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Abstract _________________________________________________________________

Abstract

Most ABX3 materials (where A is a lA  group cation, B is a divalent first row 

transition metal cation and X is a halide ion) possess a hexagonal perovskite structure 

where chains of face sharing BXô octahedra align along the c -  axis separated by the 

A ions. This results in an interchdin separation that is much larger than the intrachain 

separation leading to a quasi one-dimensional magnetic behaviour at low temperature. 

The magnetic character of the compounds is strongly dependent on the nature and 

strength of the superexchange pathways and the environment around the B^ ion, 

manipulation of which leads to new and interesting physics. The structural properties 

of the ABX3 materials allow them to be used as model systems for a variety of 

conjectures. The chain like structure allows compounds such as CsNiCl3 and RbNiCl3 

to be used as model systems for the Haldane conjecture, whilst the triangular 

arrangement of the spins on the B^^ ions allows compounds such as CsMnBr3 to be 

used as model systems for the Chiral Universality class conjecture of Kawamura.

This thesis is concerned with the investigation of the crystallographic and magnetic 

properties of some the ABX3 family of compounds by means of neutron scattering; 

specifically to observe the effects of extreme sample environment on the systems, 

such as applied hydrostatic pressure, applied magnetic and electric field etc. 

Magnetostructural correlations have been made for CsFeC^ and CsFeBr3 on the basis 

of inelastic and powder neutron diffraction studies on the systems under pressure. 

Characterisation of the p and y-phase of KNiCb have been performed using inelastic 

neutron diffraction measurements and the magnetic and structural phase diagrams of 

TlFeCh have also been mapped out. The magnetic phase diagram of CsNiCl3 has 

been studied and a proof of the existence of a magnetoelectric effect in CsMnBr3 has 

been obtained from elastic neutron scattering experiments.
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1 Introduction

1 Introduction

In the last few decades, the study of low-dimensional magnetic materials and 

especially their phase transitions and magnetic excitations has increased enormously. 

Since the 1975 review by de Jongh and Miedema entitled ‘Experiments on simple 

magnetic model systems' ̂  many more materials have been synthesised possessing 

magnetic properties which could be described by the model magnetic Hamiltonian:

^ s ' j + s <  r  s :  s ]  (1)
ij ^

where J  denotes the superexchange constant and Sx, Sy and Sz are the spatial spin 

components. We can distinguish between two types of interaction in the above 

Hamiltonian; the ferromagnetic exchange: where J  > 0, and the antiferromagnetic 

exchange: where J < 0 .  The form of the interaction depends strongly on the number of 

spatial spin components. The fully isotropic case known as the Heisenberg model has 

Jx = Jy = J ,̂ Due to crystal field effects an anisotropy can be introduced, 

approximating a system with one or two spatial spin components: known as the Ising 

case and the XY case, respectively. As such, one can define a spin dimensionality n:

n = 1(7), J z ^  0, Jx, Jy = 0  Ising system

n = 2(XY), Jx, J y ^ 0 , J z  = 0  XY system

n = 3(77). Jx, =Jy, = J z^O  Heisenberg system

A full description of each type of system mentioned above is supplied later in Chapter 

2.2. In real compounds intermediate systems are formed between those given above. 

Since the de Jongh and Miedema review, the research field of magnetic model 

systems has grown enormously^’̂ ’"̂. The increased understanding of the statistical 

physics of the model Hamiltonians aided by increased computational power have 

resulted in the discovery of new aspects of low dimensional physics e.g. the magnetic 

ordering process in the different types of magnetic lattices and their co-operative 

magnetic excitation behaviour^. The development of neutron scattering techniques 

and the availability of high flux pulsed neutron sources have also made it possible to
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test and investigate the theoretical predictions by measuring the magnetic cross 

section S(Q,co) over an extended part of reciprocal space, as can be seen below, where 

the dispersion curve of CSVCI3, (a) and KCuF^, (b) are given as examples.

(a) (b)
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Figure 1 : The magnetic dispersion curves for (a) the S=3/2 chain compound 
CsVCb^ and (b) the S=l/2 chain compound KCuF^^

In order to fully describe the magnetic behaviour of a system one must also take into 

account its structural dimensionality (d). Many more materials have been synthesised 

in which lattice dimensionality is used to create low dimensional magnetic behaviour, 

e.g. the early days of co-ordination chemistry provided many model systems, such as 

M"(Htrz)2(CNS)2^. This field has evolved into the area of supramolecular systems 

with the aim of tailor made materials^’ The discovery of high-Tc superconductivity 

led to the reinvestigation of the magnetism of materials with isostructural properties to 

those described by de Jongh and Miedema'. The field of research evolved further into 

the investigation of the giant magneto resistance ABX3 systems. These properties 

were again found in a series of oxide materials already known from the early sixties. 

Their crystal structures are directly related to the ABX3 cubic perovskite structure e.g. 

Lai-xSrxMn03 (/ = 00), Lai_xSrxMn04 (/ = 1) and Lai.xSrxMn20v (/ = 2 )" , where / is 

the number of layers. These crystal structures give rise to well organised long range 

3D magnetism or short range 2D magnetic order. These phases are known as the 

Ruddelsden Popper phases'^.
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n=1 n=2

o  Mn La,Sr

n=inf.

Figure 2: Structure of the Lai ^Sr^MnO), Lai xSr%Mn0 4  and Lai ^Sr^MniO? 
compounds^ \

More recently, it has been recognised that the magnetic long range order can be 

disturbed by the geometry of the crystal lattice. Also, depending on the magnetic 

character of the system, one can observe so called magnetic frustration effects'^. 

These effects are present in the magnetic ordering of systems crystallising with 

magnetic lattices in the form of a triangular lattice with z = 6, for spin n =  1,2, where 

z is the lattice coordination number of the nearest magnetic neighbours. Similar 

effects are found in the Kagome l a t t i c e (z = 4) and a tetrahedron network e.g. the 

pyrochlore lattice'** {z = 4).

Figure 3: Basic structure of the triangular, kagome and tetragonal arrays.
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The effects of the spin dimensionally, lattice dimensionality and additional frustration 

can be directly observed in the critical behaviour around the phase transition 

temperature. Phase transitions of the order - disorder type are characterised by an 

order parameter that decreases towards zero with increasing temperature. At a first 

order phase transition the order parameter changes discontinuously whereas at a 

second order phase transition the change in order parameter is continuous upon 

approaching the phase transition from the disordered phase. The magnetic 

susceptibility Ôji /ÔH becomes infinite while the magnetic correlation length, 

diverges.

In a real system the singularity behaviour of a particular thermodynamic quantity is 

limited to a particular region of the phase transition known as the critical region. 

Within this critical region the thermodynamic function f(e) often depends on the 

reduced temperature e(T -  Tc) / Tc as f(e) = Ae^(l+B£^ + ...), where A and B are 

constants and x  is the critical exponent. The concept and nature of the different 

critical exponents is elaborated upon in Chapter 2. We can say however, that near Tc, 

f(e) can be described by a power law ~ Ae* and the value of x can be obtained from a 

‘log -  log’ plot of the intensity versus the reduced temperature. The critical exponents 

are dependent on the spin dimensionality n, and the system dimensionality d.

Each critical exponent can be expressed as a linear function of two other exponents 

through the laws of scaling the seven scaling relations between the nine critical 

exponents are given below:

Y = Y 
a  = a '

V =  v '

Y = ( 2 - ti)v 

a  = 2(l - P ) - y  

a  = 2 - v d

5 = (J + 2 - ti) / ( Z > - 2  + ti)

Because the critical exponents are dependent on n, and d, equivalent relationships can 

be found for many dissimilar systems and are often found experimentally to have
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universal values such as the 2D Ising system where P =0.125 and y = 1.75 or the mean 

field predictions of p = Vi and y = 1. These values give us a method of categorising 

systems into different universality classes, a topic which is further elaborated on in 

Chapter 2. This allows us to predict the behaviour of the system at its phase transition 

just armed with knowledge regarding its universality classification. In general, mean 

field theory is not valid to describe a phase transition because of the neglect of very 

short range fluctuations. It was shown by Ginzberg, that it was generally inadmissible 

to neglect fluctuations with wavelength < The importance of short wavelength 

fluctuations assumes greater importance for reduced lattice dimensionality, since the 

energy content of the fluctuations will be confined to less degrees of freedom. The 

modem renormalisation group theory description of critical phenomena takes the 

fluctuations of smaller wavelengths < ^ into account^

However, it has also been demonstrated by simulation and experimental data that, 

depending on the symmetry and spatial geometry within a magnetically ordered

phase, the actual symmetry can be lowered (e.g. by chiral ordering) and new

universality classes may be identified. Thus, it also gives a way to investigate the 

changes in critical behaviour by observing the magnetic ordering of materials with

specific geometry, symmetry and electronic state whilst inducing changes in these

systems by applying electric field (£), magnetic field (H) and external pressure (P). 

The study of differences in the parameters in the Hamiltonian often results in the 

study of a series of isostructural materials where the changes are induced by the 

different crystallographic parameters of the materials in question. Similar changes can 

be induced by the application of hydrostatic or uniaxial pressure on a system.

The existence of spin chirality is still a hotly debated issue. Its existence has been 

investigated in this thesis by studying the ABX3 halides using several different routes; 

e.g. the application of external parameters such as electric and magnetic field and 

hydrostatic pressure using elastic neutron diffraction as a probe. For the weak Ising 

compound CsNiClg we show a transition to chiral ordering by an application of a 

magnetic field along the ab plane, (in the spin flop phase the magnetic structure is of 

the 1 2 0 ° type)
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Using symmetry arguments Plumer et a lP  suggested that the application of an 

electric field could remove the chirality ordering in the ABX3 ternary halides. 

Experimental evidence for this magnetoelectric effect is presented for the compound 

CsMnBra. Plumer et al?^ also suggested that a similar chiral ordering should be 

observed in the distorted triangular lattice. We have tested this prediction for the 

distorted hexagonal perovskite structures of the y - phase of TlFeClg, in this case we 

introduced applied pressure to the system in order to influence the structural 

parameters. A test for the existence of chiral order has also been carried out in the P 

and y - phases of the distorted hexagonal perovskite KNiClg.

Triangular 120° type magnetic ordering is also induced by an applied electric field: H  

// c axis, in the singlet ground state antiferromagnet material CsFeBrs. The critical 

behaviour of the sublattice magnetisation along the phase boundary has been studied 

at mK temperatures with applied fields up to 6  Tesla.

Quasi one-dimensional magnetic materials also show interesting and unexpected 

magnetic excitations. For example, magnetic soliton motion been observed in ferro as 

well as in antiferromagnetic chains e.g. CsNiFs and (CD3 )4NMnCl3 (TMMC). For 

CsNiCls^^ it was shown that the spin wave description of the magnetic excitation did 

not explain the observed energies and intensities. Haldane conjectured that the 

magnetic excitations of spins on a 1-D array are different for half integer and integer 

spin systems^^’̂ .̂ The dispersion of half integer (5 = 1/2, 3/2...) spin chains are 

gapless, while the integer spin chains (5 = 1, 2 ...) have a gap at the zone centre. This 

gap is related to a singlet —> triplet transition and has been observed in CsNiCl3 ^̂  and 

Ni(C2HgN2 )N0 2 C 1 0 4  (NENP)^" .̂ A schematic of the general phase diagram of the 

anisotropy (Heisenberg —> Ising) versus superexchange (A) for the integer 5 = 1  spin 

chains is given below^^. It shows the possible position for a number of interesting 

quasi one-dimensional 5 = 1  chain systems.
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RbFel

NENP, KNiCl.

HAF
A

Figure 4: Simplified schematic of the phase diagram for the Ising -  Heisenberg 
chain.

Line 6  in Figure 4 shows the energy of the gap of the 1-D system versus anisotropy. 

The gap energy rises steeply around D = 0. The gap energy in this region corresponds 

to the Haldane gap. At high D values this gap goes to zero, as D increases to greater 

than 1, the gap opens up again (see Figure 13, Chapter 2.2.1.1). Around the D = 1 

point, line 5 in Figure 4 refers to a transition from a singlet ground state to an induced 

moment state.

On the antiferromagnet exchange side (right side) of the phase diagram novel 

groundstates were predicted and subsequently found in materials such as NENP and 

the ANiCla halides. Experiments have shown that NENP, an S = 1 quasi 1-D system, 

shows a gap in the excitation spectrum around the zone centre at Q = 0, which persists 

down to low temperatures^"^. In this system the total superexchange (U )  is smaller 

than the crystal field anisotropy (D). The observed gap energies are well explained by 

Haldane’s predictions. However, for other systems shown in Figure 4, there are 

further complications, as in the case of CsNiClg where magnetic order takes place. In 

this case the superexchange is much larger than the anisotropy of the system. It was 

shown that the spinwave description of the magnetic excitations does not explain the 

observed energies and intensities of these excitations. CsNiClg has two modes present 

in the dispersion curve of the magnetic excitations; a linear mode which decreases to 

E = 0 at Q = 0, and a gap mode which is related to the longitudinal fluctuations which
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have a quantum mechanical origin. Very few materials are available to investigate the 

effect of different amounts of anisotropy on the S = 1 linear chain compounds. 

However a tuning of the gap mode is made possible by applying an external pressure 

on the system. In Appendix A, the dispersion of the magnetic excitations of the weak 

Ising like systems CsNiClg and RbNiClg under an applied hydrostatic pressure of 

5kbar are presented, these have not been treated and are given ‘as is’. The dispersion 

of the magnetic excitations in the XY like quasi one-dimensional linear chain 

compound KNiCls has also been investigated in its p and y - phases. These results are 

presented in Chapter 4.5.

The position of the quasi one-dimensional AFeXg compounds is also indicated on the 

phase diagram in Figure 4. In these materials one finds that the magnetism at low 

temperatures is governed by the singlet ground state and the low-lying doublet state. 

This can be described by an effective S = I Hamiltonian. The full spin moment is 

actually 5 = 2. The anisotropy in the AFeXg systems is much higher than that in the 

ANiX] ones^^. Singlet ground state (SGS) behaviour is observed in the CsFeX] (X = 

Cl, Br), whereas the RbFeX] compounds have an induced moment behaviour and the 

systems order magnetically at low temperature. This is due to the fact that in the 

CsFeX] compounds, D > S /  and for the RbFeXg compounds, D <1L J. The small 

differences apparent in the values of the anisotropy and intra- and interohdim 

superexchange is caused by the small variation in the structural parameters of the 

systems.

Applied hydrostatic pressure on the CsFeX] compounds has been explored as a means 

of inducing magnetic order in the system. A magneto-structural study of the systems 

is presented in Chapter 5. The dispersion of the magnetic excitations of CsFeClg and 

CsFeBrs are measured as a function of applied hydrostatic pressure (up to 5kbar) at 

low temperature (< 2K). The corresponding crystal structures are also determined by 

means of time-of-flight neutron diffraction measurements. Magnetic order can also be 

induced in these compounds by application of a magnetic field along the chain 

direction. In this case the low-lying doublet (m = ±1), is Zeeman split and for a 

sufficiently large field the lower doublet state (m = - 1 ), will approach and eventually 

cross the singlet state and thus the system will order magnetically in a 1 2 0 ° type
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structure. The dispersion of the magnetic excitations are studied for the Singlet 

Ground State (SGS) antiferromagnet CsFeBrs for very low temperatures (60mK) in 

the presence of a magnetic field (5T) and presented in Chapter 5.3. Up to the phase 

transition an accurate description of the dispersion is given by the theory of Lindgârd 

while in the ordered state the Dynamical Correlated Effective Field Approach 

(DCEFA) of Suzuki is preferred“ ’̂ ’’̂ *.

The thesis is arranged in the following order; Chapter 2 is presented as the theory 

chapter. Within this chapter structural and magnetic information is given on the 

diverse ABX3 family of compounds and reasons for studying them are elaborated 

upon. The chapter also contains the necessary neutron scattering theory for the reader 

to understand experimental evidence given in later chapters. As this thesis deals 

specifically with experiments on the ABX3 compounds, and as such, is an 

experimental thesis as opposed to a theoretical one. Chapter 3 gives information on 

the crystal growth and experimental methods employed in this thesis as well as 

individual specification of spectrometers and diffractometers used to collect data on 

the systems. The actual experimental results are presented and discussed in Chapters 4 

and 5. Chapter 4 deals with chirality order in the ABX3 compounds and Chapter 5 

looks at the SGS compounds CsFeCl3 and CsFeBr3 . A summary of results and a 

statement of further work is outlined in Chapter 6 . Finally, Appendix A deals with 

recent experimental findings from the magnetic excitations of the easy axis 

compounds CsNiCl3 and RbNiCl3 under applied hydrostatic pressure, as well as those 

in the p and y-phase of KNiCl3 at ambient pressure.
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2 Theory

This Chapter introduces the ABX3 halides and classifies them according to the 

strength of their chainar anisotropy. Each classification is elaborated upon and 

information is given on their structural and magnetic properties. The theory behind 

universality, critical phase transitions and the production and diffraction of neutrons is 

also given herein.

2.1 Second Order Phase Transitions.

In this thesis a series of magnetic materials are studied which show magnetic ordering 

upon the application of magnetic field, electric field or applied pressure or by the 

lowering of the temperature of the system. Systems which undergo a second order 

phase transition, i.e. a transition where the second derivative of the Gibbs free energy 

changes discontinuously are said to have undergone a critical phase or continuous 

phase transition. To explain the concept of critical behaviour at phase transitions it is 

probably best to consider the phase transition of a simple ferromagnetic system. The 

typical magnetisation, M, of a simple ferromagnet, under different temperature 

conditions follows the form of that given below. The behaviour can be described by 

simple molecular field theory, which can be found in many general physics textbooks. 

The relative magnetisation of the system (a  = M/Mo where Mo is the magnetisation at 

T = OK) is modelled by the equation:

o  = Bj
gH^(H + Xa)

kgT
(2)

where the Brillouin function Bj  is given by:

_ , \ 27 + 1 j 2 J  + l \  1 r  X "I
 coth  X  coth —

" ^ ^ 2 7  i  27 j  27 ( 2 7 ^
(3)
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Close to the phase transition a  is small and Bj  can be expanded in a power series of 

g/igAcr/ksT. In the first approximation:

= (4)

we see from this expansion that the transition to the paramagnetic phase (cr = 0 ) takes 

place at:

Just below Tc the magnetisation behaves according to:

a  = A ( ( T c - T ) / T c f  (6 )

where mean field theory predicts that P = 0.5. Similarly one can calculate the

magnetic susceptibility, % = M / H ,  above giving us:

X = A ' ( T - T J ^  (7)

where mean field theory predicts that y  = 1.0. A full breakdown of the critical

exponents and their meaning is given below in Table 1.
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Table 1: Definition and range of values for critical exponents encountered in 

Table 2 and Table 3.

Thermodynamic

Variable

Symbol Power Comments Typical values 

o f  exponents

Specific Heat at Ch ( T - T J ^ T >  T „ H = 0 -0.3 -  0.3

Constant field (T c -T )-" ' T < T „ H = 0 -0.3 -  0.3

Magnetisation M ( T , - T f T < T c , H = 0 0.1 - 0 .4

fjl/S T = T c 3 . 0 - 6 . 0

Susceptibility X ( T - T , f T >  T c , H= 0 1 . 3 - 1 . 4

T <  Tc, H= 0

Correlation ( T - T J ' T >  T c . H= 0 0.6 -  0.7

Length ( T , - T r ' T < T c , H = 0 0.6 -  0.7

The values of the critical exponents for magnetisation {p and Ô) and for correlation 

length (v) can be obtained by neutron scattering and the critical exponents for 

susceptibility (y) can be obtained from AC measurements. As has been mentioned in 

the Introduction, the critical exponents are linked by scaling laws. The values of the 

critical exponents allow us to establish the universality class of the system.

According to the universality hypothesis, second order phase transitions may be 

classified as belonging to a small number of universality classes. The class to which 

the system belongs depends on a small number of basic properties of the system:

• The spatial dimension of the system, (c? = 1,2 or 3 dimensional)

• The spatial dimension or symmetry of the order parameter, (Ising, XY and 

Heisenberg for w = 1,2 and 3 dimensions respectively)

• Whether the order parameter is short or long range.

This is rather astonishing as it represents quite a large generalisation. It implies that 

the nature of the microscopic interaction is irrelevant (aside from the last point). It 

also implies that for continuous transitions such as magnetic transitions, the critical 

exponents will be identical regardless of crystal structure.
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Therefore armed with the above knowledge, one can classify the universality of a 

system and thus define the universal qualities such as critical components, amplitude 

ratios and equations of state. If one concentrates on a standard bulk magnet, one sees 

that the universality of the system is basically determined by the symmetry of the 

order parameter. The critical properties associated with these n-component, 0(n), 

universality classes have been extensively studied and are well understood. The 

values for the critical exponents for the different standard models are given below.

Table 2: Critical exponent values for the standard universality classes
Standard

Model

Universality

Class

a P Y v A+/A-

Ising Z2 0.1098(29) 0.325(1) 1.2402(9) 0.6300(8) 0.55

XY SI -0.0080(32) 0.346(1) 1.3160(10) 0.6693(10) 0.99

Heisenberg S2 -0.1160(36) 0.3647(12) 1.3866(12) 0.7054(11) 1.36

However, there are systems which fail to be represented by the standard 0(«) 

universality classes, systems such as random magnets with quenched disorder (e.g. 

spin glasses). Other systems include those standard magnets with frustrated 

magnetism. The nature of frustrated magnets leads to quite new and exciting phase 

transitions to those of conventional unfrustrated magnets, as will be demonstrated in 

what follows.

In order to understand the concepts of the standard magnets with frustrated 

magnetism, let us consider a triangular lattice with antiferromagnetically coupled 

spins at each vertex. It is immediately apparent that the spins cannot conform to a 

collinear antiferromagnetic alignment, the stable spin configuration depends on the 

type of spin symmetry or number of spin components. In the case of the spins being 

confined to one dimension (called the Ising case) the ground state is not uniquely 

determined as can be seen below.
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Ü ?

Figure 5 : G round state spin configuration of 3 Ising spins on a triangle. 

F rustration  leads to a non-trivia! degeneracy of the ground state.

The spin on the unoccupied vertex cannot align antiparallel with both other spins 

simultaneously. If we allow the spins to move in either two or three dimensions {XY 

and Heisenberg cases, respectively) the spins will become canted. An interesting 

consequence of this canting can be seen in Figure 6. In the XY case there are now two 

degenerate solutions for the ground state. This degeneracy corresponds to the 2 

different chiral states. The concept of chirality was first introduced to magnetism by 

Villain^^ however, it was Kawamura^"'^' who first predicted that this extra 

degeneracy would lead to new and interesting physics.

(a) (b)

Figure 6: The twofold degenerate ground state for an XY antiferrom agnet on a 

triangular lattice, showing the two different chiral states (a) and  (h).

Kawamura conjectured that this chirality, in introducing an extra degeneracy would 

produce new universality classes, a conjecture that was (and still is) hotly disputed.
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It can be seen from Figure 6 , that a given chiral state cannot be transformed to the 

other chiral state via a global spin rotation in the XV  spin space. It is necessary to use 

global spin reflection to achieve this. One may assign a different chirality of plus (+) 

or minus (-) to (a) and (b) in the above figure. Thus the extra degeneracy provide by 

the chiral states manifests itself as a hidden Ising like degeneracy. In order to 

characterise these two chiral states it is convenient to introduce a scalar quantity, 

chirality^^,

3V3
É  [^, X 5,1 = -  S I S '  )=  I f )
{ij) 3V3 {ij)

(8)

where the sununation runs over the 3 spins depicted above. Kp = ± l  for the two spin 

configurations.

Looking at the Heisenberg case, we see that there is no longer a discrete chiral 

degeneracy as the different spin configurations can be transformed into one another 

by continuous spin rotation via the third dimension. However, a chirality vector can 

be defined as.

(9)

A similar chiral degeneracy may be observed in systems such as helimagnets and 2D 

and 3D stacked triangular lattice antiferromagnets, the spin structures of which are 

shown below.

Figure 7: Chiral degeneracy in the ordered state of the X Y  antiferromagnet, (a) 
and the X Y  helimagnet (b) on the triangular lattice.
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Kawamura first analysed the critical properties of systems known as stacked 

triangular lattice antiferromagnets (TLA’s), this being the antiferromagnetic stacking 

of the triangular lattice seen in Figure 7. Kawamura used the theoretical techniques of 

symmetry analysis and Monte Carlo simulation to show that due to this extra chiral 

degeneracy, TLA systems may belong to a new universality class. The critical 

exponent values obtained by Kawamura for his new universality class are listed below 

and can be compared with the standard universality class critical exponents in Table 

2 .

Table 3: Critical exponent values for the chiral universality classes.

Chiral Universality a P y V a Va -

Model Class

XY Z 2 x S l 0.34(6) 0.253(10) 1.13(5) 0.54(2) 0.36(2)

Heisenberg P3 0.24(8) 0.30(2) 1.17(7) 0.59(2) 0.54(2)

In order to investigate the Kawamura hypothesis it is necessary to find model systems 

with antiferromagnetic triangular lattice structures. Two such groups that satisfy this 

criteria are the BX2 and ABX3 halide families, where A is a lA  group cation, B is a 

divalent first-row transition metal cation and X is a halide anion. A wide variety of 

magnetic properties may be obtained by changing the B ion (due to the electronic 

changes induced) and the A and X ions (due to spatial changes). The different 

properties obtainable are due to the change in geometry and nature of the 

superexchange bridges, and the different electronic states induced by the crystal field 

levels for different types of B ion.

These systems generally crystallise in the hexagonal perovskite structure with space 

group Pbs/mmc. Chains of face-sharing BX^  octahedra aligned along the c-axis are

separated by the ions. This results in the interchsm separation being much larger 

than the /nrrachain separation, leading to a quasi one-dimensional magnetic behaviour 

at low temperature.
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Figure 8 : Schematic of the hexagonal perovskite structure, with the ions 

separating the infinite linear chains of BXl~ face-sharing octahedra, space 

group PéVmmc.

Figure 9: [0001] projection of hexagonal perovskite structure. The hexagonal 

stacking of the twinned-cuboctahedral AXn coordination polyhedra, which 

separates the infinite BX^ chains is shown.
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2.2 Heisenberg Triangular Antiferromagnets

This Chapter gives a brief overview of the family of Heisenberg triangular 

antiferromagnets. It introduces the systems reported on later in the thesis and acts as a 

reference point to the reader. It is by no means comprehensive and the interested 

reader is referred to the recent review by Collins and Petrenko^^

Figure 10: A schematic of the stacked triangular antiferromagnet lattice.

The stacked triangular antiferromagnet takes the form as that shown in Figure 10, it 

can be described with the following Hamiltonian:

d»f’ = j ' ^ S , S j  + r ' ^ S , S j (10)
1<J 1<J

Where J  is the exchange integral along the chains, J' is the exchange integral between 

the chains and D  is the single ion anisotropy. The first term represents the 

superexchange parameter along the chain, the second term represents the 

superexchange parameter in the basal plane, the third term is the single ion anisotropy
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and the final term is a representation of the Zeeman term of the spins in the presence 

of an externally applied magnetic field, H.

This Hamiltonian, depending on the value of the single ion anisotropy, D, can 

represent several different systems, each with its own unique character:

• If D = 0 then the system corresponds to the well known isotropic Heisenberg case. 

In actual fact no real triangular antiferromagnetic systems are perfectly 

Heisenberg in character, all have a degree of anisotropy inherent in the system. 

However, if D  is small in comparison to both J  and J ' then the system can be 

represented by the above Hamiltonian (except at very low temperatures, T < 

or near the critical point).

If D < 0, the anisotropy makes it energetically favourable for the spins to align 

parallel to the z-axis. This is what is known as the easy-axis or Ising type. This 

alignment breaks the isotropic symmetry of the Heisenberg case and leads to new 

and interesting physics.

Finally, if D > 0, the spins will align in the xy plane, known as the easy-plane 

type. The ordered state of this arrangement is the 120° type structure shown in 

Figure 6 , this state has a chiral degenerate ground state and, as such, is a good 

model system for the testing of the conjecture of Kawamura.

These cases will be further elaborated on in subsequent Chapters. Chapter 2.2.1 deals 

with the easy axis anisotropy case. Chapter 2.2.2 deals with the easy plane anisotropy 

case and in Chapter 2.2.3 we elaborate on the case of the distorted triangular lattice 

antiferromagnet.

2 .2 ./ Easy Axis Anisotropy: D  < 0

There are 5 compounds in the ABX3 family that show easy axis anisotropy. These are: 

CsNiCls, RbNiCl], CsNiBrg, RbNiBrs and CsMnlg. All are characterised by the space 

group Pbs/mmc at room temperature and all exhibit quasi one-dimensional behaviour
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due to the difference in the mfra-chain and inter-ch^m superexchange integrals. In all 

cases the value of the single ion anisotropy, D, is of the same magnitude as the intra­

chain exchange integral, J'. Both of the exchange interactions are antiferromagnetic in 

character. The {H, T) phase diagram of these systems is of the form shown in Figure 

11.

ÀHIIC
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Figure 11: Magnetic phase diagram of the Heisenberg triangular 

antiferromagnet with easy axis anisotropy for H  H c

At low temperature and magnetic field the spins form the previously mentioned 

triangular structure, with the c-axis in the plane of the triangle, however, the magnetic 

anisotropy attempts to pull the spins into alignment in the basal plane, thus giving a 

slightly distorted 120° type structure. For a classical system the angle 0, which the 

spins make with the Ising (c) axis, is given by the formula:

C O S 0  =
1

2 (1 -h D /67 ’) ’
-D  < 6r (11)
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It can be seen that at -D  = 6J' the system changes to a collinear structure where all 

spins are parallel to the c-axis. Between Tm and Tnj there exists the collinear structure 

which disintegrates to the paramagnetic phase above Tni. Applying a magnetic field 

parallel to the c-axis causes the spin to flip into the ab plane at a critical field He (the 

spin-flop field). This spin-flop phase takes place as soon as the Zeeman energy 

exceeds the Ising anisotropy energy, see for example Figure 135. Thus the spin-flop 

field is a measure of the Ising anisotropy as T 0.

Although not ideal, the systems in this family can be used as physical models of the 

Kawamura conjecture, see Chapter 2.1 for more details. The critical exponents and 

amplitude ratios determined from several different experiments for RbNiClg and 

CsNiCla are shown below. Also included are the theoretically predicted values for the 

different universality classes.

Table 4: Experimental values of the critical exponents in the easy axis systems, 

compared to model values

a P r V A ^ A

Expt. 0.37(8) [35] 0.243(5) [36] — — 0.30(11) [35]

0.342(5)[37] — — — —

XY -0.008 0.35 1.316 0.669 0.99

n=2 chiral 0.34(6) 0.253(10) 1.13(5) 0.54(2) 0.36(20)

0(4 ) -0.22 0.39 1.47 0.74

Mean fie ld 0.5 0.25 1.0 0.5 0

As can be seen from Table 4, the experimental values obtained support the concept of 

the new chiral universality class. It should be noted however, that the value of the 

critical exponent p is close to the mean-field tricritical value but the values of the 

specific heat exponent, a , and the amplitude ratio, A VA', are closer to the chiral n = 2 

case.

Perhaps the most exciting thing about these systems is that due to the small Ising 

anisotropy energy, they can be thought of as Heisenberg antiferromagnetic systems, 

this allows them to be used as model systems for theories involving Heisenberg
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antiferromagnetic spin chains. Indeed, these systems represent good physical models 

for one of the most controversial theories in magnetism in the recent past, the 

Haldane conjecture.

2.2.1.1 The Haldane conjecture.

It was in 1983 that Haldane^^’̂  ̂ first conjectured that the low-lying excitations of 

integer and half-integer spin Heisenberg antiferromagnetic chains would have 

different behaviour. He predicted that the integer chains would have a finite gap in the 

excitation spectrum and only the half- integer spin chains are gapless. The conjecture 

is based on the large-5 mapping of the Hamiltonian in (12) to quantum field theory -  

the 0(3) non-linear a  model.

n n

A represents the exchange anisotropy, such that, if A = 1 the Heisenberg system is 

recovered. If A > 1 the system corresponds to the uniaxial Ising system and if 0  < A < 

1 the system is defined as an easy-plane one. D  is the single ion anisotropy defined in 

Chapter 2.2.

The explanation of the large-5 mapping of the Hamiltonian in (12) to quantum field 

theory is beyond the scope of this thesis. However, for elaboration on this and other 

mathematical descriptions of the Haldane conjecture the reader is referred to a review 

article on ‘Quantum spin chains and the Haldane gap’, by Affleck"^^.

The conjecture of a finite gap for the Heisenberg integer spin chain is puzzling in that 

both the quantum 5 = Vi and classical 5 ^  chains have vanishing excitation 

energies and infinite correlation length in the isotropic limit. Early attempts at a 

numerical solution to this problem were thwarted due to a lack of convergence in the 

5 = V2 gapless case. More recent studies have helped to shed light on the nature of the 

Haldane conjecture. The destruction of long range order and the generation of a 

Haldane gap has been attributed to the condensation of solitons. If A and D  are varied
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between the Ising limit (A —> «», Z) ^  -o o )  and the Heisenberg point (A = 1, D = 0)^^. 

these solitons are different in nature for the 5 = 1 and S = 16 cases^\ this is due to the 

absence of S f  = 0 states in the integer case. Another topological excitation has been 

proposed by Affleck"^ ,̂ he proposed that the gap was caused by vortex-like ‘meron- 

antimeron’ pairs. For the half-integer case these pairs cancel each other, but in the 

integer case pairs are formed which destroy the long range order. Again the difference 

can be traced back to the lack of a 5 /  = 0  state in the integer case.

The Lieb, Schultz, Mattis (LSM) rigorous proof of zero gap for an S = Vi system"^ ,̂ 

has been extended to arbitrary half-integer 5, but has been shown to fail for the integer 

case"^, however, spin wave theory and the mapping onto the non-linear a  model are 

not rigorous. Therefore the implications of the LSM theory are ambiguous. It would 

be useful to have solvable models of the quantum spin chains, even though these 

Hamiltonians are not realistic. Thus a different class of solvable (valence bond) 

models was theorised. When 5 = 1 in these systems, it could be rigorously proven that 

a non-zero gap existed"^^’"̂ .̂

This valence bond state can be explained as follows, each S = 1 site is split up into 

two S = Vi components, these then form singlet pairs with a neighbouring S -  Vi 

component, a valence bond. The spins are symmetrised, in order to maintain spin 1 

per site.

Figure 12: Schematic representation of the Valence Bond State (VBS).

To see that the VBS is indeed a ground state, take the 4 5 = Vi variables associated 

with the bonding of two 5 = 1  sites. It is easy to see that at least 2 will be contracted to 

form a singlet. Symmetrising or antisymmetrising the other pair gives either spin 1 or 

spin 0, but never spin 2. Thus the ground state energy is 0.
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This ground state was first presented by Affleck, Kennedy, Lieb and Tasaki and is 

thus known as the AKLT ground state. The exact ground state is represented by the 

Hamiltonian:

1
s s

1
+ -

3
(13)

This ground state is translationally invariant, the excitation spectrum has a gap and the 

ground state correlations decay exponentially, as is predicted by the Haldane 

conjecture.

Of course the relevance of these models must be considered for real physical systems. 

Although CsNiCls is not a pure Heisenberg system, due to its small Ising anisotropy it 

can be thought of as Heisenberg-like. The question is, will the Haldane conjecture still 

be relevant in integer spin systems where A 5 =̂ 1  and D = 0  in equation 1 2 .

Fortunately, numerical calculations have shown that the Haldane gap is found to 

persist for a finite range of exchange"^^ and single ion anisotropy"^^ values. The 

variation of the gap with exchange anisotropy only, (D = 0) is shown schematically 

for both integer and half-integer chains in Figure 13.

Ililii

(XY) ( H E I S . )  ( I S I N G - 4

Figure 13: Schematic plot of the Haldane prediction for exchange anisotropy 

only, (D = 0), for (a), half-integer and (b), integer spin chains'*’.

In the half-integer case, a gap opens up above the Heisenberg point at A = 1, the 

excitations have an exponential dependence. In the integer case a stable Haldane gap
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is predicted between Ay < A < A2 . Calculated values of Ay and A2 are given below in 

Table 5.

Table 5: Boundaries of the Haldane phase for D = 0̂  .

Ay A2 V P 1

0 1.18(1) 1.3(2) 0.17(5) 0.23(3)

0 1.175 < 1

1.184 1 0.125 0.25

1.167(7) 0.98(2) 0.126(7) 0.253(2)

-0.01(3) 1.188(7) 1.02(5)

Due to this persistence of the Haldane gap in an anisotropic system, much work has 

been undertaken on the compounds CsNiCb and RbNiCb in order to establish their 

validity as physical models for the Haldane conjecture. The two three-dimensional 

phase transitions (7\̂ y and Tm in Figure 11) of CsNiClg, observed with specific heat^° 

and nuclear magnetic resonance^^ measurements are 4.85 and 4.46 K respectively. 

The 1-D magnetic properties of CsNiClg have been studied with magnetic 

susceptibility measurements^^ which mapped out the full phase diagram, and thermal 

expansion^^, heat capacity^ ̂ and acoustic attenuation^"^ methods but accurate values 

for the Hamiltonian could not be obtained using these measurements. The first 

experimental evidence for the Haldane gap in a spin 1, nearly isotropic 

antiferromagnetic chain came from inelastic neutron scattering measurements by 

Buyers et al.^^ on CsNiClg. They established the values of 7, T  and D  and showed that 

the gap existed in the ID phase above 4.85K and that it was too large (A(T) = 0.32 

THz) to be caused by the known single-ion anisotropy. More recently the Haldane gap 

has been observed with inelastic neutron scattering in the closely related system 

RbNiCb^^ (A(T) = 0.63 THz). A thorough comparison of the S = 5/2 system CsMnlg, 

and the 5 = 1 system CsNiClg^^ shows several important differences in the magnon 

dispersion curves of the two isomorphic systems. Whilst conventional spin wave 

theory provides a consistent description of the S = 5/2 compound, it fails to describe 

the 5 = 1 system. Rather, the magnon dispersion curve of CsNiCb is well described 

by spin wave calculations based on a field theory of the Haldane state by Affleck"^^; 

this provides further experimental evidence for the existence of the Haldane gap. The
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Haldane gap has also been observed in other compounds such as 

Ni(C2HgN2 )2N 0 2 C1 0 4 , (NENP)^^. Recent heat capacity measurements on the pressure 

effect on NENP^^ show an increase in the gap mode with increasing hydrostatic 

pressure. It would thus be of interest to observe also the behaviour of the magnetic 

excitations and Haldane gap of CsNiCl] and RbNiClg under the influence of external 

pressure for comparison purposes. Such experiments have been undertaken by the 

author and are reported on in Appendix A.

2,2.2 Easy Plane Anisotropy^ D > 0

When the single ion anisotropy in Hamiltonian (1) is positive, the spins favour 

alignment in the jcy-plane, perpendicular to the chain direction. The ground state of 

the structure is the chiral 120° type structure shown in Figure 6 . Thus these systems 

are a good physical model for the testing of the Kawamura conjecture. In the presence 

of a magnetic field, the systems characteristics are defined by a competition between 

the interchain exchange energy, J \  and the single ion anisotropy, D. The interchain 

energy prefers alignment of the spins in the 1 2 0 ° type structure perpendicular to the 

field direction, with the spins slightly canted towards the field direction. The single 

ion anisotropy prefers to align the spins in the jcy-plane. The behaviour of the system 

with increasing field is dependant on the relative values of J' and D. There are two 

cases to consider, one, if D > 37' and the other if  D < 37'. These cases are elaborated 

on below and the respective phase diagrams can be seen in Figure 14 and Figure 15.

2.2.2.1 Large Easy Plane Anisotropy

Looking at the phase diagram in the case where D > 77', Figure 14, we see that upon 

the application of a field _L to c, the chain direction, the spins remain in the plane but 

collapse into a collinear structure. There is only one example of an undistorted 

triangular easy-plane antiferromagnet which satisfies the condition D > 77', this is 

CsMnBrg.
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Figure 14: Magnetic phase diagram of a Heisenberg triangular antiferromagnet 

with large easy plane anisotropy.

The first experiments performed on CsMnBrg were done using neutron scattering 

techniques by the McMaster group^®’̂ * and the Japanese group of Ajiro^^’̂ ,̂ Both 

found critical exponent values close to that of the predicted new chiral university 

class. This was followed by high precision specific heat measurements by the Santa 

Cruz group^"  ̂ and the Karlsruhe group^^. In later neutron scattering experiments 

Gaulin revealed that the zero field transition point corresponds to a tetracritical point 

in the magnetic phase diagram^^. This is the first indication that the magnetic phase 

diagram of CsMnBrg does not conform to the usual, regular X Y  universality class. In 

order to reduce the ambiguity surrounding the new critical and novel multicritical 

points, theoretical scaling analysis was undertaken and subsequent predictions 

made^^. Plumer, Kawamura and Caillé’ ,̂ have used symmetry arguments to show that 

the application of an electric field in the basal plane can break the chirality order of 

the 120° spin type structure. This is induced by magnetoelectric coupling (i.e. the 

coupling between the spin vector, 5, and the electric field induced polarisation vector, 

P). For the hexagonal lattice these symmetry arguments show that the magnetoelectric 

coupling term takes a form identical to that of the Dzyaloshinsky -  Moriya (DM)

41



2 Theory___________________________________________________________________

exchange interaction and that an applied electric (E) field along the basal [110] plane 

direction would stabilise a slightly incommensurate magnetic ordering.

The results obtained from the experiments outlined above are collated below, with the 

corresponding values for the critical exponents for the chiral and regular XY  

universality classes, also quoted is the mean field tricritical exponent value.

Table 6: Experimental values of the critical exponents in the easy plane system, 

CsMnBra compared to model valueŝ "*.

a P r V AVA'

Expt. 0.39(9) [68] 0.22(2) [60,61] 1.10(5) [62,63] 0.57(3) [62,63] 0.19(10) [68]

0.40(5) [65] 0.25(1) [62,63] 

0.21(2) [60,61] 

0.24(2) [66]

1.01(8) [60,61] 0.54(3) [60,61] 0.32(20) [65]

XY -0.008 0.35 1.316 0.669 0.99

n=2 chiral 0.34(6) 0.253(10) 1.13(5) 0.54(2) 0.36(20)

0(4 ) -0.22 0.39 1.47 0.74

Mean fie ld 0.5 0.25 1.0 0.5 0

As with the results for the stacked triangular lattices with easy-axis anisotropy in 

Table 4, the values obtained for the large easy-plane anisotropy systems seem to 

support the Kawamura conjecture. Further proof could be obtained by applying an 

electric field in the basal plane of the system, as outlined above, and observing the net 

result. Work of this nature has been undertaken by the author and is reported in 

Chapter 4.1.

2.2.2.2 Small Easy Plane Anisotropy

Four systems are known to be in this category, all with the same divalent B ion, these 

are CsVCb, CsVBrg, CsVIg, and RbVCb, however, little work has been done on these 

compounds. The phase diagram and critical properties of the small easy plane 

anisotropy systems are as yet unmapped. It is expected that the phase diagram will be 

of the form predicted by Plumer et al.^^ as shown in Figure 15. Phase I is the plane
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triangular antiferromagnetic structure, Phase II is the collinear structure and Phase III 

is the spin flopped triangular structure. Work has been done on the magnetic 

excitations on the Cs compounds by Feile^^ who fitted the dispersions to a simple spin 

wave theory. However, later accurate absolute cross-section measurement work by 

Kadowaki^‘ on CsVClg shows that the intensity of the acoustic branch could not be 

accounted for by either linear spin wave theory or by magneto vibrational scattering. 

This is obviously a family of the stacked triangular lattice systems which has been 

neglected and is in need of further attention.

A h i c

Para

Figure 15: Magnetic phase diagram of a Heisenberg triangular antiferromagnet 

with small easy plane anisotropy.

2,2.3 Distorted Lattice

Not all of the ABX3 family crystallise with space group Pbg/mmc. In a number of 

these systems structural phase transitions are observed. Systems where a structural 

phase transition has been observed include KNiClg, TlFeClg, RbFeBrg and RbMnBrg. 

For the sake of clarity, the case of RbFeBrg is grouped with the singlet groundstate 

systems and is elucidated upon further in Chapter 2.3. Turning our attention to the 

other systems we observe that the typical phase transition involves the movement of
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two of three adjacent chains upwards while the other chain remains in the plane. The 

phase transition can be understood in terms of the rÂ  and r%' radii. As the ratio rÂ /r% 

decreases, the A ion environment becomes unstable, leading to structural phase 

transition and to the space group Pbscm.

The distorted crystal structure for KNiClg is given below in Figure 16 as an example. 

It is seen that the unit cell increases from a x a x c to the larger unit cell ^3a x Via x 

c preserving the hexagonal symmetry.

0*^0 o9o

oVo°o9o
O ^ O o O

0°0Y0
o O q O ^ O

O K  ;  Ni °  Cl

Figure 16: Room temperature structure of the distorted triangular 

antiferromagnet KNiCb^ .̂

Because the chains move as a unit there is no distortion to the chain structure and the 

intrachdin superexchange energy, 7, remains the same as in the undistorted case. 

What is affected by the movement of the chains, is the interchmn exchange energy, J'. 

The transition from Pbg/mmc —> Pbgcm changes the symmetry of the system, reducing 

the co-ordination of the A ion from 12 to 9 and 7' is split into two different 

interactions, J'aa = 7' and J \ b = 7 ; as shown below in Figure 17. Bearing in mind that 

both CsNiCla and RbNiCl] retain the Pbg/mmc space group at room temperature, it is 

reasonable to assume that the structural phase transition is caused by the smaller size 

of the ion and the relative difference in the size of this and the Cl ion.

44



2 Theory___________________________________________________________________________

This reduction in the coordination number of the A ion obviously breaks the 

symmetry of the system and can lead to a partial lifting of the frustration. It seems that 

these systems are not in fact an intermediate case between frustrated and unfrustrated 

systems. Rather, they are predicted to exhibit novel physical properties of their

own̂ '̂̂ "  ̂and are thus worthy of investigation.

B

- j 'l

B

Figure 17: M agnetic interactions on the distorted triangu lar lattice model.

The situation as described above is observed in the room temperature structures of 

KNiCl) and RbMnBr^, it is also observed in the low temperature structure of RbFeBr^. 

The situation is further complicated in both KNiCfi and RbMnBr^ by the presence of 

further structural phase transitions both above and below room temperature. For 

KNiCl3 these occur at 274, 285, 561 and 762 both neutron^^ and X-ray^^ 

scattering have shown the existence of two crystal phases at low temperature. One of 

the phases is hexagonal and does not differ greatly from the RT structure, the other 

phase is orthorhombic^^.

o O f O o Q A n p O
)nfuoûÂûoug . -

Figure 18: The row model of KNiCl^.
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Due to the existence of two different crystallographic structures, different magnetic 

structures have also been observed, with Tn = 12.5K and 8.6 K in the hexagonal and 

orthorhombic phases respectively. It is thought that different crystal preparation 

methods (i.e. annealing times, pulling rates, quenching etc.) cause these different 

phase transitions. With this in mind elastic and inelastic neutron scattering 

measurements were undertaken on several single crystal samples of KNiClg which 

had undergone various heat treatments. These experiments are elaborated upon in 

Chapter 4.5.

Very little research has been done on the induced moment, distorted triangular lattice 

antiferromagnet TlFeCb. To remedy this powder diffraction studies were performed 

on the system, (Chapter 4.4.1) in conjunction with single crystal elastic neutron 

scattering studies, (Chapter 4.4.2.).
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2.3 Singlet Ground State Antiferromagnets

There are 4 compounds that fall into this category with the AFeXg type structure 

CsFeCl], CsFeBrs, RbFeClg and RbFeBrs. All crystallise with space group Pôs/mmc 

at room temperature. It is a feature of these systems that there is a large value of 

magnetic anisotropy compared to the magnetic superexchange. In some instances, this 

large anisotropic factor will prevent the onset of long range order, even at T = OK. 

The electronic structure of the Fê "̂  ion in these systems is as shown below.

Fe^"' 3d^

- i
%

*1
o '
--- i ----0

Figure 19: Electronic perturbations acting on the free ion 5D term of Fê  ̂ion in 

the AFeXa family. The successive splitting arises from the cubic component o f  the 

ligand field , spin orbit coupling and the trigonal distortion o f  the ligand field , 

respectively.

The free ion in the ground state is split into an upper orbital doublet (^E) and lower 

orbital triplet (^T2 ) by the cubic crystal field, separated by 10,000cm *. The lower 

triplet is then further split by spin orbit coupling according to the effective total 

angular momentum J  -  1, 2, and 3, into the states ^Tia, ^T2 b, and ^T2 c, spaced 

according to the Lande interval rule by 2% and 3A, respectively. The lowest 7 = 1 is 

then split by a trigonal component of the crystal field A to produce a singlet ground 

state and an excited doublet with a separation of the order of 100cm *. At low 

temperatures only the lowest singlet and doublet are significantly populated, thus
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probing the transition between these states with neutron scattering allows us to gain 

knowledge of the system.

As T ^  0, there are two regimes, (in the absence of magnetic field), which can be 

observed in these systems.

• For D < 8  |y| +12 [/'I the system has a magnetic ground state with an easy plane 

type anisotropy. This is the case for RbPeCls and RbFeBrg.

• For D > 8  |y| +12 |7'| the system has a singlet ground state meaning that it does not 

magnetically order even at T = OK. This is the case for CsFeClg and CsFeBrg.

The application of an external magnetic field along the c-axis leads to magnetic order 

in the SGS materials. If the magnetic field is applied in the basal plane no transition to 

magnetic order is observed. In CsFeClg the application of a magnetic field parallel to 

the c-axis induces a commensurate 1 2 0 ° type structure after transition through two 

intermediate incommensurate phases. In CsFeBrs the application of field leads 

directly to commensurate order.

2.3.1 True singlet ground state antiferromagnets, (CsFeBrs, CsFeCh).

In the system CsFeBrg the mrrachain exchange interaction is antiferromagnetic, this is 

in contrast to the intrachain exchange interaction in CsFeClg which is ferromagnetic^^. 

This is due to the different spatial characteristics of the Br and Cl ion, leading to 

different Fe -  X -  Fe distances and bridging angles.

The studies on CsFeBrg have mainly concentrated on the magnetic excitations of the 

system. Low temperature inelastic neutron scattering studies have shown that the 

magnetic excitations in CsFeBrg soften with decreasing temperature, stabilising at 

0.11 THz at T = 2.5K down to T = 80mK^^’®°. This suggests that CsFeBrg is a SGS for 

T -+ OK. Low temperature inelastic neutron scattering studies in an external magnetic 

field have shown that, at T =1.6K and H = 4. IT, a well defined magnetic Bragg peak
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appears at the reciprocal lattice point Q = (2/3 2/3 1). This indicates a phase transition 

to the long range commensurate 1 2 0 ° type structure^*.

As with CsFeBrg, low temperature neutron scattering studies of CsFeCla show that the 

system is a SGS system for T -» OK. The values for exchange interaction and 

magnetic anisotropy have been estimated from the dispersion relations. However, the 

exact values depend on the theoretical model used to fit the data. Values have been 

obtained for correlated effective field analysis^^, self-consistent random-phase 

approximation^^ and dynamical correlated effective-field approximation®^. Each 

theory gives substantially different values of the exchange interaction and magnetic 

anisotropy. Inelastic neutron scattering studies have showed that the minimum of the 

magnetic dispersion curve does not fall at the K-point as expected, rather it is slightly 

offset®"̂ . This can be accounted for by the inclusion of magnetic dipolar forces®^’ 

Neutron scattering studies on CsFeCE in an external magnetic field demonstrate the 

transition to the 120° magnetically ordered state at T = 0.7K with Hj = 4.5T, previous 

commensurate transitions take place at H; = 3.85T and H2 = 3.92T. This transition to 

a magnetically ordered state has been observed with specific heat® ,̂ Mossbauer®^, and 

magnetisation measurements®®. The five possible transitions between the ground state 

and the excited doublet in the presence of external magnetic field (H|| and Hi), have 

been observed with submillimetre wave ESR measurements®^. Other work has been 

undertaken on the magnon dispersion branches of CsFeClg and CsFeBr] under 

hydrostatic pressure by the author during his MPhil. degree and is re-analysed in 

Chapter 5. Also presented are full powder neutron diffraction studies on the above 

compounds as a function of applied pressure.

2.3,2 Induced moment antiferromagnets, (RhFeBrs, RbFeCls).

RbFeBrg can be thought of as a combination of an induced moment antiferromagnet 

and a Heisenberg antiferromagnet with XY  anisotropy. Measurements by Eibschiitz et 

al. on the system show that, unlike the CsFeXg family, the exchange interaction is 

strong enough to produce magnetic long range order at T = 5.5K T At 108K the 

system undergoes a structural phase transition from the hexagonal perovskite 

Pbg/mmc space group, to the distorted phase with space group Pbscm^*, as is
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described in Chapter 2.2.3. This distortion leads to two different nearest neighbour 

exchange interactions within the basal plane. The low temperature crystal phase is 

found to be ferroelectric^^, however this phase is not yet fully understood. Specific 

heat measurements on the system show two successive magnetic phase transitions at 

Tni = 5.61K and T m  = 2 .0 0 K^ ,̂ it is possible that this may be caused by the splitting 

between the two different basal plane exchange interactions. However, inelastic 

neutron scattering measurements have not shown this splitting due to inadequate 

resolution^"^. The measured excitations are well described by the dynamical correlated 

effective-field approximation.

As with RbFeBrg, RbFeCls also shows long range magnetic order, below T =2.55K^^. 

Inelastic neutron scattering studies have clearly demonstrated the softening of the 

magnetic excitations as T —> 2.55K^^’̂ .̂ Elastic neutron scattering studies have 

revealed that RbFeCl] undergoes three magnetic phase transitions in zero field, at Tni 

= 2.5K, Tn2 = 2.35K and Tn3 = 1.95K. Between Tni and Tn2  and between Tn2 and Tn3 

incommensurate magnetic phases exist. Below Tn3 , RbFeCl3 locks into the 120° type 

magnetic structure^^’̂ ’̂̂ .̂ These values have also been confirmed using specific heat*^ 

and susceptibility methods^^, looking at the anomalies observed in these experiments 

a magnetic phase (H, T) diagram can be constructed.

ICI RbPeCI
H lc

(fan)

(kOe)H

Figure 20: Magnetic phase diagram of RbFeCb, for H ±  c Open circles refer 

to anomalies in specific heat measurements, closed circles to anomalies in 

susceptibility measurements.
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The phase diagram is explained from the point of dipole-dipole interactions inducing 

conical point in s tab i l i ty^S h iba  conjectures that a small dipole-dipole interaction 

transforms the 1 2 0 ° structure to an incommensurate structure at intermediate 

temperatures, whilst the low temperature phase should still remain at 120°. This phase 

diagram has also been investigated using inelastic neutron scattering, producing good 

agreement for the magnetic t r a n s i t i o n s T h e  calculated values of the exchange 

parameters are highly dependent on the theory use to fit the experimental data. The 

superexchange parameters have been estimated from various experiments. Using 

molecular field approx im a t ion^and  pair approximation*^^, the superexchange 

parameters were calculated for susceptibility measurements. Mossbauer and 

susceptibility data***̂  was analysed using the correlated effective-field 

approximation***^. Neutron scattering measurements were analysed using the three 

sublattice spin-wave approximation and the exciton model. Each model gives its own 

unique values for the superexchange parameters. Suzuki has attempted to understand 

the magnetic properties on the basis of a single set of parameters'^, using the 

dynamical correlated effective-field approximation (DCEFA) to model the 

experimental data. The calculated values of D, 7j., 7||, g± and gy gave reasonable 

agreement with experiment. This was only applicable to the paramagnetic phase as 

the theory only considered a single chain of Fê "̂  ions for simplicity. More recently 

Suzuki has added interchain coupling and derived a consistent set of exchange 

parameters that accurately describe the behaviour of RbFeClg both above and below
rp  27,28I n
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2.4 Neutrons: their properties and applications.

All experimental work contained in this thesis is the result of neutron scattering 

experiments performed at a variety of steady state and spallation neutron sources. 

Thus the following chapters give a brief introduction to the neutron, its fundamental 

properties, its production at steady state and spallation sources and the theory 

governing its interaction with condensed matter.

2,4,1 Fundamental properties o f  the neutron.

The neutron is composed of one up and two down quarks with charges of 2/3 and -1/3 

respectively. In spite of the fact the neutron carries no net charge it does possess a 

magnetic moment. This is due to an electric charge distribution caused by its internal 

structure. It is believed that the neutron spends part of its time dissociated into a 

proton and a negatively charged 7C-meson according to the equation:

n <=> (proton)  ̂+ (7i-meson)

During this dissociated time the positive and negative centres of the proton and meson 

coincide, but the negative charge is more diffuse. This charge distribution gives the 

neutron its magnetic moment and also an electric polarizability.

The energy and spin characteristics of the neutron further enhance its effectiveness in 

probing condensed matter. Summarising, we can say that the fundamental properties 

of the neutron make it a highly effective probe of condensed matter and these are 

outlined below.

• The neutron has no charge therefore its interactions with condensed matter are 

confined to the short range and magnetic interaction.
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Due to the fact that the kinetic energy of the neutron is close to that of the energy 

range of elastic and inelastic processes in condensed matter it is the ideal and the 

only tool to measure dispersion throughout the Brillouin zone.

The magnetic moment of the neutron makes it an ideal tool to probe the 

magnetisation of condensed matter. Neutrons may be scattered from the magnetic 

moment associated with unpaired electrons in the magnetic material.

The neutron has spin 1/2 and as such when a neutron is scattered from a nucleus 

with a non-zero spin, the strength of the interaction depends on the relative 

orientation of the neutron and nuclear spins. The orientation of the neutron may be 

manipulate by the application of ‘spin flippers’ on the neutron beam coming from 

the source, thus allowing one to deduce the relative nuclear spin of the nucleus.

2.4.2 Production o f  neutrons.

There are various means to produce neutrons, not all are efficient or effective. In this 

Chapter we will look at the two most widely employed techniques for neutron 

production, that using nuclear reaction used at steady state sources and that employing 

the proton spallation process, used at spallation sources. As with all techniques each 

has its own advantages and disadvantages and these are outlined below.

Virtually all neutrons used for scattering experiments at modem steady state reactor 

sources are obtained by slowing energetic neutrons produced in nuclear reactions by 

passing them through a moderating material containing light atoms. Thus the majority 

of atoms will have energies of the order of kgT where T  is the temperature of the 

moderator and kg is Boltzman’s constant. Using simple wave mechanics it is relatively 

easy to demonstrate that:

^ bT — .2
2 nU  (14)
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where fi = h/27C, where h = Plank's constant and X and m are the wavelength and mass 

of the neutron respectively.

Substituting the known values and assuming that T  = 300K (room temperature), we 

see that X = 2x10’̂  m. This is comparable to the interatomic separation of atoms in a 

solid or dense fluid, thus neutrons are ideally suited for the study of atomic structure.

The velocity spectrum of neutrons emerging from a reactor follows a Maxwellian 

distribution described by the equation

0(v) oc exp
2 k J

(15)

where (|)(v)dv is the number of neutrons with energy between v and v+dv, m is the 

mass of the neutrons, kg is Boltzman’s constant and T  is the temperature of the 

moderator.

The maximum of the function occurs where:

V =
m

(16)

Thus we can see from the equation above that the only variable is T, the temperature 

of the moderator. This gives us an easy way of manipulating the energies of the 

neutrons. If higher energies are required then the neutrons are passed through a heated 

source, such as a heated graphite block, conversely the energies of the neutrons can be 

shifted to lower energies by passing them through a cooled moderator, such as liquid 

deuterium or helium. In this manner a fiill range of energies are obtainable from a 

single reactor source. Modem reactor sources, such as the Institut Laue Langevin, are 

capable of producing a neutron flux of around 1.2 x 10^  ̂ns'^cm'^.
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25 K

5  2
300 K

V (km/s)

Figure 21: Flux distribution in the beam of neutrons from a moderator at 25K 

and from a moderator at 300K. The distributions are normalised to have the 

same total flux̂ ®̂ .

There are a number of disadvantages to steady state reactor sources, numbering 

amongst others, the radioactive waste produced by the nuclear reaction and the 

complicated technical problems of cooling such a reactor. It is widely assumed that 

the next generation of neutron sources will be based around the spallation technique 

employed at the ISIS facility (e.g. the proposed new European Spallation Source’ 

The term spallation originates from geology and literally means ‘chipping o ff . It 

describes the process by which an energetic charged particle, normally in this case, a 

proton, impinges on a stationary target material of heavy nuclei. The net effect is the 

‘spalling’ of the target material into a large number of nucleons and other fragments. 

Protons accelerated to an energy of 600MeV can produce 1 0 - 1 2  neutrons of average 

energy of 2 -  3 MeV, per reaction, from a target such as lead or tungsten and about 25 

neutrons per reaction from a target. The ISIS target consists of a set of thin 

tantalum sheets surrounded by a coolant of flowing water. The target is used to 

convert the proton beam energy (160 kW) into neutrons through the spallation 

process. Such target stations produce an average neutron production of 4 x lO’  ̂ n s' 

’cm'^ which compares favourably with steady state sources. Advantages of this type 

of source include less heat, thus less cooling and also less waste to contend with.
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2.4.3 Diffraction.

Having produced the neutrons the next step in the experimental chain involves 

scattering them from a powder or crystalline sample. Like x-rays, neutrons can be 

thought of in terms of waves with a De Broglie wavelength of,

where m is the neutron mass = 1.675 x ICf̂  ̂g and E  being the kinetic energy of the 

neutron = V2 mv^, v being the velocity of the neutron. In order to explain the rather 

complicated mechanics involved in neutron scattering it is probably advisable to start 

with scattering from a fixed atom, this is what is known as elastic scattering.

2.4.3.1 Elastic scattering

It is the case with x-rays that they scatter from the electrons surrounding the atom, 

with the intensity of scatter diminishing with increasing scattering angle. However 

neutrons are scattered by the nucleus of the atom, this being much smaller it can be 

regarded as a point target. By impinging a plane wave of neutrons of the form 0  = 

onto an atom, one sees that the scattered wave has the form.

where r is the distance from the nucleus and bn is the neutron scattering length. The 

important thing to consider is the scattering cross section of the nucleus, this is the 

ratio of scattered neutrons to the incident neutrons and is given by the formula,

G = 4Kbl (19)
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Thus we can see that the scattering cross section is directly related to the neutron 

scattering length. The value of varies widely from element to element through the

periodic table and bn may even be negative in some circumstances. This is important 

if we consider that the x-ray form factor increases linearly with increasing atomic 

mass, thus elements next to each other will have very similar scattering lengths and 

thus be difficult to distinguish in x-ray scattering experiments, this is not the case with 

neutrons. Also it can be deduced that light elements will scatter x-rays relatively 

weakly and thus be almost impossible to discern in your sample. Again this is not the 

case with neutrons as the light elements, such as Helium, have comparable neutron 

scattering lengths to the other elements in the periodic table.

The purpose of neutron scattering experiments is to measure the intensity of the 

neutrons scattered by matter as a function of the variables Q and where ^ is the 

energy transfer of the neutron. This scattered intensity often denoted as I{Q, ^), is 

known as the ‘scattering intensity law’ of the sample. It was in 1954 that Van Hove 

showed that the scattering law could be written exactly in terms of time-dependent 

correlations between the position of pairs of atoms in the sample. It is expressed in 

the form.

Note that the sum here is over pairs of nuclei m and n, and that the nucleus labelled m 

is at position r„,(0 at time f, whereas the nucleus labelled w, is at position r„(0) at time 

t = 0. The angular brackets (...) denote an average over all possible starting times for

observations of the system which is equivalent to an average over all the possible 

thermodynamic states of the sample.

Summing over all the atomic sites in 20 gives us,

-  k  (o)- r„{t)]))e-‘° 'd ^ r  (21)
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Where ô is the Dirac delta function, expressed in terms of r and a difference vector 

between the position of nucleus m at time t and that of n at time zero. If we assume 

that bm = bn = 6, this allows us to remove the scattering lengths in the above equation 

with the right hand side becoming,

N b^[_G {r,t)e-‘< '̂d r̂ (22)

where

G (r ,()=  -  k  (O )- '■mCOI) (23)
^  m,n

and N  is the number of atoms in the sample. The delta function in the definition of 

G(r,0 is zero, except when the position of n at time zero and the position of m at time 

t are separated by vector r. Because the delta functions are summed over all possible 

pairs of atoms to obtain G(r,t), this function is equal to the probability of an atom 

being at the origin of a coordinate system at time zero and an atom being at position r 

at time t. G(r,t) is generally referred to as the time dependant pair correlation function 

as it describes how correlation between two particles evolves over time. Van Hove’s 

equation (20) can now be written as.

G (r,t)e-'°'e-'^’d^rdt (24)
h kf

This allows us to see that I{Q fy  is proportional to the space and time Fourier 

transforms of the time dependent pair-correlation function. Thus we see that Van 

Hove’s result implies that I{Q, is simply proportional to the Fourier transform of a 

function that gives the probability of finding two atoms a certain distance apart. Thus 

by measuring the intensity of scattered neutrons as a function of Q and one may use 

the Van Hove result to relate the intensity of the scattered neutrons to the relative 

positions and motions of atoms in your sample. Van Hove’s result may be 

manipulated to reveal scattering effects of two different types. The first type is 

coherent scattering in which the neutron wave interacts with the whole sample as a 

unit so that the scattered waves from different nuclei interact with each other. This 

type of scattering depends on the relative distances between the constituent atoms and
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thus gives information about the structure of materials. Elastic coherent scattering 

gives us information regarding the equilibrium structure whereas inelastic coherent 

scattering can tell us about the collective motions of the atoms in the sample.

The second type of scattering is called incoherent scattering and, as the name 

suggests, in this method the neutron wave interacts independently with each nucleus 

in the sample so that the scattered waves from different nuclei do not interfere, rather 

the intensities from each nucleus simply sum up. Incoherent scattering could take 

place, for example, when a neutron wave interacts with the same atom but at different 

times. Thus this method can be used for gaining information about atomic diffusion.

When neutrons of a suitable wavelength impinge on a crystal (which can be thought 

of classically, as a lattice of regularly spaced atoms), they are scattered by that lattice. 

This is a direct result of the wave-like nature of the neutron. Bragg’s law states that 

diffraction will occur when the phase difference between scattered rays from a set of 

atomic planes is of an integral number of wavelengths, or more simply,

nX = 2dsin6 (25)

Thus constructive interference occurs where n, the lattice plane, is an integer, d  is the 

lattice spacing and 6 is the angle of incidence of the beam, this is shown graphically 

below.

Crystal

Figure 22: B ragg diffraction a t an angle 9 from  a set of crystal planes separated 

by distance d.
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The best way to analyse the results of neutron scattering experiments is by means of 

the reciprocal lattice. The reciprocal lattice is a rather convenient concept and 

involves the mapping the vectors of the real space unit cell a, b and c to a new set of 

basis vectors.

a b x c
b* = 2k

c x a
a b x c

c* =2 k
a x b

a b x c

Thus the new units of distance will be Â'^ and we can visualise that any Bragg 

reflection that corresponds to a set of lattice planes can now be regarded as a point in 

reciprocal space (jc, y, z). This point may be described by a vector Q also, where Q = 

xh + yk + zl, from the origin of the reciprocal lattice. If we consider the case of elastic 

scattering, whereby the wavevectors of the initial (|k/|) and scattered (\kfy beam are 

equal in magnitude, we see that the locus of points defined by the wavevectors |k/| and 

|ky| constructs a circle. This is commonly known as the Ewald sphere and as seen in 

Figure 23, elastic coherent scattering will be possible where a reciprocal lattice point 

falls on the sphere. It should be noted that this is an infrequent occurrence, thus in 

order to maximise the probability of elastic scattering occurring the sample is rotated. 

This construction in Figure 23 makes it simple to see the effect of rotation of the 

crystal in real space. As the crystal rotates, the reciprocal lattice rotates with it so that 

each of its points moves on an arc centred at the origin. As each point passes through 

the Ewald sphere, diffraction occurs for that Q at the corresponding scattering angle 9. 

This is the basis for conventional single crystal diffraction experiments.

0,0,0

ZJrr,

Figure 23: A representation of a crystal lattice in reciprocal space, showing the 

Ewald sphere condition for elastic scattering'®*.
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Elastic scattering can be achieved with x-rays as well as neutrons but it is often more 

rewarding to utilise the former due to the availability of extremely intense synchrotron 

sources, such as the ESRF at Grenoble, which afford excellent resolution. It should be 

remembered that x-rays only penetrate a very small way into the sample (up to lp,m) 

whilst neutrons, due to their uncharged nature are scattered from the bulk of the 

material.

One would assume that the better quality of the scattering crystal, the more intense the 

diffraction. Paradoxically this is not the case, in perfect crystals primary extinction 

occurs and reduces the scattered beam. This is due to the attenuation the incident 

beam suffers upon passing through the perfect crystal domain. Secondary extinction 

occurs in less perfect crystals, when misorientations between the small mosaic blocks 

or domains that make up the crystal, are greater than the width of the reflected beam 

within each fragment. In normal cases the diffracted intensity is reduced by a 

combination of both primary extinction inside each mosaic block and secondary 

extinction between each mosaic block.

Elastic neutron scattering is measured as a partial differential cross-section, this is the 

function of the total scattered flux, a, per unit angle dQ, per unit time. The elastic 

nuclear scattering cross section is the sum of the coherent and incoherent cross 

sections.

da f  da   ̂ ( d a
dCl "  "

(26)
Jincoh

A good model for application to elastic scattering is the Fermi pseudopotential.

V(r) = ^ ^ b ô ( r )  (27)
m

where m is the mass of the neutron and b is the scattering length of the nucleus at 

position r. The coherent part of equation 24 can be represented by.
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and describes the Bragg scattering from the sample. Here N  is the total number of unit 

cells in the crystal, Vo is the volume of one unit cell in reciprocal space and T is the 

reciprocal lattice vector in terms of a basis of unit vectors as described above, where, 

T = ha+  + /ç*. The Ô function ensures the selection of only those scattering 

vectors Q, that equal T (the Bragg condition). The unit cell structure factor, Fn(Q), is 

the thermal average of the scatting amplitude from each nucleus and is expressed in 

the form,

(29)
j,s

where the summation is over the different atoms s and their positions in space j .  is 

the average scattering length for atom s in the unit cell.

The Debye -  Waller factor, arises due to the fact that each atom is not actually

rigidly fixed in position, rather is subject to thermal and zero point motion. Thus the 

scattering comes from a diffuse area which gradually decreases with increasing Q. 

The exact form of W- {q ) is dependent on the structure of the material.

Looking at the incoherent part of equation 24, this scattering originates due to the 

different isotopes and nuclear spins that are randomly distributed throughout the 

crystal. This scattering contributes to the background and is homogeneous over the 

entire solid angle, Q = 4tc.

= —  

j ,w  4a: r  I
(30)

In actual fact, the scattered intensity will not behave like a delta function as is 

suggested above. Rather, for any real crystal, r  is a cone from the origin of reciprocal
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space to a small volume centred on the mean reciprocal lattice point. In practice, the 

variation of intensity with to or with 20 is well approximated by a Gaussian function, 

which also accounts for the resolution function of the neutron scattering instrument. 

However, this is not always the case with powder diffraction as opposed to single 

crystal diffraction. The peak shape for powder diffraction patterns can be quite 

complex and is usually machine specific, normally mimicking the pseudo-Voigt 

function.

Of course the diffraction of neutrons by matter is not the same as scattering from a 

fixed point (an elastic event), this is due to the inherent thermal motion of the lattice 

The process of scattering can alter momentum and energy of both the neutrons and the 

crystal. This is what is known as an inelastic event and is elaborated upon further in 

the next Chapter.

2.43,2 Inelastic scattering

One significant advantage of using neutrons comes from inelastic scattering, i.e. when 

the scattered vector does not equal the incoming vector. The momentum transfer of 

the neutron during collision can be written as / ^  = /Kkt -  kf), where A, ^  kf . The 

relationship between Q, ki and kf can be represented, as above in Figure 23, with the 

aid of scattering triangles.

Figure 24: The scattering triangles in reciprocal space for an inelastic scattering 

event. Depicting energy loss and gain of the neutron on the left and right 

respectively.
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The scattered neutrons will have energy of
2m

that is different to the energy of the incident beam. Instead, the picture is as shown in 

Figure 24, where ki ^  k f . The mathematical representation of Figure 24 is given as a 

function of the double differential cross section, this is similar to the differential cross 

section but it deals with the probability of neutrons being scattered into dQ, with 

energy E+AE. Due to the fact that the excited states involve large regions of the 

sample, rather than isolated atoms, and as the measurements select only a small 

fraction of the total scattered flux, large crystals and intense neutron beams are needed 

in order to study inelastic events. The inelastic one-phonon scattering cross section is 

written as below. The ‘plus’ sign refers to phonon creation and the ‘minus’ sign to the 

scattering whereby the neutrons gain energy from the thermal phonons in the lattice. 

Phonon creation is possible at any temperature whereas the latter is more likely at 

high temperatures.

COri)

V  is the crystal volume and q, Q and T are as defined in Figure 24. y is the quantum 

number that labels the eigenfrequencies (Ofq) of the phonon. The ô functions specify 

the energies and position in reciprocal space where the measurement is being taken. 

nfq)  is the Boltzman factor and is describes the distribution function of phonons of 

different energies. The inelastic structure factor can be defined as.

(32)

and may be compared with the nuclear coherent elastic equivalent from equation 24. 

The extra parameters in the above are M/, the mass of the atom at position I and 

Q'V{q), the dot product of the wavevector Q, and the polarisation vectors V  for a 

particular q, summed over the set of normal vibrational modes.

64



2 Theory

2.4.3.3 Magnetic Scattering

In order to describe magnetic scattering of neutrons, it may be prudent to discuss first 

the principles of x-ray scattering by atoms. The basic interaction in this case is that of 

an electromagnetic wave with the electric charge of the atom. The scattered wave, 

from a small volume dV  at position r, should be proportional to the charge collected 

in this volume i.e. pc(r)dV, times the phase factor exp(-fAcr), where k =  kf - ki. The 

total scattering by an atom is obtained when all such contributions are added together, 

which means that the scattering amplitude of x-rays by an atom must be proportional 

to,

Z/c(0) = J p c ( r> " ‘ W  (33)

where Z is the total charge of the atom and fc(0) is the charge form  factor, normalised 

to unity at x*= 0.

Because the electron distribution in an atom spreads out to something which we can 

imprecisely call the atomic radius, Rau the function fc{d), is strongly 0 - dependent. 

This is a direct consequence of the fact that the x-ray wavelengths and Rat are of the 

same order of magnitude. The form of the function is shown below, labelled fc  as a 

function of sin {0) /  A.

S  25

"5 2 0

ft 15

M

Figure 25: The variation of the form factors for x-ray (fc) and magnetic neutron

scattering (fivi)106
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The short resume given above should be helpful in forming an idea of what happens 

when a neutron interacts with an atom with magnetic moment /x. The neutron is also 

in possession of a magnetic moment and thus can ‘feel’ the magnetic field created by 

the atomic moment. The scattering which results from the interaction of the neutron 

and atom must be proportional to the neutron’s magnetic moment and also 

proportional to the spatial distribution of the magnetic moment fi of the atom, in much 

the same way as x-rays react to the spatial distribution of charge. The magnetic 

scattering should have the form, similar to (33),

p{6)=  const ' j ( r ) ^ " " " ' c f y  (34)

where Pm{v) is the magnetisation density of the atom and the multiplicative constant 

must contain the neutron fundamental constants. Due to the fact that the magnetic 

scattering also depends on the mutual orientation of the neutron and atom magnetic 

moment and possibly on the scattering vector K this constant should contain 

information on these as well. Indeed, it has been shown by Halpem and Johnson^^ 

that,

p(0) = O.2659 a q # „ ( 6 > ) = a q p ( e )  (35)

where/a/ is the magnetic form  factor.

= (36)

This function describes the spatial distribution of magnetisation within the atom and is 

also normalised to unity at k: = 0. The function is shown in Figure 25 with fc  for 

comparison. We know that magnetic scattering arises from the uncompensated 

magnetic moment of electrons occupying 3<i, Ad or 5d shells (transition metals) or the 

4 /  (lathanides) or 5 / shells (actinides). These electrons are usually located outside the 

‘core’ formed by the majority of the electrons, thus one can see that the spatial 

distribution of these electrons will be more diffuse than the overall charge distribution
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of the atom. Due to the properties of the Fourier transforms this must be reflected in a 

magnetic form factor which is narrower than the charge form factor of the atom. This 

is shown above in Figure 25, where the relatively fast decrease of / m(0  with 

scattering angle must immediately result in one difficulty, namely a rapid loss of the 

intensity of magnetic scattering.

Looking at equation 35, we see that p (0) also depends on â  and on q , â  is simply 

the unit vector along the neutron spin. The q vector, or the Halpem vector is defined 

as, q = e(e fh )-rh  where w is a unit vector along the atom magnetisation direction 

and where g = ic / 1 ic | . If we allow rh = e , then the q vector vanishes thus there is no 

magnetic scattering in such a case. Therefore we see that the magnetic neutron 

scattering arises solely from the magnetisation component perpendicular to the 

scattering vector. So, we see that when an atom has its moment oriented in any 

direction, for example in neutron scattering on a paramagnet, the magnetic scattering 

cross-section will be.

that is, one third of the possible orientations will not contribute to the scattering.

Because magnetic diffraction can be regarded as an extra component of the coherent 

elastic scattering cross section, there is no interference between the nuclear and 

magnetic terms, they are merely superimposed. Thus by measuring the intensities of 

many different magnetic reflections, both the configuration and the orientation of the 

magnetic moments in a sample can be determined. For example, in a ferromagnet, the 

magnetic and nuclear unit cells are identical, so the magnetic peaks will simply add to 

the scattering at temperatures below Tq. For an antiferromagnet, the magnetic unit cell 

will be twice the nuclear cell in at least one direction. Thus when cooled below 7^, the 

antiferromagnetic reflections do not appear at the nuclear positions because at these 

points the reflections from successive planes with moments directed oppositely are 

out of phase and cancel. Instead, extra magnetic reflections appear at half the spacing 

along each axis where the magnetic unit cell has doubled. When the magnetic unit cell
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is not an integer multiple of the nuclear cell the system is described as 

incommensurate. Other magnetic systems include helimagnets such as Pd or spin 

glasses.

Just as phonons are the excitations observed by use of inelastic nuclear scattering, the 

magnetic equivalent, magnons, can be observed with the aid of inelastic magnetic 

scattering. Like the phonon the magnon is a quantised spin wave that represents the 

deviation from perfect magnetic spin order. The incoming neutrons interact with the 

quantised wave and can be scattered or exchange energy with it. Thus by taking 

measurements over temperature ranges, energy ranges and different reciprocal lattice 

positions, one can obtain a full description of the energy levels, magnetic dispersion 

curves and anisotropy of the system.
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3 Experimental Methods

This Chapter gives details on the crystal growth of the systems used for experimental 

work in this thesis and also gives comprehensive information on each of the neutron 

scattering diffractometers/spectrometers used for data collection. Information is also 

given on the sample environment hardware that were used to subject the systems to 

different experimental conditions.

3.1 Crystal Growth Methods

The growth of large single crystals of air and moisture sensitive materials is usually 

accomplished using crystallisation from the melt. The most usual types are the 

Czochralski and the Bridgman-Stockbarger methods. The latter was employed in the 

production of single crystals for this thesis. The Bridgman-Stockbarger technique 

works by the process of pulling a molten sample through its freezing point thus 

promoting crystallisation. The molten charge is held in a sealed silica tube with a 

sharp or ‘wiggly’ tip. The tube is mounted in a Bridgeman furnace with temperature 

approximately 20K above the crystallisation temperature of the sample. The tube is 

gradually pulled through a temperature gradient (AT = 40K) and as the tip of the tube 

passes the crystallisation temperature, nucléation occurs. The shape of the tip of the 

silica tube is designed to aid the growth of a small seed crystal.

The temperature gradient employed is of the utmost importance. The crystallisation 

point should be well defined in the furnace; this calls for a high degree of thermal and 

mechanical stability to ensure that the pull rate is constant and that the temperature 

profile is not smeared out. If this is not the case the crystallisation plane will be 

disturbed and the likelihood of the production a polycrystalline sample will increase. 

The melting point and pull rate is unique to each furnace and is gauged using trial and 

error.
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Virtually all of the single crystal samples used in the experimental work in this thesis 

were grown by Dr. D. Visser, at Warwick University. The ternary halides were 

synthesised using stoichiometric amounts of the binary halides AX and BX2 , (e.g. 

CsFeBr-? is prepared using CsBr and FeBrz). It has been n o t e d ' t h a t  in order to 

produce a large single crystal sample by Bridgeman technique great importance 

should be placed on the purity of the starting materials. Normally the BX2  precursor 

can be obtained commercially as a hydrate, e.g. FeCU • 4 H2 O, this can then be 

dehydrated by heating steadily under a stream of HX gas.

Equal molar amounts of the pure powder precursors are mixed together and loaded 

into a silica tube, the tube is then sealed. This preparation takes place in the inert 

atmosphere of a dry box, due to the hygroscopic nature of the precursors thus 

preventing degradation of the starting materials. As a safety measure the silica tube 

containing the powder sample is placed in a muffle furnace and the contents melted, 

usually at lOOK above the melting temperature of the sample. This helps prevent 

explosion of the precursors in the Bridgman furnace. The silica tube was loaded into 

the three-zone Bridgeman furnace available at the Physics department of Warwick 

University, manufactured by T.E. Brown and Barrington of Harston, Cambridge and 

procedure followed as above.

Hot  Zone— I lO  Control 

Warm Zone— |

Cold Zone— I
Sample

Winding
motor

Figure 26: Schem atic of a Bridgem an Furnace.

One of the fortunate aspects of working with the ABX3 halides is that they have a 

cleavage plane along the [001] -  [110] direction. This means that by simply pressing 

on the crystal with a sharp object such as a scalpel, it will cleave, leaving a flat face. 

This makes it relatively easy to distinguish and align the crystals for neutron 

scattering experiments.
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3.2 The Neutron Scattering Spectrometers/Diffractometers.

There are currently many different types of neutron scattering spectrometers and 

diffractometers available to the scientific community, from the original and relatively 

‘simple’ Triple Axis spectrometer (TAS) to the more modem and complex Neutron 

Spin Echo (NSE) machines. The ever increasing number of different types of 

machines has considerably widened the typical profile of a neutron scatterer. 

Spectrometers such as Small Angle Neutrons Scattering (SANS) spectrometers have 

been developed which allow, for example, the characterisation of biological samples 

and opened up neutron scattering to the biological community, whilst development of 

stress & strain rigs have allowed non-destmctive testing of mechanical devices and 

weld joints and thus have involved the engineering community. What follows is a 

description of the machines that have been utilised for neutron scattering experiments 

in this thesis. A brief comment on the nature and function of each 

spectrometer/diffractometer is given along with a commentary on the specific 

experiments undertaken.

3.2,1 Triple Axis Spectrometer

This classic instrument is now seen at virtually all neutron beam reactor facilities, 

sometimes outnumbering all other spectrometers put together. Historically, the first 

spectrometer developed was of TAS type by the Noble Laureate Bert Brockhouse at 

the Chalk River facility, Canada. It is so called due to the three principal components 

of which it consists. These are the monochromator drum, the sample table and the 

analyser crystal. All may be varied independently, hence, triple axis. This provides 

great flexibility within one machine and the TAS can be operated in many different 

configurations.
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MONOCHROMATOR

ANALYZER

TARGET

DETECTOR

Figure 27: Schematic of a Tripe Axis Spectrometer for inelastic neutron 

scattering.

The triple axis spectrometer can be operated in either inelastic or elastic scattering 

mode. The only difference being that for elastic scattering either the analyser is 

excluded altogether or it is positioned such that it matches the scattering of the 

monochromator. Both monochromator and analyser usually consist of single crystals 

of either Ge or pyrolytic graphite. The crystal are orientated in such as way as to fulfil 

the Bragg condition with a particular hkl plane, e.g. the (1, 1, 1) plane in Ge or the (0, 

0, 2) plane in pyrolytic graphite. Normally the TAS consists of a flat monochromator 

and analyser, as shown schematically above, but curved monochromators and 

analysers that allow both horizontal and vertical focussing have become more 

popular, mainly for the increased flux they provide at the sample. The detector is 

usually a ^He filled counter with an applied voltage of approximately 1500V between 

cathode and anode. Neutrons that enter the detector chamber react with the He gas via 

the equation,

+ 0.16MeV

The energetic electrons produced by this reaction are accelerated to the anode and 

produce a voltage pulse that is proportional to the number of incident neutrons. Filters 

are often used to reduce the second order contamination from the beam. If one looks 

at the Bragg equation, nX = IdsinO, one see that there are many different plane levels 

in the monochromator or analyser which contribute to scattering. In order to reduce 

this contamination, filters such as pyrolytic graphite, which works by transparency to 

certain wavelengths but not to others, are employed.
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The flexibility of a TAS lies mainly in its ability to chose any point in (Q, (o) space 

with one extra degree of freedom left to chose from, such as incident energy Eq. If we 

take this option and fix Eo whilst scanning in energy, it is known as the constant-Q 

method and is normally used for phonon/magnon dispersion measurements [Figure 

28]. Constant-E scans are used in special situations when the frequency response 

varies very rapidly as a function of Q, it is then the practise to fix O) and scan Q along 

some convenient linear path in reciprocal space.

constant Q

acoustic I

I _ c o n s ta n t

a

Figure 28:Phonon dispersion with an acoustic and an optic branch. Scanning 

directions for Constant-Q(or K) and Constant-E (energy) scans are indicated.

Constant- Q scans may be performed using three different methods:

•  Fixed initial energy (20m  fixed, 20a  is scanned), for each 20a , vj/ and ^  are 

changed to keep K= G ± q constant. Here |k| is fixed and lies on a circle of 

constant radius. A disadvantage associated with this method is the inherent 

kicot0A distortion of the scatted intensities due to scanning the analyser. This can, 

however, be corrected for in the final analysis.

k /

c~

A B
000 G

Figure 29: Scattering triangle for fixed incoming energy, in up-scattering mode 

(neutron energy gain).
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Fixed fina l energy (20m is scanned, 20a  is fixed), \|/ and (|) are changed as above to 

keep K constant. This does not have the associated distortions of the above 

technique but it is a physically slower technique due to the movement of the TAS.

000 q
Figure 30: Scattering triangle for fixed final energy, in down-scattering mode 

(neutron energy loss).

• Constant sample scattering angle (Both 20m  and 20a  are scanned), this technique 

is sometimes used in pressure dependant experiments when a severe limitation is 

place on the incoming and outgoing pathways.

Significant other factors should be taken into account before a successful neutron 

scattering experiment may be undertaken. Depending on the configuration of the TAS 

it may be more advantageous to look at mirror images of the Bragg peak that you 

wish to measure. For instance one may possibly gain better resolution by measuring 

the Bragg peak at (-2/3, -2/3, 1), rather than (2/3, 2/3, 1). The Cooper-Nathans model 

of the resolution function of a TAS was first published in 1967. It is now incorporated 

into neutron scattering measurement software at all neutron scattering facilities 

throughout the world (albeit modified for each spectrometer). The resolution function 

R{AQ, Aco), is defined as the probability of detecting neutrons with energy (O ± Aco 

and wavevector Q ± AQ at position {Q, co). It arises from the mosaic spread of the 

analyser and monochromator and the transmission function of the collimator. The 

function R{AQ, A(0) is four dimensional, but is normally considered with the 

component Qz out of the scattering plane and thus it reduces to an ellipsoid in Qx, Qy 

or, the resolution ellipsoid.

The intensity measured at the detector is given by convolution of the scattering 

function with the resolution function for that point. In the case of a dispersion surface, 

such as phonons etc., a constant-E or constant-^ scan consists of moving the
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resolution ellipsoid vertically or horizontally and integrating where the two functions 

intersect. This is demonstrated below.

E(Q)
R(Aco,AQ)

Figure 31: Schematic of a dispersion curve and resolution ellipsoid in {Q, co) 

space.

The normal configuration of a TAS is that of the ‘w’ formation, whereby the 

monochromator, analyser and detector line up in the shape of a ‘w ’, as shown below. 

It can be seen that the best resolved peak will occur when the resolution ellipsoid and 

the dispersion surface are aligned to have the same gradient.

resolution
elllpsofù

Defocussed
_ y ___

dispersion
curve

focussed

Figure 32: (a) The ‘W ’ configuration for a Triple Axis Spectrometer, where M is 

the monochromator, S is the sample, A is the analyser and D the detector, (b) 

Constant -  E scans on the focussed and defocused sides of the dispersion curve.

Many different Triple Axis Spectrometers have been used for data collection for 

experimental work presented in this thesis. For clarity, the descriptions of the 

individual characteristics of each spectrometer have been grouped below and the 

interested reader is referred to those Chapters for further information.
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3.2.1.1 The TAS E l at the HMl, Berlin.

The spectrometer is located on the DIN beamline of the BER -  II reactor at the Hahn 

Meitner Institut. The monochromator and analyser can either be pyrolytic graphite 

(PG 002) or a Heusler crystal (Heusler 111). Both monochromator and analyser have 

variable curvature in the horizontal and vertical directions. The whole spectrometer is 

made of non-magnetic materials, this allows polarisation analysis to be undertaken 

without spurious signals from the spectrometer. A second turntable, below the sample 

table with its axis collinear to the sample axis, can be used for mounting and orienting 

ancillary equipment, such as Helmholtz coils used to produce a horizontal magnetic 

field. The analyser and detector are constructed into a single "Tanzboden" unit, this is 

unusual in that normally the analyser and detector are separate units. The detector is 

mounted on a cantilever arm, which can be rotated freely around the analyser axis 

after decoupling it from a beam tube device leading through the analyser shielding. 

By rotating both the cantilever arm and the detector by 180°, it is possible to quickly 

change to a two-axis mode of operation, this feature was utilised during the 

experiment elaborated upon in Chapter 4.1. The analyser shielding has an 

unconventional design: a horizontal segment of the polyethylene shielding is replaced 

by a rubber tire filled with water, over which a specially formed polyethylene block 

containing the beam channel can be moved. This beam tube device is coupled to - and 

automatically rotates with - the detector arm’' ^

Figure 33: Schematic Representation of the TAS E l at the HMI 112
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This spectrometer was used in conjunction with the vertical magnet, VM3 

(temperature range 300K-2K and maximum field of 5T), to establish the critical 

exponent, P, of CsNiCl^ under magnetic field and electric field (Chapter 4.1). It was 

also used, again in conjunction with the vertical magnet, VM3, to establish the critical 

exponent p, of CsMnBr^ under magnetic and electric field (Chapter 4.1)

3.2.7.2 The TAS V2 (FLEX) at the HMI, Berlin.

FLEX (V2) is located at the cold neutron guide NL IB at the BER-U reactor of the 

HMI. A schematic of the spectrometer is shown below.

Figure 34: Schematic Representation of the Triple Axis Spectrometer V2 at the 

H M I " \

All distances, i.e. those between monochromator and sample, sample and analyser, 

and analyser and detectors can be varied. This is so that optimal scattering geometry 

for best intensity at the required angular and energy resolutions can be obtained. In 

order to further increase the flux, a tuneable curved monochromator and analyser are 

used, both of which are fabricated from strips of Pyrolytic Graphite (002). The 

geometry of FLEX allows incident neutron wavelengths of between 1.7Â (27meV) 

and 6.5Â (1.9meV). In order to reduce second order contamination of the beam, a 

tuneable pyrolytic graphite filter is used for X < 4Â and a cooled Be filter for A. > 4Â. 

This spectrometer was used in conjunction with a dilution refrigeration unit and a 6 

Tesla, Horizontal Field magnet, in order to establish the magnetic phase diagram.
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magnon dispersion curves and critical exponent p of CsFeBr^ at mK temperatures 

(Chapter 5.3).

3.2.1.3 The TAS 4F1 and 4F2 at the LLB, Saclay, Paris.

These are more conventional Spectrometers than E l, described above, in that the 

analyser and detector are separate units. The 4F1 spectrometer was used in 

conjunction with a modified Orange cryostat and a He-pressure cell (Chapter 3.3.3) to 

enable us to establish the magnetic dispersion curves of CsFeCE (Chapter 5.1.1) and 

CsFeBr3 (Chapter 5.2.1) under hydrostatic pressure of 5.0kbar. 4F2 was used in 

combination with an Orange cryostat to measure the sublattice magnetisation of 

several different samples of KNiCE and establish the critical exponent p. The 

spectrometers 4F1 and 4F2 are located on the left and right tangential channels of the 

beamline 4F at the Orphée reactor, Saclay.

i

RL1E

KNIIEK

CEIH TO JR

I

ANALYSEUR

Figure 35: The Triple Axis Spectrometers, 4F1 and 4F2, at the LLB, Saclay 114

Both have a pyrolytic graphite double monochromator setup, and both can have the 

ability to use either flat or curved pyrolytic graphite as an analyser. As is described in
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the experimental Chapter 5.1.1, for fixed incoming energies of ki = 2.662 Â'* a PG 

filter were used to reduce the second order contamination of the neutron beam. At ki = 

1.55 Â'* a cooled Beryllium filter was used for the same purpose.

3.2.1.4 The Single Crystal Diffractometer, D15 at the ILL, Grenoble.

D15 is a single-crystal diffractometer of the Harwell MK VI design. It is installed on 

an inclined beam tube (IH4) at the ILL, Grenoble. To compensate for the inclination 

of the incident beam, the scattering vector of the monochromator is tilted to bring the 

monochromatic beam into the horizontal plane. It is possible to operate the instrument 

in four-circle mode but is more often used, as in the case in this thesis in the normal- 

beam mode. The monochromator, unusually, utilises Cu (331) as a reflection plane, as 

opposed to the usual PG(002).

Monocfaromatof |Cryo«la,t

t>etectorProtection Veoel
Shutter and Slit

Detector Cradle

Sample Table

Figure 36: The single crystal diffractometer D-15 at the Institut Laue 

Langevin^^^

As can be seen above in Figure 36 the detector has a motorised motion allowing 

inclination of the detector to the plane of scattering from -10° to +35°. DI5 can be 

used for a wide range of physical problems including the determination of magnetic 

phase diagrams or of pressure-temperature phase diagrams. We used D15 in
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conjunction with a He pressure cell and ‘Orange’ cryostat to establish the pressure -  

temperature phase diagram of TlFeCl3 ,(Chapter 4.4.2).

3.2.1.5 The Membrane Diffractometer, VI at the HMI, Berlin.

The diffractometer VI is installed at the curved neutron guide NL lA  at the Ber -II, 

reactor at the HMI, Berlin. It has a vertically focusing graphite monochromator (PG 

002) which provides adjustable wavelengths between 3Â and 6Â. The detector is a 

^He area detector with a sensitive area of 20 cm x 20 cm. This allows large areas of 

reciprocal space to be scanned with each single measurement. The detector may also 

be inclined out of the plane of the experiment in order to detect scattering from higher 

planes, similar to the diffractometer D15 outlined above. The monochromator to 

sample and sample to detector distances can be varied in order to produce the most 

suitable resolution for the particular experiment. A schematic of the Diffractometer is 

shown below.

Quid

Figure 37: Schematic Representation of the Membrane Diffractometer VI at the

Although V 1 has been principally designed for use with biological samples such as 

biological membranes, polymers etc. we used it for a single crystal experiment on the 

large easy plane anisotropy system CsMnBr^. This experiment was the first single
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crystal experiment undertaken on VI and was performed in conjunction with an 

applied electric field. The experiment is elaborated upon in Chapter 4.1.1.

3,2.2 Powder Diffractometer,

There are two methods of obtaining a powder diffraction profile. The first is where 

the powder sample is exposed to a monochromatic beam and the crystallites with the 

necessary orientation to satisfy Bragg’s law will produce scattering. If a powder 

diffraction instrument is based at a reactor source then the scattered beam will be 

measured as a function of the detector angle, 20, as below.
Monochromatof Shielding

Beam

Sample
Monochromator

Scattering
MoweaWe 
Beam Slop

Foamed 
Monochromatic 

Neutron 
Beam

Detector
Support

Track

Collimators 
and ®He 
Neutron 
Detectors

Figure 38: Schematic of a pow der diffraction experim ent at a reactor source. 

[Ref. Theory of Therm al N eutron Scattering, C larendon Press, O xford, 1971]

If the diffractometer is based at a spallation source then the sample is irradiated with a 

pulsed beam of neutrons having a varying range of energies. Banks of detectors 

located at different scattering angles measure the scattered neutrons. Figure 41 shows 

a schematic of the powder diffractometer POLARIS based at the ISIS facility with the 

different detectors (low, 90° and backscattering) visible. At a particular scattering 

angle the diffraction pattern will look similar to that of the steady state source, 

however in this case the independent parameter is now the neutron’s time of flight 

rather than the scattering angle. Thus the time at which each neutron impinges on the 

detector is recorded. Because the neutron’s time of flight is proportional to its 

wavelength and, for constant scattering angle, this wavelength is proportional to the d
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spacing between the atomic planes, nX = dsinO, the measured neutron scatter can be 

plotted against time, X or J-spacing, The detector bank sitting at small scattering 

angles will provide information concerning widely space atomic planes, whilst the 

banks at large scattering angles will provide information concerning smaller d- 

spacing.

The second method of obtaining a powder diffraction profile is whereby the detector 

is fixed and the wavelength is varied. This is commonly used, as with the TAS 

method of fixed detector, when using apparatus with limited pathways for incoming 

and outgoing beam, such as magnets, pressure cells etc.

Powder samples consist of small crystallites lying in all possible orientations 

compressing the three dimensional reciprocal lattice into one dimension. Thus, the 

large number of intensities obtainable from a single crystal are projected in a powder 

sample and instead, a radially symmetric diffraction pattern is produced. In order to 

properly refine the data it is necessary to compare not only integrated intensities but 

also intensities calculated for every position 20 of the detector. This approach was 

pioneered by Rietveld'^^ and therefore, the comparison of experimentally measured 

and theoretically predicted dependencies of intensity on the scattering angle is know 

as Rietveld refinement.

The refinement involves three groups of parameters to account for the profile model, 

corrections to intensity and the structural model. Within the profile model are 

parameters to refine the positions and shapes of the Bragg peaks. Parameters that 

define the Bragg peak position include the diffractometer zero point, the unit cell 

constants, sample displacement and transparency terms. The intensity correction 

terms include parameters to allow for effects such as absorption, extinction and 

preferred orientation. The structural model contains the same parameters as that for 

single crystal refinement, namely atomic coordinates, occupancies and temperature 

factors.

No matter where the data originates from. X-ray, steady state or pulsed reactor source, 

the objective of Rietveld refinement is the same, that is the most accurate least-
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squares fit to all of the individual observed data points (yi) simultaneously. The 

quantity minimised is the residual S y .

5 , (38)
i

where the sum is over all the data steps and where,

Wi = 1 /y , ,

y, = observed (gross) intensity at the step , 

y>ci = calculated intensity at the f  step ,

For the reasons outlined above, many Bragg reflections will contribute to the intensity 

y„ observed at a point, i. The calculated intensities yd  are determined from the 

values calculated from the structural model. This is achieved by the summing of the 

calculated contributions from neighbouring Bragg reflections and the background. 

Thus,

y a = r  ̂ (20/ -  20a  )Pk A + y hi (39)

where.

s is the scale factor, K  represents the Miller indices for a Bragg reflection, Lk contains 

the Lorentz, polarisation and multiplicity factors, ^  is the reflection profile function, 

Pk is the preferred orientation function, A is an absorption factor, Fk is the structure 

factor for the Bragg reflection and y ^  is the background intensity at the step.

The reflection profile function is machine specific and has special relevance to 

spallation source neutron scattering. Due to the nature of the production of the neutron 

pulse from a spallation source its shape is highly asymmetric in time. The peak shape 

calculated for HRPD at the ISIS facility is given below as an example. HRPD uses a 

modified Robinson-Taylor-Carpenter (RTC) peak shape, which is a rather 

complicated function consisting of epithermal and thermal components.
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Figure 39: The contributing functions of the HRPD lineshape based on a 
modified RTC function'**.

The success of a refinement is judged from the following sums of the residual 

intensities, (R-factors):

The profile R-factor:

The weighted profile R-factor:

Z  W, (y, {obs)~ y  I {calc)f
R^p —

The structure factor R-factor:

Rwp -
l i h C o b s 'W ^

and the Bragg R-factor:

^ \li^ (;o b s ')-I^ {ca lc}
=

(40)

(41)

(42)

(43)
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The Goodness o f  f i t  indicator, is given by:

X =
Sy _ K p

N - P  R
(44)

where Re the expected R-factor is given by,

R. =
\ N - P

(45)

N  is the number of data points, P is the number of parameters.

A X value of over 1.5 indicates that the model is a poor fit or that you have a false 

minima in the model. A value of less than 1 indicates that the model is 

overparameterized.

3.2.2.1 The Powder Diffractometer, HRPD, at the IS IS  facility, Oxford.

The design and positioning of the M gh Resolution Powder Diffractometer at the end 

of a lOOm beam line makes it one of the highest resolution neutron diffractometers in 

the world and thus gives it unique power in the study of structural information and 

small structural changes. HRPD has 3 different detectors, positioned at 28-32°, 90° 

and Backscattering, these can be seen below in Figure 40.

90*D etector

28-32 A rfined  

fiUed dete ctof t&nk

Guide
tube Beam

■ - Q -
Stop

1 m sangle 

position
2m sample 

position

Figure 40: Schematic plan view of the HRPD detector configuration119
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Each detector has characteristics which make it suitable for different tasks. The 

backscattering detector has, in total, 720 discrete detector elements which may be 

used, decoupled, as a radially pixelated position sensitive detector. These elements are 

software linked to form 60 rings, these rings are designed to mirror the Debye- 

Scherrer rings produced by powder diffraction. In this manner the geometric 

aberration may be minimised. The data obtained in backscattering detector is of 

inherently high resolution. The effective upper cf-spacing limit of the backscattering 

detector is approximately 5Â. This limit is a direct consequence of the incident flux of 

the diffractometer which, at only modest intensity, extends to wavelengths of 

approximately 10Â. In order to measure longer J-spacing information, detectors at 

lower angles are vital. In these detectors, for a given (/-spacing the Braggs’ Law 

equation is satisfied by neutrons of shorter wavelength and therefore, on HRPD, of 

higher flux.

The 90° detector utilises a ZnS scintillator, which by virtue of its peak height response 

can discriminate between neutrons and y radiation. This insensitivity to y rays is 

significant, as the backscattering detector is quite insensitive to this radiation. The 

detector is comprised of 6  modules each with 6 6  elements. Each module is positioned 

on a constant radius from the Im  sample position. As with the backscattering detector 

just mentioned, data may be collected in each of the 396 discrete elements but more 

usually the detector is software configured into 6 6  radial segments.

The low angle detector utilities 16" ^He tubes as a detector. The HRPD low angle 

bank, currently houses 72 tubes which lie on a constant radius parallel to the through 

beam direction and are configured in 3 rows of 24 tubes. Again, similar software 

linking strategies outline above may be applied. The long secondary flightpath of the 

low angle bank, necessary in order to minimise angular divergence, requires that the 

large tank housing the detector be filled with Ar gas. The tank is therefore discrete 

from the other sample and detector tanks which are evacuated during diffraction 

measurements. The incident and transmitted beam intensity is monitored by two 

Davidson (1985) monitors situated at 93.50m and 96.74m from the moderator.
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The characteristics of each detector bank are summarised below:

Backscattering 90° Low Angle

Detector

Specification
ZnS scintillator ZnS scintillator V2  lOatm He^ gas tubes

Geometry
60 rings:

7 < r , < 8.5cm

Slab:

20 X 20cm

72 tubes:

(20cm active length)

35.5 < r6o ^ 37cm 66 X 3mm elements 8 tubes/module

8 Octants: 4147cm^ 6 Modules: 24(X)cm^ 9 Modules: 1800cm^

Fixed Scattering 

Angle
1 6 O °< 2 0 < 1 7 6 ° ( lm ) 87° < 20 < 93° 28° < 20 < 32°

Solid Angle (Q) 0.41 ster(lm ) 0.08 ster 0.01 ster

Resolution (Ad/d) ~ 4-5 X 10 “ ~ 2 X 10^ ~ 2 X 10^

d-spacing range (30- 

230ms)
~ 0.6 - 4.6Â ~ 0.9 - 6.6Â - 2 . 2 -  16.5Â

The powder diffractometer HRPD has been used in conjunction with a gas pressure 

cell (Chapter 3.3.3) and modified Orange cryostat to enable us to characterise the low 

temperature structure of TlFeCl] under hydrostatic pressure. More information on this 

experiment can be found in Chapter 4.4.1.

3.2,2.2 The Powder Diffractometer, POLARIS, at the IS IS  facility, Oxford.

As with HRPD, POLARIS has a variety of detector banks available for data 

collection, these are, ‘very low angle’, ‘low angle’, 90° and ‘back scattering’, as 

shown below.
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Low angle detectors
7 ransmiltod 
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90 d egrees detectors

Backscattering detectors

Incident beam

Sample tank

8.5m collimator

11.5m coNimator

Long d-spAcing 
detectors

Figure 41: Schematic of the powder diffractometer POLARIS at the ISIS 

facility^^®.

The POLARIS diffractometer is located on the D7 beamline at the ISIS facility, 

receiving a ‘white’ beam of neutrons from the ambient temperature water moderator. 

It has the possibility of incident wavelengths of 0.1 - 6.0 Â, with a corresponding 

incident energy range of ~ 2meV - 8 eV. Motor driven collimators allow the incoming 

beam to be reduced, from a maximum size of 40mm high x 20mm wide, to match the 

sample size. This eliminates any background scattering contamination from the 

sample environment equipment.

The characteristics of the detectors present are given below in tabular format.

Position Very low angle Low angle 90 degrees Backscattering

Type ZnS scintillator */2” ^He tubes ZnS scintillator 1” ^He tubes

No. o f detectors 80 80 216 58

20 range 13°-15° 28° - 42° 85° - 95° 130°-160°

Q(steradians) 0.009 0.046 0.48 0.29

Ad/d (%) 3 x 1 0 ^ 1 X 10 2 7 X 10 3 5 X 10^

Li (m) - 2 .2 1.72-2 .65 -0.8 0 .60 - 1.30

d range (Â ) 0 .5 -2 1 .0 0 .5 -8 .1 5 0 .3 -4 .1 0.2 - 3.2

We utilised POLARIS for low temperature, structure determination studies, on the 

triangular lattice antiferromagnets CsFeCl^ and CsFeBr^ under hydrostatic pressure. A



3 Experimental Methods

modified Orange cryostat was used in combination with a gas clamp cell to obtain the 

necessary sample environment.

3.2.3 Flat Cone Diffractometer.

The flat cone technique is a modified case of the Weissenberg technique which was 

developed for use with X-ray diffractometers in conjunction with photographic 

detectors. In the Weissenberg method a single crystal is rotated about an axis and thus 

the planes normal to this axis will diffract. The diffraction will take the form of a 

plane or cone shape i.e. all the reflections of one reciprocal plane or layer are recorded 

along straight lines on a cylindrical film. If only one line is selected by filtering the 

image by placing a layer-line screen before the film, then a two dimensional lattice 

plane can be mapped on the two dimensional film by coupling the crystal rotation and 

the film rotation. This same procedure can be realised with a one-dimensional 

electronic multidetector that is placed along one layer line. For each rotational 

movement of the single crystal a separate measurement is made, this results in a loss 

in resolution perpendicular to the layer line in comparison to the film method. 

However statistical analysis of the data allows this to be reduced to a minimum. There 

are distinct advantages to the fiat cone technique, firstly and most obviously the data 

collection rate will be many times that of a conventional TAS due to the fact that the 

data is being collected by a multidetector which can scan many Bragg peaks 

simultaneously, compared to a TAS which may only measure one point of the 

scattering function at any one time. Thus this technique is well suited to the 

systematic search of the intensity distribution in reciprocal space. This is especially 

true for the determination of unknown lattices, e.g. in magnetically ordered crystals, 

or for the observation of diffuse scattering between Bragg points. The detector may 

also be tilted out of the plane of the experiment in order to establish scattering from 

different layers in reciprocal space. The principle of this method is described below.

The incoming neutron beam is reflected at the monochromator in the usual way and 

impinges onto the sample. The scattered neutrons are analysed by reflection at fiat 

crystal plates. These are orientated such that the neutrons are reflected out of the 

horizontal (experimental) plane into the vertical plane. A schematic of the setup of the 

fiat cone technique is shown below.
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s A

Figure 42: Schematic view of a the neutron beam path for a flat cone 
diffractometer, shown in plan view (above) and plane view (below) [Born, lAEA- 
CN-46/44P]

The analyser crystals are placed close to the curved one-dimensional multidetector, so 

that the diffracted beam does not change much in height for different energies. The 

scattering events which take place in the horizontal plane and with a given energy can 

be detected simultaneously in an angular range limited only by the dimensions of the 

multicounter or by the number of analyser crystals. The advantage over TAS 

measurements can be seen by looking at the Ewald sphere construction for the 

diffractometer. One measurement corresponds to a constant energy scan on a circle 

concentric to the Ewald circle in reciprocal space, as is shown below. The TAS can 

only scan one point along this curve at any one time increasing the experimental time 

enormously.

#

CQ
rtkL-,

Figure 43: Ewald sphere construction for the flat cone technique, showing the 
concentric circle that can be simultaneously measured using this technique.
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A realisation of this instrument is in place at the BER-II reactor, at the HMI, Berlin 

and a description of this diffractometer is given in the next Chapter.

3.2.3.1 The Flat Cone Diffractometer, E2 at the HMI, Berlin.

The diffractometer is located at the radial beam tube R1 of the BER II reactor at the 

HMI, Berlin. A schematic of the instrument is shown in Figure 44.

Figure 44: The Flat Cone Diffractometer E2, at the HMI, Berlin 121

The monochromator and analyser are both fabricated from pyrolytic graphite, with 

each analyser composed of four plates each with dimensions of 50 x 75 mm^, 

covering a scattering angle of 8 °. The analyser units are mounted on motorised 

cradles with the rotation axis in the horizontal plane, thus the energy transfer can be 

adjusted to suit experimental conditions and sample. The detector is a BF3 filled 

curved multicounter with 400 wires. The distance between the analyser and detector is 

quite small at 8 cm, this is for the reasons explained above in that it means a small 

vertical translation of the detector (5cm) covers a wide range of energy transfers 

(8 meV with k, = 14.2meV). The analysers and detector are located in the same 

shielding block and can be tilted in order to observe scattering form the different 

layers in reciprocal space. Thus by combining this tilting with the fact that the
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analyser can select different energy transfers, one can, in principle, record all elastic 

and inelastic scattering events in a single crystal in a systematic way.

Many structurally or magnetically disordered crystals give rise to coherent diffuse 

scattering which gives information about the local structure of disordered atoms or 

spins and their correlations. This diffuse scattering takes place over a large range of 

reciprocal space and thus a multidetector is ideally suited to the task of characterising 

this scattering. If the disorder is static or quasistatic i.e., the time scale of the dynamic 

process is larger than that given by the inverse of the instrumental energy resolution, 

then the diffuse scattering is elastic or quasielastic. In this case the elastic or 

integrated quasielastic intensity can be collected with the use of the E2 diffractometer 

by putting the analyser crystals to an energy transfer of E = 0.

Using this method, we measured the diffuse magnetic scattering of the triangular 

lattice antiferromagnet CsNiCb above and below the magnetic transition temperature. 

A full description of this experiment can be found in Chapter 4.2.2.
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3.3 Sample Environment

Having given a full description of the neutron scattering spectrometers and 

diffractometers it would be advantageous to consider the sample environment 

techniques employed in this thesis. Sample environment assumes great importance for 

systems such as magnetic compounds that order at very low temperatures and also, as 

was suggested in the Introduction, sample environment allows the experimentalist to 

tune the various parameters of his system. Magnetic field can be used to induce order 

in the system and pressure can be used to accurately change its structural makeup, in 

this way a greater understanding of the physics of the systems can be gained. The 

apparatus used for each technique is outlined in the subsequent chapters.

3.3,1 The IL L  Orange Cryostat.

The ‘Orange’ cryostat (known by its colour) was developed by scientists at the Institut 

Laue Langevin, specifically for use in neutron scattering environments and presently, 

the company ‘A.S. Scientific Ltd.’ manufacture it under licence.

The cryostat utilises the properties of liquid "̂ He to obtain temperatures in the region 

of 1.8K. As can be seen from above, the sample is mounted on a stick, which has 

several baffles affixed to it to prevent convective heat transfer. The stick is positioned 

in the evacuated central core of the cryostat. This is surrounded by a jacket of liquid 

"̂ He, which is in turn protected from the environment by a jacket of liquid nitrogen. 

To prevent unnecessary heat loss all jackets are protected with vacuum. The liquid 

nitrogen pre cools the system to ~70K, where the "̂ He takes over. The "̂ He will lower 

the temperature to 4.2K. A small amount of exchange gas is permitted to enter the 

central chamber and the vapour pressure is reduced in the chamber by pumping. This 

allows cooling down to temperatures approaching 1.5K.
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Figure 45: The typical ILL Orange cryostat, m anufactured under licence by A.S.

Scientific 122

As can be seen from above, the liquid nitrogen and helium Dewars sit above the 

sample, allowing the neutron beam unhindered access to the sample. The aluminium 

which forms the ‘tail’ of the cryostat is as thin as possible to prevent any spurious 

signals which may contaminate the observed neutron diffraction pattern. The advent 

of the cryostat has allowed scientists to probe the low temperature magnetic structures 

of various new and exciting materials and also investigate the dynamics of materials 

at low temperatures.

3.3.2 Dilution Refrigeration Units

Temperatures of -0.3K  can be reached by the same evaporation method as described 

above but substituting ^He for ^He. To obtain temperatures below this value a 

technique known as dilution refrigeration is employed. The principle of dilution
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refrigeration was suggested by F. London around 1950, when it became evident that a 

liquid mixture of two helium isotopes ^He and "̂ He would undergo a phase transition 

at temperatures below 0.9K. If the mixture contains more than 6 % then phase 

separation will occur at a certain temperature along the cooling curve. The ^He 

(concentrated) phase will float on top of the more dense "^He-rich (dilute) phase. 

Further cooling along the co-existence curve causes the concentrated phase to become 

almost entirely 1 0 0 % pure ^He, whilst the dilute phase tends to a limit of 6 % ^He in 

superfluid "̂ He. It is this ^He concentration in the dilute phase which makes the 

dilution cooling process possible. When the ^He atoms move across the boundary 

from concentrate to dilute phase, a heat solution is taken from the liquids. This is 

analogous to the method explained in the previous chapter whereby evaporation of the 

"̂ He extracts latent heat and causes cooling. The ^He atoms in the dilute superfluid 

phase behave like the particles of a gas moving through the inert “̂He background as if 

it were a vacuum. The vapour pressure equivalent is the osmotic pressure for a 

solution of ^He in "̂ He. Thus in order to maintain a continuous flow of ^He an 

osmotic-pressure gradient must be established in the system. This is achieved if the 

mixing chamber is connected to the still, which is maintained at a temperature of 

0.7K. This is demonstrated schematically below.

He 3 flow

Heal exchange

D ilution co o ling

Evaporation  
of H e 3

M ixing  ■  C httm hc

Figure 46: Schematic diagram of a He - ^He dilution refrigeration unit.

When the liquid in the sill is pumped, the vapour removed is almost entirely ^He 

because it has a much higher vapour pressure than that of ^He. Thus the required flow 

of ^He for cooling the mixing chamber is established. The evaporated ^He is collected, 

condensed and passed through a heat exchanger in which cooling by contact with the
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counter flowing dilute phase occurs. The actual arrangement of the dilution unit for 

neutron scattering experiments is shown below. The still and mixing chambers can be 

clearly seen and the sample is mounted just below the mixing chamber.

ihompton

M ping C hom be*

Regulatior Thermometei

^  n - B e a m
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(FVC) 0  46
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Figure 47: The dilution refrigeration unit used in conjunction with a 6 Tesla, 

Horizontal Field magnet for the experim ent in C hap ter 5.3. It is shown here

inserted into a modified O range cryostat (left) and schematically (right) 123

3.3.3 Gas/Liquid Pressure Cells.

There are two different methods of applying pressure to a sample, which are 

applicable to neutron scattering, the clamp cell and the compressed gas cell. The 

clamp cell is used for higher pressures (up to Gpa), whilst the latter is useful for low 

pressure, low temperature measurements. It is the latter, which has been utilised for 

neutron scattering measurements in this thesis.

This method normally utilises the low temperature properties of Helium. The single 

crystal sample is immersed in a chamber filled with Helium liquid, pressurised, and 

the temperature lowered until solidification occurs. This gives a truly hydrostatic 

environment which is capable of obtaining pressures of 5 -  6  kbar and the ability to
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make measurements at low (liquid Helium) temperatures. There are several reasons 

why He is used for a pressure transmitting medium:

• Helium retains its fluid state down to a lower temperature than other elements. 

This provides a pure hydrostatic environment for a wide range of temperatures 

and pressures.

• When He is solidified in the chamber the pressure loss along the isochore is

smaller than any other element. This is due to the fact that most of the internal

pressure is caused by the zero point instability of He, thus it is relatively

insensitive to temperature change.

• The shear stress of the rare gases when plotted as a function of Tn/T falls on a

universal curve, thus He should have the lowest shearing stress of all substances.

3 0 0 0 0 -

1 5 0 0 0 "

• **0 — j|[lOOOO---

5 0 0 0  i

1 0  3 0  3 0  ^  5 0  6 0  7 0  * 0  9 0  C O  K

Figure 48: Extrapolated melting curve of He. Path (a) shows the cooling path 
with freezing occurring under constant pressure conditions at pressure Pm, 
followed by cooling along an isochore to a final pressure Pq. Path (b) indicates 
freezing under constant volume conditions from pressure Pmf in the fluid phase. 
Path (c) is an intermediate case, with change with both molar volume and 
pressure occurring during freezing (Ibar = lÔ Nm"̂ ) (Schull, cryogenics 1970).

The He pressure cell method was used in the neutron scattering experiments 

performed at the Laboratoire Leon Brillouin, Saclay, France. This cell was built ‘in 

house’ and was specifically designed with low temperature, single crystal neutron 

diffraction in mind. The He pressure cell outlined above was utilised in experiments 

whose details can be found in Chapters 5.1.1 and 5.2.1.
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3.3.4 Horizontal and Vertical Magnets

This section gives information on the two different magnets from the Hahn Meitner 

Institut that were used in experimental work elaborated upon in later chapters.

3.3.4.1 The Vertical Magnet, VM3, at the HMI, Berlin.

The vertical magnet VM3, manufactured by AS Scientific Ltd is shown below. One 

can see that its basic design is similar to that of the normal ‘Orange’ cryostat (Figure 

45), in that it utilises liquid Nitrogen and liquid Helium dewars, as well as the 

properties of vacuum to enable temperatures of approximately 2K to be reached. The 

Helium cooled superconducting coils allow a vertical field of 5 Tesla to be applied to 

the sample.

LHe 
Regulation 
Therm cm d e  
an d  Heater

Sample 
Them cm d e

n-Becm

* 3 2 0
Bottcm y  
Flange

Figure 49: Schematic of the Vertical Magnet VM3 at the HMI 124
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This magnet was used in conjunction with the TAS, E l, at the HMI, in order to 

establish the critical exponent, P, of CsNiCE under magnetic field. However, due to 

the construction of the magnet, only certain windows of scattering are allowed. This 

was to prevent the accurate measurements of P during the experiment. More 

information on this can be found in Chapter 4.2.1.

3.3,4.2 The Horizontal Magnet^ HM I, at the HMI, Berlin.

The basic construction of HMI is similar to that of VM3, due to the construction of 

the windings in the magnetic, the field can be applied horizontally to the plane of the 

experiment and allow one to look at different aspects of the magnetic ordering in the 

system in question.

• V

 70*-^
•130

Figure 50: The Horizontal Magnet HM I, showing the plan and plane view of the 
available scattering windows*
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This magnet was used in conjunction with a dilution refrigeration unit in order to 

establish the low temperature magnetic phase diagram and the critical exponent P of 

the SGS CsFeBrg at millikelvin temperatures, more information on these experiments 

can be found in Chapter 5.3.
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4 Chiral Order in ABXi Compounds

4 Chiral Order in ABX3 compounds

The information given in this Chapter relates to experimental work performed on the 

ABX3 model systems. Chapter 4.1 deals with experiments performed on the easy 

plane anisotropy system CsMnBrg, looking at the magnetic ordering of the system in 

the presence of an applied magnetic field. Chapter 4.2 deals with experimental 

measurements on the easy axis anisotropy system CsNiClg which is a particularly 

good model material for the Haldane conjecture. Chapter 4.3 details magnetic 

sublattice magnetisation measurements on the isomorphous material RbNiClg. 

Chapter 4.4 gives a full description of the structural and magnetic, temperature -  

pressure, phase diagram of the distorted lattice compound TlFeCls and finally the 

different phases another distorted system, KNiClg, have been characterised in Chapter 

4.5.

4.1 CsMnBra (El, VI - HMI)

To establish the validity of the predictions and conjectures made in Chapter 2.2.2, 

neutron scattering experiments were performed on CsMnBrg in the presence of an 

electric field. Plumer et used symmetry arguments to demonstrate that an

electric field applied in the basal plane of a stacked triangular antiferromagnet breaks 

the chiral degeneracy associated with the induced 1 2 0 ° spin structure which is 

achieved through magneto-electric coupling which introduces a Dzyaloshinsky -  

Moriya type of interaction.

It is known that the chirality of helically polarised magnetic structures, in crystals 

lacking a centre of symmetry, is determined by the sign of the Dzyaloshinsky -  

Moriya interaction The phenomenon known as the magnetoelectric effect

refers to the appearance of a magnetic moment in response to an applied electric field, 

or vice versa^^®. For example, in the system ZnCr2 Se4 *̂ * the sense of the chirality of 

its helical ordering can be controlled by applied electric field. By means of a polarised 

neutron scattering study it was possible to prove that a magnetic structure of a definite 

helicity can be produced in this system in the presence of an electric and magnetic
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field. Plumer et al}^^ used symmetry arguments to construct the lowest order coupling 

term between a spin vector, S , and an electric field, ( Ê  ), induced polarisation vector, 

P , on a simple hexagonal lattice with planar anisotropy.

It has been shown that the terms which contribute to the magnetic Hamiltonian have

to satisfy several criteria: time reversal (only even powers of S can occur) and 

invariance to the symmetry operations of the space group (in our case 

centrosymmetric). Thus, in our case of a hexagonal lattice with a centre of inversion 

symmetry, one is left with one term;

= } Ç y \ d f d f ' C { x \ P x x \ [ s { r y s { r ' ) ]  (46)

where f  = r - r ' , C ( - f ) =  C( f )  and subscript z indicates the z component. The spin 

density of s(r)  can be represented as

(47)
R

where R  denotes the hexagonal lattice points and p  the long range magnetic order. 

p ( r )=  , with and S 2 being real vectors.

The polarisation vector P  in equation 46 is expected to be proportional to the applied

E  - field. This form is comparable to the Dzyaloshinsky -  Moriya interaction, of the

form:

d [s , x s J  (48)

Taking only nearest-neighbour interactions into account the magnetoelectric coupling 

contribution to the groundstate energy is given by,

E c = ' C e / ’z ( s x 5 ' )  (49)
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where,

Cq -  2C±[2bpx cos Vi qx sinqy -  apy(Sinqx+ sin V2 qx cosqy)] (50)

with, = (y/N)C{a),  P  = P{p^x + p^y) ,  qx = aQx, qy = bQy, and ^ = f^3/2)a.

The magnetic superexchange interactions are of the usual form,

= X v  1 d r d f ' j { x \ s { r ) - î(r ') ]  (51)

and contribute to the ground state energy Ej = J q (^ S ' )  and where, regarding 

nearest neighbours only,

J q  = 2Ju cos(qj + 2Ji{cos(qx) + 2cos (Viqx) cos(qy)] (52)

with,

J„ = {V/N)J{c) and A  = (V/W)7(a) (53)

The superexchange interaction causes a modulation of the spin density and results in a 

magnetic structure with = (An 1 2 0 ^ 1^ {k/ c)c, where is one of the six 

hexagonal basal plane crystallographic axes and with a helical polarisation where 

= (5 /V 2  )x and Sj  = (s /V 2 )y , as favoured by the interaction of Equation 50.

This results in the 120° type spin structure with two different chiral spin states:

• A positive chirality state with,

ë i  =+(4jr/3a)x, -(2;r/3u)% ±(;r/b)ÿ (54)

• and the negative chirality state where

ë i  =-(4^/3a)3E, +(2;r/3a)3E±(;r/b)y (55)

103



4 Chiral Order in ABXi Compounds

These states are energetically equivalent. Both S and are confined to the basal 

plane.

The effect of the magnetoelectric coupling on the wavevector Q can be considered by 

minimisation of the energy E q = (/^  + P C ^ ) s ^ . Since = 0 for the 120° type spin

structure, this type of magnetic ordering may be destabilised towards a slightly 

incommensurate magnetic ordering. The two cases are now considered, where

• PHX : i.e. parallel to the axis, which is equivalent to the [100] direction,

•  PH y : i.e. perpendicular to the axis which is equivalent to the [110] direction.

This direction also corresponds to the direction of the k - vector of the 120° type 

magnetic structure.

Considering the above states (and looking at only the cases where, in the limit P  —> 0, 

= ±{4nl3a)x, as the other four wavevectors give equivalent structures), we see

that for P//Jc, is an even function of qx and no chirality selection occurs, and the

magnetic wavevector for a small magnetoelectric coupling is qx = ±[4ti/3 + (1^3) 0^ ] 

and qy = ô ,̂ where = bPC±/  J±. For P / / y ,  in the limit P  —> 0, is an odd 

function of qx and chiral symmetry is broken, this results in two senarios:

A positive helical state qx = +4tc/3 is stabilised for C± > 0. The minimum occurs 

for Eg at qx = 4tU3 - ha where = aPCj_ /  7 i and qy -  0. The magnetoelectric 

coupling energy is given by, Ec = -3/2 CiaP{ha + /4  )5^.

A negative helical state occurs, qx = -4tc/3 for C± > 0. The minimum energy occurs 

at qx = 4tc/3 + and equal energy.

A schematic drawing of the wavevector dependence of the groundstate energy in 

these two cases is given below in Figure 51. The broken curve shows chirality
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degenerate minima at qx = ±4tc/3 resulting from the antiferromagnet exchange. The 

solid curves show (as described above) the minima at qx = +4tc/3 for C i > 0 and at qx 

= -4 7 t/ 3  for C l < 0 as a result of including the magnetoelectric term.

C>0C<0

Figure 51: Wave vector dependence of the ground state energy19

Thus one would expect to observe a helical incommensurate structure with a. k - 

vector ^ = (1/3 + Ô, 1/3 + 6 , 1) when the magnetoelectric effect is induced.

However, a more complicated picture emerges from the investigation of the electric 

field -  temperature phase diagram. The Landau-type free energy for these systems can 

be expressed to low order as,

F  = AqS^ + - A ^ P ^ + i C Q P z { s x S * ) + B , S ^  + - B , + 2B. P S + B^P^S^ - P  E

(56)

where A q = aT +Jq. The parameters a, J//, J±, A e, C±, By, B2 , B4 , B^, are all specific

to the material of interest. Following earlier work by Plumer^ it is known that:

• A positive B2 component stabilises the helical polarisation in the absence of an 

external field (magnetic).

• For B4 > 0 a configuration with S I P , i.e. a linear polarised state, is preferred. 

The B4 term must be relatively large to realise complete polarisation because the 

Dzyaloshinsky -  Moriya term favours the helical state.
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Thus, depending on the relative strength of the parameters one can obtain several 

scenarios from the minimisation of F  when E H ± y .  Plumer produced two phase 

diagrams from the numerical minimisation of F, and these are shown below. The 

parameters a, Ae, Bj  and B2 were set to unity and the parameters J//, / i ,  C± and B^ 

were varied. The results given were found for cases where B^ was not large in

comparison to C±. Plumer found that a relatively strong interaction 

the linear (commensurate) phase.

P S stabilised

+
E E-IC

K>0
0

K<0

E-IC

+
E

E-IC
K>0

0
K<0

E-IC

Figure 52: Schematics of electric field versus temperature phase diagrams with E  
along y and Cj. > 0 for the cases of (a) small and (b) large coupling B  ̂relative to

The ordered states can be further characterised by the chirality.

| k |=  1 

| k | < 1  

K = 0

helical phase, 

elliptical phase, 

linear phase.

One may also visualise that for a particular temperature an increase of electric field 

may create a crossover between the different states.

The conjecture of Plumer et al}^^ concerning the magnetoelectric effect in the 120"

type triangular antiferromagnet CsMnBrg was tested by Visser et It was
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postulated that the application of an electric field should remove the chiral degeneracy 

by creating a mono-domain crystal of a single chirality when E  // [110] direction. In 

this case one would expect to observe in the first instance a helical incommensurate 

structure, as has been observed for the ICi phase of RbFeCl^. Furthermore, the 

removal of the chirality would induce a change in universality class from the /i = 2 

chiral class to the 3D XY  class. With a predicted rise in the value of the critical 

exponent p from p = 0.253 to P = 0.346. However, the experiments performed by 

Visser et a lP ^  on CsMnBri in the presence of an electric field show a more complex 

picture.

The observed values for the critical exponent P with an applied electric field 

perpendicular to the [110] direction are shown in Figure 53. It can be seen that the 

value of p remains constant upto a critical value of applied E  field and then drops via 

some intermediate values to P = 0.165(10) around E > 1.5 kVcm '.

0 .2 5 -

1.0 1.5

k V  ( c m  ' )

Figure 53: Critical Exponent p versus Electric Field for the Easy Plane

Triangular Antiferromagnet CsMnBr 132

These are very unusual values of the critical exponent, the only other system that 

shows such a low value of P is the 2D-Ising system where p=0.125. It should be noted 

also that a low value of P has been reported for the Ising triangular antiferromagnet 

CsCoBr3 (p = 0.22). Thus, the initial simple picture of magnetoelectric coupling is not 

valid. The theoretical investigation of the electric field -  temperature phase diagram 

shows that other options may be considered, depending on the relative strengths of the 

different coupling constants of the terms of the Landau free energy expansion. As 

indicated above one may observe a helical phase when the Dzyaloshinsky -  Moriya
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term is strong, but when the coupling term is strong one obtains a SU* 

configuration, that is, a linear polarised state. This means that either the spins are 

lifted out of the plane // c, or that the structure in the plane is changed. No additional 

intensity was found by Visser for reflections of the type [001] and [111] upon the 

application of E  field. The presence of these peaks would indicate the formation of an 

Ising like structure. Low values of p may also be indicative of a weakly first order 

transition. Recent Monte Carlo simulations*^^ indicate that the possibility still exists 

that the transition at Tn in a triangular antiferromagnet is of weak first order character. 

Experimentally, such a transition has not been observed, however this may be due to 

the lack of sufficient temperature resolution in the conventional experimental 

techniques of specific heat, susceptibility, neutron scattering etc. The application of 

electric field may enhance the first order character of this transition.

4.1.1 Temperature Dependence o f  the Magnetic Ordering in CsMnBrs in the 
presence o f  an Electric Field.

A large degree of diffuse magnetic scattering can be observed around the magnetic 

Bragg point Q(l/3 1/3 1) at T > Tn. Mason et al. have shown that this diffuse 

scattering extends along the [110] direction of reciprocal space and that its width is 

temperature dependent. The diffuse scattering adopts the same character as that found 

for CsNiCls, see for example. Figure 74. Measurements of the temperature 

dependence of the diffuse magnetic scattering in the basal plane of CsMni.xFexBra as 

a function of temperature, by Visser and McIntyre*^"*, on the diffractometers DIO and 

016  at the ILL, show that above Tn the intensity smears out along the (K -  M)/(A -

H) line of the Brillouin zone.
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Figure 54: Diffuse scattering around  the softmode point in C sH ni ^Fe^Br^^^.

The K point Q (l/3 1/3 1) represents the 120° magnetic structure whilst the other 

extreme, the H point, Q (l/2 0 1), represents the pure 3-domain antiferromagnet 

structure, as shown in Figure 55.

Figure 55: Schematics of the pu re  3-domain and 120° antiferrom agnet 
structures.

The magnetic intensity observed by Visser and McIntyre indicates that magnetic spin 

arrangements are present in CsMnBr^, which are intermediate between the two 

extremes described above. If the structure would be static it would represent a helical 

incommensurate ordering. Simulations in connection with NMR studies indeed 

indicate the presence of such arrangements. Upon cooling of the system, the relative 

size of the ordering domains increase. In principle two types of chiral domains will be 

present, which in a real system will be connected by anti phase boundaries.
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Figure 56: Monte Carlo simulation of the possible spin structures in CsMnBrg.

However, the domain population density does not have to be equal for the two 

different chiral types. The population density could be influenced by the quality of the 

sample (defects etc.) and the influence of applied magnetic and/or electric field. In 

view of the observations made above, it was decided to undertake further experiments 

on the multicounter membrane diffractometer, V I, at the HMI, Berlin. Detailed 

information on this diffractometer can be found in Chapter 3.2.1.5. This was done in 

order to investigate the influence of electric field on the diffuse magnetic ordering in 

CsMnBrg. The use of the multicounter enabled us to measure the total magnetic 

scattering as well as the extent of magnetic scattering in Q-space. It is expected that 

the diffuse scattering should reduce due to the removal of the domain walls between 

the chiral regions upon the application of E  field.

The crystals of CsMnBrg were grown by the Bridgeman technique in a three-zone 

float furnace. The cleavage plane of this material lies in the [CX)1]-[110] plane of 

reciprocal space, this corresponds to the a-axis and c-axis in real space. This means 

that one would ideally like to obtain diamond shaped crystals for the present 

experiment. In order to observe the effect, if any, of the application of E-field, it has 

to be applied along the [110] direction, thus the sample crystal has to be reshaped 

from a diamond form to that of a square one in order to have the two [110] faces 

parallel to each other. As CsMnBrg is hygroscopic in nature this reshaping has to be 

performed in the inert atmosphere of a drybox. It was deemed that the brittle nature of 

the material meant that the reshaping had to be done by hand as mechanical reshaping
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would have destroyed the sample. In order to apply electric field directly to the 

crystal, contacts were made on the crystal with Ag paint, other methods include 

evaporating Au onto the surfaces to make the contact. The single crystal used had 

dimensions of 2mm x 2mm x 7mm. Two contacts were made on each parallel face of 

the sample with Cu wire, one pair provided a means of applying the E-field and the 

other allowed us to measure the applied field across the sample. The 4 wires were fed 

into the cryostat via the sample stick and the sample itself was isolated from the stick 

by mounting it on a quartz rod. With this setup we found that we could achieve a 

maximum field of 700V/2mm at exchange gas pressures around lOOmbar. Higher 

fields and lower pressures produced sparking across the crystal. In order to increase 

the effective applied E-field it is necessary to reduce the width of the sample crystal.

Figure 57: Schematic of the connection of the electric field wires to the single 

crystal of CsMnBra.

In all, four complete datasets were taken around the reciprocal lattice point Q(l/3 1/3

1). Data was collected at T=8.20K and 8.55K with no applied electric field and again 

at the same temperatures with an applied electric field of 700V/2mm (equivalent to 

3.5kVcm'*). One would expect that should the application of an electric field cause a 

reduction of the diffuse magnetic scattering, this would become apparent by 

subtracting the data under field from the data with no applied electric field. One 

should then observe a small residual diffuse magnetic scattering. This can be seen 

below in Figure 58 and Figure 59. It was impossible to discern the shape of the 

diffuse scattering from the available data, this was mainly due to small size of the 

sample crystal although the resolution limit of the multidetector also contributed to 

this.
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Figure 58: Difference in magnetic scattering of CsMnBr^ at T=8.20K -  E=OV and 

T=8.20K -  E=700V at the magnetic Bragg reflection Q(l/3 1/3 1).
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Figure 59: Difference in magnetic scattering of CsMnBr^ at T=8.55K -  E=OV and 

T=8.55K -  E=700V at the magnetic Bragg reflection Q(l/3 1/3 1).
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As has been suggested, the very small scattering from the sample observed above was 

due to the physical dimensions of the crystal used in the experiment, but it is clear 

from the data above that there is indeed a difference apparent between the scattering 

observed with and without the presence of applied electric field.

A second experiment was performed, (on the same diffractometer with the same 

sample conditions) in order to investigate the sublattice magnetisation of the system 

above Tn. This was achieved by fixing the multidetector at the position Q (l/3 1/3 1) 

and varying the temperature. The observed data are quite noisy but an effect is quite 

visible upon the application of electric field, the P value is reduced from P=0.243(10) 

to p=0.220(10) in agreement with the previous experiments'^^. The reduction of 

diffuse magnetic scattering can be seen below in Figure 60. It should be noted that 

during the experiment there were several problems with contacting the electrodes to 

the sample surface due to the high moisture levels in the air at the time the experiment 

was carried out. When the crystal was removed from the cryostat at the end of the 

experiment it was found that a part of the crystal had broken and become detached 

from the bulk of the material. These factors may explain the low value of P = 0.22 in 

the presence of an applied electric field: only a part of the crystal may have had the E- 

field applied to it. Other possibilities may be that the crystal faces may not be 

perfectly parallel or that the crystal may have extended defects.

• E=OV 
o E=700kV/2mm

g  2000-

6 10 12 16

8

r
6
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Tem perature  (Kelvin) ln((T^-T)/T„)

Figure 60: Sublattice M agnetisation of CsMnBr^ showing different diffuse 

magnetic scattering for the system in and out of electric field.
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The temperature dependence of the magnetic scattering shows also clearly that the 

diffuse scattering above Tn is dramatically reduced when an electric field is applied. 

This lends weight to the hypothesis that the application of electric field removes the 

‘domain walls’ and increases the size of the ordered domains in the crystal. Thus 

CsMnBrg can be considered as a model system for the new XY chiral universality 

class of Kawamura.

4,1,2 Elastic Scattering on CsMnBrs in the presence o f  an Electric fie ld  and a 

Magnetic field.

As can be seen from Figure 14, Chapter 2.2.2.1, the phase diagram of CsMnBrg shows 

a tetracritical point along B = OT. This point is formed by the amalgamation of the 

spinflop phase boundary and the collinear -  paramagnetic phase boundary. At this 

special point which coincides with T n , the critical exponent |3 = 0.25. The nature of 

this point is not well characterised and different predictions have been put forward. It 

may be that the value of the critical exponent is entirely due to the chiral ordering of 

the system. The point may be a mean field tricritical point or it may be that a simple 

first order transition takes place at Tn. Plumer et alP^  investigated the structure of all 

phases in the presence of an applied magnetic field by means of a non local Landau 

type free energy calculation. It was predicted that the upper transition should belong 

to the conventional XY class and the lower to the conventional Ising class.

Neutron scattering experiments have shown that the critical exponent p = 0.29(2) for 

Bic = 4T for the upper transition. However, this value is in between that of 

conventional and chiral universality classes. It has been shown in the previous 

Chapter that the magnetoelectric effect in CsMnBrg changes the critical behaviour of 

the system dramatically. This opens up the question about the shape and character of 

the phase diagram in the presence of an applied E  and B-field. No Landau type 

predictions are available for this scenario; therefore a neutron scattering experiment 

was carried out to investigate these points.

The experiment was performed on the TAS E l at the HMI, a full description of which 

can be found in Chapter 3.2.1.1. The magnetic field was applied using the 7T
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horizontal field magnet, HM3. Several practical problems had to be overcome before 

the successful implementation of the experiment. A slightly bigger single crystal of 

CsMnBr] (-4m m  width) than the previous experiment was prepared in the same 

manner and again 2 pairs of wires were connect to the crystal in order to apply and 

measure the E-field at the crystal. The crystal faces had an Au coating deposited on 

them in order to make the contact. A schematic of the setup of the crystal and 

connecting wires can be seen in Figure 57. A maximum field of 800V was applied 

across the faces of the sample before sparking occurred. This sparking could be 

identified by a spike in the reading of the DC meter.

Full sublattice magnetisation measurements across the magnetic Bragg peak of (1/3 

1/3 1) were taken at base level (B = OT, E = OV), and with an applied electric field of 

800V/4mm at OT, 2T and 4T. The resulting data is collated and plotted below. The 

corresponding critical exponent p was calculated from the ‘log -  log’ plots shown 

adjacent to each sublattice measurement.
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Figure 61: Sublattice magnetisation of CsMnBr] at B = OT, E = OV (line is best fit 

to power law with p=0.22).
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Figure 62: Sublattice magnetisation of CsMnBr^ at B = OT, E = 800V (line is best 

fit to power law with (3=0.26).
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Figure 63: Sublattice magnetisation of CsMnBr^ at B = 2T, E = 800V (line is best 

fit to power law with p=0.195).
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Figure 64: Sublattice magnetisation of CsMnBr^ at B = 4T, E = 8(M)V (line is best 

fit to power law Ae^  ̂with p=0.22).
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The calculated values of the critical exponent (3 and the corresponding transition 

temperatures Tn are collated below and shown in Table 7.

Table 7: Critical exponent p values for CsMnBr^ under the influence of electric 

and magnetic field.

Magnetic Electric Critical

Field (T) Field (kVcm'*) Exponent (P)

Transition 

Temp. (Tn2 )

Transition 

Temp. (Tni)

0

800

800

800

0.22 (3) 

0.26 (2)

0.195(15)

0 .2 2 ( 1)

8.29(1)

8.28(1)

8.15(2)

7.57(1)

8.49(1) 

8.81 (1)

From the observed values of the transition temperatures we can construct the phase 

diagram of CsMnBr^ under the influence of an applied magnetic and electric field. 

The first observation that can be made is that the magnetic phase diagram of CsMnBr^ 

under applied electric field is not dissimilar to the form for that of the magnetic phase 

diagram the same system without the application of field. This can be witnessed by 

the comparison of the general form of the figure below and that of Figure 14.

•  E = 800V/4mm

8-

CollinearH
T 3

U_O Paramagnetic

120 °

6 8 9 10 115 7

Temperature (K)

Figure 65: The magnetic phase diagram of CsMnBrj, under and applied electric 

field of 800V / 4mm, lines are a guide to the eye only and given phases are most 

likely.
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The present experiment establishes the phase boundary at B = 0 to be Tn = 8.29(1 )K. 

This is slightly smaller than the accepted value of Tn found from Cp measurements. 

The difference can be accounted for by factors such as the placement of the 

thermometers and the type of sample support used in different experiments. Scaling 

the values of the specific heat measurements and previous neutron scattering 

measurements with our measurements we observe that the values of Tni are all 

comparable within their error bars. However, the transition from the ‘collinear phase’ 

to the ‘120°’ type phase (Tn2 ) occurs at higher temperatures with an applied E  and B 

field than that with applied B  field only. It is expected that this phase boundary will 

have the same trend at low values of applied B-field but we do not have enough data 

points to establish this.

The analysis of the magnetic sublattice magnetisation scans shows that no 

magnetoelectric effect is observed for the initial cooling of the crystal from room 

temperature in the presence of an electric field. We find that p = 0.26(1), which is 

very similar to the value calculated for P when the electric field is removed. The 

sublattice magnetisation scans for the sample cooled in the presence of both an 

electric and magnetic field where B = 2T and 4T show that a magnetoelectric effect 

takes place. The value of the critical exponent P changes from the reference value of P 

= 0.22 at B = OT to a value of P = 0.195 at B = 2T and finally to P = 0.22 at B = 4T. 

This increase (P changing from 0.195 to 0.22) is similar to that observed for the value 

of P along the paramagnetic —> collinear phase boundary in the absence of an electric 

field: P increases from 0.24 -  0.29 at B = 4T.

From these results we can conclude that the magnetic phase diagram only changes 

slightly upon the application of an applied B-field. The critical behaviour at the 

paramagnetic phase boundary is influence in an identical way as for fixed B-field and 

applied B-field. To understand the observed changes in detail a thorough theoretical 

investigation of the B, B phase diagram is required.

118



4 Chiral Order in ABX^ Compounds

4.2 CsNiCb (El / E2 - HMI)

As discussed in Chapter 2.2.1, CsNiClg is a triangular lattice antiferromagnet with 

easy axis anisotropy. The (//, T) phase diagram in Figure 11 shows the two stage 

ordering of the system. At Tni a partially magnetically ordered structure will be 

formed, while at Tn2 the magnetic structure will be fully ordered in a modified 120° 

type structure which is rotated by 90° out of the hexagonal ab plane into the [111] 

plane. Recent specific heat studies by and Beckmann et al?^ and birefringence 

experiments by Enderle et al?^ have shown that CsNiClg has a specific heat exponent 

of a  = 0.32(5) and a  = 0.342(5) respectively along the paramagnetic to spin flop 

boundary. These are much larger than the non-chiral universality classes of a  =  

0.1098(29) for Ising, a  = -0.0080(3) for XY and a  = -0.1160(36), on the other hand 

they agree with the « = 2 chiral value of a  = 0.34(6). Close to the multicritical point, 

a  was found to decrease to 0.25(8) and 0.23(4) respectively. This is in agreement with 

the M = 3 chiral universality class value of a  = 0.24(8). Furthermore, according to 

Beckmann, the critical amplitudes follow the predictions for « = 2 and w = 3 chiral 

critical behaviour. The critical exponents suggest that CsNiClg is an XY like system 

along the / /  = 0 line^\ It is reasonable to expect the critical exponent P to exhibit the 

same characteristics as a .  Thus in order to lend weight to the chiral universality class 

hypothesis we measured the critical exponent P, by means of neutron scattering.
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4.2.1 Elastic Scattering on CsNiCU in the presence o f  a magnetic field.

The neutron scattering experiment was undertaken on the TAS E l, at the HMI, Berlin. 

The spectrometer was operated in two-axis mode as described in Chapter 3.2.1.1. 

Since the magnetic interactions are quasi one dimensional, i.e. strong along c and 

weak in the perpendicular direction we mounted the large single crystal sample (~4 

cm^) with the [110] -  [001] plane in the scattering plane. A magnetic field was 

applied // c-axis using the Horizontal field magnet, HM I, detailed information on this 

magnet can be found in Chapter 3.3.4. As can be seen from the description of HM I, 

the magnet does not afford unhindered access to the sample due to the magnet poles 

obscuring 195° of the scattering pathways. Simulations of the scattering pathways 

showed that we were unable to measure the strong magnetic Bragg peak at (1/3 1/3 1) 

with a kj = 2.0Â, neither could we access the magnetic Bragg peak (2/3 2/3 1). Rather 

we were obliged to measure the (1/3 1/3 3) reflection using the X/2 contribution from 

the PG 002 monochromator. The calculated scattering windows for the Horizontal 

field magnet HMI with kj = 2.0Â and 1.2276Â are given below in (a) and (b) 

respectively.

(a) (b)
C sN iC l3  2 .0 A CsNiCW I.2276A

-2 0 2

2

0

•Z

-2 0 2 4
I /A

Figure 66: Com parison of the calculated scattering windows fo r the horizontal 
field magnet, H M I for different incoming neutron wavelengths. The magnetic 
Bragg peak (1/3 1/3 1), (2/3 2/3 1) and (1/3 1/3 3) are  shown as (x).

However, even when the sample was aligned with the c-axis // to the axis of the 

magnet no magnetic reflection was observed at the Q (l/3 1/3 3) position. It was 

discovered that the Bragg peak lay just outside the scattering window of the magnet.
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In order to acquire a signal from the peak the sample stick within the magnet was 

rotated by 4°. This of course meant that the magnetic field was no longer directed // to 

the c-axis but instead was applied at an oblique angle. It was not known what effect 

that this would have on the results.

Thus the lack of flux, combined with the small structure factor of the (1/3 1/3 3) 

reflection and the high absorption of the crystal made it very difficult to obtain 

accurate data. However, we were able to obtain sufficient data to determine the 

critical exponent p at magnetic fields of B = OT, 1.75T, 2T, 3T and 4T. The sublattice 

magnetisation scans and corresponding ‘log -  log’ plots are show below.
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Figure 67: Sublattice magnetisation of CsNiCb at Q(l/3 1/3 3) with B = OT, (line 
is best fit to power law with p=0.20).
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Figure 68: Sublattice magnetisation of CsNiCb at Q(l/3 1/3 3) with B = 1.75T, 
(line is best fit to power law with p=0.195).
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Figure 69: Sublattice magnetisation of CsNiCb at Q (l/3 1/3 3) with B = 2.0T, 
(line is best fit to power law with p=0.24).
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Figure 70: Sublattice magnetisation of CsNiClj at Q (l/3 1/3 3) with B = 3.0T, 
(line is best fit to power law with p=0.20).
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Figure 71: Sublattice magnetisation of CsNiCb at Q (l/3 1/3 3) with B = 4.5T, 
(line is best fit to power law Ae^  ̂with p=0.20).
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The values of the critical exponent p and the transition temperature Tn are collated 

below in Table 8. It is seen that P changes from the value of P = 0.20 (10) at B = OT to 

a value of P = 0.24 (1) at the spin flop transition, reducing to P = 0.20 (1) for higher 

magnetic fields.

Table 8: The transition temperatures and calculated critical exponents p of 

CsNiCb under applied magnetic field // c.

Field (Tesla) T n (K ) P

0 4.50 (2) 0.20 (1)

1.75 4.55 (2) 0.195(10)

2.0 4.61 (2) 0.24 (1)

3.0 4.69 (2) 0.20 (1)

4.5 5.06 (2) 0.20 (1)

The first observation to be made is that the calculated value of the critical exponent p 

does not correspond to the n = 2 chiral value of p = 0.25 at the paramagnetic to spin 

flop boundary (Hm ~ 2.2T). Nor does it correspond to the n = 3 chiral value of P = 0.3 

at fields above Hm. As can be seen from the sublattice magnetisation scan at B = OT 

the data cannot resolve the two previously measured phase transitions of CsNiClg at 

-4.40K and ~4.84K^'’ this is also the case for the data at 1.75T. Thus we should not 

be surprised that the data at OT does not provide us with an exponent close to that of 

the normal XY class. We would expect that the critical exponent p should be in the 

region of -0.35 for the OT measurements, diminishing to -0 .3  at the multicritical 

point and finally coming to rest at -0.25 along the spin flop to paramagnetic phase 

boundary.

The results obtained are quite different from those that were expected and there are 

several factors that have a role in this. As has been explained previously the magnetic 

field was 4° off from H // c so that the perpendicular component of the spin has begun 

to mix into the phase. The measurements have been performed on the (1/3 1/3 3) 

magnetic Bragg reflection where the <XY> component of the spin is larger than at the 

(h h I) points. Nuclear Magnetic /Resonance (NMR) measurements indicate that the
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ordering process in CsNiCb and CsNiBrs develops in two stages’ Firstly the z 

component of the spins begin to order at Tni, followed at a lower temperature by the 

xy  component at Tn2 . This z component can be observed in the area Tni < T < Tn2  at 

the reciprocal lattice points of Q(l/3 1/3 1) and Q(2/3 2/3 1), where the critical 

exponent is found to be p = 0.30. It can be seen from the sublattice magnetisation 

scans above, that the scattering profile from the (1/3 1/3 3) peak shows a great deal of 

diffuse scattering throughout the temperature range in which we have measured. As 

has been stated, no long range order contribution at Tni can be distinguished, however 

this is comparable to observations made on the similar system CsMnlg. So the 

observed p at Tn2 for H = 0 is much lower than any of the known values for 

recognised universality classes. Only the Monte Carlo calculated value by Bramwell 

et al. of P = 0.23 for a finite 2D-XY system gives a point of reference’^̂ ’’^̂ . Looking 

at the magnetisation measurements one can see that at H = 2.0T and above, a sharp 

kink is observed in the intensity profile indicating the transition temperature. At H = 

2T at, or close to, the critical point we find p = 0.24 which could indicate an n = 3 

chiral universality class. However at higher fields p decreases again to a value of p = 

0.20 which is indicative of 2D -  XY system.

Subsequent measurements by Enderle et at. on the same system were made, where the 

experimental conditions allowed the magnetic field to be applied // to the c-axis. The 

magnetic Bragg point (1/3 1/3 3) was measured and two transition temperatures were 

observed up to H = 2.2T. The critical exponent was calculated to be p = 0.28 at this 

field which indicates a n «  = 2 o r w  = 3 chiral class. At H = 3T and 5.5T the critical 

exponent was found to be p = 0.25 which is in agreement with the w = 2 chiral class, 

these values are in agreement with the classes found for the a  critical exponents.

The specific heat studies of Weber’ show that the phase diagram of CsNiCls 

undergoes an alteration when an oblique magnetic field is applied to the system. As 

can be seen from the figures below the sharp transition at the critical point with H // c 

is ‘smeared’ out when an oblique field is applied at 0 = 13°.

124



4 Chiral Order in ABX^ Compounds 
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Figure 72: The effect of the application of an oblique magnetic field on the phase 
d iagram  of C sN iC lj'” .

In this paper Weber shows that the critical part of the phase transition takes place at 

~H = 2.2T, below this transition 2 anomalies have been observed representing the 

transitions Tni and Tn2 • When the field is applied at an oblique angle it can be seen 

that the critical point persists up to 2.7T. In this case the calculated value of the 

critical exponent a  is lower than that of the aligned sample. The values calculated by 

Weber et al for a  and AVA'are given below.

Table 9: Critical param eter of CsNiCb for different field directions'^’.

0 = 0° 0  = 13°

B(T) a A+/A- a A+/A-

0 (Tni) -0.05 (8) 1.21 (50)

0 (Tn2) -0.06(10) 1.18(30)

2.3 0.25 (8) 0.52 (10)

3 0.29 (8) 0.39(12) 0.25 (7) 0.47(10)

4.5 0.31 (8) 0.38 (10) 0.29(9) 0.39(10)

6 0.37(8) 0.30(11) 0.37 (6) 0.38(11)
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Weber shows that the magnetocaloric effect for the field applied at 13° indicating the 

first order phase transition around 2T is no longer a sharp transition, rather it has been 

smeared out. Even for B // c it is not clear if the transition is first order as no 

hysteresis effect has been observed. Enderle quotes 0.23T for the width of the 

spinflop transition where B // c. This compares to our value of 0.5T, which is 

observable below in Figure 73. The clear onset to the transition can be seen at 1.5T 

ending towards 2.2T. It is seen that the intensity of the Q (l/3 1/3 3) magnetic Bragg 

peak is a factor of 2 different in the two structure types. This phase diagram where B 

is applied at an oblique angle of 4° shows that transition takes place at around 2.0T -  

2.2T.

9 0 0 0 -

CÔ 8000-
c

■O
.S 7000
2O)
<D

6 0 0 0 -

5000
0.0

■ up 
o down

T=2.72K t

I

—r—
0.5 1.0 1.5

Field (T)

—I—
2.5 3.0

Figure 73: Spinflop Transition of CsNiCb with magnetic field applied at 4° off- 
parallel to the c-axis.

The observed values of P follow the same trend as those found by Weber for the 

misaligned sample. Our values of p are lower than the predicted values and lower 

than the measured values of Enderle, where B // c. Thus we should not look at the 

exponent P as a real value for the system but rather an effective exponent of the 

system.
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4.2,2 D iffuse Magnetic Scattering from  CsNiCh around the transition point.

The results above led us to question the nature of the ordering in CsNiCls. What is 

obvious from study of the sublattice magnetisation scans above is that there is a great 

deal of diffuse magnetic scattering around the transition point Tn- The diffuse 

magnetic scattering seems to remain for T > 2Tn. The pre-ordering process in a quasi 

1-D system shows planes of magnetic scattering along the c-axis. The onset of 3-D 

magnetic ordering may be seen by modulation of the magnetic intensity in these 

sheets. However in CsMnBr] part of the magnetic scattering intensity starts to 

condense in the hexagonal planes / = 1, 3, 5 etc. perpendicular to the c-axis. 

Zaliznyak* showed the extent of the diffuse scattering along the [110] directions for 

T>Tn. In order to fully characterise this diffuse scattering it is necessary to use the 

diffractometer E2, at the HMI, Berlin. This diffractometer is based on a modified 

Weissenberg technique and more information about this technique and diffractometer 

can be found in Chapter 3.2.3. A full characterisation of the magnetic ordering of 

CsNiClg in the [hhl] plane around the transition point was undertaken. Sweeps across 

approximately 65°-70° of reciprocal space were made at temperatures of T = 1.68K, 

3.60K, 4.64K, 5.02K, 7.47K and 10.60K. These scans were expanded by symmetry 

into 360° ‘sections’ and are shown below. In the 10.60K slice we can still see diffuse 

scattering in the ab plane. It takes the form of a triangular structure which builds up 

around the magnetic Bragg points situated along the A -  H line of the Brillouin zone. 

As the temperature is lowered the scattering becomes less diffuse and begins to 

concentrate around the magnetic Bragg points (h/3 h/3 1). The diffuse scattering 

slowly disappears as the moment builds up, however even at T = 1.68K there is still 

diffuse scattering present in the system, in the same form as that at higher 

temperatures. It has to be noted that in a quasi one-dimensional system only half the 

magnetic moment is observable, the other 50% is accounted for by the quantum 

fluctuations of the system*"**.
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Figure 74: Diffuse magnetic scattering from CsNiCla a t various temperatures 
around the transition tem perature (false colour image with plan view).
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The dark band present in each dataset above is the background scattering as a result of 

using A1 foil of too high a grade (i.e. too thick) to protect the sample. The increase in 

the intensity of the Bragg peaks is demonstrated more clearly in the graphs below for 

T = 1.68K, 3.60K and 4.64K for (a), (b) and (c) respectively.

T =  1.68K T = 3.60K T = 4.64K

Figure 75: Decreasing magnetic scattering from CsNiCIs with increasing 
tem perature around the transition point (false colour image with plane view).

The scattering along the [110] direction can be analysed in order to obtain the

correlation length in the ab plane (interchain). The data was analysed using a package

called NIH image, an Apple Macintosh image analysis freeware program from the

National Institute of Health and the Windows ported version. Scion Image. The

software allowed us to take ‘vertical slices’ through the data, enabling us to observe

the increasing diffuse magnetic scattering around the transition point. Several cross

sections were taken across many of the different Bragg peaks, the paths taken as

shown below.

»

Figure 76: Typical paths (hlack lines) taken for data analysis purposes, shown 
here for the 5.02K data set.
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Each peak was fitted to a Gaussian lineshape and the average half width of the peaks 

measured enabled us to determine the correlation length of the system at the given 

temperature. We assume that the line width at T = 1.68K was identical to the 

resolution of the instrument. Sample cross section data from the various temperatures 

is given below for illustrative purposes.

i
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Figure 77: Typical results for the scan lines in Figure 76 showing the decreasing 
correlation length of CsNiCb with increasing tem perature

The fitted peaks are constrained to be equal in width in each plot and as can be seen 

the half width of the magnetic Bragg peak increases with increasing temperature, 

demonstrating the decrease in planar correlation length. The fitted data was collated 

and averaged for the different temperatures and is shown below.
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Figure 78: Gaussian half width of the magnetic excitations of CsNiCI^.

Figure 78 shows the temperature dependence of the full width half maximum of the 

reflections along the [110] direction in units of 47t/a. The corresponding correlation 

length, above Tn2 is ^ -  14.25Â which decreases in a linear fashion to about ^ ~ 

2.5Â at T = 1 IK. These values correspond well with data obtained by Zaliznyak et 

al}^^ from Triple Axis data. These measurements show clearly that a large part of the 

spin fluctuations condense in the basal plane at temperatures even larger than 2Tn.
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4.3 RbNiCb (4F1)

As with the isostructural compound, CsNiClg and as discussed in Chapter 2.2.1, 

RbNiCls is a triangular lattice antiferromagnet with easy axis anisotropy. However, 

until recently RbNiClg was found to exhibit only one observable phase transition at 

around 1 1 It was not until the sublattice measurements of Oohara et al}^^ that 

two successive phase transitions were resolved at Tni = 11.25K and Tn2  = 11.1 IK. 

The values of the critical exponents of the parallel and perpendicular sublattice 

moments were found to be p// = 0.27+0.01 and p i  = 0.28+0.01. The p// and p i  values 

were extracted from the intensity of the Q(l/3 1/3 1) and Q(2/3 2/3 1) magnetic 

reflections by dividing the intensity up into contributions of the <xy> and <z> 

component, respectively. These values did not conform to the values predicted by 

Kawamura et who predicted that the transitions would be governed by the 3D -  

XY symmetry, giving a critical exponent of p = 0.345. It was thought that the 

discrepancy could be resolved by assuming a crossover behaviour in the system. 

Because RbNiCl] has a very small Ising anisotropy one could naively treat the system 

as an isotropic Heisenberg one. In this type of system the critical behaviour at 

temperatures far from the transition points is governed by the 3D -  SO(3) symmetry. 

However, in the region close to the phase boundary the system will be governed by 

the 3D -  XY symmetry, thus between these two regions a crossover effect will take 

place and the value of the critical exponent P will be modified accordingly.

Oohara et al}^^ also mentioned that RbNiClg could exhibit another crossover effect. 

The Ising anisotropy confines the 120° type spin structure to the ac-plane and deforms 

it through competition with the interchain exchange interaction J'. In Ising like 

triangular lattice antiferromagnets with easy axis anisotropy which do not have a 

deformation of the 120° type spin structure the successive phase transitions coalesce 

and a new criticality of the chiral ordering characterised by 3D -  5; x 5; symmetry 

will occur. Thus, because the anisotropy in RbNiCls is very small the crossover effect 

from the 3D -  5; X 5; symmetry to the 3D -  XY symmetry may be observed. Further 

measurements on the system by Oohara et using birefringence, add weight to 

this hypothesis.
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It is known that the application of hydrostatic pressure on the triangular 

antiferromagnet lattice compounds will not only distort the physical structure of the 

system, but also modify the strength of the single ion anisotropy (D) and the 

interchain (J) and intrachain (J') exchange energies (as demonstrated for the Singlet 

Ground State systems CsFeClg and CsFeBrg in Chapter 5.1.1). Thus, by applying 

pressure to the system one may be able to change, and in an ideal case tune, the 

parameters of D, J  and J \

With this in mind an elastic neutron scattering experiment was undertaken on 

RbNiCls, using the TAS, 4F1 at the LLB, Saclay in order to establish the effect of 

hydrostatic pressure on the system.

4.3.1 Elastic Scattering on RbNiCls under the Presence o f  Hydrostatic Pressure.

The measurement of the sublattice magnetisation was undertaken on the TAS, 4F1 at 

the LLB, Saclay. A Icm^ single crystal, grown by Bridgeman technique and having a 

mosaic width of 0.3° was mounted in a He-pressure cell, which was itself mounted in 

a modified ‘Orange’ cryostat. The system was pressurised and then cooled to T=1.5K. 

The process of pressurising at room temperature and cooling to 1.5K takes about 7 

hours, the majority of this time is used in cooling the mass of the pressure cell. The 

sample was mounted, as is the case with most measurements we have performed, with 

the [110]-[001] plane in the scattering plane of the instrument. The optimised lattice 

parameters for the system with 5kbar applied hydrostatic pressure were calculated to 

be a  = 6.8370Â and c = 5.7787Â.

The resolution ellipsoid of the spectrometer combined with the focussing analyser 

used, made the magnetic Bragg point Q(l/3 1/3 -1 ) the most favourable for 

measurements of the sublattice magnetisation. Scans were taken across the magnetic 

Bragg point for temperatures in the range 4.00K —> 17.00K and the sublattice 

magnetisation can be seen below in Figure 79. The critical exponent p was 

determined from the slope of the log of the integrated intensity versus the log of the 

reduced temperature, shown adjacent to the sublattice magnetisation.
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Figure 79: Sublattice magnetisation of RbNiC^ at Q (l/3 1/3 -1) with P -  Skbar, 
(lines are best fit to power law with Ptni = 0.245(10) and p tn 2 = 0.24(2)).

With an applied hydrostatic pressure o f P = 5.0kbar the two transitions in RbNiCl^ are 

observed at Tni = 12.37 ± 0.01 and Tn2 = 12.81 ± 0.04 with corresponding critical 

exponents of pjNi = 0.245 ± 0.01, and Ptn 2 = 0.24 ± 0.1 respectively. The value of 

these critical exponents correspond to the predicted values for the chiral n -  2 

universality class.

Yelon and Cox'" '̂  ̂ found that p = 0.25 at ambient pressure for Tn = 11.1 IK rising to a 

value of p = 0.30 when a transition temperature of Tn = 11.15K was taken for the 

calculation of the critical exponent. Due to the fact that they only observed 1 

transition their fit should compare to our fit of the sublattice magnetisation as given in 

Figure 79a, where Tn2 is the ordering temperature and the intensity of the magnetic 

scattering at Tn2 is taken to be the background level. We observed that the ratio of 

(Tni -  Tn2 )/Tni increased from the value found by Oohara of 0.012 at ambient 

pressure to 0.034 at 5kbar. From inelastic neutron scattering measurements performed 

by the author (Appendix A), it is obvious that the values of D, J  and J' in RbNiCls 

change upon the application of 5kbar hydrostatic pressure. Thus, a slightly distorted 

magnetic structure will be adopted by the system. The measurements of Oohara and 

those from the present experiment suggest that the exponent of p measured at Tni, 

which is related to the freezing of the z-component of the spin, but which leaves the 

xy-component disordered in the xy-plane, may represent an effective p for a ‘partially 

chiral’ spin system. The influence of pressure manifests itself in the ‘opening up’ of

134



4 Chiral Order in ABXi Compounds

the intermediate phase by an effective change of D, J  and J' which changes P from 

0.28 0.25. For a comparable magnetic system, CsNiCls, the magnetic order

parameter, P = 0.30 at Tni and the ratio (Tni -  Tn2 )/Tni = 0.09.
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4.4 TlFeCb

As was suggested in Chapter 2.2.3, the hexagonal perovskite TlFeCl^ is an induced 

magnetic moment system. Due to the large positive single-ion anisotropy, D, in this 

type of system, the magnetic moments lie in the hexagonal basal plane. Therefore, the 

triangular arrangement of the magnetic moments in the basal plane make this material 

a candidate for chiral magnetic ordering. Previous work by McIntyre and Visser' 

has shown that the system undergoes two structural phase transitions, at 179K where 

the space group changes from Pô.Vmmc to Pb^cm structure and at 79K where a further 

structural transition takes place in which the disorder of the Pb^cm structure is 

removed.

T(K)

Figure 80: S tructura l phase transition of TlFeCb with decreasing tem perature, 
Visser et

Medium resolution powder neutron diffraction studies at T =5K showed no indication 

the 79K phase transition. However, this transition can be observed in a thermo- 

diffractogram of TlFeCl^ taken on the medium resolution powder diffractometer DIB, 

at the ILL, Grenoble. However, the quality of this data is quite poor, the number of 

observed extra peaks very limited and their intensities are low. Thus with the 

available data it has been impossible to characterise the structure of the lowest 

temperature phase. It has been shown by the present author that TlFeCl] orders with 

an incommensurate magnetic structure at Tn = 2K and that the application of a
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hydrostatic pressure of Skbar increases Tn dramatically^"^^, at this pressure the 

magnetic ordering is seen to take place in two stages. However, the character of the 

magnetic phase transition could not be determined from these measurements. The 

transitions may be related to a possible change in the crystal structure.

4.4.1 Structural Characterisation o f  TIFeCh.

In order to obtain more precise information about the crystallographic structure of 

TlFeCls under pressure and at low temperature, a further characterisation of the 

system was undertaken using the high resolution powder diffractometer, HRPD, at the 

ISIS facility, Oxford. The situation of the diffractometer at the end of a 100m beam 

line makes it one of the highest resolution diffractometers in the world and further 

information is given in Chapter 3.2.2.1.

A 5g powder sample of TlFeCla was prepared by grinding up several single crystals of 

this material. The powder was loaded in a He pressure cell which was itself inserted in 

a modified Orange cryostat. Such a setup should have allowed us obtain applied 

pressures of up to Skbar at temperatures approaching 2K. Unfortunately due to safety 

requirements the maximum pressure allowed for the cell was of the order of 3.Skbar 

at a temperature of SK. Two powder diffraction patterns were taken at ambient and 

applied pressure. Each pattern took approximately 12 hours to collect using the 90° 

detector bank and the collected raw data were firstly normalised, then corrected for 

absorption. The treated diffraction patterns were refined using the Rietveld method 

outlined in Chapter 3.2.2. The ISIS facility utilises the Cambridge Crystallographic 

Subroutine Library (CCSL)’"̂  ̂ in conjunction with the graphics and data handling 

package G E N I E * t o  refine the data. The library and data analysis package have both 

been developed at the ISIS facility specifically for the analysis of diffraction data 

from Time Of Flight (TOF) diffractometers. The Rietveld refinement for ambient, P = 

Okbar, and P = 3.Skbar at T = SK are shown below.
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Figure 81: Observed, Calculated and Difference plot for TlFeCb a t P = Okbar 
and T = 5K.

The diffraction pattern could be indexed on the c/Vi ;c aVi jc c unit cell. The data at 

ambient pressure with T = 5K were fitted to a model with space group Pô^cm, 

resembling the room temperature structure of the KNiCl.^ phase. As can be seen this 

gives a reasonable agreement with the observed data. However, some systematic 

deviations remain. The calculated peaks are consistently less intense than those 

observed, also a small number of peaks have not been accounted for by the model.
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Figure 82: Observed, Calculated and Difference plot for TlFeClg a t P = 3.5kbar 
and  T = 5K.
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The data at P = 3.5kbar did not shown any major deviations from the ambient 

pressure data and was fitted to the same model. Again, the calculated intensities are 

systematically lower than the observed intensities. Several observed peaks have not 

been accounted for by the model, however these peaks may well be anomalous 

scattering from grains in the pressure cell. What is clear when we superimpose the 

two data sets, as below, is that there is no structural phase change between the 

ambient and 3.5kbar data. The only effect the pressure exerts on the system is the 

reduction of the unit cell of the system and a slight change in the structural 

parameters. The final tabulated values for TlFeCb are collated and given below in 

Table 10.
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Figure 83: Difference in the observed powder diffraction pa tte rn  of TlFeCb at 
am bient and 3.5kbar applied pressure.

Table 10: S tructural param eters for the distorted triangu lar lattice 
antiferrom agnet T lFeC ^ at am bient and applied pressure.

a
0 kbar 

h c a
3.5 kbar 

b c

Unit cell 11.9680(1) 11.9680(1) 5.9968(1) 11.9355(1) 11.9355(1) 5.9695(1)

T1 0.3309(13) 0.3309(13) 0.2849(42) 0.3312(11) 0.3312(11) 0.2936(35)

Fed ) 0 0 0 0 0 0

Fe(2) 1/3 2/3 0.0560(42) 1/3 2/3 0.0642(36)

C l(l) 0.1701 0 0.1974 0.1653(13) 0 0.2035(28)

Cl{2) 0.5032(8) 0.1667(10) 0.2589(19) 0.5024(8) 0.1594(6) 0.2661(24)
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The fact that the system did not undergo a phase transition at 3.5kbar was rather 

interesting, as we had expected an applied pressure of this amount to have an effect on 

the distorted phase. It could be the case that any change in the system under pressure 

could not be observed using a powder diffraction technique. However, the experiment 

did demonstrate that any subsequent measurements to be undertaken on this system 

would have to be done at higher pressures to allow us the opportunity to fully 

establish the structural phase diagram of TlFeClg. The present high resolution data 

and its subsequent refinement show that it will be very difficult to obtain the low 

temperature phase with powder diffraction measurements. The presently deformed 

structure should be regarded as an ‘averaged’ structure. The changes from the P —> y 

phase must be very small and may only be obtained from single crystal diffraction 

data.

Recently it was shown by Visser et al}^^ using a Laue neutron diffraction technique 

that the unit cell of the y - phase of TIC0 CI3 has a unit cell of size 4a x 4a x c. The 

extra diffraction due to this unit cell is only visible at high Q for the layers > 1. In 

view of this fact an experiment was carried out on the single crystal diffractometer 

D 15, at the ILL, Grenoble in ambient and applied pressure environments.

The experiment was performed with a small single crystal (4 x  4 x  4mm) of TlFeCls 

with the [001] -  [110] plane in horizontal scattering plane. This allowed us to 

accurately determine the effects of the application of pressure on the lattice 

parameters. A hydrostatic pressure of 5.Okbar could be applied using a standard He 

pressure cell. Chapter 3.3.3 provides more information on this cell. The P -  T  phase 

diagram was determined by scanning along a line of reciprocal space from the 

reciprocal lattice point Q(-4.85 -1.3 2) Q(-4.55 -1.9 2) for various pressures up to

5kbar. Scanning this area allowed us to observe the appearance/disappearance of both 

the Q(l/3 1/3 0) type reflection associated with the P-phase and Q (l/4 1/2 0) type 

reflection associated with the y-phase. The figures below give an example of the 

typical results obtained for the experiment.
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Figure 84: (a), (b) (c) and (d) show the structural phase transitions of T lFeCb, 

from  space group PhVmmc Pô^cm —> unit cell 4a x 4a x c ,P = 4.0khar.

Figure 84 (a) shows a waterfall plot of the scans taken across the structural Bragg 

peak (-4.667, -1.667, 2) at 4.0kbar. The plot clearly shows the structural phase 

transition from space group P6 Vmmc, at high temperature -> P 6 3 cm unit cell 4a x  

4a X c. The structural peaks were fitted to Gaussian lineshapes and it is the resultant 

fits that are shown in (a). Figure 84(b) shows the changing position of the Bragg peak 

between the space group Pb^cm and unit cell 4a x  4a x c at Tjransition = 50.6 ± 0.5K. 

Figure 84(c) shows the transition between space group Pb^/mmc and Pb^cm at 

Tjransition = 141 ± IK. The second order characteristics of the a  - (3 transition is can be 

seen from (c), the log -  log plot given in (d) shows that the critical exponent (3 = 0.29, 

a similar value to that found for RbVBr^ The transition of the p ^  y phase is more
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first order like, the region of transition being AT < IK, this being in strong contrast to

the transition observed in similar system, KNiCfi of AT = 15K^^ .̂

Similar measurements to the above were taken at P  = 0, 1.75, 2,2, 3,2, 4.0 and 

5.Okbar. A  P -  T  phase diagram was constructed using the results of these 

measurements and is shown below.
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Figure 85: The structural phase diagram of TlFeCfi (lines are just guides to the 

eye).

It is seen that a linear dependence seems to characterise the structural phase 

boundaries. The a-|3 phase boundary has a slope {APIAT) = -0.1435 kbar/K, and the 

(3-y phase boundary has a slope (APIAT) = -0.088 kbar/K.The powder diffraction data 

presented and discussed earlier is now rationalised.

4.4.2 Magnetic Characterisation o f  TlFeCh.

The distorted triangular lattice antiferromagnet TlFeCb orders magnetically at Tn = 

2.00(5)K. Data taken by the author on the TAS, 4F1, at the LLB, Saclay shows 

magnetic scattering at the reciprocal lattice point Q (l/3 1/3 0). This is indicative of a
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120° type magnetic ordering along the c-direction. This is comparable to the 

isostructural compound RbFeCls which also orders with a 120° type structure at Tn = 

1.90(1)K.

However, two further transitions taken place in this system, at Tni = 1.55(1)K and Tn2 

= 2.35(1)K. The first structure is an incommensurate helical magnetic structure (/C;),

with ic= (1/3 + Ô, 1/3 + Ô, 0). The second magnetic structure (IC2), is sinusoidal* 

High resolution data powder/single crystal diffraction on TlFeCls*^^ shows that the

magnetic structure is also slightly incommensurate with k =  (0.330, 0.330, 0), 

adopting the ICj type structure.

/  \

<11 O n

Figure 86: The position of the magnetic Bragg reflections characterising the 
incommensurate magnetic phases of RbFeCls'^®.

As can be seen from the sublattice magnetisation plots of TlFeCls show below, the 

system shows two magnetic phase transitions at P  = Skbar applied hydrostatic 

pressure (this data has been collected by the author and has been presented 

previously*"*^). Due to the alignment of the crystal and to resolution limitations the 

characterisation of these two phases could not be completed during this experiment.
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Figure 87: Sublattice magnetisation of TlFeC^ at (a) ambient pressure and (b) 
Skbar applied hydrostatic pressure.(lines are best fit to power law with 
p=0.28 and p=0.30 respectively).

Two scenarios are possible for the system;

• The phase is partially ordered followed by a fully ordered 120° type magnetic 

phase as in RbFeBr3 .

• The first phase is the incommensurate /C/ as found for the ambient pressure data 

which locks into the 120° type magnetic ordering at Tn2  = 4.30(5)K at Skbar.

In order to distinguish between these two scenarios a single crystal neutron scattering 

experiment was performed on the diffractometer, D15, at the ILL, Grenoble. This 

experiment was carried out in conjunction with the structural determination 

measurements presented in the last Chapter. The magnetic phase diagram was 

established by scanning along the K- M line from Q(-0.283, -0.383, 0) —> Q(-0.383, - 

0.283, 0). A schematic of the scan path taken, is shown below.
Oil

001

Figure 88: Scan path for the sublattice magnetisation measurements for TlFeCl^.
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An example of the typical data obtained is shown below in Figure 89 for an applied 

hydrostatic pressure of P = 3.2kbar. Scans of the same nature as these were obtained 

for applied hydrostatic pressures at P = ambient, 1.20kbar, 2.20kbar, 2.70kbar, 

4.0kbar and 5.Okbar. The datasets were obtained with both increasing and decreasing 

temperatures in order to observe any hysteresis that may be present. From the data a 

small temperature hysteresis of approximately IK is observed for the magnetic phase 

transitions.
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Figure 89: (a), (b) (c) and (d) show the magnetic phase transitions of TIFeCb, 

from the low temperature 1 2 0 ° type structure -» incommensurate —» 

paramagnetic, P = 3.2khar.

Figure 89 (a) shows a waterfall plot of the scans taken across the magnetic Bragg 

peak (-1/3 -1/3 0) at 3.2kar. The plot clearly shows the magnetic phase transition 

from paramagnetic, at high temperature incommensurate —> 120° type structure. 

The magnetic peaks were fitted to Gaussian lineshapes and it is the resultant lines that
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are shown in (a). Figure 89 (b) shows the sublattice magnetisation measurements 

giving a Tjransition = 2.7 ± O.IK. Figure 89 (c) shows the same phase transition in terms 

of the positional parameter of the peaks. Figure 89 (d) shows the transition between 

the incommensurate magnetic structure and the paramagnetic type at Tjransition = 4.4 ± 

O.IK

The data obtained at the different pressures has been collated and is presented below 

in the form of a magnetic phase diagram.
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1 2 0 '

3
23(/>
(0
2 2
Q.

Paramagnetic
1

0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Temperature (K)

Figure 90: The magnetic phase diagram of TlFeCfn, the lines are just guides to 

the eye.

From the experimental information we can conclude that the distorted triangular 

antiferromagnet TlFeCfi orders with the incommensurate ICi magnetic structure. The 

value of the critical exponent, p, observed at the transition point corresponds to a n = 

3 chiral universality class. At higher pressures the balance in the superexchange and 

the magnetic dipolar forces moves the ordering towards 120° type.
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4.5 K N iC l3(4F2-L L B)

KNiCl] is a distorted triangular lattice antiferromagnet with two low temperature 

magnetic phases. Petrenko et first reported that in different crystals of KNiCls 

one may be able to observe the coexistence of different magnetic phases related to the 

p and y  - structural phase of KNiClg. In the p-phase of KNiClg, the magnetic moments 

order with a 120° type magnetic structure at Tn = 12.5K, while the y-phase shows a 

rearranged nuclear structure with an incommensurate magnetic structure with Tn = 

8 .6 K. It seems that the heat treatment during the crystal growth is of prime importance 

in deciding which low temperature phase may be formed. Chemical impurities also 

have an important effect on the stabilization of the intermediate phase, the p-phase, as 

can be seen from the structural phase diagram of the mixed system Rbi-xKxNiCb*^* .̂ It 

was thought that these two phases came about due to different fabrication techniques 

and different sample histories.

Since the sequence of structural phase transitions in KNiClg is identical to those in the 

distorted triangular antiferromagnet, TlFeClg, one would expect similar magnetic 

critical behaviour at the Neèl point. Neutron diffraction investigations were carried 

out on three different crystals of KNiClg to establish the magnetic critical behaviour 

around Tn. Both the pure P and pure y-phases were measured as well as a crystal 

where both phases were present together. The resultant values are presented below.

4.5.1 M ixed Phase

The first of the group of experiments was undertaken on a small single crystal sample, 

in which both P and y-phases were expected to be present. As was the case for all the 

experiments, the sample was mounted in a standard Orange ILL cryostat with the 

[110] -  [001] plane in horizontal scattering plane. The optimised lattice parameters on 

the TAS, 4F1, at the LLB were calculated at a = 6.7343Â and c = 5.9446Â. A full 

measurement of the [ h h l ]  was undertaken for various temperatures from 3K to 16K
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in order to establish the location of the magnetic Bragg peaks. The results of these 

scans are collated and presented below in Figure 91.

b.l' b.2' b.3 X).4 0.5 0.6 0.7 '0.0 0.9 

[h/7l]

Figure 91: Tem perature dependence of the magnetic Bragg peaks for the 
triangular antiferromagnet KNiCfi along the [h h 1] direction. The Bragg points 
at (0 0 1 ) and (1 1 1 ) have been omitted for clarity.

Magnetic Bragg peaks can be observed at the reciprocal lattice points Q(0.125 0.125 

1), Q(0.31 0.31 1), Q (l/3 1/3 1), Q(0.37 0.37 1) and Q(0.628 0.628 1), Q(0.68 0.68 1) 

and Q(0.875 0.875 1), these are highlighted below at T =2.98K for clarity.

2.98K
9.80K

6000 -

4000-
(/)
c
0)
c

2 0 0 0 -

0.0 0.2 0.4 0.6 0.8 1.0

[hh 1 ]

Figure 92: The magnetic (marked with arrow) and structural Bragg peaks of 
KNiCb at 2.98K.
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Sublattice magnetisation scans on all observable magnetic Bragg peaks at incident 

wavevector k| = 2.662 A ‘ were carried out. However, time restrictions meant that we 

could not measure the Q(0.68 0.68 1) or the Q(0.875 0.875) peak. Each magnetic 

sublattice magnetization scan was recorded during a very slow temperature sweep 

with the detector fixed at a Q(h h 1) position. At selected temperatures a full (0-20 

scan through the magnetic Bragg reflection was made to check the validity of this 

method. No difference in intensity versus temperature between both methods was 

noted. Scans were taken for both warming and cooling of the sample in order to 

establish if there was any hysteresis in the sample.

According to Petrenko two types of magnetic reflections are observed, the Q(l/3 1/3 

1) type reflections with Tn = 12K and the Q(/z/8 ± ô, h/S ± Ô, /) type reflections with Ô 

= 0.0183 and Tn = 8.6K. The measurements of Petrenko were not of sufficient detail 

around the Neel points to be specific about the character of the ordering transition. 

The results of temperature dependence measurement of the magnetic reflection Q(l/3 

1/3 1) are displayed below in Figure 93.

(0.334 0.334 1) •  Cooling 
o Warming

6000

4000

2000

2 8 10 12 16

(1/3 1/3 1)

9

6

I '

-6 -5 -3 2 0
T(K) IN(T,-T)/TJ

Figure 93: Sublattice magnetisation scan at Q(l/3 1/3 1), (line is best fit to power 
law with (3=0.545).

Sublattice magnetization measurements were taken for both warming and cooling of 

the sample. A hysteresis of ~0.4K was observed, indicating a possible first order 

transition. However, no ‘jum p’ in intensity that would be characteristic of a first order 

transition is present. Therefore, this transition must have nearly a second order 

character. Thus a conventional analysis of the critical exponent of the sublattice
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magnetisation was undertaken. The average calculated value of the critical exponent 

was p = 0.50(1) which is indicative of mean field behavior.

Table 11: Critical exponent P values for the triangular lattice antiferromagnet 
KNiCli, mixed phase.

Q Tn P
0.3333 0.3333 1 Cooling 8.50 ±0.1 0.525 ± 0.025

Warming 13.15±0.1 0.475 ± 0.025

From Figure 93 it is obvious that the temperature dependant behaviour of the 

magnetic moment is very unusual. Around Tn = 9.0K the intensity of the moment 

drops by about 15% which is then recovered again below 7K, at T = 9.0K one also 

observes magnetic intensity at Q positions related to the y-phase. The remaining 

sublattice magnetisation scans are presented below, a hysteresis of -0.4K  is present in 

these scans also.

(0.125 0.125 1) •  Cooling 
o W arming

Data Warming bgr

2 10

(0.31 0.31 1) •  Cooling 
o  Warming

30000

25000

20000

15000

10000

5000

7 102

T(K) Tem perature  (K)

(0.37 0.37 1) •  Cooling 
o W arming

(0.628 0.628 1) o Warming

52
T em perature  (K) T(K)

Figure 94: Suhlattice magnetisation scans at various Q{h h 1), ), (lines are best fit 
to power law with p=0.25).
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The values of the transition temperatures and the calculated critical exponent p are

collated below.

Table 12: Critical exponent P values for the triangular lattice antiferromagnet 
KNiCla, mixed phase.

Q Tn P

0.125 0.125 1 Cooling 8.55 ±0.1 0.30 ±0.03

Warming 8.95 ± 0.04 0.305 ±0.015

0.31 0.31 1 Cooling 8.60 ±0.05 0.270 ±0.02

Warming 8.95 ± 0.02 0.265 ± 0.02

0.37 0.37 1 Cooling 8.62 ± 0 . 1 0.25 ± 0.02

Warming 9.00 ±0.05 0.28 ±  0 . 0 2

0.628 0.628 1 Warming 8.98 ±0.1 0.273 ± 0.02

The temperature dependence of all measured magnetic reflections show an anomalous 

behaviour on warming around T = 6  -  7K.

The total magnetic ordering behaviour becomes a little clearer when we overlay the 

sublattice magnetisation scan for Q(0.31 0.31 1) and Q(l/3 1/3 1). Figure 95 shows 

that there is a mixture of two phases in the crystal which are not independent of each 

other. The length scale of domains of each crystallographic phase are such that the 

onset of the magnetic order in the y-phase has a distinct influence on the intensity of 

the p-phase. Domain wall structures may be created between the P and y phase which 

rearrange themselves (diminish) below T ~7K. Warming the sample up we see that 

the intensity of the sublattice magnetisation is higher in intensity than upon cooling in 

both the P and y-phase. Between 6 K - 7K a slope change occurs and the intensity of 

the Q(l/3 1/3 1) reflection diminishes while its intensity rises again before the onset 

of the paramagnetic phase. An approximate ratio of the two domains can be obtained 

from a comparison of the intensity of the Q(l/3 1/3 1) reflection and the sum of the 

Q(0.31 0.31 1) and Q(0.37 0.37 1) reflections assuming that the ‘averaged’ magnetic 

structure of KNiClg is identical to the helical incommensurate magnetic structure of 

TlFeCl].
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Figure 95: Comparison of the Q (l/3 1/3 1) and Q(0.31 0.31 1) magnetic Bragg 
peak in KNiC^.

4.5.2 4a jc 4a jc c phase

The second experiment was performed on the same crystal of KNiCl? as the previous 

experiment. However, the sample had undergone a heat treatment by virtue of another 

experiment undertaken on the sample. The crystal had been mounted in a furnace on 

the PRISMA diffractometer at the ISIS facility and the temperature set to 400°C for 

the period of the experiment which took place over a period of 1 week. The sample 

was then allowed to cool slowly to room temperature. We wish to establish whether 

this heat treatment had any effect on the physical and magnetic structure of the 

system. Thus comparison measurements were carried out the TAS 4T2 at the LLB. As 

before, the sample was mounted in a standard Orange ILL cryostat with the [110] -  

[001] plane in horizontal scattering plane. A full measurement of the [hh \] direction 

was undertaken at 8.76K and 1.55K in order to establish where the magnetic Bragg 

peaks were residing (shown in Figure 96). This also enabled us to compare this 

measurement with that in Figure 92, allowing us to see if any change had occurred in 

the sample due to the annealing.

152



4 Chiral Order in ABXj Compounds

1.55K
8.76K5000-

4000-

>, 3000-
(/}
cO
S  20 0 0 -

1 0 0 0-

0.4 0.6 0.8 1.00 .0 0.2

[ h h  1]

Figure 96: The difference between magnetic (marked with arrow) and structural 
Bragg peaks of KNiCb at 8.76K and 1.55K.

Comparing the above with Figure 92, several points become immediately clear. The 

magnetic Bragg peaks at Q(0.125 0.125 1), Q(0.31 0.31 1), Q(0.37 0.37 1), Q(0.628 

0.628 1) and Q(0.68 0.68 1) are still present, although the relative intensities have 

changed somewhat. The structural Bragg peaks at Q(OOl), Q(*4 % 1), QiVi V2 1), Q(% 

% 1) and Q(1 1 1) are also still present, albeit slightly swamped by the presence of the 

higher background count. It can be seen that these structural peaks do not have the 

same relative intensity as previously, this is especially true of the Q(% % 1) and Q(1 1 

1) peaks. General observation shows that the half width of the Bragg peaks has also 

increased slightly. The lack of a Q(l/3 1/3 1) or Q(2/3 2/3 1) peak may suggest a 

change in the magnetic structure of the system, however it may be that the increased 

background scatter has swamped these reflections. Finally, extra non magnetic 

scattering is present around Q(0.95 0.95 1). In order to resolve some of the 

uncertainties regarding the structure, sublattice magnetisation scans were undertaken 

on the magnetic Bragg peaks in order to ascertain both the form of the magnetisation 

and the critical exponent p of the system.

As before, the sublattice magnetisation scans were executed by sitting on the 

magnetic Bragg peak and performing a slow temperature sweep in both warming and 

cooling directions to check for hysteresis. Checks were carried out at various 

temperatures to ensure that full scans over the magnetic Bragg peak gave the same
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intensity as sitting on the peak. Due to time restrictions only the Q(0.125 0.125 1), 

Q(0.313 0.313 1) and Q (l/3 1/3 1) peaks were measured in this way. The resultant 

magnetisation scans are shown below along with the corresponding ‘log-log’ plots 

used to calculate the critical exponent p.
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o W arming
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Figure 97: Sublattice magnetisation scan of annealed crystal of KNiCb at 
Q(0.125 0.125 1), (line is best fit to power law with p=0.206).
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Figure 98: Sublattice magnetisation scan of annealed crystal of KNiCla at 
Q(0.313 0.313 1), (line is best fit to power law with p=0.210).

Direct comparison of the above figures and those in Figure 94 show that the hysteresis 

of the system between warming and cooling has been removed. The Tn of the new 

system does not correspond to either the warming or cooling Tn of the previous 

experiment (-8.9K  and -8.5K  respectively) rather it sits in between them at Tn = 

8.73K ± 0.03K. Again the (1/3 1/3 1) sublattice magnetisation scan has produced an 

unexpected result. The peak does not have a form as of the previous experiment as 

can be seen in Figure 93, where the peak reaches a maximum around 8.7K and
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stabilises at this level to low temperatures, rather it reaches a maximum around 9.0K 

falling off to almost zero approaching low temperature.
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Figure 99: Sublattice magnetisation scan of annealed crystal of KNiCb at Q(l/3 
1/3 1).

A comparison of the scans taken in this experiment shows that the magnetic intensity 

at Q(l/3 1/3 1) does not represent magnetic Bragg scattering but corresponds to 

diffuse magnetic scattering from the tails of the Q(0.31 0.31 1) and Q(0.37 0.37 1) 

magnetic Bragg reflections. This type of scattering corresponds to short range 

magnetic order in the basal plane similar to that observed in CsNiCl^ (Chapter 4.2.2). 

The most striking difference between the crystal of the mixed phase and the material 

after heat treatment is a change of the magnetic critical behaviour from a mean field 

to normal one.

In the phase which now corresponds to the ‘ordered’ y phase, one observes however, a 

different magnetic critical exponent from that of the mixed phase crystal’s y-phase. (3 

drops from a value of p = 0.25-0.30, corresponding to the predictions for the n = 2 or 

3 chiral universality classes to a value of p = 0.21(1). This value is much closer to that 

of the 2D-XY system. This value is also close to the one observed for CsNiCls at Tn2 

(p = 0.20). A difference between the two different p ’s obtainable for the y-phase may 

lie in a slightly different incommensurate magnetic structure.
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Figure 100: Comparison of the Q(0.125 0.125 1), Q(0.31 0.31 1) and Q (l/3 1/3 1) 
peak of the annealed crystal of KNiCI^.

4.5.3 R T  phase

This was the last sample to be analyzed, it had been fabricated, as is usual with 

virtually all the of ABX3 halides used in this thesis, by Dr. D. Visser using the 

Bridgman technique and a three zone furnace. The experiment was performed on the 

two-axis diffractometer 3T1, at the LLB. The crystal was mounted in an ILL Orange 

cryostat with the [110] - [001] plane in the horizontal scattering plane. We observed 

magnetic Bragg reflections at the positions Q(h/3 h/3 1): h 3n, 1 = 2n+l which 

corresponds to a 120° type magnetic structure. The magnetic sublattice magnetization 

measurements were undertaken at Q (1/3 1/3 1), Q (2/3 2/3 1) and Q (1/3 1/33) using 

PG002 as a filter to reduce second order contamination. The positions of these 

magnetic Bragg positions are shown as a function of reciprocal space below.

(003) ( 113)

(002) ( 1 12)

(001) (H 4 ( 111)

(000) ■ * ( 110)

Magnetic Bragg peak

Figure 101: Reciprocal lattice positions of the magnetic Bragg peaks Q(l/3 1/3 1), 
Q(2/3 2/3 1) and Q(l/3 1/3 3) in the distorted triangular lattice antiferromagnet 
KNiCb.
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Figure 102: Sublattice magnetisation of KNiCb at Q(l/3 1/3 1), (line is best fit to 
power law with p=0.37).
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Figure 103: Sublattice magnetisation of KNiCb at Q(2/3 2/3 1), (line is best fit to 
power law with p=0.375).
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Figure 104: Sublattice magnetisation of KNiCla at Q (l/3 1/3 3), (line is best fit to 
power law Ae^  ̂with p=0.36).

157



4 Chiral Order in ABX^ Compounds

Magnetization measurements were recorded for both warming and cooling of the 

sample. As can be seen from the figures above only a very small hysteresis was 

observed at the magnetic transition.

Several observations may be immediately made from the above figures. Due to the 

magnetic form factor, the scattering from the (1/3 1/3 3) magnetic Bragg peak is 

substantially lower than that from the Qi h \)  peaks. However, a more puzzling 

observation is the difference in Tn between that of (1/3 1/3 1) and the other two 

magnetic Bragg peaks. This is unusual and may indicate that there has been a problem 

with the temperature regulation.

As with the previous two experiments on this system, the magnetic order parameter P 

was obtained by least square fitting the temperature dependent intensity of the 

magnetic reflections I = to a power law expression In M ~ In (Tn-T/Tn)^ .̂ The 

average values of p obtained for all three reflections are given below.

Table 13: Average critical exponent p values for the triangular lattice 
antiferromagnet KNiCb (third crystal).

Q Tn P

1/3 1/3 1 11.25 ±0.10 0.374 ± 0.02

2/3 2/3 1 12.10 ±0.05 0.387 ± 0.02

1/3 1/3 3 1 2 . 2 0  ± 0 . 1 0 0.355 ± 0.01

It can be seen from the values of p in Table 13, that the observed values of the critical 

exponent are close to those of the 3-D XY and Heisenberg universality classes where 

P = 0.3460 and p = 0.3648 respectively. Thus we can see that the values of P for 

KNiCls are far removed from those of the n = 2 or n = 3 chiral universality classes, 

where p = 0.245 and p = 0.30, respectively. Surprisingly the P values are also far 

removed from the value found for RbVBrg, a system with an identical nuclear 

structure as the present KNiClg crystal where P = 0.28. In order to unambiguously 

establish the critical exponent P and the value of Tn for the three magnetic Bragg 

peaks, it was decided to undertake a repeat experiment on the same crystal with the 

same sample environment, however this time the experiment was undertaken using
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the TAS 4F2, at the LLB. Thus sublattice magnetisation scans were again undertaken 

on the magnetic Bragg peaks (1/3 1/3 1), (2/3 2/3 1) and (1/3 1/3 3). The result of 

these scans may be seen below with the corresponding ‘log -  log’ plots calculating the 

critical exponent p.
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Figure 105: Sublattice magnetisation of KNiCI^ at Q(l/3 1/3 1), (line is best fit to 
power law with P=0.375).
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Figure 106: Sublattice magnetisation of KNiCl3 at Q(2/3 2/3 1), (line is best fit to 
power law with p=0.385).
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Figure 107: Sublattice magnetisation of KNiCb at Q(l/3 1/3 3), (line is best fit to 
power law with p=0.345).

The data was treated as before and is collated below,

Table 14: Critical exponent p values for the triangular lattice antiferromagnet 
KNiCb (third crystal).

Q Tn P

1/3 1/3 1 12.40 ±0.1 0.375 ±0.01

2/3 2/3 1 12.40 ±0.05 0.385 ±0.01

1/3 1/3 3 12.30 ±0.1 0.345 ±0.01

It is immediately obvious that the value of Tn for (1/3 1/3 1) is now the same as the 

(2/3 2/3 1) and (1/3 1/3 3) magnetic Bragg peaks. This is a satisfactory result and 

suggests that there was some error in the previous measurements. Yet again the values 

of the critical exponent p are in the range 0.345 -  0.385, suggesting normal 3D XY or 

Heisenberg behaviour. What can be observed from a comparison of Table 13 and 

Table 14, is that the value of p obtained from the Q(l/3 1/3 3) reflection is lower than 

the critical exponent calculated for the Q(h h i )  reflections. Calculations on the Q(l/3 

1/3 1) and Q(2/3 2/3 1) reflections indicate that KNiCl^ represents a 3-D Heisenberg 

universality class while the Q(l/3 1/3 3) indicates a 3D XY universality class. If we 

consider the slightly different system of the weak-Ising like triangular antiferromagnet 

CsNiCl3 , we see from Figure 11 that it has two magnetic transitions. The first being at 

Tni where the z component of the magnetic spin orders along the c-direction giving 

rise to a partially ordered phase, then secondly at Tn2 where finally the xy components
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of the spin order out along the [1 1 0 ] direction. This results in largely different P's for 

the two components as observable from the Q(l/3 1/3 1) and Q(l/3 1/3 3) reflections. 

A similar scenario may be possible for KNiCls were two magnetic transition points 

are very close together (with a AT just outside the resolution of our experiment, a 

close inspection of Figure 106 suggests that this is possible). In RbVB% as well as in 

RbFeBrs one observes a partially ordered intermediate magnetic phase existing over a 

temperature range of several degrees Kelvin. The final magnetic structure is a 

modified 1 2 0 ° type magnetic structure where the canting angle of two out of the three 

spins of the initial triangle is larger than 120°. This results, in principle, in an 

orthorhombic magnetic structure where the canting angle is determined by the single­

ion anisotropy of the system and the now different interchain superexchange 

interactions. For our present data we can conclude that KNiCB stabilized in the p - 

phase and is non chiral ordering and consequently must have a modified 1 2 0 ° type 

structure.
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5 Singlet Ground State AFeXs compounds

5.1 CsFeClj (LLB)

In order to attempt to establish a correlation between the magnetic and structural 

behaviour of the system under pressure, it is necessary to obtain accurate 

measurements of the structural parameters a, c and x a  and the exchange parameters 7, 

J' and D. The former may be obtained most accurately by means of neutron powder 

diffraction, these measurements are dealt with in Chapter 5.1.2. The latter, i.e. the 

values of D, J  and J' are obtained from the dispersion curves of the magnetic 

excitations obtained by inelastic neutron scattering on the system and are dealt with in 

5.1.1.

5.1.1 Magnon dispersion measurements on CsFeCh under hydrostatic pressure.

The magnetic dispersion-curve measurements presented in this Chapter and in 

Chapter 5.2.1 deal with experiments undertaken by the author while at Loughborough 

University. This work was presented for the degree of MPhil and is included here to 

give a full picture of the magneto-structural relationship in the singlet groundstate 

AFeX] systems. Where extra work has been performed on this data during the period 

of the author’s PhD studies, this has been clearly indicated.

The measurements of the magnon dispersion curves were undertaken on the TAS, 4F1 

at the LLB, Saclay. (Chapter 4.4.2). A Icm^ single crystal, grown by Bridgeman 

technique and having a mosaic width of 0.2° was mounted in a He-pressure cell 

(Chapter 3.3.3), placed into a modified ‘Orange’ cryostat. The system was pressurised 

and then cooled to T=1.5K. The process of pressurising at room temperature and 

cooling to 1.5K took about 7 hours, the majority of this time was used in cooling the 

mass of the pressure cell. The sample was mounted with the [110]-[001] plane in the 

scattering plane of the instrument. Measurements were made around the magnetic 

Bragg points along [1/3 1/3 /], [1 1 /] and [k h 0] at various pressures, during the
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course of several experiments, in order to obtain a full picture of the magnetic 

dispersion curve under hydrostatic pressure. The directions scanned are shown below.

(001)6

(000)

(00-1)6-------------

•  Magnetic Bnagg peak 

" S c a n  path

( 110)

( 1 1 - 1)

Figure 108: Scans taken through reciprocal space for CsFeClj a t S.Okbar, 

3.5kbar, and 2.0kbar.

Scans were obtained with the constant-Q method and fitted to a delta peak, modified 

to take into account the calibration of the instrument and the incident wavevector, thus 

giving a finite width to the excitation. The program used for this was called afitv, a 

fitting program developed ‘in-house’ by the Laboratoire Leon Brillouin specifically 

for analysing data from their triple axis spectrometers. Pyrolytic Graphite was used as 

both monochromator and analyser. A cooled Beryllium filter and a PG filter were 

used at kj = 1.55 Â ' and at kj = 2.662 Â ’ respectively, to reduce the second order 

contamination of the neutron beam.

Through experience it was found necessary to change k; from 2.662À ' to 1.55Â’' 

when the magnetic excitation transfer energy fell below 0.4THz. This improved the 

resolution of the TAS but reduced the intensity of the measured peaks. At very low 

energy transfers such as at (2/3 2/3 0) at 5.0kbar, kj was reduced further to 1.4Â‘* in 

order to resolve the excitations very close to the incoherent peak at E = 0 THz. This of 

course reduced the intensity even further and could only be undertaken for a few 

critical points.

The observed excitations were modelled during the author’s PhD work with greater 

accuracy than previously using the dispersion relations of Lindgârd'^^ and Villain'^^.

>/2 (57)
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where J(q) = 4 [ J  cos (Jtqc) + J" cos(27tqc) + J'y(27tq±) ]

and y(27lq±) = [2J cos iTtqy)[ cos(27tqJ + cos(2jtqy) ] -  1 }

J ” is a factor introduced to account for the next nearest neighbour interaction, this 

allowed a more accurate fitting to be undertaken in some circumstances.

qc is the vector in the chain direction, in reciprocal space units [ 2k / c ],

qx is the vector in the [100] direction, in reciprocal space units [ 4 k / ^/Sa ],

qy is the vector in the [110] direction, in reciprocal space units [ 4 k /  a ] .

R(T) is the renormalisation factor which is introduced to correct for temperature 

effects, it is defined by the equation:

& (58)

where nj is the occupation factor for the ground state and « 2  and describe the

Zeeman split states m = ±1, the Vim R(T) = {.
r-»o

The three directions, [1 1 /], [1/3 1/3 /] and [h h 0] ,  measured were all simultaneously 

fitted to the equation above producing an accurate description of the magnon 

dispersion curves. The results for each pressure are presented below.

O 12/3 2/3 ç |

N 0.6

0.5

m 0.4

0.2

0.0
1.0 0.6 0.8 1,0

 ̂ [2n/c]  ̂[41/a]

Figure 109: M agnetic dispersion of CsFeCI^ at 0 k bar along [1 1 /], [2/3 2/3 /] and 

[h h 0].
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Figure 110: Magnetic dispersion of CsFeCfn at 2.0 kbar along [1 1 /], [2/3 2/3 /] 

and [h h 0 ].
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Figure 111: Magnetic dispersion of CsFeCb at 3.5 kbar along [1 1 /], [2/3 2/3 /] 

and [h h 0 ].
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Figure 112: Magnetic dispersion of CsFeCl^ at 5.0 kbar along [1 1 /], [2/3 2/3 /] 

and {h h 0 ].
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Applying equation 57 to the magnetic dispersion curves shown above we obtain the 

following values for single ion anisotropy (D), intrachain superexchange energy (J), 

interchain superexchange energy (J") and next nearest superexchange energy (7").

Table 15: Values obtained for the single ion anisotropy (Z)), intrachain exchange 

energy (/), interchain exchange energy (/')  and next nearest exchange energy 

(7") for CsFeCfv

P(kbar) D J 7' J"

0.0 0.5185(23) 0.0634(67) -0.0034(2) -0.00999(73)

2.0 0.5463(59) 0.0677(15) -0.0038(5) -0.00958(180)

3.5 0.5484(55) 0.0683(13) -0.0039(4) -0.0103(150)

5.0 0.5692(50) 0.0750(17) -0.0038(4) -0.01211(160)

>  0.54 -

m 0 53-

5

0.08

t -  0.07

P

2
P ressu re  (kbar) P ressure  (kbar)

à
■0.012

P ressu re  (kbar) P ressu re  (kbar)

Figure 113: Values obtained for the single ion anisotropy (D), intrachain 

exchange energy (/), interchain exchange energy {J') and next nearest intrachain 

exchange energy (7 ") for CsFeCfv
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It can be seen that the value of D  increases linearly upon the application of hydrostatic 

pressure, this is due to the physical deformation of the octahedra under 

pressure. The value of the interchain interaction also increases, again due to the 

physical deformation of the BXl~ octahedra. Both J' and J ” increase/decrease due to

the physical distortions of the intrachain Fe-Cl-Fe and interchain Fe-Cl-Cl-Fe 

superexchange pathways.

5.1.2 Structural studies on CsFeCls under hydrostatic pressure. (ISIS)

In order to fully understand the correlation between magnetic behaviour and structure 

it is necessary to undertake a full evaluation of the physical deformation of the crystal 

structure under hydrostatic pressure. Experiments of this type have been undertaken 

by Visser and H a r r i s o n o n  the single crystal diffractometer D15.

The optimised lattice parameters of the system, obtained for each pressure, are shown 

below in tabular and graphical format. The data given here is machine specific and 

not of sufficient quality to undertaken calculations on the magneto-structural 

relationship in CsFeClg. The data in Table 16 can be compared with the optimised 

parameters for CsFeClg calculated for a powder sample using the POLARIS 

diffractometer at the ISIS facility in Table 17.

Table 16: Optimised parameters for CsFeClg under pressure159

P(kbar) a(Â) c(Â) a n Xci

0 7.1764 5.9706 74.19 0.1588

1 7.1681 5.9575 73.89 0.1595

2 . 2 7.153 5.9247 73.74 0.1609

5 7.1213 5.9198 73.42 0.1609
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Figure 114: Optimised parameters for CsFeCb under pressure by Visser and 

Harrison, lines are only a guide to the eye.

It is interesting to note the unit cell axis (a), has a linear compression with increasing 

pressure, whereas the c-axis undergoes an non-linear compression. However, these 

results may be spurious due to the experimental conditions under which they were 

obtained. The available resolution of the D15 diffractometer is a factor of 2-3 less in 

the vertical direction than the horizontal. The crystal in this experiment was orientated 

with the ab plane in the scattering plane and thus the errors in the z direction may be 

rather large.

As was described in Chapter 3.2.2, powder diffraction provides a powerful means of 

establishing the physical structure of a system with a high degree of accuracy. It was 

decided therefore to undertake the characterisation of the system using the medium
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resolution, high intensity powder diffractometer POLARIS at the ISIS facility. This 

diffractometer was selected for a number of reasons, Firstly POLARIS is particularly 

suited for the study of system under non-ambient conditions, the ability of the 

machine to collect an entire diffraction pattern at a single, fixed detector angle is very 

important when one is working with atypical environments such as a pressure cell. 

Secondly, POLARIS has four detector banks at ‘very low angle’, ‘low angle’, 90° and 

‘back scattering’ positions. It is the 90° bank of detectors, which allows us to 

eliminate the contamination of the scattered beam caused by the pressure cell by the 

use of suitable collimation in the incident and scattered beams.

A 2.83g powder sample of CsFeCb was prepared by grinding up a single crystal and 

loading in a He pressure cell (Chapter 3.3.3) which was placed in a modified Orange- 

ILL cyrostat. The sample was then cooled to 2K and diffraction data was taken at 

several pressures varying between near-ambient and 5.0 kbar. Average acquisition 

time for each diffraction pattern was approximately 2 hours.

The collected raw data were firstly normalised, then corrected for contamination by 

the pressure cell and finally corrected for absorption. The treated diffraction patterns 

were then refined using the Rietveld method outlined in Chapter 3.2.2, using the 

Cambridge Crystalographic Subroutine Library (CCSL). A typical fit for the obtained 

data is given below for P = 3.48 kbar

2opj_____________ ,________________ ,____________________  ,________________ ,_____________

 ,------------ ,-----SÛÛÛ,------------ ,------------ ,6000 ,------------   Zfl̂ oo

12000

8000
4000

0

8000 SOftO- . 1 0 0 0 0 , _l_moo

12000

Figure 115: Sample of the Rietveld refined data for the powder sample of 
CsFeCb {P = 3.48 kbar).
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Figure 116: Sample of the Rietveld refined data for the powder sample of 
CsFeCb {P = 0.48 kbar).

The calculated values for the unit cell parameters under pressure are given below.
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Figure 117: Structural parameters a, c, x  and a  for CsFeCb, obtained at the 

POLARIS diffractometer, ISIS.
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It is seen that the system remains stable for pressures upto 0.5 -  1.0 kbar and that both 

parameters decrease linearly upon application of further pressure. This is in contrast 

to the data obtained by Visser and Harrison on the single crystal diffractometer D15 at 

the ILL. This single crystal data, seen in Figure 114, clearly shows an non-linear 

compression in the c-axis. However the data obtained on the POLARIS instrument is 

certainly more accurate and reliable.

Table 17; Optimised parameters for CsFeCb under pressure on the powder 

diffractometer POLARIS at the ISIS facility, Oxford.

P(kbar) a(A) c(Â) o(°) Xa

0.03 7.17371(12) 5.99286(19) 74.60 0.15827(10)

0.48 7.17370(12) 5.99287(19) 74.60 0.15827(10)

1.05 7.16962(15) 5.99041(19) 74.60 0.15828(10)

1.49 7.16469(11) 5.98738(15) 74.44 0.15873(9)

2 . 0 1 7.15844(12) 5.98333(20) 74.39 0.15898(10)

3 7.14621(12) 5.97589(19) 74.29 0.15932(12)

3.48 7.14236(15) 5.97288(19) 74.25 0.15946(12)

4.03 7.13884(12) 5.97171(19) 74.25 0.15867(12)

5.09 7.12795(12) 5.96453(19) 74.26 0.15953(12)

The value of the x  parameter shows similar behaviour as the a and c axes up to 

l.Okbar, however these have a decreasing linear behaviour with increasing pressure, 

which is not the case for x, as can be seen above. One of the first points which is 

obvious upon study of the structural parameters, superexchange angles and anisotropy 

values is that a pressure of S.Okbar does not change the balance of D  versus 7 ( 0  

sufficiently to induce magnetic ordering in the system. The compression of the crystal 

structure changes D  as well as Z7 such that the change in D  is compensated by a 

similar change in the superexchange J(Q). The compression of the BX^~ octahedra

(c-axis compression), increases the value of D and this is directly related to the 

reduction in the c and a  parameters, resulting in x a  becoming larger. The decrease in 

the value of a  also results in 7 becoming larger. The compression in the a-axis gives
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rise to a larger value of the intrachain superexchange value J' due to the shortened 

distances along the Fe-Cl-Cl-Fe pathways. The non linear change in these values of 

xci and a  is reflected in the non-linear change in the superexchange pathways. A 

surprising fact to come out of the magnetic excitation data was that the next nearest 

neighbour interchain superexchange does exist. The value of this parameter increase 

as one approaches an applied pressure of 5kbar due to the increasing overlap of the 

Cl-Cl ions. Data was taken at l.Okbar but unfortunately poor statistics meant that we 

had to exclude this data from our analysis. The results of such a measurement should 

confirm the very small change in value of parameters a, c, xci and a  up to an applied 

pressure of l.Okbar. Figure 117 also indicates that a further increase of pressure 

should not result in a large increase of the constituent parameters.
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5.2 CsFeBrj (LLB)

This Chapter will be used to describe the magneto-structural relationship in CsFeBr^ 

under hydrostatic pressure conditions. Chapter 5.2.1 will deal with the magnetic 

dispersion curves of the system, work undertaken at Loughborough University by the 

present author and presented for the degree of MPhil. Chapter 5.2.2 deals with 

structural studies undertaken during the author’s PhD work on the POLARIS 

diffractometer at the ISIS facility.

5.2.1 Magnon dispersion measurements on CsFeBrs under hydrostatic pressure.

The measurements in this Chapter follow exactly the same routine as for the 

measurements on the system CsFeCU expounded on in Chapter 5.1.2. The same TAS, 

4F1, at the LLB, Saclay was used for the experiment. A Icm^ single crystal of 

CsFeBr^ was mounted in the He-pressure cell available at the LLB, placed in a 

modified ‘Orange’ cryostat, pressurised and cooled to T = 1.5K. Constant-Q scans 

were then performed along the paths shown below.

(001 )< I —

(000)6----  i---

(00-1)6  6   ( 11- 1)

•  Ivbgnetic Bragg peak 

(III) « S c a n  path

(110)

Figure 118: Scans taken through reciprocal space for CsFeBr^ at S.Okbar, 

3.5kbar, and l.Okbar.

As with CsFeCb, Pyrolytic Graphite was used as both monochromator and analyser. 

A cooled Beryllium filter and a PG filter were used at kj = 1.55 Â '' and at kj = 2.662
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Â’' respectively, to reduce the second order contamination of the neutron beam and ki 

was change from 2.662Â'’ to 1.55Â'' when the magnetic excitation transfer energy 

fell below 0.4THz.

The observed magnetic dispersion curves were fitted to equation 36, modified slightly 

to take account of the antiferromagnetic mrrachain interaction of the system. It was 

noted that in the absence of the next nearest neighbour term {J”), equation 36 still 

adequately described the magnon dispersion curves, apart from the case where P = 

l.Okbar where the inclusion of J ” gave a more accurate description of the observed 

curve. The resulting dispersion curves obtained for P = 5.0kbar, 3.5kbar and 2.0kbar 

are shown below.
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Figure 119: Magnetic dispersion of CsFeBrs at 1.0 kbar along [1 1 /], [2/3 2/3 /] 

and {h h 0], the dotted line represents equation 57, the solid red line represents 

equation 57 with no next nearest interaction {J”),
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Figure 120: Magnetic dispersion of CsFeBr^ at 2.0 khar along [1 1 /], [2/3 2/3 /] 

and [h h 0 ].
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Figure 121: Magnetic dispersion of CsFeBra at 3.5 kbar along [1 1 /], [2/3 2/3 /] 

and [h h 0 ].

O 12/3 2/3 41

^  0.5
-1 I

0.2 0.2; r

0.0
0.0 0.2 0.6 0.80 8 1.0

Figure 122: Magnetic dispersion of CsFeBr^ at 5.0 kbar along [1 1 /], [2/3 2/3 /] 

and [h h 0 ].

The values obtained from equation 57 are given below.

Table 18: Values obtained for the single ion anisotropy (D), iVi/rachain exchange 

energy (/) and interchain exchange energy (7') for CsFeBr^.

P(kbar) D J J' J"

0.0 0.620(10) -0.066(5) -0.0067(5)

1.0 0.67738(779) -0.0737(157) -0.00566(64)

1.0 0.6903(112) -0.06909(175) -0.00494(43) 0.00735(140)

2.0 0.65901(938) -0.07088(152) -0.00622(52)

3.5 0.65308(1791) -0.06993(277) -0.00621(52)

5.0 0.61288(700) -0.05915(150) -0.00930(52)
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Figure 123: Values obtained for the single ion anisotropy (D), intrachmn 

exchange energy {J) and interchain exchange energy (7') for CsFeBr^. (Lines are 

guide to the eye only).

As can be seen from the figure above, D increases upon the application of hydrostatic 

pressure reaching a maximum around Ikbar and decreasing thereafter. This is the 

same for the intrachmn interaction J, the interchain interaction J' follows a different 

trend, seeming to increase in value at 5kbar.

The behaviour of the structural, magnetic superexchange and single ion anisotropy 

parameters under applied pressure is completely different to that in CsFeCb. As can 

be seen in Figure 123, it looks like the chain has restored itself to ambient pressure 

conditions except for J' which is a factor 50% larger at 5kbar applied pressure, it 

should be noted however, that J' is of very small value. It is also of interest to note 

from Figure 119 that the interchain next nearest neighbour superexchange, J '\
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becomes significant at an applied pressure of I.Okbar. Unlike in the isostructural 

compound CsFeCU, where ferromagnetic dispersion of the nearest neighbour along 

the c-axis has a period of Tdc and the next nearest neighbour dispersion has a period of 

7c/2c. One would not expected to observe this next nearest neighbour dispersion in the 

antiferromagnet dispersion of CsFeBr] as both the nearest and next nearest neighbour 

dispersions have a period of 7t/2c. It seems that some sort of contact is established 

between the Br ions when the Fe-Br-Br-Fe pathway becomes activated through 

applied pressure.

5.2.2 Structural studies on CsFeBrj under hydrostatic pressure.

The measurements contained herein were performed during the same experimental 

period as those taken in 5.1.2. Thus all experimental parameters such as machine, 

apparatus etc. are identical. The reader is refer to this Chapter for more information on 

the experimental aspects.

A powder sample of 2.95g was prepared by crushing a single crystal of CsFeBri. This 

was mounted in a clamp cell, which was placed in a modified ‘Orange’ cryostat and 

cooled to T = 4.70K. As with CsFeCU, full powder diffraction patterns were taken 

from ambient to 5.0kbar applied pressure. The raw data was then normalised, 

corrected for the presence of the pressure cell and finally corrected for absorption. A 

typical refinement is shown below for P = 1.39kbar

C sFeBr, @ 1.39 kbar
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2 0 0 0 -

10000

8000-

4 0 0 0 -

11000 13000

n ooo

16000

Figure 124: Sample of the Rietveld refined d a f f o r  CsFeBr^ (P = 1.39kbar).
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The resultant values for the unit cell axes a and c were collated and are given below.
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Figure 125: Structural parameters a, c, a  and X for CsFeBrg, obtained at 

POLARIS, ISIS (the lines are a guide to the eye only).

Table 19: Optimised parameters for CsFeBr^ under pressure on the powder 
diffractometer POLARIS at the ISIS facility, Oxford.

P(kbar) a{A) cC&) «(°) Xsr

0 7.507 6.291 73.43(5) 0.1608

0.52 7.49391(45) 6.28247(38) 73.64(5) 0.16163(20)

1.0 7.48859(39) 6.27773(33) 73.37(5) 0.16241(20)

1.39 7.48484(48) 6.27377(38) 73.44(5) 0.16219(22)

2.0 7.48304(49) 6.27357(38) 73.33(5) 0.16256(21)

2.79 7.47556(44) 6.26976(37) 73.23(5) 0.16292(23)

3.75 7.44994(44) 6.25043(37) 73.19(5) 0.16310(26)

4.85 7.50056(57) 6.28543(48) 73.60(5) 0.16168(22)
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The magnetostructural correlations in CsFeBrg can be best described as ‘peculiar’. In 

the initial stages of pressurisation up to I.Okbar the value of the parameters of D, J  

and J' increase as one would expect, due to the decrease in the cell parameters. 

Thereafter the values of D  and J  decrease whilst the J' remains more or less constant 

up to 4kbar increasing rapidly thereafter. The neutron powder diffraction data shows 

that the length of the a-axis and c -axis decrease non-linearly and seem to reach a 

plateau between l-3kbar. Upon application of a further pressure up to 5.0kbar we see 

that the value of the a and c axes increase again and approximate the values at 

ambient pressure. An inverse trend is followed by the x  parameter which increases in 

value up to 4.0kbar and decreases upon an application of further pressure. However, 

the X parameter does not return to the ambient pressure value as with the values of a 

and c, rather it seems to remain at a slightly higher value. The change in the magnetic 

behaviour of the system can thus be related to the change in the structural parameters.

The origin of this bizarre compressibility may be related to a pressure induced phase 

transition. At ambient pressure CsFeBrg adopts the highest possible symmetry space 

group: Pbg/mmc and no indications of a phase change have been observed thus far 

from either powder or single crystal diffraction data at ambient pressure. The trend of 

the data seen in Figure 125 above 3.0kbar indicates a non-physical effect. Under 

applied pressure the volume of the unit cell should not increase relative to the unit cell 

volume of the material below 3.0kbar. No evidence of a structural change is observed 

from the powder diffraction data for P > 3.0kbar. Experimental conditions were such 

that the pressure was seen to remain stable at the chosen value during the 

measurements thus we can rule out a pressure ‘leak’. For T = 5K and P > 3.0kbar the 

powder sample was encased in solid Helium, thus the pressure should be 

homogeneous throughout the sample. In the single crystal inelastic experiments no 

physical changes to the sample were observed, i.e. shearing of the crystal whilst under 

pressure etc. If this would have happened one could think of a A Ac type of phase 

transition as a possible cause of the behaviour. It is clear that these points need further 

investigation.
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5.3 CsFeBra (V2)

As was mentioned in Chapter 2.3.1, studies on the singlet ground state 

antiferromagnet CsFeBr] have mainly concentrated on the magnetic excitations of the 

system. In this section further elastic and inelastic neutron scattering studies on 

CsFeBr] in an applied field at very low temperature (<1K) are presented. The 

experiments were performed on the TAS, V2 (FLEX), at the HMI, Berlin. In 

conjunction with a dilution insert and the Horizontal Magnet HM I, temperatures 

below lOOmK and fields above 5T could be reached simultaneously, allowing us to 

extend the map of the magnetic phase diagram of CsFeBr].

Chapter 5.3.1 presents measurements on the magnetic phase boundary of the system 

in the mK temperature range and Chapter 5.3.2 deals with measurements carried out 

on the magnetic excitations of the system with Huc upto 6.0T at T = lOOmK.

Due to technical difficulties it was necessary to perform the experiment during two 

separate periods. The first period was used not only to ascertain the critical exponent 

P of the system at mK temperature and high field, but also to establish what measures 

needed to be undertaken in order to perform the experiment successfully. Several 

aspects of the first experiment were cited as cause for concern. It was noted that the 

high magnetic field emanating from the magnet HMI, caused a failure of the 

magnetic switches which controlled the pneumatic shielding surrounding the sample. 

In order to overcome this, a temporary fix was administered by taping small 

individual magnets to each switch to override this effect. It was also noted that the 

large amount of cabling, vacuum tubing, etc. attached to the dilution stick caused it to 

rotate within the magnet, thus ruining the alignment of the crystal. This was 

temporarily overcome with the use of the crane in the guide hall to lift the cabling into 

a position directly above the stick, this minimised rotational stress on the stick. Both 

of these problems had a permanent fix by the time of the second experiment. Due to a 

small heat leak we were unable to attain temperatures below lOOmK during the first 

experiment, this was again remedied by the time of the second experiment.

180



5 Singlet Groundstate Compounds

5.3.1 Elastic Scattering.

Each experiment proceeded in the same manner whereby an approximately Icm^ 

single crystal (mosaic width 0.3°), was mounted and aligned with the [001] - [110] 

plane in the experimental field. This allowed access to the magnetic Bragg points (1/3 

1/3 1), (2/3 2/3 1) etc. In both experiments constant-Q scans were performed across 

the magnetic Bragg peak (-2/3 -2/3 -1). This was the magnetic peak calculated to be 

on the focussed side of the analyzer and also within the available ‘window’ of 

scattering of the magnet. The phase boundary at the onset of magnetic ordering was 

established by scanning the peak at fixed temperature and varying the field. These 

‘sublattice magnetisation’ scans were taken for T = lOOmK, 350mK, 6(X)mK and 

900mK for the first experiment and for T = 50mK and 350mK for the second 

experiment. The resultant phase boundary is shown below.
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Figure 126: Magnetic phase boundary for the singlet groundstate 

antiferromagnet CsFeBr^ at millikelvin temperatures (Line is a guide to the eye 

only).

It can be seen from Figure 126 that the first and second experiment give different 

phase transition boundaries. It is assumed that this difference is caused by the 

misalignment of the c-axis of crystal with respect to I he horizontal magnetic field. It is
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estimated that the c-axis of the sample was rotated by approximately 4° to the 

direction of field in the second experiment, consequently altering the phase boundary.

Of course it is not only the phase boundary which can be determined by ‘sublattice 

magnetisation’ measurements, the primary use of these measurements is the 

determination of the critical exponent p. The measurements and calculated values of p 

are given below.

Field  (T )

•  l(K)mK

I 7,5

c  6-5

2.0 1.5

ln ((H -H  )/H. )

Figure 127: Sublattice magnetisation scan for the SGS system CsFeBr^ taken at 
lOOmK during the first experiment.
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Figure 128: Suhlattice magnetisation scan for the SGS system CsFeBr^ taken at 
350mK during the first experiment.
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Figure 129: Sublattice magnetisation scan for the SGS system CsFeBr^ taken at 
600mK during the first experiment.
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Figure 130: Suhlattice magnetisation scan for the SGS system CsFeBr^ taken at 
900mK during the first experiment.

As can be seen from the above, the obtained data is of rather poor quality and 

although it was deemed of sufficient quality to determine the critical exponent P, it 

was decided to verify these results during the second experiment. Thus further 

sublattice magnetisation scans were performed during the second experiment at T = 

50mK and 350mK. The results of which can be seen below.
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Figure 131: Sublattice magnetisation scans for the SGS system CsFeBr^ taken at 

millikelvin temperatures taken during the second experiment.

The data obtained from the second experiment are of better quality and go some way 

to validating the results obtained during the first experiment. It can be seen that the 

resulting values of the critical exponent are slightly lower than previously, it is 

speculated that this is due to the fact that the crystal was misaligned by 4° during the 

second experiment. A similar pattern can be seen for measurements of the phase 

boundary in Figure 126.

Collating the results of the value of the critical exponent (3 from the first and second 

experiments produces some interesting results, as can be seen below.
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Figure 132: Value of the critical exponent (3 in the TLA system CsFeBr^ at 

millikelvin temperatures.

These results suggest that as one moves along the phase boundary the critical 

exponent changes value. The exponent changes from p = 0.34(1) at T = lOOmK, via a 

value of p = 0.36(2) at T = 350mK to p = 0.25(2) at T = 900mK. Previous

measurements by Schmid have shown that p = 0.25 at T = 1.6K 160

It is well known that the path followed in approaching a critical point may influence 

the obtained value of the critical exponent and reduce it to an effective exponent. In 

the case of this type of phase diagram only the pathway at T = OK with increasing //, 

will give a valid critical exponent. Therefore an unambiguous interpretation of the 

values of p at the different T and H  cannot be given. We attempted to establish the 

possible difference in pathway by running a T dependent scan at fixed H. However, 

this proved ineffective due to the small induced moment and the large amount of 

critical scattering present just above Tn. It has to be stated that the critical exponents, 

p, y, V quoted by Schmid for CsFeBr^ at T = 1.6K do vary and are not consistent with 

the M = 2 chiral system. As in the case of CsNiCl^ (Chapter 4.2.1), the application of 

an applied magnetic field under an oblique angle reduces the value of the ‘effective’ 

exponent.
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5.3.2 Inelastic Scattering.

During the second experiment we also performed full magnon dispersion curve 

mapping for the system at base temperature (50mK) at various fields. Scans were 

performed along [hh\] and [2/3 2/3 /] for B = 1.5T, 3.0T and 6.0T. Typical scans at 

3T and 6T are shown below for visualisation purposes.
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Figure 133: Typical scans performed on CsFeBr^ at T = 50mK and B = 3T and 

6 T.

The resultant dispersion curves of the [2/3 2/3 /] and [h h 0] directions are given 

below. It can be seen that the original single modes have been split by the application 

of magnetic field along the z -  axis, known as Zeeman splitting. The dispersion of the

split modes have been derived from equation (10) 

to that shown in Chapter 5.1.1.

1 57 ,1 6 1 , giving us an equation similar
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h a (q )  = { D I D -  2J(q) • R(T, H I  j] + f ( q )  ■ (gHemMf I

-gflBfnl H I  + [2J„ - J ( q ) ] M J  (59)

where J(q) = 4 [ J  cos (jrqc) + J" cos(27tqc) + J ’y(27tq±) ]

and y(2Ttq±) = [2J cos (7tqy)[ cos(27tqx) + cos(2Ttqy) ] -  1 }

R(T, is a renormalisation factor first introduced by Lindgârd*^^ in order to

account for the temperature renormalisation and later calculated by Knop and 

Lindgârd*^^’̂ ^̂  for the field dependence. It is equal to the negative of the quadrupole 

moment. If one neglects the dispersion of the magnetic excitations in a SGS system, R 

is given by

I k  =

where ri\ is the occupation factor of the ground state m = 0 , and rij and « 3  are the 

occupation factors for the Zeeman split states m = - l , m = +l  respectively. We can see 

that as the external field increases, so R will decrease. This is due to the asymmetric 

splitting of the m = ± 1  states, such that, « 2  will increase quicker than « 3  will decrease. 

M z is the induced magnetic moment, which is negligible in the present case.
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Figure 134: Magnetic excitations under external magnetic field for B = 1.5 Tesla 

and B = 3.0 Tesla. The solid curves are calculated using (59) and are explained 

below, the dotted line represents magnetic dispersion at 0  field.

Below in Figure 135a we present the Zeeman splitting at various points in reciprocal 

space. It can be seen that the splitting is independent of q, it is not so easy to discern 

from the graph below but the splitting is also asymmetric, with the higher frequency 

mode splitting more quickly than the lower one. At each field we determined the 

Zeeman splitting by taking the average over the available data, see Figure 134. The 

field dependence is linear with field and the slope of Figure 135b gives a value of the 

Zeeman splitting.

^ THz
V+ -  V. =  A  V  Zeeman =  0 . 0 7 1  ±  0 . 0 0 1

Tesla
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Figure 135: Zeeman splitting of the m = ±1 modes in an external field.

From this slope one can calculate the Lande factor g, of the excited state by using the 

relation,

Vl ZlV Zeem an = g ' ĝ Btn • H

Thus we can calculate the value of g to be, 

g — 2-5,

This is in good agreement with the value obtained by Domer et for CsFeBr^ of g 

= 2.4 and is the same value as that obtained by Steiner et alJ^, of g = 2.5. for the SGS 

system CsFeCL.

Together with this value of the Lande factor, we took the values of the 

renormalisation factor at various field derived in ref. 81 and the determined values of 

D, J  and J \  from work by Domer, Visser et ( D = 0.62(1) THz, J  = -0.066(3) 

THz and 7' = -0.0067(5) THz). Using these values we compared the calculated and 

observed magnetic dispersion curves. The agreement between observed and 

calculated is very good as can be seen in Figure 134.

However, we see that at the onset of magnetic order at around B = 3.0T the situation 

changes and the lower branch splits into three separate branches. This splitting is
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further enhanced at 5  = 6.0T and as can be seen below, the theory of Lindgârd and 

Villain no longer accurately describes the measured dispersion curves in the ordered 

phase.

J « 6.0 T

® 0.5

(2/3 2/3 I] [hhO]

Figure 136: M agnetic excitations under external m agnetic field for B = 6.0 Tesla. 
The solid curves are  calculated using (59) and the dotted line represents the 
calculated magnetic dispersion at 0 field.

As can be seen from the above, the magnetic excitations at 5  = 6.0T could only be 

obtained in the vicinity to the Q(2/3 2/3 0) point, due to vanishing excitation intensity. 

This is due, as has been calculated by Dorner and Visser^', to the large reduction in 

the dynamical structure factor with increasing field. They found that the dynamical 

structure factor was reduced by a factor of 3 at 5  = 5T compared to that at OT for the 

Q (l/3  1/3 0) point.

In principle one should observe six excitation branches due to the six sublattices of 

the antiferromagnetic 120° type triangular structure. However, the induced moment 

character of CsFeBr^ complicates this picture. In the pure singlet ground state case 

one would observe only one excitation from the singlet ground state to the excited 

doublet state. In the case of a magnetically ordered induced moment system with the 

magnetic moments in the basal plane the internal exchange field splits the doublet 

state, as is shown in the schematic below.
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Figure 137: Effect of the application of magnetic field parallel and perpendicular 
to the c-axis in CsFeBra.

The magnetic excitation can then be understood on the basis of the pure exciton 

picture. Thus one should observe three single-ion excitation, those being, coi: 0 —> 1, 

(%: 0 -1, (O3 : 1 —> -1. This, in principle, gives rise to eighteen branches for a six

sublattice system. However, the transition, (O3, will be of very small energy ~ 

0.01 THz, and is unable be resolved easily with neutron scattering measurements. The 

six highest order branches are to be observed around 0.8-l.OTHz and the remaining 

branches will occur between these two extremes at around 0.125-0.5THz. It is these 

branches which can be seen in the figures above.

An alternative approach to the understanding of the magnetic excitations in singlet 

ground state and induced moment systems, can be obtained via the dynamical 

correlated effective field approach by Suzuki^^'^^. Suzuki and Makino^^ have applied 

DCEFA theory to the SGS system CsFeCb accurately modelling the magnetic 

excitations of the system with no applied external field, A brief outline of the DCEFA 

theory applied is given below.

The magnetic properties of the AFeXs systems at low temperature are well described 

by the Hamiltonian:

(61)

(ÿ )
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where the first term represents the easy plane type anisotropy energy and and j "  

denote the nearest neighbour intrachain interaction and and J"  the nearest 

neighbour intrachain interaction. The essence of DECFA theory lies in the 

approximation of the spin product 5,5/ with:

S,[(5,.) + a(s, - (S,))J+ S . [{S,) + «(5, - (S j))J (62)

where a  is the correlation parameter and (5, ) denotes the spontaneous spin moment 

or the spin moment induced by a magnetic field. If we consider the paramagnetic 

phase with no external field, then (5,) vanishes and the effective single ion 

Hamiltonian for equation 61 can be expressed as:

with,

E = D + a { j ^ - j ' ^ )  (64)

where (y = _L, //) represents the ^ = 0 component of the Fourier transform 7 J of

the exchange integral. In DCEFA the dynamical susceptibility y C ( O )  of the 

paramagnetic phase is expressed in the following form:

X*-(q,(0)= (65)
(0  - (o ;

where cûq represents the energy of the magnetic excitation and is given by the 

expression:

( 0 = [ E ^ - A E p { j ^ - a J ^ T  (66)
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The Fourier transform of the exchange integral takes the maximum value at ^ =

K, where K  is the wave vector of the JfiT-point in the Brillouin zone. Thus the magnon 

energy is at a minimum value dXq=K.

If we consider an applied field H  // z, the Hamiltonian is expressed in the form:

= (67)
i

where is the Hamiltonian for zero external field given as equation 61. In a similar 

manner the effective single ion Hamiltonian for equation 67 can be expressed as:

= E S l - B S „  (6 8 )

with

B = g " n , H  + 2 J " { l - a X s , )  (69)

where (5^) denotes the uniform spin moment induced by the applied field. The

dynamic susceptibility co) is expressed as a function of a, Jq and the single ion 

susceptibilities. The static susceptibility 0) will diverge at a critical temperature 

T n , between Hci and Hci and the system will order in a conical spin structure.

However, the approach above has not been extended to the prediction of the 

dispersion of the magnetic excitations in the presence of a magnetic field. Therefore, 

unfortunately, at present only a qualitative interpretation of our data can be given and 

a comparison with the magnetic excitations of the induced moment system RbFeBrs 

made.

The magnetic excitations in the induced moment system RbFeBrg have been studied 

by means of inelastic neutron scattering by Harrison and V i s s e r ^ The system 

undergoes a structural phase transition at T = 108K to a distorted hexagonal structure 

(isostructural to the RT phase of KNiCb), which relieves the magnetic frustration of
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the 1 2 0 ° type magnetic structure due to the introduction of two different intraplanar 

superexchange constants, see for example Figure 17. The transition is traceable 

through the lifting of the degeneracy of several branches of the magnetic excitations 

in the fully ordered magnetic phase the system. The observed magnons and associated 

calculated dispersion curves for RbFeBrs at T = 4.5K are reproduced below. The 

calculated model is based on the 1 2 0 ° type magnetic ordering.
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Figure 138; Magnetic Dispersion curve of (a) [2/3 2/3 /] and (b) [h h 1] of 
RbFeBra, the lines are best fit to DCEFA theory’'*.

Visser and H arriso n ^a lso  performed a cold, inelastic neutron scattering experiment 

on the sister compound RbFeBrS. Measurements were made on the magnetic 

excitations of the system at T = 1.35K and the lifting of the degeneracy of certain 

branches is obviously visible in the reproduced data below. In this system, several 

branches which have zero structure factor for the 1 2 0 ° type magnetic structure show 

intensity for the modified 1 2 0 ° structure.
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Figure 139: Magnetic Dispersion curves for RbFeBrg, lines are best fit to DECFA 
theory.

In our present experiment for CsFeBrg at T = 60mK and H  = 3.0T, one observes four 

branches around the magnetic Bragg point Q(2/3 2/3 1) for E  < O.lSTHz. As one 

moves away from this point along the [2/3 2/3 /] and [ h h \ ]  directions, the branches 

merge quite quickly. In comparison with the calculations for the pure 120° type 

magnetic structure we observe the same intensity behaviour for the magnetic 

excitations as a function of Q at / /  = 3.0T. However, we observe an extra branch at 

the soft mode point Q(2/3 2/3 1), detecting four, rather than three, branches. This may 

be due to the applied field inducing a conical magnetic structure which possibly 

induces symmetry breaking in the system.
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Figure 140: Possible magnon branches of SGS system CsFeBrg at T = 60mK and 
H  = 6.0T.

At H = 6.0T, a similar picture emerges, however, the intensity of the magnetic 

excitations drops considerably as one moves along the [h h \] direction towards the 

zone boundary. Although the single crystal used for the experiment was large 

(~lcm'^), it may be that the use of a larger crystal would allow us to extend the 

measurements to larger Q. The energy of the magnetic excitations at 6.0T are slightly 

more displaced than those at 3.0T, as one would expect for a larger applied field.

From this experiment one can conclude that the magnetic field induced moment phase 

with a ‘conical’ 120° type magnetic structure behaves in a similar manner to that 

observed for induced moment systems such as RbFeCl^ and RbFeBr^. Both the 

intensity and dispersion of the magnetic excitations can be explained by the DCEFA 

approach. Further development of this theory is required to accommodate the applied 

magnetic field and a conical 120° type magnetic structure.
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6 Conclusions, Outlook

In this thesis a series of experiments have been presented which investigate:

• The possible occurrence of chiral magnetic ordering in the triangular ABX3 

antiferromagnets.

•  The magnetic excitations in quasi one-dimensional quantum S = I spin systems.

Since the conjecture by Kawamura that the order parameter of frustrated stacked 

triangular lattice antiferromagnets includes, along with the ordinary spin variable ,

a spin chirality C = [5 ^ 1  x 5 ^ 2  J» ^ relevant variable that indicates whether the helically 

polarised spin structure is a right handed or left handed one, giving rise to new 

universality classes. This conjecture has been a hotly debated topic.

Experimental investigations to verify this conjecture have been undertaken with 

specific heat and neutron scattering techniques. The main body of experimental 

evidence has been provided by the hexagonal ABX3 halides and the BX2  di-halides. 

For CsMnBr3 the measured critical exponents a , p, y, v compare well to the predicted 

new chiral universality class of Kawamura. The spinflop phase of CsNiCl3 also has a 

triangular magnetic structure. Specific heat measurements indicate that this phase 

displays chiral critical behaviour also.

We have attempted to obtain further experimental evidence for chiral critical ordering 

by trying to verify Plumer’s and Kawamura’s prediction for the occurrence of a 

magnetoelectric effect in the frustrated triangular lattice and the occurrence of chiral 

critical scattering in the deformed triangular lattices.

A proof of the existence of a magnetoelectric effect in CsMnBr3 has been obtained for 

elastic neutron scattering experiments. The magnetic order parameter, p, indicated 

that for a sufficiently high electric field, applied parallel to the [ 1 1 0 ] direction.
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magnetoelectric coupling occurs and that an Ising like magnetic phase is formed. The 

diffuse magnetic scattering is also strongly affected, indicating that the formation of 

the different types of chiral domains are influenced in the presence of an electric field. 

The magnetic phase diagram of CsMnBrs in the presence of an applied electric field is 

expected to remain identical to the E  = 0 case. However, measurements suggest that 

the boundary of the transition to spinflop phase moves to higher temperatures.

For the weak Ising triangular antiferromagnet, a chiral critical behaviour has been 

predicted for the spinflop phase. Specific heat data indicates that a n  = 3 chiral phase 

is present at the critical temperature evolving into a n = 2 chiral phase. Neutron 

scattering experiments in applied magnetic field H  // c, show a similar behaviour for 

the magnetic order parameter. It has also been demonstrated that the order parameter 

is strongly influenced by the direction of the magnetic field. A similar effect has been 

observed for the induced moment phase of CsFeBrg. Chiral like magnetic order 

parameters have also been found for the weak Ising triangular antiferromagnets 

CsNiCl] and RbNiCls. In these systems the partially ordered phase which is formed 

between Tni -  Tn2  has an xy component remaining in it. Evidence have been found 

that indicates that the parameters D, J, and J' in RbNiCb may also influence the chiral 

class selection or provide a mechanism for crossover between two classes.

Evidence has also been obtained for deformed triangular lattice structures which 

indicates that the 1 2 0 ° type or helical magnetic symmetry must be preserved before 

chiral ordering occurs. Thus the modified structures of the a  and P-phase of KNiCls 

are non-chiral, whereas, the helical magnetic structure in TlFeCls gives a n  = 3 chiral 

order parameter.

Further evidence for chiral magnetic order has recently been obtained from polarised 

neutron scattering experiments. The predicted average chiral critical exponents pc and 

Yc have been obtained from the chiral critical crossover exponent, (j>c = pc + Yc- The 

results were accomplished by investigation of the fluctuations of the chirality above

Tn. Because the chirality vector C is expressed through the spin pairs at the different 

lattice sites, the chiral fluctuations are related to four spin correlations and their direct 

study is impossible. Thus, M a le y e v p ro p o sed  the study of the projection of the
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chiral fluctuation on the field-induced magnetisation, also called the Dynamical 

Chirality (DC). The DC results in a polarisation-dependant, completely inelastic part 

of the neutron scattering cross-section, which may be defined as*^  ̂'^ :̂

) ^ - P „ | f ( ô ) i ^ [ l - e x p [ - « / r r x

I q h J lmSXQ,(o)+{hQtQelch) lmSM(o)]

dcodQ. (70)

where Q,h,c  are the unit vectors along the momentum transfer, external field and 

hexagonal axis respectively. For an isotropic Heisenberg system S2 = 0,while for an 

XY  system such as CsMnBr^, Sj = 0. This results in a polarisation dependent, energy 

spectrum of the neutron, (O, from which (t)̂  can be deduced. A detailed 

description of this theory can be found in reference 168. Similarly the value of can 

be obtained independently from the polarisation dependence of the sublattice 

magnetisation in the presence of unequal chiral domain population for CsMnBr^.
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Figure 141: Polarisation dependence of the sublattice magnetisation of 
CsMnBrj***.

Presently, the weight of experimental evidence supports the existence of chiral 

magnetic ordering. However, a further generalisation is required with test experiments 

on model materials with different magnetic anisotropies and crystal classes
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(structures). Specific heat and polarised neutron scattering experiments will play a 

vital role in these studies.

Further evidence of the magnetoelectric effect in different ABX3 halides is required. 

Direct evidence could be achieved with specific heat measurements on the 

magnetoelectric effect in CsMnBra.A theoretical evaluation of the form of the 

magnetic phase diagram of the system in the presence of an electric field should be 

carried out. In order to further enhance our knowledge on the different sub-groups 

within the ABX3 family, it will be necessary to carry out neutron diffraction studies 

on the small easy plane anisotropy system (D < 37'). These studies should also be 

carried out on the deformed triangular lattice material such as RbMnBr3 , RbFeBr3 , 

KVCI3 and KNiCl3 .

A further investigation of the VX2  compounds, followed by the hexagonal ABO3 and 

ABO2  oxide family may enhance our knowledge of chiral ordering.

As early as 1969 the hexagonal ABX3 perovskites attracted attention as model 

magnetic materials for one-dimensional magnetism. Since the spin value of the first 

row transition metals is spread from the quantum S  = 1/2 to the classical S = 5/2 

state, the effects of crossover from the quantum to classical on the 1-D spin chains can 

be analysed as well as the influence of 3D magnetic ordering on such systems. 

Haldane’s conjecture that integer spin chains would exhibit different behaviour to half 

integer chains opened up a wide range of experimental routes for these systems. 

However, as is normal, no ideal physical models could be synthesised to test the 

theoretical predictions, in this case one looks for isomorphous materials with which to 

test the conjectures. In this thesis, an unusual route has been taken to vary the 

structural parameters and thus vary the magnetic superexchange pathways and single 

ion anisotropy. Structural deformations have been induced in several of the 5 = 1 

quasi one-dimensional ABX3 materials by means of applied hydrostatic pressure.

The SGS materials CsFeCl3 and CsFeBr3 were investigated by means of inelastic 

neutron scattering techniques, due to the singlet ground state properties of the 

materials no magnetic order is observable. However, a sufficiently large, externally 

applied, magnetic field // c-axis will produce an induced magnetic moment and long
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range order will occur in the system. A similar process occurs upon the application of 

a symmetry breaking pressure // a or if the anisotropy and superexchange parameters 

are varied sufficiently i.e. by structural deformation. The magnetostructural studies 

elaborated upon in Chapter 5 set out to establish the compressibility behaviour of the 

physical structures and the corresponding magnetic dispersion curves of the singlet 

groundstate materials in order to obtain the anisotropy and exchange parameters under 

applied hydrostatic pressure. Although it is seen that hydrostatic pressure induces an 

anisotropic compression, these systems are not sufficiently deformed to induce 

magnetic ordering. The changes in crystal structure have been related to the change in 

the magnetic parameters. The studies contained in Chapter 5, give for the first time a 

basis for a rigorous magnetostructural correlation and also a foundation for further 

theoretical calculations of the superexchange parameters.

The determination of the magnetic excitations of CsFeBrg in higher magnetic fields 

than previous reported showed that, for T = 50mK and H  = 3.0-6.0T, the features of 

the magnetic excitations resembled those of the induced moments systems e.g. 

RbFeCls. This gives a basis for extending the present DCEFA theory to the 

calculation of the magnetic excitations in field induced systems and distorted- 

triangular induced moment magnets. Verification of subsequent theories could be 

obtained by studying CsFeCb and CsFeBrg in an applied magnetic field both // and _L 

to c. Further magnetic characterisation of TlFeClg under applied pressure would also 

provide insight into the ordering process. Other candidates which would prove useful 

to investigate include TlFeBrg, ND4 FeCl2 , NÜ4 FeBr2 , CsFelg and TMFeClg.

A similar study of the Haldane, 5 = 1  systems, CsNiCla and RbNiClg was started 

during the same period. The systems have been investigated previously at ambient 

pressure and have been shown to exhibit characteristics commensurate with the 

Haldane conjecture. Comparable studies have been undertaken by the author for the 

systems under a hydrostatic pressure environment in order to obtain the values of the 

exchange parameters and single ion anisotropies and ‘create’ extra Haldane systems. 

This was done in order to test the conjecture in materials with modified values of D, J  

and J'. This undertaking could not be completed within the allotted time as no beam 

time was forthcoming for the comparative structural study of the materials. From the
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inelastic data, acquired at 5.0kbar applied hydrostatic pressure, we see that the 

changes in the excitation spectrum are less pronounced than in the CsFeXg materials. 

This is most probably due to the fact that the ANiClg compounds have smaller rs/rx 

ratios and are less compressible. Nevertheless differences in the longitudinal mode 

energies are observable. A fiill interpretation and magnetostructural correlation or 

these materials awaits experimental completion.

The influence of a change in the sign of the single ion anisotropy, D, on the gap 

behaviour of the ANiClg materials has been obtained for a pilot experiment on 

KNiCls. The magnetic excitations have been measured in the p and y-phases at the 

softmode point and show that a system with positive D  also possesses a gap. 

Unfortunately there are no theoretical predictions for such systems and a detailed 

analysis of the present data would require the introduction of the correct 

crystallographic structure.

In the near future theoretical studies are required to include different types of 

anisotropy in the calculation of the 1-D properties of a 5 = 1 chain system. 

Experimental realisation of different Z), J  and J' models can be obtained by looking at 

a vast number of Ni coordination complexes and further study of the A B X 3  halides.
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Appendix A

This section describes inelastic neutron scattering experiments performed on some 

ANiClg compounds at ambient and applied hydrostatic pressure conditions. 

Measurements were made on the distorted triangular lattice antiferromagnet KNiClg 

and the easy axis anisotropy stacked triangular lattice systems CsNiCls and RbNiClg. 

All experiments were performed using the TAS, 4F1 at the LLB, Saclay, and in the 

case of the CsNiClg and RbNiCb samples, in conjunction with the ‘in-house’ He- 

pressure cell. Further information on these can be found in Chapters 3.2.1.3 and 3.3.3, 

respectively. Using this setup enabled us to apply hydrostatic pressures of up to P  = 

5.0kbar at a temperature P < 2K to the systems. The data are presented in this 

appendix as no treatment of the dispersion curves has yet been carried out and thus 

the values of the single ion anisotropy D, and the inter and intrachain energies (7 and 

J'  respectively) are not yet available. In all cases the data is incomplete and detailed 

information about the nuclear and magnetic structure is lacking. No beamtime has 

been made available thus far to carry out these studies. Unfortunately the He pressure 

cell at the LLB, Saclay fractured and had to be fixed thus preventing further study of 

these systems under applied pressure environments.

The interest in the ANiClg compounds is still substantial more than 15 years after 

Haldane argued that the integer spin Heisenberg antiferromagnets have an unusual 

excitation spectrum; they should exhibit an excitation gap above a singlet ground 

state. Evidence for such a gap has been presented by Buyers et a l  for CsNiCU^^ and 

RbNiCls^^. Neutron scattering experiments at T s  2Tn indicate the existence of a gap 

in the pure one-dimensional case. In the ordered phase below Tn = 4.8K, the 

anomalous behaviour is also observed. The Goldstone modes predicted by spin wave 

theory were observed but another excitation branch with a finite gap was detected. 

Affleck and Wellmann^* presented a thorough discussion of the theory for the 

triangular antiferromagnets CsNiCls and RbNiClg. Since only a few systems are 

available for experimental work the route of applied pressure has been followed to 

induce changes in the interactions of D, J  and 7' in the systems. The influence of the 

change of the anisotropy in such systems has yet to be investigated. The distorted
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lattice compound KNiCh has X Y  anisotropy and Affleck and Wellmann predict that 

such a system should have a gap in its excitation spectrum at the soft mode point 

Q (l/3 1/3 1). Therefore it is necessary to study KNiClg in order to resolve this point. 

However, the details of the magnetic structure of the p and y-phases of KNiCls may 

lead to complications.

Section A-1 presents magnetic excitation measurements on two different structural 

phases of KNiCla and provides a rationalisation for the differences in the form of the 

magnon dispersion curves. In Section A-2 the magnon dispersion curves of CsNiClg 

under applied hydrostatic pressure conditions are presented and comparisons are made 

between this and ambient pressure data. Finally in Section A-3 data are given showing 

the magnon dispersion curve of the RbNiClg, again under applied hydrostatic pressure 

conditions and comparison is made to ambient pressure data.

Appendix A-1.

As was mentioned in Chapter 4.5, KNiClg is a distorted triangular lattice 

antiferromagnet with two low temperature magnetic phases first reported on by 

Petrenko et alJ^. In the P-phase of KNiCls, the magnetic moments orders with a 120° 

type magnetic structure at Tn = 12.5K, while the y-phase shows a rearranged nuclear 

structure with an incommensurate magnetic structure with Tn = 8 .6 K. Measurements 

were undertaken on the magnon dispersion curves of the P and y-phases in order to 

ascertain to what extent the form of the dispersion curves varied between the phases. 

These measurements were carried out in conjunction with the critical exponent 

measurements elaborated upon in Chapter 4.5, thus experimental conditions will be 

identical to those and the reader is referred to these sections for more detailed 

information.

For both the P and y-phase samples measurements were carried out along the [0 0 /] 

and the [1/3 1/3 /] directions, as well as the perpendicular direction [hh  1]. For the y- 

phase sample measurements were taken at both T = 8.75K and T =2.00K in order to 

observe any softening of the modes with decreasing temperature. The resultant 

magnon dispersion curves for the different phases are displayed below.
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Figure 142: Magnetic dispersion of the P-phase of KNiCfi at amhient pressure 
along the [0 0 /], [1/3 1/3 /] and [ h h l ]  directions, lines are a guide to the eye only.
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Figure 143: Magnetic dispersion of the y-phase of KNiCIa at ambient pressure 
along the [0 0 /], [1/3 1/3 /] and [h h 1] directions, lines are a guide to the eye only.

Comparing the magnon dispersion curves of the two phases several features are 

immediately obvious. In the P-phase, between (0 0 1) ^  (0 0 1.15), it is seen that 

there are two branches to the upper mode of the [0 0 /] curve. This is not apparent in 

the y-phase where only one mode may be observed. For both phases, the [0 0 /] and 

[1/3 1/3 /] modes converge towards a value of £  -  1.5THz at the zone boundary. 

However there is a difference in the gap between the energy of the [0 0 1] and [1/3 1/3 

1] excitations for the different phases, this suggests that the P and y-phase have 

different values of J'. Along the perpendicular direction the excitation energy of zone
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boundary point [0 0 1] in the y-phase {E ~ 0.76THz) is higher than that in the |3-phase 

{E ~ 0.69THz) yet lower at the boundary point [ ^  V2 1], £  ~ 0.40THz for the y-phase 

compared i o E ~  0.52THz for the p-phase.

Due to the incommensurate structure of the y-phase we observed that the minimum of 

the dispersion curve occurs around (0.31 0.31 1) as opposed to the expected value of 

(1/3 1/3 1) for the 120° type order present in the P-phase. In Figure 143 a fit according 

to Petrenko’s spin wave theory is included for the [1/3 1/3 /] and [0 0 /] directions.

Appendix A-2.

As has been mentioned in Chapter 2.2.1, CsNiClg orders with a slightly distorted 120° 

type structure, where the weak Ising anisotropy pulls the spins out of the basal plane 

by an angle 0. In a classical system this angle is directly related to the value of D /  6 / '  

(equation 11), therefore by modifying the values of D  and J'  one will deform the spin 

structure of the system. As was shown for the SGS compounds CsFeClg and CsFeBrs, 

earlier in this thesis, this modification may be achieved by the application of a 

hydrostatic pressure to the system. The application of pressure may also induce 

symmetry breaking in the system. Although a substantial amount of experimental 

work has been performed on CsNiCb, very little has been done to characterise the 

distorted system. Recent heat capacity measurements done on another Haldane gap 

material NENP^^ has shown an increasing gap mode with increasing applied pressure. 

Thus it would be of interest to observe the magnon dispersion curve and gap mode of 

CsNiCl] under applied hydrostatic pressure conditions to see if the same trend exists.
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Figure 144; Comparison of the magnon dispersion curves of CsNiClg at ambient 
pressure and S.Okbar applied hydrostatic pressure, line is best fit to ambient 
data.

No dramatic changes in the dispersion curve are visible in Figure 144, however, the 

change in excitation energies is evident whereby the excitations have repositioned to a 

higher energy due to the applied pressure environment, this normally leads to a larger 

value of the single ion anisotropy parameter, D, J and J'.

Appendix A-3

Measurements were carried out on the similar system RbNiCl^, for similar reasons as 

those outlined in A-2. The magnon dispersion curves are shown below with ambient 

pressure data for comparison purposes.
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Figure 145: Comparison of the magnon dispersion curves of RbNiCf^ at ambient 
pressure and S.Okbar applied hydrostatic pressure, line is best fit to ambient 
data with the theory of Affleck and W ellmann^\

As with CsNiCl3 , there is no drastic change in the magnon dispersion curve of 

RbNiCl3 under applied hydrostatic conditions. The energies of the excitation again 

move to higher energy due to physical deformation of the crystal. In Chapter 5 it was 

demonstrated that the applied hydrostatic pressure induces only small changes in the 

structure of the CsFeX3 systems. A similar conclusion can already be made for our 

present experimental data. Nuclear and magnetic structure determination under 

applied pressure conditions are required to obtain the full magnetostructural 

correlation of these two systems an will aid to a better understanding of the Haldane 

gap phenomena in the quasi one-dimensional triangular lattice antiferromagnets.
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