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Abstract

Abstract

Most ABX3; materials (where A is a 1A group cation, B is a divalent first row
transition metal cation and X is a halide ion) possess a hexagonal perovskite structure
where chains of face sharing BX¢ octahedra align along the ¢ — axis separated by the
A ions. This results in an interchain separation that is much larger than the intrachain
separation leading to a quasi one-dimensional magnetic behaviour at low temperature.
The magnetic character of the compounds is strongly dependent on the nature and
strength of the superexchange pathways and the environment around the B* ion,
manipulation of which leads to new and interesting physics. The structural properties
of the ABX; materials allow them to be used as model systems for a variety of
conjectures. The chain like structure allows compounds such as CsNiCl; and RbNiCl;
to be used as model systems for the Haldane conjecture, whilst the triangular
arrangement of the spins on the B>* ions allows compounds such as CsMnBr; to be

used as model systems for the Chiral Universality class conjecture of Kawamura.

This thesis is concerned with the investigation of the crystallographic and magnetic
properties of some the ABXj; family of compounds by means of neutron scattering;
specifically to observe the effects of extreme sample environment on the systems,
such as applied hydrostatic pressure, applied magnetic and electric field etc.
Magnetostructural correlations have been made for CsFeCls and CsFeBr; on the basis
of inelastic and powder neutron diffraction studies on the systems under pressure.
Characterisation of the B and y-phase of KNiCl; have been performed using inelastic
neutron diffraction measurements and the magnetic and structural phase diagrams of
TIFeCl; have also been mapped out. The magnetic phase diagram of CsNiCls has
been studied and a proof of the existence of a magnetoelectric effect in CsMnBr; has

been obtained from elastic neutron scattering experiments.
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1 Introduction

1 Introduction

In the last few decades, the study of low-dimensional magnetic materials and
especially their phase transitions and magnetic excitations has increased enormously.
Since the 1975 review by de Jongh and Miedema entitled ‘Experiments on simple
magnetic model systems’l many more materials have been synthesised possessing

magnetic properties which could be described by the model magnetic Hamiltonian:

=3 I(s! S+ S S TS:S; 0

where J denotes the superexchange constant and S, S, and S, are the spatial spin
components. We can distinguish between two types of interaction in the above
Hamiltonian; the ferromagnetic exchange: where J > 0, and the antiferromagnetic
exchange: where J < 0. The form of the interaction depends strongly on the number of
spatial spin components. The fully isotropic case known as the Heisenberg model has
J. = J, = J,. Due to crystal field effects an anisotropy can be introduced,
approximating a system with one or two spatial spin components: known as the Ising

case and the XY case, respectively. As such, one can define a spin dimensionality n:

n=1(D), J.#0,J,, J,=0 Ising system
n = 2(XY), Jo Jy#0,7,=0 XY system
n =3(H). Jo=Jy,=J;#0 Heisenberg system

A full description of each type of system mentioned above is supplied later in Chapter
2.2. In real compounds intermediate systems are formed between those given above.
Since the de Jongh and Miedema review, the research field of magnetic model
systems has grown enormously>>*. The increased understanding of the statistical
physics of the model Hamiltonians aided by increased computational power have
resulted in the discovery of new aspects of low dimensional physics e.g. the magnetic
ordering process in the different types of magnetic lattices and their co-operative
magnetic excitation behaviour’. The development of neutron scattering techniques

and the availability of high flux pulsed neutron sources have also made it possible to
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test and investigate the theoretical predictions by measuring the magnetic cross
section S(Q,co) over an extended part of reciprocal space, as can be seen below, where

the dispersion curve of CSVCI3, (a) and KCuF”*, (b) are given as examples.
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Figure 1: The magnetic dispersion curves for (a) the S=3/2 chain compound
CsVCDb” and (b) the S=1/2 chain compound KCuF™

In order to fully describe the magnetic behaviour of a system one must also take into
account its structural dimensionality (d). Many more materials have been synthesised
in which lattice dimensionality is used to create low dimensional magnetic behaviour,
e.g. the early days of co-ordination chemistry provided many model systems, such as
M"(Htrz)2(CNS)2”. This field has evolved into the area of supramolecular systems
with the aim of tailor made materials”” The discovery of high-Tc¢ superconductivity
led to the reinvestigation of the magnetism of materials with isostructural properties to
those described by de Jongh and Miedema'. The field of research evolved further into
the investigation of the giant magneto resistance ABX3 systems. These properties
were again found in a series of oxide materials already known from the early sixties.
Their crystal structures are directly related to the ABX3 cubic perovskite structure e.g.
Lai-xSrxMn03 (/ = 00), Lai_ xSrxMn04 (/ = 1) and Lai.xSrxMn20v (/ = 2)", where / is
the number of layers. These crystal structures give rise to well organised long range
3D magnetism or short range 2D magnetic order. These phases are known as the

Ruddelsden Popper phases'.
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0 Mn La,Sr

n=1 n=2 n=inf.

Figure 2: Structure of the Lai ~Sr*Mn0O), Lai xSr%Mno + and Lai *Sr*MniO?
compounds”\

More recently, it has been recognised that the magnetic long range order can be
disturbed by the geometry of the crystal lattice. Also, depending on the magnetic
character of the system, one can observe so called magnetic frustration effects'”.
These effects are present in the magnetic ordering of systems crystallising with
magnetic lattices in the form of a triangular lattice with z = 6, for spin = 1,2, where
z is the lattice coordination number of the nearest magnetic neighbours. Similar
effects are found in the Kagome lattice (z = 4) and a tetrahedron network e.g. the

pyrochlore lattice'** {z = 4).

Figure 3: Basic structure of the triangular, kagome and tetragonal arrays.
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The effects of the spin dimensionally, lattice dimensionality and additional frustration
can be directly observed in the critical behaviour around the phase transition
temperature. Phase transitions of the order - disorder type are characterised by an
order parameter that decreases towards zero with increasing temperature. At a first
order phase transition the order parameter changes discontinuously whereas at a
second order phase transition the change in order parameter is continuous upon
approaching the phase transition from the disordered phase. The magnetic
susceptibility du /O6H becomes infinite while the magnetic correlation length, &,

diverges.

In a real system the singularity behaviour of a particular thermodynamic quantity is
limited to a particular region of the phase transition known as the critical region.
Within this critical region the thermodynamic function f(€) often depends on the
reduced temperature &(T — T.) / T. as f(g) = Ae*(1+B€’ + ...), where A and B are
constants and x is the critical exponent. The concept and nature of the different
critical exponents is elaborated upon in Chapter 2. We can say however, that near T,
f(e) can be described by a power law ~ Ag* and the value of x can be obtained from a
‘log — log’ plot of the intensity versus the reduced temperature. The critical exponents

are dependent on the spin dimensionality #, and the system dimensionality d.

Each critical exponent can be expressed as a linear function of two other exponents

16,17

through the laws of scaling ™', the seven scaling relations between the nine critical

exponents are given below:

Y=Y

o=o

v=V'
Y=Q2-nV
a=2(1-B)-y
oa=2-vd

O=d+2-m)/(D-2+1n)

Because the critical exponents are dependent on 7, and d, equivalent relationships can

be found for many dissimilar systems and are often found experimentally to have
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universal values such as the 2D Ising system where B =0.125 and y = 1.75 or the mean
field predictions of B = ¥ and y = 1. These values give us a method of categorising
systems into different universality classes, a topic which is further elaborated on in
Chapter 2. This allows us to predict the behaviour of the system at its phase transition
just armed with knowledge regarding its universality classification. In general, mean
field theory is not valid to describe a phase transition because of the neglect of very
short range fluctuations. It was shown by Ginzberg, that it was generally inadmissible
to neglect fluctuations with wavelength < & The importance of short wavelength
fluctuations assumes greater importance for reduced lattice dimensionality, since the
energy content of the fluctuations will be confined to less degrees of freedom. The
modern renormalisation group theory description of critical phenomena takes the

fluctuations of smaller wavelengths < £ into account'®,

However, it has also been demonstrated by simulation and experimental data that,
depending on the symmetry and spatial geometry within a magnetically ordered
phase, the actual symmetry can be lowered (e.g. by chiral ordering) and new
universality classes may be identified. Thus, it also gives a way to investigate the
changes in critical behaviour by observing the magnetic ordering of materials with
specific geometry, symmetry and electronic state whilst inducing changes in these
systems by applying electric field (E), magnetic field (H) and external pressure (P).
The study of differences in the parameters in the Hamiltonian often results in the
study of a series of isostructural materials where the changes are induced by the
different crystallographic parameters of the materials in question. Similar changes can

be induced by the application of hydrostatic or uniaxial pressure on a system.

The existence of spin chirality is still a hotly debated issue. Its existence has been
investigated in this thesis by studying the ABXj halides using several different routes;
e.g. the application of external parameters such as electric and magnetic field and
hydrostatic pressure using elastic neutron diffraction as a probe. For the weak Ising
compound CsNiCl; we show a transition to chiral ordering by an application of a
magnetic field along the ab plane, (in the spin flop phase the magnetic structure is of
the 120° type)
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Using symmetry arguments Plumer e al.'® suggested that the application of an
electric field could remove the chirality ordering in the ABXj; ternary halides.
Experimental evidence for this magnetoelectric effect is presented for the compound
CsMnBr;. Plumer e al.”° also suggested that a similar chiral ordering should be
observed in the distorted triangular lattice. We have tested this prediction for the
distorted hexagonal perovskite structures of the 7y - phase of TlFeCls, in this case we
introduced applied pressure to the system in order to influence the structural
parameters. A test for the existence of chiral order has also been carried out in the

and 7y - phases of the distorted hexagonal perovskite KNiCls.

Triangular 120° type magnetic ordering is also induced by an applied electric field: H
/I ¢ axis, in the singlet ground state antiferromagnet material CsFeBrs;. The critical
behaviour of the sublattice magnetisation along the phase boundary has been studied

at mK temperatures with applied fields up to 6 Tesla.

Quasi one-dimensional magnetic materials also show interesting and unexpected
magnetic excitations. For example, magnetic soliton motion been observed in ferro as
well as in antiferromagnetic chains e.g. CsNiF; and (CD3;)4NMnCl; (TMMC). For
CsNiCl3?! it was shown that the spin wave description of the magnetic excitation did
not explain the observed energies and intensities. Haldane conjectured that the
magnetic excitations of spins on a 1-D array are different for half integer and integer
spin systems>”°. The dispersion of half integer (§ = 1/2, 3/2...) spin chains are
gapless, while the integer spin chains (S = 1, 2...) have a gap at the zone centre. This
gap is related to a singlet — triplet transition and has been observed in CsNiCl;** and
Ni(C,HsN,)NO,ClO; (NENP)**. A schematic of the general phase diagram of the
anisotropy (Heisenberg — Ising) versus superexchange (A) for the integer S = 1 spin
chains is given below™. It shows the possible position for a number of interesting

quasi one-dimensional S = 1 chain systems.
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Figure 4: Simplified schematic of the phase diagram for the Ising — Heisenberg
chain.

Line 6 in Figure 4 shows the energy of the gap of the 1-D system versus anisotropy.
The gap energy rises steeply around D = 0. The gap energy in this region corresponds
to the Haldane gap. At high D values this gap goes to zero, as D increases to greater
than 1, the gap opens up again (see Figure 13, Chapter 2.2.1.1). Around the D = 1
point, line 5 in Figure 4 refers to a transition from a singlet ground state to an induced

moment state.

On the antiferromagnet exchange side (right side) of the phase diagram novel
groundstates were predicted and subsequently found in materials such as NENP and
the ANiCl; halides. Experiments have shown that NENP, an S = 1 quasi 1-D system,
shows a gap in the excitation spectrum around the zone centre at Q = 0, which persists
down to low temperatures24. In this system the total superexchange (XJ) is smaller
than the crystal field anisotropy (D). The observed gap energies are well explained by
Haldane’s predictions. However, for other systems shown in Figure 4, there are
further complications, as in the case of CsNiCl; where magnetic order takes place. In
this case the superexchange is much larger than the anisotropy of the system. It was
shown that the spinwave description of the magnetic excitations does not explain the
observed energies and intensities of these excitations. CsNiCl3 has two modes present
in the dispersion curve of the magnetic excitations; a linear mode which decreases to

E =0at Q=0, and a gap mode which is related to the longitudinal fluctuations which
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have a quantum mechanical origin. Very few materials are available to investigate the
effect of different amounts of anisotropy on the S = 1 linear chain compounds.
However a tuning of the gap mode is made possible by applying an external pressure
on the system. In Appendix A, the dispersion of the magnetic excitations of the weak
Ising like systems CsNiCl; and RbNiCl; under an applied hydrostatic pressure of
Skbar are presented, these have not been treated and are given ‘as is’. The dispersion
of the magnetic excitations in the XY like quasi one-dimensional linear chain
compound KNiCl; has also been investigated in its B and vy - phases. These results are

presented in Chapter 4.5.

The position of the quasi one-dimensional AFeX3 compounds is also indicated on the
phase diagram in Figure 4. In these materials one finds that the magnetism at low
temperatures is governed by the singlet ground state and the low-lying doublet state.
This can be described by an effective S = 1 Hamiltonian. The full spin moment is
actually S = 2. The anisotropy in the AFeX3 systems is much higher than that in the
ANiX; ones?. Singlet ground state (SGS) behaviour is observed in the CsFeX; (X =
Cl, Br), whereas the RbFeX3 compounds have an induced moment behaviour and the
systems order magnetically at low temperature. This is due to the fact that in the
CsFeX3 compounds, D > Z J and for the RbFeX; compounds, D < X J. The small
differences apparent in the values of the anisotropy and intra- and interchain
superexchange is caused by the small variation in the structural parameters of the

systems.

Applied hydrostatic pressure on the CsFeX3 compounds has been explored as a means
of inducing magnetic order in the system. A magneto-structural study of the systems
is presented in Chapter 5. The dispersion of the magnetic excitations of CsFeCl; and
CsFeBr; are measured as a function of applied hydrostatic pressure (up to Skbar) at
low temperature (< 2K). The corresponding crystal structures are also determined by
means of time-of-flight neutron diffraction measurements. Magnetic order can also be
induced in these compounds by application of a magnetic field along the chain
direction. In this case the low-lying doublet (m = *1), is Zeeman split and for a
sufficiently large field the lower doublet state (m = -1), will approach and eventually

cross the singlet state and thus the system will order magnetically in a 120° type
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structure. The dispersion of the magnetic excitations are studied for the Singlet
Ground State (SGS) antiferromagnet CsFeBr; for very low temperatures (60mK) in
the presence of a magnetic field (5T) and presented in Chapter 5.3. Up to the phase
transition an accurate description of the dispersion is given by the theory of Lindgéard
while in the ordered state the Dynamical Correlated Effective Field Approach
(DCEFA) of Suzuki is preferred26‘27’28.

The thesis is arranged in the following order; Chapter 2 is presented as the theory
chapter. Within this chapter structural and magnetic information is given on the
diverse ABXj3; family of compounds and reasons for studying them are elaborated
upon. The chapter also contains the necessary neutron scattering theory for the reader
to understand experimental evidence given in later chapters. As this thesis deals
specifically with experiments on the ABX3; compounds, and as such, is an
experimental thesis as opposed to a theoretical one, Chapter 3 gives information on
the crystal growth and experimental methods employed in this thesis as well as
individual specification of spectrometers and diffractometers used to collect data on
the systems. The actual experimental results are presented and discussed in Chapters 4
and 5. Chapter 4 deals with chirality order in the ABX3; compounds and Chapter 5
looks at the SGS compounds CsFeCl; and CsFeBr;. A summary of results and a
statement of further work is outlined in Chapter 6. Finally, Appendix A deals with
recent experimental findings from the magnetic excitations of the easy axis
compounds CsNiCl; and RbNiCls under applied hydrostatic pressure, as well as those
in the B and y-phase of KNiCl; at ambient pressure.
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2 Theory

This Chapter introduces the ABX; halides and classifies them according to the
strength of their chainar anisotropy. Each classification is elaborated upon and
information is given on their structural and magnetic properties. The theory behind
universality, critical phase transitions and the production and diffraction of neutrons is

also given herein.

2.1 Second Order Phase Transitions.

In this thesis a series of magnetic materials are studied which show magnetic ordering
upon the application of magnetic field, electric field or applied pressure or by the
lowering of the temperature of the system. Systems which undergo a second order
phase transition, i.e. a transition where the second derivative of the Gibbs free energy
changes discontinuously are said to have undergone a critical phase or continuous
phase transition. To explain the concept of critical behaviour at phase transitions it is
probably best to consider the phase transition of a simple ferromagnetic system. The
typical magnetisation, M, of a simple ferromagnet, under different temperature
conditions follows the form of that given below. The behaviour can be described by
simple molecular field theory, which can be found in many general physics textbooks.
The relative magnetisation of the system (¢ = M/M, where M, is the magnetisation at

T = 0K) is modelled by the equation:

c=B, [W) )

where the Brillouin function B; is given by:

B,(x)= 2 L om 2L - Lo = 3)
27 2J 27
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Close to the phase transition ¢ is small and B, can be expanded in a power series of

gusAc/ kgT. In the first approximation:
(J + l)x
B,(x)=—" 4
=" @)

we see from this expansion that the transition to the paramagnetic phase (o = 0) takes

place at:
-1 _Ng’upJU +10 5)
3k,
Just below T the magnetisation behaves according to:
c=A(T.-T)/T.) (6)

where mean field theory predicts that B = 0.5. Similarly one can calculate the

magnetic susceptibility, x = M / H, above T,, giving us:

X=A(T-T)" Q)

where mean field theory predicts that ¥ = 1.0. A full breakdown of the critical

exponents and their meaning is given below in Table 1.
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Table 1: Definition and range of values for critical exponents encountered in
Table 2 and Table 3.

Thermodynamic Symbol Power Comments Typical values
Variable of exponents
Specific Heat at Cy (T-T,)* T>T,, H=0 -0.3-03
Constant field (T.-T) % T<T, H=0 -0.3-0.3
Magnetisation M (T,- TP T<T, H=0 0.1-04
" T=T, 3.0-6.0
Susceptibility x (T-T)" T>T, H=0 13-14
(T.-T)" T<T., H=0
Correlation & (T-T.)" T>T., H=0 0.6-0.7
Length (T.-T)" T<T,H=0 0.6-0.7

The values of the critical exponents for magnetisation (8 and &) and for correlation
length (V) can be obtained by neutron scattering and the critical exponents for
susceptibility () can be obtained from AC measurements. As has been mentioned in
the Introduction, the critical exponents are linked by scaling laws. The values of the

critical exponents allow us to establish the universality class of the system.

According to the universality hypothesis, second order phase transitions may be
classified as belonging to a small number of universality classes. The class to which

the system belongs depends on a small number of basic properties of the system:

e The spatial dimension of the system, (d = 1,2 or 3 dimensional)
e The spatial dimension or symmetry of the order parameter, (Ising, XY and
Heisenberg for n = 1, 2 and 3 dimensions respectively)

e  Whether the order parameter is short or long range.

This is rather astonishing as it represents quite a large generalisation. It implies that
the nature of the microscopic interaction is irrelevant (aside from the last point). It
also implies that for continuous transitions such as magnetic transitions, the critical

exponents will be identical regardless of crystal structure.
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Therefore armed with the above knowledge, one can classify the universality of a
system and thus define the universal qualities such as critical components, amplitude
ratios and equations of state. If one concentrates on a standard bulk magnet, one sees
that the universality of the system is basically determined by the symmetry of the
order parameter. The critical properties associated with these n-component, O(n),
universality classes have been extensively studied and are well understood. The

values for the critical exponents for the different standard models are given below.

Table 2: Critical exponent values for the standard universality classes

Standard Universality o B Y v AYIA
Model Class
Ising Z2 0.1098(29) 0.325(1) 1.2402(9) 0.6300(8) 0.55
XY S1 -0.0080(32) 0.346(1) 1.3160(10)  0.6693(10) 0.99
Heisenberg S2 -0.1160(36)  0.3647(12)  1.3866(12) 0.7054(11) 1.36

However, there are systems which fail to be represented by the standard O(n)
universality classes, systems such as random magnets with quenched disorder (e.g.
spin glasses). Other systems include those standard magnets with frustrated
magnetism. The nature of frustrated magnets leads to quite new and exciting phase
transitions to those of conventional unfrustrated magnets, as will be demonstrated in

what follows.

In order to understand the concepts of the standard magnets with frustrated
magnetism, let us consider a triangular lattice with antiferromagnetically coupled
spins at each vertex. It is immediately apparent that the spins cannot conform to a
collinear antiferromagnetic alignment, the stable spin configuration depends on the
type of spin symmetry or number of spin components. In the case of the spins being
confined to one dimension (called the Ising case) the ground state is not uniquely

determined as can be seen below.
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Figure 5: Ground state spin configuration of 3 Ising spins on a triangle.

Frustration leads to a non-trivia! degeneracy of the ground state.

The spin on the unoccupied vertex cannot align antiparallel with both other spins
simultaneously. If we allow the spins to move in either two or three dimensions /XY
and Heisenberg cases, respectively) the spins will become canted. An interesting
consequence of this canting can be seen in Figure 6. In the XY case there are now two
degenerate solutions for the ground state. This degeneracy corresponds to the 2
different chiral states. The concept of chirality was first introduced to magnetism by
Villain™ however, it was Kawamura®""' who first predicted that this extra

degeneracy would lead to new and interesting physics.

(a) (b)

Figure 6: The twofold degenerate ground state for an XY antiferromagnet on a

triangular lattice, showing the two different chiral states (a) and (h).

Kawamura conjectured that this chirality, in introducing an extra degeneracy would

produce new universality classes, a conjecture that was (and still is) hotly disputed.
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It can be seen from Figure 6, that a given chiral state cannot be transformed to the
other chiral state via a global spin rotation in the XY spin space. It is necessary to use
global spin reflection to achieve this. One may assign a different chirality of plus (+)
or minus (-) to (a) and (b) in the above figure. Thus the extra degeneracy provide by
the chiral states manifests itself as a hidden Ising like degeneracy. In order to
characterise these two chiral states it is convenient to introduce a scalar quantity,

chirality®,

K, =27 J—i[ 5,] = 5 \,—f(S:‘Sf—SfS.-")=(5) ®)

{i5) (i)

where the summation runs over the 3 spins depicted above. k, = %1 for the two spin

configurations.

Looking at the Heisenberg case, we see that there is no longer a discrete chiral
degeneracy as the different spin configurations can be transformed into one another
by continuous spin rotation via the third dimension. However, a chirality vector can
be defined as,

2 - -
2355 ©
7S

A similar chiral degeneracy may be observed in systems such as helimagnets and 2D
and 3D stacked triangular lattice antiferromagnets, the spin structures of which are

shown below.

B

Figure 7: Chiral degeneracy in the ordered state of the XY antiferromagnet, (a)
and the XY helimagnet (b) on the triangular lattice.
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Kawamura first analysed the critical properties of systems known as stacked
triangular lattice antiferromagnets (TLA’s), this being the antiferromagnetic stacking
of the triangular lattice seen in Figure 7. Kawamura used the theoretical techniques of
symmetry analysis and Monte Carlo simulation to show that due to this extra chiral
degeneracy, TLA systems may belong to a new universality class. The critical
exponent values obtained by Kawamura for his new universality class are listed below
and can be compared with the standard universality class critical exponents in Table
2.

Table 3: Critical exponent values for the chiral universality classes.

Chiral Universality o B Y v A'IA
Model Class

XY Z2 xSl 0.34(6) 0.253(10) 1.13(5) 0.54(2) 0.36(2)

Heisenberg P3 0.24(8) 0.30(2) L.17(7) 0.59(2) 0.54(2)

In order to investigate the Kawamura hypothesis it is necessary to find model systems
with antiferromagnetic triangular lattice structures. Two such groups that satisfy this
criteria are the BX; and ABXj; halide families, where A is a 1A group cation, B is a
divalent first-row transition metal cation and X is a halide anion. A wide variety of
magnetic properties may be obtained by changing the B ion (due to the electronic
changes induced) and the A and X ions (due to spatial changes). The different
properties obtainable are due to the change in geometry and nature of the
superexchange bridges, and the different electronic states induced by the crystal field

levels for different types of B ion.

These systems generally crystallise in the hexagonal perovskite structure with space
group P6;/mmc. Chains of face-sharing BX, octahedra aligned along the c-axis are

separated by the A* ions. This results in the interchain separation being much larger
than the intrachain separation, leading to a quasi one-dimensional magnetic behaviour

at low temperature.
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Figure s : Schematic of the hexagonal perovskite structure, with the  ions

separating the infinite linear chains of BXI/~ face-sharing octahedra, space

group PéVmme.

Figure 9: [0001] projection of hexagonal perovskite structure. The hexagonal

stacking of the twinned-cuboctahedral AXn coordination polyhedra, which

separates the infinite BX” chains is shown.
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2.2 Heisenberg Triangular Antiferromagnets

This Chapter gives a brief overview of the family of Heisenberg triangular
antiferromagnets. It introduces the systems reported on later in the thesis and acts as a
reference point to the reader. It is by no means comprehensive and the interested

reader is referred to the recent review by Collins and Petrenko>

Figure 10: A schematic of the stacked triangular antiferromagnet lattice.

The stacked triangular antiferromagnet takes the form as that shown in Figure 10, it

can be described with the following Hamiltonian:
H=7YSS,+7'3SS,-DY (5] -eu,HYS, (10)
i,j ij i i

Where J is the exchange integral along the chains, J' is the exchange integral between
the chains and D is the single ion anisotropy. The first term represents the
superexchange parameter along the chain, the second term represents the

superexchange parameter in the basal plane, the third term is the single ion anisotropy
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and the final term is a representation of the Zeeman term of the spins in the presence

of an externally applied magnetic field, H.

This Hamiltonian, depending on the value of the single ion anisotropy, D, can

represent several different systems, each with its own unique character:

e If D =0 then the system corresponds to the well known isotropic Heisenberg case.
In actual fact no real triangular antiferromagnetic systems are perfectly
Heisenberg in character, all have a degree of anisotropy inherent in the system.
However, if D is small in comparison to both J and J' then the system can be
represented by the above Hamiltonian (except at very low temperatures, T < DS,

or near the critical point).

e If D < 0, the anisotropy makes it energetically favourable for the spins to align
parallel to the z-axis. This is what is known as the easy-axis or Ising type. This
alignment breaks the isotropic symmetry of the Heisenberg case and leads to new

and interesting physics.

e Finally, if D > 0O, the spins will align in the xy plane, known as the easy-plane
type. The ordered state of this arrangement is the 120° type structure shown in
Figure 6, this state has a chiral degenerate ground state and, as such, is a good

model system for the testing of the conjecture of Kawamura.

These cases will be further elaborated on in subsequent Chapters. Chapter 2.2.1 deals
with the easy axis anisotropy case, Chapter 2.2.2 deals with the easy plane anisotropy
case and in Chapter 2.2.3 we elaborate on the case of the distorted triangular lattice

antiferromagnet.

2.2.1 Easy Axis Anisotropy: D <0

There are 5 compounds in the ABX3 family that show easy axis anisotropy. These are:
CsNiCls, RbNiCls, CsNiBr;, RbNiBr; and CsMnls. All are characterised by the space

group P6;/mmc at room temperature and all exhibit quasi one-dimensional behaviour
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due to the difference in the intra-chain and inter-chain superexchange integrals. In all
cases the value of the single ion anisotropy, D, is of the same magnitude as the intra-
chain exchange integral, J'. Both of the exchange interactions are antiferromagnetic in
character. The (H, T) phase diagram of these systems is of the form shown in Figure
11.
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Figure 11: Magnetic phase diagram of the Heisenberg triangular

antiferromagnet with easy axis anisotropy for H // ¢ *>.

At low temperature and magnetic field the spins form the previously mentioned
triangular structure, with the c-axis in the plane of the triangle, however, the magnetic
anisotropy attempts to pull the spins into alignment in the basal plane, thus giving a
slightly distorted 120° type structure. For a classical system the angle 8, which the

spins make with the Ising (c) axis, is given by the formula:

1
cos0 = —— _D<6J 11
=20+ D/6T) (b
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It can be seen that at —D = 6J' the system changes to a collinear structure where all
spins are parallel to the c-axis. Between Ty, and Ty; there exists the collinear structure
which disintegrates to the paramagnetic phase above Ty;. Applying a magnetic field
parallel to the c-axis causes the spin to flip into the ab plane at a critical field H, (the
spin-flop field). This spin-flop phase takes place as soon as the Zeeman energy
exceeds the Ising anisotropy energy, see for example Figure 135. Thus the spin-flop

field is a measure of the Ising anisotropy as T — 0.

Although not ideal, the systems in this family can be used as physical models of the
Kawamura conjecture, see Chapter 2.1 for more details. The critical exponents and
amplitude ratios determined from several different experiments for RbNiCl; and
CsNiCl; are shown below. Also included are the theoretically predicted values for the

different universality classes.

Table 4: Experimental values of the critical exponents in the easy axis systems,

compared to model values *.

a B y v AY/A
Expt. 0.37(8)[35]  0.243(5)[36] — 0.30(11) [35]
0.342(5)[37]  --
Xy -0.008 0.35 1.316 0.669 0.99
n=2 chiral 0.34(6) 0.253(10) 1.135) 0.54(2) 0.36(20)
0(4) 0.22 0.39 147 0.74
Mean field 0.5 0.25 1.0 0.5 0

As can be seen from Table 4, the experimental values obtained support the concept of
the new chiral universality class. It should be noted however, that the value of the
critical exponent B is close to the mean-field tricritical value but the values of the
specific heat exponent, ¢, and the amplitude ratio, A*/A", are closer to the chiral n =2

case.
Perhaps the most exciting thing about these systems is that due to the small Ising

anisotropy energy, they can be thought of as Heisenberg antiferromagnetic systems,

this allows them to be used as model systems for theories involving Heisenberg
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antiferromagnetic spin chains. Indeed, these systems represent good physical models
for one of the most controversial theories in magnetism in the recent past, the

Haldane conjecture.

2.2.1.1 The Haldane conjecture.

It was in 1983 that Haldane®®* first conjectured that the low-lying excitations of
integer and half-integer spin Heisenberg antiferromagnetic chains would have
different behaviour. He predicted that the integer chains would have a finite gap in the
excitation spectrum and only the half- integer spin chains are gapless. The conjecture
is based on the large-S mapping of the Hamiltonian in (12) to quantum field theory —

the O(3) non-linear ¢ model.
H=2F. 5.8+ S2 8+ 2SS, + DX (S 12

A represents the exchange anisotropy, such that, if A = 1 the Heisenberg system is
recovered. If A > 1 the system corresponds to the uniaxial Ising system and if 0 < A <

1 the system is defined as an easy-plane one. D is the single ion anisotropy defined in
Chapter 2.2.

The explanation of the large-S mapping of the Hamiltonian in (12) to quantum field
theory is beyond the scope of this thesis. However, for elaboration on this and other
mathematical descriptions of the Haldane conjecture the reader is referred to a review

article on ‘Quantum spin chains and the Haldane gap’, by Affleck®.

The conjecture of a finite gap for the Heisenberg integer spin chain is puzzling in that
both the quantum § = %2 and classical § — oo chains have vanishing excitation
energies and infinite correlation length in the isotropic limit. Early attempts at a
numerical solution to this problem were thwarted due to a lack of convergence in the
S = Y4 gapless case. More recent studies have helped to shed light on the nature of the
Haldane conjecture. The destruction of long range order and the generation of a

Haldane gap has been attributed to the condensation of solitons. If A and D are varied
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between the Ising limit (A — oo, D — -o0) and the Heisenberg point (A =1, D = 0)*°.
these solitons are different in nature forthe S=1and S =% cases‘", this is due to the
absence of S = 0 states in the integer case. Another topological excitation has been
proposed by Affleck*’, he proposed that the gap was caused by vortex-like ‘meron-
antimeron’ pairs. For the half-integer case these pairs cancel each other, but in the
integer case pairs are formed which destroy the long range order. Again the difference

can be traced back to the lack of a S/ = 0 state in the integer case.

The Lieb, Schultz, Mattis (LSM) rigorous proof of zero gap for an S = V2 system®’,
has been extended to arbitrary half-integer S, but has been shown to fail for the integer
case*, however, spin wave theory and the mapping onto the non-linear ¢ model are
not rigorous. Therefore the implications of the LSM theory are ambiguous. It would
be useful to have solvable models of the quantum spin chains, even though these
Hamiltonians are not realistic. Thus a different class of solvable (valence bond)
models was theorised. When S = 1 in these systems, it could be rigorously proven that

anon-zero gap existed*°,

This valence bond state can be explained as follows, each § = 1 site is split up into
two § = Y2 components, these then form singlet pairs with a neighbouring § = V2
component, a valence bond. The spins are symmetrised, in order to maintain spin 1

per site.

Figure 12: Schematic representation of the Valence Bond State (VBS).

To see that the VBS is indeed a ground state, take the 4 § = Y2 variables associated
with the bonding of two S = 1 sites. It is easy to see that at least 2 will be contracted to
form a singlet. Symmetrising or antisymmetrising the other pair gives either spin 1 or

spin 0, but never spin 2. Thus the ground state energy is 0.
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This ground state was first presented by Affleck, Kennedy, Lieb and Tasaki and is
thus known as the AKLT ground state. The exact ground state is represented by the

Hamiltonian:
1 - - - o 2 1
H 4J2 S Sn+1+ nS"+1 +— (13)

This ground state is translationally invariant, the excitation spectrum has a gap and the
ground state correlations decay exponentially, as is predicted by the Haldane

conjecture.

Of course the relevance of these models must be considered for real physical systems.
Although CsNiCls is not a pure Heisenberg system, due to its small Ising anisotropy it
can be thought of as Heisenberg-like. The question is, will the Haldane conjecture still

be relevant in integer spin systems where A # 1 and D = 0 in equation 12.

Fortunately, numerical calculations have shown that the Haldane gap is found to
persist for a finite range of exchange*’ and single ion anisotropy*® values. The
variation of the gap with exchange anisotropy only, (D = 0) is shown schematically

for both integer and half-integer chains in Figure 13.

(a) (b)
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Figure 13: Schematic plot of the Haldane prediction for exchange anisotropy

only, (D = 0), for (a), half-integer and (b), integer spin chains®.

In the half-integer case, a gap opens up above the Heisenberg point at A = 1, the

excitations have an exponential dependence. In the integer case a stable Haldane gap
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is predicted between A; < A < A,. Calculated values of A; and A, are given below in
Table 5.

Table 5: Boundaries of the Haldane phase for D = 0°".

A 2 v B n
0 1.18(1) 1.3(2) 0.17(5) 0.23(3)
0 1.175 <1

1.184 1 0.125 0.25

1.167(7)  098(2)  0.126(7)  0.253(2)
0.01(3)  1.188(7) 1.02(5)

Due to this persistence of the Haldane gap in an anisotropic system, much work has
been undertaken on the compounds CsNiCl; and RbNiCl; in order to establish their
validity as physical models for the Haldane conjecture. The two three-dimensional
phase transitions (Ty; and Ty, in Figure 11) of CsNiCls, observed with specific heat™®
and nuclear magnetic resonance>' measurements are 4.85 and 4.46 K respectively.
The 1-D magnetic properties of CsNiCl; have been studied with magnetic
susceptibility measurements> which mapped out the full phase diagram, and thermal
expansion53, heat capacity’' and acoustic attenuation®® methods but accurate values
for the Hamiltonian could not be obtained using these measurements. The first
experimental evidence for the Haldane gap in a spin 1, nearly isotropic
antiferromagnetic chain came from inelastic neutron scattering measurements by
Buyers et al.>> on CsNiCls. They established the values of J, J' and D and showed that
the gap existed in the 1D phase above 4.85K and that it was too large (A(T) = 0.32
THz) to be caused by the known single-ion anisotropy. More recently the Haldane gap
has been observed with inelastic neutron scattering in the closely related system
RbNiCl356 (A(T) = 0.63 THz). A thorough comparison of the § = 5/2 system CsMnlj,
and the S = 1 system CsNiCls>’ shows several important differences in the magnon
dispersion curves of the two isomorphic systems. Whilst conventional spin wave
theory provides a consistent description of the § = 5/2 compound, it fails to describe
the § = 1 system. Rather, the magnon dispersion curve of CsNiCls is well described
by spin wave calculations based on a field theory of the Haldane state by Affleck®’;

this provides further experimental evidence for the existence of the Haldane gap. The
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Haldane gap has also been observed in other compounds such as
Ni(C;HgN,),NO,ClO,, (NENP)5 8 Recent heat capacity measurements on the pressure
effect on NENP*® show an increase in the gap mode with increasing hydrostatic
pressure. It would thus be of interest to observe also the behaviour of the magnetic
excitations and Haldane gap of CsNiCl; and RbNiCl; under the influence of external
pressure for comparison purposes. Such experiments have been undertaken by the

author and are reported on in Appendix A.

2.2.2 Easy Plane Anisotropy, D > 0

When the single ion anisotropy in Hamiltonian (1) is positive, the spins favour
alignment in the xy-plane, perpendicular to the chain direction. The ground state of
the structure is the chiral 120° type structure shown in Figure 6. Thus these systems
are a good physical model for the testing of the Kawamura conjecture. In the presence
of a magnetic field, the systems characteristics are defined by a competition between
the interchain exchange energy, J', and the single ion anisotropy, D. The interchain
energy prefers alignment of the spins in the 120° type structure perpendicular to the
field direction, with the spins slightly canted towards the field direction. The single
ion anisotropy prefers to align the spins in the xy-plane. The behaviour of the system
with increasing field is dependant on the relative values of J' and D. There are two
cases to consider, one, if D > 3J' and the other if D < 3J'. These cases are elaborated

on below and the respective phase diagrams can be seen in Figure 14 and Figure 15.

2.2.2.1 Large Easy Plane Anisotropy

Looking at the phase diagram in the case where D > 3J', Figure 14, we see that upon
the application of a field L to c, the chain direction, the spins remain in the plane but
collapse into a collinear structure. There is only one example of an undistorted
triangular easy-plane antiferromagnet which satisfies the condition D > 3J', this is
CsMnBr;.
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Figure 14: Magnetic phase diagram of a Heisenberg triangular antiferromagnet

with large easy plane anisotropy.

The first experiments performed on CsMnBr; were done using neutron scattering

6061 and the Japanese group of Ajiro®*®, Both

techniques by the McMaster group
found critical exponent values close to that of the predicted new chiral university
class. This was followed by high precision specific heat measurements by the Santa
Cruz group® and the Karlsruhe group®. In later neutron scattering experiments
Gaulin revealed that the zero field transition point corresponds to a tetracritical point
in the magnetic phase diagram®. This is the first indication that the magnetic phase
diagram of CsMnBr3; does not conform to the usual, regular XY universality class. In
order to reduce the ambiguity surrounding the new critical and novel multicritical
points, theoretical scaling analysis was undertaken and subsequent predictions

made?’. Plumer, Kawamura and Caillg"

, have used symmetry arguments to show that
the application of an electric field in the basal plane can break the chirality order of
the 120° spin type structure. This is induced by magnetoelectric coupling (i.e. the
coupling between the spin vector, S, and the electric field induced polarisation vector,
P). For the hexagonal lattice these symmetry arguments show that the magnetoelectric

coupling term takes a form identical to that of the Dzyaloshinsky — Moriya (DM)
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exchange interaction and that an applied electric (E) field along the basal [110] plane

direction would stabilise a slightly incommensurate magnetic ordering.

The results obtained from the experiments outlined above are collated below, with the
corresponding values for the critical exponents for the chiral and regular XY

universality classes, also quoted is the mean field tricritical exponent value.

Table 6: Experimental values of the critical exponents in the easy plane system,

CsMnBr; compared to model values®,

a B Y v AY/A
Expt. 0.39(9) [68] 0.22(2) [60,61]  1.10(5)[62,63] 0.57(3)[62,63] 0.19(10) [68]
0.40(5) [65] 0.25(1) [62,63] 1.01(8) [60,61]  0.54(3)[60,61]  0.32(20) [65]
0.21(2) [60,61]
0.24(2) [66]
XY -0.008 0.35 1.316 0.669 0.99
n=2 chiral 0.34(6) 0.253(10) 1.13(5) 0.54(2) 0.36(20)
0(4) -0.22 0.39 1.47 0.74
Mean field 0.5 0.25 1.0 0.5 0

As with the results for the stacked triangular lattices with easy-axis anisotropy in
Table 4, the values obtained for the large easy-plane anisotropy systems seem to
support the Kawamura conjecture. Further proof could be obtained by applying an
electric field in the basal plane of the system, as outlined above, and observing the net
result. Work of this nature has been undertaken by the author and is reported in
Chapter 4.1.

2.2.2.2 Small Easy Plane Anisotropy

Four systems are known to be in this category, all with the same divalent B ion, these
are CsVCls, CsVBr3;, CsVIz, and RbVCls, however, little work has been done on these
compounds. The phase diagram and critical properties of the small easy plane
anisotropy systems are as yet unmapped. It is expected that the phase diagram will be

of the form predicted by Plumer et al.® as shown in Figure 15. Phase I is the plane
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triangular antiferromagnetic structure, Phase II is the collinear structure and Phase ITI
is the spin flopped triangular structure. Work has been done on the magnetic
excitations on the Cs compounds by Feile’® who fitted the dispersions to a simple spin
wave theory. However, later accurate absolute cross-section measurement work by
Kadowaki’' on CsVCl; shows that the intensity of the acoustic branch could not be
accounted for by either linear spin wave theory or by magneto vibrational scattering.
This is obviously a family of the stacked triangular lattice systems which has been

neglected and is in need of further attention.
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Figure 15: Magnetic phase diagram of a Heisenberg triangular antiferromagnet

with small easy plane anisotropy.

2.2.3 Distorted Lattice

Not all of the ABX3 family crystallise with space group P6s/mmc. In a number of
these systems structural phase transitions are observed. Systems where a structural
phase transition has been observed include KNiCl;, T1FeCl;, RbFeBr; and RbMnBrs.
For the sake of clarity, the case of RbFeBr; is grouped with the singlet groundstate
systems and is elucidated upon further in Chapter 2.3. Turning our attention to the

other systems we observe that the typical phase transition involves the movement of
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two of three adjacent chains upwards while the other chain remains in the plane. The
phase transition can be understood in terms of the ra* and rx” radii. As the ratio ra*/rx
decreases, the A ion environment becomes unstable, leading to structural phase

transition and to the space group P6;cm.

The distorted crystal structure for KNiClj; is given below in Figure 16 as an example.
It is seen that the unit cell increases from a X a X c to the larger unit cell V3a x V3a x
c preserving the hexagonal symmetry.

Q0 090 e®e o0 o0

ooogooo 90%.000,080

Figure 16: Room temperature structure of the distorted triangular
antiferromagnet KNiCl;"2

Because the chains move as a unit there is no distortion to the chain structure and the
intrachain superexchange energy, J, remains the same as in the undistorted case.
What is affected by the movement of the chains, is the interchain exchange energy, J'.
The transition from P63/mmc — P6scm changes the symmetry of the system, reducing
the co-ordination of the A ion from 12 to 9 and J' is split into two different
interactions, Jaa = J' and J'sp = J'; as shown below in Figure 17. Bearing in mind that
both CsNiCl; and RbNiCl; retain the P63/mmc space group at room temperature, it is
reasonable to assume that the structural phase transition is caused by the smaller size

of the K* ion and the relative difference in the size of this and the CI ion.
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This reduction in the coordination number of the A ion obviously breaks the
symmetry of the system and can lead to a partial lifting of the frustration. It seems that
these systems are not in fact an intermediate case between frustrated and unfrustrated
systems. Rather, they are predicted to exhibit novel physical properties of their

own’"""* and are thus worthy of investigation.

'

B

Figure 17: Magnetic interactions on the distorted triangular lattice model.

The situation as described above is observed in the room temperature structures of
KNiCl) and RbMnB1*, it is also observed in the low temperature structure of RbFeBr”.
The situation is further complicated in both KNiCfi and RbMnBr”* by the presence of
further structural phase transitions both above and below room temperature. For
KNiCl: these occur at 274, 285, 561 and 762 both neutron™ and X-ray™
scattering have shown the existence of two crystal phases at low temperature. One of
the phases is hexagonal and does not differ greatly from the RT structure, the other

phase is orthorhombic™.
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Figure 18: The row model of KNiCI".
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Due to the existence of two different crystallographic structures, different magnetic
structures have also been observed, with Ty = 12.5K and 8.6 K in the hexagonal and
orthorhombic phases respectively. It is thought that different crystal preparation
methods (i.e. annealing times, pulling rates, quenching etc.) cause these different
phase transitions. With this in mind elastic and inelastic neutron scattering
measurements were undertaken on several single crystal samples of KNiCl; which
had undergone various heat treatments. These experiments are elaborated upon in
Chapter 4.5.

Very little research has been done on the induced moment, distorted triangular lattice
antiferromagnet TIFeCls. To remedy this powder diffraction studies were performed
on the system, (Chapter 4.4.1) in conjunction with single crystal elastic neutron

scattering studies, (Chapter 4.4.2.).
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2.3 Singlet Ground State Antiferromagnets

There are 4 compounds that fall into this category with the AFeX3 type structure
CsFeCl3, CsFeBrs, RbFeCl; and RbFeBrs. All crystallise with space group P6;/mmc
at room temperature. It is a feature of these systems that there is a large value of
magnetic anisotropy compared to the magnetic superexchange. In some instances, this
large anisotropic factor will prevent the onset of long range order, even at T = OK.

The electronic structure of the Fe** ion in these systems is as shown below.
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Figure 19: Electronic perturbations acting on the free ion 5D term of Fe?* ion in
the AFeX; family. The successive splitting arises from the cubic component of the
ligand field, spin orbit coupling and the trigonal distortion of the ligand field,

respectively.

The free ion in the >D ground state is split into an upper orbital doublet (’E) and lower
orbital triplet (5T2) by the cubic crystal field, separated by 10,000cm". The lower
triplet is then further split by spin orbit coupling according to the effective total
angular momentum J = 1, 2, and 3, into the states 5T2a, 5T2|,, and 5T2c, spaced
according to the Landé interval rule by 2A and 3A respectively. The lowest J = 1 is
then split by a trigonal component of the crystal field A to produce a singlet ground
state and an excited doublet with a separation of the order of 100cm™. At low

temperatures only the lowest singlet and doublet are significantly populated, thus
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probing the transition between these states with neutron scattering allows us to gain

knowledge of the system.

As T — 0, there are two regimes, (in the absence of magnetic field), which can be

observed in these systems.

e For D < 8 [J] +12 |/ the system has a magnetic ground state with an easy plane

type anisotropy. This is the case for RbFeCl; and RbFeBrs.

o For D > 8 |J] +12 |[J'| the system has a singlet ground state meaning that it does not
magnetically order even at T = OK. This is the case for CsFeCl; and CsFeBr;.

The application of an external magnetic field along the c-axis leads to magnetic order
in the SGS materials. If the magnetic field is applied in the basal plane no transition to
magnetic order is observed. In CsFeCl; the application of a magnetic field parallel to
the c-axis induces a commensurate 120° type structure after transition through two
intermediate incommensurate phases. In CsFeBr; the application of field leads

directly to commensurate order.

2.3.1 True singlet ground state antiferromagnets, (CsFeBrs;, CsFeCl3).

In the system CsFeBr; the intrachain exchange interaction is antiferromagnetic, this is
in contrast to the intrachain exchange interaction in CsFeCl; which is ferromagnetic’®.
This is due to the different spatial characteristics of the Br and Cl ion, leading to

different Fe — X — Fe distances and bridging angles.

The studies on CsFeBr; have mainly concentrated on the magnetic excitations of the
system. Low temperature inelastic neutron scattering studies have shown that the
magnetic excitations in CsFeBr; soften with decreasing temperature, stabilising at
0.11 THz at T = 2.5K down to T = 80mK"*®. This suggests that CsFeBrs is a SGS for
T — OK. Low temperature inelastic neutron scattering studies in an external magnetic

field have shown that, at T =1.6K and H = 4.1T, a well defined magnetic Bragg peak
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appears at the reciprocal lattice point Q = (2/3 2/3 1). This indicates a phase transition

to the long range commensurate 120° type structure®'.

As with CsFeBr3, low temperature neutron scattering studies of CsFeCl; show that the
system is a SGS system for T — OK. The values for exchange interaction and
magnetic anisotropy have been estimated from the dispersion relations. However, the
exact values depend on the theoretical model used to fit the data. Values have been
obtained for correlated effective field analysis%, self-consistent random-phase
approximation®> and dynamical correlated effective-field approximation®’. Each
theory gives substantially different values of the exchange interaction and magnetic
anisotropy. Inelastic neutron scattering studies have showed that the minimum of the
magnetic dispersion curve does not fall at the K-point as expected, rather it is slightly
offset®. This can be accounted for by the inclusion of magnetic dipolar forces®>'%.
Neutron scattering studies on CsFeCl; in an external magnetic field demonstrate the
transition to the 120° magnetically ordered state at T = 0.7K with H; = 4.5T, previous
commensurate transitions take place at H; = 3.85T and H, = 3.92T. This transition to
a magnetically ordered state has been observed with specific heat86, Mﬁssbauer87, and
magnetisation measurements®®, The five possible transitions between the ground state
and the excited doublet in the presence of external magnetic field (Hy and H,), have
been observed with submillimetre wave ESR measurements®®. Other work has been
undertaken on the magnon dispersion branches of CsFeCls; and CsFeBr; under
hydrostatic pressure by the author during his MPhil. degree and is re-analysed in
Chapter 5. Also presented are full powder neutron diffraction studies on the above

compounds as a function of applied pressure.

2.3.2 Induced moment antiferromagnets, (RbFeBr;, RbFeCl;).

RbFeBr; can be thought of as a combination of an induced moment antiferromagnet
and a Heisenberg antiferromagnet with XY anisotropy. Measurements by Eibschiitz et
al. on the system show that, unlike the CsFeX3 family, the exchange interaction is
strong enough to produce magnetic long range order at T = 5.5K%. At 108K the
system undergoes a structural phase transition from the hexagonal perovskite

1

P6s/mmc space group, to the distorted phase with space group P6icm’’, as is
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described in Chapter 2.2.3. This distortion leads to two different nearest neighbour
exchange interactions within the basal plane. The low temperature crystal phase is
found to be ferroelectric®’, however this phase is not yet fully understood. Specific
heat measurements on the system show two successive magnetic phase transitions at
Ty = 5.61K and T x; = 2.00K?, it is possible that this may be caused by the splitting
between the two different basal plane exchange interactions. However, inelastic
neutron scattering measurements have not shown this splitting due to inadequate
resolution®®. The measured excitations are well described by the dynamical correlated

effective-field approximation.

As with RbFeBrs, RbFeCl; also shows long range magnetic order, below T =2.55K*°.
Inelastic neutron scattering studies have clearly demonstrated the softening of the
magnetic excitations as T — 2.55K°*°". Elastic neutron scattering studies have
revealed that RbFeCl; undergoes three magnetic phase transitions in zero field, at Tn;
= 2.5K, Tnz = 2.35K and Tn3 = 1.95K. Between Ty; and Tn; and between Ty, and Tn;
incommensurate magnetic phases exist. Below Tn3, RbFeCl; locks into the 120° type
magnetic structure®>%*®, These values have also been confirmed using specific heat®®
and susceptibility methods®, looking at the anomalies observed in these experiments

a magnetic phase (H, T) diagram can be constructed.
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Figure 20: Magnetic phase diagram of RbFeCls, for H L ¢ *°. Open circles refer
to anomalies in specific heat measurements, closed circles to anomalies in

susceptibility measurements.
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The phase diagram is explained from the point of dipole-dipole interactions inducing
conical point instabilityloo. Shiba conjectures that a small dipole-dipole interaction
transforms the 120° structure to an incommensurate structure at intermediate
temperatures, whilst the low temperature phase should still remain at 120°. This phase
diagram has also been investigated using inelastic neutron scattering, producing good
agreement for the magnetic transitions'®'. The calculated values of the exchange
parameters are highly dependent on the theory use to fit the experimental data. The
superexchange parameters have been estimated from various experiments. Using
molecular field approximation' and pair approximation'®, the superexchange
parameters were calculated for susceptibility measurements. Mossbauer and
susceptibility data'® was analysed using the correlated effective-field
approximation'®. Neutron scattering measurements were analysed using the three
sublattice spin-wave approximation and the exciton model. Each model gives its own
unique values for the superexchange parameters. Suzuki has attempted to understand
the magnetic properties on the basis of a single set of parameters”, using the
dynamical correlated effective-field approximation (DCEFA) to model the
experimental data. The calculated values of D, Ji, Jjj, g1 and g) gave reasonable
agreement with experiment. This was only applicable to the paramagnetic phase as
the theory only considered a single chain of Fe?* ions for simplicity. More recently
Suzuki has added interchain coupling and derived a consistent set of exchange
parameters that accurately describe the behaviour of RbFeCl; both above and below

27,28
TN
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2.4 Neutrons: their properties and applications.

All experimental work contained in this thesis is the result of neutron scattering
experiments performed at a variety of steady state and spallation neutron sources.
Thus the following chapters give a brief introduction to the neutron, its fundamental
properties, its production at steady state and spallation sources and the theory

governing its interaction with condensed matter.

2.4.1 Fundamental properties of the neutron.

The neutron is composed of one up and two down quarks with charges of 2/3 and —-1/3
respectively. In spite of the fact the neutron carries no net charge it does possess a
magnetic moment. This is due to an electric charge distribution caused by its internal
structure. It is believed that the neutron spends part of its time dissociated into a

proton and a negatively charged nt-meson according to the equation:

n < (proton)’ + (T-meson)

During this dissociated time the positive and negative centres of the proton and meson
coincide, but the negative charge is more diffuse. This charge distribution gives the

neutron its magnetic moment and also an electric polarizability.

The energy and spin characteristics of the neutron further enhance its effectiveness in
probing condensed matter. Summarising, we can say that the fundamental properties
of the neutron make it a highly effective probe of condensed matter and these are

outlined below.

e The neutron has no charge therefore its interactions with condensed matter are

confined to the short range and magnetic interaction.
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¢ Due to the fact that the kinetic energy of the neutron is close to that of the energy
range of elastic and inelastic processes in condensed matter it is the ideal and the

only tool to measure dispersion throughout the Brillouin zone.

e The magnetic moment of the neutron makes it an ideal tool to probe the
magnetisation of condensed matter. Neutrons may be scattered from the magnetic

moment associated with unpaired electrons in the magnetic material.

e The neutron has spin 1/2 and as such when a neutron is scattered from a nucleus
with a non-zero spin, the strength of the interaction depends on the relative
orientation of the neutron and nuclear spins. The orientation of the neutron may be
manipulate by the application of ‘spin flippers’ on the neutron beam coming from

the source, thus allowing one to deduce the relative nuclear spin of the nucleus.

2.4.2 Production of neutrons.

There are various means to produce neutrons, not all are efficient or effective. In this
Chapter we will look at the two most widely employed techniques for neutron
production, that using nuclear reaction used at steady state sources and that employing
the proton spallation process, used at spallation sources. As with all techniques each

has its own advantages and disadvantages and these are outlined below.

Virtually all neutrons used for scattering experiments at modern steady state reactor
sources are obtained by slowing energetic neutrons produced in nuclear reactions by
passing them through a moderating material containing light atoms. Thus the majority
of atoms will have energies of the order of kzT where T is the temperature of the
moderator and kp is Boltzman's constant. Using simple wave mechanics it is relatively

easy to demonstrate that:

hz

ksT==—7
U ami (14)
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where % = h/2x, where h = Plank's constant and A and m are the wavelength and mass

of the neutron respectively.

Substituting the known values and assuming that 7 = 300K (room temperature), we

see that A = 2x10™® m. This is comparable to the interatomic separation of atoms in a

solid or dense fluid, thus neutrons are ideally suited for the study of atomic structure.

The velocity spectrum of neutrons emerging from a reactor follows a Maxwellian

distribution described by the equation

s mv?
o(v) < v exp[— 2kBT] (15)

where ¢(v)dv is the number of neutrons with energy between v and v+dv, m is the
mass of the neutrons, kg is Boltzman’s constant and T is the temperature of the

moderator.

The maximum of the function occurs where:

[3kBT]%
v= (16)

m

Thus we can see from the equation above that the only variable is T, the temperature
of the moderator. This gives us an easy way of manipulating the energies of the
neutrons. If higher energies are required then the neutrons are passed through a heated
source, such as a heated graphite block, conversely the energies of the neutrons can be
shifted to lower energies by passing them through a cooled moderator, such as liquid
deuterium or helium. In this manner a full range of energies are obtainable from a
single reactor source. Modern reactor sources, such as the Institut Laue Langevin, are

capable of producing a neutron flux of around 1.2 x 10" ns'cm?.
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Figure 21: Flux distribution in the beam of neutrons from a moderator at 25K
and from a moderator at 300K. The distributions are normalised to have the

same total flux'%,

There are a number of disadvantages to steady state reactor sources, numbering
amongst others, the radioactive waste produced by the nuclear reaction and the
complicated technical problems of cooling such a reactor. It is widely assumed that
the next generation of neutron sources will be based around the spallation technique
employed at the ISIS facility (e.g. the proposed new European Spallation Source'%).
The term spallation originates from geology and literally means ‘chipping off’. It
describes the process by which an energetic charged particle, normally in this case, a
proton, impinges on a stationary target material of heavy nuclei. The net effect is the
‘spalling’ of the target material into a large number of nucleons and other fragments.
Protons accelerated to an energy of 600MeV can produce 10 — 12 neutrons of average
energy of 2 — 3 MeV, per reaction, from a target such as lead or tungsten and about 25
neutrons per reaction from a >*®U target. The ISIS target consists of a set of thin
tantalum sheets surrounded by a coolant of flowing water. The target is used to
convert the proton beam energy (160 kW) into neutrons through the spallation
process. Such target stations produce an average neutron production of 4 x 10"%n s
'em™? which compares favourably with steady state sources. Advantages of this type

of source include less heat, thus less cooling and also less waste to contend with.
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-2.4.3 Diffraction.

Having produced the neutrons the next step in the experimental chain involves
scattering them from a powder or crystalline sample. Like x-rays, neutrons can be

thought of in terms of waves with a De Broglie wavelength of,

h 2
2mE

a7

where m is the neutron mass = 1.675 x 102 g and E being the kinetic energy of the
neutron = Y2 mv?, v being the velocity of the neutron. In order to explain the rather
complicated mechanics involved in neutron scattering it is probably advisable to start

with scattering from a fixed atom, this is what is known as elastic scattering.

2.4.3.1 Elastic scattering

It is the case with x-rays that they scatter from the electrons surrounding the atom,
with the intensity of scatter diminishing with increasing scattering angle. However
neutrons are scattered by the nucleus of the atom, this being much smaller it can be
regarded as a point target. By impinging a plane wave of neutrons of the form @ = &

onto an atom, one sees that the scattered wave has the form,
b .
P=-—1 elkr (18)

where r is the distance from the nucleus and b, is the neutron scattering length. The
important thing to consider is the scattering cross section of the nucleus, this is the

ratio of scattered neutrons to the incident neutrons and is given by the formula,

o =4nb’ (19)
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Thus we can see that the scattering cross section is directly related to the neutron

scattering length. The value of b, varies widely from element to element through the

periodic table and b, may even be negative in some circumstances. This is important
if we consider that the x-ray form factor increases linearly with increasing atomic
mass, thus elements next to each other will have very similar scattering lengths and
thus be difficult to distinguish in x-ray scattering experiments, this is not the case with
neutrons. Also it can be deduced that light elements will scatter x-rays relatively
weakly and thus be almost impossible to discern in your sample. Again this is not the
case with neutrons as the light elements, such as Helium, have comparable neutron

scattering lengths to the other elements in the periodic table.

The purpose of neutron scattering experiments is to measure the intensity of the
neutrons scattered by matter as a function of the variables Q and &, where § is the
energy transfer of the neutron. This scattered intensity often denoted as I(Q, &), is
known as the ‘scattering intensity law’ of the sample. It was in 1954 that Van Hove
showed that the scattering law could be written exactly in terms of time-dependent
correlations between the position of pairs of atoms in the sample. It is expressed in

the form,

I(Q,é ) = %I,:_"Zb"bm J.:°<e—iQ"n(0)eiQ.r,,| (r)>e—ietdt (20)

f mn

Note that the sum here is over pairs of nuclei m and n, and that the nucleus labelled m

is at position r,(f) at time ¢, whereas the nucleus labelled 7, is at position 7,(0) at time

t = 0. The angular brackets <> denote an average over all possible starting times for

observations of the system which is equivalent to an average over all the possible

thermodynamic states of the sample.

Summing over all the atomic sites in 20 gives us,

bb, (e 0N =3 b,b, [ (=1, 0)-r,ED)e " d’r 1)
PURXS -

m.n
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Where 0 is the Dirac delta function, expressed in terms of r and a difference vector
between the position of nucleus m at time ¢ and that of n at time zero. If we assume
that b, = b, = b, this allows us to remove the scattering lengths in the above equation

with the right hand side becoming,
Nb*| G(r,t)e™®"d’r (22)

where

G(1)=- (8-, 0)-r, €)) @

N o

and N is the number of atoms in the sample. The delta function in the definition of
G(r.t) is zero, except when the position of » at time zero and the position of m at time
t are separated by vector r. Because the delta functions are summed over all possible
pairs of atoms to obtain G(r.f), this function is equal to the probability of an atom
being at the origin of a coordinate system at time zero and an atom being at position r
at time 7. G(r.t) is generally referred to as the time dependant pair correlation function
as it describes how correlation between two particles evolves over time. Van Hove’s

equation (20) can now be written as,
Nb* k, o i
10,E)=—="| G@,0)e ™ e™d*rdt 24
(X e [6e.n @4

This allows us to see that I(Q,) is proportional to the space and time Fourier
transforms of the time dependent pair-correlation function. Thus we see that Van
Hove’s result implies that I(Q, &) is simply proportional to the Fourier transform of a
function that gives the probability of finding two atoms a certain distance apart. Thus
by measuring the intensity of scattered neutrons as a function of Q and &, one may use
the Van Hove result to relate the intensity of the scattered neutrons to the relative
positions and motions of atoms in your sample. Van Hove’s result may be
manipulated to reveal scattering effects of two different types. The first type is
coherent scattering in which the neutron wave interacts with the whole sample as a
unit so that the scattered waves from different nuclei interact with each other. This

type of scattering depends on the relative distances between the constituent atoms and
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thus gives information about the structure of materials. Elastic coherent scattering
gives us information regarding the equilibrium structure whereas inelastic coherent

scattering can tell us about the collective motions of the atoms in the sample.

The second type of scattering is called incoherent scattering and, as the name
suggests, in this method the neutron wave interacts independently with each nucleus
in the sample so that the scattered waves from different nuclei do not interfere, rather
the intensities from each nucleus simply sum up. Incoherent scattering could take
place, for example, when a neutron wave interacts with the same atom but at different

times. Thus this method can be used for gaining information about atomic diffusion.

When neutrons of a suitable wavelength impinge on a crystal (which can be thought
of classically, as a lattice of regularly spaced atoms), they are scattered by that lattice.
This is a direct result of the wave-like nature of the neutron. Bragg’s law states that
diffraction will occur when the phase difference between scattered rays from a set of

atomic planes is of an integral number of wavelengths, or more simply,
nX = 2dsin6 (25)

Thus constructive interference occurs where », the lattice plane, is an integer, d is the
lattice spacing and 6 is the angle of incidence of the beam, this is shown graphically

below.

Crystal

Figure 22: Bragg diffraction at an angle 9 from a set of crystal planes separated

by distance d.
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The best way to analyse the results of neutron scattering experiments is by means of
the reciprocal lattice. The reciprocal lattice is a rather convenient concept and
involves the mapping the vectors of the real space unit cell a, b and ¢ to a new set of

basis vectors.

!
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a-bxc
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ol
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Thus the new units of distance will be A and we can visualise that any Bragg
reflection that corresponds to a set of lattice planes can now be regarded as a point in
reciprocal space (x, y, z). This point may be described by a vector Q also, where Q =
xh + yk + zl, from the origin of the reciprocal lattice. If we consider the case of elastic
scattering, whereby the wavevectors of the initial (Jk]) and scattered ([k{) beam are
equal in magnitude, we see that the locus of points defined by the wavevectors |k;| and
[kq constructs a circle. This is commonly known as the Ewald sphere and as seen in
Figure 23, elastic coherent scattering will be possible where a reciprocal lattice point
falls on the sphere. It should be noted that this is an infrequent occurrence, thus in
order to maximise the probability of elastic scattering occurring the sample is rotated.
This construction in Figure 23 makes it simple to see the effect of rotation of the
crystal in real space. As the crystal rotates, the reciprocal lattice rotates with it so that
each of its points moves on an arc centred at the origin. As each point passes through
the Ewald sphere, diffraction occurs for that O at the corresponding scattering angle 6.

This is the basis for conventional single crystal diffraction experiments.

Figure 23: A representation of a crystal lattice in reciprocal space, showing the

Ewald spherie condition for elastic scattering'®.
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Elastic scattering can be achieved with x-rays as well as neutrons but it is often more
rewarding to utilise the former due to the availability of extremely intense synchrotron
sources, such as the ESRF at Grenoble, which afford excellent resolution. It should be
remembered that x-rays only penetrate a very small way into the sample (up to 1um)
whilst neutrons, due to their uncharged nature are scattered from the bulk of the

material.

One would assume that the better quality of the scattering crystal, the more intense the
diffraction. Paradoxically this is not the case, in perfect crystals primary extinction
occurs and reduces the scattered beam. This is due to the attenuation the incident
beam suffers upon passing through the perfect crystal domain. Secondary extinction
occurs in less perfect crystals, when misorientations between the small mosaic blocks
or domains that make up the crystal, are greater than the width of the reflected beam
within each fragment. In normal cases the diffracted intensity is reduced by a
combination of both primary extinction inside each mosaic block and secondary

extinction between each mosaic block.
Elastic neutron scattering is measured as a partial differential cross-section, this is the
function of the total scattered flux, o, per unit angle d€2, per unit time. The elastic

nuclear scattering cross section is the sum of the coherent and incoherent cross

sections.

dQ dg 'coh dQ incoh

A good model for application to elastic scattering is the Fermi pseudopotential,

V)= 22 s() @)

m

where m is the mass of the neutron and b is the scattering length of the nucleus at

position r. The coherent part of equation 24 can be represented by,
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oLyl e ) @)

0
and describes the Bragg scattering from the sample. Here N is the total number of unit
cells in the crystal, v, is the volume of one unit cell in reciprocal space and 7 is the
reciprocal lattice vector in terms of a basis of unit vectors as described above, where,
T=ha'+ kQ* + Ic". The & function ensures the selection of only those scattering
vectors O, that equal 7 (the Bragg condition). The unit cell structure factor, Fa(Q), is

the thermal average of the scatting amplitude from each nucleus and is expressed in

the form,

Fy(0)= Y b2 29)

where the summation is over the different atoms s and their positions in space j. E is

the average scattering length for atom s in the unit cell.

The Debye — Waller factor, eV ) arises due to the fact that each atom is not actually
rigidly fixed in position, rather is subject to thermal and zero point motion. Thus the

scattering comes from a diffuse area which gradually decreases with increasing Q.

The exact form of W; (Q) is dependent on the structure of the material.

Looking at the incoherent part of equation 24, this scattering originates due to the
different isotopes and nuclear spins that are randomly distributed throughout the
crystal. This scattering contributes to the background and is homogeneous over the

entire solid angle, Q = 4m.

do) _lyfp_plwe@
[dQ )incoh 472'- ;lb bl ¢ (30)

In actual fact, the scattered intensity will not behave like a delta function as is

suggested above. Rather, for any real crystal, 7 is a cone from the origin of reciprocal

62



2 Theory

space to a small volume centred on the mean reciprocal lattice point. In practice, the
variation of intensity with ® or with 20 is well approximated by a Gaussian function,
which also accounts for the resolution function of the neutron scattering instrument.
However, this is not always the case with powder diffraction as opposed to single
crystal diffraction. The peak shape for powder diffraction patterns can be quite
complex and is usually machine specific, normally mimicking the pseudo-Voigt

function.

Of course the diffraction of neutrons by matter is not the same as scattering from a
fixed point (an elastic event), this is due to the inherent thermal motion of the lattice
The process of scattering can alter momentum and energy of both the neutrons and the
crystal. This is what is known as an inelastic event and is elaborated upon further in

the next Chapter.

2.4.3.2 Inelastic scattering

One significant advantage of using neutrons comes from inelastic scattering, i.e. when
the scattered vector does not equal the incoming vector. The momentum transfer of
the neutron during collision can be written as ZQ = Ak; — ky), where k; # kr . The

relationship between Q, k; and ks can be represented, as above in Figure 23, with the

aid of scattering triangles.

B2

SN
L [

Figure 24: The scattering triangles in reciprocal space for an inelastic scattering
event. Depicting energy loss and gain of the neutron on the left and right

respectively.
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212
The scattered neutrons will have energy of z—kf ,

that is different to the energy of the incident beam. Instead, the picture is as shown in
Figure 24, where k; # ks . The mathematical representation of Figure 24 is given as a
function of the double differential cross section, this is similar to the differential cross
section but it deals with the probability of neutrons being scattered into d€2, with
energy E+AE. Due to the fact that the excited states involve large regions of the
sample, rather than isolated atoms, and as the measurements select only a small
fraction of the total scattered flux, large crystals and intense neutron beams are needed
in order to study inelastic events. The inelastic one-phonon scattering cross section is
written as below. The ‘plus’ sign refers to phonon creation and the ‘minus’ sign to the
scattering whereby the neutrons gain energy from the thermal phonons in the lattice.

Phonon creation is possible at any temperature whereas the latter is more likely at

high temperatures.
d’c _ﬁ_(Zﬂ):’ 2 1 l l )
dQdE  k; 2V ;‘F a.0) ) ["r(z)’fziz] slotw,(gxs(@tq-ton

V is the crystal volume and g, Q and 7 are as defined in Figure 24. vy is the quantum
number that labels the eigenfrequencies w,(g) of the phonon. The 6 functions specify
the energies and position in reciprocal space where the measurement is being taken.
n(gq) is the Boltzman factor and is describes the distribution function of phonons of

different energies. The inelastic structure factor can be defined as,
—0-V'(g) g,
Fy(q,Q)_-_—_ zbl:-;__—eg e W(_) (32)
L

and may be compared with the nuclear coherent elastic equivalent from equation 24.
The extra parameters in the above are M), the mass of the atom at position / and
Q-V!(g), the dot product of the wavevector Q, and the polarisation vectors V for a

particular g, summed over the set of normal vibrational modes.
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2.4.3.3 Magnetic Scattering

In order to describe magnetic scattering of neutrons, it may be prudent to discuss first
the principles of x-ray scattering by atoms. The basic interaction in this case is that of
an electromagnetic wave with the electric charge of the atom. The scattered wave,
from a small volume dV at position r, should be proportional to the charge collected
in this volume i.e. p(r)dV, times the phase factor exp(-ix'r), where x = k¢ - k;. The
total scattering by an atom is obtained when all such contributions are added together,
which means that the scattering amplitude of x-rays by an atom must be proportional

to,

7.(0)=[p. ()" av (33)

where Z is the total charge of the atom and f(6) is the charge form factor, normalised

to unity at k= 0.

Because the electron distribution in an atom spreads out to something which we can
imprecisely call the atomic radius, R, the function fc(6), is strongly 8 - dependent.
This is a direct consequence of the fact that the x-ray wavelengths and R, are of the
same order of magnitude. The form of the function is shown below, labelled f¢ as a

function of sin (6) / A.
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Figure 25: The variation of the form factors for x-ray (fc) and magnetic neutron

scattering (fM)M.
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The short resume given above should be helpful in forming an idea of what happens
when a neutron interacts with an atom with magnetic moment g. The neutron is also
in possession of a magnetic moment and thus can ‘feel’ the magnetic field created by
the atomic moment. The scattering which results from the interaction of the neutron
and atom must be proportional to the neutron’s magnetic moment and also
proportional to the spatial distribution of the magnetic moment g of the atom, in much
the same way as x-rays react to the spatial distribution of charge. The magnetic

scattering should have the form, similar to (33),
p(0)=const- Jp y D 7 dV (34)

where pu(r) is the magnetisation density of the atom and the multiplicative constant
must contain the neutron fundamental constants. Due to the fact that the magnetic
scattering also depends on the mutual orientation of the neutron and atom magnetic
moment and possibly on the scattering vector x this constant should contain
information on these as well. Indeed, it has been shown by Halpern and Johnson'®

that,

7(0)=0.2659 o -quf,, (0)=0 -qp(6) (35)

where fy is the magnetic form factor.
1 —iKr
fu (e)=';J'pM (r)e ™" av (36)

This function describes the spatial distribution of magnetisation within the atom and is
also normalised to unity at k¥ = 0. The function is shown in Figure 25 with f¢ for
comparison. We know that magnetic scattering arises from the uncompensated
magnetic moment of electrons occupying 3d, 4d or 5d shells (transition metals) or the
4f (1athanides) or 5f shells (actinides). These electrons are usually located outside the
‘core’ formed by the majority of the electrons, thus one can see that the spatial

distribution of these electrons will be more diffuse than the overall charge distribution
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of the atom. Due to the properties of the Fourier transforms this must be reflected in a
magnetic form factor which is narrower than the charge form factor of the atom. This
is shown above in Figure 25, where the relatively fast decrease of fy(6) with
scattering angle must immediately result in one difficulty, namely a rapid loss of the

intensity of magnetic scattering.

Looking at equation 35, we see that 5(@) also depends on G and on g, & is simply
the unit vector along the neutron spin. The g vector, or the Halpern vector is defined
as, § =¢&(é-m)—m where m is a unit vector along the atom magnetisation direction
and where € =K /| K |. If we allow m =€, then the g vector vanishes thus there is no

magnetic scattering in such a case. Therefore we see that the magnetic neutron
scattering arises solely from the magnetisation component perpendicular to the
scattering vector. So, we see that when an atom has its moment oriented in any
direction, for example in neutron scattering on a paramagnet, the magnetic scattering

cross-section will be,

do,,

-2lp6) 37)

that is, one third of the possible orientations will not contribute to the scattering.

Because magnetic diffraction can be regarded as an extra component of the coherent
elastic scattering cross section, there is no interference between the nuclear and
magnetic terms, they are merely superimposed. Thus by measuring the intensities of
many different magnetic reflections, both the configuration and the orientation of the
magnetic moments in a sample can be determined. For example, in a ferromagnet, the
magnetic and nuclear unit cells are identical, so the magnetic peaks will simply add to
the scattering at temperatures below T¢c. For an antiferromagnet, the magnetic unit cell
will be twice the nuclear cell in at least one direction. Thus when cooled below Ty, the
antiferromagnetic reflections do not appear at the nuclear positions because at these
points the reflections from successive planes with moments directed oppositely are
out of phase and cancel. Instead, extra magnetic reflections appear at half the spacing

along each axis where the magnetic unit cell has doubled. When the magnetic unit cell
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is not an integer multiple of the nuclear cell the system is described as
incommensurate. Other magnetic systems include helimagnets such as Pd or spin

glasses.

Just as phonons are the excitations observed by use of inelastic nuclear scattering, the
magnetic equivalent, magnons, can be observed with the aid of inelastic magnetic
scattering. Like the phonon the magnon is a quantised spin wave that represents the
deviation from perfect magnetic spin order. The incoming neutrons interact with the
quantised wave and can be scattered or exchange energy with it. Thus by taking
measurements over temperature ranges, energy ranges and different reciprocal lattice
positions, one can obtain a full description of the energy levels, magnetic dispersion

curves and anisotropy of the system.
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3 Experimental Methods

This Chapter gives details on the crystal growth of the systems used for experimental
work in this thesis and also gives comprehensive information on each of the neutron
scattering diffractometers/spectrometers used for data collection. Information is also
given on the sample environment hardware that were used to subject the systems to

different experimental conditions.

3.1 Crystal Growth Methods

The growth of large single crystals of air and moisture sensitive materials is usually
accomplished using crystallisation from the melt. The most usual types are the
Czochralski and the Bridgman-Stockbarger methods. The latter was employed in the
production of single crystals for this thesis. The Bridgman-Stockbarger technique
works by the process of pulling a molten sample through its freezing point thus
promoting crystallisation. The molten charge is held in a sealed silica tube with a
sharp or ‘wiggly’ tip. The tube is mounted in a Bridgeman furnace with temperature
approximately 20K above the crystallisation temperature of the sample. The tube is
gradually pulled through a temperature gradient (AT = 40K) and as the tip of the tube
passes the crystallisation temperature, nucleation occurs. The shape of the tip of the

silica tube is designed to aid the growth of a small seed crystal.

The temperature gradient employed is of the utmost importance. The crystallisation
point should be well defined in the furnace; this calls for a high degree of thermal and
mechanical stability to ensure that the pull rate is constant and that the temperature
profile is not smeared out. If this is not the case the crystallisation plane will be
disturbed and the likelihood of the production a polycrystalline sample will increase.
The melting point and pull rate is unique to each furnace and is gauged using trial and

€1ITor.
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Virtually all of the single crystal samples used in the experimental work in this thesis
were grown by Dr. D. Visser, at Warwick University. The ternary halides were
synthesised using stoichiometric amounts of the binary halides AX and BX:, (e.g.
CsFeBr-? is prepared using CsBr and FeBrz). It has been noted'that in order to
produce a large single crystal sample by Bridgeman technique great importance
should be placed on the purity of the starting materials. Normally the BX. precursor
can be obtained commercially as a hydrate, e.g. FeCU e« 4 H.O, this can then be

dehydrated by heating steadily under a stream of HX gas.

Equal molar amounts of the pure powder precursors are mixed together and loaded
into a silica tube, the tube is then sealed. This preparation takes place in the inert
atmosphere of a dry box, due to the hygroscopic nature of the precursors thus
preventing degradation of the starting materials. As a safety measure the silica tube
containing the powder sample is placed in a muffle furnace and the contents melted,
usually at 100K above the melting temperature of the sample. This helps prevent
explosion of the precursors in the Bridgman furnace. The silica tube was loaded into
the three-zone Bridgeman furnace available at the Physics department of Warwick
University, manufactured by T.E. Brown and Barrington of Harston, Cambridge and

procedure followed as above.

Hot Zone— 1 10 Control

Warm Zone— |

Sample
Cold Zone— 1

Winding
motor

Figure 26: Schematic of a Bridgeman Furnace.

One of the fortunate aspects of working with the ABX3 halides is that they have a
cleavage plane along the [001] - [110] direction. This means that by simply pressing
on the crystal with a sharp object such as a scalpel, it will cleave, leaving a flat face.
This makes it relatively easy to distinguish and align the crystals for neutron

scattering experiments.
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3.2 The Neutron Scattering Spectrometers/Diffractometers.

There are currently many different types of neutron scattering spectrometers and
diffractometers available to the scientific community, from the original and relatively
‘simple’ Triple Axis Spectrometer (TAS) to the more modern and complex Neutron
Spin Echo (NSE) machines. The ever increasing number of different types of
machines has considerably widened the typical profile of a neutron scatterer.
Spectrometers such as Small Angle Neutrons Scattering (SANS) spectrometers have
been developed which allow, for example, the characterisation of biological samples
and opened up neutron scattering to the biological community, whilst development of
stress & strain rigs have allowed non-destructive testing of mechanical devices and
weld joints and thus have involved the engineering community. What follows is a
description of the machines that have been utilised for neutron scattering experiments
in this thesis. A brief comment on the nature and function of each
spectrometer/diffractometer is given along with a commentary on the specific

experiments undertaken.

3.2.1 Triple Axis Spectrometer

This classic instrument is now seen at virtually all neutron beam reactor facilities,
sometimes outnumbering all other spectrometers put together. Historically, the first
spectrometer developed was of TAS type by the Noble Laureate Bert Brockhouse at
the Chalk River facility, Canada. It is so called due to the three principal components
of which it consists. These are the monochromator drum, the sample table and the
analyser crystal. All may be varied independently, hence, triple axis. This provides
great flexibility within one machine and the TAS can be operated in many different

configurations.
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DETECTOR

Figure 27: Schematic of a Tripe Axis Spectrometer for inelastic neutron

scattering.

The triple axis spectrometer can be operated in either inelastic or elastic scattering
mode. The only difference being that for elastic scattering either the analyser is
excluded altogether or it is positioned such that it matches the scattering of the
monochromator. Both monochromator and analyser usually consist of single crystals
of either Ge or pyrolytic graphite. The crystal are orientated in such as way as to fulfil
the Bragg condition with a particular hkl plane, e.g. the (1, 1, 1) plane in Ge or the (0,
0, 2) plane in pyrolytic graphite. Normally the TAS consists of a flat monochromator
and analyser, as shown schematically above, but curved monochromators and
analysers that allow both horizontal and vertical focussing have become more
popular, mainly for the increased flux they provide at the sample. The detector is
usually a *He filled counter with an applied voltage of approximately 1500V between
cathode and anode. Neutrons that enter the detector chamber react with the He gas via

the equation,

3He+!n—'H+H +0.76MeV

The energetic electrons produced by this reaction are accelerated to the anode and
produce a voltage pulse that is proportional to the number of incident neutrons. Filters
are often used to reduce the second order contamination from the beam. If one looks
at the Bragg equation, nA = 2dsin6, one see that there are many different plane levels
in the monochromator or analyser which contribute to scattering. In order to reduce
this contamination, filters such as pyrolytic graphite, which works by transparency to

certain wavelengths but not to others, are employed.
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The flexibility of a TAS lies mainly in its ability to chose any point in (Q, ®) space
with one extra degree of freedom left to chose from, such as incident energy E,. If we
take this option and fix E, whilst scanning in energy, it is known as the constant-Q
method and is normally used for phonon/magnon dispersion measurements [Figure
28]. Constant-E scans are used in special situations when the frequency response
varies very rapidly as a function of Q, it is then the practise to fix ® and scan Q along

some convenient linear path in reciprocal space.
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Figure 28:Phonon dispersion with an acoustic and an optic branch. Scanning

directions for Constant-Q(or K) and Constant-E (energy) scans are indicated.

Constant- Q scans may be performed using three different methods:

o Fixed initial energy (20 fixed, 205 is scanned), for each 204, Y and ¢ are
changed to keep K= G £ q constant. Here [k| is fixed and lies on a circle of
constant radius. A disadvantage associated with this method is the inherent
kicot@y distortion of the scatted intensities due to scanning the analyser. This can,

however, be corrected for in the final analysis.

Figure 29: Scattering triangle for fixed incoming energy, in up-scattering mode

(neutron energy gain).
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e Fixed final energy (20um is scanned, 20, is fixed), y and ¢ are changed as above to
keep K constant. This does not have the associated distortions of the above

technique but it is a physically slower technique due to the movement of the TAS.

Figure 30: Scattering triangle for fixed final energy, in down-scattering mode

(neutron energy loss).

o Constant sample scattering angle (Both 20y and 20, are scanned), this technique
is sometimes used in pressure dependant experiments when a severe limitation is

place on the incoming and outgoing pathways.

Significant other factors should be taken into account before a successful neutron
scattering experiment may be undertaken. Depending on the configuration of the TAS
it may be more advantageous to look at mirror images of the Bragg peak that you
wish to measure. For instance one may possibly gain better resolution by measuring
the Bragg peak at (-2/3, -2/3, 1), rather than (2/3, 2/3, 1). The Cooper-Nathans model
of the resolution function of a TAS was first published in 1967. It is now incorporated
into neutron scattering measurement software at all neutron scattering facilities
throughout the world (albeit modified for each spectrometer). The resolution function
R(AQ, Aw), is defined as the probability of detecting neutrons with energy @ + Aw
and wavevector Q + AQ at position (Q, ). It arises from the mosaic spread of the
analyser and monochromator and the transmission function of the collimator. The
function R(AQ, Aw) is four dimensional, but is normally considered with the
component Q, out of the scattering plane and thus it reduces to an ellipsoid in Q;, O,

@; the resolution ellipsoid.
The intensity measured at the detector is given by convolution of the scattering

function with the resolution function for that point. In the case of a dispersion surface,

such as phonons etc., a constant-E or constant-Q scan consists of moving the
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resolution ellipsoid vertically or horizontally and integrating where the two functions

intersect. This is demonstrated below.

E(Q)
R(Aco0,AQ)

Figure 31: Schematic of a dispersion curve and resolution ellipsoid in {0, co)

space.

The normal configuration of a TAS is that of the ‘w’ formation, whereby the
monochromator, analyser and detector line up in the shape of a ‘w’, as shown below.
It can be seen that the best resolved peak will occur when the resolution ellipsoid and

the dispersion surface are aligned to have the same gradient.

resolution
elllpsofi
dispersion
curve

Defocussed focussed

-y

Figure 32: (a) The ‘W’ configuration for a Triple Axis Spectrometer, where M is
the monochromator, S is the sample, A is the analyser and D the detector, (b)

Constant - E scans on the focussed and defocused sides of the dispersion curve.

Many different Triple Axis Spectrometers have been used for data collection for
experimental work presented in this thesis. For clarity, the descriptions of the
individual characteristics of each spectrometer have been grouped below and the

interested reader is referred to those Chapters for further information.

75



3 Experimental Methods

3.2.1.1 The TAS E! at the HM|, Berlin.

The spectrometer is located on the DIN beamline of the BER - II reactor at the Hahn
Meitner Institut. The monochromator and analyser can either be pyrolytic graphite
(PG 002) or a Heusler crystal (Heusler 111). Both monochromator and analyser have
variable curvature in the horizontal and vertical directions. The whole spectrometer is
made of non-magnetic materials, this allows polarisation analysis to be undertaken
without spurious signals from the spectrometer. A second turntable, below the sample
table with its axis collinear to the sample axis, can be used for mounting and orienting
ancillary equipment, such as Helmholtz coils used to produce a horizontal magnetic
field. The analyser and detector are constructed into a single "Tanzboden" unit, this is
unusual in that normally the analyser and detector are separate units. The detector is
mounted on a cantilever arm, which can be rotated freely around the analyser axis
after decoupling it from a beam tube device leading through the analyser shielding.
By rotating both the cantilever arm and the detector by 180°, it is possible to quickly
change to a two-axis mode of operation, this feature was utilised during the
experiment elaborated upon in Chapter 4.1. The analyser shielding has an
unconventional design: a horizontal segment of the polyethylene shielding is replaced
by a rubber tire filled with water, over which a specially formed polyethylene block
containing the beam channel can be moved. This beam tube device is coupled to - and

automatically rotates with - the detector arm’'

Figure 33: Schematic Representation of the TAS EIl at the HMI'"?
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This spectrometer was used in conjunction with the vertical magnet, VM3
(temperature range 300K-2K and maximum field of 5T), to establish the critical
exponent, P, of CsNiCI* under magnetic field and electric field (Chapter 4.1). It was
also used, again in conjunction with the vertical magnet, VM3, to establish the critical

exponent p, of CsMnB1” under magnetic and electric field (Chapter 4.1)

3272 The TAS V2 (FLEX) at the HMI, Berlin.

FLEX (V2) is located at the cold neutron guide NL IB at the BER-U reactor of the

HMI. A schematic of the spectrometer is shown below.

Figure 34: Schematic Representation of the Triple Axis Spectrometer V2 at the
HMI"\

All distances, i.e. those between monochromator and sample, sample and analyser,
and analyser and detectors can be varied. This is so that optimal scattering geometry
for best intensity at the required angular and energy resolutions can be obtained. In
order to further increase the flux, a tuneable curved monochromator and analyser are
used, both of which are fabricated from strips of Pyrolytic Graphite (002). The
geometry of FLEX allows incident neutron wavelengths of between 1.7A (27meV)
and 6.5A (1.9meV). In order to reduce second order contamination of the beam, a
tuneable pyrolytic graphite filter is used for X< 4A and a cooled Be filter for A> 4A.

This spectrometer was used in conjunction with a dilution refrigeration unit and a 6

Tesla, Horizontal Field magnet, in order to establish the magnetic phase diagram.
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magnon dispersion curves and critical exponent p of CsFeBr* at mK temperatures

(Chapter 5.3).

3.2.1.3 The TAS 4F1 and 4F2 at the LLB, Saclay, Paris.

These are more conventional Spectrometers than El, described above, in that the
analyser and detector are separate units. The 4F1 spectrometer was used in
conjunction with a modified Orange cryostat and a He-pressure cell (Chapter 3.3.3) to
enable us to establish the magnetic dispersion curves of CsFeCE (Chapter 5.1.1) and
CsFeBrs (Chapter 5.2.1) under hydrostatic pressure of 5.0kbar. 4F2 was used in
combination with an Orange cryostat to measure the sublattice magnetisation of
several different samples of KNiCE and establish the critical exponent p. The
spectrometers 4F1 and 4F2 are located on the left and right tangential channels of the

beamline 4F at the Orphée reactor, Saclay.

RLIE
KNIEK

ANALYSEUR

CEIHTOJR

Figure 35: The Triple Axis Spectrometers, 4F1 and 4F2, at the LLB, Saclay114

Both have a pyrolytic graphite double monochromator setup, and both can have the

ability to use either flat or curved pyrolytic graphite as an analyser. As is described in
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the experimental Chapter 5.1.1, for fixed incoming energies of ki = 2.662 A* a PG
filter were used to reduce the second order contamination of the neutron beam. At ki =

1.55 A" a cooled Beryllium filter was used for the same purpose.

3.2.1.4 The Single Crystal Diffractometer, D15 at the ILL, Grenoble.

D15 is a single-crystal diffractometer of the Harwell MK VI design. It is installed on
an inclined beam tube (IH4) at the ILL, Grenoble. To compensate for the inclination
of the incident beam, the scattering vector of the monochromator is tilted to bring the
monochromatic beam into the horizontal plane. It is possible to operate the instrument
in four-circle mode but is more often used, as in the case in this thesis in the normal-
beam mode. The monochromator, unusually, utilises Cu (331) as a reflection plane, as

opposed to the usual PG(002).

Monocfaromatof ICryocla,t

Protection Veoel t>etector
Shutter and Slit

Detector Cradle

Sample Table

Figure 36: The single crystal diffractometer D-15 at the Institut Laue

Langevin" "

As can be seen above in Figure 36 the detector has a motorised motion allowing
inclination of the detector to the plane of scattering from -10° to +35°. DI5 can be
used for a wide range of physical problems including the determination of magnetic

phase diagrams or of pressure-temperature phase diagrams. We used D15 in
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conjunction with a He pressure cell and ‘Orange’ cryostat to establish the pressure -

temperature phase diagram of TIFeCls;,(Chapter 4.4.2).

3.2.1.5 The Membrane Diffractometer, VI at the HMI, Berlin.

The diffractometer VI is installed at the curved neutron guide NL 1A at the Ber -II,
reactor at the HMI, Berlin. It has a vertically focusing graphite monochromator (PG
002) which provides adjustable wavelengths between 3A and 6A. The detector is a
~“He area detector with a sensitive area of 20 cm x 20 cm. This allows large areas of
reciprocal space to be scanned with each single measurement. The detector may also
be inclined out of the plane of the experiment in order to detect scattering from higher
planes, similar to the diffractometer D15 outlined above. The monochromator to
sample and sample to detector distances can be varied in order to produce the most
suitable resolution for the particular experiment. A schematic of the Diffractometer is

shown below.

Figure 37: Schematic Representation of the Membrane Diffractometer VI at the

Although V1 has been principally designed for use with biological samples such as
biological membranes, polymers etc. we used it for a single crystal experiment on the

large easy plane anisotropy system CsMnBr”. This experiment was the first single
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crystal experiment undertaken on VI and was performed in conjunction with an

applied electric field. The experiment is elaborated upon in Chapter 4.1.1.

3,2.2  Powder Diffractometer,

There are two methods of obtaining a powder diffraction profile. The first is where
the powder sample is exposed to a monochromatic beam and the crystallites with the
necessary orientation to satisfy Bragg’s law will produce scattering. If a powder

diffraction instrument is based at a reactor source then the scattered beam will be

measured as a function of the detector angle, 20, as below.

Monochromatof Shielding
Beam
Sample
Monochromator
Scattering
MoweaWe
Beam Slop
Foamed
Monochromatic
Neutron Collimators
Beam and ®He

Neutron

Detector Detectors

Support
Track

Figure 38: Schematic of a powder diffraction experiment at a reactor source.

[Ref. Theory of Thermal Neutron Scattering, Clarendon Press, Oxford, 1971]

Ifthe diffractometer is based at a spallation source then the sample is irradiated with a
pulsed beam of neutrons having a varying range of energies. Banks of detectors
located at different scattering angles measure the scattered neutrons. Figure 41 shows
a schematic of the powder diffractometer POLARIS based at the ISIS facility with the
different detectors (low, 90° and backscattering) visible. At a particular scattering
angle the diffraction pattern will look similar to that of the steady state source,
however in this case the independent parameter is now the neutron’s time of flight
rather than the scattering angle. Thus the time at which each neutron impinges on the
detector is recorded. Because the neutron’s time of flight is proportional to its

wavelength and, for constant scattering angle, this wavelength is proportional to the d
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spacing between the atomic planes, nA = dsin6, the measured neutron scatter can be
plotted against time, A or d-spacing. The detector bank sitting at small scattering
angles will provide information concerning widely space atomic planes, whilst the
banks at large scattering angles will provide information concerning smaller d-

spacing.

The second method of obtaining a powder diffraction profile is whereby the detector
is fixed and the wavelength is varied. This is commonly used, as with the TAS
method of fixed detector, when using apparatus with limited pathways for incoming

and outgoing beam, such as magnets, pressure cells etc.

Powder samples consist of small crystallites lying in all possible orientations
compressing the three dimensional reciprocal lattice into one dimension. Thus, the
large number of intensities obtainable from a single crystal are projected in a powder
sample and instead, a radially symmetric diffraction pattern is produced. In order to
properly refine the data it is necessary to compare not only integrated intensities but
also intensities calculated for every position 20 of the detector. This approach was
pioneered by Rietveld''” and therefore, the comparison of experimentally measured
and theoretically predicted dependencies of intensity on the scattering angle is know

as Rietveld refinement.

The refinement involves three groups of parameters to account for the profile model,
corrections to intensity and the structural model. Within the profile model are
parameters to refine the positions and shapes of the Bragg peaks. Parameters that
define the Bragg peak position include the diffractometer zero point, the unit cell
constants, sample displacement and transparency terms. The intensity correction
terms include parameters to allow for effects such as absorption, extinction and
preferred orientation. The structural model contains the same parameters as that for
single crystal refinement, namely atomic coordinates, occupancies and temperature

factors.

No matter where the data originates from, X-ray, steady state or pulsed reactor source,

the objective of Rietveld refinement is the same, that is the most accurate least-
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squares fit to all of the individual observed data points (y;) simultaneously. The

quantity minimised is the residual S,.
S, =Y w,(—ya) (38)

where the sum is over all the data steps and where,

w;= I/y, N
yi = observed (gross) intensity at the i step ,

y.i = calculated intensity at the i step ,

For the reasons outlined above, many Bragg reflections will contribute to the intensity
i, observed at a point, i. The calculated intensities y,; are determined from the [FK|2
values calculated from the structural model. This is achieved by the summing of the
calculated contributions from neighbouring Bragg reflections and the background.
Thus,

Vi = SZ LKIFK|2¢(29i -20, )PKA+ Yei (39)
K

where,

s is the scale factor, K represents the Miller indices for a Bragg reflection, Lx contains
the Lorentz, polarisation and multiplicity factors, ¢ is the reflection profile function,
Pk is the preferred orientation function, A is an absorption factor, Fy is the structure

factor for the K™ Bragg reflection and yy; is the background intensity at the i™ step.

The reflection profile function is machine specific and has special relevance to
spallation source neutron scattering. Due to the nature of the production of the neutron
pulse from a spallation source its shape is highly asymmetric in time. The peak shape
calculated for HRPD at the ISIS facility is given below as an example. HRPD uses a
modified Robinson-Taylor-Carpenter (RTC) peak shape, which is a rather

complicated function consisting of epithermal and thermal components.
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Figure 39: The contributing functions of the HRPD lineshape based on a
modified RTC function'’®.

The success of a refinement is judged from the following sums of the residual

intensities, (R-factors):

The profile R-factor:

2| Y; (obs)— Y (calc]

R, = 40
SR Y78 @
The weighted profile R-factor:
w;\y;(obs)— y,(calc :
r,, - | Zm0ers)-yeai) an
> wi(y,(obs))
The structure factor R-factor:
R ZI(I p ('obs'))”2 - (I X (calc)m] "
(O I T -
and the Bragg R-factor:

T
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The Goodness of fit indicator, Y, is given by:

where R, the expected R-factor is given by,

N-P

2
W; Yoi

R =

(-4

N is the number of data points, P is the number of parameters.

(44)

(45)

A x value of over 1.5 indicates that the model is a poor fit or that you have a false

minima in the model. A value of less than 1 indicates that the model is

overparameterized.

3.2.2.1 The Powder Diffractometer, HRPD, at the ISIS facility, Oxford.

The design and positioning of the High Resolution Powder Diffractometer at the end

of a 100m beam line makes it one of the highest resolution neutron diffractometers in

the world and thus gives it unique power in the study of structural information and

small structural changes. HRPD has 3 different detectors, positioned at 28-32°, 90°

and Backscattering, these can be seen below in Figure 40.

/ 90" Detector

28.37 Atfilled

Backscattering Vi filled detector tank
Detector i
Guide S
tube _ / ~H Boem
o
\ A Stop
P

1m sample 2m sample
position position

Figure 40: Schematic plan view of the HRPD detector configuration'”’.
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Each detector has characteristics which make it suitable for different tasks. The
backscattering detector has, in total, 720 discrete detector elements which may be
used, decoupled, as a radially pixelated position sensitive detector. These elements are
software linked to form 60 rings, these rings are designed to mirror the Debye-
Scherrer rings produced by powder diffraction. In this manner the geometric
aberration may be minimised. The data obtained in backscattering detector is of
inherently high resolution. The effective upper d-spacing limit of the backscattering
detector is approximately SA. This limit is a direct consequence of the incident flux of
the diffractometer which, at only modest intensity, extends to wavelengths of
approximately 10A. In order to measure longer d-spacing information, detectors at
lower angles are vital. In these detectors, for a given d-spacing the Braggs’ Law
equation is satisfied by neutrons of shorter wavelength and therefore, on HRPD, of

higher flux.

The 90° detector utilises a ZnS scintillator, which by virtue of its peak height response
can discriminate between neutrons and 7y radiation. This insensitivity to 7y rays is
significant, as the backscattering detector is quite insensitive to this radiation. The
detector is comprised of 6 modules each with 66 elements. Each module is positioned
on a constant radius from the 1m sample position. As with the backscattering detector
just mentioned, data may be collected in each of the 396 discrete elements but more

usually the detector is software configured into 66 radial segments.

The low angle detector utilities %" *He tubes as a detector. The HRPD low angle
bank, currently houses 72 tubes which lie on a constant radius parallel to the through
beam direction and are configured in 3 rows of 24 tubes. Again, similar software
linking strategies outline above may be applied. The long secondary flightpath of the
low angle bank, necessary in order to minimise angular divergence, requires that the
large tank housing the detector be filled with Ar gas. The tank is therefore discrete
from the other sample and detector tanks which are evacuated during diffraction
measurements. The incident and transmitted beam intensity is monitored by two

Davidson (1985) monitors situated at 93.50m and 96.74m from the moderator.
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The characteristics of each detector bank are summarised below:

Backscattering

90°

Low Angle

Detector

Specification

ZnS scintillator

ZnS scintillator

1" 10atm He? gas tubes

Geometry

60 rings:

7<r £8.5cm

Slab:
20 x 20cm

72 tubes:
(20cm active length)

355<re<37cm

66 X 3mm elements

8 tubes/module

8 Octants: 4147cm*

6 Modules: 2400cm’

9 Modules: 1800cm’

Fixed Scattering

160° £20 < 176° (1m) 87°<20<93° 28°<£20<32°
Angle
Solid Angle (€2) 0.41 ster (Im) 0.08 ster 0.01 ster
Resolution (Ad/d) ~4-5%10" ~2x10° ~2x107?
d-spacing range (30-
pacing range ( ~0.6 - 4.6A ~09-6.6A ~2.2-165A

230ms)

The powder diffractometer HRPD has been used in conjunction with a gas pressure

cell (Chapter 3.3.3) and modified Orange cryostat to enable us to characterise the low

temperature structure of TIFeCl; under hydrostatic pressure. More information on this

experiment can be found in Chapter 4.4.1.

3.2.2.2 The Powder Diffractometer, POLARIS, at the ISIS facility, Oxford.

As with HRPD, POLARIS has a variety of detector banks available for data

collection, these are, ‘very low angle’, ‘low angle’, 90° and ‘back scattering’, as

shown below.
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Figure 41: Schematic of the powder diffractometer POLARIS at the ISIS
facility"'\®.

The POLARIS diffractometer is located on the D7 beamline at the ISIS facility,
receiving a ‘white’ beam of neutrons from the ambient temperature water moderator.
It has the possibility of incident wavelengths of 0.1 - 6.0 A, with a corresponding
incident energy range of ~ 2meV - s eV. Motor driven collimators allow the incoming
beam to be reduced, from a maximum size of 40mm high x 20mm wide, to match the

sample size. This eliminates any background scattering contamination from the

sample environment equipment.

The characteristics of the detectors present are given below in tabular format.

Position Very low angle Low angle 90 degrees Backscattering
Type ZnS scintillator *” ~He tubes ZnS scintillator 1” “He tubes
No. of detectors 80 80 216 58
20 range 13°-15° 28° - 42° 85° - 95° 130°-160°
Q(steradians) 0.009 0.046 0.48 0.29
Ad/d (%) 3x10* 1X102 7X103 5X 100
Li (m) -2.2 1.72-2.65 -0.8 0.60- 1.30
d range (A ) 0.5-21.0 0.5-8.15 0.3-4.1 0.2 -3.2

We utilised POLARIS for low temperature, structure determination studies, on the

triangular lattice antiferromagnets CsFeCl* and CsFeBr™ under hydrostatic pressure. A
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modified Orange cryostat was used in combination with a gas clamp cell to obtain the

necessary sample environment.

3.2.3 Flat Cone Diffractometer.

The flat cone technique is a modified case of the Weissenberg technique which was
developed for use with X-ray diffractometers in conjunction with photographic
detectors. In the Weissenberg method a single crystal is rotated about an axis and thus
the planes normal to this axis will diffract. The diffraction will take the form of a
plane or cone shape i.e. all the reflections of one reciprocal plane or layer are recorded
along straight lines on a cylindrical film. If only one line is selected by filtering the
image by placing a layer-line screen before the film, then a two dimensional lattice
plane can be mapped on the two dimensional film by coupling the crystal rotation and
the film rotation. This same procedure can be realised with a one-dimensional
electronic multidetector that is placed along one layer line. For each rotational
movement of the single crystal a separate measurement is made, this results in a loss
in resolution perpendicular to the layer line in comparison to the film method.
However statistical analysis of the data allows this to be reduced to a minimum. There
are distinct advantages to the flat cone technique, firstly and most obviously the data
collection rate will be many times that of a conventional TAS due to the fact that the
data is being collected by a multidetector which can scan many Bragg peaks
simultaneously, compared to a TAS which may only measure one point of the
scattering function at any one time. Thus this technique is well suited to the
systematic search of the intensity distribution in reciprocal space. This is especially
true for the determination of unknown lattices, e.g. in magnetically ordered crystals,
or for the observation of diffuse scattering between Bragg points. The detector may
also be tilted out of the plane of the experiment in order to establish scattering from

different layers in reciprocal space. The principle of this method is described below.

The incoming neutron beam is reflected at the monochromator in the usual way and
impinges onto the sample. The scattered neutrons are analysed by reflection at flat
crystal plates. These are orientated such that the neutrons are reflected out of the
horizontal (experimental) plane into the vertical plane. A schematic of the setup of the

flat cone technique is shown below.
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Figure 42: Schematic view of a the neutron beam path for a flat cone
diffractometer, shown in plan view (above) and plane view (below) [Born, IAEA-
CN-46/44P]

The analyser crystals are placed close to the curved one-dimensional multidetector, so
that the diffracted beam does not change much in height for different energies. The
scattering events which take place in the horizontal plane and with a given energy can
be detected simultaneously in an angular range limited only by the dimensions of the
multicounter or by the number of analyser crystals. The advantage over TAS
measurements can be seen by looking at the Ewald sphere construction for the
diffractometer. One measurement corresponds to a constant energy scan on a circle
concentric to the Ewald circle in reciprocal space, as is shown below. The TAS can
only scan one point along this curve at any one time increasing the experimental time

enormously.

=8

Figure 43: Ewald sphere construction for the flat cone technique, showing the
concentric circle that can be simultaneously measured using this technique.
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A realisation of this instrument is in place at the BER-II reactor, at the HMI, Berlin

and a description of this diffractometer is given in the next Chapter.

3.2.3.1 The Flat Cone Diffractometer, E2 at the HMI, Berlin.

The diffractometer is located at the radial beam tube R1 of the BER II reactor at the

HMI, Berlin. A schematic of the instrument is shown in Figure 44.

Figure 44: The Flat Cone Diffractometer E2, at the HMI, Berlin ™!

The monochromator and analyser are both fabricated from pyrolytic graphite, with
each analyser composed of four plates each with dimensions of 50 x 75 mm”,
covering a scattering angle of s°. The analyser units are mounted on motorised
cradles with the rotation axis in the horizontal plane, thus the energy transfer can be
adjusted to suit experimental conditions and sample. The detector is a BF; filled
curved multicounter with 400 wires. The distance between the analyser and detector is
quite small at scm, this is for the reasons explained above in that it means a small
vertical translation of the detector (5cm) covers a wide range of energy transfers
(smeV with k, = 14.2meV). The analysers and detector are located in the same
shielding block and can be tilted in order to observe scattering form the different

layers in reciprocal space. Thus by combining this tilting with the fact that the
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analyser can select different energy transfers, one can, in principle, record all elastic

and inelastic scattering events in a single crystal in a systematic way.

Many structurally or magnetically disordered crystals give rise to coherent diffuse
scattering which gives information about the local structure of disordered atoms or
spins and their correlations. This diffuse scattering takes place over a large range of
reciprocal space and thus a multidetector is ideally suited to the task of characterising
this scattering. If the disorder is static or quasistatic i.e., the time scale of the dynamic
process is larger than that given by the inverse of the instrumental energy resolution,
then the diffuse scattering is elastic or quasielastic. In this case the elastic or
integrated quasielastic intensity can be collected with the use of the E2 diffractometer

by putting the analyser crystals to an energy transfer of E = 0.
Using this method, we measured the diffuse magnetic scattering of the triangular

lattice antiferromagnet CsNiCl; above and below the magnetic transition temperature.

A full description of this experiment can be found in Chapter 4.2.2.
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3.3 Sample Environment

Having given a full description of the neutron scattering spectrometers and
diffractometers it would be advantageous to consider the sample environment
techniques employed in this thesis. Sample environment assumes great importance for
systems such as magnetic compounds that order at very low temperatures and also, as
was suggested in the Introduction, sample environment allows the experimentalist to
tune the various parameters of his system. Magnetic field can be used to induce order
in the system and pressure can be used to accurately change its structural makeup, in
this way a greater understanding of the physics of the systems can be gained. The

apparatus used for each technique is outlined in the subsequent chapters.

3.3.1 TheILL Orange Cryostat.

The ‘Orange’ cryostat (known by its colour) was developed by scientists at the Institut
Laue Langevin, specifically for use in neutron scattering environments and presently,

the company ‘A.S. Scientific Ltd.” manufacture it under licence.

The cryostat utilises the properties of liquid “He to obtain temperatures in the region
of 1.8K. As can be seen from above, the sample is mounted on a stick, which has
several baffles affixed to it to prevent convective heat transfer. The stick is positioned
in the evacuated central core of the cryostat. This is surrounded by a jacket of liquid
*He, which is in turn protected from the environment by a jacket of liquid nitrogen.
To prevent unnecessary heat loss all jackets are protected with vacuum. The liquid
nitrogen pre cools the system to ~70K, where the *He takes over. The *He will lower
the temperature to 4.2K. A small amount of exchange gas is permitted to enter the
central chamber and the vapour pressure is reduced in the chamber by pumping. This

allows cooling down to temperatures approaching 1.5K.
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Figure 45: The typical ILL Orange cryostat, manufactured under licence by A.S.

. s 122
Scientific

As can be seen from above, the liquid nitrogen and helium Dewars sit above the
sample, allowing the neutron beam unhindered access to the sample. The aluminium
which forms the ‘tail’ of the cryostat is as thin as possible to prevent any spurious
signals which may contaminate the observed neutron diffraction pattern. The advent
of the cryostat has allowed scientists to probe the low temperature magnetic structures
of various new and exciting materials and also investigate the dynamics of materials

at low temperatures.

3.3.2 Dilution Refrigeration Units

Temperatures of -0.3K can be reached by the same evaporation method as described
above but substituting “He for "“He. To obtain temperatures below this value a

technique known as dilution refrigeration is employed. The principle of dilution
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refrigeration was suggested by F. London around 1950, when it became evident that a
liquid mixture of two helium isotopes “He and ""He would undergo a phase transition
at temperatures below 0.9K. If the mixture contains more than % then phase
separation will occur at a certain temperature along the cooling curve. The “He
(concentrated) phase will float on top of the more dense "“He-rich (dilute) phase.
Further cooling along the co-existence curve causes the concentrated phase to become
almost entirely 100 % pure “He, whilst the dilute phase tends to a limit of ¢ % "“He in
superfluid "He. It is this “He concentration in the dilute phase which makes the
dilution cooling process possible. When the “He atoms move across the boundary
from concentrate to dilute phase, a heat solution is taken from the liquids. This is
analogous to the method explained in the previous chapter whereby evaporation of the
"He extracts latent heat and causes cooling. The "He atoms in the dilute superfluid
phase behave like the particles of a gas moving through the inert “He background as if
it were a vacuum. The vapour pressure equivalent is the osmotic pressure for a
solution of “He in "He. Thus in order to maintain a continuous flow of “He an
osmotic-pressure gradient must be established in the system. This is achieved if the
mixing chamber is connected to the still, which is maintained at a temperature of

0.7K. This is demonstrated schematically below.

He 3 flow

Heal exchange

Dilution cooling

Evaporation
of He 3

Mixing m Chttmhe

Figure 46: Schematic diagram ofa He - “He dilution refrigeration unit.

When the liquid in the sill is pumped, the vapour removed is almost entirely “He
because it has a much higher vapour pressure than that of “He. Thus the required flow
of "He for cooling the mixing chamber is established. The evaporated “He is collected,

condensed and passed through a heat exchanger in which cooling by contact with the
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counter flowing dilute phase occurs. The actual arrangement of the dilution unit for
neutron scattering experiments is shown below. The still and mixing chambers can be

clearly seen and the sample is mounted just below the mixing chamber.
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Figure 47: The dilution refrigeration unit used in conjunction with a 6 Tesla,
Horizontal Field magnet for the experiment in Chapter 5.3. It is shown here

inserted into a modified Orange cryostat (left) and schematically (right) 12

3.3.3  Gas/Liquid Pressure Cells.

There are two different methods of applying pressure to a sample, which are
applicable to neutron scattering, the clamp cell and the compressed gas cell. The
clamp cell is used for higher pressures (up to Gpa), whilst the latter is useful for low
pressure, low temperature measurements. It is the latter, which has been utilised for

neutron scattering measurements in this thesis.

This method normally utilises the low temperature properties of Helium. The single
crystal sample is immersed in a chamber filled with Helium liquid, pressurised, and
the temperature lowered until solidification occurs. This gives a truly hydrostatic

environment which is capable of obtaining pressures of 5 - s kbar and the ability to
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make measurements at low (liquid Helium) temperatures. There are several reasons

why He is used for a pressure transmitting medium:

* Helium retains its fluid state down to a lower temperature than other elements.
This provides a pure hydrostatic environment for a wide range of temperatures

and pressures.

* When He is solidified in the chamber the pressure loss along the isochore is
smaller than any other element. This is due to the fact that most of the internal
pressure is caused by the zero point instability of He, thus it is relatively

insensitive to temperature change.

* The shear stress of the rare gases when plotted as a function of TN/T falls on a

universal curve, thus He should have the lowest shearing stress of all substances.

30000-
15000"
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5000 i

10 30 30 * 50 (JKTU 090 CO

Figure 48: Extrapolated melting curve of He. Path (a) shows the cooling path
with freezing occurring under constant pressure conditions at pressure Pm,
followed by cooling along an isochore to a final pressure PQ Path (b) indicates
freezing under constant volume conditions from pressure Pmfin the fluid phase.
Path (c) is an intermediate case, with change with both molar volume and
pressure occurring during freezing (Ibar = 10°Nm"") (Schull, cryogenics 1970).

The He pressure cell method was used in the neutron scattering experiments
performed at the Laboratoire Leon Brillouin, Saclay, France. This cell was built ‘in
house’ and was specifically designed with low temperature, single crystal neutron
diffraction in mind. The He pressure cell outlined above was utilised in experiments

whose details can be found in Chapters 5.1.1 and 5.2.1.
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3.3.4 Horizontal and Vertical Magnets

This section gives information on the two different magnets from the Hahn Meitner

Institut that were used in experimental work elaborated upon in later chapters.

3.3.4.1 The Vertical Magnet, VM3, at the HMI, Berlin.

The vertical magnet VM3, manufactured by AS Scientific Ltd is shown below. One
can see that its basic design is similar to that of the normal ‘Orange’ cryostat (Figure
45), in that it utilises liquid Nitrogen and liquid Helium dewars, as well as the
properties of vacuum to enable temperatures of approximately 2K to be reached. The
Helium cooled superconducting coils allow a vertical field of 5 Tesla to be applied to

the sample.
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Figure 49: Schematic of the Vertical Magnet VM3 at the HMI'**
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This magnet was used in conjunction with the TAS, El, at the HMI, in order to
establish the critical exponent, P, of CsNiCE under magnetic field. However, due to
the construction of the magnet, only certain windows of scattering are allowed. This
was to prevent the accurate measurements of P during the experiment. More

information on this can be found in Chapter 4.2.1.

3.3,4.2 The Horizontal Magnet™ HM1, at the HMI, Berlin.

The basic construction of HMI is similar to that of VM3, due to the construction of
the windings in the magnetic, the field can be applied horizontally to the plane of the
experiment and allow one to look at different aspects of the magnetic ordering in the

system in question.

70%-

*130

Figure 50: The Horizontal Magnet HMI, showing the plan and plane view of the
available scattering windows*
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This magnet was used in conjunction with a dilution refrigeration unit in order to
establish the low temperature magnetic phase diagram and the critical exponent B of
the SGS CsFeBr; at millikelvin temperatures, more information on these experiments

can be found in Chapter 5.3.
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4 Chiral Order in ABX; compounds

The information given in this Chapter relates to experimental work performed on the
ABX3 model systems. Chapter 4.1 deals with experiments performed on the easy
plane anisotropy system CsMnBr3, looking at the magnetic ordering of the system in
the presence of an applied magnetic field. Chapter 4.2 deals with experimental
measurements on the easy axis anisotropy system CsNiCl; which is a particularly
good model material for the Haldane conjecture. Chapter 4.3 details magnetic
sublattice magnetisation measurements on the isomorphous material RbNiCls.
Chapter 4.4 gives a full description of the structural and magnetic, temperature —
pressure, phase diagram of the distorted lattice compound TIFeCl; and finally the

different phases another distorted system, KNiCls, have been characterised in Chapter
4.5.

4.1 CsMnBr; (E1, V1 - HMI)

To establish the validity of the predictions and conjectures made in Chapter 2.2.2,
neutron scattering experiments were performed on CsMnBr; in the presence of an
electric field. Plumer et al.'® used symmetry arguments to demonstrate that an
electric field applied in the basal plane of a stacked triangular antiferromagnet breaks
the chiral degeneracy associated with the induced 120° spin structure which is
achieved through magneto-electric coupling which introduces a Dzyaloshinsky —

Moriya type of interaction.

It is known that the chirality of helically polarised magnetic structures, in crystals
lacking a centre of symmetry, is determined by the sign of the Dzyaloshinsky —
Moriya interaction'?"'?%1% The phenomenon known as the magnetoelectric effect
refers to the appearance of a magnetic moment in response to an applied electric field,
or vice versa'*, For example, in the system ZnCr25e4131 the sense of the chirality of
its helical ordering can be controlled by applied electric field. By means of a polarised
neutron scattering study it was possible to prove that a magnetic structure of a definite

helicity can be produced in this system in the presence of an electric and magnetic
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1.126

field. Plumer et al. > used symmetry arguments to construct the lowest order coupling

term between a spin vector, S , and an electric field, (E ), induced polarisation vector,

P, on a simple hexagonal lattice with planar anisotropy.

It has been shown that the terms which contribute to the magnetic Hamiltonian have

to satisfy several criteria: time reversal (only even powers of S can occur) and
invariance to the symmetry operations of the space group (in our case
centrosymmetric). Thus, in our case of a hexagonal lattice with a centre of inversion

symmetry, one is left with one term;
. = Vi, [drdr CEXPx), - [5(F)x5(7)] (46)

where T =7 —7', C(~7)= C(7) and subscript z indicates the  component. The spin

density of 5(F) can be represented as

5¢)= V4 )2 () - R) @7)
R
where R denotes the hexagonal lattice points and p the long range magnetic order.

p(F)=S5,e27 +§,"¢@" with S, and S, being real vectors.

The polarisation vector P in equation 46 is expected to be proportional to the applied
E - field. This form is comparable to the Dzyaloshinsky — Moriya interaction, of the

form:
b-[5,x3,] 48)

Taking only nearest-neighbour interactions into account the magnetoelectric coupling

contribution to the groundstate energy is given by,

E,=iC,P,-(5x5") (49)
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where,

~

C, =2C1[2bpycos Y2 q, singy — apysingy+ sin Y2 g cosgy)] (50)
with, C, = (V/N)C@), B=P(p,2+p,), 4:=aQ. g,=bQ,, and b= (V3/2)a.
The magnetic superexchange interactions are of the usual form,

ot = Yo, [drdr 1@ Y5 () 56)] (51)

and contribute to the ground state energy E, =J, (.§ .5 *) and where, regarding

nearest neighbours only,

Jo =2J) cos(q,) + 2J1[cos(qx) + 2cos (Y2q5) cos(qy)] (52)
with,

Ju = (V/N)J(c) and J, = (V/N)J(a) (53)

The superexchange interaction causes a modulation of the spin density and results in a
magnetic structure with Qn =(4r/3a)i, +(r/c)é, where @&, is one of the six
hexagonal basal plane crystallographic axes and with a helical polarisation where

S, = (S/ V2 )i and §, = (S/ V2 ),G , as favoured by the interaction of Equation 50.
This results in the 120° type spin structure with two different chiral spin states:

e A positive chirality state with,

0, =+(@4n/3a)%, -(2n/3a)i+(n/b)y (54)

¢ and the negative chirality state where

0, =—(4n/3a)%, +(2r/3a)i+(n/b)y (55)
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These states are energetically equivalent. Both S and O | are confined to the basal

plane.

The effect of the magnetoelectric coupling on the wavevector Q can be considered by
minimisation of the energy E, = (J ot PC 5 )5‘2 . Since C 5= 0 for the 120° type spin

structure, this type of magnetic ordering may be destabilised towards a slightly

incommensurate magnetic ordering. The two cases are now considered, where

o P//%:ie. parallel to the 4, axis, which is equivalent to the [100] direction,
e P//$ :i.e. perpendicular to the @, axis which is equivalent to the [110] direction.

This direction also corresponds to the direction of the k - vector of the 120° type

magnetic structure.

Considering the above states (and looking at only the cases where, in the limit P — O,

Q, =+(4n/3a)%, as the other four wavevectors give equivalent structures), we see

that for P// %, 55 is an even function of g, and no chirality selection occurs, and the
magnetic wavevector for a small magnetoelectric coupling is g, = £[47/3 + (1¥3) 5.1
and g, = &, where 8, = bPC, / J,. For 13//53, in the limit P — 0, E‘é is an odd

function of g, and chiral symmetry is broken, this results in two senarios:

e A positive helical state g, = +41/3 is stabilised for C; > 0. The minimum occurs
for E, at g, = 41/3 - &, where §, = aPC./ J1 and g, = 0. The magnetoelectric
coupling energy is given by, Ec = -3/2 C1aP(, + V36 214 )S?.

e A negative helical state occurs, g, = -4n/3 for C, > 0. The minimum energy occurs

at g, = 41/3 + §, and equal energy.

A schematic drawing of the wavevector dependence of the groundstate energy in

these two cases is given below in Figure 51. The broken curve shows chirality
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degenerate minima at g, = +47/3 resulting from the antiferromagnet exchange. The
solid curves show (as described above) the minima at g, = +41/3 for C; > 0 and at g,

= -47/3 for C; <0 as a result of including the magnetoelectric term.

¢
>0

Figure 51: Wave vector dependence of the ground state energy”’.

Thus one would expect to observe a helical incommensurate structure with a k -

vector k = (1/3 + 8, 1/3 + 8, 1) when the magnetoelectric effect is induced.

However, a more complicated picture emerges from the investigation of the electric
field — temperature phase diagram. The Landau-type free energy for these systems can

be expressed to low order as,

o]

F=A4,S +%A,,:P2 +i5QP2-(§><§*)+B,S“ +%Bz|§~§|+2§4|13-§|+§5st2 -P.
(56)

where Ag = aT +Jg. The parameters a, Jj, Ji, Ag, Cy, By, B, §4, §5 , are all specific

to the material of interest. Following earlier work by Plumer'®, it is known that:
e A positive B, component stabilises the helical polarisation in the absence of an

external field (magnetic).
e For B, > 0 a configuration with SLP, i.e. a linear polarised state, is preferred.

The B, term must be relatively large to realise complete polarisation because the

Dzyaloshinsky — Moriya term favours the helical state.
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Thus, depending on the relative strength of the parameters one can obtain several

scenarios from the minimisation of F when E//+y. Plumer produced two phase
diagrams from the numerical minimisation of F, and these are shown below. The

parameters a, Ag, B; and B, were set to unity and the parameters Jy, J,, C, and B,

were varied. The results given were found for cases where §4 was not large in
- =2

comparison to C;. Plumer found that a relatively strong interaction |P -S | stabilised

the linear (commensurate) phase.

E E-1C \\\ E
K>0 “
o $ o
x<0 ,,' T
E-IC i

Figure 52: Schematics of electric field versus temperature phase diagrams with £
along y and C, > 0 for the cases of (a) small and (b) large coupling §4 relative to
c.”.

The ordered states can be further characterised by the chirality.

lx]=1 helical phase,
x| <1 elliptical phase,
k=0 linear phase,

One may also visualise that for a particular temperature an increase of electric field
may create a crossover between the different states.

l.]26

The conjecture of Plumer et a concerning the magnetoelectric effect in the 120°

type triangular antiferromagnet CsMnBr; was tested by Visser et al™. Tt was
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postulated that the application of an electric field should remove the chiral degeneracy
by creating a mono-domain crystal of a single chirality when £ // [110] direction. In
this case one would expect to observe in the first instance a helical incommensurate
structure, as has been observed for the ICi phase of RbFeCI*. Furthermore, the
removal of the chirality would induce a change in universality class from the /i = 2
chiral class to the 3D XY class. With a predicted rise in the value of the critical
exponent p from p = 0.253 to P = 0.346. However, the experiments performed by
Visser et alP” on CsMnBri in the presence of an electric field show a more complex

picture.

The observed values for the critical exponent P with an applied electric field
perpendicular to the [110] direction are shown in Figure 53. It can be seen that the
value of p remains constant upto a critical value of applied £ field and then drops via

some intermediate values to P =0.165(10) around £ > 1.5 kVem .

1.0 1.5

kV (em )

Figure 53: Critical Exponent p versus Electric Field for the Easy Plane

Triangular Antiferromagnet CsMnBr '*

These are very unusual values of the critical exponent, the only other system that
shows such a low value of P is the 2D-Ising system where p=0.125. It should be noted
also that a low value of P has been reported for the Ising triangular antiferromagnet
CsCoBrs (p = 0.22). Thus, the initial simple picture of magnetoelectric coupling is not
valid. The theoretical investigation of the electric field - temperature phase diagram
shows that other options may be considered, depending on the relative strengths of the
different coupling constants of the terms of the Landau free energy expansion. As

indicated above one may observe a helical phase when the Dzyaloshinsky - Moriya
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term is strong, but when the §4 coupling term is strong one obtains a S1P

configuration, that is, a linear polarised state. This means that either the spins are
lifted out of the plane // c, or that the structure in the plane is changed. No additional
intensity was found by Visser for reflections of the type [001] and [111] upon the
application of FE field. The presence of these peaks would indicate the formation of an
Ising like structure. Low values of B may also be indicative of a weakly first order
transition. Recent Monte Carlo simulations'*® indicate that the possibility still exists
that the transition at Ty in a triangular antiferromagnet is of weak first order character.
Experimentally, such a transition has not been observed, however this may be due to
the lack of sufficient temperature resolution in the conventional experimental
techniques of specific heat, susceptibility, neutron scattering etc. The application of

electric field may enhance the first order character of this transition.

4.1.1 Temperature Dependence of the Magnetic Ordering in CsMnBr; in the
presence of an Electric Field.

A large degree of diffuse magnetic scattering can be observed around the magnetic
Bragg point Q(1/3 1/3 1) at T > Tn. Mason et al. have shown that this diffuse
scattering extends along the [110] direction of reciprocal space and that its width is
temperature dependent. The diffuse scattering adopts the same character as that found
for CsNiCls, see for example, Figure 74. Measurements of the temperature
dependence of the diffuse magnetic scattering in the basal plane of CsMn;. Fe,Br; as
a function of temperature, by Visser and McIntyre'**, on the diffractometers D10 and
D16 at the ILL, show that above Ty the intensity smears out along the (K — M)/(A -

H) line of the Brillouin zone.
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Figure 54: Diffuse scattering around the softmode point in CsHni “Fe"Br*".

The K point Q(1/3 1/3 1) represents the 120° magnetic structure whilst the other
extreme, the H point, Q(I/2 0 1), represents the pure 3-domain antiferromagnet

structure, as shown in Figure 55.

Figure 55: Schematics of the pure 3-domain and 120° antiferromagnet
structures.

The magnetic intensity observed by Visser and Mclntyre indicates that magnetic spin
arrangements are present in CsMnBr”, which are intermediate between the two
extremes described above. If the structure would be static it would represent a helical
incommensurate ordering. Simulations in connection with NMR studies indeed
indicate the presence of such arrangements. Upon cooling of the system, the relative
size of the ordering domains increase. In principle two types of chiral domains will be

present, which in a real system will be connected by anti phase boundaries.
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Figure 56: Monte Carlo simulation of the possible spin structures in CsMnBr;.

However, the domain population density does not have to be equal for the two
different chiral types. The population density could be influenced by the quality of the
sample (defects etc.) and the influence of applied magnetic and/or electric field. In
view of the observations made above, it was decided to undertake further experiments
on the multicounter membrane diffractometer, V1, at the HMI, Berlin. Detailed
information on this diffractometer can be found in Chapter 3.2.1.5. This was done in
order to investigate the influence of electric field on the diffuse magnetic ordering in
CsMnBr;. The use of the multicounter enabled us to measure the total magnetic
scattering as well as the extent of magnetic scattering in Q-space. It is expected that
the diffuse scattering should reduce due to the removal of the domain walls between

the chiral regions upon the application of E field.

The crystals of CsMnBr; were grown by the Bridgeman technique in a three-zone
float furnace. The cleavage plane of this material lies in the [001]-[110] plane of
reciprocal space, this corresponds to the a-axis and c-axis in real space. This means
that one would ideally like to obtain diamond shaped crystals for the present
experiment. In order to observe the effect, if any, of the application of E-field, it has
to be applied along the [110] direction, thus the sample crystal has to be reshaped
from a diamond form to that of a square one in order to have the two [110] faces
parallel to each other. As CsMnBr; is hygroscopic in nature this reshaping has to be
performed in the inert atmosphere of a drybox. It was deemed that the brittle nature of

the material meant that the reshaping had to be done by hand as mechanical reshaping
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would have destroyed the sample. In order to apply electric field directly to the
crystal, contacts were made on the crystal with Ag paint, other methods include
evaporating Au onto the surfaces to make the contact. The single crystal used had
dimensions of 2mm x 2mm x 7mm. Two contacts were made on each parallel face of
the sample with Cu wire, one pair provided a means of applying the E-field and the
other allowed us to measure the applied field across the sample. The 4 wires were fed
into the cryostat via the sample stick and the sample itself was isolated from the stick
by mounting it on a quartz rod. With this setup we found that we could achieve a
maximum field of 700V/2mm at exchange gas pressures around 100mbar. Higher
fields and lower pressures produced sparking across the crystal. In order to increase

the effective applied E-field it is necessary to reduce the width of the sample crystal.

v

Figure 57: Schematic of the connection of the electric field wires to the single
crystal of CsMnBr;.

In all, four complete datasets were taken around the reciprocal lattice point Q(1/3 1/3
1). Data was collected at T=8.20K and 8.55K with no applied electric field and again
at the same temperatures with an applied electric field of 700V/2mm (equivalent to
3.5kVem™). One would expect that should the application of an electric field cause a
reduction of the diffuse magnetic scattering, this would become apparent by
subtracting the data under field from the data with no applied electric field. One
should then observe a small residual diffuse magnetic scattering. This can be seen
below in Figure 58 and Figure 59. It was impossible to discern the shape of the
diffuse scattering from the available data, this was mainly due to small size of the
sample crystal although the resolution limit of the multidetector also contributed to
this.
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Figure 58: Difference in magnetic scattering of CsMnBr” at T=8.20K - E=OV and
T=8.20K - E=700V at the magnetic Bragg reflection Q(1/3 1/3 1).
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Figure 59: Difference in magnetic scattering of CsMnBr" at T=8.55K - E=OV and
T=8.55K - E=700V at the magnetic Bragg reflection Q(1/3 1/3 1).
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As has been suggested, the very small scattering from the sample observed above was
due to the physical dimensions of the crystal used in the experiment, but it is clear
from the data above that there is indeed a difference apparent between the scattering

observed with and without the presence of applied electric field.

A second experiment was performed, (on the same diffractometer with the same
sample conditions) in order to investigate the sublattice magnetisation of the system
above Tn. This was achieved by fixing the multidetector at the position Q(1/3 1/3 1)
and varying the temperature. The observed data are quite noisy but an effect is quite
visible upon the application of electric field, the P value is reduced from P=0.243(10)
to p=0.220(10) in agreement with the previous experiments'**. The reduction of
diffuse magnetic scattering can be seen below in Figure 60. It should be noted that
during the experiment there were several problems with contacting the electrodes to
the sample surface due to the high moisture levels in the air at the time the experiment
was carried out. When the crystal was removed from the cryostat at the end of the
experiment it was found that a part of the crystal had broken and become detached
from the bulk of the material. These factors may explain the low value of P = 0.22 in
the presence of an applied electric field: only a part of the crystal may have had the E-
field applied to it. Other possibilities may be that the crystal faces may not be

perfectly parallel or that the crystal may have extended defects.

E=0V
o E=700kV/2mm

g 2000- r

6 10 12 16 -5 *3 -2

Temperature (Kelvin) In((TA-T)/T,,)

Figure 60: Sublattice Magnetisation of CsMnBr* showing different diffuse

magnetic scattering for the system in and out of electric field.
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The temperature dependence of the magnetic scattering shows also clearly that the
diffuse scattering above Ty is dramatically reduced when an electric field is applied.

This lends weight to the hypothesis that the application of electric field removes the
‘domain walls’ and increases the size of the ordered domains in the crystal. Thus
CsMnBr; can be considered as a model system for the new XY chiral universality

class of Kawamura.

4.1.2 Elastic Scattering on CsMnBr; in the presence of an Electric field and a
Magnetic field.

As can be seen from Figure 14, Chapter 2.2.2.1, the phase diagram of CsMnBr; shows
a tetracritical point along B = OT. This point is formed by the amalgamation of the
spinflop phase boundary and the collinear — paramagnetic phase boundary. At this
special point which coincides with Ty, the critical exponent B = 0.25. The nature of
this point is not well characterised and different predictions have been put forward. It
may be that the value of the critical exponent is entirely due to the chiral ordering of
the system. The point may be a mean field tricritical point or it may be that a simple

first order transition takes place at Ty. Plumer et al.'*

investigated the structure of all
phases in the presence of an applied magnetic field by means of a non local Landau
type free energy calculation. It was predicted that the upper transition should belong

to the conventional XY class and the lower to the conventional Ising class.

Neutron scattering experiments have shown that the critical exponent B = 0.29(2) for
By, = 4T for the upper transition. However, this value is in between that of
conventional and chiral universality classes. It has been shown in the previous
Chapter that the magnetoelectric effect in CsMnBr3 changes the critical behaviour of
the system dramatically. This opens up the question about the shape and character of
the phase diagram in the presence of an applied £ and B-field. No Landau type
predictions are available for this scenario; therefore a neutron scattering experiment

was carried out to investigate these points.

The experiment was performed on the TAS E1 at the HMI, a full description of which
can be found in Chapter 3.2.1.1. The magnetic field was applied using the 7T
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horizontal field magnet, HM3. Several practical problems had to be overcome before
the successful implementation of the experiment. A slightly bigger single crystal of
CsMnBr] (-4mm width) than the previous experiment was prepared in the same
manner and again 2 pairs of wires were connect to the crystal in order to apply and
measure the E-field at the crystal. The crystal faces had an Au coating deposited on
them in order to make the contact. A schematic of the setup of the crystal and
connecting wires can be seen in Figure 57. A maximum field of 800V was applied
across the faces of the sample before sparking occurred. This sparking could be

identified by a spike in the reading of the DC meter.

Full sublattice magnetisation measurements across the magnetic Bragg peak of (1/3
1/3 1) were taken at base level (B = OT, E = OV), and with an applied electric field of
800V/4mm at OT, 2T and 4T. The resulting data is collated and plotted below. The
corresponding critical exponent p was calculated from the ‘log - log’ plots shown

adjacent to each sublattice measurement.

B=0, E=0 «  6=0, E=0

\*

C 8000

6.5

Temperature (K) In({VT)/T]

Figure 61: Sublattice magnetisation of CsMnBr]| at B = OT, E = OV (line is best fit

to power law with p=0.22).
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Figure 62: Sublattice magnetisation of CsMnBr”* at B = OT, E = 800V (line is best

fit to power law with (3=0.26).

B=2T, E=800V
20000- 100
18000 Data subiat D
9.5
16000 C hra-42150
14000 2 03 " 9.0
12000

10000 ; "
8000

S 80
6000 \
4000
2000
e e o 7.0
5
N 6 7 8 9 10 11 12 13 14

Temperature (K)

B=2T. E=800V

In((T,-T)/T,)

Figure 63: Sublattice magnetisation of CsMnBr”* at B = 2T, E = 800V (line is best

fit to power law with p=0.195).
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Figure 64: Sublattice magnetisation of CsMnBr" at B =4T, E = 8M)V (line is best

fit to power law Ae™ with p=0.22).
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The calculated values of the critical exponent (3 and the corresponding transition

temperatures TN are collated below and shown in Table 7.

Table 7: Critical exponent p values for CsMnBr” under the influence of electric

and magnetic field.

Magnetic Electric Critical Transition Transition
Field (T)  Field (kVecm'*)  Exponent (P) Temp. (Tn2) Temp. (TNI)
0 0.22 (3) 8.29(1)
800 0.26 (2) 8.28(1)
800 0.195(15) 8.15(2) 8.49(1)
800 0.22(D 7.57(1) 8.81 (1)

From the observed values of the transition temperatures we can construct the phase
diagram of CsMnBr” under the influence of an applied magnetic and electric field.
The first observation that can be made is that the magnetic phase diagram of CsMnBr”*
under applied electric field is not dissimilar to the form for that of the magnetic phase
diagram the same system without the application of field. This can be witnessed by

the comparison of the general form of the figure below and that of Figure 14.

E=800V/4mm

H Collinear

Paramagnetic

120-

5 6 7 8 9 10 11

Temperature (K)
Figure 65: The magnetic phase diagram of CsMnBrj, under and applied electric
field of 800V / 4mm, lines are a guide to the eye only and given phases are most

likely.
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The present experiment establishes the phase boundary at B = 0 to be Ty = 8.29(1)K.
This is slightly smaller than the accepted value of Tn found from C, measurements.
The difference can be accounted for by factors such as the placement of the
thermometers and the type of sample support used in different experiments. Scaling
the values of the specific heat measurements and previous neutron scattering
measurements with our measurements we observe that the values of Ty; are all
comparable within their error bars. However, the transition from the ‘collinear phase’
to the ‘120°’ type phase (Tn2) occurs at higher temperatures with an applied £ and B
field than that with applied B field only. It is expected that this phase boundary will
have the same trend at low values of applied B-field but we do not have enough data

points to establish this.

The analysis of the magnetic sublattice magnetisation scans shows that no
magnetoelectric effect is observed for the initial cooling of the crystal from room
temperature in the presence of an electric field. We find that B = 0.26(1), which is
very similar to the value calculated for § when the electric field is removed. The
sublattice magnetisation scans for the sample cooled in the presence of both an
electric and magnetic field where B = 2T and 4T show that a magnetoelectric effect
takes place. The value of the critical exponent  changes from the reference value of B
=0.22 at B = 0T to a value of B = 0.195 at B = 2T and finally to B = 0.22 at B = 4T.
This increase (B changing from 0.195 to 0.22) is similar to that observed for the value
of B along the paramagnetic — collinear phase boundary in the absence of an electric

field: B increases from 0.24 — 0.29 at B = 4T.

From these results we can conclude that the magnetic phase diagram only changes
slightly upon the application of an applied E-field. The critical behaviour at the
paramagnetic phase boundary is influence in an identical way as for fixed E-field and
applied B-field. To understand the observed changes in detail a thorough theoretical

investigation of the E, B phase diagram is required.
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4.2 CsNiCl; (E1/E2 - HMI)

As discussed in Chapter 2.2.1, CsNiCl; is a triangﬁlar lattice antiferromagnet with
easy axis anisotropy. The (H, T) phase diagram in Figure 11 shows the two stage
ordering of the system. At Tn; a partially magnetically ordered structure will be
formed, while at Tn, the magnetic structure will be fully ordered in a modified 120°
type structure which is rotated by 90° out of the hexagonal ab plane into the [111]

plane. Recent specific heat studies by and Beckmann er al.>’

and birefringence
experiments by Enderle ez al.>’ have shown that CsNiCl; has a specific heat exponent
of a = 0.32(5) and o = 0.342(5) respectively along the paramagnetic to spin flop
boundary. These are much larger than the non-chiral universality classes of o =
0.1098(29) for Ising, o = -0.0080(3) for XY and o = -0.1160(36), on the other hand
they agree with the n = 2 chiral value of o = 0.34(6). Close to the multicritical point,
o was found to decrease to 0.25(8) and 0.23(4) respectively. This is in agreement with
the n = 3 chiral universality class value of o = 0.24(8). Furthermore, according to
Beckmann, the critical amplitudes follow the predictions for n = 2 and n = 3 chiral
critical behaviour. The critical exponents suggest that CsNiCl; is an XY like system
along the H = 0 line’’. It is reasonable to expect the critical exponent B to exhibit the

same characteristics as o.. Thus in order to lend weight to the chiral universality class

hypothesis we measured the critical exponent §, by means of neutron scattering.
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4.2.1 Elastic Scattering on CsNiCU in the presence ofa magneticfield.

The neutron scattering experiment was undertaken on the TAS E1, at the HMI, Berlin.
The spectrometer was operated in two-axis mode as described in Chapter 3.2.1.1.
Since the magnetic interactions are quasi one dimensional, i.e. strong along ¢ and
weak in the perpendicular direction we mounted the large single crystal sample (~4
cm”) with the [110] - [001] plane in the scattering plane. A magnetic field was
applied // c-axis using the Horizontal field magnet, HMI, detailed information on this
magnet can be found in Chapter 3.3.4. As can be seen from the description of HMI,
the magnet does not afford unhindered access to the sample due to the magnet poles
obscuring 195° of the scattering pathways. Simulations of the scattering pathways
showed that we were unable to measure the strong magnetic Bragg peak at (1/3 1/3 1)
with a kj = 2.0A, neither could we access the magnetic Bragg peak (2/3 2/3 1). Rather
we were obliged to measure the (1/3 1/3 3) reflection using the X/2 contribution from
the PG 002 monochromator. The calculated scattering windows for the Horizontal
field magnet HMI with kj = 2.0A and 1.2276A are given below in (a) and (b)

respectively.

(@) (b)

CsNiCI3 2.0A CsNiCW 1.2276A

Figure 66: Comparison of the calculated scattering windows for the horizontal
field magnet, HMI for different incoming neutron wavelengths. The magnetic
Bragg peak (1/3 1/3 1), (2/3 2/3 1) and (1/3 1/3 3) are shown as (x).

However, even when the sample was aligned with the c-axis // to the axis of the
magnet no magnetic reflection was observed at the Q(1/3 1/3 3) position. It was

discovered that the Bragg peak lay just outside the scattering window of the magnet.
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In order to acquire a signal from the peak the sample stick within the magnet was

rotated by 4°. This of course meant that the magnetic field was no longer directed // to

the c-axis but instead was applied at an oblique angle. It was not known what effect

that this would have on the results.

Thus the lack of flux, combined with the small structure factor of the (1/3 1/3 3)

reflection and the high absorption of the crystal made it very difficult to obtain

accurate data. However, we were able to obtain sufficient data to determine the

critical exponent p at magnetic fields of B = OT, 1.75T, 2T, 3T and 4T. The sublattice

magnetisation scans and corresponding ‘log - log’ plots are show below.

« B=0OT

P=020(1)

]é*

2 At

Temperature (K)

B=0T

Figure 67: Sublattice magnetisation of CsNiCb at Q(1/3 1/3 3) with B = OT, (line

is best fit to power law with p=0.20).
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Figure 68: Sublattice magnetisation of CsNiCb at Q(1/3 1/3 3) with B = 1.75T,

(line is best fit to power law with p=0.195).
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Figure 69: Sublattice magnetisation of CsNiCb
(line is best fit to power law with p=0.24).
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Figure 70: Sublattice magnetisation of CsNiClj

(line is best fit to power law with p=0.20).
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Figure 71: Sublattice magnetisation of CsNiCb at Q(1/3 1/3 3) with B =4.5T,

line is best fit to power law Ae™ with p=0.20).
p p
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The values of the critical exponent B and the transition temperature Ty are collated
below in Table 8. It is seen that B changes from the value of B = 0.20 (10) at B =0T to
a value of B = 0.24 (1) at the spin flop transition, reducing to f = 0.20 (1) for higher

magnetic fields.

Table 8: The transition temperatures and calculated critical exponents 3 of

CsNiCl; under applied magnetic field / c.

Field (Tesla) Tn (K) B
0 4502 0.20(1)
1.75 4.55(@2) 0.195(10)
20 4.61 (2) 0.24 (1)
3.0 4.69 (2) 0.20 (1)
4.5 5.06 (2) 0.20 (1)

The first observation to be made is that the calculated value of the critical exponent 3
does not correspond to the n = 2 chiral value of § = 0.25 at the paramagnetic to spin
flop boundary (Hy ~ 2.2T). Nor does it correspond to the n = 3 chiral value of B = 0.3
at fields above Hy. As can be seen from the sublattice magnetisation scan at B = 0T
the data cannot resolve the two previously measured phase transitions of CsNiCl; at
~4.40K and ~4.84K>" 52, this is also the case for the data at 1.75T. Thus we should not
be surprised that the data at OT does not provide us with an exponent close to that of
the normal XY class. We would expect that the critical exponent  should be in the
region of ~0.35 for the OT measurements, diminishing to ~0.3 at the multicritical
point and ﬁnally coming to rest at ~0.25 along the spin flop to paramagnetic phase
boundary.

The results obtained are quite different from those that were expected and there are
several factors that have a role in this. As has been explained previously the magnetic
field was 4° off from H // ¢ so that the perpendicular component of the spin has begun
to mix into the phase. The measurements have been performed on the (1/3 1/3 3)
magnetic Bragg reflection where the <XY> component of the spin is larger than at the

(h h 1) points. Nuclear Magnetic Resonance (NMR) measurements indicate that the
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ordering process in CsNiCl; and CsNiBr; develops in two stagcs'36. Firstly the z
component of the spins begin to order at Ty;, followed at a lower temperature by the
xy component at Tn,. This z component can be observed in the area Tn; < T < T at
the reciprocal lattice points of Q(1/3 1/3 1) and Q(2/3 2/3 1), where the critical
exponent is found to be B = 0.30. It can be seen from the sublattice magnetisation
scans above, that the scattering profile from the (1/3 1/3 3) peak shows a great deal of
diffuse scattering throughout the temperature range in which we have measured. As
has been stated, no long range order contribution at Tn; can be distinguished, however
this is comparable to observations made on the similar system CsMnl;. So the
observed B at Tn, for H = 0 is much lower than any of the known values for
recognised universality classes. Only the Monte Carlo calculated value by Bramwell
et al. of B = 0.23 for a finite 2D-XY system gives a point of reference’*”'*8, Looking
at the magnetisation measurements one can see that at H = 2.0T and above, a sharp
kink is observed in the intensity profile indicating the transition temperature. At H =
2T at, or close to, the critical point we find f = 0.24 which could indicate an n = 3
chiral universality class. However at higher fields B decreases again to a value of § =

0.20 which is indicative of 2D — XY system.

Subsequent measurements by Enderle et al. on the same system were made, where the
experimental conditions allowed the magnetic field to be applied // to the c-axis. The
magnetic Bragg point (1/3 1/3 3) was measured and two transition temperatures were
observed up to H = 2.2T. The critical exponent was calculated to be B = 0.28 at this
field which indicates an n = 2 or n = 3 chiral class. At H = 3T and 5.5T the critical
exponent was found to be B = 0.25 which is in agreement with the n = 2 chiral class,
these values are in agreement with the classes found for the o critical exponents.

The specific heat studies of Weber'”

show that the phase diagram of CsNiCls
undergoes an alteration when an oblique magnetic field is applied to the system. As
can be seen from the figures below the sharp transition at the critical point with H // ¢

is ‘smeared’ out when an oblique field is applied at 6 = 13°.
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(a) (b)
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Figure 72: The effect of the application of an oblique magnetic field on the phase
diagram of CsNiClj".

In this paper Weber shows that the critical part of the phase transition takes place at
~H = 2.2T, below this transition 2 anomalies have been observed representing the
transitions Tni and Tn: « When the field is applied at an oblique angle it can be seen
that the critical point persists up to 2.7T. In this case the calculated value of the
critical exponent a is lower than that of the aligned sample. The values calculated by

Weber et al for a and AV A'are given below.

Table 9: Critical parameter of CsNiCb for different field directions'*’.

0 =0° 0 =13°

B(T) a A+/A- a A+A-

0 (TNI) -0.05 (8) 1.21 (50)

0 (TN2) -0.06(10)  1.18(30)

2.3 0.25 (8) 0.52 (10)

3 0.29 (8) 0.39(12) 0.25 (7) 0.47(10)
45 0.31 (8) 0.38 (10) 0.29(9) 0.39(10)
6 0.37(8) 0.30(11) 0.37 (6) 0.38(11)
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Weber shows that the magnetocaloric effect for the field applied at 13° indicating the
first order phase transition around 2T is no longer a sharp transition, rather it has been
smeared out. Even for B // ¢ it is not clear if the transition is first order as no
hysteresis effect has been observed. Enderle quotes 0.23T for the width of the
spinflop transition where B // ¢. This compares to our value of 0.5T, which is
observable below in Figure 73. The clear onset to the transition can be seen at 1.5T
ending towards 2.2T. It is seen that the intensity of the Q(1/3 1/3 3) magnetic Bragg
peak is a factor of 2 different in the two structure types. This phase diagram where B
is applied at an oblique angle of 4° shows that transition takes place at around 2.0T -

2.2T.
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T=2.72K
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Field (T)

Figure 73: Spinflop Transition of CsNiCb with magnetic field applied at 4° off-
parallel to the c-axis.

The observed values of P follow the same trend as those found by Weber for the
misaligned sample. Our values of p are lower than the predicted values and lower
than the measured values of Enderle, where B // ¢. Thus we should not look at the
exponent P as a real value for the system but rather an effective exponent of the

system.
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4.2.2 Diffuse Magnetic Scattering from CsNiCl; around the transition point.

The results above led us to question the nature of the ordering in CsNiCls. What is
obvious from study of the sublattice magnetisation scans above is that there is a great
deal of diffuse magnetic scattering around the transition point Tn. The diffuse
magnetic scattering seems to remain for T > 2Ty. The pre-ordering process in a quasi
1-D system shows planes of magnetic scattering along the c-axis. The onset of 3-D
magnetic ordering may be seen by modulation of the magnetic intensity in these
sheets. However in CsMnBr; part of the magnetic scattering intensity starts to
condense in the hexagonal planes / = 1, 3, 5 etc. perpendicular to the c-axis.
Zaliznyak'*, showed the extent of the diffuse scattering along the [110] directions for
T>Tn. In order to fully characterise this diffuse scattering it is necessary to use the
diffractometer E2, at the HMI, Berlin. This diffractometer is based on a modified
Weissenberg technique and more information about this technique and diffractometer
can be found in Chapter 3.2.3. A full characterisation of the magnetic ordering of
CsNiCls in the [A#R1] plane around the transition point was undertaken. Sweeps across
approximately 65°-70° of reciprocal space were made at temperatures of T = 1.68K,
3.60K, 4.64K, 5.02K, 7.47K and 10.60K. These scans were expanded by symmetry
into 360° ‘sections’ and are shown below. In the 10.60K slice we can still see diffuse
scattering in the ab plane. It takes the form of a triangular structure which builds up
around the magnetic Bragg points situated along the A — H line of the Brillouin zone.
As the temperature is lowered the scattering becomes less diffuse and begins to
concentrate around the magnetic Bragg points (/3 h/3 1). The diffuse scattering
slowly disappears as the moment builds up, however even at T = 1.68K there is still
diffuse scattering present in the system, in the same form as that at higher
temperatures. It has to be noted that in a quasi one-dimensional system only half the
magnetic moment is observable, the other 50% is accounted for by the quantum

fluctuations of the systemm.
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Figure 74: Diffuse magnetic scattering from CsNiCla at various temperatures
around the transition temperature (false colour image with plan view).
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The dark band present in each dataset above is the background scattering as a result of
using Al foil of too high a grade (i.e. too thick) to protect the sample. The increase in
the intensity of the Bragg peaks is demonstrated more clearly in the graphs below for

T = 1.68K, 3.60K and 4.64K for (a), (b) and (c) respectively.

T= 1.68K T =3.60K T =4.64K

Figure 75: Decreasing magnetic scattering from CsNiCls with increasing
temperature around the transition point (false colour image with plane view).

The scattering along the [110] direction can be analysed in order to obtain the
correlation length in the ab plane (interchain). The data was analysed using a package
called NIH image, an Apple Macintosh image analysis freeware program from the
National Institute of Health and the Windows ported version. Scion Image. The
software allowed us to take ‘vertical slices’ through the data, enabling us to observe
the increasing diffuse magnetic scattering around the transition point. Several cross
sections were taken across many of the different Bragg peaks, the paths taken as

shown below.

»

Figure 76: Typical paths (hlack lines) taken for data analysis purposes, shown
here for the 5.02K data set.
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Each peak was fitted to a Gaussian lineshape and the average half width of the peaks
measured enabled us to determine the correlation length of the system at the given
temperature. We assume that the line width at T = 1.68K was identical to the
resolution of the instrument. Sample cross section data from the various temperatures

is given below for illustrative purposes.

Lenqth(Arb Units) Lenath(Art) Units)

e e

| B!

Length (Are> Units)

Figure 77: Typical results for the scan lines in Figure 76 showing the decreasing
correlation length of CsNiCb with increasing temperature

The fitted peaks are constrained to be equal in width in each plot and as can be seen
the half width of the magnetic Bragg peak increases with increasing temperature,
demonstrating the decrease in planar correlation length. The fitted data was collated

and averaged for the different temperatures and is shown below.
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Figure 78: Gaussian half width of the magnetic excitations of CsNiCI".

Figure 78 shows the temperature dependence of the full width half maximum of the
reflections along the [110] direction in units of 47#/a. The corresponding correlation
length, above Tn: is » - 14.25A which decreases in a linear fashion to about » ~
2.5A at T = 1IK. These values correspond well with data obtained by Zaliznyak et
al)™ from Triple Axis data. These measurements show clearly that a large part of the

spin fluctuations condense in the basal plane at temperatures even larger than 2Tn.
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4.3 RbNiCl; (4F1)

As with the isostructural compound, CsNiCl; and as discussed in Chapter 2.2.1,
RbNIiCl; is a triangular lattice antiferromagnet with easy axis anisotropy. However,
until recently RbNiCl; was found to exhibit only one observable phase transition at
around 11K'**'*, It was not until the sublattice measurements of Oohara et al.'** that
two successive phase transitions were resolved at Tn; = 11.25K and Tn; = 11.11K.
The values of the critical exponents of the parallel and perpendicular sublattice
moments were found to be B, = 0.2740.01 and B, = 0.28+0.01. The B, and B, values
were extracted from the intensity of the Q(1/3 1/3 1) and Q(2/3 2/3 1) magnetic
reflections by dividing the intensity up into contributions of the <xy> and <z>
component, respectively. These values did not conform to the values predicted by
Kawamura et al.” who predicted that the transitions would be governed by the 3D —
XY symmetry, giving a critical exponent of f = 0.345. It was thought that the
discrepancy could be resolved by assuming a crossover behaviour in the system.
Because RbNiCl; has a very small Ising anisotropy one could naively treat the system
as an isotropic Heisenberg one. In this type of system the critical behaviour at
temperatures far from the transition points is governed by the 3D — SO(3) symmetry.
However, in the region close to the phase boundary the system will be governed by
the 3D — XY symmetry, thus between these two regions a crossover effect will take

place and the value of the critical exponent  will be modified accordingly.

Oohara et al.'*® also mentioned that RbNICl; could exhibit another crossover effect.
The Ising anisotropy confines the 120° type spin structure to the ac-plane and deforms
it through competition with the interchain exchange interaction J'. In Ising like
triangular lattice antiferromagnets with easy axis anisotropy which do not have a
deformation of the 120° type spin structure the successive phase transitions coalesce
and a new criticality of the chiral ordering characterised by 3D — §; X §; symmetry
will occur. Thus, because the anisotropy in RbNiCl; is very small the crossover effect
from the 3D — §; X §; symmetry to the 3D — XY symmetry may be observed. Further
measurements on the system by Oohara et al.'*, using birefringence, add weight to

this hypothesis.
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It is known that the application of hydrostatic pressure on the triangular
antiferromagnet lattice compounds will not only distort the physical structure of the
system, but also modify the strength of the single ion anisotropy (D) and the
interchain (/) and intrachain (J') exchange energies (as demonstrated for the Singlet
Ground State systems CsFeCl; and CsFeBrs in Chapter 5.1.1). Thus, by applying
pressure to the system one may be able to change, and in an ideal case tune, the

parameters of D, J and J".

With this in mind an elastic neutron scattering experiment was undertaken on
RbNiCls, using the TAS, 4F1 at the LLB, Saclay in order to establish the effect of

hydrostatic pressure on the system.

4.3.1 Elastic Scattering on RbNiCl; under the Presence of Hydrostatic Pressure.

The measurement of the sublattice magnetisation was undertaken on the TAS, 4F1 at
the LLB, Saclay. A lcm® single crystal, grown by Bridgeman technique and having a
mosaic width of 0.3° was mounted in a He-pressure cell, which was itself mounted in
a modified ‘Orange’ cryostat. The system was pressurised and then cooled to T=1.5K.
The process of pressurising at room temperature and cooling to 1.5K takes about 7
hours, the majority of this time is used in cooling the mass of the pressure cell. The
sample was mounted, as is the case with most measurements we have performed, with
the [110]-[001] plane in the scattering plane of the instrument. The optimised lattice
parameters for the system with Skbar applied hydrostatic pressure were calculated to
be a = 6.8370A and ¢ = 5.7787A.

The resolution ellipsoid of the spectrometer combined with the focussing analyser
used, made the magnetic Bragg point Q(1/3 1/3 -1) the most favourable for
measurements of the sublattice magnetisation. Scans were taken across the magnetic
Bragg point for temperatures in the range 4.00K — 17.00K and the sublattice
magnetisation can be seen below in Figure 79. The critical exponent B was
determined from the slope of the log of the integrated intensity versus the log of the

reduced temperature, shown adjacent to the sublattice magnetisation.
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Figure 79: Sublattice magnetisation of RbNiC” at Q(1/3 1/3 -1) with P - Skbar,
(lines are best fit to power law with Ptni = 0.245(10) and p tn2 = 0.24(2)).

With an applied hydrostatic pressure of P = 5.0kbar the two transitions in RbNiCI* are
observed at Tni = 12.37 £ 0.01 and Tn. = 12.81 + 0.04 with corresponding critical
exponents of pjNi = 0.245 £+ 0.01, and Ptn> = 0.24 + 0.1 respectively. The value of
these critical exponents correspond to the predicted values for the chiral n - 2

universality class.

Yelon and Cox""" found that p = 0.25 at ambient pressure for Tn = 11.1 IK rising to a
value of p = 0.30 when a transition temperature of Tn = 11.15K was taken for the
calculation of the critical exponent. Due to the fact that they only observed 1
transition their fit should compare to our fit of the sublattice magnetisation as given in
Figure 79a, where Tn2 is the ordering temperature and the intensity of the magnetic
scattering at Tn2 is taken to be the background level. We observed that the ratio of
(Tni - Tn2 )/Tni increased from the value found by Oohara of 0.012 at ambient
pressure to 0.034 at Skbar. From inelastic neutron scattering measurements performed
by the author (Appendix A), it is obvious that the values of D, J and J' in RbNiCls
change upon the application of Skbar hydrostatic pressure. Thus, a slightly distorted
magnetic structure will be adopted by the system. The measurements of Oohara and
those from the present experiment suggest that the exponent of p measured at Tni,
which is related to the freezing of the z-component of the spin, but which leaves the
xy-component disordered in the xy-plane, may represent an effective p for a ‘partially

chiral’ spin system. The influence of pressure manifests itself in the ‘opening up’ of
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the intermediate phase by an effective change of D, J and J' which changes  from
0.28 — 0.25. For a comparable magnetic system, CsNiCl;, the magnetic order

parameter, 3 = 0.30 at Ty; and the ratio (Tn; ~— Tnz )/Tni = 0.09.
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4.4 TIFeCb

As was suggested in Chapter 2.2.3, the hexagonal perovskite TIFeCl* is an induced
magnetic moment system. Due to the large positive single-ion anisotropy, D, in this
type of system, the magnetic moments lie in the hexagonal basal plane. Therefore, the
triangular arrangement of the magnetic moments in the basal plane make this material
a candidate for chiral magnetic ordering. Previous work by McIntyre and Visser'

has shown that the system undergoes two structural phase transitions, at 179K where
the space group changes from P6.Vmmce to Pb”cm structure and at 79K where a further
structural transition takes place in which the disorder of the Pb“cm structure is

removed.

T(K)

Figure 80: Structural phase transition of TIFeCb with decreasing temperature,
Visser et

Medium resolution powder neutron diffraction studies at T =5K showed no indication
the 79K phase transition. However, this transition can be observed in a thermo-
diffractogram of TIFeCl" taken on the medium resolution powder diffractometer DIB,
at the ILL, Grenoble. However, the quality of this data is quite poor, the number of
observed extra peaks very limited and their intensities are low. Thus with the
available data it has been impossible to characterise the structure of the lowest
temperature phase. It has been shown by the present author that TIFeCl] orders with

an incommensurate magnetic structure at TN = 2K and that the application of a
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hydrostatic pressure of Skbar increases Tn dramatically”g, at this pressure the
magnetic ordering is seen to take place in two stages. However, the character of the
magnetic phase transition could not be determined from these measurements. The

transitions may be related to a possible change in the crystal structure.

4.4.1 Structural Characterisation of TIFeCl;.

In order to obtain more precise information about the crystallographic structure of
TIFeCls under pressure and at low temperature, a further characterisation of the
system was undertaken using the high resolution powder diffractometer, HRPD, at the
ISIS facility, Oxford. The situation of the diffractometer at the end of a 100m beam
line makes it one of the highest resolution diffractometers in the world and further

information is given in Chapter 3.2.2.1.

A 5g powder sample of TIFeCl; was prepared by grinding up several single crystals of
this material. The powder was loaded in a He pressure cell which was itself inserted in
a modified Orange cryostat. Such a setup should have allowed us obtain applied
pressures of up to Skbar at temperatures approaching 2K. Unfortunately due to safety
requirements the maximum pressure allowed for the cell was of the order of 3.5kbar
at a temperature of S5K. Two powder diffraction patterns were taken at ambient and
applied pressure. Each pattern took approximately 12 hours to collect using the 90°
detector bank and the collected raw data were firstly normalised, then corrected for
absorption. The treated diffraction patterns were refined using the Rietveld method
outlined in Chapter 3.2.2. The ISIS facility utilises the Cambridge Crystallographic
Subroutine Library (CCSL)'® in conjunction with the graphics and data handling
package GENIE' to refine the data. The library and data analysis package have both
been developed at the ISIS facility specifically for the analysis of diffraction data
from Time Of Flight (TOF) diffractometers. The Rietveld refinement for ambient, P =
Okbar, and P = 3.5kbar at T = 5K are shown below.
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Figure 81: Observed, Calculated and Difference plot for TIFeCb at P = Okbar
and T = 5K.

The diffraction pattern could be indexed on the ¢/Vi caVi jc ¢ unit cell. The data at
ambient pressure with T = 5K were fitted to a model with space group P6”cm,
resembling the room temperature structure of the KNiCL."* phase. As can be seen this
gives a reasonable agreement with the observed data. However, some systematic
deviations remain. The calculated peaks are consistently less intense than those

observed, also a small number of peaks have not been accounted for by the model.
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Figure 82: Observed, Calculated and Difference plot for TIFeClg at P = 3.5kbar
and T = 5K.
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The data at P = 3.5kbar did not shown any major deviations from the ambient
pressure data and was fitted to the same model. Again, the calculated intensities are
systematically lower than the observed intensities. Several observed peaks have not
been accounted for by the model, however these peaks may well be anomalous
scattering from grains in the pressure cell. What is clear when we superimpose the
two data sets, as below, is that there is no structural phase change between the
ambient and 3.5kbar data. The only effect the pressure exerts on the system is the
reduction of the unit cell of the system and a slight change in the structural
parameters. The final tabulated values for TIFeCb are collated and given below in

Table 10.

350-

Okbar

3.Skbar
300-
250-
N 200 -
100-
50-

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

D-Spacing (A)

Figure 83: Difference in the observed powder diffraction pattern of TIFeCb at
ambient and 3.5kbar applied pressure.

Table 10: Structural parameters for the distorted triangular lattice
antiferromagnet TIFeC” at ambient and applied pressure.

0 kbar 3.5 kbar
a h c a b [

Unit cell 11.9680(1) 11.9680(1) 5.9968(1) 11.9355(1) 11.9355(1) 5.9695(1)

Tl 0.3309(13)  0.3309(13)  0.2849(42) 0.3312(11)  0.3312(11)  0.2936(35)
Fed) 0 0 0 0 0 0

Fe(2) 13 2/3 0.0560(42) 13 2/3 0.0642(36)
cI(1 0.1701 0 0.1974  0.1653(13) 0 0.2035(28)

CI{2) 0.5032(8)  0.1667(10) 0.2589(19)  0.5024(8)  0.1594(6)  0.2661(24)

139



4 Chiral Order in ABX; Compounds

The fact that the system did not undergo a phase transition at 3.5kbar was rather
interesting, as we had expected an applied pressure of this amount to have an effect on
the distorted phase. It could be the case that any change in the system under pressure
could not be observed using a powder diffraction technique. However, the experiment
did demonstrate that any subsequent measurements to be undertaken on this system
would have to be done at higher pressures to allow us the opportunity to fully
establish the structural phase diagram of TIFeCls. The present high resolution data
and its subsequent refinement show that it will be very difficult to obtain the low
temperature phase with powder diffraction measurements. The presently deformed
structure should be regarded as an ‘averaged’ structure. The changes from the B — vy
phase must be very small and may only be obtained from single crystal diffraction

data.

Recently it was shown by Visser ez al.'”! using a Laue neutron diffraction technique
that the unit cell of the y - phase of TICoCl; has a unit cell of size 4a x 4a x c. The
extra diffraction due to this unit cell is only visible at high Q for the layers = 1. In
view of this fact an experiment was carried out on the single crystal diffractometer

D15, at the ILL, Grenoble in ambient and applied pressure environments.

The experiment was performed with a small single crystal (4 x 4 x 4mm) of TIFeCls
with the [001] — [110] plane in horizontal scattering plane. This allowed us to
accurately determine the effects of the application of pressure on the lattice
parameters. A hydrostatic pressure of 5.0kbar could be applied using a standard He
pressure cell, Chapter 3.3.3 provides more information on this cell. The P — T phase
diagram was determined by scanning along a line of reciprocal space from the
reciprocal lattice point Q(-4.85 —1.3 2) — Q(-4.55 -1.9 2) for various pressures up to
Skbar. Scanning this area allowed us to observe the appearance/disappearance of both
the Q(1/3 1/3 0) type reflection associated with the B-phase and Q(1/4 1/2 0) type
reflection associated with the y-phase. The figures below give an example of the

typical results obtained for the experiment.
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Figure 84: (a), (b) (c) and (d) show the structural phase transitions of TIFeCb,

from space group PhVmme  P6”“cm —>unit cell 4a x 4ax ¢, P =4 .0khar.

Figure 84 (a) shows a waterfall plot of the scans taken across the structural Bragg
peak (-4.667, -1.667, 2) at 4.0kbar. The plot clearly shows the structural phase
transition from space group Ps Vmmc, at high temperature -> Psscm unit cell 4a x
4a X c. The structural peaks were fitted to Gaussian lineshapes and it is the resultant
fits that are shown in (a). Figure 84(b) shows the changing position of the Bragg peak
between the space group Pb”cm and unit cell 4a x 4a x ¢ at Tjransition = 50.6 + 0.5K.
Figure 84(c) shows the transition between space group Pb”"/mmc and Pb”cm at
Tjransition = 141 + IK. The second order characteristics of the a - (3 transition is can be
seen from (c), the log - log plot given in (d) shows that the critical exponent 3= 0.29,

a similar value to that found for RbVBr* The transition of the p ~ y phase is more
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first order like, the region of transition being AT < IK, this being in strong contrast to

the transition observed in similar system, KNiCfi of AT = 15K™\,

Similar measurements to the above were taken at P = 0, 1.75, 2,2, 3,2, 4.0 and
5.0kbar. A P - T phase diagram was constructed using the results of these

measurements and is shown below.

hexagonal

0 20 40 60 80 100 120 140 160 180 200

Temperature (K)

Figure 85: The structural phase diagram of TIFeCfi (lines are just guides to the

eye).

It is seen that a linear dependence seems to characterise the structural phase
boundaries. The a-|3 phase boundary has a slope {APIAT) = -0.1435 kbar/K, and the
(3-y phase boundary has a slope (APIAT) = -0.088 kbar/K.The powder diffraction data

presented and discussed earlier is now rationalised.

4.4.2 Magnetic Characterisation of TIFeCh.

The distorted triangular lattice antiferromagnet TIFeCb orders magnetically at TN =
2.00(5)K. Data taken by the author on the TAS, 4F1, at the LLB, Saclay shows

magnetic scattering at the reciprocal lattice point Q(1/3 1/3 0). This is indicative of a
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120° type magnetic ordering along the c-direction. This is comparable to the
isostructural compound RbFeCl; which also orders with a 120° type structure at Ty =
1.90(1)K.

However, two further transitions taken place in this system, at Tn; = 1.55(1)K and Tn»

= 2.35(1)K. The first structure is an incommensurate helical magnetic structure (IC)),

with k = (1/3 + §, 1/3 + 8, 0). The second magnetic structure (IC>), is sinusoidal'**,

155

High resolution data powder/single crystal diffraction on TIFeCls; > shows that the

magnetic structure is also slightly incommensurate with k= (0.330, 0.330, 0),

adopting the IC; type structure.

<110>\

Figure 86: The position of the magnetic Bragg reflections characterising the
incommensurate magnetic phases of RbFeCl;'"’,

As can be seen from the sublattice magnetisation plots of TIFeCl; show below, the
system shows two magnetic phase transitions at P = Skbar applied hydrostatic
pressure (this data has been collected by the author and has been presented
previously'*). Due to the alignment of the crystal and to resolution limitations the

characterisation of these two phases could not be completed during this experiment.
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Figure 87: Sublattice magnetisation of TIFeC* at (a) ambient pressure and (b)
Skbar applied hydrostatic pressure.(lines are best fit to power law with
p=0.28 and p=0.30 respectively).

Two scenarios are possible for the system;

* The phase is partially ordered followed by a fully ordered 120° type magnetic
phase as in RbFeBrs.
* The first phase is the incommensurate /C/ as found for the ambient pressure data

which locks into the 120° type magnetic ordering at Tn. = 4.30(5)K at Skbar.

In order to distinguish between these two scenarios a single crystal neutron scattering
experiment was performed on the diffractometer, D15, at the ILL, Grenoble. This
experiment was carried out in conjunction with the structural determination
measurements presented in the last Chapter. The magnetic phase diagram was
established by scanning along the K- M line from Q(-0.283, -0.383, 0) —Q(-0.383, -

0.283, 0). A schematic of the scan path taken, is shown below.

oil

Figure 88: Scan path for the sublattice magnetisation measurements for TIFeCl".
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An example of the typical data obtained is shown below in Figure 89 for an applied
hydrostatic pressure of P = 3.2kbar. Scans of the same nature as these were obtained
for applied hydrostatic pressures at P = ambient, 1.20kbar, 2.20kbar, 2.70kbar,
4.0kbar and 5.0kbar. The datasets were obtained with both increasing and decreasing
temperatures in order to observe any hysteresis that may be present. From the data a

small temperature hysteresis of approximately IK is observed for the magnetic phase

transitions.
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Figure 89: (a), (b) (c) and (d) show the magnetic phase transitions of TIFeCb,
from the low temperature 120 ° type structure -» incommensurate —»

paramagnetic, P = 3.2khar.

Figure 89 (a) shows a waterfall plot of the scans taken across the magnetic Bragg
peak (-1/3 -1/3 0) at 3.2kar. The plot clearly shows the magnetic phase transition
from paramagnetic, at high temperature incommensurate —> 120° type structure.

The magnetic peaks were fitted to Gaussian lineshapes and it is the resultant lines that
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are shown in (a). Figure 89 (b) shows the sublattice magnetisation measurements
giving a Tjransition = 2.7 £ O.IK. Figure 89 (¢) shows the same phase transition in terms
of the positional parameter of the peaks. Figure 89 (d) shows the transition between
the incommensurate magnetic structure and the paramagnetic type at Tjransition = 4.4 £
O.IK

The data obtained at the different pressures has been collated and is presented below

in the form of a magnetic phase diagram.

120

Paramagnetic

00 05 10 15 20 25 30 35 40 45 50 55 6.0
Temperature (K)

Figure 90: The magnetic phase diagram of TIFeCfn, the lines are just guides to

the eye.

From the experimental information we can conclude that the distorted triangular
antiferromagnet TIFeCfi orders with the incommensurate /Ci magnetic structure. The
value of the critical exponent, p, observed at the transition point corresponds to an =
3 chiral universality class. At higher pressures the balance in the superexchange and

the magnetic dipolar forces moves the ordering towards 120° type.
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4.5 KNiCl; (4F2-LLB)

KNiCl; is a distorted triangular lattice antiferromagnet with two low temperature
magnetic phases. Petrenko et al.’® first reported that in different crystals of KNiCl;
one may be able to observe the coexistence of different magnetic phases related to the
B and v - structural phase of KNiCls. In the B-phase of KNiCls, the magnetic moments
order with a 120° type magnetic structure at Ty = 12.5K, while the y-phase shows a
rearranged nuclear structure with an incommensurate magnetic structure with Ty =
8.6K. It seems that the heat treatment during the crystal growth is of prime importance
in deciding which low temperature phase may be formed. Chemical impurities also
have an important effect on the stabilization of the intermediate phase, the B-phase, as
can be seen from the structural phase diagram of the mixed system Rbl-xKxNiC13156_ It
was thought that these two phases came about due to different fabrication techniques

and different sample histories.

Since the sequence of structural phase transitions in KNiCljs is identical to those in the
distorted triangular antiferromagnet, TIFeCls;, one would expect similar magnetic
“critical behaviour at the Neel point. Neutron diffraction investigations were carried
out on three different crystals of KNiCl; to establish the magnetic critical behaviour
around Tn. Both the pure f and pure y-phases were measured as well as a crystal

where both phases were present together. The resultant values are presented below.

4.5.1 Mixed Phase

The first of the group of experiments was undertaken on a small single crystal sample,
in which both B and y-phases were expected to be present. As was the case for all the
experiments, the sample was mounted in a standard Orange ILL cryostat with the
[110] — [001] plane in horizontal scattering plane. The optimised lattice parameters on
the TAS, 4F1, at the LLB were calculated at a = 6.7343A and ¢ = 5.9446A. A full

measurement of the [A & 1] was undertaken for various temperatures from 3K to 16K
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in order to establish the location of the magnetic Bragg peaks. The results of these

scans are collated and presented below in Figure 91.

bl' b2 b3 X4 05 06 07 '0.0 09
[h/71]

Figure 91: Temperature dependence of the magnetic Bragg peaks for the
triangular antiferromagnet KNiCfi along the [k 4 1] direction. The Bragg points
at (oo1)and (111) have been omitted for clarity.

Magnetic Bragg peaks can be observed at the reciprocal lattice points Q(0.125 0.125
1), Q(0.31 0.31 1), Q(I/3 1/3 1), Q(0.37 0.37 1) and Q(0.628 0.628 1), Q(0.68 0.68 1)
and Q(0.875 0.875 1), these are highlighted below at T =2.98K for clarity.

2.98K
9.80K
6000 -
4000-
¢
2000-
0.0 0.2 0.4 0.6 0.8 1.0

[hhi]

Figure 92: The magnetic (marked with arrow) and structural Bragg peaks of
KNiCb at 2.98K.
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Sublattice magnetisation scans on all observable magnetic Bragg peaks at incident
wavevector k| = 2.662 A ‘ were carried out. However, time restrictions meant that we
could not measure the Q(0.68 0.68 1) or the Q(0.875 0.875) peak. Each magnetic
sublattice magnetization scan was recorded during a very slow temperature sweep
with the detector fixed at a Q(h h 1) position. At selected temperatures a full (0-20
scan through the magnetic Bragg reflection was made to check the validity of this
method. No difference in intensity versus temperature between both methods was
noted. Scans were taken for both warming and cooling of the sample in order to

establish if there was any hysteresis in the sample.

According to Petrenko two types of magnetic reflections are observed, the Q(1/3 1/3
1) type reflections with Tn = 12K and the Q(/z/8 + 6, h/S + Q /) type reflections with O
=0.0183 and Tn = 8.6K. The measurements of Petrenko were not of sufficient detail
around the Neel points to be specific about the character of the ordering transition.
The results of temperature dependence measurement of the magnetic reflection Q(1/3

1/3 1) are displayed below in Figure 93.

(0.334 0.334 1) .+ Cooling (153 13 1)

o Warming

6000
4000

2000

Figure 93: Sublattice magnetisation scan at Q(1/3 1/3 1), (line is best fit to power
law with (3=0.545).

Sublattice magnetization measurements were taken for both warming and cooling of
the sample. A hysteresis of ~0.4K was observed, indicating a possible first order
transition. However, no jump’ in intensity that would be characteristic of a first order
transition is present. Therefore, this transition must have nearly a second order

character. Thus a conventional analysis of the critical exponent of the sublattice
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magnetisation was undertaken. The average calculated value of the critical exponent

was p = 0.50(1) which is indicative of mean field behavior.

Table 11: Critical exponent P values for the triangular lattice antiferromagnet

KNiCli, mixed phase.

Q
0.3333 0.3333 1

Cooling

Warming

TN
8.50 £0.1

13.15+0.1

P

0.525 £ 0.025

0.475 + 0.025

From Figure 93 it is obvious that the temperature dependant behaviour of the

magnetic moment is very unusual. Around TN = 9.0K the intensity of the moment

drops by about 15% which is then recovered again below 7K, at T = 9.0K one also

observes magnetic intensity at Q positions related to the y-phase. The remaining

sublattice magnetisation scans are presented below, a hysteresis of -0.4K is present in

these scans also.
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Data Warming bgr

T(K)
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Figure 94: Suhlattice magnetisation scans at various Qfh & 1), ), (lines

to power law

with p=0.25).

Cooling
o Warming

o Warming

are best fit
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The values of the transition temperatures and the calculated critical exponent B are

collated below.

Table 12: Critical exponent 3 values for the triangular lattice antiferromagnet
KNiCls, mixed phase.

Q Tn B
0.1250.125 1 Cooling 8.55+0.1 0.30 + 0.03
Warming 8.95+0.04 0.305 + 0.015
0.310.311 Cooling 8.60 £ 0.05 0.270 + 0.02
Warming 8.95 % 0.02 0.265 +0.02
0.370.37 1 Cooling 8.62+0.1 0.25 +0.02
Warming 9.00 % 0.05 0.28 +£0.02
0.628 0.628 1 Warming 8.98+0.1 0.273 +0.02

The temperature dependence of all measured magnetic reflections show an anomalous

behaviour on warming around T = 6 — 7K.

The total magnetic ordering behaviour becomes a little clearer when we overlay the
sublattice magnetisation scan for Q(0.31 0.31 1) and Q(1/3 1/3 1). Figure 95 shows
that there is a mixture of two phases in the crystal which are not independent of each
other. The length scale of domains of each crystallographic phase are such that the
onset of the magnetic order in the y-phase has a distinct influence on the intensity of
the B-phase. Domain wall structures may be created between the § and y phase which
rearrange themselves (diminish) below T ~7K. Warming the sample up we see that
the intensity of the sublattice magnetisation is higher in intensity than upon cooling in
both the B and y-phase. Between 6K - 7K a slope change occurs and the intensity of
the Q(1/3 1/3 1) reflection diminishes while its intensity rises again before the onset
of the paramagnetic phase. An approximate ratio of the two domains can be obtained
from a comparison of the intensity of the Q(1/3 1/3 1) reflection and the sum of the
Q(0.31 0.31 1) and Q(0.37 0.37 1) reflections assuming that the ‘averaged’ magnetic

structure of KNiCls is identical to the helical incommensurate magnetic structure of
T1FeCls.
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Figure 95: Comparison ofthe Q(1/3 1/3 1) and Q(0.31 0.31 1) magnetic Bragg
peak in KNiC”.

4.5.2 4ajcdajccphase

The second experiment was performed on the same crystal of KNiCl? as the previous
experiment. However, the sample had undergone a heat treatment by virtue of another
experiment undertaken on the sample. The crystal had been mounted in a furnace on
the PRISMA diffractometer at the ISIS facility and the temperature set to 400°C for
the period of the experiment which took place over a period of 1 week. The sample
was then allowed to cool slowly to room temperature. We wish to establish whether
this heat treatment had any effect on the physical and magnetic structure of the
system. Thus comparison measurements were carried out the TAS 4T2 at the LLB. As
before, the sample was mounted in a standard Orange ILL cryostat with the [110] -
[001] plane in horizontal scattering plane. A full measurement of the [ih/ |/ direction
was undertaken at 8.76K and 1.55K in order to establish where the magnetic Bragg
peaks were residing (shown in Figure 96). This also enabled us to compare this
measurement with that in Figure 92, allowing us to see if any change had occurred in

the sample due to the annealing.

152



4 Chiral Order in ABXj Compounds
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Figure 96: The difference between magnetic (marked with arrow) and structural
Bragg peaks of KNiCb at 8.76K and 1.55K.

Comparing the above with Figure 92, several points become immediately clear. The
magnetic Bragg peaks at Q(0.125 0.125 1), Q(0.31 0.31 1), Q(0.37 0.37 1), Q(0.628
0.628 1) and Q(0.68 0.68 1) are still present, although the relative intensities have
changed somewhat. The structural Bragg peaks at Q(OOl), Q(*4 % 1), QiVi V2 1), Q(%
% 1) and Q(1 1 1) are also still present, albeit slightly swamped by the presence of the
higher background count. It can be seen that these structural peaks do not have the
same relative intensity as previously, this is especially true of the Q(% % 1) and Q(1 1
1) peaks. General observation shows that the half width of the Bragg peaks has also
increased slightly. The lack of a Q(I/3 1/3 1) or Q(2/3 2/3 1) peak may suggest a
change in the magnetic structure of the system, however it may be that the increased
background scatter has swamped these reflections. Finally, extra non magnetic
scattering is present around Q(0.95 0.95 1). In order to resolve some of the
uncertainties regarding the structure, sublattice magnetisation scans were undertaken
on the magnetic Bragg peaks in order to ascertain both the form of the magnetisation

and the critical exponent p of the system.

As before, the sublattice magnetisation scans were executed by sitting on the
magnetic Bragg peak and performing a slow temperature sweep in both warming and
cooling directions to check for hysteresis. Checks were carried out at various

temperatures to ensure that full scans over the magnetic Bragg peak gave the same
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intensity as sitting on the peak. Due to time restrictions only the Q(0.125 0.125 1),
Q(0.313 0.313 1) and Q(l/3 1/3 1) peaks were measured in this way. The resultant
magnetisation scans are shown below along with the corresponding ‘log-log’ plots

used to calculate the critical exponent p.

(0.1250.125 1) . Cooling e (0.1250.125 1)
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C 1500
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3 2 0
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Figure 97: Sublattice magnetisation scan of annealed crystal of KNiCb at
Q(0.125 0.125 1), (line is best fit to power law with p=0.206).
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Figure 98: Sublattice magnetisation scan of annealed crystal of KNiCla at
Q(0.313 0.313 1), (line is best fit to power law with p=0.210).

Direct comparison of the above figures and those in Figure 94 show that the hysteresis
of the system between warming and cooling has been removed. The TN of the new
system does not correspond to either the warming or cooling TN of the previous
experiment (-8.9K and -8.5K respectively) rather it sits in between them at TN =
8.73K + 0.03K. Again the (1/3 1/3 1) sublattice magnetisation scan has produced an
unexpected result. The peak does not have a form as of the previous experiment as

can be seen in Figure 93, where the peak reaches a maximum around 8.7K and
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stabilises at this level to low temperatures, rather it reaches a maximum around 9.0K
falling off to almost zero approaching low temperature.
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Figure 99: Sublattice magnetisation scan of annealed crystal of KNiCb at Q(1/3
1/3 1).

A comparison of the scans taken in this experiment shows that the magnetic intensity
at Q(I/3 1/3 1) does not represent magnetic Bragg scattering but corresponds to
diffuse magnetic scattering from the tails of the Q(0.31 0.31 1) and Q(0.37 0.37 1)
magnetic Bragg reflections. This type of scattering corresponds to short range
magnetic order in the basal plane similar to that observed in CsNiCl* (Chapter 4.2.2).
The most striking difference between the crystal of the mixed phase and the material
after heat treatment is a change of the magnetic critical behaviour from a mean field

to normal one.

In the phase which now corresponds to the ‘ordered’ y phase, one observes however, a
different magnetic critical exponent from that of the mixed phase crystal’s y-phase. (3
drops from a value of p = 0.25-0.30, corresponding to the predictions for the n = 2 or
3 chiral universality classes to a value of p = 0.21(1). This value is much closer to that
of the 2D-XY system. This value is also close to the one observed for CsNiCls at Tn:
(p = 0.20). A difference between the two different p’s obtainable for the y-phase may

lie in a slightly different incommensurate magnetic structure.
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Figure 100: Comparison of the Q(0.125 0.125 1), Q(0.31 0.31 1) and Q(1/3 1/3 1)
peak of the annealed crystal of KNiCI".

4.5.3 RTphase

This was the last sample to be analyzed, it had been fabricated, as is usual with
virtually all the of ABX: halides used in this thesis, by Dr. D. Visser using the
Bridgman technique and a three zone furnace. The experiment was performed on the
two-axis diffractometer 3T1, at the LLB. The crystal was mounted in an ILL Orange
cryostat with the [110] - [001] plane in the horizontal scattering plane. We observed
magnetic Bragg reflections at the positions Q(h/3 h/3 1 h  3n, 1= 2n+l which
corresponds to a 120° type magnetic structure. The magnetic sublattice magnetization
measurements were undertaken at Q (1/3 1/3 1), Q (2/3 2/3 1) and Q (1/3 1/33) using
PG002 as a filter to reduce second order contamination. The positions of these

magnetic Bragg positions are shown as a function of reciprocal space below.

(003) (113)
Magnetic Bragg peak
(002) (112)
(001) (H 4 (111)
000y u*(110)

Figure 101: Reciprocal lattice positions of the magnetic Bragg peaks Q(1/3 1/3 1),
Q(2/3 2/3 1) and Q(1/3 1/3 3) in the distorted triangular lattice antiferromagnet
KNiCb.
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Figure 102: Sublattice magnetisation of KNiCb at Q(1/3 1/3 1), (line is best fit to
power law with p=0.37).
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Figure 103: Sublattice magnetisation of KNiCb at Q(2/3 2/3 1), (line is best fit to
power law with p=0.375).

13133
( k Cooling (1/3 1/3 3)

o Warming

¢ 1000-

10 12 20 6 5 3 L 0
Temperature (K) In((T~-T)TJ

Figure 104: Sublattice magnetisation of KNiCla at Q(1/3 1/3 3), (line is best fit to
power law Ae™ with p=0.36).
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Magnetization measurements were recorded for both warming and cooling of the
sample. As can be seen from the figures above only a very small hysteresis was

observed at the magnetic transition.

Several observations may be immediately made from the above figures. Due to the
magnetic form factor, the scattering from the (1/3 1/3 3) magnetic Bragg peak is
substantially lower than that from the (k h 1) peaks. However, a more puzzling
observation is the difference in Ty between that of (1/3 1/3 1) and the other two
magnetic Bragg peaks. This is unusual and may indicate that there has been a problem

with the temperature regulation.

As with the previous two experiments on this system, the magnetic order parameter 3
was obtained by least square fitting the temperature dependent intensity of the
magnetic reflections I = M’ to a power law expression In M ~ In (TN-T/TN)zﬂ. The

average values of B obtained for all three reflections are given below.

Table 13: Average critical exponent B values for the triangular lattice
antiferromagnet KNiCl; (third crystal).

Q Tn B
1/31/3 1 11.25+0.10 0.374 £ 0.02
2/32/31 12.10 £ 0.05 0.387 £0.02
1/31/33 12.20+0.10 0.355+0.01

It can be seen from the values of P in Table 13, that the observed values of the critical
exponent are close to those of the 3-D XY and Heisenberg universality classes where
B = 0.3460 and B = 0.3648 respectively. Thus we can see that the values of B for
KNiCl; are far removed from those of the n = 2 or n = 3 chiral universality classes,
where B = 0.245 and B = 0.30, respectively. Surprisingly the  values are also far
removed from the value found for RbVBr;, a system with an identical nuclear
structure as the present KNiCl; crystal where B = 0.28. In order to unambiguously
establish the critical exponent B and the value of Ty for the three magnetic Bragg
peaks, it was decided to undertake a repeat experiment on the same crystal with the

same sample environment, however this time the experiment was undertaken using
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the TAS 4F2, at the LLB. Thus sublattice magnetisation scans were again undertaken
on the magnetic Bragg peaks (1/3 1/3 1), (2/3 2/3 1) and (1/3 1/3 3). The result of
these scans may be seen below with the corresponding ‘log - log’ plots calculating the

critical exponent p.

(1/3 1/31) Cooling
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Figure 105: Sublattice magnetisation of KNiCI* at Q(1/3 1/3 1), (line is best fit to
power law with P=0.375).
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Figure 106: Sublattice magnetisation of KNiCls at Q(2/3 2/3 1), (line is best fit to
power law with p=0.385).
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Figure 107: Sublattice magnetisation of KNiCb at Q(1/3 1/3 3), (line is best fit to
power law with p=0.345).
The data was treated as before and is collated below,

Table 14: Critical exponent p values for the triangular lattice antiferromagnet
KNiCb (third crystal).

Q TN P
13 13 1 12.40 £0.1 0.375 £0.01
21323 1 12.40 £0.05 0.385+0.01
13 13 3 12.30 £0.1 0.345 +0.01

It is immediately obvious that the value of Tn for (1/3 1/3 1) is now the same as the
(2/3 2/3 1) and (1/3 1/3 3) magnetic Bragg peaks. This is a satisfactory result and
suggests that there was some error in the previous measurements. Yet again the values
of the critical exponent p are in the range 0.345 - 0.385, suggesting normal 3D XY or
Heisenberg behaviour. What can be observed from a comparison of Table 13 and
Table 14, is that the value of p obtained from the Q(1/3 1/3 3) reflection is lower than
the critical exponent calculated for the Q(h hi) reflections. Calculations on the Q(1/3
1/3 1) and Q(2/3 2/3 1) reflections indicate that KNiCI" represents a 3-D Heisenberg
universality class while the Q(1/3 1/3 3) indicates a 3D XY universality class. If we
consider the slightly different system of the weak-Ising like triangular antiferromagnet
CsNiCls, we see from Figure 11 that it has two magnetic transitions. The first being at
Tni where the z component of the magnetic spin orders along the c-direction giving

rise to a partially ordered phase, then secondly at Tn. where finally the xy components
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of the spin order out along the [110] direction. This results in largely different B's for
the two components as observable from the Q(1/3 1/3 1) and Q(1/3 1/3 3) reflections.
A similar scenario may be possible for KNiCl; were two magnetic transition points
are very close together (with a AT just outside the resolution of our experiment, a
close inspection of Figure 106 suggests that this is possible). In RbVBr3 as well as in
RbFeBr; one observes a partially ordered intermediate magnetic phase existing over a
temperature range of several degrees Kelvin. The final magnetic structure is a
modified 120° type magnetic structure where the canting angle of two out of the three
spins of the initial triangle is larger than 120°. This results, in principle, in an
orthorhombic magnetic structure where the canting angle is determined by the single-
ion anisotropy of the system and the now different interchain superexchange
interactions. For our present data we can conclude that KNiCl; stabilized in the B -
phase and is non chiral ordering and consequently must have a modified 120° type

structure.
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5 Singlet Ground State AFeX; compounds

5.1 CsFeCl; (LLB)

In order to attempt to establish a correlation between the magnetic and structural
behaviour of the system under pressure, it is necessary to obtain accurate
measurements of the structural parameters a, ¢ and x¢; and the exchange parameters J,
J' and D. The former may be obtained most accurately by means of neutron powder
diffraction, these measurements are dealt with in Chapter 5.1.2. The latter, i.e. the
values of D, J and J' are obtained from the dispersion curves of the magnetic
excitations obtained by inelastic neutron scattering on the system and are dealt with in

5.1.1.

5.1.1 Magnon dispersion measurements on CsFeCl; under hydrostatic pressure.

The magnetic dispersion-curve measurements presented in this Chapter and in
Chapter 5.2.1 deal with experiments undertaken by the author while at Loughborough
University. This work was presented for the degree of MPhil and is included here to
give a full picture of the magneto-structural relationship in the singlet groundstate
AFeX3 systems. Where extra work has been performed on this data during the period

of the author’s PhD studies, this has been clearly indicated.

The measurements of the magnon dispersion curves were undertaken on the TAS, 4F1
at the LLB, Saclay. (Chapter 4.4.2). A lem® single crystal, grown by Bridgeman
technique and having a mosaic width of 0.2° was mounted in a He-pressure cell
(Chapter 3.3.3), placed into a modified ‘Orange’ cryostat. The system was pressurised
and then cooled to T=1.5K. The process of pressurising at room temperature and
cooling to 1.5K took about 7 hours, the majority of this time was used in cooling the
mass of the pressure cell. The sample was mounted with the [110]-[001] plane in the
scattering plane of the instrument. Measurements were made around the magnetic

Bragg points along [1/3 1/3 [], {1 1 ] and [2 k 0] at various pressures, during the
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course of several experiments, in order to obtain a full picture of the magnetic

dispersion curve under hydrostatic pressure. The directions scanned are shown below.

¢ Magnetic Bnagg peak

©on6 "Scan path

(000) (110
(00-1)6——— (11-1)

Figure 108: Scans taken through reciprocal space for CsFeClj at S.Okbar,
3.5kbar, and 2.0kbar.

Scans were obtained with the constant-Q method and fitted to a delta peak, modified
to take into account the calibration of the instrument and the incident wavevector, thus
giving a finite width to the excitation. The program used for this was called afitv, a
fitting program developed ‘in-house’ by the Laboratoire Leon Brillouin specifically
for analysing data from their triple axis spectrometers. Pyrolytic Graphite was used as
both monochromator and analyser. A cooled Beryllium filter and a PG filter were
used at kj = 1.55 A ' and at kj = 2.662 A ’ respectively, to reduce the second order

contamination of the neutron beam.

Through experience it was found necessary to change k; from 2.662A ' to 1.55A"
when the magnetic excitation transfer energy fell below 0.4THz. This improved the
resolution of the TAS but reduced the intensity of the measured peaks. At very low
energy transfers such as at (2/3 2/3 0) at 5.0kbar, kj was reduced further to 1.4A“*in
order to resolve the excitations very close to the incoherent peak at E = 0 THz. This of
course reduced the intensity even further and could only be undertaken for a few
critical points.

The observed excitations were modelled during the author’s PhD work with greater

accuracy than previously using the dispersion relations of Lindgard'* and Villain'M.

2 (57)
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where J(q) =4 [J cos (Jtgc) +J" cos(27tgc) +J'y(27tq%) |

and y(27lgx) = [2J cos iTtqy)[ cos(27tq] + cos(2jtqy) 1- 1}

J 7 is a factor introduced to account for the next nearest neighbour interaction, this
allowed a more accurate fitting to be undertaken in some circumstances.

gc is the vector in the chaindirection, in reciprocal space units [ 2K/ ¢ ],

gx is the vector in the [100]direction, in reciprocal space units [ 4k / "VSa ],

qv is the vector in the [110]direction, in reciprocal space units [4k / a].

R(T) is the renormalisation factor which is introduced to correct for temperature

effects, it is defined by the equation:

& (58)

where nj is the occupation factor for the ground state and «» and describe the

Zeeman split states m = +1, the VimR(T) = {.

r-»>o0

The three directions, [1 1/], [1/3 1/3 /] and [k h 0], measured were all simultaneously
fitted to the equation above producing an accurate description of the magnon

dispersion curves. The results for each pressure are presented below.
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Figure 109: Magnetic dispersion of CsFeCI* at 0 kbar along [1 1/], [2/3 2/3 /] and
[h hO].
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Figure 111: Magnetic dispersion of CsFeCb at
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Figure 112: Magnetic dispersion of CsFeCl* at 5.0 kbar along [1 1/], [2/3 2/3 /]

and {hho].
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Applying equation 57 to the magnetic dispersion curves shown above we obtain the
following values for single ion anisotropy (D), intrachain superexchange energy (J),

interchain superexchange energy (J") and next nearest superexchange energy (7").

Table 15: Values obtained for the single ion anisotropy (7)), intrachain exchange

energy (/), interchain exchange energy (/') and next nearest exchange energy

(7") for CsFeCtv

P(kbar) D J 7' J"
0.0 0.5185(23)  0.0634(67)  -0.0034(2)  -0.00999(73)
2.0 0.5463(59)  0.0677(15)  -0.0038(5)  -0.00958(180)

3.5 0.5484(55) 0.0683(13) -0.0039(4) -0.0103(150)
5.0 0.5692(50)  0.0750(17) -0.0038(4) -0.01211(160)
m3
5 2
Pressure (kbar) Pressure (kbar)
a

Pressure (kbar) Pressure (kbar)
Figure 113: Values obtained for the single ion anisotropy (D), intrachain

exchange energy (/), interchain exchange energy {J') and next nearest intrachain

exchange energy (7 ") for CsFeCfv
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It can be seen that the value of D increases linearly upon the application of hydrostatic
pressure, this is due to the physical deformation of the BX; octahedra under
pressure. The value of the interchain interaction also increases, again due to the
physical deformation of the BX~ octahedra. Both J' and J" increase/decrease due to

the physical distortions of the intrachain Fe-Cl-Fe and interchain Fe-Cl-Cl-Fe

superexchange pathways.

5.1.2 Structural studies on CsFeCl; under hydrostatic pressure. (ISIS)

In order to fully understand the correlation between magnetic behaviour and structure
it is necessary to undertake a full evaluation of the physical deformation of the crystal
structure under hydrostatic pressure. Experiments of this type have been undertaken

by Visser and Harrison"*® on the single crystal diffractometer D15.

The optimised lattice parameters of the system, obtained for each pressure, are shown
below in tabular and graphical format. The data given here is machine specific and
not of sufficient quality to undertaken calculations on the magneto-structural
relationship in CsFeCl;. The data in Table 16 can be compared with the optimised
parameters for CsFeCl; calculated for a powder sample using the POLARIS
diffractometer at the ISIS facility in Table 17.

Table 16: Optimised parameters for CsFeCl; under pressure'>.

P(kbar) a(A) c(A) o(°) Xal
0 7.1764 5.9706 74.19 0.1588
1 7.1681 5.9575 73.89 0.1595
2.2 7.153 5.9247 73.74 0.1609
5 7.1213 5.9198 73.42 0.1609
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Figure 114: Optimised parameters for CsFeCb under pressure by Visser and

Harrison, lines are only a guide to the eye.

It is interesting to note the unit cell axis (a), has a linear compression with increasing
pressure, whereas the c-axis undergoes an non-linear compression. However, these
results may be spurious due to the experimental conditions under which they were
obtained. The available resolution of the D15 diffractometer is a factor of 2-3 less in
the vertical direction than the horizontal. The crystal in this experiment was orientated
with the ab plane in the scattering plane and thus the errors in the z direction may be

rather large.
As was described in Chapter 3.2.2, powder diffraction provides a powerful means of

establishing the physical structure of a system with a high degree of accuracy. It was

decided therefore to undertake the characterisation of the system using the medium
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resolution, high intensity powder diffractometer POLARIS at the ISIS facility. This
diffractometer was selected for a number of reasons, Firstly POLARIS is particularly
suited for the study of system under non-ambient conditions, the ability of the
machine to collect an entire diffraction pattern at a single, fixed detector angle is very
important when one is working with atypical environments such as a pressure cell.
Secondly, POLARIS has four detector banks at ‘very low angle’, ‘low angle’, 90° and
‘back scattering’ positions. It is the 90° bank of detectors, which allows us to
eliminate the contamination of the scattered beam caused by the pressure cell by the

use of suitable collimation in the incident and scattered beams.

A 2.83g powder sample of CsFeCb was prepared by grinding up a single crystal and
loading in a He pressure cell (Chapter 3.3.3) which was placed in a modified Orange-
ILL cyrostat. The sample was then cooled to 2K and diffraction data was taken at
several pressures varying between near-ambient and 5.0 kbar. Average acquisition

time for each diffraction pattern was approximately 2 hours.

The collected raw data were firstly normalised, then corrected for contamination by
the pressure cell and finally corrected for absorption. The treated diffraction patterns
were then refined using the Rietveld method outlined in Chapter 3.2.2, using the
Cambridge Crystalographic Subroutine Library (CCSL). A typical fit for the obtained
data is given below for P = 3.48 kbar

20

— SO0 ; 6000 o

12000 8000 KfO .10000, _1_moo
8000
4000

12000

Figure 115: Sample of the Rietveld refined data for the powder sample of
CsFeCb {P = 3.48 kbar).
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Figure 116: Sample of the Rietveld refined data for the powder sample of
CsFeCb {P=0.48 kbar).

The calculated values for the unit cell parameters under pressure are given below.

5 ® 5975
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Figure 117: Structural parameters a, ¢, x and a for CsFeCb, obtained at the

POLARIS diffractometer, ISIS.
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It is seen that the system remains stable for pressures upto 0.5 — 1.0 kbar and that both
parameters decrease linearly upon application of further pressure. This is in contrast
to the data obtained by Visser and Harrison on the single crystal diffractometer D15 at
the ILL. This single crystal data, seen in Figure 114, clearly shows an non-linear
compression in the c-axis. However the data obtained on the POLARIS instrument is

certainly more accurate and reliable.

Table 17: Optimised parameters for CsFeCl; under pressure on the powder
diffractometer POLARIS at the ISIS facility, Oxford.

P(kbar) a(A) c(A) o(°) xci

0.03 7.17371(12) | 5.99286(19) | 74.60 | 0.15827(10)
0.48 7.17370(12) | 5.99287(19) | 74.60 | 0.15827(10)
1.05 7.16962(15) | 5.99041(19) | 74.60 | 0.15828(10)
1.49 7.16469(11) | 5.98738(15) | 74.44 | 0.15873(9)
2.01 7.15844(12) | 5.98333(20) | 74.39 | 0.15898(10)
3 7.14621(12) | 5.97589(19) | 74.29 | 0.15932(12)
3.48 7.14236(15) | 5.97288(19) | 74.25 | 0.15946(12)
4.03 7.13884(12) | 5.97171(19) | 74.25 | 0.15867(12)
5.09 7.12795(12) | 5.96453(19) | 74.26 | 0.15953(12)

The value of the x parameter shows similar behaviour as the a and ¢ axes up to
1.0kbar, however these have a decreasing linear behaviour with increasing pressure,
which is not the case for x, as can be seen above. One of the first points which is
obvious upon study of the structural parameters, superexchange angles and anisotropy
values is that a pressure of 5.0kbar does not change the balance of D versus J(Q)
sufficiently to induce magnetic ordering in the system. The compression of the crystal

structure changes D as well as XJ such that the change in D is compensated by a
similar change in the superexchange J(Q). The compression of the BX?™ octahedra

(c-axis compression), increases the value of D and this is directly related to the
reduction in the ¢ and o parameters, resulting in x¢; becoming larger. The decrease in

the value of « also results in J becoming larger. The compression in the a-axis gives
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rise to a larger value of the intrachain superexchange value J' due to the shortened
distances along the Fe-Cl-Cl-Fe pathways. The non linear change in these values of
xcr and « is reflected in the non-linear change in the superexchange pathways. A
surprising fact to come out of the magnetic excitation data was that the next nearest
neighbour interchain superexchange does exist. The value of this parameter increase
as one approaches an applied pressure of Skbar due to the increasing overlap of the
CI-Cl ions. Data was taken at 1.0kbar but unfortunately poor statistics meant that we
had to exclude this data from our analysis. The results of such a measurement should
confirm the very small change in value of parameters a, ¢, xc; and & up to an applied
pressure of 1.0kbar. Figure 117 also indicates that a further increase of pressure

should not result in a large increase of the constituent parameters.
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5.2 CsFeBrj (LLB)

This Chapter will be used to describe the magneto-structural relationship in CsFeBr*
under hydrostatic pressure conditions. Chapter 5.2.1 will deal with the magnetic
dispersion curves of the system, work undertaken at Loughborough University by the
present author and presented for the degree of MPhil. Chapter 5.2.2 deals with
structural studies undertaken during the author’s PhD work on the POLARIS

diffractometer at the ISIS facility.

5.2.1 Magnon dispersion measurements on CsFeBrs under hydrostatic pressure.

The measurements in this Chapter follow exactly the same routine as for the
measurements on the system CsFeCU expounded on in Chapter 5.1.2. The same TAS,
4F1, at the LLB, Saclay was used for the experiment. A Icm” single crystal of
CsFeBr* was mounted in the He-pressure cell available at the LLB, placed in a
modified ‘Orange’ cryostat, pressurised and cooled to T = 1.5K. Constant-Q scans

were then performed along the paths shown below.

* Ivbgnetic Bragg peak

(001 )< - (111) «Scan path

(ID)G'--— i——— (110)

00-1)6 6 [QI5))

Figure 118: Scans taken through reciprocal space for CsFeBr” at S.Okbar,
3.5kbar, and 1.Okbar.

As with CsFeCb, Pyrolytic Graphite was used as both monochromator and analyser.

A cooled Beryllium filter and a PG filter were used at kj = 1.55 A" and at kj = 2.662
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A~

A’' respectively, to reduce the second order contamination of the neutron beam and ki
was change from 2.662A" to 1.55A" when the magnetic excitation transfer energy

fell below 0.4THz.

The observed magnetic dispersion curves were fitted to equation 36, modified slightly
to take account of the antiferromagnetic mrrachain interaction of the system. It was
noted that in the absence of the next nearest neighbour term {J’), equation 36 still
adequately described the magnon dispersion curves, apart from the case where P =
1.Okbar where the inclusion of J ”gave a more accurate description of the observed
curve. The resulting dispersion curves obtained for P = 5.0kbar, 3.5kbar and 2.0kbar

are shown below.

O [2/3 2371

0.7 0.7

0.0 0.2 0.4 0.6 08 1.0 0.6 0.8 1.0

A [2m/c]

Figure 119: Magnetic dispersion of CsFeBrs at 1.0 kbar along [1 1/], [2/3 2/3 /]
and {h h 0], the dotted line represents equation 57, the solid red line represents

equation 57 with no next nearest interaction {J"),

0.9
0 1232/3;i
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0.6 0.6 0.8 1.0
A [4it/a]

Figure 120: Magnetic dispersion of CsFeBr" at 2.0 khar along [1 1/], [2/3 2/3 /]
and [h h o]
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Figure 121: Magnetic dispersion of CsFeBra at 3.5 kbar along [1 1/], [2/3 2/3 /]

and [k ho].
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Figure 122: Magnetic dispersion of CsFeBr" at 5.0 kbar along [1 1/], [2/3 2/3 /]

and [k hoo].

The values obtained from equation 57 are given below.

Table 18: Values obtained for the single ion anisotropy (D), iVi/rachain exchange

energy (/) and interchain exchange energy (7') for CsFeBr".

P(kbar) D J J'!
0.0 0.620(10) -0.066(5) -0.0067(5)
1.0 0.67738(779) -0.0737(157) -0.00566(64)

1.0 0.6903(112) -0.06909(175)  -0.00494(43) 0.00735(140)

2.0 0.65901(938)  -0.07088(152)  -0.00622(52)
3.5 0.65308(1791)  -0.06993(277)  -0.00621(52)
50  0.61288(700)  -0.05915(150) -0.00930(52)
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Figure 123: Values obtained for the single ion anisotropy (D), intrachmn
exchange energy {J) and interchain exchange energy (7') for CsFeBr”. (Lines are

guide to the eye only).

As can be seen from the figure above, D increases upon the application of hydrostatic
pressure reaching a maximum around Ikbar and decreasing thereafter. This is the
same for the intrachmn interaction J, the interchain interaction J' follows a different

trend, seeming to increase in value at Skbar.

The behaviour of the structural, magnetic superexchange and single ion anisotropy
parameters under applied pressure is completely different to that in CsFeCb. As can
be seen in Figure 123, it looks like the chain has restored itself to ambient pressure
conditions except for J' which is a factor 50% larger at Skbar applied pressure, it
should be noted however, that J' is of very small value. It is also of interest to note

from Figure 119 that the interchain next nearest neighbour superexchange, J'|
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becomes significant at an applied pressure of [.Okbar. Unlike in the isostructural
compound CsFeCU, where ferromagnetic dispersion of the nearest neighbour along
the c-axis has a period of Tdc and the next nearest neighbour dispersion has a period of
7c/2c. One would not expected to observe this next nearest neighbour dispersion in the
antiferromagnet dispersion of CsFeBr] as both the nearest and next nearest neighbour
dispersions have a period of 7t/2c. It seems that some sort of contact is established
between the Br ions when the Fe-Br-Br-Fe pathway becomes activated through

applied pressure.

5.2.2  Structural studies on CsFeBrj under hydrostatic pressure.

The measurements contained herein were performed during the same experimental
period as those taken in 5.1.2. Thus all experimental parameters such as machine,
apparatus etc. are identical. The reader is refer to this Chapter for more information on

the experimental aspects.

A powder sample of 2.95g was prepared by crushing a single crystal of CsFeBri. This
was mounted in a clamp cell, which was placed in a modified ‘Orange’ cryostat and
cooled to T = 4.70K. As with CsFeCU, full powder diffraction patterns were taken
from ambient to 5.0kbar applied pressure. The raw data was then normalised,
corrected for the presence of the pressure cell and finally corrected for absorption. A

typical refinement is shown below for P = 1.39kbar

CsFeBr, @ 1.39 kbar

2000-

4000-
2000-

10000 nooo
8000-
4000-

11000 13000 16000

Figure 124: Sample of the Rietveld refined daffor CsFeBr* (P = 1.39kbar).
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The resultant values for the unit cell axes a and ¢ were collated and are given below.

S 0.1624

Pressure (kbar)

Pressure (kbar)

C 73.5-

732

73.1

Pressure (kbar)

2

3

Pressure (kbar)

Figure 125: Structural parameters a, ¢, a and X for CsFeBrg, obtained at

POLARIS, ISIS (the lines are a guide to the eye only).

Table 19: Optimised parameters for CsFeBr" under pressure on the powder

diffractometer POLARIS at the ISIS facility, Oxford.

P(kbar)
0

0.52

1.0
1.39
2.0
2.79
3.75
4.85

a{4)

7.507
7.49391(45)
7.48859(39)
7.48484(48)
7.48304(49)
7.47556(44)
7.44994(44)

7.50056(57)

cC&)

6.291

6.28247(38)
6.27773(33)
6.27377(38)
6.27357(38)
6.26976(37)
6.25043(37)
6.28543(48)

«(°)

73.43(5)
73.64(5)
73.37(5)
73.44(5)
73.33(5)
73.23(5)
73.19(5)
73.60(5)

Xsr

0.1608
0.16163(20)
0.16241(20)
0.16219(22)
0.16256(21)
0.16292(23)
0.16310(26)
0.16168(22)
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The magnetostructural correlations in CsFeBr; can be best described as ‘peculiar’. In
the initial stages of pressurisation up to 1.0kbar the value of the parameters of D, J
and J' increase as one would expect, due to the decrease in the cell parameters.
Thereafter the values of D and J decrease whilst the J' remains more or less constant
up to 4kbar increasing rapidly thereafter. The neutron powder diffraction data shows
that the length of the a-axis and c -axis decrease non-linearly and seem to reach a
plateau between 1-3kbar. Upon application of a further pressure up to 5.0kbar we see
that the value of the a and ¢ axes increase again and approximate the values at
ambient pressure. An inverse trend is followed by the x parameter which increases in
value up to 4.0kbar and decreases upon an application of further pressure. However,
the x parameter does not return to the ambient pressure value as with the values of a
and c, rather it seems to remain at a slightly higher value. The change in the magnetic

behaviour of the system can thus be related to the change in the structural parameters.

The origin of this bizarre compressibility may be related to a pressure induced phase
transition. At ambient pressure CsFeBr; adopts the highest possible symmetry space
group: P6s/mmc and no indications of a phase change have been observed thus far
from either powder or single crystal diffraction data at ambient pressure. The trend of
the data seen in Figure 125 above 3.0kbar indicates a non-physical effect. Under
applied pressure the volume of the unit cell should not increase relative to the unit cell
volume of the material below 3.0kbar. No evidence of a structural change is observed
from the powder diffraction data for P > 3.0kbar. Experimental conditions were such
that the pressure was seen to remain stable at the chosen value during the
measurements thus we can rule out a pressure ‘leak’. For T = 5K and P > 3.0kbar the
powder sample was encased in solid Helium, thus the pressure should be
homogeneous throughout the sample. In the single crystal inelastic experiments no
physical changes to the sample were observed, i.e. shearing of the crystal whilst under
pressure etc. If this would have happened one could think of a 2~ — hc type of phase
transition as a possible cause of the behaviour. It is clear that these points need further

investigation.
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5.3 CsFeBr; (V2)

As was mentioned in Chapter 2.3.1, studies on the singlet ground state
antiferromagnet CsFeBrs have mainly concentrated on the magnetic excitations of the
system. In this section further elastic and inelastic neutron scattering studies on
CsFeBr; in an applied field at very low temperature (<1K) are presented. The
experiments were performed on the TAS, V2 (FLEX), at the HMI, Berlin. In
conjunction with a dilution insert and the Horizontal Magnet HM1, temperatures
below 100mK and fields above 5T could be reached simultaneously, allowing us to

extend the map of the magnetic phase diagram of CsFeBrs.

Chapter 5.3.1 presents measurements on the magnetic phase boundary of the system
in the mK temperature range and Chapter 5.3.2 deals with measurements carried out

on the magnetic excitations of the system with Hy,. upto 6.0T at T = 100mK.

Due to technical difficulties it was necessary to perform the experiment during two
separate periods. The first period was used not only to ascertain the critical exponent
B of the system at mK temperature and high field, but also to establish what measures
needed to be undertaken in order to perform the experiment successfully. Several
aspects of the first experiment were cited as cause for concern. It was noted that the
high magnetic field emanating from the magnet HMI1, caused a failure of the
magnetic switches which controlled the pneumatic shielding surrounding the sample.
In order to overcome this, a temporary fix was administered by taping small
individual magnets to each switch to override this effect. It was also noted that the
large amount of cabling, vacuum tubing, etc. attached to the dilution stick caused it to
rotate within the magnet, thus ruining the alignment of the crystal. This was
temporarily overcome with the use of the crane in the guide hall to lift the cabling into
a position directly above the stick, this minimised rotational stress on the stick. Both
of these problems had a permanent fix by the time of the second experiment. Due to a
small heat leak we were unable to attain temperatures below 100mK during the first

experiment, this was again remedied by the time of the second experiment.
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5.3.1 Elastic Scattering.

Each experiment proceeded in the same manner whereby an approximately Icm”
single crystal (mosaic width 0.3°), was mounted and aligned with the [001] - [110]
plane in the experimental field. This allowed access to the magnetic Bragg points (1/3
1/3 1), (2/3 2/3 1) etc. In both experiments constant-Q scans were performed across
the magnetic Bragg peak (-2/3 -2/3 -1). This was the magnetic peak calculated to be
on the focussed side of the analyzer and also within the available ‘window’ of
scattering of the magnet. The phase boundary at the onset of magnetic ordering was
established by scanning the peak at fixed temperature and varying the field. These
‘sublattice magnetisation’ scans were taken for T = 100mK, 350mK, 6(X)mK and
900mK for the first experiment and for T = 50mK and 350mK for the second

experiment. The resultant phase boundary is shown below.

5.0

1st experiment
4.5- O  2nd experiment
reference 50

4.0-

2.5-

2.0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Temperature (nr.K)

Figure 126: Magnetic phase boundary for the singlet groundstate
antiferromagnet CsFeBr” at millikelvin temperatures (Line is a guide to the eye

only).

It can be seen from Figure 126 that the first and second experiment give different
phase transition boundaries. It is assumed that this difference is caused by the

misalignment of the c-axis of crystal with respect to The horizontal magnetic field. It is
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estimated that the c-axis of the sample was rotated by approximately 4° to the

direction of field in the second experiment, consequently altering the phase boundary.

Of course it is not only the phase boundary which can be determined by ‘sublattice
magnetisation’ measurements, the primary use of these measurements is the
determination of the critical exponent p. The measurements and calculated values of p

are given below.

1(K)mK

c 65

20 15
Field (T) In((H-H YH.)

Figure 127: Sublattice magnetisation scan for the SGS system CsFeBr”" taken at
100mK during the first experiment.

35)mK

Field (T) In((H-H.)/H.)

Figure 128: Suhlattice magnetisation scan for the SGS system CsFeBr”" taken at
350mK during the first experiment.
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Field (T)

Figure 129: Sublattice magnetisation scan for the SGS system CsFeBr” taken at
600mK during the first experiment.

900mK

55 w5 2,0 1.5 1.0
2.8 2V 31 32
1 -
Field (T) In((H-H VH )

Figure 130: Suhlattice magnetisation scan for the SGS system CsFeBr” taken at
900mK during the first experiment.

As can be seen from the above, the obtained data is of rather poor quality and
although it was deemed of sufficient quality to determine the critical exponent P, it
was decided to verify these results during the second experiment. Thus further
sublattice magnetisation scans were performed during the second experiment at T =

50mK and 350mK. The results of which can be seen below.
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Figure 131: Sublattice magnetisation scans for the SGS system CsFeBr” taken at

millikelvin temperatures taken during the second experiment.

The data obtained from the second experiment are of better quality and go some way
to validating the results obtained during the first experiment. It can be seen that the
resulting values of the critical exponent are slightly lower than previously, it is
speculated that this is due to the fact that the crystal was misaligned by 4° during the
second experiment. A similar pattern can be seen for measurements of the phase

boundary in Figure 126.

Collating the results of the value of the critical exponent 3 from the first and second

experiments produces some interesting results, as can be seen below.
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Figure 132: Value of the critical exponent 3in the TLA system CsFeBr” at

millikelvin temperatures.

These results suggest that as one moves along the phase boundary the critical
exponent changes value. The exponent changes from p = 0.34(1) at T = 100mK, via a
value of p = 0.36(2) at T = 350mK to p = 0.25(2) at T = 900mK. Previous

measurements by Schmid have shown that p =025 at T = 1.6K '

It is well known that the path followed in approaching a critical point may influence
the obtained value of the critical exponent and reduce it to an effective exponent. In
the case of this type of phase diagram only the pathway at T = OK with increasing //,
will give a valid critical exponent. Therefore an unambiguous interpretation of the
values of p at the different T and H cannot be given. We attempted to establish the
possible difference in pathway by running a T dependent scan at fixed H. However,
this proved ineffective due to the small induced moment and the large amount of
critical scattering present just above Tn. It has to be stated that the critical exponents,
P, ¥, Vquoted by Schmid for CsFeBr* at T = 1.6K do vary and are not consistent with
the M= 2 chiral system. As in the case of CsNiCl* (Chapter 4.2.1), the application of
an applied magnetic field under an oblique angle reduces the value of the ‘effective’

exponent.
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5.3.2 Inelastic Scattering.

During the second experiment we also performed full magnon dispersion curve
mapping for the system at base temperature (50mK) at various fields. Scans were
performed along [hh\] and [2/3 2/3 /] for B = 1.5T, 3.0T and 6.0T. Typical scans at

3T and 6T are shown below for visualisation purposes.
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Figure 133: Typical scans performed on CsFeBr* at T = 50mK and B =3T and
6T.

The resultant dispersion curves of the [2/3 2/3 /] and [k h 0] directions are given
below. It can be seen that the original single modes have been split by the application
of magnetic field along the z - axis, known as Zeeman splitting. The dispersion of the

157,161

split modes have been derived from equation (10) , giving us an equation similar

to that shown in Chapter 5.1.1.
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hw(q)={ D [D-2J(q)-R(T, H:)] + J}(q) - (susmM,)* }

'g.uBm{ Hﬁx + [2-]0 - J(Q)] Mz} (59)
where J(q)=41Jcos (mq.;)+J" cos(2rq.;) + J'y(2rq,) ]
and Y(2rq,) = {2J cos (ngy)[ cos(2mqy) + cos(2mgy) 1 -1}

R(T, H} ) is a renormalisation factor first introduced by Lindgard'® in order to

account for the temperature renormalisation and later calculated by Knop and
Lindgard'®>!? for the field dependence. It is equal to the negative of the quadrupole
moment. If one neglects the dispersion of the magnetic excitations in a SGS system, R

is given by

R=R /R, =(nl o ’2’"3 ) /R; (60)

where n, is the occupation factor of the ground state m = 0, and n; and n3 are the
occupation factors for the Zeeman split states m = -1, m = +1 respectively. We can see
that as the external field increases, so R will decrease. This is due to the asymmetric

splitting of the m = %1 states, such that, n, will increase quicker than n; will decrease.

M, is the induced magnetic moment, which is negligible in the present case.
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Figure 134: Magnetic excitations under external magnetic field for B = 1.5 Tesla
and B = 3.0 Tesla. The solid curves are calculated using (59) and are explained

below, the dotted line represents magnetic dispersion at o field.

Below in Figure 135a we present the Zeeman splitting at various points in reciprocal
space. It can be seen that the splitting is independent of q, it is not so easy to discern
from the graph below but the splitting is also asymmetric, with the higher frequency
mode splitting more quickly than the lower one. At each field we determined the
Zeeman splitting by taking the average over the available data, see Figure 134. The
field dependence is linear with field and the slope of Figure 135b gives a value of the

Zeeman splitting.

N THz
Tesla

V+ - V.= AVZeeman= 0.071 = 0.001
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(2/32/30.2)-

e b # Slope =0.0710 (12)

] ' (2/3 2/3 0.4) Eo2-

(2/32/3 0.6)

0 I 2 3

External Field / ¢ (Tesla) External field / ¢ (Tesla)

Figure 135: Zeeman splitting of the m = +1 modes in an external field.

From this slope one can calculate the Lande factor g, of the excited state by using the

relation,

VI ZIV Zeeman =g 'g’\BZn H

Thus we can calculate the value of g to be,

g —2-5,

This is in good agreement with the value obtained by Domer et for CsFeBr" of g
= 2.4 and is the same value as that obtained by Steiner et alJ”, of g = 2.5. for the SGS

system CsFeCL.

Together with this value of the Lande factor, we took the values of the
renormalisation factor at various field derived in ref. 81 and the determined values of
D, J and J\ from work by Domer, Visser et (D =0.62(1) THz, J = -0.066(3)
THz and 7' = -0.0067(5) THz). Using these values we compared the calculated and
observed magnetic dispersion curves. The agreement between observed and

calculated is very good as can be seen in Figure 134.

However, we see that at the onset of magnetic order at around B = 3.0T the situation

changes and the lower branch splits into three separate branches. This splitting is
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further enhanced at 5 = 6.0T and as can be seen below, the theory of Lindgéard and
Villain no longer accurately describes the measured dispersion curves in the ordered

phase.

J « 60T

(23231 [Hq

Figure 136: Magnetic excitations under external magnetic field for B = 6.0 Tesla.
The solid curves are calculated using (59) and the dotted line represents the
calculated magnetic dispersion at 0 field.

As can be seen from the above, the magnetic excitations at 5 = 6.0T could only be
obtained in the vicinity to the Q(2/3 2/3 0) point, due to vanishing excitation intensity.
This is due, as has been calculated by Dorner and Visser”', to the large reduction in
the dynamical structure factor with increasing field. They found that the dynamical
structure factor was reduced by a factor of 3 at 5 = 5T compared to that at OT for the

Q(1/3 1/3 0) point.

In principle one should observe six excitation branches due to the six sublattices of
the antiferromagnetic 120° type triangular structure. However, the induced moment
character of CsFeBr* complicates this picture. In the pure singlet ground state case
one would observe only one excitation from the singlet ground state to the excited
doublet state. In the case of a magnetically ordered induced moment system with the
magnetic moments in the basal plane the internal exchange field splits the doublet

state, as is shown in the schematic below.
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Figure 137: Effect of the application of magnetic field parallel and perpendicular
to the c-axis in CsFeBrs;.
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The magnetic excitation can then be understood on the basis of the pure exciton
picture. Thus one should observe three single-ion excitation, those being, ®;: 0 — 1,
oy: 0 = -1, w3: 1 — -1. This, in principle, gives rise to eighteen branches for a six
sublattice system. However, the transition, ws;, will be of very small energy ~
0.01THz, and is unable be resolved easily with neutron scattering measurements. The
six highest order branches are to be observed around 0.8-1.0THz and the remaining
branches will occur between these two extremes at around 0.125-0.5THz. It is these

branches which can be seen in the figures above.

An alternative approach to the understanding of the magnetic excitations in singlet
ground state and induced moment systems, can be obtained via the dynamical
correlated effective field approach by Suzuki®*2®. Suzuki and Makino®® have applied
DCEFA theory to the SGS system CsFeCl; accurately modelling the magnetic
excitations of the system with no applied external field. A brief outline of the DCEFA
theory applied is given below.

The magnetic properties of the AFeX; systems at low temperature are well described
by the Hamiltonian:

Ho =Y DS2 -y HI(5,S,, +5,5, )+ 7!S.S,.}

i (") (61)

iz" jz

+ 3 207 (5,8, +5,5, )+ 25,5, }
(i)
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where the first term represents the easy plane type anisotropy energy and J;" and J'

denote the nearest neighbour intrachain interaction and J; and J; the nearest

neighbour intrachain interaction. The essence of DECFA theory lies in the

approximation of the spin product S;S; with:
sl(s,)+als, —(s )+ s, [is.) +als, -(s,)) (62)

where « is the correlation parameter and (S,.> denotes the spontaneous spin moment

or the spin moment induced by a magnetic field. If we consider the paramagnetic

phase with no external field, then (S,.) vanishes and the effective single ion

Hamiltonian for equation 61 can be expressed as:
ST =ES; (63)
with,

E=D+alJt-J!) (64)

where J{, (y= L1, //) represents the g = 0 component of the Fourier transform J of

the exchange integral. In DCEFA the dynamical susceptibility x*(q, @) of the

paramagnetic phase is expressed in the following form:

4E,

q9

27 (q,0)=

where @, represents the energy of the magnetic excitation and is given by the

expression:

o, =|E* -4Ep(7t —as i )}” (66)

q
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5 Singlet Groundstate Compounds

The Fourier transform of the exchange integral J ql takes the maximum value at g =

K, where K is the wave vector of the K-point in the Brillouin zone. Thus the magnon

energy is at a minimum value at g = K.

If we consider an applied field H // z, the Hamiltonian is expressed in the form:

SH =Hy— Y, 8" 1,HS, (67)

where /4 is the Hamiltonian for zero external field given as equation 61. In a similar

manner the effective single ion Hamiltonian for equation 67 can be expressed as:

ST =ES} -BS, (68)
with
B=g"u,H+2J/(1-c)Ss,) (69)

where (S,) denotes the uniform spin moment induced by the applied field. The

dynamic susceptibility %" (g, ®) is expressed as a function of ¢, J, and the single ion
susceptibilities. The static susceptibility x*"(K, 0) will diverge at a critical temperature

Tn, between H; and Hc; and the system will order in a conical spin structure.

However, the approach above has not been extended to the prediction of the
dispersion of the magnetic excitations in the presence of a magnetic field. Therefore,
unfortunately, at present only a qualitative interpretation of our data can be given and
a comparison with the magnetic excitations of the induced moment system RbFeBr;

made.

The magnetic excitations in the induced moment system RbFeBr; have been studied
by means of inelastic neutron scattering by Harrison and Visser’**. The system
undergoes a structural phase transition at T = 108K to a distorted hexagonal structure

(isostructural to the RT phase of KNiCls), which relieves the magnetic frustration of
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5 Singlet Groundstate Compounds

the 120° type magnetic structure due to the introduction of two different intraplanar
superexchange constants, see for example Figure 17. The transition is traceable
through the lifting of the degeneracy of several branches of the magnetic excitations
in the fully ordered magnetic phase the system. The observed magnons and associated
calculated dispersion curves for RbFeBr; at T = 4.5K are reproduced below. The

calculated model is based on the 120° type magnetic ordering.
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Figure 138: Magnetic Dispersion curve of (a) [2/3 2/3 ] and (b) [k h 1] of
RbFeBr;, the lines are best fit to DCEFA theory®*.

Visser and Harrison'%’

also performed a cold, inelastic neutron scattering experiment
on the sister compound RbFeBr3. Measurements were made on the magnetic
excitations of the system at T = 1.35K and the lifting of the degeneracy of certain
branches is obviously visible in the reproduced data below. In this system, several
branches which have zero structure factor for the 120° type magnetic structure show

intensity for the modified 120° structure.
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RbFeBra

E (THz)

Cren

Figure 139: Magnetic Dispersion curves for RbFeBrs, lines are best fit to DECFA
theory.

In our present experiment for CsFeBr; at T = 60mK and H = 3.0T, one observes four
branches around the magnetic Bragg point Q(2/3 2/3 1) for E < 0.15THz. As one
moves away from this point along the [2/3 2/3 [] and [ & 1] directions, the branches
merge quite quickly. In comparison with the calculations for the pure 120° type
magnetic structure we observe the same intensity behaviour for the magnetic
excitations as a function of Q at H = 3.0T. However, we observe an extra branch at
the soft mode point Q(2/3 2/3 1), detecting four, rather than three, branches. This may
be due to the applied field inducing a conical magnetic structure which possibly

induces symmetry breaking in the system.
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Figure 140: Possible magnon branches of SGS system CsFeBrg at T = 60mK and
H=6.0T.

At H = 6.0T, a similar picture emerges, however, the intensity of the magnetic
excitations drops considerably as one moves along the /& & |\] direction towards the
zone boundary. Although the single crystal used for the experiment was large
(~lem'"), it may be that the use of a larger crystal would allow us to extend the
measurements to larger Q. The energy of the magnetic excitations at 6.0T are slightly

more displaced than those at 3.0T, as one would expect for a larger applied field.

From this experiment one can conclude that the magnetic field induced moment phase
with a ‘conical’ 120° type magnetic structure behaves in a similar manner to that
observed for induced moment systems such as RbFeCl* and RbFeBr*. Both the
intensity and dispersion of the magnetic excitations can be explained by the DCEFA
approach. Further development of this theory is required to accommodate the applied

magnetic field and a conical 120° type magnetic structure.
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6 Conclusions, Outlook

In this thesis a series of experiments have been presented which investigate:

e The possible occurrence of chiral magnetic ordering in the triangular ABXj3

antiferromagnets.
e The magnetic excitations in quasi one-dimensional quantum § = 1 spin systems.

Since the conjecture by Kawamura that the order parameter of frustrated stacked

triangular lattice antiferromagnets includes, along with the ordinary spin variable S RS

a spin chirality C = [S" a1 X S R2 ], a relevant variable that indicates whether the helically

polarised spin structure is a right handed or left handed one, giving rise to new

universality classes. This conjecture has been a hotly debated topic.

Experimental investigations to verify this conjecture have been undertaken with
specific heat and neutron scattering techniques. The main body of experimental
evidence has been provided by the hexagonal ABXj3 halides and the BX; di-halides.
For CsMnBr; the measured critical exponents o, 3, v, v compare well to the predicted
new chiral universality class of Kawamura. The spinflop phase of CsNiCl; also has a
triangular magnetic structure. Specific heat measurements indicate that this phase

displays chiral critical behaviour also.

We have attempted to obtain further experimental evidence for chiral critical ordering
by trying to verify Plumer’s and Kawamura’s prediction for the occurrence of a
magnetoelectric effect in the frustrated triangular lattice and the occurrence of chiral

critical scattering in the deformed triangular lattices.
A proof of the existence of a magnetoelectric effect in CsMnBr; has been obtained for

elastic neutron scattering experiments. The magnetic order parameter, B, indicated

that for a sufficiently high electric field, applied parallel to the [110] direction,
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magnetoelectric coupling occurs and that an Ising like magnetic phase is formed. The
diffuse magnetic scattering is also strongly affected, indicating that the formation of
the different types of chiral domains are influenced in the presence of an electric field.
The magnetic phase diagram of CsMnBr; in the presence of an applied electric field is
expected to remain identical to the £ = O case. However, measurements suggest that

the boundary of the transition to spinflop phase moves to higher temperatures.

For the weak Ising triangular antiferromagnet, a chiral critical behaviour has been
predicted for the spinflop phase. Specific heat data indicates that a n = 3 chiral phase
is present at the critical temperature evolving into a n = 2 chiral phase. Neutron
scattering experiments in applied magnetic field H // ¢, show a similar behaviour for
the magnetic order parameter. It has also been demonstrated that the order parameter
is strongly influenced by the direction of the magnetic field. A similar effect has been
observed for the induced moment phase of CsFeBrs. Chiral like magnetic order
parameters have also been found for the weak Ising triangular antiferromagnets
CsNiCl; and RbNiCls. In these systems the partially ordered phase which is formed
between Tny — Tn2 has an xy component remaining in it. Evidence have been found
that indicates that the parameters D, J, and J' in RbNiCl; may also influence the chiral

class selection or provide a mechanism for crossover between two classes.

Evidence has also been obtained for deformed triangular lattice structures which
indicates that the 120° type or helical magnetic symmetry must be preserved before
chiral ordering occurs. Thus the modified structures of the o and B-phase of KNiCls
are non-chiral, whereas, the helical magnetic structure in TIFeCl; gives a n = 3 chiral

order parameter.

Further evidence for chiral magnetic order has recently been obtained from polarised
neutron scattering experiments. The predicted average chiral critical exponents 3, and
Y. have been obtained from the chiral critical crossover exponent, ¢, = B, + Y. The
results were accomplished by investigation of the fluctuations of the chirality above
T. Because the chirality vector C is expressed through the spin pairs at the different
lattice sites, the chiral fluctuations are related to four spin correlations and their direct

study is impossible. Thus, Maleyev166 proposed the study of the projection of the
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chiral fluctuation on the field-induced magnetisation, also called the Dynamical
Chirality (DC). The DC results in a polarisation-dependant, completely inelastic part

of the neutron scattering cross-section, which may be defined as* '™

)N-P ,|f(6)iM[l-exp[-«/rrX
dCOdQ. (70)

10HJ ImSXQ, (0)+{hQtQelch)ImSM(o)]

where Q,h,c are the unit vectors along the momentum transfer, external field and
hexagonal axis respectively. For an isotropic Heisenberg system Sz = 0,while for an
XY system such as CsMnB1”, Sj = 0. This results in a polarisation dependent, energy
spectrum of the neutron, Q from which @ can be deduced. A detailed
description of this theory can be found in reference 168. Similarly the value of can
be obtained independently from the polarisation dependence of the sublattice

magnetisation in the presence of unequal chiral domain population for CsMnBr”.
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Figure 141: Polarisation dependence of the sublattice magnetisation of

CsMnBrj***,

Presently, the weight of experimental evidence supports the existence of chiral
magnetic ordering. However, a further generalisation is required with test experiments

on model materials with different magnetic anisotropies and crystal classes
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(structures). Specific heat and polarised neutron scattering experiments will play a

vital role in these studies.

Further evidence of the magnetoelectric effect in different ABX3 halides is required.
Direct evidence could be achieved with specific heat measurements on the
magnetoelectric effect in CsMnBr;.A theoretical evaluation of the form of the
magnetic phase diagram of the system in the presence of an electric field should be
carried out. In order to further enhance our knowledge on the different sub-groups
within the ABX3 family, it will be necessary to carry out neutron diffraction studies
on the small easy plane anisotropy system (D < 3J'). These studies should also be
carried out on the deformed triangular lattice material such as RbMnBr;, RbFeBr3;,
KVCl; and KNiCls.

A further investigation of the VX, compounds, followed by the hexagonal ABO; and

ABO; oxide family may enhance our knowledge of chiral ordering.

As early as 1969 the hexagonal ABX3 perovskites attracted attention as model
magnetic materials for one-dimensional magnetism. Since the spin value of the first
row transition metals B** is spread from the quantum S = 1/2 to the classical S = 5/2
state, the effects of crossover from the quantum to classical on the 1-D spin chains can
be analysed as well as the influence of 3D magnetic ordering on such systems.
Haldane’s conjecture that integer spin chains would exhibit different behaviour to half
integer chains opened up a wide range of experimental routes for these systems.
However, as is normal, no ideal physical models could be synthesised to test the
theoretical predictions, in this case one looks for isomorphous materials with which to
test the conjectures. In this thesis, an unusual route has been taken to vary the
structural parameters and thus vary the magnetic superexchange pathways and single
ion anisotropy. Structural deformations have been induced in several of the § = 1

quasi one-dimensional ABX3 materials by means of applied hydrostatic pressure.

The SGS materials CsFeCl; and CsFeBr; were investigated by means of inelastic
neutron scattering techniques, due to the singlet ground state properties of the
materials no magnetic order is observable. However, a sufficiently large, externally

applied, magnetic field // c-axis will produce an induced magnetic moment and long
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range order will occur in the system. A similar process occurs upon the application of
a symmetry breaking pressure // a or if the anisotropy and superexchange parameters
are varied sufficiently i.e. by structural deformation. The magnetostructural studies
elaborated upon in Chapter 5 set out to establish the compressibility behaviour of the
physical structures and the corresponding magnetic dispersion curves of the singlet
groundstate materials in order to obtain the anisotropy and exchange parameters under
applied hydrostatic pressure. Although it is seen that hydrostatic pressure induces an
anisotropic compression, these systems are not sufficiently deformed to induce
magnetic ordering. The changes in crystal structure have been related to the change in
the magnetic parameters. The studies contained in Chapter 5, give for the first time a
basis for a rigorous magnetostructural correlation and also a foundation for further

theoretical calculations of the superexchange parameters.

The determination of the magnetic excitations of CsFeBr; in higher magnetic fields
than previous reported showed that, for T = 50mK and H = 3.0-6.0T, the features of
the magnetic excitations resembled those of the induced moments systems e.g.
RbFeCl;. This gives a basis for extending the present DCEFA theory to the
calculation of the magnetic excitations in field induced systems and distorted-
triangular induced moment magnets. Verification of subsequent theories could be
obtained by studying CsFeCls and CsFeBr; in an applied magnetic field both // and L
to c. Further magnetic characterisation of TIFeCls under applied pressure would also
provide insight into the ordering process. Other candidates which would prove useful

to investigate include TIFeBr;, ND4FeCl,, ND4FeBr,, CsFel; and TMFeCls.

A similar study of the Haldane, § = 1 systems, CsNiCl; and RbNiCl; was started
during the same period. The systems have been investigated previously at ambient
pressure and have been shown to exhibit characteristics commensurate with the
Haldane conjecture. Comparable studies have been undertaken by the author for the
systems under a hydrostatic pressure environment in order to obtain the values of the
exchange parameters and single ion anisotropies and ‘create’ extra Haldane systems.
This was done in order to test the conjecture in materials with modified values of D, J
and J'. This undertaking could not be completed within the allotted time as no beam

time was forthcoming for the comparative structural study of the materials. From the
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inelastic data, acquired at 5.0kbar applied hydrostatic pressure, we see that the
changes in the excitation spectrum are less pronounced than in the CsFeX3; materials.
This is most probably due to the fact that the ANiCl; compounds have smaller rp/rx
ratios and are less compressible. Nevertheless differences in the longitudinal mode
energies are observable. A full interpretation and magnetostructural correlation or

these materials awaits experimental completion.

The influence of a change in the sign of the single ion anisotropy, D, on the gap
behaviour of the ANiCl; materials has been obtained for a pilot experiment on
KNiCl;. The magnetic excitations have been measured in the [ and y-phases at the
softmode point and show that a system with positive D also possesses a gap.
Unfortunately there are no theoretical predictions for such systems and a detailed
analysis of the present data would require the introduction of the correct

crystallographic structure.

In the near future theoretical studies are required to include different types of
anisotropy in the calculation of the 1-D properties of a S = 1 chain system.
Experimental realisation of different D, J and J' models can be obtained by looking at

a vast number of Ni coordination complexes and further study of the ABX3 halides.
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This section describes inelastic neutron scattering experiments performed on some
ANiCl; compounds at ambient and applied hydrostatic pressure conditions.
Measurements were made on the distorted triangular lattice antiferromagnet KNiCl;
and the easy axis anisotropy stacked triangular lattice systems CsNiCl; and RbNiCl;.
All experiments were performed using the TAS, 4F1 at the LLB, Saclay, and in the
case of the CsNiCl; and RbNiCl; samples, in conjunction with the ‘in-house’ He-
pressure cell. Further information on these can be found in Chapters 3.2.1.3 and 3.3.3,
respectively. Using this setup enabled us to apply hydrostatic pressures of up to P =
5.0kbar at a temperature T < 2K to the systems. The data are presented in this
appendix as no treatment of the dispersion curves has yet been carried out and thus
the values of the single ion anisotropy D, and the inter and intrachain energies (J and
J' respectively) are not yet available. In all cases the data is incomplete and detailed
information about the nuclear and magnetic structure is lacking. No beamtime has
been made available thus far to carry out these studies. Unfortunately the He pressure
cell at the LLB, Saclay fractured and had to be fixed thus preventing further study of

these systems under applied pressure environments.

The interest in the ANiCl; compounds is still substantial more than 15 years after
Haldane argued that the integer spin Heisenberg antiferromagnets have an unusual
excitation spectrum; they should exhibit an excitation gap above a singlet ground
state. Evidence for such a gap has been presented by Buyers et al. for CsNiCl;> and
RbNICl;*®. Neutron scattering experiments at T = 2Ty indicate the existence of a gap
in the pure one-dimensional case. In the ordered phase below Ty = 4.8K, the
anomalous behaviour is also observed. The Goldstone modes predicted by spin wave
theory were observed but another excitation branch with a finite gap was detected.
Affleck and Wellmann® presented a thorough discussion of the theory for the
triangular antiferromagnets CsNiCl; and RbNiCl;. Since only a few systems are
available for experimental work the route of applied pressure has been followed to
induce changes in the interactions of D, J and J' in the systems. The influence of the

change of the anisotropy in such systems has yet to be investigated. The distorted
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lattice compound KNiCl3 has XY anisotropy and Affleck and Wellmann predict that
such a system should have a gap in its excitation spectrum at the soft mode point
Q(1/3 1/3 1). Therefore it is necessary to study KNiCl; in order to resolve this point.
However, the details of the magnetic structure of the B and y-phases of KNiCl; may

lead to complications.

Section A-1 presents magnetic excitation measurements on two different structural
phases of KNiCl; and provides a rationalisation for the differences in the form of the
magnon dispersion curves. In Section A-2 the magnon dispersion curves of CsNiCls
under applied hydrostatic pressure conditions are presented and comparisons are made
between this and ambient pressure data. Finally in Section A-3 data are given showing
the magnon dispersion curve of the RbNiCls, again under applied hydrostatic pressure

conditions and comparison is made to ambient pressure data.
Appendix A-1.

As was mentioned in Chapter 4.5, KNiCl; is a distorted triangular lattice
antiferromagnet with two low temperature magnetic phases first reported on by
Petrenko et al.’®. In the B-phase of KNiCls, the magnetic moments orders with a 120°
type magnetic structure at Ty = 12.5K, while the y-phase shows a rearranged nuclear
structure with an incommensurate magnetic structure with Ty = 8.6K. Measurements
were undertaken on the magnon dispersion curves of the B and y-phases in order to
ascertain to what extent the form of the dispersion curves varied between the phases.
These measurements were carried out in conjunction with the critical exponent
measurements elaborated upon in Chapter 4.5, thus experimental conditions will be
identical to those and the reader is referred to these sections for more detailed

information.

For both the B and y-phase samples measurements were carried out along the [0 0 /]
and the [1/3 1/3 [] directions, as well as the perpendicular direction [/ A 1]. For the y-
phase sample measurements were taken at both T = 8.75K and T =2.00K in order to
observe any softening of the modes with decreasing temperature. The resultant

magnon dispersion curves for the different phases are displayed below.
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Figure 142: Magnetic dispersion of the P-phase of KNiCfi at amhient pressure
along the [00/], [1/3 1/3/] and [hhl] directions, lines are a guide to the eye only.
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Figure 143: Magnetic dispersion of the y-phase of KNiCla at ambient pressure
along the [00/], [1/3 1/3/] and [k h 1] directions, lines are a guide to the eye only.

Comparing the magnon dispersion curves of the two phases several features are
immediately obvious. In the P-phase, between (0 0 1) ~ (0 0 1.15), it is seen that
there are two branches to the upper mode of the [0 0 /] curve. This is not apparent in
the y-phase where only one mode may be observed. For both phases, the [0 0 /] and
[1/3 1/3 /] modes converge towards a value of £ - 1.5THz at the zone boundary.
However there is a difference in the gap between the energy ofthe [0 0 1] and [1/3 1/3
1] excitations for the different phases, this suggests that the P and y-phase have

different values of J'. Along the perpendicular direction the excitation energy of zone
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boundary point [0 O 1] in the y-phase (E ~ 0.76THz) is higher than that in the B-phase
(E ~ 0.69THz) yet lower at the boundary point [¥2 Y2 1], E ~ 0.40THz for the y-phase
compared to E ~ 0.52THz for the B-phase.

Due to the incommensurate structure of the y-phase we observed that the minimum of
the dispersion curve occurs around (0.31 0.31 1) as opposed to the expected value of
(1/3 1/3 1) for the 120° type order present in the B-phase. In Figure 143 a fit according
to Petrenko’s spin wave theory is included for the [1/3 1/3 {] and [0 O /] directions.

Appendix A-2.

As has been mentioned in Chapter 2.2.1, CsNiCls orders with a slightly distorted 120°
type structure, where the weak Ising anisotropy pulls the spins out of the basal plane
by an angle 6. In a classical system this angle is directly related to the value of D / 6J'
(equation 11), therefore by modifying the values of D and J' one will deform the spin
structure of the system. As was shown for the SGS compounds CsFeCl; and CsFeBrs,
earlier in this thesis, this modification may be achieved by the application of a
hydrostatic pressure to the system. The application of pressure may also induce
symmetry breaking in the system. Although a substantial amount of experimental
work has been performed on CsNiCl;, very little has been done to characterise the
distorted system. Recent heat capacity measurements done on another Haldane gap
material NENP*® has shown an increasing gap mode with increasing applied pressure.
Thus it would be of interest to observe the magnon dispersion curve and gap mode of

CsNiCl; under applied hydrostatic pressure conditions to see if the same trend exists.
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Figure 144; Comparison of the magnon dispersion curves of CsNiClg at ambient
pressure and S.Okbar applied hydrostatic pressure, line is best fit to ambient
data.

No dramatic changes in the dispersion curve are visible in Figure 144, however, the
change in excitation energies is evident whereby the excitations have repositioned to a
higher energy due to the applied pressure environment, this normally leads to a larger

value of the single ion anisotropy parameter, D, J and J".

Appendix A-3

Measurements were carried out on the similar system RbNiCl”®, for similar reasons as
those outlined in A-2. The magnon dispersion curves are shown below with ambient

pressure data for comparison purposes.
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Figure 145: Comparison of the magnon dispersion curves of RbNiCf" at ambient
pressure and S.Okbar applied hydrostatic pressure, line is best fit to ambient
data with the theory of Affleck and Wellmann”™\

As with CsNiCls, there is no drastic change in the magnon dispersion curve of
RbNiCls under applied hydrostatic conditions. The energies of the excitation again
move to higher energy due to physical deformation of the crystal. In Chapter 5 it was
demonstrated that the applied hydrostatic pressure induces only small changes in the
structure of the CsFeXs systems. A similar conclusion can already be made for our
present experimental data. Nuclear and magnetic structure determination under
applied pressure conditions are required to obtain the full magnetostructural
correlation of these two systems an will aid to a better understanding of the Haldane

gap phenomena in the quasi one-dimensional triangular lattice antiferromagnets.
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