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Abstract
We have calculated ground state interaction energies for an antihydrogen atom and a hydrogen
molecule within the Born–Oppenheimer approximation. Leptonic energies were calculated using
a large basis set of explicitly correlated Gaussian functions. Energies were calculated at over
2800 geometries including different proton–proton distances. The energies have been fit to
functional forms using a neural network for the short-range interaction which is combined with
asymptotic formulas at long range. A two-dimensional rigid rotor and a three-dimensional atom–

molecule potential energy surface (PES) have been determined. Rigid-rotor scattering
calculations on these surfaces have been carried out using the S-matrix Kohn variational method
with a two-dimensional Gaussian basis set. We have calculated cross sections for elastic,
rotationally inelastic and annihilation collisions on the two-dimensional PES. This includes the
first calculation of leptonic annihilation for this system.

Supplementary material for this article is available online

Keywords: antihydrogen, matter–antimatter interactions, low energy scattering, potential energy
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1. Introduction

Experiments to produce, confine and characterise antihydro-
gen atoms (H̄) [1–6] have inspired theoretical work on the
interactions of H̄ with normal matter atoms and molecules [7].
These interactions lead to the destruction of H̄ and so are
important from an experimental perspective while also pro-
viding a stringent test for molecular dynamics theories.

¯ –H H2 is the simplest system for the interaction of an
antiatom with a neutral molecule and thus is an important
benchmark. It is also of interest as H2 is present within the

antimatter traps and is expected to contribute to antihydrogen
losses. The latter may occur due to H̄ gaining kinetic energy
in elastic collisions with H2, particle rearrangement processes
(see below), as well as in-flight proton–antiproton and elec-
tron–positron annihilation. The relative and absolute rates (or
probabilities or cross sections) for these different collision
outcomes vary by many orders of magnitude as a function of
collision energy. A detailed knowledge of this system is
therefore of theoretical and practical interest. Despite this,
there has been limited theoretical work carried out on the
system, in particular at the low collision energies (corresp-
onding to temperatures from room temperature down to near
absolute zero) relevant to the experiments cited above, with
only four papers published to date to our knowledge. One of
us has calculated a partial potential energy surface (PES)
using an explicitly correlated Gaussian (ECG) basis set within
the Born–Oppenheimer (BO) approximation [8]. The poten-
tial energies were calculated for linear and perpendicular
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geometries. For some systems containing both matter and
antimatter nuclei, the leptons are unbound for certain con-
figurations of the nuclei: for example in H–H̄ when the
internuclear distance is below a critical value, Rc [9]. This
situation does not arise in the present case: for both one
proton and the antiproton very close or all three heavy par-
ticles nearly coincident, the ‘united atom limit’ corresponds to
{proton, electron, electron, positron} which has one bound
state [10], so the three leptons remain bound in the BO
approximation.

Only limited scattering calculations have been carried out
for the ¯ –H H2 system. Gregory and Armour carried out
quantum mechanical, Kohn variational, calculations for
elastic scattering at very low energies (�10−4 Eh, were Eh

represents Hartree, the atomic unit of energy; in temperature
units �30 K) using a quantum Monte Carlo PES and treating
the H2 as a rigid rotor [11]. Prolate spheroidal coordinates
were used to describe the position of the antiproton relative to
the H2 and the trial variational wavefunction included terms
composed of products of powers and exponentials of those
coordinates. An estimate of the in-flight hadronic annihilation
cross section was also obtained using a delta potential
approach. The latter is very sensitive to the quality of the
wavefunction when the antiproton is close to one of the
protons and so specially-designed terms were added to
the basis set for such configurations. Further quantum scat-
tering calculations were carried out on this system, also using
the rigid-rotor approximation, by Sultanov et al [12]. They
used a coupled-channel approach with Jacobi coordinates and
an approximate PES constructed from the ¯ –H H potential
energy curve (PEC) [9]. In this approach, the radial wave-
function is determined by numerical propagation rather than
with a basis set. This gave a low-energy elastic cross section
in rough agreement with Gregory and Armour’s results. Cross
sections and rate constants for various rotational transitions of
para-H2 were also calculated. Neither Gregory and Armour
nor Sultanov et al attempted reactive (rearrangement) scat-
tering calculations. The latter has been carried out by Cohen
for both ¯ –H H2 and ¯ – +H H2 using the quasiclassical fermion
molecular dynamics (FMD) method at energies above 0.1 Eh

[13]. Both systems were found to be highly reactive with
cross sections for protonium (Pn) formation processes largest
at the lowest energies considered. For ¯ –H H2 the open low-
energy channels are

¯
( ¯ )

+  + +
 +
 +

H H Pn H Ps

PnPs HH H
Pn PsH

2

with many other processes becoming open at higher energies.
At the lowest energies considered the reaction forming Pn, Ps
(positronium) and H was found to be most probable followed
by the formation of the metastable PnPs complex, although
this may be an artefact of the FMD method.

The focus of the present work is the interaction of an
antihydrogen atom with a hydrogen molecule. We have car-
ried out ab initio calculations of leptonic energies at a large
number of geometries. Two and three-dimensional PESs have

been constructed by fitting analytical functions to these
energies. These surfaces (as opposed to one-dimensional cuts)
are the first published for the ¯ –H H2 system. We have also
used these PESs to carry out quantum scattering calculations
using the S-matrix Kohn variational principle with a two-
dimensional Gaussian basis set. Scattering calculations have
been carried out for low-energy rigid-rotor elastic, inelastic
and annihilation collisions, but no account has been taken of
reactive processes. A full quantum-mechanical treatment of
the latter would be significantly more challenging.

In section 2 below we give details of the atom–diatom
scattering method, the Gaussian basis set used and the
treatments of leptonic and hadronic in-flight annihilations.
In section 3 we report and discuss the two- and three-
dimensional PESs and the results of elastic and inelastic
scattering calculations including annihilation. Concluding
remarks are given in section 4. The scattering calculations
reported in detail here are restricted to the rigid-rotor model,
that is two-dimensional heavy-particle dynamics. For the
latter, the two-dimensional PES has been used and, to test the
sensitivity of the dynamics calculations to changes in the
PES, also the three-dimensional PES with fixed H2 bond
length. The three-dimensional PES should also be of use for
three-dimensional heavy-particle dynamics, including pre-
liminary treatments allowing the H–H distance to vary, and
for ¯ –H H2 reactive scattering calculations. These latter appli-
cations are briefly discussed in sections 3.5 and 4.

2. Quantum scattering methodology

2.1. Atom–molecule scattering and S-matrix Kohn variational
method

The calculations of elastic and inelastic scattering of ¯ –H H2

use Jacobi coordinates: R, the distance from the antiproton to
the centre of mass of the two protons, r the distance between
the two protons and θ the angle between the vectors
corresponding to R and r. The present calculations are
restricted to total angular momentum J=0 (including the
angular momenta of the rotations of R and r but excluding
the spins of the nuclei and leptons). The Hamiltonian in this
case is [14]
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where μ is the reduced mass of the atom–molecule system, μr

is the reduced mass of the molecule and V(R, r, θ) is the
potential energy. For the rigid-rotor calculations, r was fixed
at the equilibrium value for H2, 1.4011 a0, and the term
involving the second derivative of r was omitted.

The scattering calculations use the S-matrix Kohn var-
iational principle (SKVP). This method was derived by Zhang
et al [15]. Zhang and Miller also gave a detailed discussion of
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applying the SKVP to atom–diatom inelastic and reactive
scattering [16]. In appendix A we give the working equations
for applying this method to J=0 rigid-rotor elastic and
inelastic scattering with the Hamiltonian of equation (2.1).

The conventional approach to solving the time-
independent Schrödinger equation with this Hamiltonian is
to expand the wavefunction for a given total angular
momentum using a basis set consisting of a radial part for R
and coupled spherical harmonic functions for the rotation of
R and r. The latter reduce to Legendre polynomials, Pj, in
the case of J=0. In a preliminary attempt, not reported
here, rigid-rotor S-matrix Kohn variational elastic scattering
calculations on the ¯ –H H2 system used a basis set consisting
of a direct product of distributed Gaussians along the R
coordinate (placed as described below) and rotational
functions for the angular coordinate θ. However rotational
functions up to and including j=100 were used in the
calculation with no sign of convergence. This failure is
attributed to the highly anisotropic nature of the PES due to
the Coulombic singularities when the antiproton approaches
the protons.

For the results reported below, a basis set consisting of
two-dimensional Gaussian functions (of R and θ) was used. In
a previous paper [17], we have shown that distributed
Gaussian functions with widths and placements tailored to the
potential are effective for highly oscillatory scattering wave-
functions (such as in the ¯ –H H system) which have very dif-
ferent characters in different regions. The same problem is
present for ¯ –H H2 where the potential changes dramatically
with the geometry of the particles. For this reason the
Gaussian basis set placement method of our earlier paper [17]
was extended for rigid-rotor scattering using two-dimensional
Gaussian functions.

Multidimensional Gaussian functions have been used in
variational calculations for vibrational bound states of atomic
complexes [18], atom–molecule complexes [19, 20] and the
water molecule [18]. In these applications Gaussians were
only required in regions of low potential energy, that is,
where the wavefunctions have significant amplitude.

It appears that multidimensional Gaussian functions have
not been used for scattering calculations, although they were
suggested as a possibility by Zhang and Miller [16]. The
¯ –H H2 rigid-rotor PES is totally attractive with no classically
forbidden regions. In this case placing the Gaussian functions
in a suitable way is not as straightforward as for bound-state
problems. Nevertheless, the fact that multidimensional
Gaussian functions can be tailored to the potential makes
them attractive for use if a suitable placement scheme can be
devised.

Basis functions in R and θ were used here of the form

( ) ( ) ( ( )
( ) ) ( )

q a

a q q

= - - -

- -q

-u R R e R R
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, 1 exp

2.2

n
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n
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2

2

with the radial cut-off function, ( )- -e1 AR , included to
ensure the basis functions are finite for R=0 where A
determines how quickly the cut-off function goes to 0 [17].

This form of cut-off function goes to 1 for sufficiently large R
and so normal Gaussian functions are recovered. The value of
A is not crucial and in the applications here we set A=2 -a0

1.
For brevity these basis functions will all be referred to simply
as ‘Gaussians’ henceforth.

An angle, θR, is chosen to generate a radial Gaussian basis.
The angle should be for the most attractive angular cut through
the PES which for the ¯ –H H2 system is θR=0 or π.
In practice a small value of θR is chosen to avoid the
Coulomb singularity. A radial Gaussian basis is then generated
along this angle using the same placement procedure as
described in our earlier paper [17] based on the method
of Bačić and Light [21]. An initial Gaussian function,

( ) ( ) ( ( ) )a= - - --G R e R R1 expi
AR

i
R

i
2 , is placed at Rmin, a

small value close to R=0. The exponent, ai
R, of the Gaussian

is related to the de Broglie wavelength at that point via
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where CR is a parameter to be chosen and E is the scattering
energy. The next Gaussian, Gj(R), is placed at some distance Rj

with its exponent calculated in the same way. The overlap, S of
these two normalised Gaussians is then calculated and if the
value of S is equal to SR (a chosen parameter) to within a set
tolerance, SRtol, then the Gaussian at Rj is accepted and placed.
If the overlap is too low or high then the Gaussian at Rj is
moved toward or away from Ri respectively, until the correct
overlap is obtained. This procedure is continued until a
Gaussian is placed above Rmax (out of the range of the
potential). The basis size can be increased by increasing the CR

parameter which makes the Gaussians narrower or by
increasing SR which puts the Gaussians closer together. The
value of aR

min should be as small as possible and will depend
on E. Angular Gaussians, ( ) ( ( ) )q a q q= - -qG expi i i

2 , are
then generated between qmin and θmax at each radial Gaussian
point. These angular Gaussians are placed in the same way as
the radial functions but with a qsin term from the volume
element included in overlap integrals which have the range 0 to
π. Thirteen parameters are required for generating the basis:
CR,aR

min , SR, SRtol, Rmin, Rmax, Cθ,aq
min , Sθ, qS tol, θmin, θmax and

θR. The parameters for the angular Gaussians in θ are analo-
gous to those for R.

This placement procedure ensures that basis functions are
placed over the whole range of space leaving no ‘gaps’. A
deficiency of the method is the efficiency for the radial range
since the radial basis is generated for the most attractive
angular cut through the PES. This procedure also makes no
use of the symmetry of the ¯ –H H2 system.

Gaussians in regions where the potential is very low have
only a small range. Thus matrix elements between widely
separated Gaussians are negligible. This feature is important
for making multidimensional Gaussian basis sets efficient so
that even for very large basis sets, only a small percentage of
the integrals need to be evaluated. Here, if the overlap
between two Gaussians was less than = ´ -S 1 10tol

12 then
the M matrix element (see appendix A) was set to zero.
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2.2. Annihilation

Both hadronic and leptonic in-flight annihilation cross
sections are calculated using the ‘delta potential’ method.
This assumes that annihilation occurs when a particle and
corresponding antiparticle’s position coincide. The method
also assumes that annihilation has no effect on the elastic
scattering wavefunction and treats the process as a first order
perturbation.

The delta potential treatment of hadronic annihilation in
mixed matter/antimatter systems has been applied to ¯ –H H
[22], ¯ –H He [23] and ¯ –H H2 [11] scattering. For the ¯ –H H
system the simple delta potential approach works well and
gives hadronic annihilation cross sections in good agreement
with a more sophisticated scattering length approach [23] and
complex potentials [24]. The elastic scattering cross section is
only corrected by around 10% when hadronic annihilation is
taken into account. For the ¯ –H He system the delta potential
method underestimates the hadronic annihilation cross section
compared with the scattering length approach [23] and optical
potentials [25] giving around twice as large a value.
Accounting for hadronic annihilation in ¯ –H He scattering also
drastically changes the elastic cross section. For the ¯ –H H2

system a more sophisticated treatment of hadronic annihila-
tion is also expected to affect the elastic cross section [11].
Despite this the delta potential treatment of hadronic annihi-
lation is the simplest approach and easy to generalise to
systems with more than two hadrons. It should give at least
the order of magnitude of the hadronic annihilation cross
section.

Here ¯ –H H2 hadronic in-flight annihilation cross
sections were calculated from the Kohn rigid-rotor elastic
scattering wavefunctions (determined using the two-
dimensional PES) as

∣ ( )∣ ( )¯
¯

s
q

=
YA R

k

4 ,
2.4a

pp
pp 2

2

with =R r

2
e and θ=0 and where ¯App is the rate constant,

here taken to be 1.7×10−7 E ah 0
3 from the width of the

protonium 1s state [22]. See appendix B for our derivation
of equation (2.4) following Jonsell et al [22].

Leptonic annihilation cross sections were calculated
using an extension of the method described by Froelich et al
[26] (see appendix B) as

∣ ( )∣ ( )

( )
ò òs

p
q q q q= Y

p ¥+ -
+ -

A

k
R R R P R

4
d sin d , , .

2.5

a
e e

e e

2 0 0

2 2

The positron–electron coalescence probability density,
P(R, θ), is a function of R and θ. One of us has previously
calculated the values of P(R, 0) and ( )pP R,

2
using an ECG

basis set [8]. To calculate the leptonic annihilation rate the
averages of the linear and perpendicular P(R, θ) values are
used. The values of P(R) were least-squares fit using a six-
node neural network (NN) giving a standard deviation of
3.1×10−6. Figure 1 shows the calculated values of P(R, 0)
and ( )pP R,

2
, the average value and the fitted function.

Although the values of P(R, 0) and ( )pP R,
2

differ by tens of

percent at a given R, both decrease at essentially the same rate
and are negligible by R=10 a0. Using the average of the
values for θ=0 and p

2
should give the correct order of

magnitude of the leptonic annihilation rate. The fitted function
to P(R) has some deficiencies at small R values but the form
of P(R) at these distances is not important as small values of R
do not significantly contribute to the integral in equation (2.5)
as discussed in the next section.

3. Results and discussion

3.1. Ab initio calculations

The leptonic contribution, Elep, to the PES has been computed
in the BO (clamped nuclei) approximation using a similar
method to that published by one of us for linear and
perpendicular geometries [8]. See appendix C for details of
the present calculations. The energies of 2805 unique geo-
metries of the ¯ –H H2 system were calculated. The geometries
are generated using prolate spheroidal coordinates for a range
of p–p distances. These coordinates are defined as r3,
m = +r r

r
1 2

3
and n = -r r

r
1 2

3
where r3 is the p–p distance and r1/2

are the two ¯–p p distances. Fourteen r3 values between 0.5 and
20 a0 were used including the H2 equilibrium bond length of
1.4011 a0. For each value of r3 ten values of ν were used
between 0 and 1. ν=0 and ν=1 correspond to perpend-
icular and linear geometries respectively. The values of μ

varied for each r3 and ν.

3.2. Analytical representation of PESs

The PESs have been constructed by combining analytical
functions least-squares fit to the ab initio energies, Elep, with
the nuclear Coulombic interaction energies and long-range
terms as described in detail in appendix C. Very little work
has been done on fitting analytical forms to the short-range

Figure 1. ¯ –H H2 positron–electron coalescence probability density.
Calculated values [8] of ( )P R, 0 (squares), ( )pP R,

2
(stars), average

values (crosses) and fitted function (solid line) are shown. P(R) for
¯ –H H also shown for comparison (dotted line, upright crosses) [27].
Below Rc (the critical distance below which the light particles are
unbound) the value of P(R) is set to

p
1

8
, the value for ground state Ps.
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potentials of mixed matter/antimatter systems. For this reason
a NN approach [28, 29] which is capable of fitting any shape
of potential was used for the short-range interactions. For
asymptotic geometries, functional forms based on long-range
dispersion energy formulas were used.

3.2.1. Two-dimensional PES. The leptonic energies of 293
geometries with the p–p distance fixed at 1.4011 a0 were fit
using a two-dimensional NN. All geometries were equally
weighted. The fit was carried out using 12 symmetrically
unique nodes with 49 independent parameters. For the best fit
a standard deviation of 0.036 Em h was obtained although
achieving similar accuracy with different starting parameters
is straightforward. The largest discrepancy between an
ab initio energy and the fitted surface was 0.12 Em h.

The complete functional form of the two-dimensional
¯ –H H2 PES, including the nuclear Coulombic interaction
energies and long-range terms (equation (4.25) in appendix C)
gives a root mean square (rms) error to the ab initio energies of
0.031 mEh with a maximum deviation of 0.12 Em h.

For the linear geometry the potential is attractive at all
distances. For the perpendicular geometry there is a barrier at
around 2.5 a0 followed by a local minimum of ≈1 Em h depth
at 3.8 a0, as shown in figure 2. The maximum of this barrier is
still below the separated atom–molecule energy however. The
reason for the barrier at perpendicular geometries and lack of
one for linear geometries was discussed previously [8]. Cuts
through the full PES are given in figure 3 showing how the
barrier decreases as the angle is lowered. There are no
classically forbidden regions in the two-dimensional PES.

3.2.2. Three-dimensional PES. The leptonic energies of all
2805 ab initio data points were fit using a NN. All geometries
were again equally weighted. The best 24-node fit (with 121
independent parameters) determined an analytical function

( )V r r r, ,NN 1 2 3 which gave a standard deviation of 0.44 Em h

with a maximum deviation of 4.63 Em h. The worst agreement
between the fit and data was found to occur for high leptonic
energies where the antiproton is close to one or both of the
protons. In this case the potential energy is dominated by the

Coulombic interaction of the nuclei and so the disagreement
is less important at these geometries.

After carrying out this fit, 79 additional ab initio data
points became available. Rather than include these in the fit it
was decided to use them as a check of the fitted NN. The
additional data contained 77 points with all the nuclei within
6 a0 of each other. The other two geometries were Pn-H type
with the p̄ close to one of the protons (0.5 and 0.6 a0) but over
20 a0 away from the other proton. The rms error for the NN fit
to these points was 1.98 Em h. The largest discrepancy was for
one of the Pn-H geometries at 16.01 Em h. Such a large
difference between the fit and ab initio energy for this
geometry is expected since so few of the initial data set
contained this type of geometry. The next largest difference
between the fit and data was then 2.25 Em h at a geometry
with high leptonic energy.

The combined function, including the nuclear Coulombic
interaction energies and long-range terms, equation (4.31) in
appendix C, gives a rms error of 0.43 mEh for the 2805 data
points used in the fit.

The barrier for perpendicular geometries is shown in
figure 2. The three-dimensional fit has too high a barrier with
the potential energy higher than the separated atom and
molecule. The barrier is only too high by a few tenths of a
millihartree however and since it decreases as the ¯ –H H2 angle
becomes more linear, it should not seriously affect scattering
calculations.

Figure 4 shows the barrier for different p–p distances. To
fit all of the curves into one plot, ( ) ¯+V r EPEC H was
subtracted from the total energy for each p-p distance shown.
As the p–p distance is decreased the barrier increases. This is
expected since for the ¯ –H He system there is a barrier of
around 0.3 Em h at approximately the same distance [30]. The
leptonic energy for H2 approaches that of He as the p-p
distance is shortened. It follows that for small p–p distances
the barrier should be of a similar height. For small values of r
the potential energy increases as R decreases from 7 to around
5.5 a0. This is an artefact of the fitted PES due to the limited
accuracy of the NN fit. This is also responsible for the shape
of the potential for all r between R=7–9 a0 where the short-
range NN fit is switched to the long-range ¯ –H H2 form. This

Figure 2. Potential energy at barrier for two-(dashed line) and three-
(solid line) dimensional PES fits and ab initio data points; q = 90 .

Figure 3. Potential energy as angle decreased for the two-
dimensional PES fit. θ=90° (top curve), 85°, 80°, 75°, 70° and 65°
shown.

5

J. Phys. B: At. Mol. Opt. Phys. 52 (2019) 185201 B P Mant et al



was not present for the two-dimensional fit (see figure 3) as
the short-range NN function is more accurate. This is not a
serious problem however as for these r values the total energy
is higher than the isolated H2 + H̄ equilibrium energy by at
least 36 Em h (for r=2.0 a0) and thus will not affect low-
energy scattering calculations.

Another comparison of the two- and three-dimensional
PES fits is shown in figure 5 which shows the differences
between the surfaces in Jacobi coordinates. The largest
differences coincide with the Coulombic singularities where,
as discussed, the NN fit is least accurate. The region around
the barrier for perpendicular geometries also shows larger
differences. For small and large R distances the agreement
between the surfaces is better.

3.3. Elastic and inelastic scattering

A suitable two-dimensional Gaussian basis set for the ¯ –H H2

S-matrix Kohn variational scattering calculations was found
by checking the convergence of low-energy elastic scattering
using the two-dimensional PES. The parameters for the
converged basis are given in table 1. The total energy of the
scattering calculation is also required to place the basis set.
However it was found that the basis generated with the lowest
and highest energies considered for elastic scattering were
almost identical and gave elastic cross sections at a given
energy in agreement to four significant figures. This is due to
the energies of interest being low and the potential being very
attractive so that the optimum basis is essentially insensitive
to the scattering energy.

The parameters of table 1 gave a basis consisting of
12617 two-dimensional Gaussian functions with 98% of these
having Ri< 2 a0. The basis function locations are shown in
figures S1 and S2 in the supplementary information available
online at stacks.iop.org/JPB/52/185201/mmedia. The den-
sity of functions is greatest around the two Coulomb singu-
larities at R= re/2= 0.700 55 a0, θ= 0 and π. At and above
R= 4 a0 the exponents of the functions in both coordinates
take their minimum values and the Gaussians are then equally
spaced.

The SKVP elastic scattering calculations were carried out
for total angular momentum J=0 using the Hamiltonian of
equation (2.1). This should give a good approximation to the
total elastic cross section at the low energies considered. The
reduced mass of the atom and molecule, μ in equation (2.1)
was set to mp

2

3
where mp is the proton mass. The reduced

mass of H2 was set to m = mr p
1

2
and its bond length set to

re=1.4011 a0. The cut-off function, f (R), of equation (4.6)
in appendix A was used for the incoming and outgoing
functions in equation (4.5) with r0=8.0 a0 and p=8.0.
With these parameters the incoming and outgoing functions
are cut-off at around R=8 a0 but the details of the cut-off
function are not important. For example using r0=7.0 a0 and
p=7.0 changed the elastic scattering phase shift by less than
1%. This is also indirect evidence that the basis set is suffi-
ciently large to give a converged calculation [15].

The elastic scattering phase shifts and cross sections for
¯ –H H2 at selected energies are shown in table 2. A plot of the

Figure 4. Potential energy at barrier as p–p distance increased for
three-dimensional PES fit. p–p distances of 0.5 (top curve), 1.0,
1.4011, 2 and 3 a0 shown. ( ) ¯+V r EPEC H has been subtracted from
total energy to fit all curves in one plot.

Figure 5. Difference plot for the two- and three-dimensional PESs in
Jacobi coordinates.

Table 1. Parameters to generate basis for ¯ –H H2 scattering.

Parameter Value

qR 0.01 radians
CR 0.30
SR 0.70
SRtol 0.05
aR

min 1.00 -a0
2

Rmin 1×10−5 a0
Rmax 10.0 a0
qC 0.05

Sθ 0.90

qS tol 0.05
aq

min 1.00 radians−2

qmin 1×10−6 radians
θmax π radians

Table 2. ¯ –H H2 elastic scattering results at selected energies.

Energy/Eh Phase shift, δ Elastic cross section, selastic/a0
2

1×10−10 - ´ -5.883 10 3 1776
1×10−9 −1.860×10−2 1776
1×10−8 −5.883×10−2 1774
1×10−7 −1.860×10−1 1755
1×10−6 −5.840×10−1 1560
1×10−5 1.437×100 504.2
1×10−4 −9.609×10−1 34.49
1×10−3 1.086×100 4.017
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phase shifts (modulo π adjusted) at different values of k is
shown in figure S3 in the Supplementary Information where a
fifth order polynomial has been fit to the data. The calculated
phase shifts vary smoothly as k increases. A plot of the elastic
scattering cross sections is shown in figure 6. At low energies
the elastic cross section becomes constant as expected from
threshold laws [31]. The cross section falls to zero when the
phase shift passes through zero. The limiting elastic cross
section for low energies is 1776 a0

2 corresponding to a scat-
tering length of 11.89 a0.

The results here can be compared with previous work.
Gregory and Armour calculated the limiting elastic cross
section to be 4801 a0

2 giving a scattering length of 19.5 a0.
They state that there was a 16% variation in the phase shift
when nonlinear parameters in their basis set were changed.
The limiting cross section calculated here is two or three
times smaller. The difference in values could be due to the
PES used. Gregory and Armour used ab initio energies cal-
culated using a quantum Monte-Carlo method and are
expected to be correct to 10–100 μEh. The PES used here was
fit to ab initio energies expected to be accurate to a few μEh.
Despite this the cross sections are in fair agreement, espe-
cially compared to ¯ –H He elastic scattering where small
changes in the PEC resulted in very large differences in the
elastic cross section [32]. The calculations of Sultanov et al
gave a limiting elastic cross section of 9470 a0

2 giving a
scattering length of 27.5 a0. This is a larger disagreement with
the calculations here. The PES used by Sultanov et al was
constructed by adding two ¯ –H H PECs which is less accurate
(by millihartrees) than the PESs used here and by Armour and
Gregory.

Elastic rigid-rotor scattering was also carried out using
the three-dimensional ¯ –H H2 PES with r3=r fixed at the
equilibrium value for H2 in V(r1, r2, r3). This allows a test of
the sensitivity of the computed cross sections to changes in
the PES by comparing the results with those of the two-
dimensional PES. The Gaussian basis set constructed for the
two-dimensional surface was used with the same parameters
for the Kohn calculation. The elastic scattering phase shifts

for the two- and three-dimensional PESs are compared in
figure S4 in the Supplementary Information where again the
phase shifts were fitted to fifth order polynomials. The elastic
scattering cross sections for the two- and three-dimensional
PES are compared in figure 7. The limiting elastic cross
section for the full three-dimensional surface is 3067 a0

2

giving a scattering length of 15.62 a0. From figure 7 it can be
seen that the behaviour of both cross sections with increasing
energy is qualitatively similar. The agreement between the
two- and three-dimensional surface is reasonable. The three-
dimensional PES gives a rms error of 0.29 mEh for the
ab initio energies used to fit the two-dimensional PES which
has a rms error of 0.031 mEh. Thus an order of magnitude
increase in the error in the PES changes the computed limiting
elastic cross section by less than a factor of two.

The sensitivity of the elastic cross sections for the three-
dimensional surface with respect to small changes in the PES
was also investigated. It was found that small changes, such
as changing the parameters of the switching function between
the short-range and long-range forms, did not cause sig-
nificant changes to the cross sections. For example changing s
from 8 to 15 a0 in equation (4.31) of appendix C so that the
NN is used out to a longer distance gave a less than 1%
change in the elastic cross section. This is in contrast to ¯ –H He
scattering where small changes in how the BO potential
energy curve was interpolated led to large changes in the
elastic and annihilation cross sections [32].

For the higher energies considered rotationally inelastic
scattering channels (that is, collisions where the molecule’s
rotational state can change) are open. As the H2 molecule is
homonuclear, onlyΔj=±2 transitions are possible. For total
angular momentum, J=0, only even j states can be accessed
from j=0, corresponding to para-hydrogen molecules. The
j=2 rotational state has an energy of 1.66×10−3 Eh and is
open for scattering energies at and above this. For two rota-
tional states the S-matrix is a 2×2 matrix. The S-matrix for
inelastic scattering also contains results for =  ¢ =j j0 0
and =  ¢ =j j2 2 elastic scattering.

Figure 6. Variation of ¯ –H H2 elastic scattering cross section with
energy, calculated using two-dimensional PES. Calculated cross
sections (crosses) interpolated using fifth order polynomial fit to
phase shifts (figure S3 in the supplementary information) above
´ -1 10 7 Eh.

Figure 7. Variation of ¯ –H H2 elastic scattering cross sections with
energy, calculated using two- (dashed line) and three-dimensional
(solid line) PES. For both sets of data a fifth order polynomial fit to
phase shifts above ´ -1 10 7 Eh was used to plot cross sections with
calculated values given by crosses (figure S4 in the supplementary
information).
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The same Gaussian basis set and parameters of the elastic
calculation were used for the inelastic calculations. The two-
dimensional PES was used. The cross sections are calculated
using equation (4.11) in appendix A accounting for the
degeneracy of the rotational state of the incoming scattering
function. Table 3 shows the probabilities and cross sections
for inelastic scattering. Note that the values of 1.01 and 1.02
for ∣ ∣¬S0 0

2 and ∣ ∣¬S2 2
2 respectively are greater than 1.00 due

to numerical errors.
From table 3 it appears the rotational excitation and

relaxation cross sections vary considerably with energy. For a
scattering energy of 4.0 Em h the excitation and relaxation cross
sections are very small. Calculations with smaller energy
increments are needed to fully investigate these features.

Inelastic ¯ –H H2 scattering was also considered by
Sultanov et al using a coupled-channel approach [12]. Their
results for rotational excitation from j=0 to j=2 and the
corresponding relaxation process were reported for energies
much closer to the j=2 threshold energy. For the energy
which overlaps their range (1.7 Em h) the s ¬in2 0 cross section
here is around twenty times lower than their result. As dis-
cussed in the previous sections they used an approximate PES
and H2 rotational basis which seems to be inadequate for the
¯ –H H2 system.

3.4. Annihilation cross sections

An initial calculation of the hadronic annihilation cross
section using the basis set generated with the parameters
given in table 1 gave a very small cross section. Gregory also
found that using a basis set which was suitable to converge
the elastic scattering cross section gave very small values for
hadronic annihilation cross sections [33]. The delta potential
method relies on the Kohn wavefunction being able to
accurately represent the short-range interaction between the
antiproton and the protons, especially for geometries where
the particles coincide. To improve the trial basis Gregory and
Armour added further functions which were designed to
model the analytical solutions for protonium in the spherical
prolate coordinates used for the scattering calculation [11].
This gave very large hadronic annihilation cross sections
which at low energies behaved as ¯s = -E4.68a

pp 1
2 .

The low hadronic annihilation cross section calculated
using the Gaussian basis set described above was suspected to
be caused by the inability of the basis to accurately describe
the scattering wavefunction where the antiproton coincides
with one of the protons. The parameters used to place the

Gaussians only partially took this into account. They were
sufficient to generate a basis for a converged elastic cross
section but not to give an accurate wavefunction where the
antiproton is very close to the protons.

To improve the basis set, Gaussians were generated using
different parameters. As the singularities occur at θ=0 and π,
(and = =R 0.700 55re

2
a0) the effect of decreasing θR on the

hadronic annihilation cross section was investigated. As θR is
reduced the radial basis is generated closer to the singularity
giving Gaussians with larger radial exponents and thus more
basis functions. This was found to increase the hadronic
annihilation cross section. The effect of increasing the CR

parameter was also investigated. Since the basis set was only
required to be improved around the singularities, the value of
CR was only changed for Gaussians in the range
R=0.69–0.71 a0 and set to 0.3 for all other R. Increasing CR

was also found to increase the hadronic annihilation cross
section. Changing other parameters such as increasing SR or Cθ

was not found to significantly increase the annihilation cross
section. Around a 5% variation in the elastic cross section
occurs as the basis is changed but the result is fairly stable.

The basis which gave the largest value of the annihilation
cross section with q = ´ -1 10R

6 and CR=0.9 and all other
parameters as given in table 1 was used to calculate the
annihilation cross section at different energies. Figure 8
shows the average value of the hadronic annihilation cross
sections calculated at each proton for this basis. At low
energies the cross section is given by ¯s = -E0.051 5a

pp 1
2 . This

is two orders of magnitude lower than that calculated by
Gregory and Armour of -E4.68

1
2 [11].

Table 3. ¯ –H H2 inelastic scattering results. Cross sections given in a0
2. ∣ ∣¬S0 2

2 probabilities are the same as those of ∣ ∣¬S2 0
2 to three significant

figures.

Energy/mEh ∣ ∣¬S0 0
2 s ¬el 0 0 ∣ ∣¬S2 0

2 s ¬in 2 0 s ¬in 0 2 ∣ ∣¬S2 2
2 s ¬el 2 2

1.7 3.40×10−1 1.66×100 6.62×10−1 4.99×10−1 4.81×100 3.42×10−1 3.82×100

2.0 ´ -1.66 10 1 1.27×100 8.47×10−1 5.43×10−1 6.48×10−1 1.64×10−1 3.60×10−1

3.0 1.27×10−1 2.38×10−1 8.88×10−1 3.80×10−1 1.71×10−1 1.21×10−1 2.87×10−1

4.0 1.01×100 9.10×10−1 1.30×10−4 4.18×10−5 1.43×10−5 1.02×100 2.81×10−3

5.0 ´ -1.89 10 1 2.07×10−1 8.22×10−1 2.11×10−1 6.32×10−2 1.89×10−1 1.38×10−1

Figure 8. ¯ –H H2 hadronic annihilation cross section as a function of
energy. At low energies ¯s = -E0.0515a

pp 1
2 .
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There are a number of reasons that suggest the hadronic
annihilation cross sections calculated here are significantly
too low. From test calculations the annihilation cross section
does not appear to be converged with respect to the Gaussian
basis set. Increasing the values of CR continued to increase the
cross section significantly. Increasing CR further lead to dif-
ficulties in placing the Gaussian functions. The cross sections
are also around a third of those of ¯ –H H scattering which at
low energies behave as ¯s » -E0.14a

pp 1
2 [23]. From the

appearance of the variationally calculated scattering wave-
functions it was seen that there is an increase in the magnitude
of the wavefunction at positions where the antiproton coin-
cides with the protons. Thus it appears that the Gaussian basis
is reproducing approximately the correct shape of scattering
wavefunction. The reason for the small hadronic annihilation
cross sections calculated here is likely due to the delta
potential method requiring very accurate wavefunctions at a
single point. Although the Gaussian basis gives the correct
overall shape, the actual amplitude of the wavefunction is too
small at the Coulomb singularities.

The larger annihilation cross sections of Gregory and
Armour seem likely to be more accurate than those calculated
here and further work is needed to confirm their result. It
appears that more specialist basis functions are required to
account for the hadronic annihilation if treated using the Kohn
method. Additional basis functions (such as those used by
Gregory and Armour) are more difficult to implement than the
Gaussian functions used here and are not as general. Further
work is required to develop basis sets and methods to account
for hadronic annihilation in a more general way for multi-
dimensional systems such as ¯ –H H2.

The scattering wavefunction used to compute the
hadronic annihilation cross sections in figure 8 was also used
to compute leptonic annihilation cross sections. It was found
that small values of R<1.5 a0 did not significantly con-
tribute to the leptonic cross section computed using
equation (2.5). Similarly the contribution from angles near
θ=0 and π was negligible. This suggests that unlike for
hadronic annihilation, the leptonic cross section is much less
dependent on the details of the scattering wavefunction when
the antiproton is close to the protons. To test this, the basis set
used for elastic scattering was also used to compute the

leptonic annihilation cross section. The values for the two
bases differed by 8%. The leptonic cross sections are thus
much less sensitive to the details of the scattering wave-
function where the antiproton coincides with one of the
protons.

The leptonic annihilation cross sections for two-photon
and three-photon annihilation are shown in figure 9. At low
energies the cross sections are given by 7.3×10−5 -E

1
2 for

two-photon annihilation and 6.4×10−8 -E
1
2 for three-photon

annihilation. These values are around twice as large as those
calculated for the ¯ –H H system [26]. The reason for the larger
leptonic annihilation cross sections is the larger values of P(R)
for ¯ –H H2 with two electrons compared to ¯ –H H. Repeating the
calculation using P(R) for the ¯ –H H system [27] gave leptonic
annihilation cross sections to within 10% of those for ¯ –H H.

It was pointed out by Froelich et al that if the leptonic
annihilation is not a negligible channel then the BO approx-
imation will break down as the leptons will no longer provide
the potential for the hadrons [26]. However ¯ –H H2 leptonic
annihilation occurs with a very small probability and so the
BO approximation should still be reliable.

3.5. Three-dimensional elastic scattering calculations

We attempted to carry out low-energy three-dimensional
¯ –H H2 elastic scattering using the three-dimensional PES, that
is with the r coordinate free to vary and H2 vibrational basis
functions up to v=2. However no indications of conv-
ergence were observed. There are no barriers in the ¯ –H H2 PES
and the adiabatic reaction to form PsH + Pn can occur even in
the limit of zero collision energy. It is thus unlikely that a
calculation not accounting for this reaction can be converged.
The situation is similar to that described by Soldán et al for
vibrationally inelastic collisions in the Na + Na2 system [34].
In this case the Na atom can insert between the atoms in Na2.
A full reactive calculation was required to calculate the
inelastic cross-sections.

4. Conclusions

We have carried out ab initio calculations of the leptonic
energies for the ¯ –H H2 system within the BO approximation
using a basis set of ECG functions. Energies were calculated
at over 2800 geometries of the system. We have fit analytical
functional forms to the ab initio energies to construct two-
dimensional and three-dimensional PESs, the first to be
published for this system. The two-dimensional surface
should be useful to develop and test scattering methods for
the ¯ –H H2 system. The three-dimensional PES should be of
use for preliminary treatments of ¯ –H H2 reactive scattering
calculations. Further ab initio calculations for Pn-PsH type
geometries would be useful to include in the future.

We have carried out scattering calculations using the
S-matrix Kohn variational method, treating the molecule as a
rigid rotor and employing a basis set of two-dimensional
Gaussian functions. These functions were placed to ensure

Figure 9. ¯ –H H2 leptonic annihilation cross sections for the two-
(solid line) and three-photon (dashed line) processes as energy is
varied.
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sufficient overlap with neighbouring functions and with
exponents tailored to the potential.

Elastic scattering calculations using the two-dimensional
PES gave low-energy limiting elastic cross sections in fair
agreement with those calculated by Gregory and Armour [11]
but with a large discrepancy with those of Sultanov et al [12].
Elastic scattering cross sections computed using the three-
dimensional PES (with fixed H–H distance) were less than a
factor of two different than the two-dimensional surface.
Cross sections for rotational excitation and quenching seem to
show a complicated structure.

Hadronic annihilation cross sections were computed from
the variational scattering wavefunctions but were not con-
verged despite improving the basis set. The cross sections for
this process computed here are two orders of magnitude
smaller than those of Gregory and Armour [11]. This appears
to be due to the Gaussian basis functions not properly
accounting for the proton–antiproton interaction at close
distances. We have carried out the first calculation of leptonic
annihilation for the ¯ –H H2 system. The cross section for this
process is around twice that for the ¯ –H H system but still
remains small.

Further scattering calculations for the ¯ –H H2 system are
needed to take into account reactive channels and it appears
that a three-dimensional scattering calculation can only be
carried out with reaction included. The reaction to form Pn +
PsH could possibly be treated on the ground state BO PES but
other reactions such as Pn + Ps + H are open even at zero
collision energy, so ultimately a non-adiabatic method may be
required to obtain accurate cross sections.

The ab initio energies and fitted two-dimensional and
three-dimensional PESs (the latter in the form of FORTRAN
subroutines) and figures S1–4 mentioned in the text are
available as electronic supplementary information.
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Appendix A. S-matrix Kohn variational quantum
scattering

The S-matrix is given within the S-matrix Kohn variational
principle (SKVP) approach [15, 16] as

( ( ) ) ( )= - -


i

S B C B C . 4.1T 1*

The matrices S B, and C are square matrices with dimension
of the number of open channels. B and C are given by

· · ( )= - -B M M M M , 4.2T
0,0 0

1
0

· · ( )= - -C M M M M . 4.3T
1,0 0

1
0*

Each ‘M’ matrix involves elements of the Hamiltonian and
the basis functions used. The general form of the integrals for
the Kohn method applied to rigid-rotor scattering is

( ) ∣ ˆ ∣ ( ) ( )ò ò q q
q q

-
¢p¥

R R
u R

R
H E

u R

R
sin d d

, ,
, 4.4

0 0

2

where the u functions are either a Gaussian basis function (see
section 2.1) or an incoming or outgoing channel function.
Division of the basis functions by R is convenient as it
removes R2 terms in the volume element. Note that following
Zhang et al the bra is not complex conjugated [15]. For each
energetically open channel there are incoming and outgoing
scattering functions:

( ) ( )( ) ( ) ( )
( )

( )/ /q q= --u R R v f R ik R h k R P R, cos ,

4.5

j j j l j j0
21

2

where j indicates the rotational channel which has internal
energy òj and orbital angular momentum l. ( )( )h k Rl j

2 is a
spherical Hankel function [35]. The wavevector =k

( )m -  E2 j
2 where E is the total energy. The function

f (R) is a cut-off function for which f (0)=0 and
( ) =¥f R 1R . It is included so that ( )q =u 0, 0j0 , which is

required to keep ( )qu R R,j0 finite at R=0. In applications
we have used

( ) ( )( )= -f R e , 4.6r R p
0

where r0 controls where the function cuts-off and p deter-
mines how quickly this occurs. In the applications described
in the next sections we have used r0=8.0 a0 and p=8.0.
The factor -v

1
2 where =

m
v k normalises the flux to unity

which is necessary in order for the S-matrix to be unitary. The
corresponding outgoing functions are =u uj j1 0*.

Elements of the M0,0 and M1,0 matrices involve incoming
and outgoing channel functions and are given by

( ) ( ) ∣ ˆ ∣ ( ) ( )q q= á - ñ¢ ¢u R R H E u R RM , , , 4.7j j j j0,0 , 0 0

( ) ( ) ∣ ˆ ∣ ( ) ( )q q= á - ñ¢ ¢u R R H E u R RM , , . 4.8j j j j1,0 , 1 0

M0 is a rectangular matrix with width of the number of open
channels and length of the number of basis functions. Ele-
ments of this matrix involve incoming channel functions and
each of the basis functions (indexed by the subscript n) and
are given by

( ) ( ) ∣ ˆ ∣ ( ) ( )q q= á - ñu R R H E u R RM , , . 4.9n j n j0 , 0
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The M matrix is a ‘large’ matrix consisting of elements
between the basis functions:

( ) ( ) ∣ ˆ ∣ ( ) ( )q q= á - ñ¢ ¢u R R H E u R RM , , . 4.10n n n n,

The integrals required were evaluated either analytically
or numerically using Legendre and Laguerre–Gaussian
quadrature.

From the S-matrix the scattering cross section is given
by [36]

( ) ( ) ( )∣ ∣ ( )ås
p

d= + + -¢
-

=

¥

¢ ¢E
k

j J S2 1 2 1 . 4.11j j
j J

j j
J

j j, 2
1

0
, ,

2

Appendix B. Annihilation

Following Jonsell et al [22] the hadronic annihilation rate is
given by

( )
( )∣ ( ) ( )∣ ( )

∣ ( )∣ ∣ ( )∣ ( )

¯ ¯

¯

l q d d q

p

= áY + Y ñ

= Y + Y

A R R

A

r r, ,

, 0 , , 4.12

a

r r

pp pp
1 2

pp
2

2
2

2e e

where r1 and r2 are the position vectors of the antiproton
relative to proton 1 and 2 and ¯App is the rate constant. The real
form of the scattering wavefunction, Ψ(R, θ), is obtained from
the complex Kohn wavefunction by multiplying by d-e

i
i1

2
.

The rate for annihilation depends on the flux and thus the
normalisation of the scattering wavefunction. The cross
section is related to the rate and the flux, F, by [22]

( )¯
¯

s
l

=
F

. 4.13a
app
pp

The flux is related to the normalisation of the asymptotic
scattering wavefunction and is derived by making use of the
plane wave boundary conditions. From equation (4.5) the
asymptotic form of the incoming, J=0 elastic scattering
wavefunction is given by

( ) ( )q =¥
- -u R R v e R, , 4.14R

ik R
00 0

1

2

1
2 0

where the factor of 1

2
comes from the normalisation of the

Legendre polynomial angular term. By comparing with plane

wave boundary conditions the flux is given as =F k

2

2

.

The ¯ –H H2 hadronic annihilation cross section is thus
given by

( )∣ ( )∣ ∣ ( )∣

∣ ( )∣
( )

¯
¯ ¯

¯

s
l p

= =
Y + Y

=
Y

F

A

k
A

k

2 , 0 ,

4 , 0
, 4.15

a
a

r r

r

pp
pp pp

2
2

2
2

2

pp
2

2

2

e e

e

where the symmetry of the scattering function around q = p
2

is used giving a further factor of 2.
Within the BO approximation the leptonic annihilation rate is

∣ ( )∣ ( ) ( )òl q q= Y
+ - + -

A V R P Rd , , , 4.16a
e e e e

R
2

where the rate constant
+ -

Ae e is obtained from the width of the
positronium 1s state giving = ´+

-+ -
A 4.86 10e e 6 Eh a0

3 for

para-positronium and = ´-
-+ -

A 4.28 10e e 9 Eh a0
3 for ortho-

positronium [26].
The full expression for the leptonic annihilation rate is

given by

∣ ( )∣ ( )

( )
ò òl p q q q q= Y

p ¥+ - + -
A R R R P R2 d sin d , , ,

4.17

a
e e e e

0 0

2 2

where the factor of 2π comes from angular integration over
the polar azimuthal angle f. The cross section is calculated by
dividing the annihilation rate by the flux, F, as for hadronic
annihilation scattering.

Appendix C. Potential energy surfaces

C.1. Ab initio calculations

The leptonic Schrödinger equation

ˆ ( )Y = YH E , 4.18lep lep lep lep

where Ĥlep is the leptonic Hamiltonian, has been solved
variationally for a set of configurations of two protons and an
antiproton. The wavefunction of the light particles has been
expressed as the linear combination of K ECG functions

ˆ ( ) ˆ

( )

( ) ( ) )
ås sY = Q

å åa b

=

- - - -
=

>A P c e, ,

4.19
I

K

I
r R r r

lep 1 2
1

i
i I i i I i j ij I i j

1

3

, ,
2

,
2

where Â is the antisymmetrizer, Θ is the spin singlet function
of two electrons, P̂ is the spatial symmetry projector, the
vectors ri represent the lepton positions and CI, ai I, , bij I, and
Ri I, are all variational parameters. The nonlinear basis func-
tion parameters, exponents ai I, and bij I, and vectors Ri I, , were
optimised with the method of conjugated directions [37–39],
independently in each point in the space of nuclear config-
urations. The optimisation of the nonlinear parameters was
continued until the energy in a cycle was lowered by at most
30 En h. This procedure is expected to give an accuracy of a
few μEh. The initial form of the basis set is the Cartesian
product of the basis consisting of 75 symmetrized ECG
functions for the electrons in the H2 molecule, and the posi-
tronic basis consisting of 10 Gaussian orbitals, centred on the
antiproton.

The symmetry projector P̂ is a linear combination of
symmetry operations p̂k , that belong to a chosen finite point
group.

ˆ ˆ ( )å=
=

P a p 4.20
k

N

k k
1

sym

Nsym is the order of this group and the ak coefficients depend
on the chosen irreducible representation, which—for practical
reasons—has to be one-dimensional. For the problem con-
sidered here of interacting antihydrogen atom with hydrogen
molecule both in their ground states, the leptonic wavefunc-
tion is always fully symmetric, resulting in ak=1 for each k.
The hydrogen molecule and the linear configurations of all
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three nuclei have either ¥D h or ¥C v symmetries. They are
represented by the Cs and C1 groups respectively, with all Ri I,

vectors fixed on the axis containing the nuclei. Triangular
structures have the C2v (T-shape) or Cs point group symme-
tries. The basis set sizes are equal to 750 for the nuclear
configurations having the symmetry plane perpendicular to
the line connecting the protons ( ¥D h and C2v) and 1500 for
remaining configurations.

C.2. Analytical representation of PESs

The NN method requires no prior knowledge about the
shape of the potential and fits are systematically improvable.
These properties make the NN approach very useful for the
unusual shapes of antimatter-matter potentials. The specific
form of NN functions used here is based on the imple-
mentation of Manzhos et al [40] which was subsequently
used by Law et al [41]. The functional form is a sum of
sigmoid functions

( ) ( )·å= + +
=

+ -V d d e1 , 4.21
p

N

p
bw x

0
1

1p p

where wp are the NN weights, bp are biases and x is a vector
of coordinates. Each term in the sum is called a node. The
parameters wp, dp, bp and d0 are determined by least-squares
fitting to ab initio data using the I-NoLLS programme [42].

C.2.1. Two-dimensional PES
The internuclear distances r1, r2 and r3 (where r3 is the p-p
distance, which is fixed in the two-dimensional PES) were
chosen as the coordinates in x in equation (4.21). The
potential energy is identical for permutation of the two pro-
tons and these coordinates make this straightforward to take
into account. To ensure the permutational symmetry, each
node of the NN was used to generate another node with r1 and
r2 exchanged. That is, equation (4.21) becomes

( ) ( )

( )

· ·å= + + + +
=

+ - ¢+ -V d d e d e1 1 ,

4.22
p

N

p
b

p
bw x w x

0
1

1 1p p p p

where ( )= r rx ,1 2 and ( )¢ = r rx ,2 1 .
For geometries with a large distance between the H̄ and

H2 the interaction energy for fixed r3 is well described by the
dispersion energy formula which can be shown to be the same
as that for H–H2

( ) [ ( )]
[ ( ) ( )] ( )

q q

q q

= - +

- + +
-

-

-

V R C C P R

C C P C P R

, cos

cos cos 4.23

disp H H 6
0

6
2

2
6

8
0

8
2

2 8
4

4
8

2

with =C 8.784 328 66
0 E ah 0

6, =C 0.913 154 946
2 E ah 0

6,
=C 161.315 428

0 E ah 0
8, =C 40.7566838

2 E ah 0
8 and =C8

4

1.333 266 8 E ah 0
8 for the H–H distance fixed at the average

value for the ground vibrational state, 1.449 a0 [43]. Here we
have fixed the proton–proton distance in our two-dimensional
surface below to the equilibrium value for H2, 1.4011 a0, but
not adjusted the C coefficients. In this formula R and θ are
Jacobi coordinates with R the distance from the antiproton to

the centre of mass of the two protons and θ the angle between
the line joining the two protons and R. Pn, are the Legendre
polynomials [35].

Although the accuracy of the NN fit is good (see
section 3.2.1), at large ¯ –H H2 distances there are small oscil-
lations of the potential energy. This deficiency in the NN fit is
not important however as at large ¯ –H H2 distances the NN is
smoothly combined with the dispersion energy formula of
equation (4.23) using a switching function (following Cvitaš
et al [44]):

( ) ( ( ( )) ( )= + -S R a R s1 tanh , 4.241

2

where a affects how quickly the function switches from 0 to 1
and s affects where it switches. In this case a was set to
3.0 -a0

1 and s to 7.0 a0 so that the switch from the NN to long-
range dispersion formula takes place around 7 a0 where both
functional forms are accurate. To avoid numerical problems
of using equation (4.23) for small values of R, for R below 1.0
a0 only the NN function is used.

The combined functional form of the two-dimensional
¯ –H H2 PES is given in Jacobi coordinates by

⎧
⎨⎪
⎩⎪

( )
( )

( ( ) )( ( ))
( ) ( )

( )

¯

¯

q
q
q
q

=
+ - <
+ -

+ -

+

+ 
V R

V R V R a

V R V S R
V R S R R a

,

, E 1.0

, 1
, E 1.0

,

4.25

NN nuc

NN nuc

disp

H H 0

H H 0

2

2

where ( )qV R,NN is the NN fit (converted to a function of R
and θ using trigonometric relations) to the leptonic energies,
Elep, and = - -Vnuc r r r

1 1 1

3 1 2
is the nuclear potential energy.

The energy of the separated H̄ and H2, ¯ +EH H2
, is subtracted to

give an interaction energy.

C.2.2. Three-dimensional PES
The isolated hydrogen molecule potential energy curve was fit
to a functional form as it is used in the long-range three-
dimensional ¯ –H H2 function (see below). The PEC is also
required for calculating the rotational-vibrational channel
functions of the molecule for use in scattering calculations
where the H2 bond length is free to vary (along with the three-
dimensional PES of course). The p–p distance was varied
with the H̄ atom at R=20 a0 and q = p

2
. A sum of powers of

Morse variables [45] was used for the PEC fit:

( ) ( )= + + + +V r C C Y C Y C Y , 4.26n
n

PEC 0 1 2
2

where

( )( )= - - -Y e1 . 4.27c r d

The nonlinear parameters c and d were fixed for each least-
squares fit attempted and so the optimum linear coefficients,
Ci, could be obtained in a single iteration of least-squares
fitting.

The long-range functional form for the three-dimensional
PES was based on equation (4.23) for the dispersion energy.
For the three-dimensional surface the dispersion energy needs
to vary also as a function of the p-p distance, r. It was found
that simply multiplying the terms by r (and adjusting the C
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coefficients) was effective so that the long-range function was

( ) [ ( )]

[ ( ) ( )]
( )

– q q

q q

= - ¢ + ¢

- ¢ + ¢ + ¢

-

-

V R r r C C P R

r C C P C P R

, , cos

cos cos .

4.28

disp H H 6
0

6
2

2
6

8
0

8
2

2 8
4

4
8

2

The energy of the H2 molecule for a given p–p distance
was calculated from the fitted PEC and the hydrogen atom
energy added to this value. The dispersion terms then account
for the interaction between the H̄ atom and the hydrogen
molecule. The full long-range functional fit in Jacobi coor-
dinates is therefore

( ) ( ) ( )
( )

¯ ¯q q= + ++ -V R r V r E V R r, , , , .

4.29
dispH H PEC H H H2 2

The energy of interaction for geometries where the three
atoms are considered separated was taken into account by
adding the dispersion energies for each pair of atoms. This is
given by the dispersion energy formula for two H atoms:

( )= - - --V
C

R

C

R

C

R
4.30disp H H

6
6

8
8

10
10

with C6=6.499 0267 E ah 0
6, C8=124.399 08 E ah 0

8 and
C10=3 285.8284 E ah 0

10 [43].
This approach ignores three body effects between the

atoms but still gives very good accuracy at long range: the
rms error is 0.69 mEh for the ab initio data for geometries
where all atoms are over 8 a0 apart. The accuracy of this
approach improves the further apart the atoms are with the
largest deviation of 2.97 mEh occurring for the geometry
where the atoms were closest.

For fitting the H2 molecule PEC the parameter d in
equation (4.27) was set to 1.4011 a0, the molecule’s equili-
brium bond length, while the c parameter was optimised by
manually changing its value for a given number of Morse
functions to obtain the best fit. The fit was also constrained so
that the sum of linear coefficients was equal to −1 Eh so that
for infinite separations the function reproduced the sum of
two isolated H atom energies. The best fit was obtained with
an eight-term sum of Morse functions with c set to 0.78 -a0

1.
This gave a standard deviation of 0.073 Em h to the data with
the largest difference of 0.13 Em h for the r=6 a0 data point.
As an additional check on the accuracy of the fitted PEC, a
variational calculation of the vibrational energy levels was
carried out. Using 8 harmonic oscillator basis functions
the v=0 to v=1 vibrational transition was calculated as
4171 cm−1. This is within 10 cm−1 of the experimental value
of 4161 cm−1 [46].

The long-range functional form for the ¯ –H H2 interaction
energy was fit using equation (4.28). To determine the coef-
ficients, this function was fit to 1214 ab initio energies with
geometries where the p-p distance r 63 a0 and the Jacobi
coordinate R between the p̄ and centre of mass of the two
protons >7 a0. This gave a standard deviation of 0.051 Em h

with a maximum difference between the fit and data of
0.13 mEh.

The NN and asymptotic functions were combined in a
similar way to the two-dimensional surface. In this case

additional conditions are imposed depending on which geo-
metry is required.

The potential energy is given as a function of the three
internuclear distances. If all three of these distances are below 7
a0 then the potential is given as a sum of the nuclear energy and
the NN leptonic energy. This avoids numerical problems of
trying to evaluate the asymptotic functions for geometries with
small ri. If all internuclear distances are above 8 a0 then the
atoms are considered separated and the energy is given by the
sum of dispersion energies equation (4.30). For ¯ –H H2 geome-
tries with the p–p distance less or equal to 6 a0 and the two ¯–p p
distances greater than 7 a0, the potential is given as a sum of the
NN energies and ¯ –H H2 asymptotic form, equation (4.29), with a
switching function to smoothly join these together. The
switching function, S(R), is the same as used for the two-
dimensional surface, equation (4.24), with a set to 3.0 -a0

1 and s
to 8.0 a0. For all other geometries the NN energy is used.

The full expression is given by

⎧
⎨
⎪⎪

⎩
⎪⎪

( )

( )
( ( ) )( ( ))

( ) ( )
( )

( )

¯ ¯

¯ ¯

¯

q
=

+ -
+ -

- >
+ -

+ +

+ + +

+

 

4.31

V r r r

V r r r V S R
V R r S R E r r a r a

V r r r E r r r a

V r r r V E

, ,

, , 1
, , , 7 , 6.0

, , , , 8.0

, , otherwise.

nuc

nuc

1 2 3

NN 1 2 3

H H H H 1 2 0 3 0

H H H 1 2 3 H H 1 2 3 0

NN 1 2 3 H H

2 2

2

2

Note that R, r and θ are the Jacobi coordinates defined
above, and that r3 is the p–p distance, so =r r3 and, since
r1 and r2 are the other two internuclear distances, R and
θ are obtained by simple trigonometry from { }r r r, ,1 2 3 .
Equation (4.31) does not contain an asymptote for Pn + PsH
type geometries. If the value of such a geometry is requested
then the NN energy is returned. As discussed above the
accuracy of the NN at these geometries is only expected to be
of the order of tens of millihartrees. This is due to the lack of
ab initio data for such geometries. It would be useful to
include such geometries into the full PES at a later stage. For
the moment the PES is useful for initial applications of ¯ ‐H H2

interactions as discussed in sections 3.3–3.5.
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