
′(s)

sζ(s)
xsds.

For one thing, the Riemann zeta function is much more complicated than ζq(s) and

certainly has no neat closed form expression. Also, the quantity π(x) is not recovered

from ζ(s) by simply comparing coefficients of the logarithmic derivative, or Cauchy’s

integral formula, but with this infinite integral that requires non-trivial complex analysis

to evaluate asymptotically.
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Having introduced the analogy between integers, polynomials and permutations and

seen how zeta functions can be used to count primes, we now move on and start to explore

the similarities in the internal multiplicative structures of these three classes with an

extended example.

1.2 Arcsin law

Let us return to the question from the previous section.

Question. If n is a typical large integer and d is chosen uniformly from the divisors of n,

how large should we expect d to be relative to n?

Of course the answer depends very strongly on the multiplicative structure of n. For

instance, the number of divisors d(n) =
∑

d|n 1 varies erratically with n. A nice way to

formulate this question more precisely is to average over n.

Question. Let Vn be the random variable log d/ log n where d is chosen uniformly at random

from the divisors of n. For large X, what is the distribution function FX : [0, 1]→ [0, 1]

FX(t) =
1

X

∑
1≤n≤X

P(Vn ≤ t) ?

This question is addressed by Deshouillers, Dress and Tenenbaum in [10]. The proofs

in this opening chapter are inspired by the argument from that paper as presented in [38].

We have seen that counting primes in Fq[t] is much easier than in Z and that counting

cycles of length n is even easier. It is also the case that this question is easier to answer

for polynomials and easier still for permutations.

1.2.1 Permutations

In the analogy between integers and permutations, prime divisors of an integer correspond

to cycles of a permutation and divisors of an integer correspond to fixed sets of a permu-

tation. We shall write C ∈ σ to mean C is a cycle of σ and A|σ to mean A is a fixed set

of σ. Let cyc(σ) be the number of cycles of σ. It is easy to see that for a permutation σ

on [n] we have

2cyc(σ) =
∑

A⊂[n] :A|σ

1.
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For such a permutation σ, let Dσ be the random variable l/n where l is the size of a fixed

set of σ chosen uniformly at random so that

P(Dσ ≤ t) =
1

2cyc(σ)

∑
|A|≤tn
A|σ

1.

Proposition 1.1. Uniformly for n ≥ 1 and 0 ≤ t ≤ 1, we have

1

n!

∑
σ∈Sn

P(Dσ ≤ t) =
2

π
arcsin

√
t+O

(
1√
n

)
.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1.1: 2
π arcsin(

√
t)

Proof. We start by proving1 the following polynomial identity

Fn(z) :=
∑
σ∈Sn

zcyc(σ) =

n∑
k=0

zkπ(n, k) = z(z + 1) · · · (z + n− 1). (1.4)

where π(n, k) = #{σ ∈ Sn : cyc(σ) = k}. Note that for each 1 ≤ i ≤ n, the function

φi : {σ ∈ Sn | σ(n) = i} → Sn−1 defined by

φi(σ)(j) =


σ(j) if σ(j) 6= n

i if σ(j) = n

is a bijection and satisfies cyc(φi(σ)) = cyc(σ) − 1i=n because the effect of φi is just to

1We thank Ardavan Afshar for this simple proof of (1.4).
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remove n from the cycle in which it appears. Therefore Fn(z) is equal to

n∑
i=1

∑
σ∈Sn
σ(n)=i

zcyc(σ) =
∑

σ∈Sn−1

zcyc(σ)+1 +
n−1∑
i=1

∑
σ∈Sn−1

zcyc(σ) = (z + n− 1)Fn−1(z)

so (1.4) follows by induction and the fact that F1(z) = z.

After setting z = 1/2 we deduce that

n∑
k=0

1

2k
π(n, k) = n!

(
−1/2

n

)
(−1)n.

Now,
1

n!

∑
σ∈Sn

P(Dσ ≤ t) =
1

n!

∑
σ∈Sn

1

2cyc(σ)

∑
|A|≤tn
A|σ

1 =
1

n!

∑
A⊂[n]
|A|≤tn

∑
σ∈Sn
A|σ

1

2cyc(σ)
.

To evaluate the inner sum, we split the sum according to the number of cycles of σ|A, that

is, σ restricted to A, and σ|[n]\A. Thus, the inner sum is

|A|∑
i=1

n−|A|∑
j=1

1

2i+j
π(|A|, i)π(n− |A|, j) = |A|!(n− |A|)!

(
−1/2

|A|

)(
−1/2

n− |A|

)
(−1)n.

With k = |A| we therefore have

1

n!

∑
σ∈Sn

P(Dσ ≤ t) =
∑
k≤tn

1

4k

(
2k

k

)
1

4n−k

(
2(n− k)

n− k

)
.

It follows from Stirling’s formula that 4−n
(

2n
n

)
= 1/

√
nπ(1 + O(1/n)). By symmetry, we

may assume that t ≤ 1/2. Then using this approximation and approximating the sum

with an integral we get

1

π

∑
1≤k≤tn

1√
k(n− k)

(1 +O(1/k)) =
1

π

∫ tn

1

1√
s(n− s)

ds+O(1/
√
n)

=
2

π
arcsin

√
t+O(1/

√
n)

which proves Proposition 1.1

Although we didn’t really need it, the reader is invited to acknowledge that it follows
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from the binomial theorem and (1.4) that

(
1

1− u

)z
=
∞∑
n=0

(−u)n
(
−z
n

)
=
∞∑
n=0

un

n!

n∑
k=0

π(n, k)zk.

The same series, again with z = 1/2, appears in the proof for polynomials, albeit in a

form decorated with certain arithmetic adjustments.

1.2.2 Polynomials

Turning to polynomials, now let Df be the random variable deg d/deg f as d varies uni-

formly over the divisors of a polynomial f ∈Mn so that

P(Df ≤ t) =
1

τ(f)

∑
d|f

deg d≤tdeg f

1

where τ(f) is the number of monic divisors of f . We shall now prove the following strikingly

similar analogue of Proposition 1.1.

Proposition 1.2. Uniformly for n ≥ 1 and 0 ≤ t ≤ 1, we have

1

qn

∑
f∈Mn

P(Df ≤ t) =
2

π
arcsin

√
t+O

(
1√
n

)
.

Let g be the multiplicative function2 defined on prime powers by

g(pk) =

∑
j≥0

q−j deg p

1 + j + k

∑
j≥0

q−j deg p

1 + j

−1

. (1.5)

and let Aq =
∏
p∈P

(
− log(1− q− deg p)(q2 deg p − qdeg p)1/2

)
. These are the arithmetic dec-

orations. We require two lemmas. The reader is again invited to acknowledge the role

played by the series (1 − qu)−1/2 in the proofs of these lemmas, and in particular that,

although these decorations present further technicalities that need to be overcome, the

underlying approach is similar to that of the proof of Proposition 1.1.

2To say that a function g is multiplicative means that g(xy) = g(x)g(y) for any pair x, y that are
coprime.
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Lemma 1.1. Uniformly for n ≥ 1 and d ∈ Fq[t], we have

∑
f∈Mn

1

τ(df)
=
Aqq

n

√
πn

(g(d) +O(1/n)) .

Lemma 1.2. Uniformly for n ≥ 1,

∑
f∈Mn

g(f) =
qn

Aq
√
πn

(1 +O(1/n)) .

Proof of Proposition 1.2. By symmetry we may suppose that t ≤ 1/2. Therefore, using

Lemmas 1.1 and 1.2 in the 3rd and 4th lines below respectively we have

1

qn

∑
f∈Mn

P(Df ≤ t) =
1

qn

∑
f∈Mn

1

τ(f)

∑
d|f

deg d≤t deg f

1

=
1

qn

∑
1≤k≤tn
d∈Mk

∑
h∈Mn−k

1

τ(hd)

=
∑

1≤k≤tn

Aq√
π(n− k)

1

qk

∑
d∈Mk

(g(d) +O(1/(n− k)))

=
1

π

∑
1≤k≤tn

1√
k(n− k)

(1 +O(1/k))

=
1

π

∫ tn

1

1√
s(n− s)

ds+O(1/
√
n) =

2

π
arcsin

√
t+O(1/

√
n).

To prove Lemmas 1.1 and 1.2 we will define suitable generating series and apply

Cauchy’s integral formula to extract the coefficients. Due to what we have called the

‘arithmetic decorations’, we will require the following additional lemma.

Lemma 1.3. Suppose F (u) is holomorphic for |u| ≤ q−3/4 and is such that F (u) =

F (1/q) +O(M(1− qu)) for some constant M uniformly in the range |u| ≤ q−3/4. Then

1

2πi

∫
|u|=1/q2

F (u)√
1− qu

du

un+1
=

qn√
nπ

(F (1/q) +O(M/n)) .

Proof. First change to the variable w = qu so that the integral becomes

qn

2πi

∫
|w|=1/q

F (w/q)√
1− w

dw

wn+1
.

Now shift to the contour which consists of the vertical segment [1− 1/n− iq1/4, 1− 1/n+
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iq1/4] and the part of the circle centred at the origin which meets the endpoints of this

segment so that the only pole of the integrand is at w = 0 still.

Figure 1.2: Contour of integration

Now we use F (w/q) = F (1/q) + O(M(1 − w)), and pick up a residue from w = 0

equal to

(−1)n
(
−1/2

n

)
=

1

4n

(
2n

n

)
=

1√
nπ

+O(n−3/2).

It remains to bound the integral of the O(M(1 − w)) part. On the circular section it is

bounded by � nq3n/4, which is acceptable for the error term of the statement. On the

vertical segment, it is bounded by

�M

∫ ∞
−∞

|1/n− it|1/2

|1− 1/n+ it|n
dt�Mn−3/2

∫ ∞
−∞

|1− it|1/2

|1− (1− it)/n|n
dt�Mn−3/2.

Proof of Lemma 1.1. For d ∈M, define

Fd(u) =
∑
f∈M

udeg f

τ(df)
=
∏
p∈P

∑
j≥0

uj deg p

1 + j + νp(d)


where νp(d) is the highest power of p which divides d. Then

∑
f∈Mn

1

τ(df)
=

1

2πi

∫
|u|=r

Fd(u)

un+1
du.

We have

Fd(u) = Gd(u)F1(u)
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where

Gd(u) =
∏
p|d

∑
j≥0

uj deg p

1 + j + νp(d)

∑
j≥0

uj deg p

1 + j

−1

.

Since
1

1− qu
=
∑
f

udeg f =
∏
p∈P

(1− udeg p)−1 (1.6)

we have that

F̃ (u) := (1− qu)1/2F1(u)

=
∏
p∈P

∑
j≥0

uj deg p

1 + j

 (1− udeg p)1/2

=
∏
p∈P

(
− log(1− udeg p)

udeg p
(1− udeg p)1/2

)
.

Notice that Gd(1/q) = g(d) where g is the multiplicative function defined by (1.5) and

F̃ (1/q) = Aq. Now simply check that

Gd(u) = g(d) +O(1− qu)

and

F̃ (u) = Aq +O(1− qu)

and use the integral lemma, Lemma 1.3.

Proof of Lemma 1.2. Define

G(u) =
∑
f∈M

g(f)udeg f .

Then

G(u) = (1− qu)−1/2G̃(u)

where

G̃(u) =
∏
p∈P

(1− udeg p)1/2
∑
k≥0

uk deg p

∑
j≥0

q−j deg p

1 + j + k

∑
j≥0

q−j deg p

1 + j

−1 .



1.3. Summary and overview of the thesis 20

Notice that G̃(1/q) = 1/Aq. Now simply check that

G̃(u) = 1/Aq +O(1− qu)

and ∑
f∈Mn

g(f) =
1

2πi

∫
(1− qu)−1/2G̃(u)

du

un+1
.

and use the integral lemma, Lemma 1.3.

1.2.3 Integers

The corresponding statement for integers was proved by Deshouillers, Dress and Tenen-

baum in [10].

Proposition 1.3. Uniformly for X ≥ 2 and 0 ≤ t ≤ 1, we have

1

X

∑
1≤n≤X

P(Vn ≤ t) =
2

π
arcsin

√
t+O(1/

√
logX).

Their proof follows broadly the same strategy as the one presented above for polyno-

mials. Indeed, the proof presented above was modelled on their argument as presented in

[38, II.6]. As with the proof of the prime number theorem, there are a number of differ-

ences which make the problem technically harder for integers than for polynomials. But,

as with the proof of the prime number theorem, the strategy is broadly similar. In par-

ticular, Cauchy’s integral formula is replaced with Perron’s formula and the zeta function

ζq(u) is replaced by the Riemann zeta function ζ(s). A key feature of similarity is the role

played by the singularity of (1−u)−1/2. This appeared in the proofs for both permutations

and for polynomials. It also appears in the proof for integers after approximating ζ(s) by

1/(s− 1) near the point s = 1.

1.3 Summary and overview of the thesis

We have seen how the anatomies of integers and polynomials show a close resemblance. We

have also seen, with the aid of an extended example, that this can perhaps be explained in

terms of the similarities of certain analytic functions – and in particular, the singularities of

those analytic functions. There is a very general method for extracting information from

the singularities of analytic functions in number theory known as the Selberg–Delange

method.
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Chapter 2 consists of a specific application of a formula from the paper in which

Selberg first develops this method. It concerns the distribution of ω(n), the number of

distinct prime divisors of n, in different residue classes. For integers 0 ≤ a < q, we shall

consider quantities such as

#{n ≤ x : ω(n) ≡ a mod q} − x

q
. (1.7)

and answer prime number races style questions about the set of x for which they are

positive or negative. It turns out that the natural way of measuring such sets is with

loglog density rather than logarithmic density which is the appropriate notion of density

to use for the regular prime number races. One of our results is that for q > 2, the set of

x for which (1.7) is positive has loglog density 1/2, but no natural or logarithmic density.

In chapter 3 we continue our exploration of the anatomy of polynomials by proving

some results about polynomials with a given number of prime factors using a polynomial

analogue of the Selberg–Delange method. This requires studying the sums of Dirichlet

characters over polynomials with a fixed number of divisors. Our results here include

formulae for the number of polynomials of a prescribed degree and prescribed number of

prime factors in arithmetic progressions and “short intervals”. The results are stronger

than the corresponding results known for integers, primarily because the Riemann hy-

pothesis is known to hold for the Dirichlet L-functions we make use of.

In chapter 4 we develop a refined version of the arguments from chapter 3 to study

in more detail sums of Dirichlet characters over polynomials with a prescribed number of

prime factors. We shall give a fuller account of the method and applications in chapter 4

but let us briefly explain here the main innovation.

Let χ : Fq[t]→ C be a non-trivial Dirichlet character and Ω(f) denote the number of

prime factors of f counted with multiplicity. When applying the Selberg–Delange theory

to study the quantity ∑
f∈Mn

Ω(f)=k

χ(f) (1.8)

is it natural to do so via the auxiliary quantity

∑
f∈Mn

zΩ(f)χ(f)
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where z is a complex variable and then apply Cauchy’s integral formula in the way we

have seen already. Now zΩ(f)χ(f) is a multiplicative function whose Dirichlet series has

Euler product

Gz(u, χ) :=
∑
f∈M

zΩ(f)χ(f)udeg f =
∏
p∈P

(
1− χ(p)zudeg p

)−1

which converges absolutely in the range |u| < min{|z|−1, q−1}. As has been hinted at

already in the proof of Proposition 1.2, it is desirable to extend this range of convergence

so that we may expand the contour in our use of Cauchy’s integral formula. A direct

application of the Selberg–Delange method is to achieve this by writing

Gz(u, χ) = L(u, χ)zEz(u, χ)

where L(u, χ) is the L-function associated to χ and Ez(u, χ) is an Euler product that now

converges absolutely in the range |u| < min{|z|−1, q−1/2}. The main novelty in the work

of chapter 4 derives from the use of the three-way product

Gz(u, χ) = L(u, χ)zL(u2, χ2)
z(z−1)

2 Ez(u, χ)

where Ez(u, χ) is an Euler product that converges absolutely for |u| < min{|z|−1, q−1/3}.

Crucially, this allows us to expand the contour to incorporate the zeros of L(u, χ) which,

by the Riemann hypothesis for such L-functions, lie on the circle |u| = q−1/2, and thus

deduce an asymptotic formula for (1.8) in terms of those zeros.

In chapter 5 we recall the definition of a function field analogue of the exponential

function, given by Hayes [17], and present a short proof that it does not correlate with

the Möbius function in a specific quantitative sense. The main result is the function field

analogue of a result of Baker and Harman [4] which states that, under the generalized

Riemann hypothesis, for all x and ε > 0

max
θ∈[0,1)

∣∣∣∣∣∣
∑
n≤x

µ(n)e2πinθ

∣∣∣∣∣∣�ε x
3
4

+ε

where µ is the integer Möbius function.

Having introduced the exponential function in chapter 5, we use it in chapter 6 as we
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continue to explore the similarities of integers and polynomials by proving some results

about prime polynomials whose coefficients satisfy certain restrictions. The first result is a

formula for the number of polynomials in Pn, all of whose coefficients lie is a given subset

of Fq. We also prove a formula for the number of polynomials in Pn whose coefficients

satisfy a given linear condition. These results are analogous to results about integers whose

digits satisfy certain restrictions.

To keep each chapter fairly self-contained, each starts with further context and back-

ground specific to the content of that chapter.



Chapter 2

Residue races for the prime divisor

function

This chapter is based primarily on [29].

In this chapter we investigate the distribution of the function ω(n), the number of

distinct prime divisors of n, in residue classes modulo q for natural numbers q greater than

2. In particular we ask ‘prime number races’ style questions, as suggested by Coons and

Dahmen in their paper ‘On the residue class distribution of the number of prime divisors

of an integer’ [7].

2.1 Introduction

Let q ≥ 2 be an integer, a ∈ {0, 1, . . . , q − 1} represent some residue class modulo q and

ω(n) denote the number of distinct prime divisors of n. Define

Na,q(x) := #{n ≤ x : ω(n) ≡ a mod q}.

Seeing no reason why ω(n) should favour any particular residue class, we expect that

Na,q(x) ∼ x

q
as x→∞ for each a. (2.1)

In fact, it was proved in [1] that

Na,q(x)− x

q
= O

(
x

(log x)c(q)

)



2.1. Introduction 25

with c(q) = 1 − cos(2π
q ). It was also proved that for q > 2 the error term here is best

possible, since it was also determined that for q > 2

Na,q(x)− x

q
= Ω±

(
x

(log x)c(q)

)
.

This is in stark contrast to the case q = 2 for which we expect “square-root cancellation”.

Indeed,

Na,2(x)− x

2
= O(x1/2+o(1)) for a = 0 and 1

is equivalent to the Riemann Hypothesis. For q = 2, it is well known that (2.1) is equivalent

to the prime number theorem. See [24, Section 8.1] for details of this equivalence.

In [7], the authors suggest that, in the spirit of prime number races, it would be

interesting to investigate the sign changes of Na,q(x) − Nb,q(x). The traditional prime

number races concern the popularity of residue classes for prime numbers rather than for

the values of ω, that is, sign changes of π(x; a, q)−π(x; b, q) where π(x; a, q) is the number

of primes less than or equal to x which are congruent to a modulo q. Rubinstein and

Sarnak [34] proved under certain reasonable assumptions1 that the set

{x ∈ N : π(x; 3, 4) < π(x; 1, 4)},

for example, does not have a natural density in the integers but does have a logarithmic

density, defined for a subset E ⊂ N, if the limit exists, to be limX→∞
1

logX

∑
x≤X
x∈E

1
x .

Loosely speaking, the reason for this is that the difference π(x; 3, 4) − π(x; 1, 4) can be

written as a sum of terms of the form sin(γ log x)/γ, where γ ranges over the imaginary

parts of the zeros of certain Dirichlet L-functions. For a more thorough introduction to

this topic we recommend [14].

For our investigations it is natural to consider mean values of the multiplicative func-

tions n 7→ zω(n) where z is taken to be a complex q-th root of unity. By applying a classical

result first due to Selberg concerning such mean values we will establish an asymptotic

formula for Na,q(x) with main term and next highest order term in the case q > 2. This

will be used to prove our main theorem. The formula will contain an expression of the form

cos(A log log x + B) and so in our case we have neither natural nor logarithmic density,

1Specifically, the generalised Riemann hypothesis for Dirichlet L-functions and linear independence of
the set of imaginary parts of non-trivial zeros.



2.1. Introduction 26

but instead need to go further and define the notion of loglog density. We say a subset

E ⊂ N has loglog density δ if

1

log logX

∑
x≤X
x∈E

1

x log x
→ δ as X →∞.

With this we can now state the main results of this chapter.

Theorem 2.1. Let q > 2 be an integer and a, b ∈ {0, 1, . . . , q − 1} with a 6= b. The set

Ea,b := {x ∈ N : Na,q(x) < Nb,q(x)}

has no natural density, in fact

lim inf
X→∞

1

X
[1, X] ∩ Ea,b = 0 and lim sup

X→∞

1

X
[1, X] ∩ Ea,b = 1.

Theorem 2.2. The set Ea,b, defined in Theorem 2.1, has no natural or logarithmic den-

sity, but has loglog density equal to 1/2.

Given a complete ordering on the residue classes, we can also ask how often the

different ‘competitors’ in our race are in that order.

Theorem 2.3. Let q > 2 be an integer and a ∈ {0, 1, . . . , q − 1}. Each of the following

sets has loglog density 1
2q

Ua,q := {x ∈ N : Na,q(x) > Na−1,q(x) > Na+1,q(x) > · · · > Na−i,q(x) > Na+i,q(x) > · · · }

Va,q := {x ∈ N : Na,q(x) > Na+1,q(x) > Na−1,q(x) > · · · > Na+i,q(x) > Na−i,q(x) > · · · }.

Therefore, since there are 2q of them, these are the only permutations which appear with

non-zero loglog densities.

Example 2.1. When q = 6 and a = 4 we get

lim
X→∞

1

log logX

∑
x≤X

N4,6(x)>N3,6(x)>N5,6(x)>N2,6(x)>N0,6(x)>N1,6(x)

1

x log x
=

1

12
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lim
X→∞

1

log logX

∑
x≤X

N4,6(x)>N5,6(x)>N3,6(x)>N0,6(x)>N2,6(x)>N1,6(x)

1

x log x
=

1

12
.

Theorem 2.1 follows easily from the proofs of Proposition 2.2 and Theorem 2.3. The-

orem 2.2 shall follow from Theorem 2.3 because, up to a set of zero loglog density2, the

set Ea,b is the union of q of the 2q sets from Theorem 2.3.

We also prove that certain orderings can occur only a finite number of times.

Theorem 2.4. Any permutation σ of {0, 1, . . . , q − 1} for which the set

{x ∈ N : Nσ(0),q(x) ≥ Nσ(1),q(x) ≥ . . . ≥ Nσ(q−1),q(x)}

is infinite is such that σ(0) = σ(1)± 1 mod q.

Notice that there are 2q!/(q−1) such permutations so if q is large, a vanishingly small

proportion of the possible permutations occur infinitely often.

Example 2.2. If q = 4 then only 16 out of the 24 orderings can occur for arbitrarily large

x. There is a point after which, if “0 is in the lead”, then 2 cannot be second and vice

versa. Similarly, they cannot simultaneously hold positions 3rd and 4th, and the same

goes for the pair of residue classes 1 and 3.

Let us look at the start of the mod 4 race before moving on to the proofs. For a

better view, the mean has been subtracted and the points are plotted on a loglog scale.

1.0 1.5 2.0 2.5

-2

-1

1

2

Figure 2.1: ω mod 4 race

2This set being {x ∈ N : Na,q(x) = Na′,q(x) for some a 6= a′}.
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The plotted points along with their colours are as follows:

Orange: {
(

log log x, (
1

x
N0,4(x)− 1

4
) log x

)
: 10 ≤ x ≤ 108},

Red: {
(

log log x, (
1

x
N1,4(x)− 1

4
) log x

)
: 10 ≤ x ≤ 108},

Blue: {
(

log log x, (
1

x
N2,4(x)− 1

4
) log x

)
: 10 ≤ x ≤ 108},

Green: {
(

log log x, (
1

x
N3,4(x)− 1

4
) log x

)
: 10 ≤ x ≤ 108}.

This data strongly suggests, at least for the q = 4 race, that any ordering not of the

form stated in Theorem 2.4 can never occur. It may not be unreasonable to conjecture

that this is the case for all q.

We remark that similar results can be proved for the sets

{n ≤ x : Ω(n) ≡ a mod q} and {n, square-free ≤ x : ω(n) ≡ a mod q}

where Ω(n) =
∑

pk|n 1 counts prime divisors with multiplicities.

2.2 Preliminaries

To save space, we will use log2 x and e2(x) to denote log log x and exp(exp(x)) respectively.

We start by proving an asymptotic formula for Na,q(x).

Proposition 2.1. For x ≥ 3 we have

Na,q(x) =
x

q

{
1 + 2|g(φ)| cos

(
sin
(2π

q

)
log2 x+ θ − 2πa

q

)
(log x)

cos( 2π
q

)−1

+O
(

(log x)
cos( 4π

q
)−1
)}

where g(z) := 1
Γ(z)

∏
p

(
1 + z

p−1

)
(1− p−1)z and φ = φ(q) = e2πi/q and θ = arg g(φ).

Proof. The main result we will make use of is [36, Theorem 2], from which it follows

that for z a complex variable bounded in absolute value by 1, and g(z) defined as in the

proposition we have

Az(x) :=
∑
n≤x

zω(n) = g(z)x(log x)z−1 +O
(
x(log x)<z−2)

)
. (2.2)
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These mean values satisfy

Aφj (x) =
∑
n≤x

φjω(n) =

q−1∑
k=0

φjkNk,q(x) for all j = 0, . . . , q − 1.

We can isolate the Na,q(x) as follows

1

q

q−1∑
j=0

φ
aj
Aφj =

1

q

q−1∑
j=0

φ
aj

q−1∑
k=0

φjkNk,q(x) =

q−1∑
k=0

Nk,q(x)
1

q

q−1∑
j=0

φj(k−a) = Na,q(x).

Substituting (2.2) into the line above gives

Na,q(x) =
x

q

1 +

q−1∑
j=1

(
φ
aj
g(φj)e

i sin( 2πj
q

) log2 x(log x)
cos( 2πj

q
)−1

+O((log x)
cos( 2πj

q
)−2

)
) .

For sufficiently large x, the terms in this sum with largest absolute value are those with

j = 1 and j = q − 1. Each of the others is � (log x)
cos( 4π

q
)−1

. Combining this observation

with the fact that g(z) = g(z) we get, for θ = arg g(φ).

Na,q(x) =
x

q

(
1 + 2<(φ

a
g(φ)e

i sin( 2π
q

) log2 x)(log x)
cos( 2π

q
)−1

+O((log x)
cos( 4π

q
)−1

)
)

=
x

q

(
1 + 2|g(φ)| cos

(
sin
(2π

q

)
log2 x+ θ − 2πa

q

)
(log x)

cos( 2π
q

)−1

+O((log x)
cos( 4π

q
)−1

)
)
.

Notice that if q = 2 then φ = −1 and g(−1) = 0. It is for this reason we cannot say

any more in this most interesting case. Indeed we actually suspect a much stronger error

term for Na,2(x)− x
2 of O(x1/2+o(1)), as predicted by the Riemann hypothesis. For q > 2

though, g(φ) 6= 0, as Γ has no pole there and the product has only non-zero terms.

From this, we see immediately that

Na,q(x)− x

q
= O

(
x

(log x)
1−cos( 2π

q
)

)

and also

Na,q(x)− x

q
= Ω±

(
x

(log x)
1−cos( 2π

q
)

)
.

Before trying to understand when Na,q(x) is less than this average value of x/q, we
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start with the simpler, but related, question of when the secondary term is negative. That

is, when

cos
(

sin
(2π

q

)
log2 x+ θ − 2πa

q

)
< 0.

Now cosine is negative “about half the time” which might suggest that Na,q(x) is less than

its average value “about half the time” too. To be precise, the set {n ∈ N : cosn < 0} has

natural density 1/2 in N. That is, limx→∞
1
x

∑
n≤x

cosn<0
1 = 1

2 . It is not true though that

{n ∈ N : cos(log2 n) < 0} has natural density 1/2. In fact this set has no natural density,

as we shall see below. The presence of the cos(log2 x) type term is why we ought to be

looking at the log log density.

The property of possessing a natural density is stronger than that of possessing a

logarithmic density, which is stronger still than having a loglog density. In fact, a straight-

forward application of partial summation proves that if a set E ⊂ N has a natural density

then it also has a logarithmic density and the two are equal. Likewise, if E has a loga-

rithmic density then it has a loglog density and the two are equal. The following lemma,

which follows in a straightforward manner by comparison with an integral, explains why

our notions of logarithmic and loglog density are sound.

Lemma 2.1. There exist constants γ, µ such that

∑
1≤n≤x

1

n
= log x+ γ +O

(1

x

)
.

∑
2≤n≤x

1

n log n
= log2 x+ µ+O

( 1

x log x

)
.

Proposition 2.2. Let A,B ∈ R with A > 0. The set

E := {n ∈ N : cos(A log2(n) +B) < 0}

has loglog density 1/2 but no natural or logarithmic densities.

Proof. For N ∈ N, define

xN := e2((2Nπ − π/2−B)/A) and yN := e2((2Nπ + π/2−B)/A)
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so that

cos(A log2 x+B) > 0⇔ x ∈ (xN , yN ) for some N and

cos(A log2 x+B) < 0⇔ x ∈ (yN−1, xN ) for some N.

Writing [α] for the largest integer at most α, we therefore have

1

xN

∑
n≤xN
n∈E

1 ≥ [xN ]− [yN−1]

xN
→ 1 as N →∞

and
1

yN

∑
n≤yN
n∈E

1 ≤ 1− [yN ]− [xN ]

yN
→ 0 as N →∞,

so E certainly doesn’t have a natural density. When we look at the logarithmic density,

we get, since log yN = eπ/A log xN ,

1

log xN

∑
n≤xN
n∈E

1

n
=

eπ/A

log yN

∑
n≤yN
n∈E

1

n
,

so for the limit to exist as N →∞ we would need eπ/A = 1 which is impossible.

When we look at the loglog density however, we get, using Lemma 2.1

lim sup
x→∞

1

log2 x

∑
n≤x
n∈E

1

n log n
= lim

N→∞

1

log2 xN

N∑
m=2

∑
n∈(ym−1,xm)

1

n log n

= lim
N→∞

1

log2 xN

N∑
m=2

(
log2 xm − log2 ym−1 +O

( 1

m logm

))

= lim
N→∞

1

(2Nπ − π/2−B)/A

N∑
m=2

(
π/A+O

( 1

m logm

))
=

1

2
.

A similar calculation shows that lim infx→∞
1

log2 x

∑
n≤x

n logn∈E

1
n logn = 1

2 and the result

follows.
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It is tempting to conclude that the set

{x ∈ N : Na,q(x) <
x

q
}

has no natural or logarithmic densities but has loglog density 1/2. Unfortunately, to prove

this rigorously we will need to account for the error introduced by the terms we have left

out. We will do this shortly. If we forget about error terms for the moment though (which

we can only really do when sin(2π/q) log2 x + θ − 2πa
q is not too close to a zero of cos),

then asking “for which value of a is Na,q(x) largest” is tantamount to asking “for which

value of a is 2π
q

(
q

2π (sin(2π/q) log2 x+ θ)− a
)

closest to some 2nπ ∈ 2πZ”. The answer is

the closest integer to q
2π (sin(2π/q) log2 x+ θ) modulo q which clearly depends on x. Any

given a will therefore produce the most values of n ≤ x such that ω(n) ≡ a mod q when

there exists some m ∈ Z such that,

a− 1

2
<

q

2π
(sin(2π/q) log2 x+ θ) +mq < a+

1

2
.

A similar calculation to that in the proof of Proposition 2.2 shows that for each a, the set

of such x values has loglog density 1/q.

We end this section with a picture of the curves

cos
(

sin
(2π

6

)
log2 x+ θ − 2πa

6

)
for a = 0, 1, . . . , 5 plotted with an x-axis scale which makes the oscillations visible.

-1.0

-0.5

0.5

1.0

Figure 2.2: Shifted sinusoidal curves
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Although this picture isn’t to be taken too seriously it serves as a useful illustration

to have in mind for comparing the secondary terms.

2.3 Proof of Theorem 2.3

Proof. Let q ≥ 3 be some fixed integer, a ∈ {0, 1, . . . , q − 1} and θ be defined as in

Proposition 2.1. Let ε > 0 be small and define

U ε−a,q := {x ∈ N : −π
q

+
√
ε < sin(

2π

q
) log2 x+ θ − 2πa

q
+ 2nπ < −

√
ε for some n ∈ Z},

U ε+a,q := {x ∈ N : −π
q
−
√
ε < sin(

2π

q
) log2 x+ θ − 2πa

q
+ 2nπ <

√
ε for some n ∈ Z}.

First let us see how, for small ε, these sets approximate Ua,q. Our formula for Na,q(x)

gives

Na,q(x)−Nb,q(x)

(log x)
cos( 2π

q
)−1

=

2|g(φ)|
(

cos
(

sin(
2π

q
) log2 x+ θ − 2πa

q

)
− cos

(
sin(

2π

q
) log2 x+ θ − 2πb

q

))
+ o(1)

as x→∞ and for q ≥ 3 we have g(φ) 6= 0. Therefore, for all ε > 0 there exists some X0(ε)

such that for x ≥ X0 and for each a, b ∈ {0, . . . , q − 1},

cos
(

sin(
2π

q
) log2 x+ θ − 2πa

q

)
− cos

(
sin(

2π

q
) log2 x+ θ − 2πb

q

)
> ε

which implies that Na,q(x) > Nb,q(x). We will use this fact to prove that for x ≥ X0 and

ε sufficiently small we have

x ∈ U ε−a,q ⇒ x ∈ Ua,q (2.3)

and

x ∈ Ua,q ⇒ x ∈ U ε+a,q . (2.4)

It follows that

∑
x≤X
x∈Uε−a,q

1

x log x
+Oε(1) ≤

∑
x≤X
n∈Ua,q

1

x log x
≤
∑
x≤X
x∈Uε+a,q

1

x log x
+Oε(1).
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After showing that each of U ε±a,q has loglog density 1
2q + oε(1) for arbitrarily small ε, where

oε(1) is a quantity that tends to 0 as ε → 0, we will have shown that Ua,q has loglog

density 1
2q . The result for Va,q is proved in much the same way.

Proof of (2.3) and (2.4).

Suppose x ≥ X0 and x ∈ U ε−a,q and ε is small enough so that sin(πq ) sin(
√
ε) > ε. For

example, ε < 1/q2 will do. In order to show that x ∈ Ua,q we need to show

(a) Na−i,q(x) > Na+i,q(x) for all i ∈ {1, 2, . . . , [ q−1
2 ]}

(b) Na+i,q(x) > Na−i−1,q(x) for all i ∈ {0, 1, . . . , [ q−2
2 ]}.

To do so we will use the identity

cos(ξ +A)− cos(ξ +B) = −2 sin

(
A−B

2

)
sin

(
ξ +

A+B

2

)
. (2.5)

For (a), let i ∈ {1, 2, . . . , or [ q−1
2 ]}, then

cos
(

sin(
2π

q
) log2 x+ θ − 2π(a− i)

q

)
− cos

(
sin(

2π

q
) log2 x+ θ − 2π(a+ i)

q

)
= −2 sin(

2πi

q
) sin(ξ)

where ξ = sin(2π
q ) log2 x+ θ − 2πa

q ∈
(
−π
q +
√
ε,−
√
ε
)

which is > ε. This proves (a). For

(b), let i ∈ {0, 1, . . . , or [ q−2
2 ]}, then

cos
(

sin(
2π

q
) log2 x+ θ − 2π(a+ i)

q

)
− cos

(
sin(

2π

q
) log2 x+ θ − 2π(a− i− 1)

q

)
= 2 sin(

π(2i+ 1)

q
) sin(ξ +

π

q
)

where again ξ ∈
(
−π
q +
√
ε,−
√
ε
)

which is again > ε. This proves (b) and that x ∈ Ua,q.

Now suppose x ≥ X0 and x ∈ Ua,q. To show that x ∈ U ε+a,q we need to find some

n ∈ Z such that

−π
q
−
√
ε < sin(

2π

q
) log2 x+ θ − 2πa

q
+ 2nπ <

√
ε.



2.3. Proof of Theorem 2.3 35

Suppose this is not the case. Then either we can find some n such that

−π −
√
ε ≤ sin(

2π

q
) log2 x+ θ − 2πa

q
+ 2nπ ≤ −π

q
−
√
ε.

In which case

cos
(

sin(
2π

q
) log2 x+ θ − 2π(a− 1)

q

)
− cos

(
sin(

2π

q
) log2 x+ θ − 2πa

q

)
= −2 sin(

π

q
) sin(ξ +

π

q
)

for some ξ ∈
[
−π−

√
ε,−π

q −
√
ε
]
. This is then > ε and so Na−1,q(x) > Na,q(x), contrary

to our assumption on x. Or else we can find some n such that

√
ε ≤ sin(

2π

q
) log2 x+ θ − 2πa

q
+ 2nπ ≤ π −

√
ε.

In which case

cos
(

sin(
2π

q
) log2 x+ θ − 2π(a+ 1)

q

)
− cos

(
sin(

2π

q
) log2 x+ θ − 2π(a− 1)

q

)
= −2 sin(−2π

q
) sin(ξ)

for some ξ ∈ (
√
ε, π−

√
ε). Again making the difference > ε and so Na+1,q(x) > Na−1,q(x),

again contrary to our assumption on x. We must therefore have x ∈ U ε+a,q .

It remains to calculate the loglog densities of U ε−a,q and U ε+a,q . This is similar to the proof

of Proposition 2.2. For N ∈ N define xN := e2((2Nπ+ 2aπ/q− θ− π/q+
√
ε)/ sin(2π/q))

and yN := e2((2Nπ + 2aπ/q − θ −
√
ε)/ sin(2π/q)), then for x ≥ X0 we have x ∈ U ε−a,q if

and only if x ∈ (xN , yN ) for some N and we therefore have

lim inf
X→∞

1

log2X

∑
n≤x
n∈Uε−a,q

1

n log n
= lim

N→∞

1

log2 xN

N−1∑
m=1

∑
n∈(xm,ym)

1

n log n

= lim
N→∞

1

log2 xN

N−1∑
m=1

(
(π/q)− 2

√
ε

sin(2π/q)
+O

( 1

m logm

))
= lim

N→∞

sin(2π/q)

2Nπ + 2aπ/q − θ − π/q +
√
ε

(
(N − 1)

(π/q)− 2
√
ε

sin(2π/q)
+O(logN)

)
=

1

2q
−
√
ε

π
.
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Also,

lim sup
X→∞

1

log2X

∑
n≤x
n∈Uε−a,q

1

n log n
= lim

N→∞

1

log2(yN ))

N∑
m=1

∑
n∈(xm,ym)

1

n log n
=

1

2q
−
√
ε

π

Hence the loglog density of U ε−a,q exists and is equal to 1
2q −

√
ε
π . A very similar calculation

shows that the loglog density of U ε+a,q is 1
2q +

√
ε
π and so by (4) and the fact that ε can be

taken arbitrarily small we can conclude that Ua,q has loglog density 1
2q .

2.4 Proof of Theorem 2.4

As in the previous proof, let ε be small enough and X0 large enough so that

sin(πq ) sin(
√
ε) > ε and that for x ≥ X0 we have

cos
(

sin(
2π

q
) log2 x+ θ− 2πa

q

)
− cos

(
sin(

2π

q
) log2 x+ θ− 2πb

q

)
> ε⇒ Na,q(x) > Nb,q(x)

and

x ∈ U ε−a,q ⇒ x ∈ Ua,q

and

x ∈ Ua,q ⇒ x ∈ U ε+a,q .

We will show that only the permutations stated in Theorem 2.4 can occur for

x ≥ X0. Suppose that we have some x ≥ X0 for which Na,q(x) is leading, that is,

max c mod qNc,q(x) = Na,q(q). It follows that x ∈ U ε+a,q ∪ V ε+
a,q since otherwise there would

be some integer n such that

π

q
+
√
ε ≤ sin(

2π

q
) log2 x+ θ − 2πa

q
+ 2nπ ≤ 2π − π

q
−
√
ε

and hence

cos
(

sin(
2π

q
) log2 x+ θ − 2πb

q

)
− cos

(
sin(

2π

q
) log2 x+ θ − 2πa

q

)
= −2 sin(

π(a− b)
q

) sin(ξ +
π(a− b)

q
)

for some ξ ∈ (πq +
√
ε , 2π − π

q −
√
ε). But then this is > ε for either b = a+ 1 mod q or
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b = a− 1 mod q contradicting the assumption that Na,q(x) was leading.

To prove Theorem 2.4 it suffices to prove that max±1Na±1,q(x) > Nb,q(x) for all

b 6= a, a ± 1 mod q. This follows, in a by now familiar fashion, from the fact that there

exists an integer n such that

−π
q
−
√
ε < sin(

2π

q
) log2 x+ θ − 2πa

q
+ 2nπ <

π

q
+
√
ε

since then

max
±

cos
(

sin(
2π

q
) log2 x+ θ − 2π(a± 1)

q

)
− cos

(
sin(

2π

q
) log2 x+ θ − 2πb

q

)
= max

±
−2 sin(π

b− (a± 1)

q
) sin(ξ − π(b− a± 1)

q
)

= max
±

2 sin(π
b− (a± 1)

q
) sin(π

(b− a± 1)

q
− ξ)

where ξ ∈ (−π
q −
√
ε , π

q +
√
ε), so this is > ε for b 6= a, a ± 1 mod q which proves the

claim.



Chapter 3

The Selberg–Delange method in Fq[t]

This chapter is based on joint work with Ardavan Afshar [2].

We develop a function field analogue of the Selberg–Delange method to derive asymp-

totic formulae for the number of monic and square-free monic polynomials in Fq[t] of degree

n with precisely k irreducible factors, in the limit as n tends to infinity. We then adapt

the method to count such polynomials in arithmetic progressions and short intervals, and

by making use of Weil’s ‘Riemann hypothesis’ for curves over Fq, obtain better ranges for

these formulae than are currently known for their analogues in the number field setting.

3.1 Introduction

In the context of understanding the anatomy of integers it is natural to want to count not

just prime numbers but numbers with exactly k distinct prime divisors for k ≥ 1. Let

πk(x) = #{n ≤ x : Ω(n) = ω(n) = k}.

In [35], Sathé proved that for any fixed A > 0, uniformly in the range x ≥ 3 and 1 ≤ k ≤

A log log x we have

πk(x) ∼ G
(

k − 1

log log x

)
x

log x

(log log x)k−1

(k − 1)!

where G(z) = 1
Γ(1+z)

∏
p prime(1 + z

p)(1− 1
p)z.

In [36], Selberg gave a simpler proof of this result, now known as the “Sathé–Selberg

Formula”. One might ask whether such a formula also holds for numbers restricted to

a given arithmetic progression or short interval. For example, in [37], Spiro showed that

such a formula holds for n ≤ x restricted to n ≡ a mod q, provided q does not exceed

some fixed power of log x.
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We begin this chapter by adapting Selberg’s method to prove an asymptotic formula

for the number of monic polynomials in Fq[t] of degree n with exactly k distinct irreducible

divisors. Let us (re)define

πk(n) := #{f ∈Mn : f = p1 · · · pk for some p1, · · · , pk ∈ P distinct}.

Theorem 3.1. Let A > 1. Then uniformly for all n ≥ 2 and 1 ≤ k ≤ A log n we have

πk(n) =
qn

n

(log n)k−1

(k − 1)!

(
G

(
k − 1

log n

)
+OA

(
k

(log n)2

))

where G(z) = F (1/q,z)
Γ(1+z) and F (1/q, z) =

∏
p∈P

(
1 + z

qdeg p

)(
1− 1

qdeg p

)z
.

So the asymptotic density of square-free polynomials in Mn with k distinct prime

divisors is 1
n

(logn)k−1

(k−1)! G
(
k−1
logn

)
.

With some additional technical work following Chapters II.5 and II.6 of [38], one

could strengthen Theorem 3.1 to be of an analogous form to Chapter II.6 Theorem 4 of

[38], namely

πk(n) =
qn

n

 J∑
j=0

Pj,k(log n)

nj
+OA

((
cJ + 1

n

)J+1 (log n)k

k!

)
where Pj,k(x) is a polynomial of degree at most k − 1, J is a non-negative integer, and c

is some absolute constant.

Such an improvement could also be carried through to Theorems 3.2 and 3.3 below,

to give similarly strengthened versions of what they state.

Next, we apply our method to Dirichlet L-functions for Fq[t], to derive an asymptotic

formula for the number of such polynomials in a given arithmetic progression with common

difference of degree no bigger than roughly n/2. Let

πk(n; g, d) := #{f ∈Mn f ≡ g mod d : f = p1 · · · pk for some p1, · · · , pk ∈ P distinct}.

Theorem 3.2. Let g, d ∈ Fq[t] be coprime and m = deg d. For any A > 1, n ≥ 2 and
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1 ≤ k ≤ A log n with m ≤
(

1
2 −

1+log(1+A
2

)

log q

)
n we have

πk(n; g, d) =
1

φ(d)

qn

n

(log n)k−1

(k − 1)!

(
Gd

(
k − 1

log n

)
+OA

(
k

(log n)2

))

where φ(d) =
∣∣(Fq[t]/(d(t)))×

∣∣, and Gd(z) =

(∏
p|d

(
1 + z

qdeg p

)−1
)
G(z) where G(z) is

defined as in Theorem 3.1.

This range on the degree of the common difference is obtained by our use of Weil’s

‘Riemann Hypothesis’, which allows us to bound the contributions from the non-principal

characters as roughly square-root of the contribution from the principal character. This

is stronger than anything that can likely be proved for integers without also proving

something close to the Riemann hypothesis for Dirichlet L-functions.

We end this chapter by deducing from Theorem 3.2 an asymptotic formula for the

number of such polynomials in a given ‘short interval’ of length no shorter than roughly

n/2. This uses the duality between short intervals and arithmetic progressions in Fq[t] as

explained in for example [18]. Let

ψk(n; g;h) := #{f ∈Mn deg(f−g) ≤ h : f = p1 · · · pk for some p1, · · · , pk ∈ P distinct}.

Theorem 3.3. Let g ∈ Fq[t]. Let A > 1, n ≥ 2 and 1 ≤ k ≤ A log n.

Then for h satisfying n− 1 ≥ h ≥
(

1
2 +

1+log(1+A
2

)

log q

)
(n+ 1), we have

ψk(n; g;h) =
qh+1

n

(log n)k−1

(k − 1)!

(
H

(
k − 1

log n

)
+

k − 1

q log n
H

(
k − 2

log(n− 1)

)
+OA

(
k

(log n)2

))

where H(z) = q
q+zG(z) and G(z) is defined as in Theorem 3.1.

The two main terms in Theorem 3.3 come from counting polynomials with non-zero

constant term and polynomials with zero constant term separately. We note that in the

range where k � log n, the latter is roughly a factor of q smaller than the former, and so

of the same order of magnitude in the limit as n tends to infinity.

These results give quite precise information about the number of polynomials with

a specific number of irreducible factors in different situations. Results about the average

number of irreducible divisors, such as the analogue of the Erdös–Kac Theorem can readily

be deduced from these.
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3.2 The function field Sathé–Selberg formula

3.2.1 Outline

In our study of πk(n) we will make use of a two variable zeta function for M which will

serve to count irreducible factors, namely,

A(T, z) =
∑
f∈M

µ2(f)zω(f)T deg f =
∏
p∈P

(1 + zT deg p)

where µ(f) is the Möbius function, defined to be (−1)k if f is the product of k distinct irre-

ducibles and 0 otherwise. By taking z ∈ C and considering A(T, z) as a power series in T we

will derive estimates for its coefficients, which we denote by Az(n) =
∑

f∈Mn
µ2(f)zω(f).

Then we can recover πk(n) using Cauchy’s integral formula and the pair of identities

∑
k≥0

πk(n)zk = Az(n), πk(n) =
1

2πi

∮
Az(n)

zk+1
dz.

This plan will be carried out by first deriving an estimate for the coefficients of the power

series of ζ(T )z, where ζ(T ) =
∑

f∈M T deg f is the zeta function for M, and then relat-

ing this to the estimate we want for Az(n), the coefficients of the related series A(T, z).

Throughout, A > 1 will be an arbitrary positive constant and z a complex variable satis-

fying |z| ≤ A.

3.2.2 Proof of Theorem 3.1

Recall that for |T | < 1/q

ζ(T ) =
∑
f∈M

T deg f =
∑
n≥0

qnTn =
1

1− qT
.

For T in this range, we define ζ(T )z = exp(z log ζ(T )), where we choose the branch of the

logarithm that is defined on the cut plane C\[0,∞) and is real for T real.

Lemma 3.1. If we define Dz(n) for n ≥ 0 via the identity ζ(T )z =
∑

n≥0Dz(n)Tn, then

we have that

Dz(n) = qn
(
n+ z − 1

n

)
where

(
w
n

)
= 1

n!

∏n−1
j=0 (w − j).
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Proof. This is just the binomial theorem

ζ(T )z = (1− qT )−z =
∑
n≥0

(
n+ z − 1

n

)
qnTn.

Corollary 3.1. For all n ≥ 1 and |z| ≤ A,

Dz(n) = qn
nz−1

Γ(z)
+OA

(
qnn<z−2

)
.

Proof. It suffices to prove this for n ≥ 2A. In this range, we consider two cases. The first

is when z is a non-positive integer, in which case Dz(n) = 0 = qn

Γ(z)n
z−1 . Otherwise we

can use the Weierstrass Product Formula for Γ(z) in the second line below to get

Γ(n+ z)

Γ(n+ 1)
=

1

n+ z

(
n∏
k=1

k + z

k

)
zΓ(z)

=
1

n+ z

(
n∏
k=1

k + z

k

)
e−γz

( ∞∏
k=1

k

k + z
ez/k

)

=
e−γz

n+ z

(
n∏
k=1

ez/k

)( ∞∏
k=n+1

k

k + z
ez/k

)

=
e−γz

n+ z
exp

(
n∑
k=1

z

k

)
exp

( ∞∑
k=n+1

(z
k
− log

(
1 +

z

k

)))

=
e−γz

n+ z
exp

(
z

(
log n+ γ +O

(
1

n

)))
exp

( ∞∑
k=n+1

∞∑
m=2

(−1)m
zm

mkm

)

=
nz

n+ z

(
1 +OA

(
1

n

))
exp

(
OA

(
1

n

))
= nz−1

(
1 +OA

(
1

n

))
.

From this and Lemma 3.1 we can conclude that

Dz(n) = qn
(
n+ z − 1

n

)
= qn

Γ(n+ z)

Γ(n+ 1)Γ(z)
= qn

nz−1

Γ(z)

(
1 +OA

(
1

n

))
.

It was fairly straightforward to derive an asymptotic formula for Dz(n). The following

technical proposition will allow us to use this result to deduce asymptotic formulae for

the coefficients of more general series provided their behaviour at 1/q is similar to the

singularity of ζ(T )z at T = 1/q. This proof is modelled on that of Theorem 7.18 from

[24].

Proposition 3.1. Let C(T, z) =
∑

n≥0Cz(n)Tn and M(T, z) =
∑

n≥0Mz(n)Tn be power
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series with coefficients depending on z satisfying C(T, z) = M(T, z)ζ(T )z. Suppose also

that, uniformly for |z| ≤ A, ∑
a≥0

|Mz(a)|
qa

a2A+2 �A 1. (3.1)

Then, uniformly for |z| ≤ A and n ≥ 1, we have

Cz(n) = qn
nz−1

Γ(z)
M(1/q, z) +OA(qnn<z−2).

Proof. Using our expression for Dz(n) from Corollary 3.1 and that Dz(0) = 1, we get

Cz(n) =
∑

0≤a≤n
Mz(a)Dz(n− a)

= qn

 ∑
0≤a<n

Mz(a)

qa
(n− a)z−1

Γ(z)
+OA

 ∑
0≤a<n

|Mz(a)|
qa

(n− a)<z−2

+
Mz(n)

qn

 .
Here we split the first sum at n/2 and use the fact that

(n− a)z−1 =


nz−1 (1 +OA(a/n)) , if 0 ≤ a ≤ n/2

OA(nA−1), if n/2 < a < n.

Combining this with (3.1) we get

∑
0≤a<n

Mz(a)

qa
(n− a)z−1

Γ(z)

=
∑

0≤a≤n/2

Mz(a)

qa
nz−1

Γ(z)
(1 +OA(a/n)) +OA

 ∑
n/2<a<n

|Mz(a)|
qa

nA−1


=

∑
0≤a≤n/2

Mz(a)

qa
nz−1

Γ(z)
+OA

n<z−2
∑

0≤a≤n/2

|Mz(a)|a
qa

+ n<z−2
∑

n/2<a<n

|Mz(a)|a2A+1

qa


=
nz−1

Γ(z)
M(1/q, z) +OA

n<z−1
∑
a>n/2

|Mz(a)|
qa

+ n<z−2


=
nz−1

Γ(z)
M(1/q, z) +OA

n<z−2
∑
a>n/2

|Mz(a)|a
qa

+ n<z−2


=
nz−1

Γ(z)
M(1/q, z) +OA

(
n<z−2

)
.
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Where, in the final term of the second line, we use that n<z−2a2A+1 � n−A−2n2A+1 = nA−1

for n/2 < a < n.

Similarly, for the second sum we get

∑
0≤a<n

|Mz(a)|
qa

(n− a)<z−2

=
∑

0≤a≤n/2

|Mz(a)|
qa

n<z−2 (1 +OA(a/n)) +OA

 ∑
n/2<a<n

|Mz(a)|
qa

nA−2


�A n

<z−2
∑

0≤a≤n/2

|Mz(a)|
qa

+ n<z−3
∑

0≤a≤n/2

|Mz(a)|a
qa

+ n<z−3
∑

n/2<a<n

|Mz(a)|a2A+1

qa

�A n
<z−2.

Finally, by (3.1) we have that the last term is

Mz(n)

qn
� n<z−2 |Mz(n)|nA+2

qn
� n<z−2

∑
a≥0

|Mz(a)|
qa

aA+2 �A n
<z−2.

Putting everything together proves the proposition.

We will apply the previous proposition with the series F (T, z) =
∑

n≥0Bz(n)Tn

defined by

F (T, z) := A(T, z)ζ(T )−z =
∏
p∈P

(1 + zT deg p)(1− T deg p)z.

First we check that the conditions of Proposition 3.1 are satisfied as in done in the integer

setting at the beginning of Chapter II.6 of [38].

Proposition 3.2. For |z| ≤ A, n ≥ 2 and σ ≥ 1
2

∑
0≤a≤n

|Bz(a)|
qσa

≤


CA,σ if σ > 1

2

nCA if σ = 1
2 ,

where CA,σ is a constant depending only on A and σ, and CA is a constant depending only

on A.

Consequently, since a2A+2 ≤ qa/3 for a sufficiently large, we have for |z| ≤ A that

∑
a≥0

|Bz(a)|
qa

a2A+2 �A

∑
a≥0

|Bz(a)|
q2a/3

�A 1.
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Proof. If we let bz(f) be the multiplicative function defined on powers of monic irreducible

polynomials p by the power series identity

1 +
∑
k≥1

bz(p
k)Sk = (1 + zS)(1− S)z

then F (T, z) =
∑

f∈M bz(f)T deg f and so Bz(n) =
∑

f∈Mn
bz(f). From this definition, we

see that bz(p) = 0 on irreducible p and, by Cauchy’s inequality after integrating over the

complex circle |S| = 1√
3/2

, that

|bz(pk)| ≤ (3/2)k/2MA, for k ≥ 2

where MA = sup|z|≤A,|S|≤ 1√
3/2

|(1 + zS)(1− S)z| is some constant depending on A.

Therefore, letting M≤n = {f ∈M : deg f ≤ n} and P≤n = {p ∈ P : deg p ≤ n}, we have

∑
0≤a≤n

|Bz(a)|
qσa

≤
∑

f∈M≤n

|bz(f)|
qσ deg f

≤
∏

p∈P≤n

1 +
∑
k≥1

|bz(pk)|
qkσ deg p


≤

∏
p∈P≤n

1 +MA

∑
k≥2

( √
3/2

qσ deg p

)k
=

∏
p∈P≤n

(
1 +

3MA/2

qσ deg p(qσ deg p −
√

3/2)

)
.

Taking the logarithm and using the prime polynomial theorem we get

∑
p∈P≤n

log

(
1 +

3MA/2

qσ deg p(qσ deg p −
√

3/2)

)
≤ 6MA

∑
1≤d≤n

qd(1−2σ)

d

≤


6MA

q2σ−1−1
if σ > 1

2

12MA log n if σ = 1
2 .

Exponentiating then gives the stated result.

Remark. Proposition 3.2 also proves that F (1/q, z) is absolutely uniformly convergent for

|z| ≤ A and so holomorphic in z for |z| ≤ A.
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Corollary 3.2. Uniformly for |z| ≤ A and n ≥ 1, we have

Az(n) = qn
nz−1

Γ(z)
F (1/q, z) +OA(qnn<z−2).

Proof. Proposition 3.2 allows us to apply, Proposition 3.1 with C(T, z) = A(T, z) and

M(T, z) = F (T, z) and the result follows.

We now turn to the proof of a generalisation of the main result in this section. We

require the following lemma which is a simple application of the saddle point method.

Lemma 3.2. Let A > 0 and let pn(z) =
∑

k≥0 ck(n)zk be a sequence of polynomials such

that uniformly for n ≥ 1 and |z| ≤ A the following approximation holds

pn(z) = naz
(
f(z) +O

(
1

n

))
(3.2)

for some real constant a > 0 and some function f(z) that is holomorphic on {z ∈ C :

|z| ≤ A}. Then uniformly for 1 ≤ k ≤ aA log n,

ck(n) =
(a log n)k

k!

(
f

(
k

a log n

)
+O

(
k

(log n)2

))
.

Proof. The starting point is Cauchy’s formula

ck(n) =
1

2πi

∫
|z|=r

pn(z)
dz

zk+1
.

We choose r to minimise the trivial bound

|ck(n)| � r ·max
|z|=r

∣∣∣∣ nazzk+1

∣∣∣∣ =
nar

rk
.

Since a > 0, the maximum occurs at z = r = k/(a log n). From (3.2) we have

ck(n) =
1

2πi

∫
|z|=r

nazf(z)
dz

zk+1
+O (E)

where E = 1
n

∫
|z|=r

∣∣ naz
zk+1

∣∣ |dz|. Using

1

2πi

∫
|z|=r

(z − r)naz dz

zk+1
=

(a log n)k−1

(k − 1)!
− r (a log n)k

k!
= 0



3.2. The function field Sathé–Selberg formula 47

and the approximation

f(z) = f(r) + f ′(r)(z − r) +O(|z − r|2)

this becomes

ck(n) = f(r)
(a log n)k

k!
+O

(
r−k

∫
|z|=r

|naz(z − r)2|dz|+ E

)
.

The integral in the error term is bounded by

r2

∫ π

−π
|1− eiθ|2ek cos θdθ � r2

∫ ∞
−∞

θ2ek(1−θ2/5)dθ � r2ekk−3/2

which contributes an error of

(k/(a log n))2−kekk−3/2 � ak(log n)k−2 e
k
√
k

kk
� ak

k(log n)k−2

k!

by Stirling’s formula. The other term E in the error contributes at most

� r−k−1

n

∫
|z|=r

∣∣∣na(z−r)
∣∣∣ |dz| � r−k

n

∫ 1/2

−1/2
n−art

2
dt� 1

n
(a log n)k

ek

kk+1/2
� 1

n

(a log n)k

k!

again by Stirling’s formula.

All the ingredients to prove Theorem 3.1 have now been assembled. We apply

Lemma 3.2 with ck(n) = nπk+1(n)/qn and pn(z) = n
qn
∑

k≥0 πk+1(n)zk = n
qn zAz(n).

Corollary 3.2 is the condition we need to apply Lemma 3.2 with a = 1 and f(z) =

z
Γ(z)F (1/q, z) = F (1/q,z)

Γ(1+z) . The conclusion is then precisely the statement of Theorem 3.1.

Remark. We can also estimate ρk(n) := {f ∈Mn : ω(f) = k} by first proving an analogue

of Proposition 3.2 for the power series

F̃ (T, z) := ζ(T )−z
∑
f∈M

zω(f)T deg f =
∏
p∈P

(
1 +

zT deg p

1− T deg p

)
(1− T deg p)z

then applying Proposition 3.1 with M(T, z) = F̃ (T, z) and C(T, z) = Ã(T, z) where

Ã(T, z) =
∑
n≥0

Ãz(n)Tn :=
∑
f∈M

zω(f)T deg f = F̃ (T, z)ζ(T )z
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and finally applying Lemma 3.2 as above in order to obtain an analogue of Theorem 3.1,

namely

ρk(n) =
qn

n

(log n)k−1

(k − 1)!

(
G̃

(
k − 1

log n

)
+OA

(
k

(log n)2

))
uniformly for all n ≥ 2 and 1 ≤ k ≤ A log n where G̃(z) = F̃ (1/q,z)

Γ(1+z) .

3.3 The Sathé–Selberg formula in arithmetic progressions

We now follow a broadly similar strategy, but with Dirichlet L-functions, in order to count

polynomials in arithmetic progressions. In the next section, we will see how this can then

be used to count irreducible polynomials from a “short interval”.

Let d ∈ M be some polynomial of degree m ≥ 1. Consider the Dirichlet characters

χ : (Fq[t]/(d))× −→ C×, with χ0 being the principal character, and let

L(T, χ) =
∑
f∈M

χ(f)T deg f =
∏
p∈P

(1− χ(p)T deg p)−1

be the L-function associated to χ. For χ 6= χ0, it known that L(T, χ) is a polynomial of

degree at most m− 1 that can be factored as

L(T, χ) =
m−1∏
j=1

(1− αjT ) (3.3)

such that |αj | = 0, 1 or
√
q. This is a consequence of Weil’s Theorem (the Riemann

hypothesis for curves Fq). See for example Proposition 4.3 from [33].

Using (3.3), we can define L(T, χ)z for complex numbers z as

L(T, χ)z = exp

z m−1∑
j=1

log(1− αiT )

 for |T | < 1/q

where log is defined on the set C\[0,−∞) and takes real values on the positive reals.

Our first task is to relate the coefficients of ζ(T )z and L(T, χ)z. Consider the following

identities which follow from the binomial theorem,

ζ(T )z =
∏
p∈P

(1− T deg p)−z =
∏
p∈P

1 +
∑
k≥1

(
z + k − 1

k

)
T k deg p


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L(T, χ)z =
∏
p∈P

(1− χ(p)T deg p)−z =
∏
p∈P

1 +
∑
k≥1

(
z + k − 1

k

)
χ(pk)T k deg p

 .

We see that if dz(f) is the multiplicative function defined on irreducible powers pk as

dz(p
k) =

(
z+k−1
k

)
then ζ(T )z =

∑
f∈M dz(f)T deg f and L(T, χ)z =

∑
f∈M dz(f)χ(f)T deg f .

Hence, Dz(n, χ) :=
∑

f∈Mn
dz(f)χ(f) is the coefficient of Tn in L(T, χ)z.

3.3.1 Generalised divisor sums twisted by non-principal characters

Proposition 3.3. For χ 6= χ0, |z| ≤ A and n ≥ 1

|Dz(n, χ)| ≤ qn/2
(
n+Am− (A+ 1)

n

)
≤ qn/2

(
n+Am

n

)
.

Proof. From (3.3) and the binomial theorem we get

L(T, χ)z =

m−1∏
j=1

(1− αjT )z =
∑
n≥0

 ∑
r1+···+rm−1=n

(
z

r1

)
· · ·
(

z

rm−1

)
αr11 · · ·α

rm−1

m−1

 (−1)nTn.

Using that |αj | ≤
√
q and |z| ≤ A we get that

|Dz(n, χ)| =

∣∣∣∣∣∣
∑

r1+···+rm−1=n

(
z

r1

)
· · ·
(

z

rm−1

)
αr11 · · ·α

rm−1

m−1

∣∣∣∣∣∣
≤

∑
r1+···+rm−1=n

∣∣∣∣( zr1

)∣∣∣∣ · · · ∣∣∣∣( z

rn−1

)∣∣∣∣√qr1+···+rm−1

≤ qn/2
∑

r1+···+rm−1=n

(
A+ r1 − 1

r1

)
· · ·
(
A+ rm−1 − 1

rm−1

)
.

Now, we recognise the sum as the coefficient of Tn in the expansion of

((1− T )−A)m−1 = (1− T )−A(m−1)

which is also
(
n+A(m−1)−1

n

)
=
(
n+Am−(A+1)

n

)
. Indeed, this shows that the power series

expansion of L(T, χ)z is majorised by that of (1 − √qT )−A(m−1). Since m,n ≥ 1 we get

that

|Dz(n, χ)| ≤ qn/2
(
n+Am− (A+ 1)

n

)
≤ qn/2

(
n+Am

n

)
.
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3.3.2 Formulae for πk(n, χ)

We are now interested in πk twisted by a character, that is, the following sum

πk(n, χ) :=
∑
f∈Mn

ω(f)=k

µ2(f)χ(f).

We shall embark on a more refined study of this sum in the next chapter but for now, we

show how to adapt the proofs from Section 3.2 to prove Theorems 3.2 and 3.3.

In particular, we make use of the generating function

A(T, z, χ) :=
∑
f∈M

µ2(f)zω(f)χ(f)T deg f =
∏
p∈P

(1 + zχ(p)T deg p)

whose power series coefficients are

Az(n, χ) :=
∑
f∈Mn

µ2(f)χ(f)zω(f)

so that, similarly to before, ∑
k≥0

πk(n, χ)zk = Az(n, χ)

and by Cauchy’s Theorem

πk(n, χ) =
1

2πi

∮
Az(n, χ)

zk+1
dz.

Moreover, recall that we had

F (T, z) =
∑
f∈M

bz(f)T deg f =
∏
p∈P

(1 + zT deg p)(1− T deg p)z = A(T, z)ζ(T )−z

so we naturally define F (T, z, χ) by

F (T, z, χ) :=
∑
f∈M

bz(f)χ(f)T deg f =
∏
p∈P

(1+χ(p)zT deg p)(1−χ(p)T deg p)z = A(T, z, χ)L(T, χ)−z

and let Bz(n, χ) :=
∑

f∈Mn
bz(f)χ(f) so that Az(m,χ) =

∑
a+b=mBz(a, χ)Dz(b, χ).

3.3.2.1 Non-principal characters

In this subsection χ will be a non-principal character.
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Lemma 3.3. For |z| ≤ A and n ≥ 2

∑
0≤a≤n

|Bz(a, χ)|
qa/2

≤ nCA

where CA is a constant depending only on A.

Proof. Since ∑
0≤a≤n

|Bz(a, χ)|
qa/2

≤
∑

f∈M≤n

|bz(f)|
qdeg f/2

this follows directly from the proof of Proposition 3.2.

We can use this to get an estimate for Az(n, χ) as follows:

Proposition 3.4. For A > 1 and n ≥ 2

|Az(n, χ)| ≤ qn/2
(
n+Am

n

)
nCA .

Proof. Using Proposition 3.3 and Lemma 3.3 we get

|Az(n;χ)| =

∣∣∣∣∣∣
∑

0≤a≤n
Bz(a, χ)Dz(n− a, χ)

∣∣∣∣∣∣
≤ qn/2

∑
0≤a≤n

|Bz(a, χ)|
qa/2

(
n− a+Am

n− a

)
≤ qn/2

(
n+Am

n

) ∑
0≤a≤n

|Bz(a, χ)|
qa/2

≤ qn/2
(
n+Am

n

)
nCA .

We can now use Cauchy’s Theorem to bound πk(m;χ).

Proposition 3.5. For A > 1 and n ≥ 2

|πk(n;χ)| ≤ qn/2
(
n+Am

n

)
nCA .

Proof. Recall the identity

πk(n;χ) =
1

2πi

∮
Az(n;χ)

zk+1
dz

where we take the contour to be the circle of radius r = 1 centred at 0.
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Then Proposition 3.4 gives us that this is

≤ qn/2
(
n+Am

n

)
nCA

1

2π

∮
|dz|
|z|k+1

≤ qn/2
(
n+Am

n

)
nCA .

3.3.2.2 The principal character

Define Fd, B
d
z and bdz via the following formal power series identities

Fd(T, z) =
∑
n≥0

Bd
z (n)Tn =

∑
f∈M

bdz(f)T deg f =
∏
p-d

(1 + zT deg p)(1− T deg p)z
∏
p|d

(1− T deg p)z.

Lemma 3.4. For |z| ≤ A and σ ≥ 2
3

∑
a≥0

|Bd
z (a)|
qσa

�A

∏
p|d

(1− q−σ deg p)−A.

Proof. By making a change of variable S = T deg p, we see that the multiplicative coeffi-

cients bdz(f) are defined on prime powers f = pk by the formal power series identity

1 +
∑
k≥1

bdz(p
k)Sk =


(1− S)z if p|d

(1 + zS)(1− S)z if p - d.

So if p|d, we have that |bdz(pk)| = |
(
z
k

)
| ≤

(
A+k−1

k

)
, and if p - d we have that bdz(p

k) = bz(p
k).

Therefore, we get

∑
a≥0

|Bd
z (a)|
qσa

≤
∑
f∈M

|bdz(f)|
qσ deg f

≤
∏
p|d

1 +
∑
k≥1

|bdz(pk)|
qkσ deg p

∏
p-d

1 +
∑
k≥1

|bdz(pk)|
qkσ deg p


≤
∏
p|d

∑
k≥0

(
A+ k − 1

k

)
q−kσ deg p

∏
p∈P

1 +
∑
k≥1

|bz(pk)|
qkσ deg p


=
∏
p|d

(1− q−σ deg p)−A
∑
f∈M

|bz(f)|
qσ deg f

.

Now, by the proof of Proposition 3.2,
∑

f∈M
|bz(f)|
qσ deg f �A 1 for σ ≥ 2

3 , which gives the

result.
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Lemma 3.5. For d ∈ Fq[t] of degree m ≥ 1 and 1 ≥ σ > 1
2 , we have

∏
p|d

(1− q−σ deg p)−1 ≤ (2 + 2 logm)8(qm)1−σ .

Proof. Arrange the primes p1, . . . , pr dividing d and the primes P1, P2, . . . in M, in order

of degree (where you can order those of the same degree arbitrarily). Then we must have

that degPi ≤ deg pi. Now, for some N ∈ N, we have that
∑

degP≤N−1 degP < m ≤∑
degP≤N degP . This means that d has at most #{P : degP ≤ N} prime factors, and so

∏
p|d

(1− q−σ deg p)−1 ≤
∏

degP≤N
(1− q−σ degP )−1.

Taking the logarithm of the right hand side, and using the fact that − log(1 − 1
x) ≤ 1

x−1

for x > 1, combined with the prime polynomial theorem, we get

∑
degP≤N

− log(1− q−σ deg p) ≤
∑
r≤N

π(r)

qσr − 1

≤ 4
∑
r≤N

π(r)

qσr
≤ 4

∑
r≤N

q(1−σ)r

r
≤ 8q(1−σ)N (log(1 +N)).

Our choice of N tells us that qN ≤ qm (so N ≤ (1 + 2 logm)), since we have from the

prime polynomial theorem

m >
∑

degP≤N−1

degP =
∑

r≤N−1

π(r)r ≥
∑
r|N−1

π(r)r = qN−1.

Putting everything together we get that

∏
p|d

(1− q−σ deg p)−1 ≤ exp(8q(1−σ)N (log(1 +N))) ≤ (2 + 2 logm)8(qm)1−σ .

Proposition 3.6. For |z| ≤ A we have that

∑
a≥0

|Bd
z (a)|
qa

a2A+2 �A (1 + logm)KA

where KA is a constant depending on A.

Proof. When logm < 10A+ 10 it suffices to show that
∑

a≥0
|Bdz (a)|
qa a2A+2 �A 1.
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This is indeed true in this case, since m �A 1, and so by Lemma 3.4 we have that for

σ ≥ 2
3 ∑

a≥0

|Bd
z (a)|
qσa

�A,σ

∏
p|d

(1− q−σ deg p)−A �A,σ (1− q−σ)−Am �A,σ 1

and consequently that
∑

a≥0
|Bdz (a)|
qa a2A+2 �A 1.

When logm ≥ 10A+ 10, let τ = 2A+2
logm log q ≤

1
5 log 2 ≤

1
3 so that 1− τ ≥ 2

3 and moreover

a ≥ (logm)2 =⇒ (2A+2)
log a

a
≤ (2A+2)

2 log logm

(logm)2
≤ 2A+ 2

logm
= τ log q =⇒ a2A+2 ≤ qτa.

So overall we have that a2A+2 ≤ (logm)4A+4qτa. Using this fact and Lemmas 3.4 and 3.5

we get that

∑
a≥0

|Bd
z (a)|
qa

a2A+2 ≤ (logm)4A+4
∑
a≥0

|Bd
z (a)|

q(1−τ)a

�A (logm)4A+4
∏
p|d

(1− q−(1−τ) deg p)−A

�A (logm)4A+4(2(1 + logm))8(qm)τ

�A (1 + logm)KA .

Proposition 3.7. Uniformly for |z| ≤ A and n ≥ 1, we have

Az(n, χ0) = qn
nz−1

Γ(z)
Fd(1/q, z) +OA(qnn<z−2(1 + logm)KA)

=

∏
p|d

(
1 +

z

qdeg p

)−1
F (1/q, z)qn

nz−1

Γ(z)
+OA(qnn<z−2(1 + logm)KA).

Proof. The first equality follows from the proof of Proposition 3.1 (carrying throughout

an additional factor of (1 + logm)KA in the error term) and Proposition 3.6 after noting

that

A(T, z, χ0) =
∏
p∈P

(1 + zχ(p)T deg p)

= ζ(T )z
∏
p-d

(1 + zT deg p)(1− T deg p)z
∏
p|d

(1− T deg p)z = ζ(T )zFd(T, z).



3.3. The Sathé–Selberg formula in arithmetic progressions 55

The second equality follows from the observation that

Fd(T, z) =
∏
p∈P

(1+zT deg p)(1−T deg p)z
∏
p|d

(1+zT deg p)−1 = F (T, z)
∏
p|d

(1+zT deg p)−1.

We now turn to the proof of the main result of this subsection.

Proposition 3.8. Let Gd(z) = F (1/q,z)
Γ(1+z)

∏
p|d

(
1 + z

qdeg p

)−1
. Then for Let A > 1 and

√
n ≥ (1 + logm)KA we have

πk(n, χ0) =
qn

n

(log n)k−1

(k − 1)!

(
Gd

(
k − 1

log n

)
+OA

(
k

(log n)2

))

uniformly for all n ≥ 2 and 1 ≤ k ≤ A log n.

Proof. For |z| ≤ A, by Proposition 3.7 and our condition on n,

Az(n, χ0) =

∏
p|d

(
1 +

z

qdeg p

)−1
 F (1/q, z)

Γ(z)
qnnz−1 +OA(qnn<z−3/2).

We may therefore apply Proposition 3.2 with a = 1 and ck(n) = nπk+1(n, χ0)/qn and

pn(z) = n
qn
∑

k≥0 πk+1(n, χ0)zk = n
qn zAz(n, χ0). The result then follows with Gd(z) as

stated.

3.3.3 Proof of Theorem 3.2

We are now ready to put the pieces together and present the proof of Theorem 3.2.

Proof. Using the orthogonality of characters,

∑
f∈Mn

f≡g mod d

1 =
1

φ(d)

∑
f∈Mn

∑
χ

χ̄(g)χ(f)

where the sum is over characters χ : (Fq[t]/(d))× → C× and φ(d) =
∣∣(Fq[t]/(d))×

∣∣, we get
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that

πk(n; g, d) =
∑
f∈Mn

f≡g mod d
ω(f)=k

µ2(f)

=
1

φ(d)

∑
χ

χ̄(g)πk(n, χ)

=
1

φ(d)
πk(n, χ0) +O

 1

φ(d)

∑
χ 6=χ0

qn/2
(
n+Am

n

)
nCA


=

1

qm
∏
p|d(1−

1
qdeg p

)

qn

n

(log n)k−1

(k − 1)!

(
Gd

(
k − 1

log n

)
+OA

(
k

(log n)2

))
+O

(
qn/2

(
n+Am

n

)
nCA

)

=

∏
p|d

(
1− 1

qdeg p

)−1
 qn−m

n

(log n)k−1

(k − 1)!

(
Gd

(
k − 1

log n

)
+OA

(
k

(log n)2

))

+O

(
qn/2

(
n+Am

n

)
nCA

)

where we have used Proposition 3.3 in the third line and Proposition 3.8 in the fourth

line. Note that the condition

(
1
2 −

1+log(1+A
2

)

log q

)
n ≥ m certainly implies the condition

√
n�A (1 + logm)KA required to apply Proposition 3.8.

To finish the proof we shall show that the second error term can be absorbed into

the first using the Stirling inequalities
√

2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n. For a, b ≥ 1 we

have

(
a+ b

a

)
=

(a+ b)!

a!b!
≤ e(a+ b)a+b+1/2e−(a+b)

2πaa+1/2bb+1/2e−(a+b)

≤ e

2π

(
1

a
+

1

b

)1/2(
1 +

b

a

)a (
1 +

a

b

)b
≤
(

1 +
b

a

)a (
1 +

a

b

)b

and using this and the condition

(
1
2 −

1+log(1+A
2

)

log q

)
n ≥ m we have

qn/2
(
n+Am

n

)
nCA+2 ≤ qn/2

(
n+ A

2 n

n

)
nCA+2

≤ qn/2
(

1 +
A

2

)n(
1 +

2

A

)A
2
n

nCA+2 �A q
n/2

(
1 +

A

2

)n
en ≤ qn−m.
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From this, we then get that

πk(n; g, d) =

∏
p|d

(
1− 1

qdeg p

)−1
 qn−m

n

(log n)k−1

(k − 1)!

(
Gd

(
k − 1

log n

)
+OA

(
k

(log n)2

))

=
1

φ(d)

qn

n

(log n)k−1

(k − 1)!

(
Gd

(
k − 1

log n

)
+OA

(
k

(log n)2

))
.

Remark. Note that the conclusion of Theorem 3.2 can be stated in the equivalently as

πk(n; g, d) =

∏
p|d

(
1− 1

qdeg p

)−1
 qn−m

n

(log n)k−1

(k − 1)!

(
Gd

(
k − 1

log n

)
+OA

(
k

(log n)2

))
.

(3.4)

3.4 The Sathé–Selberg formula in short intervals

3.4.1 The Involution of a polynomial

As in [18], we define the involution of a polynomial f ∈ Fq[t] to be the polynomial

f∗(t) := tdeg ff(1/t).

The idea that such an involution links arithmetic progressions and short intervals goes

back at least to Hayes’ paper[16].

Lemma 3.6. For f ∈ Fq[t] not divisible by t, ω(f∗) = ω(f) and µ(f∗) = µ(f).

Proof. First of all, we note that for f, g ∈ Fq[t]

(fg)∗(t) = tdeg fgfg(1/t) = tdeg ff(1/t)tdeg gg(1/t) = f∗(t)g∗(t).

Moreover, if f ∈ Fq[t] is not divisible by t, then deg f∗(t) = deg f(t) so

(f∗)∗(t) = tdeg f∗f∗(1/t) = tdeg f∗t− deg ff(t) = f(t).

Together, these imply that if f = pa11 · · · parr ∈ Fq[t] where pi are distinct irreducibles none

of which are t, then f∗ = (p∗1)a1 · · · (p∗r)ar where p∗i are distinct irreducibles none of which

are t. So, if f ∈ Fq[t] is not divisible by t, then ω(f∗) = ω(f) and µ(f∗) = µ(f).

The following observation is what allows us to use our result concerning polynomials

from an arithmetic progression, namely (3.4), to prove one about polynomials belonging
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to a short interval.

Lemma 3.7. Let f and g be polynomials of degree n and h an integer ≤ n. Then deg(f −

g) ≤ h if and only if f∗ ≡ g∗ mod tn−h.

Proof. Write

f(t) = ant
n + · · ·+ aht

h + · · ·+ a0

g(t) = bnt
n + · · ·+ bht

h + · · ·+ b0

where an and bn are non-zero. Then

f∗(t) = an + · · ·+ aht
n−h + · · ·+ a0t

n

g∗(t) = bn + · · ·+ bht
n−h + · · ·+ b0t

n.

From this we can see that each condition is satisfied if and only if ai = bi for each

i = h+ 1, . . . , n.

Notice that f∗ and g∗ have non-zero constant terms.

3.4.2 Proof of Theorem 3.3

We first split the sum defining πk(n; g;h) into two

πk(n; g;h) =
∑
f∈Mn

deg(f−g)≤h
ω(f)=k

µ2(f) =
∑
f∈Mn

deg(f−g)≤h
ω(f)=k
f(0)6=0

µ2(f) +
∑
f∈Mn

deg(f−g)≤h
ω(f)=k
f(0)=0

µ2(f).

Using Lemma 3.7 on the first sum we get

∑
f∈Mn

f∗≡g∗ mod tn−h

ω(f∗)=k
deg f∗=n

µ2(f∗) =
∑

deg f=n
f≡g∗ mod tn−h

ω(f)=k

µ2(f)

=
∑
a∈F∗q

∑
f∈Mn

f≡a−1g∗ mod tn−h

ω(f)=k

µ2(f)

=
∑
a∈F∗q

πk(n; a−1g∗, tn−h).
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Since a−1g∗ has non-zero constant term for each a ∈ F∗q , and from the condition of the

theorem we have that

(
1
2 −

1+log(1+A
2

)

log q

)
n > n− h ≥ 1, so we may apply (3.4) to get

(q − 1)
q

q − 1

qh

n

(log n)k−1

(k − 1)!

(
H

(
k − 1

log n

)
+OA

(
k

(log n)2

))
=
qh+1

n

(log n)k−1

(k − 1)!

(
H

(
k − 1

log n

)
+OA

(
k

(log n)2

))
.

Now, we split the second sum into two sums, the latter of which is zero, and then apply

Lemma 3.7 to the former

∑
f∈Mn−1

deg(tf−g)≤h
ω(tf)=k

µ2(tf) =
∑

f∈Mn−1

deg(tf−g)≤h
ω(f)=k−1
f(0)6=0

µ2(tf) +
∑

f∈Mn−1

deg(tf−g)≤h
ω(f)=k
f(0)=0

µ2(tf)

=
∑

deg f=n−1
f≡g∗ mod tn−h

ω(f)=k−1

µ2(f)

=
∑
a∈F∗q

∑
f∈Mn−1

f≡a−1g∗ mod tn−h

ω(f)=k−1

µ2(f)

=
∑
a∈F∗q

πk−1(n− 1; a−1g∗, tn−h).

Since a−1g∗ has non-zero constant term and for each a ∈ F∗q , and from the condition of

the theorem we have

(
1
2 −

1+log(1+A
2

)

log q

)
(n− 1) ≥ n− h ≥ 1, we may apply (3.4) again to

get

(q − 1)
q

q − 1

qh−1

n− 1

(log(n− 1))k−2

(k − 2)!

(
H

(
k − 2

log(n− 1)

)
+OA

(
k − 1

(log(n− 1))2

))
=
qh

n

(log n)k−2

(k − 2)!

(
H

(
k − 2

log(n− 1)

)
+OA

(
k

(log n)2

))
=
qh+1

n

(log n)k−1

(k − 1)!

(
k − 1

q log n
H

(
k − 2

log(n− 1)

)
+OA

(
k

(log n)2

))
.

Putting everything together proves Theorem 3.3.



Chapter 4

An application to a race in Fq[t]

In the previous chapter we developed a function field analogue of the Selberg–Delange

method and applied it with Dirichlet L-functions to count polynomials with a given number

of prime divisors in arithmetic progressions and short intervals. This required bounding

certain sums of non-trivial Dirichlet characters. In this chapter we show how a more

refined application of the method leads to a better understanding of πk(n, χ). This would

allow for example one to investigate prime number races style questions for products of

k irreducible polynomials as is done in [23]. We also exhibit new phenomena concerning

Chebyshev-type biases of character sums over polynomials with a very large number of

irreducible factors and ask whether the same phenomena holds for integers with a very

large number of prime factors.

4.1 Introduction

Let χ : Fq[t]→ C be a non-principal Dirichlet character. In this chapter we are interested

in the sum

πk(n, χ) =
∑
f∈Mn

Ω(f)=k

χ(f)

where Ω(f) is the number of prime divisors of f counted with multiplicity. The L-function

associated to χ is

L(u, χ) :=
∑
f∈M

χ(f)udeg f =
∏
p∈P

(1− χ(p)udeg p)−1



4.1. Introduction 61

and as we saw in the previous chapter, it is known that L(u, χ) is a polynomial that can

be written as a product of linear factors

L(u, χ) =: (1−√qu)m+(1 +
√
qu)m−

dχ∏
j=1

(1− αj(χ)u)mj
d′χ∏
j′=1

(1− βj′(χ)u) (4.1)

where |βj′(χ)| = 1 and αj(χ) =
√
qeiγj(χ) is non-real and has absolute value

√
q (see [23],

equation (1)). The αj are distinct for distinct j and appear with multiplicity mj . The

βj′ are less important so may be repeated but we don’t care about, and have not named,

their multiplicities. Our aim in this chapter is to use analytic arguments to relate the

quantity πk(n, χ) to the zeros of L(u, χ). We are interested in uniformity with respect to

the variables n and k so implied constants may depend on anything except n and k (in

particular χ and q). It is convenient to use the normalisation

π̃k(n, χ) := πk(n, χ)
n(k − 1)!(−1)k

qn/2(log n)k−1
.

4.1.1 Brief background on Chebyshev’s bias

“There is a notable difference in the splitting of the prime numbers between the two forms

4n+ 3 and 4n+ 1: the first form contains a lot more than the second.” - Chebyshev 1853.

2000 4000 6000 8000 10000

100

200

300

400

500

600

Figure 4.1: Number of primes up to x equal to 1 (red) and 3 (blue) mod 4

Assume for the time being that L(±q−1/2, χ) 6= 0 and that each zero of L(u, χ) is

simple. The corresponding assumption, that L(1/2, χ) 6= 0 and all zeros are simple, is

conjectured to hold for all number field Dirichlet L-functions. Then it follows from the
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work of Devin and Meng [23], and Theorems 4.1 and 4.3 below, that for each fixed k,

π̃k(n, χ) = 1χ2=χ0

1 + (−1)n

2k
+
∑
γj 6=0,π

einγj +Ok

(
1

log n

)
. (4.2)

The terms in this formula corresponding to non-real zeros of L(u, χ) oscillate around 0 as n

increases. We can think of the other term as a ‘bias’ term which biases πk(n, χ) away from

0. It follows that, if χ is real then for each fixed k, the quantity (−1)kπk(n, χ) is biased

towards being positive rather than negative, but that “as k increases, the biases become

smaller and smaller”–[23]. The results of this chapter include and generalise (4.2) to k(n)

varying with n. We shall see that the bias term does indeed tend to 0 for certain sequences

k(n)→∞, but, perhaps surprisingly, not if k(n) grows too quickly. In particular, there is

a constant γ ≈ 1.2021 . . . such that if γ < k/ log n <
√
q, then the bias term is larger than

the oscillating terms for every large even n.

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 4.2: Chebyshev bias of π̃int
k (x) for x up to 109

In the case that k = 1, the integer analogue of the explicit formula (4.2) has a

corresponding bias term that is responsible for the phenomena known as Chebyshev’s

bias, illustrated in Figure 4.1. Chebyshev’s observation was formalised by Rubenstein and

Sarnak [34] who proved, given certain conjectures on the zeros of Dirichlet L-functions,
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that, if

Sk =
{
x ∈ N : (−1)k

∑
n≤x

Ω(n)=k

χ(n) > 0
}

where χ is the non-trivial Dirichlet character mod 4, then the set S1 has logarithmic

density ≈ 0.996. Figure 4.2 shows the plots of the normalised character sum

π̃int
k (x) =

(−1)k(k − 1)! log x√
x(log log x)k−1

∑
n≤x

Ω(n)=k

χ(n).

The phenomena has since been extensively studied and generalised in a number of

directions. See [14] for an introduction to the topic. Ford and Sneed [13] proved, again

under certain conjectures on the zeros of L(s, χ), that the set S2 has logarithmic density

≈ 0.894. A more general theorem capturing the Chebyshev bias for fixed k ≥ 1 was proved

for integers by Meng [22] and for polynomials by Devin and Meng [23]. For example, it

follows from [22] and standard conjectures on the zeros of Dirichlet L-functions that the

set Sk has logarithmic density δk where 1/2 < δk < 1 and δk → 1/2 as k → ∞. This

suggests that in some sense the bias dissipates as k →∞. However, we shall see that, for

polynomials and k(n) increasing with n, sometimes the bias is strong enough to ensure

that (−1)kπk(n, χ) > 0 for all large even n.

From now on, χ will always denote a non-principal Dirichlet character modulo a fixed

polynomial d ∈ Fq[t] and χ0 will denote the principal character mod d. It may be helpful

to bear in mind that for large values of n, the distribution of Ω(f), given a polynomial

f selected uniformly at random from Mn, is approximately normal with mean log n and

standard deviation
√

log n.

Because the behaviour of πk(n, χ) depends on whether or not χ is real, we shall present

the results for the two cases separately.

4.1.2 When χ is not real

Theorem 4.1. Suppose χ2 6= χ0 and let ε > 0. With the same notation as in equation

(4.1)

π̃k(n, χ) =
∑
γj 6=0,π

mk
j e
inγj + mk

+ + (−1)nmk
− + O

 k

log n

 ∑
γj 6=0,π

mk
j +mk

+ +mk
−


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uniformly for 1 ≤ k ≤ q1/2−ε log n.

When k is large with respect to n, this improves upon [23, Theorem 5.1] which

requires that k = o(
√

log n) and has an error term involving a factor (deg d)k where d is

the conductor of χ.

Theorem 4.1 gives a main term and smaller error term in the range k = o(log n).

A more general formula which describes the behaviour of π̃k(n, χ) in the full range 1 ≤

k ≤ q1/2−ε log n can be extracted from the proof but is significantly more complicated to

write down. If we assume certain simplifying assumptions though, we can state the more

general formula as follows.

Theorem 4.2. Assume that mj = 1 for each j and that m± = 0. Suppose k(n) is a

sequence tending to infinity as n→∞ such that α = limn→∞
k

logn exists and 0 < α < q1/2.

Then there exist non-zero constants hj(α) such that

π̃k(n, χ) =
∑
γj 6=0,π

hj(α)einγj + o(1).

Remark. The coefficients hj(α) are explicitly defined in terms of α and χ in the course

of the proof but are quite lengthy to write down in full. An even more general formula

that does not require limn→∞
k

logn to exist can be extracted form the proof but is more

complicated to write down.

4.1.3 When χ is real

The next two theorems both show how the behaviour of πk(n, χ) differs significantly when

χ is real. The first deals with ‘small’ values of k and again extends the range of a formula

given in [23].

Theorem 4.3. Suppose χ2 = χ0. With the same notation as in equation (4.1), uniformly

for 1 ≤ k ≤ (log n)1/2 we have

π̃k(n, χ) =
∑
γj 6=0,π

mk
j e
inγj + (m+ + 1/2)k + (−1)n(m− + 1/2)k

+O

 k
logn

∑
γj 6=0,π

mk
j + k2

logn max
±

{
(m± + 1/2)k

} .
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Moreover, uniformly in the range 1 ≤ k ≤ (log n)2/3 we have

π̃k(n, χ) =
∑
γj 6=0,π

mk
j e
inγj+(m++1/2)ke

(k−1)2

2(m++1/2)2 logn+(−1)n(m−+1/2)ke
(k−1)2

2(m−+1/2)2 logn

+O

 k
logn

∑
γj 6=0,π

mk
j +

(
1
k + k3

(logn)2

)
max
±

{
(m± + 1/2)ke

(k−1)2

2(m±+1/2)2 logn

} .

Notice that the error terms in the formulae above are essentially the same as the

corresponding main terms but with certain extra factors involving k and log n. It is not

too difficult to see that these extra factors are o(1) in the first formula if k = o(
√

log n).

They are o(1) in the second if k → ∞ and k = o((log n)2/3). The change in behaviour

and appearance of extra terms for k around
√

log n may explain why [23, Theorem 5.1]

required k = o(
√

log n). The significance of the threshold k around (log n)2/3 will become

apparent from the proof.

If we make the same simplifying assumptions as in Theorem 4.2, that is, the limit

limn→
k

logn exists and mj = 1, m± = 0, then we get a corresponding version for real χ

that includes the bias term. The size of the bias term can be described in terms of the

continuous function b(α) defined by

b(α) = α

(
s(α)− 1

2
− log(2s(α))

)
, where s(α) =

1

8α

(√
1 + 16α− 1

)
. (4.3)

Figure 4.3: Plot of b(α)

Of particular significance is the fact that, if the real constants β ≈ 0.3637 . . . and
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γ ≈ 1.2021 . . . are defined by the two equations

eβ−1 = 4β2 and γ =
1− β
4β2

,

then b(α) < 0 for 0 < α < γ and b(α) > 0 for α > γ.

Theorem 4.4. Suppose χ2 = χ0. Assume that mj = 1 for each j and that m± = 0.

Suppose k(n) is a sequence tending such that α = limn→∞
k

logn exists and 0 < α < q1/2.

Then there exist non-zero constants hj(α) and positive constants h±(α) > 0 such that

π̃k(n, χ) = {h+(α) + (−1)nh−(α) + o(1)}nb((k−1)/ logn) +
∑
γj 6=0,π

hj(α)einγj + o(1).

Remark. It follows that the oscillating terms dominate if 0 < α < γ, but that the bias

terms dominate if γ < α < q1/2, at least if n is even. This is perhaps surprising given

the results in [22] and [23], which, as explained in section 4.1.1 above, suggest that in

some sense “as k increases, the biases become smaller and smaller”. Since the conditions

we assumed on the zeros of L(u, χ) are conjectured to hold for number field Dirichlet L-

functions, we wonder whether something analogous happens in the number field setting.

Remark. The remark following Theorem 4.3 concerning the coefficients hj(α) applies ver-

batim to the coefficients hj , h± here.

4.2 A Selberg–Delange type argument

Let A > 0 and u and z be complex variables satisfying |z| ≤ A and |zu| < 1. The crucial

identity for the proof is the following

Gz(u, χ) :=
∑
f

χ(f)zΩ(f)udeg f = L(u, χ)zL(u2, χ2)
z(z−1)

2 Ez(u, χ) (4.4)

where

Ez(u, χ) =
∏
p

(
1− χ(p)zudeg p

)−1 (
1− χ(p)udeg p

)z (
1− χ2(p)u2 deg p

) z(z−1)
2

is holomorphic for |u| < min{|z|−1, q−1/3}. This is because then

|1− χ(p)zudeg p| ≥ 1− |zudeg p| ≥ 1− |zu| > 0
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so the factors (1− χ(p)zudeg p)−1 have no poles. And

(1− zT )−1 (1− T )z
(
1− T 2

) z(z−1)
2

=
(
1 + zT + z2T 2 +O(T 3)

)(
1− zT +

z(z − 1)

2
T 2 +O(T 3)

)(
1− z(z − 1)

2
T 2 +O(T 4)

)
= 1 +O(T 3)

so each factor in the Euler product of Ez(u, χ) is 1+O(u3 deg p), hence the product converges

absolutely and defines a holomorphic fucntion for |u| < min{|z|−1, q−1/3}.

Having an explicit representation of the generating function for χ(f)zΩ(f) beyond the

radius q−1/2 allows us to extract a formula for
∑

f∈Mn
χ(f)zΩ(f). We use this to deduce

a formula for
∑

f∈Mn

Ω(f)=k

χ(f). In particular, this is why we can get an explicit formula

involving the zeros which are on the circle |u| = q−1/2.

Define also

Fz(u, χ) = L(u2, χ2)
z(z−1)

2 Ez(u, χ) =
∏
p

(1− χ(p)zudeg p)−1(1− χ(p)udeg p)z

where the second product representation is valid inside |u| < min{|z|−1, q−1/2}.

Before starting the proof, let’s take a minute to be clear about what these expressions

mean. Having factored L(u, χ) over its zeros ρ as

L(u, χ) =
∏
ρ

(1− u/ρ)mρ

as in equation (4.1), we define

L(u, χ)z := exp(z
∑
ρ

mρ log(1− u/ρ))

where log defined on the set C\[0,−∞) takes real values on the positive reals and

define L(u2, χ2)z(z−1)/2 similarly. These expressions define functions L(u, χ)z and

L(u2, χ2)z(z−1)/2, holomorphic in u and z for all z ∈ C and all u ∈ C\
⋃
ρ{u : 1 − u/ρ ∈

R≤0}.

The formula
∑

f∈Mn
χ(f)zΩ(f) we need is given by Proposition 4.1 below. First

though we prove a simple integral lemma.
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Lemma 4.1. Let A, δ > 0. Let H be the Hankel contour of radius 1 around 0 going along

the negative real axis to −nδ. Uniformly for |z| ≤ A we have

1

2πi

∫
H
wz

dw

(1− w/n)n+1
=

1

Γ(−z)
+O(1/n)

Proof. We may suppose n is sufficiently large. By Corollary 0.18 from [38] we have

1

2πi

∫
H
wzewdw =

1

Γ(−z)
+O(e−nδ/2)

so it suffices to show that

∫
H

∣∣∣∣wz ( 1

(1− w/n)n+1
− ew

)∣∣∣∣ |dw| = O(1/n).

On the region <w > −n/2 we have

1

(1− w/n)n+1
− ew = e−(n+1) log(1−w/n) − ew = ew+O(1/n) − ew = O(ew/n)

and
∫
H |w

zew| |dw| = O(1). On the rest of the integral

∫ −nδ
−n/2

∣∣∣∣wz ( 1

(1− w/n)n+1
− ew

)∣∣∣∣ |dw| � nA+1e−cn

for some c > 0 when |z| ≤ A. This proves the lemma.

Proposition 4.1. Let Mz(n, χ) :=
∑

f∈Mn
χ(f)zΩ(f). For all ε > 0 the following holds

uniformly for |z| ≤ q1/2−ε. If χ2 6= χ0,

Mz(n, χ) =
∑
ρ :

L(ρ,χ)=0

|ρ|=q−1/2

ρ−nn−zmρ−1

{
Fz(ρ, χ)czρ
Γ(−zmρ)

+O
(
n−1

)}



4.2. A Selberg–Delange type argument 69

and if χ2 = χ0,

Mz(n, χ) =
∑
ρ :

L(ρ,χ)=0

|ρ|=q−1/2

ρ 6=±q−1/2

ρ−nn−zmρ−1

{
Fz(ρ, χ)czρ
Γ(−zmρ)

+O
(
n−1

)}

+
∑
±

(±1)nqn/2n−1−zm±+z(z−1)/2


Ez(±q−1/2, χ)cz±

(
φ(M)

2qdegM

)z(z−1)/2

Γ(−zm± + z(z − 1)/2)
+O

(
n−1

)
for some constants cρ, c± defined in the course of the proof.

Proof. Applying Cauchy’s formula with r < q−1/2 gives

Mz(n, χ) =
1

2πi

∫
|u|=r

Gχ(u, z)
du

un+1
. (4.5)

We shift this contour to write the left hand side in terms of the singularities of Gz(u, χ)

with |u| = q−1/2. For each such singularity ρ, let Hρ be the contour that consists of a circle

of radius 1/n traversed clockwise around ρ and the two line segments on the ray from 0 to

ρ joining this small circle to the circle |u| = qε/2−1/2. We may replace ε by min{1/10, ε} if

necessary to ensure qε/2−1/2 < q−1/3.

Figure 4.4: Keyhole contour
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Then (4.4) becomes

∑
ρ∈S

1

2πi

∫
Hρ
Gz(u, χ)

du

un+1
+O

(∫
|u|=qε/2−1/2

∣∣∣∣Gz(u, χ)
du

un+1

∣∣∣∣
)

=:
∑
ρ∈S

Iρ+O
(
qn( 1

2
−ε/2)

)

Here we have used the fact that Gz(u, χ) is uniformly bounded in the region |u| ≤ qε/2−1/2,

|z| ≤ q1/2−ε. Let us now evaluate each of these Hankel contours, first the non-real ρ, then

ρ = ±q−1/2.

Case 1: Non-real ρ.

Since Fz(u, χ) is holomorphic in u on Hρ we may use the approximation Fz(u, χ) =

Fz(ρ, χ) +O(|u− ρ|) for the singularities ρ = q−1/2e−iγj 6= ±q−1/2 to get

Iρ = Fz(ρ, χ)
1

2πi

∫
Hρ
L(u, χ)z

du

un+1
+O

(∫
Hρ
|u− ρ||L(u, χ)z| |du|

|u|n+1

)
.

In the error term, we change variable to w = n(1− u/ρ) so u = ρ(1− w/n) to get

∫
Hρ

∣∣∣∣(1− u/ρ)1+zmρ

(
L(u, χ)

(1− u/ρ)mρ

)z∣∣∣∣ |du||u|n+1
� qn/2|n−2−zmρ |

∫
H
|w1+zmρ | |dw|

|(1− w/n)n+1|

� qn/2|n−2−zmρ |

since |L(u, χ)/(1 − u/ρ)mρ | is bounded above and below by positive constants on the

contour of integration.

To evaluate the main term, again change to the variable w = n(1 − u/ρ) in the first

integral above to get

ρ−nn−1

2πi

∫
H
L(ρ(1− w/n), χ)z

dw

(1− w/n)n+1
.

If we define cρ 6= 0 by L(u, χ) = (1 − u/ρ)mρ(cρ + O(|1 − u/ρ|)), that is, cρ =

[L(u, χ)/(1− u/ρ)mρ ]u=ρ and czρ = exp(z
∑

ρ′ 6=ρmρ′ log(1− ρ/ρ′)), then

(
L(u, χ)

(1− u/ρ)mρ

)z
= czρ +O(|1− u/ρ|)

and

L(ρ(1− w/n), χ)z = (w/n)zmρczρ +O(|w/n|zmρ+1).
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By Lemma 4.1, the main term is

czρρ
−nn−zmρ−1

2πi

∫
H
wzmρ

dw

(1− w/n)n+1
=
czρρ
−nn−zmρ−1

Γ(−zmρ)
+O(qn/2|n−zmρ−2|)

and the error term is

� qn/2|n−zmρ−2|
∫
H
|wzmρ+1| |dw|

|(1− w/n)n+1|
� qn/2|n−zmρ−2|.

Case 2: Real ρ.

Now let’s look at the singularities ±q−1/2. If χ2 is not principal, then exactly the

same argument still works with ρ = ±q−1/2 and the convention m±q−1/2 = m± because in

that case Fz(u, χ) = L(u2, χ2)Ez(u, χ) is holomorphic near u = ±q−1/2.

Suppose then that χ2 = χ0 is principal. We now have to worry about the extra poles

of L(u2, χ0) at u = ±q−1/2. First near u = q−1/2, change to the variable w = n(1− q1/2u)

so u = q−1/2(1− w/n). Then we want to evaluate

qn/2n−1

2πi

∫
H
L

(
1− w/n
q1/2

, χ

)z
L

(
(1− w/n)2

q
, χ0

) z(z−1)
2

Ez

(
1− w/n
q1/2

, χ

)
dw

(1− w/n)n+1

Defining c+ 6= 0 by L(u, χ)/(1 − uq1/2)m+ = c+ + O(|1 − uq1/2|), along the contour of

integration we have

L

(
1− w/n
q1/2

, χ

)z
= (w/n)zm+cz+ +O(|w/n|zm++1)

and since L(u, χ0) = 1
1−qu

∏
p|M (1−udeg p) and

∏
p|M (1−q− deg p) = q− degMφ(M) we have

L

(
(1− w/n)2

q
, χ0

) z(z−1)
2

=

(
n

2w

φ(M)

qdegM

) z(z−1)
2

+O(|n/w|
z(z−1)

2
−1).

We also have,

Ez

(
1− w/n
q1/2

, χ

)
= Ez(q

−1/2, χ) +O(|w/n|)
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which together give the main term as

qn/2n−1−zm++z(z−1)/2Ez(q
−1/2, χ)cz+

(
φ(M)

2qdegM

)z(z−1)/2 1

2πi

∫
H

wzm+−z(z−1)/2

(1− w/n)n+1
dw

= qn/2n−1−zm++z(z−1)/2
Ez(q

−1/2, χ)cz+

(
φ(M)

2qdegM

)z(z−1)/2

Γ(−zm+ + z(z − 1)/2)
+O

(
qn/2|n−zm++z(z−1)/2−2|

)
with the error terms all being O(qn/2|n−zm++z(z−1)/2−2|).

The −q−1/2 term is essentially the same. Together this proves Proposition 4.1.

4.3 Saddle point lemmas

Recall Lemma 3.2 from the previous chapter.

Lemma 4.2. Let A > 0 and let pn(z) =
∑

k≥0 ck(n)zk be a sequence of polynomials such

that uniformly for n ≥ 1 and |z| ≤ A

pn(z) = naz
(
f(z) +O

(
n−1

))
(4.6)

for some real constant a > 0 and some function f(z) that is holomorphic on {z ∈ C :

|z| ≤ A}. Then uniformly for 1 ≤ k ≤ aA log n,

ck(n) =
(a log n)k

k!

(
f

(
k

a log n

)
+O

(
k

(log n)2

))
.

We also need the following quadratic variant.

Lemma 4.3. Let A > 0 and let pn(z) =
∑

k≥0 ck(n)zk be a sequence of polynomials such

that uniformly for n ≥ 1 and |z| ≤ A

pn(z) = naz
2+bz

(
f(z) +O

(
n−1

))
(4.7)

for some real constants a > 0 and b > 0 and some function f(z) that is holomorphic on

{z ∈ C : |z| ≤ A} with f(0) = 1. Let r be the positive root of the quadratic

r2 +
b

2a
r − k

2a log n
= 0.

Then uniformly for 1 ≤ k ≤ min{(log n)1/2, bA log n} we have
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(a)

ck(n) =
(b log n)k

k!

(
1 +O

(
k2

log n

))
.

In the range 1 ≤ k ≤ min{(log n)2/3, bA log n} we have

(b)

ck(n) =
(b log n)k

k!
e

ak2

b2 logn

(
1 +O

(
1

k
+

k3

(log n)2

))
.

In the range 1 ≤ k ≤ 2aA2 log n we have

(c)

ck(n) =
nar

2+br

rk

(
f(r)√

2π(4ar2 + br) log n
+O

(
(r log n)−3/2

))
.

Proof. Part (a) follows from the proof of Lemma 4.2 with r = k/(b log n) and the approx-

imation

naz
2

= 1 +O(k2/ log n)

which holds for |z| = r. For part (c) we again use Cauchy’s formula and the saddle point

method. This time we choose r to minimise the bound

|ck(n)| � r ·max
|z|=r

∣∣∣∣∣naz
2+bz

zk+1

∣∣∣∣∣ =
nar

2+br

rk
.

The maximum occurs at z = r because a > 0 and b > 0. By differentiating, this is

minimised when

r2 +
b

2a
r − k

2a log n
= 0 or r =

b

4a

(√
1 +

8ak

b2 log n
− 1

)
.

Notice that in the range k ≤ 2aA2 log n we have

r ≤ b

4a

(√
1 +

16a2A2

b2
− 1

)
≤ A

since
√

1 + x ≤ 1 +
√
x for all x > 0 so this is a valid choice for r. Now from (4.6) and

f(z) = f(r) + f ′(r)(z − r) +O(|z − r|2)
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it follows that

ck(n) = f(r)I1 + f ′(r)I2 +O(I3) +O(E)

where

I1 =
1

2πi

∫
|z|=r

naz
2+bz

zk+1
dz

I2 =
1

2πi

∫
|z|=r

naz
2+bz

zk+1
(z − r)dz

I3 =

∫
|z|=r

∣∣∣∣∣naz
2+bz

zk+1
(z − r)2

∣∣∣∣∣ |dz|
E =

nar
2+br−1

rk
.

Writing z = re2πit and rearranging slightly this can we written

ck(n) =
nar

2+br

rk
{
f(r)J1 + rf ′(r)J2 +O(r2J3) +O(1/n)

}
where

J1 =

∫ 1/2

−1/2
n(ar2(e4πit−1)+br(e2πit−1)e−k2πitdt

J2 =

∫ 1/2

−1/2
n(ar2(e4πit−1)+br(e2πit−1)e−k2πit(1− e2πit)dt

J3 =

∫ 1/2

−1/2
n(ar2(cos(4πt)−1)+br(cos(2πt)−1)|1− e2πit|2dt.

The integrals I1 and I2 could be written explicitly as a sum of k terms. Instead, we will

asymptotically evaluate J1 by expanding around the point t = 0. This will give a main

term and smaller error term provided k →∞. This is akin to approximating the integral

1
2πi

∮
ez

zk+1dz = 1
k! by ekk−k√

2πk
. For small values of k, part (a) is better.

Let δ = (r log n)−1/4. Using eix = 1 + ix− x2/2− ix3/6 +O(x4) and the definition of
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r we have

J1 =

∫ δ

−δ
nar

2(−8π2t2−i32π3t3/3+O(t4))+br(−2π2t2−i4π3t3/3+O(t4))dt+O
(
n−brδ

2
)

=

∫ δ

−δ
n−(4ar2+br)2π2t2(1 +O(t6(r log n)2 + t4r log n))dt+O(n−brδ

2
)

=
1√

2π(4ar2 + br) log n
+O((r log n)−3/2).

And in a similar vein,

J2 =

∫ δ

−δ
nar

2(−8π2t2−i32π3t3/3+O(t4))+br(−2π2t2−i4π3t3/3+O(t4))(−2πit+O(t2))dt+O
(
n−brδ

2
)

�
∫ δ

−δ
n−(4ar2+br)2π2t2(t6(r log n)2 + t4r log n+ t2)dt+ n−brδ

2 � (r log n)−3/2

and

J3 �
∫ ∞
−∞

n−brt
2
t2dt� (r log n)−3/2,

which proves part (c).

To prove part (b), we approximate r and eliminate it from the expression given in

part (c). Recall the definition of r

r =
b

4a

(√
1 +

8ak

b2 log n
− 1

)
=

k

b log n
− 2ak2

b3(log n)2
+O

(
k3

(log n)3

)
(4.8)

so k/2 ≤ br log n ≤ 2k for n sufficiently large and

f(r) = f(0) +O(r) = 1 +O(k/ log n)

and the expression from part (c) becomes

nar
2+br

rk
1√

2π(4ar2 + br) log n

(
1 +O

(
1

k
+

k

log n

))
.
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Using the identity ar2 + br
2 −

k
2 logn = 0 and (4.7) the main term rearranges to

n
k

2 logn
+ br

2 r−k√
2π(2k − br log n)

=
(b log n)keke

− ak2

b2 logn
+O( k3

(logn)2
)√

2π(k + 2ak2

b2 logn
+O( k3

(logn)2
)

(
k − 2ak2

b2 log n
+O

( k3

(log n)2

))−k

=
(b log n)kek

kk
√

2πk
e
− ak2

b2 logn

(
1 +O(

k

log n
+

k3

(log n)2
)

)(
1− 2ak

b2 log n
+O

( k2

(log n)2

))−k
=

(b log n)k

k!
e

ak2

b2 logn

(
1 +O

(1

k
+

k

log n
+

k3

(log n)2

))
.

Here we have used (1 − x + O(y))−k = exk(1 + O(kx2 + ky)) when kx2, ky � 1. Finally,

we may leave out the k
logn term because 1

k + k3

(log)2
≥ k

logn .

4.4 Proofs of Theorems

The proofs proceed by applying Lemmas 4.2 and 4.3 to Proposition 4.1.

4.4.1 Proof of Theorem 4.1

Suppose χ2 6= χ0. We shall apply Lemma 4.2 to the polynomial

pn(z) =
1

z
M−z(n, χ) = −

∑
f∈Mn

χ(f)(−z)Ω(f)−1 =
∑
k≥1

(−1)kπk(n, χ)zk−1

so that (−1)kπk(n, χ) is the coefficient of zk−1. Actually, this isn’t entirely correct because

pn(z) isn’t of the form required by Lemma 4.2. By Proposition 4.1, it is a sum over ρ of

terms of the required form. However, it is clear from the proof of Lemma 4.2 that we can

apply it to each summand separately which is what we shall do. So in our application of

Lemma 4.2 to the summand ρ from Proposition 4.1, we may take A = q1/2−ε and have

a = mρ > 0 and

f(z) =
1

z

F−z(ρ, χ)c−zρ
Γ(zmρ)

= mρ

F−z(ρ, χ)c−zρ
Γ(1 + zmρ)

.

Then Theorem 4.1 follows after using

f((k − 1)/(a log n)) = f(0) +O(k/ log n) = mρ +O(k/(log n)).

4.4.2 Proof of Theorem 4.3

Suppose χ2 = χ0. With the same pn(z) as in the proof of Theorem 4.1, this time we need

Lemma 4.2 and Lemma 4.3 parts (a) and (b). Again, strictly speaking we shouldn’t be
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able to apply these lemmas directly as stated but it is clear from the proofs that we may

apply them to each summand in Proposition 4 separately. For the ρ 6= ±q−1/2 terms we

apply Lemma 4.2 just as above. For the ρ = ±q−1/2 terms we apply Lemma 4.3 part (a)

in the range 1 ≤ k ≤ (log n)1/2 and part (b) in the range 1 ≤ k ≤ (log n)2/3 with a = 1/2,

b = m± + 1/2 and

f(z) =
E−z(±q1/2, χ)c−z±

(
φ(M)
2degM

)z(z+1)/2

zΓ(zm± + z(z + 1)/2)

= (m± + (z + 1)/2)
E−z(±q1/2, χ)c−z±

(
φ(M)
2degM

)z(z+1)/2

Γ(1 + zm± + z(z + 1)/2)

so that f(0) = m± + 1/2.

4.4.3 Proof of Theorems 4.2 and 4.4

Suppose mj = 1 for each j and m± = 0. This time we apply Lemma 4.2 and Lemma 4.3

part (c) to the same pn(z) using Proposition 4.1. For χ2 6= χ0 and Theorem 4.2 we just

apply the proof of Theorem 4.1 and the approximation

f((k − 1)/(log n)) = f(α) + o(1).

We see therefore that hj(α) = F−α(ρ, χ)c−αρ /Γ(1 + α) where ρ = αj(χ)−1. Also, in the

case that mρ = 1, it follows from the definition of cρ given in the proof of Proposition 4.1

that cρ = −ρL′(ρ, χ).

For χ2 = χ0 and Theorem 4.4, we have the two extra terms ρ = ±q−1/2. We can

evaluate these with Lemma 4.3 part (c) applied with a = b = 1/2 and

f±(z) =
E−z(±q1/2, χ)c−z±

(
φ(M)
2degM

)z(z+1)/2

zΓ(z(z + 1)/2)
.

Then r > 0 satisfies

r2 +
r

2
− k − 1

log n
= 0.

Since k(n) → ∞ as n → ∞ we also have r log n → ∞ as n → ∞. To finish the proof of

Theorem 4.4 it therefore suffices to show that for some coefficient h±(α) we have

nr
2/2+r/2

rk−1

f±(r)√
2π(2r2 + r/2) log n

= (h±(α) + o(1))
(log n)k−1

(k − 1)!
nb((k−1)/ logn) (4.9)
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where b is defined by (4.3). This is a simple calculation using the definition of r and

Stirling’s formula. The left hand side of (4.9) is

(log n)k−1

(k − 1)!

(k − 1)!

(r log n)k−1

f±(r)√
2π(k − 1)( logn

k−1 r
2 + 1)

n
r
4

+ k−1
2 logn

=
(log n)k−1

(k − 1)!

(k − 1)!ek−1

(k − 1)k−1

f±(r)√
2π(k − 1)( logn

k−1 r
2 + 1)

n
r
4
− k−1

2 logn
+ k−1

logn
log( k−1

r logn
)

= (h±(α) + o(1))
(log n)k−1

(k − 1)!
nu(

s−1
2
−log(2s))

by Stirling’s formula where u = (k − 1)/ log n and s = r
2u . Now s is the positive root of

the quadratic equation

s2 +
s

4u
− 1

4u
= 0

so

u =
1− s
4s2

and

s =
1

8u

(
−1 +

√
1 + 16u

)
from which it follows that 0 ≤ s ≤ 1 This proves (4.9) for some explicit h±(α) with b

defined by (4.3) since α = limn→∞ u. Finally, it is easy to check the conditions on the

sign of b(α) by noting that s−1
2 − log(2s) is strictly decreasing on (0, 1) and equal to 0 at

s = β where β is the unique solution to β−1
2 = log(2β) with 0 ≤ β ≤ 1.



Chapter 5

The Möbius exponential sum in Fq[t]

This chapter is based on [28].

In 1991, Baker and Harman proved, under the assumption of the generalized Riemann

hypothesis, that maxθ∈[0,1)

∣∣∣∑n≤x µ(n)e(nθ)
∣∣∣�ε x

3/4+ε. The purpose of this chapter is to

deduce an analogous bound in the context of polynomials over a finite field using Weil’s

Riemann Hypothesis for curves over a finite field. Our approach is based on the work of

Hayes who studied exponential sums over irreducible polynomials.

Acknowledgements. We are grateful to Pierre Bienvenu for pointing out a mistake in

an earlier version of our proof of Theorem 5.1.

5.1 Introduction

Let µ be the Möbius function and write e(θ) = e2πiθ. Baker and Harman [4] proved under

the assumption of the generalized Riemann hypothesis that for all ε > 0,

max
θ∈[0,1)

∣∣∣∣∣∣
∑
n≤x

µ(n)e(nθ)

∣∣∣∣∣∣�ε x
3
4

+ε. (5.1)

It is conjectured that (5.1) holds for all ε > 0 with 3
4 replaced by 1

2 . The best unconditional

result is due to Davenport [9] who showed that for all A > 0

max
θ∈[0,1)

∣∣∣∣∣∣
∑
n≤x

µ(n)e(nθ)

∣∣∣∣∣∣�A
x

(log x)A
.

In this chapter we deduce an analogue of (5.1) for the polynomial ring Fq[t]. First, let

us go through some definitions required to state the result. The function field analogue

of the real numbers is the completion of the field of fractions of Fq[t] with respect to the
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norm defined by

|f/g| =


qdeg f−deg g if f 6= 0

0 otherwise.

This completion is naturally identified with the ring of formal Laurent series Fq((1/t)) =

{
∑

i≤j xit
i : xi ∈ Fq, j ∈ Z}. The norm defined above is extended to x =

∑
i≤j xit

i ∈

Fq((1/t)) by setting |x| = qj where j is the largest index with xj 6= 0. The analogue of

the unit interval is T := {
∑

i<0 xit
i : xi ∈ Fq}, and is a subring of Fq((1/t)).

Define the additive character ψ : Fq → C× by

ψ(x) = e(tr(x)/p),

where tr : Fq → Fp is the usual trace map and p is the characteristic of Fq. Define also

the exponential map eq : Fq((1/t))→ C× by

eq(x) = ψ(x−1).

Now let µ denote the Möbius function on the ring Fq[t] defined to be (−1)k if f is the

product of k distinct irreducibles and 0 otherwise. Let φ(f) be the size of the unit group

(Fq[t]/(f))×, that is |f |
∏
ω|f (1 − 1/|ω|), where the product is over all monic irreducibles

dividing f . Finally, let π(n) be the number of monic, irreducible polynomials of degree

n and recall the prime number theorem in the form
∑

d|n dπ(d) = qn. All sums over

polynomials are sums over monic polynomials.

Theorem 5.1. Suppose n ≥ 3. Then

max
θ∈T

∣∣∣∣∣∣
∑
f∈Mn

µ(f)eq(fθ)

∣∣∣∣∣∣ ≤ 4q
3n+1

4

(
3
√

3
2

)n
.

Remark. It follows that for all ε > 0 and q large enough with respect to ε we have

max
θ∈T

∣∣∣∣∣∣
∑
f∈Mn

µ(f)eq(fθ)

∣∣∣∣∣∣ ≤ 4q( 3
4

+ε)n.

Our proof of Theorem 5.1 will follow the strategy of Hayes employed in his study of
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the exponential sum ∑
ω∈Pn

eq(ωθ).

We note that Bienvenu and Lê have independently derived a similar result to Theorem 5.1

in [5]. Their Theorem 9 corresponds to our Lemma 5.1 and their Theorem 11 closely

resembles our Theorem 5.1.

5.2 Lemmas

Whilst investigating the distribution of irreducible polynomials over Fq, Hayes [17] intro-

duced certain congruences classes on M defined as follows. Let s ≥ 0 be an integer and

g ∈ Fq[t]. We define an equivalence relation Rs,g on M by

a ≡ b mod Rs,g ⇔ g divides a− b and

∣∣∣∣ a

tdeg a
− b

tdeg b

∣∣∣∣ < 1

qs

It is easy to check that this is indeed an equivalence relation and that for all c ∈M,

a ≡ b mod Rs,g ⇒ ac ≡ bc mod Rs,g

so we can define the quotient monoid M/Rs,g. Hayes showed that an element of Fq[t] is

invertible modulo Rs,g if and only if it is coprime to g and that the units of this quotient

monoid form an abelian group of order qsφ(g) which we denote R∗s,g = (M/Rs,g)× . Given

a character (group homomorphism) χ : R∗s,g → C we can lift this to a character of M by

setting χ(f) = 0 if f is not invertible modulo Rs,g. Associated to each such character is

the L-function L(u, χ) defined for u ∈ C with |u| < 1/q by

L(u, χ) =
∑
f∈M

χ(f)udeg f =
∏
ω∈P

(1− χ(ω)udegω)−1.

When χ is a non-trivial character it can be shown, as we have already seen in the case

that χ is a Dirichlet character, that L(u, χ) is a polynomial that factorises as

L(u, χ) =

d(χ)∏
i=1

(1− αi(χ)u)

for some d(χ) ≤ s+ deg g−1 and each αi(χ) satisfies |αi(χ)| = 1 or
√
q. This follows from

Weil’s Riemann Hypothesis and appears to have been first proved by Rhin in [31].



5.2. Lemmas 82

When χ = χ0 is the trivial character we have

L(u, χ0) =
∑
f∈M

(f,g)=1

udeg f =
∑
f∈M

udeg f
∏
ω|g

(1− udegω) =
1

1− qu
∏
ω|g

(1− udegω).

Lemma 5.1. Let χ be a character modulo R∗s,g and deg g ≤ n/2. Then

∣∣∣∣∣∣
∑
f∈Mn

µ(f)χ(f)

∣∣∣∣∣∣ ≤

(
n+s+deg g−2
s+deg g−2

)
qn/2 if χ 6= χ0(

n+r−1
r−1

)
(q + 1) if χ = χ0

where r is the number of distinct irreducible divisors of g.

Remark. The bound for χ0 is smaller than the one for χ 6= χ0 when n ≥ 3 because deg g

is an upper bound for r and for n ≥ 3

(q + 1)

(
n+ deg g − 1

n

)
≤
(
n+ deg g − 2

n

)
qn/2.

Proof. Suppose first that χ 6= χ0. Then

∑
f∈M

χ(f)µ(f)udeg f = L(u, χ)−1 =

d(χ)∏
i=1

(1− αi(χ)u)−1 =
∑
n≥0

 ∑
r1+···rd(χ)=n

0≤ri≤n

d(χ)∏
i=1

αi(χ)ri

un.

Comparing coefficients and using the triangle inequality we get

∣∣∣∣∣∣
∑
f∈Mn

χ(f)µ(f)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑

r1+···+rd(χ)=n
0≤ri≤n

d(χ)∏
i=1

αi(χ)ri

∣∣∣∣∣∣∣∣ ≤
(
n+ d(χ)− 1

d(χ)− 1

)
qn/2

≤
(
n+ s+ deg g − 2

s+ deg g − 2

)
qn/2.

When χ = χ0 is the principal character

L(u, χ0)−1 = (1− qu)
∏
ω|g

(1 + udegω + u2 degω + · · · ).

If we write ω1, ω2, . . . , ωr for the distinct irreducible divisors of g then we get, by equating
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coefficients again,∣∣∣∣∣∣
∑
f∈Mn

χ0(f)µ(f)

∣∣∣∣∣∣ ≤
∑

ai∈Z≥0∑
1≤i≤r ai degωi=n

1 + q
∑

ai∈Z≥0∑
1≤i≤r ai degωi=n−1

1

≤ (q + 1)
∑

bi∈Z≥0∑
1≤i≤r bi=n

1

= (q + 1)

(
n+ r − 1

r − 1

)
.

Lemma 5.2. For each θ ∈ T there exist unique coprime polynomials a, g ∈ Fq[t] with g

monic and deg a < deg g ≤ n/2 such that

∣∣∣∣θ − a

g

∣∣∣∣ < 1

q
n
2

+deg g
.

Proof. See Lemma 3 from [27].

Lemma 5.3. Let θ ∈ T and let a, g be the unique polynomials defined as in Lemma 5.2

with respect to θ and n. Set s = n− [n2 ]− deg g. For any f1, f2 ∈M of degree n such that

f1 ≡ f2 mod Rs,g we have

eq(f1θ) = eq(f2θ).

Proof. See Lemma 5.2 from [17].

Lemma 5.4. Suppose g ∈ Fq[t] is square-free. Then

∑
d|g

1

qdeg d
≤ (1 + logq(deg g))e.

Proof. Order the monic irreducibles ω1, ω2, . . . , ωr dividing g and the monic irreducibles

P1, . . . in Fq[t] in order of degree (and those of the same degree arbitrarily). Define N

by the inequalities
∑

degP≤N−1 degP < deg g ≤
∑

degP≤N degP. Then g has at most∑
1≤k≤N π(N) irreducible factors. Therefore, since degPi ≤ degωi, we have

∑
d|g

1

qdeg d
≤
∏
ω|g

(
1 +

1

qdegω

)
≤

∏
degP≤N

(
1 +

1

qdegP

)
=

∏
1≤k≤N

(
1 +

1

qk

)π(k)

.
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Using π(k) ≤ qk

k this is bounded by

∏
1≤k≤N

(
1 +

1

qk

) qk

k

≤
∏

1≤k≤N
e

1
k ≤ e1+logN = Ne.

Now we bound N in terms of deg g as follows

deg g >
∑

degP≤N−1

deg p =
∑

1≤k≤N−1

π(k)k ≥
∑
k|N−1

π(k)k = qN−1

by the prime number theorem in Fq[t]. This gives N ≤ 1 + logq deg g which completes the

proof of the Lemma.

5.3 Proof of Theorem 5.1

Let θ ∈ T and choose g and s as in Lemma 5.3. We start by giving an explicit description

of a set a representatives for the equivalence relation Rs,g. It is not hard to show that

Ss,g = {t[
n
2

]gb1 + b2 | deg b1 = s, b1 monic, deg b2 < deg g}

is such a set. Furthermore,

S∗s,g = {t[
n
2

]gb1 + b2 | deg b1 = s, b1 monic, deg b2 < deg g, (b2, g) = 1}

defines a set of reduced representatives modulo Rs,g. See [17] Lemma 7.1 for details.

Then by Lemma 5.3 and the orthogonality of characters modulo R∗s,g we can write

∑
f∈Mn

µ(f)eq(fθ) =
∑
b∈Ss,g

∑
f∈Mn

f≡b mod Rs,g

µ(f)eq(fθ)

=
∑
d|g

∑
b∈Ss,g
(g,b)=d

eq(bθ)
∑
f∈Mn

f≡b mod Rs,g

µ(f)

=
∑
d|g

∑
b∈Ss,g/d
(g/d,b)=1

eq(bdθ)
∑

f∈Mn−d
f≡b mod Rs,g/d

µ(fd)

=
∑
d|g

∑
b∈S∗

s,g/d

eq(bdθ)
∑

f∈Mn−d

1

qsφ(g/d)

∑
χ mod R∗

s,g/d

χ(b)χ(f)µ(fd).
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Notice that µ(fd) = µ(f)µ(d)χd(f) where χd(f) is the trivial character modulo R∗s,d.

We can therefore rewrite the above as

=
∑
d|g

µ(d)

qsφ(g/d)

∑
χ mod R∗

s,g/d

 ∑
b∈S∗

s,g/d

eq(bdθ)χ(b)


 ∑

deg f=n−deg d

µ(f)χχd(f)

 .

Now χ is a character modulo R∗s,g/d and χd is a character modulo R∗s,d. Therefore,

χχd is a character modulo R∗s,g, and so using the triangle inequality and Lemma 5.1 we

can bound this in absolute value by

qn/2
∑
d|g

g square-free

1

qs+deg d/2φ(g/d)

(
n− deg d+ s+ deg g − 2

s+ deg g − 2

) ∑
χ mod R∗

s,g/d

∣∣∣∣∣∣
∑

b∈Ss,g/d

eq(bdθ)χ(b)

∣∣∣∣∣∣
We bound the Gauss sum over χ mod R∗s,g/d in the standard way using the Cauchy–

Schwarz inequality and Parseval’s identity as follows

∑
χ mod R∗

s,g/d

∣∣∣∣∣∣
∑

b∈Ss,g/d

eq(bdθ)χ(b)

∣∣∣∣∣∣ ≤
 ∑
χ mod R∗

s,g/d

1
∑

χ mod R∗
s,g/d

∣∣∣∣∣∣
∑

b∈Ss,g/d

eq(bdθ)χ(b)

∣∣∣∣∣∣
2


1/2

=

qsφ(g/d)
∑

b1,b2∈Ss,g/d

eq(d(b1 − b2)θ)
∑

χ mod R∗s,g

χ(b1)χ(b2)

1/2

=

(qsφ(g/d))2
∑

b1=b2∈S∗s,g/d

eq((b1 − b2)θ)


1/2

= (qsφ(g/d))3/2.

Recall that s+ deg g = n− [n2 ] ≥ n/2 so that

(
n− deg d+ s+ deg g − 2

s+ deg g − 2

)
≤
(

2n− [n2 ]− 2

n− [n2 ]− 2

)
.

We can bound this binomial coefficient using the fact that for all positive integers k,

√
2πkk+ 1

2 e−k+ 1
12k+1 < k! <

√
2πkk+ 1

2 e−k+ 1
12k .

This precise form of Stirling’s formula is due to Robbins [32]. It follows that if k = [n2 ]
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then

(
2n− [n2 ]− 2

n− [n2 ]− 2

)
<

(
3k

k

)
<

1√
2π
e

1
36k
− 1

12k+1
− 1

24k+1
(3k)3k+ 1

2

kk+ 1
2 (2k)2k+ 1

2

<
1√

4πk/3

(
3
√

3
2

)2k
.

Putting it all together with φ(g/d) ≤ qdeg g−deg d and Lemma 5.4 we get∣∣∣∣∣∣
∑
f∈Mn

µ(f)eq(fθ)

∣∣∣∣∣∣ ≤ qn/2 1√
2π(n− 1)/3

(
3
√

3
2

)n∑
d|g

(qsφ(g/d))1/2

qdeg d/2

≤ qn−
1
2

[n
2

]
(1 + logn

log q )e√
2π(n− 1)/3

(
3
√

3
2

)n
and Theorem 5.1 easily follows after a short numerical calculation.



Chapter 6

Coefficients of irreducible polynomials

The first section of this chapter is based on [30].

Many theorems concerning the existence of irreducible polynomials over a finite field

of a special form have been proved. A discussion of such results can be found in [39].

In this chapter we will prove some new results in this direction. Section 6.1 contains a

function field analogue of Maynard’s celebrated result about primes with restricted digits.

That is, for certain ranges of parameters n and q, we prove an asymptotic formula for the

number of irreducible polynomials of degree n over a finite field Fq whose coefficients are

restricted to lie in a given subset of Fq. In Section 6.2 we prove an asymptotic formula

for the number of irreducible polynomials over Fq whose coefficients satisfy some given

linear equation. This may be regarded as a function field analogue of a famous result by

Mauduit-Rivat [20] who showed that the sum of digits of rational primes written in a given

base is equidistributed in arithmetic progressions. Our result answers (a generalisation of)

Problem 1.1 from [39] and Open Problem 18 from [26], Section 4.4 for polynomials of degree

at least 25.

6.1 Missing coefficients

6.1.1 Introduction

In this section we will prove a function field analogue of a result of Maynard [21] concerning

primes with missing digits. He proved that for large enough integers b, the primes have

the expected asymptotic density inside those integers that can be written in base b using

only certain specified digits. We will prove the following natural analogue of this result for

polynomials in Fq[t], explaining afterwards why it gives the ‘expected asymptotic density’.

Theorem 6.1. Let R ⊂ Fq be a subset of size s and assume that s is less than
√
q/2.



6.1. Missing coefficients 88

Suppose that q ≥ 500 and n ≥ 100(log q)2. The number of irreducible, monic polynomials

of degree n with coefficients only from Fq\R (except possibly the leading 1) is given by

q

q − 1

(q − s)n

n

(
Λ +O

(
q−n

1/2/7
))

,

where

Λ =


1 if 0 ∈ R

1− 1
q−s if 0 /∈ R.

Let us take a moment to explain why the constant Λ is entirely to be expected. If

0 /∈ R, then restricting the coefficients of f to lie in Fq\R increases the chance that

f(0) = 0 relative to those f chosen uniformly from Mn. Now f(0) = 0 implies that t

divides f , and therefore f is not prime. Conversely, if 0 ∈ R then f is more likely to be

such that f(0) 6= 0, and is therefore more likely to be prime. It is reasonable to suspect

that this is the only real affect restricting the coefficients to lie in Fq\R has on the chance

of f being prime (at least for large n and/or q). In other words, it is reasonable to expect

that

P(f ∈ Pn | coefficients of f /∈ R) ≈ P(f ∈ Pn | f(0) /∈ R).

By Bayes’ theorem and the polynomial version of Dirichlet’s theorem mod t, this is equal

to

P(f ∈ Pn)

P(f(0) /∈ R)
P(f(0) /∈ R | f ∈ Pn) ≈ 1

n
· 1
q−s
q

·


q−s
q−1 if 0 ∈ R

q−s−1
q−1 if 0 /∈ R

=
q

q − 1
· Λ

n
.

Since there are (q − s)n monic polynomials of degree n whose coefficients come only from

Fq\R, this explains the formula appearing in Theorem 6.1.

Remark. Beyond stipulating that s <
√
q/2, the constraints on the sizes of s, q and n in

Theorem 6.1 are somewhat artificial, and were chosen with the aim of producing a more

presentable error term. A more complicated, but more widely applicable error term is

presented at the end of Section 6.1.4 from which the following two examples follow.

Example 6.1. In the special case of s = 1, we get an asymptotic formula for any q ≥ 17. In

particular, we show that the number of irreducible polynomials of degree n with a single

coefficient from F17 unavailable is asymptotic to Λ16
17(16)n/n as n→∞.
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Example 6.2. An asymptotic formula still holds in the case of fixed n and q →∞ provided

that s = o(q1/2).

As in the integer setting, we can take s to be larger when the set R has additional

structure. For example, in Section 6.1.5 we will prove the following.

Theorem 6.2. Suppose δ > 0 and p is a prime sufficiently large in terms of δ. Then for

any subset R = {r, r+1, . . . , r+s−1} ⊂ Fp of s consecutive coefficients with p−s > p3/4+δ,

the number of irreducible, monic polynomials of degree n with coefficients only from Fp\R

(except possibly the leading 1) is given by

p

p− 1

(p− s)n

n

(
Λ +O

(
e−cn

1/2
))

,

for some positive constant c depending on p and δ.

The integer version of Theorem 6.1 was proved in [21] under the assumption that

the number of restricted digits s satisfies s ≤ b1/4−δ and the base b is sufficiently large

in terms of δ. An analogue of Theorem 6.2 was proved under the assumption that R =

{0, 1, . . . , s − 1} and s ≤ b − b3/4+δ. The proofs of Theorems 6.1 and 6.2 will use the

circle method over Fq[t] along the lines of [15] and [21]. Two features make our arguments

substantially simpler. First, we may make use of Weil’s Riemann hypothesis for curves

over a finite field which gives very good control for exponential sums over irreducibles.

Second, we do not have to deal with any technicalities which arise from the fact that

sometimes digits are ‘carried’ when rational integers are added. This doesn’t happen with

polynomials over a finite field.

For an overview of digit related results in the integers, see the recent work of Diet-

mann, Elsholtz and Shparlinski [11] which also contains a section on finite fields, improving

an earlier result of Dartyge, Mauduit and Sárközy [8]. See also [25], which contains an

extensive list of references to related problems.

6.1.2 Definitions and set up

We now define a few objects we will make use of in addition to those concepts defined in

the previous chapters. Let R = {r1, . . . , rs} ⊂ Fq be a subset of forbidden coefficients. We

are interested in counting elements of Pn, all of whose coefficients, apart from possibly the

leading 1, are in the set Rc := Fq\R.
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Fix a Haar measure on the additive group T normalised so that
∫
T dx = 1. Then for

all a ∈ Fq[t], we have ∫
T

eq(ax)dx =


1 if a = 0

0 if a 6= 0.

For x ∈ T, define the sum over monic irreducible polynomials of degree n

P̂n(x) =
∑
ω∈Pn

eq(ωx).

LetMR(n) be the set of monic polynomials of degree n with non-leading coefficients taken

from Rc and define

SR(x) =
∑

m∈MR(n)

eq(mx).

So SR(x) depends on n even though this is not apparent from the notation. The main

quantity of interest, the number of irreducible polynomials in MR(n), is then given by

N(R, n) =

∫
T
P̂n(x)SR(x)dx. (6.1)

We will make use of the important fact that for each x ∈ T, there exist unique a, g ∈ Fq[t]

with g monic, a and g coprime, and |a| < |g| ≤ qn/2 such that

∣∣∣∣x− a

g

∣∣∣∣ < 1

qdeg g+n/2
.

This fact is Lemma 3 from [27]. It implies that we can partition T into the so-called Farey

arcs as

T =
⋃

|a|<|g|≤qn/2
(a,g)=1

F
(
a

g
, qdeg g+n/2

)

where F
(
a
g , λ

)
= {x ∈ T :

∣∣a
g − x

∣∣ < 1
λ}.

6.1.3 Lemmas

The sum P̂n(x) was analysed in [17]. Our first lemma is Lemma 5 in [27] and is a conse-

quence of Weil’s Riemann Hypothesis for curves over a finite field.

Lemma 6.1. Let a, g ∈ Fq[t] be two polynomials with (a, g) = 1 and γ ∈ T, satisfying
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|a| < |g| ≤ qn/2 and |γ| < 1/qdeg g+n/2. We have

P̂n
(
a

g
+ γ

)
=
µ(g)

φ(g)
π(n)eq(γt

n)1|γ|<1/qn + E

with |E| ≤ qn−
1
2

[n
2

].

For a subset A ⊂ Fq, define the Fourier coefficient 1̂A(r) :=
∑

n∈A ψ(nr). It turns

out that the average value of |SR(x)| can be written quite neatly in terms of the Fourier

coefficients of the set Rc.

Lemma 6.2. ∫
T
|SR(x)|dx =

1

q

∑
r∈Fq

|1̂Rc(r)|

n

.

Proof. First

SR(x) =
∑

m∈MR(n)

eq(mx)

= eq(xt
n)

n−1∏
i=0

 ∑
ni∈Rc

eq(xnit
i)


= eq(xt

n)

n−1∏
i=0

 ∑
ni∈Rc

ψ(nix−i−1)

 .

Notice that |SR(x)| only depends on the leading n coefficients (x−1, . . . , x−n) of x and so,

for each a ∈ Fq[t], |SR(a/tn + γ)| is constant in the range |γ| < 1/qn, a set of measure

1/qn. Therefore,
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∫
T

∣∣SR(x)
∣∣dx =

1

qn

∑
deg a<n

∣∣SR ( a
tn

) ∣∣
=

1

qn

∑
deg a<n

∣∣∣∣∣∣
n−1∏
i=0

∑
ni∈Rc

ψ(nian−i−1)

∣∣∣∣∣∣
=

1

qn

∑
deg a<n

n−1∏
i=0

∣∣∣1̂Rc(an−i−1)
∣∣∣

=
1

qn

∑
r∈Fq

∣∣∣1̂Rc(r)∣∣∣
n

which completes the proof of the lemma.

Corollary 6.1. ∫
T
|SR(x)|dx ≤ (

√
s+ 1− 2s/q)n,

with equality in the case s = 1.

Proof. Notice that

1̂Rc(r) + 1̂R(r) =
∑
n∈Fq

ψ(rn) =


q if r = 0

0 if r 6= 0.

And hence,

∑
r∈Fq

|1̂Rc(r)| =
∑

r∈Fq\0

|1̂R(r)|+ |q − 1̂R(0)| =
∑
r∈Fq

|1̂R(r)|+ q − 2s.

It therefore suffices to show that
∑

r∈Fq |1̂R(r)| ≤ q
√
s. By the Cauchy–Schwarz inequality,

∑
r∈Fq

|1̂R(r)|

2

≤

∑
r∈Fq

1

∑
r∈Fq

∣∣∣∣∣∑
n∈R

ψ(rn)

∣∣∣∣∣
2


= q
∑
r∈Fq

∑
n1,n2∈R

ψ(r(n1 − n2)).

By swapping the order of summation we see that the total contribution from the terms

with n1 6= n2 is 0. The terms n1 = n2 contribute q2s as required.
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The next lemma is similar to Lemma 7 from [27].

Lemma 6.3. Let a, g ∈ Fq[t] be coprime polynomials with |a| < |g| and g not a power of

t and let d = deg g > 0. Then

∣∣∣∣SR(
a

g
)

∣∣∣∣ ≤ (q − s)n−[n
d

]s[n
d

].

Proof. Write a/g =
∑

i<0 xit
i and let z be the number of non-zeros amongst the xi in the

range −n ≤ i ≤ −1. Then, by our expression for SR(a/q) from the start of the proof of

Lemma 6.2 we have that

|SR(a/g)| = (q − s)n−z
n−1∏
i=0

x−i−1 6=0

∣∣∣∣∣∣
∑
ni∈R

ψ(nix−i−1)

∣∣∣∣∣∣ ≤ (q − s)n−zsz

by the triangle inequality. Since q − s ≥ s, it suffices to show that z ≥ [nd ]. We use proof

by contradiction. Suppose z ≤ [nd ] − 1. Then, by the pigeonhole principle, there is some

string of at least d consecutive zeros in (x−n, . . . , x−1). Hence, |{tra/g}| ≤ 1/qd+1 for

some integer r ≥ 0 where {x} =
∑

i<0 xit
i denotes the fractional part of x. But this is a

contradiction since g does not divide tra so we must have |{tra/g}| ≥ 1/qd.

Lemma 6.4. For d ≤ n/2 we have

∑
deg a<deg g≤d

(a,g)=1

∣∣∣∣SR(ag
)∣∣∣∣ ≤ (q − s)n−2d(q(1 +

√
s)− 2s)2d.

Proof. For any integer Y and x ∈ T, define

SYR(x) =
∑

m∈MR(Y )

eq(mx)
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so that SR(x) = SnR(x). Then

|SnR(x)| =

∣∣∣∣∣∣
n−1∏
i=0

∑
ni∈Rc

ψ(nix−i−1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Y−1∏
i=0

∑
ni∈Rc

ψ(nix−i−1)

n−1∏
i=Y

∑
ni∈Rc

ψ(nix−i−1)

∣∣∣∣∣∣
=
∣∣∣SYR(x)Sn−YR (xtY )

∣∣∣ .
Applying this with Y = 2d gives

∑
deg a<deg g≤d

(a,g)=1

∣∣∣∣SR(ag
)∣∣∣∣ =

∑
deg a<deg g≤d

(a,g)=1

∣∣∣∣S2d
R

(
a

g

)
Sn−2d
R

(
t2da

g

)∣∣∣∣
≤ max

deg a<deg g≤d
(a,g)=1

∣∣∣∣Sn−2d
R

(
t2da

g

)∣∣∣∣ ∑
deg a<deg g≤d

(a,g)=1

∣∣∣∣S2d
R

(
a

g

)∣∣∣∣
≤ (q − s)n−2d

∑
deg a<deg g≤d

(a,g)=1

∣∣∣∣S2d
R

(
a

g

)∣∣∣∣ ,

where we have used the trivial bound |Sn−2d
R (x)| ≤ (q − s)n−2d. Notice that S2d

R (a/g + γ)

is constant in the range |γ| < 1/q2d and recall that the Farey arcs F(a/g, q2d) are disjoint.

Therefore

1

q2d

∑
deg a<deg g≤d

(a,g)=1

∣∣∣∣S2d
R

(
a

g

)∣∣∣∣ =
∑
a,q

∫
F(a/g,q2d)

∣∣∣∣S2d
R

(
a

g
+ γ

)∣∣∣∣ dγ ≤ (
√
s+ 1− 2s/q)2d

by Corollary 6.1 where the sum is over all distinct fractions a/g with deg g ≤ d.

We make use of the following simple bound which is similar to Lemma 5.4 from the

previous chapter.

Lemma 6.5. For each g ∈ Fq[t] we have

qdeg g

φ(g)
=
∏
ω|g

(
1− 1

qdegω

)−1

≤ (1 + logq(deg g))e2.

Proof. Arrange the monic, irreducibles ω1, . . . , ωr dividing g and the monic irreducibles

P1, . . . in Fq[t] in order of degree (ordering those of the same degree arbitrarily). Then we
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must have that degPi ≤ degωi. Now, for some N , we have that
∑

P :degP≤N−1 degP <

deg g ≤
∑

P :degP≤N degP . This implies that g has at most π(N) irreducible factors, and

so, since degPi ≤ degωi we have

∏
ω|g

(1− q− degω)−1 ≤
∏

P :degP≤N
(1− q− degP )−1.

Taking the logarithm of the right hand side, and using the fact that − log(1 − 1
x) ≤ 1

x−1

for x > 1, and that
∑

d|r dπ(d) = qr so π(r)r ≤ qr − 1 for r > 1 we get

∑
P :degP≤N

− log(1− q− degP ) ≤
∑
r≤N

π(r)

qr − 1
≤ q

q − 1
+

∑
2≤r≤N

1

r
≤ 2 + logN.

Now N is bounded in terms of deg g as follows,

deg g >
∑

P :degP≤N−1

degP =
∑

r≤N−1

π(r)r ≥
∑
r|N−1

π(r)r = qN−1,

and hence N ≤ 1 + logq deg g. Combining these inequalities gives the result.

6.1.4 Proof of Theorem 6.1

Recall that our aim is to evaluate N(R, n) =
∫
T P̂n(x)SR(x)dx. Now each x ∈ T can be

written as a/g + γ for unique a, g, γ as in Lemma 6.1 which allows us to write

N(R, n) =

∫
T
SR(x)

(
µ(g)

φ(g)
π(n)eq(γt

n)1|γ|<1/qn + E

)
dx,

where |E| ≤ qn−
1
2

[n
2

] uniformly. The error term is bounded by using Corollary 6.1 as

∣∣∣∣∫
T
SR(x)Edx

∣∣∣∣ ≤ qn− 1
2

[n
2

](
√
s+ 1− 2s/q)n. (6.2)

We can write what’s left as

∫
T
SR(x)

µ(g)

φ(g)
π(n)eq(γt

n)1|γ|<1/qndx =
∑
a,g

∫
F(a/g, qn)

SR

(
a

g
+ γ

)
µ(g)

φ(g)
π(n)eq(γt

n)dγ

where the sum is over all distinct fractions a/g such that deg g ≤ n/2. These are the

so-called major arcs.
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Since |γ| < 1/qn, from the definition we get

SR

(
a

g
+ γ

)
=

∑
m∈MR(n)

eq(am/g)eq(mγ) = eq(γt
n)SR

(
a

g

)

and therefore, since the integrand is constant on each of these major arcs which have

measure 1/qn the contribution becomes

π(n)

qn

∑
a,g

SR

(
a

g

)
µ(g)

φ(g)
. (6.3)

Let us first analyse the terms with g = 1 and g = t, that is, look at

M =
π(n)

qn

SR(0) +
∑
b∈Fq\0

SR

(
b

t

)
µ(t)

φ(t)

 .

The g = 1 term gives SR(0) = (q − s)n. Using our expression for SR( bt ) from the start of

the proof of Lemma 6.2, the terms g = t are

∑
b∈Fq\0

SR( bt ) = (q − s)n−1
∑
b∈Fq\0

∑
n∈Rc

eq(
nb
t ) = −(q − s)n−1

∑
b∈Fq\0

∑
r∈R

ψ(br).

Using ∑
b∈Fq\0

ψ(br) =


q − 1 if r = 0

−1 if r 6= 0,

this becomes 
−(q − s)n if 0 ∈ R

(q − s)n−1s if 0 /∈ R.

Hence, since µ(t) = −1 and φ(t) = q − 1 we have

M =
π(n)

qn

(q − s)n − 1

q − 1

∑
b∈Fq\0

SR(b/t)


=

qΛ

q − 1
π(n)(1− s/q)n,
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where

Λ =


1 if 0 ∈ R

1− 1
q−s if 0 /∈ R.

Using π(n) ≤ qn/n, the remaining terms in (6.3) are bounded by

1

n

∑
1≤deg g≤n/2

g 6=t

|µ(g)|
φ(g)

∑
deg a<deg g

(a,g)=1

∣∣∣∣SR(ag
)∣∣∣∣ .

Let U be some parameter 1 ≤ U ≤ n/2 to be specified shortly. Grouping the g according

to their degree and using Lemma 6.3 for the terms with d = deg g ≤ U and Lemmas 6.4

and 6.5 for the terms with deg g > U we get

∑
1≤deg g≤n/2

g 6=t

|µ(g)|
φ(g)

∑
deg a<deg g

(a,g)=1

∣∣∣∣SR(ag
)∣∣∣∣

≤
∑

1≤d≤U
qd(q − s)n−[n

d
]s[n

d
] + e2

∑
U<d≤n/2

q−d(q − s)n−2d(q(1 +
√
s)− 2s)2d(1 + logq(d))

= (q − s)n
 ∑

1≤d≤U
qd
(

s

q − s

)[n
d

]

+ e2
∑

U<d≤n/2

qd
(

1 +
√
s− 2s/q

q − s

)2d

(1 + logq(d))


� (q − s)n

(
n

(
qU
(

s

q − s

)n/U
+ qU/2

(√
s+ 1− 2s/q

q − s

)U))

We have trivially bounded the first sum. The bound for the second sum follows after using

1 + logq(d) ≤ n and bounding the resulting geometric sum using s ≤ √q/2 so that

√
q(
√
s+ 1− 2s/q)

q − s
≤
q/2 +

√
q

q −√q/2
< 1

for q ≥ 11. Taking U = (2n/5)1/2 and using s ≤ √q/2 this becomes

� (q − s)n

n
q√ 2

5
n

(
q1/2

2q − q1/2

)√
5
2
n

+ q

√
1
10
n

(
q1/4/

√
2 + 1

q − q1/2/2

)√
2
5
n



� n(q − s)nq−n1/2/(2
√

10),

since
√

2
5−

1
2

√
5
2 = − 1

2
√

10
and

√
1
10−

3
4

√
2
5 = − 1

2
√

10
. Combining this with our expression
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for the main term M and error estimate (6.2) we get

N(R, n) =
q

q − 1

(q − s)n

n
(Λ +O (nE)) (6.4)

where

E � q−n
1/2/(2

√
10) +

(
q3/4(s1/2 + 1)

q − s

)n
. (6.5)

Since s ≤ √q/2, we then have

E � q−n
1/2/(2

√
10) +

(
q/
√

2 + q3/4

q −√q/2

)n
. (6.6)

A calculation reveals that for n ≥ 100(log q)2, the first expression is larger then the second

when q ≥ 500 and that both are � q−n
1/2/7/n which completes the proof of Theorem 6.1.

Remark. The conditions on the sizes of s, q and n were made in order to simplify the

statement of Theorem 6.1 but (6.5) is also interesting for other choices. For example,

when n is fixed, we have that E → 0 as q →∞ provided s = o(q1/2).

Recall that in the special case s = 1, we have equality in Corollary 6.1. Feeding this

through the rest of the proof gives

E � q−n
1/2/(2

√
10) +

(
q3/4(2− 2/q)

q − 1

)n
.

For q ≥ 17, the expression in the brackets is less than 1 which proves nE → 0 as n → ∞

in this case.

6.1.5 Proof of Theorem 6.2

Our proof of Theorem 6.2 is the same as Theorem 6.1 except that we use modified versions

of Corollary 6.1 and Lemma 6.3 which we will now prove. In this section, we assume that

p is a prime, R ⊂ Fp is subset of consecutive coefficients and use the same notation already

introduced.

Corollary 6.2. ∫
T
|SR(x)|dx ≤ (log p+ 1− s/p)n.
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Proof. Write R = {d, d+ 1, . . . , d+ s− 1}, then, if r = 0, |1̂Rc(r)| = p− s, and if r 6= 0,

|1̂Rc(r)| =

∣∣∣∣∣
d+s−1∑
k=d

e2πikr/p

∣∣∣∣∣ =

∣∣∣∣∣1− e2πisr/p

1− e2πir/p

∣∣∣∣∣ ≤ 1

| sinπr/p|
.

Therefore,

∑
r∈Fp

|1̂Rc(r)| ≤ p− s+

p−1∑
r=1

1

| sinπr/p|
< p− s+ 2

p−1
2∑

r=1

p

2r
< p− s+ p log p.

Now use Lemma 6.2.

Consequently, the bound in Lemma 6.4 is replaced by (p− s)n−2d(p(log p+ 1)− s)2d.

Lemma 6.6. Let a, g ∈ Fp[t] be coprime polynomials with |a| < |g| and g not a power of

t and let d = deg g > 0. Then

|SR(a/g)| ≤ (p− s)ne−[n
d

] 1
p3 .

Proof. As in the proof of Lemma 6.3 we have

|SR(a/g)| = (p− s)n−z
n−1∏
i=0

x−i−1 6=0

∣∣∣∣∣∣
∑
ni∈R

e2πi(nix−i−1)/p

∣∣∣∣∣∣ .
For x ∈ Fp\{0}, we have

∣∣∣e2πix
p
n

+ e
2πix

p
(n+1)

∣∣∣2 = 2 + 2 cos(
2πx

p
) < 4e−2/p2 ,

and therefore ∣∣∣∣∣∣
∑
ni∈R

e2πi(nix−i−1)/p

∣∣∣∣∣∣ ≤ p− s− 2 + 2e−1/p2 ≤ (p− s)e−1/p3 .

Recalling from the proof of Lemma 6.3 that z ≥ [n/d] completes the proof.

Provided p is large enough to ensure that
√
p(log p+1−s/p)

p−s < 1 (so the resulting geo-

metric sum we saw earlier converges) we may just insert these new bounds into the proof
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of Theorem 6.1 to get (6.4) with

E � pUe
−[ n

U
] 1
p3 +

(√
p(log p+ 1− s/p)

p− s

)U
+

(
p3/4(log p+ 1− s/p)

p− s

)n

for some parameter U . Taking U = cn1/2, and since we are assuming p− s > p3/4+δ, this

proves Theorem 6.2 for some c > 0 sufficiently small in terms of p and δ.
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6.2 Linear forms in coefficients

Let n ≥ 3 be an integer and for any L = (L0, . . . , Ln−1) ∈ Fnq , define the sum-of-coefficients

function SL :Mn → Fq of f(t) = tn + fn−1t
n−1 + · · ·+ f0 to be

SL(f) =
∑

0≤i≤n−1

Lifi.

The main result of this section is that

#{f ∈ Pn | SL(f) = r} =
qn−1

n
Λ +O(qn−

1
2

[n
2

])

for some (possibly zero) number Λ. This number, Λ, depends on the closest rational

approximation b/h to
∑

0≤i≤n−1
Li
ti+1 in the field of fractions Fq(t) with deg h ≤ n/2. The

precise statement of our Theorem is therefore slightly technical.

Theorem 6.3. Let L = (L0, . . . , Ln−1) ∈ Fnq \{0}n and r ∈ Fq. Define L̃ =
∑

0≤i≤n−1
Li
ti+1

and let b/h =
∑

i<0 θit
i be the unique rational function with |b| < |h| ≤ qn/2, (b, h) = 1

and h monic such that |L̃− b/h| < 1/qdeg h+n/2. (Recall that b and h are uniquely defined

by these properties.) Then

#{f ∈ Pn | SL(f) = r} =
π(n)

q
Λ +O(qn−

1
2

[n
2

])

where

Λ =


1 if |L̃− b/h| ≥ 1/qn

1 + µ(h)
φ(h) (q − 1) if |L̃− b/h| < 1/qn and r = −θ−n−1

1− µ(h)
φ(h) if |L̃− b/h| < 1/qn and r 6= −θ−n−1

The implied constant may be taken to be 1.

6.2.1 Existence result

The following problem was posed by Tuxanidy and Wang in [39]:

Problem. Let n ≥ 2. For what elements r ∈ Fq and subsets A ⊂ {0, 1, . . . , n − 1} can we

find irreducible polynomials f(t) = tn +
∑

0≤i≤n−1 fit
i such that

∑
i∈A fi = r?

They solve this problem in the case q = 2 by proving that such an irreducible exists

provided (A, r) 6= ({0}, 0) or ({0, 1 . . . , n−1}, 1). If (A, r) did equal ({0}, 0) or ({0, 1 . . . , n−

1}, 1), then any f with
∑

i∈A fi = r would be divisible by t or t + 1 respectively and so



6.2. Linear forms in coefficients 102

would not be irreducible. For general q, we see that for each a ∈ Fq, divisibility by t − a

is equivalent to the coefficients of f satisfying some linear equation. In particular, f is

divisible by t− a if and only if f(a) = an +
∑

0≤i≤n−1 a
ifi = 0.

Theorem 6.3 can be used to show that these linear forms arising from divisibility by

linear factors are the only obstructions to the existence of irreducible polynomials with

prescribed sums of coefficients. By specialising to the case Li ∈ {0, 1}, this answers the

problem posed above when q ≥ 3 and n ≥ 25.

Theorem 6.4. Supose q ≥ 3 and n ≥ 25 and use the same notation as in Theorem 6.3.

� If L 6= (v, vu, vu2, . . . , vun−1) for all u, v ∈ Fq then

#{f ∈ Pn | SL(f) = r} > 0 for all r ∈ Fq.

� If L = (v, vu, vu2, . . . , vun−1) for some u, v ∈ Fq then

#{f ∈ Pn | SL(f) = r} > 0 if and only if r 6= −vun.

Proof. For each L there is a unique monic h of degree at most n/2 such that

|L̃ − b/h| < 1/qdeg h+n/2. We will split the proof into the three cases deg h ≥ 2 ,

deg h = 1 and h = 1.

Case 1: deg h ≥ 2.

It follows from Theorem 6.3 that for any r and any L,

#{f ∈ Pn | SL(f) = r} ≥ π(n)

q

(
1− q − 1

φ(h)

)
− qn−

1
2

[n
2

]

≥ π(n)

q

(
1− 1

q − 1

)
− qn−

1
2

[n
2

].

Using the explicit inequality π(n) ≥ qn

n − 2 q
n/2

n , this is > 0 for all n ≥ 25.

Case 2: deg h = 1.

Say, h = t− u where u ∈ Fq and b = v ∈ Fq\{0}, then we have

L̃ =
∑

0≤i≤n−1

Li
ti+1

=
v

t− u
+ δ = v

(
1

t
+
u

t2
+
u2

t3
+ · · ·

)
+ δ,
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for some δ with |δ| < 1/qn/2+1. If |δ| ≥ 1/qn, then Theorem 6.3 implies

#{f ∈ Pn | SL(f) = r} ≥ π(n)

q
− qn−

1
2

[n
2

] > 0.

Otherwise δ < 1/qn, and so Li = vui for all 0 ≤ i ≤ n− 1. Since θ−n−1 = vun, Theorem

6.3 then says

#{f ∈ Pn | SL(f) = r} =


π(n)
q

(
1 + µ(h)

φ(h) (q − 1)
)

+O(qn−
1
2

[n
2

]) if r = −vun

π(n)
q

(
1− µ(h)

φ(h)

)
+O(qn−

1
2

[n
2

]) if r 6= −vun

=


O(qn−

1
2

[n
2

]) if r = −vun

π(n)
q−1 +O(qn−

1
2

[n
2

]) if r 6= −vun.

In fact, #{f ∈ Pn | SL(f) = −vun} = 0 because SL(f) = −vun implies vf(u) =

SL(f) + vun = 0 so t− u divides f .

Case 3: h = 1.

In this case, we can argue as above that |L̃| < 1/qn implies L = 0, which we are not

allowing. Hence we have |L̃| ≥ 1/qn and so

#{f ∈ Pn | SL(f) = r} ≥ π(n)

q
− qn−

1
2

[n
2

] > 0.

6.2.2 Proofs

Fix an L = (L0, . . . , Ln−1) ∈ Fnq \{0}n and define the polynomials b and h and the rational

functions L̃ =
∑

0≤i≤n−1
Li
ti+1 and the coefficients θi by b/h =

∑
i<0 θit

i all as in the

statement of Theorem 6.3. Note that all of these quantities only depend on L. For α ∈ T

and k ∈ Fq, define the following exponential sums

P̂n(α) =
∑
f∈Pn

eq(fα)

FL,k(α) =
∑
f∈Mn

ψ(kSL(f))eq(fα)

GL(k) =
∑
f∈Pn

ψ(−kSL(f)).

We first reduce the problem to understanding GL(k).
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Lemma 6.7.

#{f ∈ Pn | SL(f) = r} =
1

q

∑
k∈Fq

ψ(kr)GL(k).

Proof. By the orthogonality of characters the left hand side is

∑
f∈Mn

Pn(f)1SL(f)=r =
∑
f∈Mn

Pn(f)
1

q

∑
k∈Fq

ψ(k(r − SL(f)))

which is equal to the right hand side.

Next, we rewrite GL(k) using P̂n(α) and FL,k(α).

Lemma 6.8.

GL(k) =

∫
T
P̂n(α)FL,k(α)dα.

Proof. Again, expanding and using orthogonality both sides are equal to

∑
f,g∈Mn

Pn(f)ψ(−kSL(g))

∫
T

eq ((f − g)α)) dα.

As for the problem of missing coefficients from Section 6.1, it turns out we have quite

a nice analytic description for the exponential sum over our polynomials with special

coefficients, FL,k(α).

Lemma 6.9. For α ∈ T write α =
∑

i<1 αit
i.

1

qn
FL,k(α) =


ψ(α−n−1) if α−i−1 = −kLi for all 0 ≤ i ≤ n− 1

0 otherwise .

Proof.

FL,k(α) =
∑
f∈Mn

ψ(kSL(f))eq(fα) =
∑
f∈Mn

ψ

k ∑
0≤i≤n−1

fiLi +
∑

0≤i≤n−1

fiα−i−1 + α−n−1


= ψ(α−n−1)

∑
f∈Mn

ψ

 ∑
0≤i≤n−1

fi(kLi + α−i−1)


= ψ(α−n−1)

∏
0≤i≤n−1

∑
ni∈Fq

ψ (ni(kLi + α−i−1))


= ψ(α−n−1)

∏
0≤i≤n−1

(
q1α−i−1+kLi=0

)
.
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We will shortly see how to combine Lemmas 6.8 and 6.9 with Lemma 6.1 concerning

the sum over primes to get the following final Lemma.

Lemma 6.10.

GL(k) = λπ(n) +O(qn−
1
2

[n
2

])

where

λ =


1 if k = 0

1|L̃−b/h|<1/qn
µ(h)
φ(h)ψ (kθ−n−1) if k 6= 0.

Before we prove this final Lemma, let us see how it implies Theorem 6.3.

Proof. (Of Theorem 6.3).

#{f ∈ Pn | SL(f) = r} =
1

q

∑
k∈Fq

ψ(kr)GL(k) (by Lemma 6.7)

=
π(n)

q

1 +
µ(h)

φ(h)
1|L̃−b/h|<1/qn

∑
k∈Fq\{0}

ψ (k(r + θ−n−1))


+O

(
qn−

1
2

[n
2

]
)

(by Lemma 6.10)

=
π(n)

q

(
1 +

µ(h)

φ(h)
1|L̃−b/h|<1/qn

(
q1θ−n−1=−r − 1

))
+O(qn−

1
2

[n
2

]).

Proof. (Of Lemma 6.10).

For any α ∈ T, there are unique a, g, γ satisfying the conditions of Lemma 6.1. It

therefore makes sense to write

GL(k) =

∫
T
P̂n(α)FL,k(α)dα (by Lemma 6.8)

= qn
∫
T
ψ (−α−n−1) 1α∈ΩL,k

(
µ(g)

φ(g)
π(n)eq(γt

n)1|γ|<1/qn + E

)
dα

where ΩL,k = {α ∈ T : α−i−1 = −kLi for all 0 ≤ i ≤ n − 1} by Lemmas 6.1 and 6.9.

Now, ΩL,k is a set of measure 1/qn and therefore, using |E| ≤ qn−
1
2

[n
2

] and the triangle

inequality, we get

GL(k) = π(n)qn
∫
T

µ(g)

φ(g)
ψ (γ−n−1 − α−n−1) 1α∈ΩL,k1|γ|<1/qndα+O(qn−

1
2

[n
2

]).
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Let us focus on the integral

∫
T

µ(g)

φ(g)
ψ (γ−n−1 − α−n−1) 1α∈ΩL,k1|γ|<1/qndα.

Recall that L̃ =
∑

0≤i≤n−1
Li
ti+1 and notice that ΩL,k = F(−kL̃, qn). The key point is that

L̃ is contained in the unique Farey arc F(b/h, qdeg g+n/2) and that the integral is over the

intersection of two open balls F(−kb/h, qn) ∩ F(−kL̃, qn).

Since | · | is an ultrametric, any point in an open ball is a centre of that ball. Therefore

there are two cases. Either |L̃ − b/h| ≥ 1/qn, in which case this intersection is empty.

Or else |L̃ − b/h| < 1/qn, in which case F(−kb/h, qn) = F(−kL̃, qn) and so the region

of integration is a set of measure 1/qn. On this set we have α = −kb/h + γ and so

γ−n−1 − α−n−1 = kθ−n−1. Hence the integrand is constant over the region of integration

and equal to µ(h)
φ(h)ψ (kθ−n−1) . This completes the proof of Lemma 6.10.

6.2.3 Multiple forms

We end this section with a suggestion and line of enquiry for further work concerning the

existence of irreducible polynomials whose coefficients satisfy multiple linear constraints.

Fix an L = (Lij) ∈ Fn×mq of full rank and define functions L̃j =
∑

0≤i≤n−1
Lij
ti+1 for

1 ≤ j ≤ m. Let r ∈ Fmq . Define also the exponential sums

FL,k(α) =
∑
f∈Mn

ψ(−k · SL(f))eq(fα)

GL(k) =
∑
f∈Pn

ψ(k · SL(f)).

Everything presented above for the m = 1 case goes through the same and we end up

with the following result.

Theorem 6.5. Let L = (Lij) ∈ Fn×mq and r ∈ Fmq . Define L̃j =
∑

0≤i≤n−1
Lij
ti+1 and let

b/h =
∑

i<0 θit
i be the unique rational function with |b| < |h| ≤ qn/2, (b, h) = 1 and h

monic such that |k · L̃− b/h| < 1/qdeg h+n/2. Then

#{f ∈ Pn | SL(f) = r} =
π(n)

qm

∑
k∈Fmq

µ(h)

φ(h)
1|k·L̃−b/h|<1/qn

ψ (k · r + (b/h)−n−1) +O(qn−
1
2

[n
2

])

where the implied constant may be taken to be 1.
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This main term here can also be written as

π(n)

qm

∑
deg b<deg h

(b,h)=1
h monic

µ(h)

φ(h)

∑
k∈Fmq

|k·L̃−b/h|<1/qn

ψ (k · r + (b/h)−n−1) .

It would be interesting to know when this “main term” is actually positive. In particular,

we saw that the obstruction to the existence of irreducibles with coefficients satisfying

a single given linear condition came from the fact that certain linear constraints came

from a divisibility condition on a linear polynomial. Perhaps the existence of irreducibles

with coefficients satisfying m given linear conditions comes from divisibility conditions

concerning polynomial of degree up to m. This may be a worthwhile avenue for further

investigation.
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