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Abstract

We study an emergent semiclassical time crystal composed of two interacting driven-dissipative
bosonic modes. The system has a discrete Z2 spatial symmetry which, depending on the strength
of the drive, can be broken in the time-crystalline phase or it cannot. An exact semiclassical
mean-field analysis, numerical simulations in the quantum regime, and the spectral analysis of the
Liouvillian are combined to show the emergence of the time crystal and to prove the robustness of
the oscillation period against quantum fluctuations.

1. Introduction

The advances in preparing and manipulating quantum matter in the laboratory during the past decades has

led to a growing interest in out-of-equilibrium quantum phases [1–10]. Simultaneously, a great degree of

attention has been devoted to the search for the spontaneous breaking of time-translational invariance

[11–18]. Both efforts has converged on the realization of a time-crystalline phase of matter, the so called

discrete or Floquet time crystals [19, 20]. There, a many-body quantum system self-organizes and responds

with a period different from the one imposed by the time-periodic external drive, breaking the discrete

time-translational symmetry. An important characteristic of Floquet time crystals is that strong disorder is

needed to induce many-body localization preventing the system from absorbing energy from the drive and

heating up towards a featureless thermalized state.

Another type of time crystal dissipates energy to the environment instead of relying on disorder

[21–38]. Interestingly, a subgroup of these are not driven at all [22] or the driving is such that the

time-dependence can be completely eliminated by moving to a rotating frame [24, 26, 29, 30, 32–36, 38]. In

these cases, the symmetry breaking is assessed with respect to the time-independent dynamical generator,

usually the Lindblad superoperator L of a Markovian master equation, ∂t ρ̂ = L(ρ̂). Such dissipative

quantum systems have one or more attractive steady states that respect the time-translational invariance of

L. In the thermodynamic limit, however, the steady state might never be reached, signalling that the

continuous time-translational symmetry is broken. If one finds a time-periodic response on a function

f (τ) = limt,N→∞ Tr[Ôρ̂(t + τ)]—N being the system size—for a suitable system operator Ô one can say

that a time crystal has been formed. Crucially, the period is not constrained to integer multiples of the drive

period and can vary continuously with the system’s parameters.

Most of the dissipative time crystals with continuous time-translation symmetry studied so far rely on

long-range interactions [22, 24, 26, 30, 34–36, 38], which occur naturally in systems with dipolar

interactions or can be engineered, for instance, by coupling matter to a common resonant mode of a lossy

cavity. This means those systems can be well described by mean-field equations in the infinite-volume

thermodynamic limit, and so be regarded as emergent semiclassical time crystals. A few exceptions [32, 33]

rely on a different notion of ‘thermodynamic limit’ in effectively zero dimensions [39], where the number

of bosonic excitations diverge in a system with one or a few bosonic modes and quantum fluctuations

become negligible. These therefore belong to the same kind of time crystals.
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The majority of the time crystals which have been studied so far have an underlying symmetry in

addition to the time-translational symmetry, and the two are broken together. In Floquet time-crystals, for

example, it is normally a global parity symmetry (Z2), and this leads to long-range correlations in both time

and space. For this reason the time-crystalline order is sometimes dubbed spatio-temporal order [16, 17,

40–42]. This spatial symmetry is not a requisite in continuous time crystals [22, 33], yet when it is present

it is broken [24, 26, 30, 32, 34–36, 38].

In this work we study an emergent semiclassical time crystal in a dissipative system with two interacting

bosonic modes which are driven and possess a minimal spatial Z2 symmetry. We show that, depending on

the strength of the drive, the time-crystalline phase is either accompanied by the Z2-symmetry breaking or

it is not. This only occurs in a well-defined ‘thermodynamic limit’ in which the numbers of bosonic

excitations diverge. By analysing how our quantum system scales towards this limit, we show the emergence

of these time-ordered phases (i) proving that the period of the oscillations is robust against quantum

fluctuations as well as (ii) providing insight on the feasibility of observing long-lived oscillations in an

experimental realization in which the system might be far from the ‘thermodynamic limit’.

The system we consider is the Bose–Hubbard dimer (BHD), which in its closed system version has been

a prototypical model capable of explaining interesting macroscopic coherent dynamics, such as

self-trapping and nonlinear Josephson-like oscillations in a Bose–Einstein condensate trapped in a

double-well potential [43–46]. While there is an intrinsic quantum aspect to Bose–Einstein

condensates—their statistics—quantum correlations are normally irrelevant and the condensates can be

modelled by classical nonlinear wave equations. Nevertheless, by taking into account quantum correlations,

it has been suggested that the Josephson-like oscillations in the driven-dissipative BHD dimer [47, 48] can

be regarded as a signature of a dissipative time crystal [32, 33].

Unlike the most common case in which each mode has its own dissipative channel, the BHD we

consider has nonlocal dissipation (also called dissipative coupling or collective dissipation). The idea of

having self-sustained periodic oscillations in Bose–Einstein condensates with this kind of dissipation has

been explored in the context of weak-lasing and frequency comb generation [29, 49–51], although with

incoherent instead of coherent drive. Nonlocal dissipation is also encountered in other models of dissipative

time crystals [22, 26, 52]. We propose the intuitive explanation that such collective process enhances

synchronization between different parts of the system, which is in a sense what happens in continuous time

crystals [26]. Even though it is often neglected in theoretical modelling, nonlocal dissipation occurs

naturally in many systems in which there is one environment weakly-interacting with the whole system,

being a crucial requirement for obeying quantum detailed balance [53]. In a previous work [32], we have

shown that this dissipation together with the interactions decouple the two collective modes in the

coherently driven BHD, forming periodic oscillations between the two modes and thus a time crystal.

There, the two bosonic modes were symmetrically driven which rendered the time crystal bistable: for a

pump-strength window, it was possible to find two distinct time-crystalline periods depending on the initial

condition imposed on the system. The dimer had a spatial Z2 symmetry (the swap mode 1 ↔ mode 2),

which was found to be broken throughout the time crystalline phase. Here, considering a different driving

configuration, we show that the spatial Z2 symmetry does not need to be broken in all regions of the time

crystalline phase.

2. The model

We consider an open BHD with nonlocal dissipation which evolves according to the Lindblad

equation (~ = 1)

∂t ρ̂ = −i[Ĥ, ρ̂] + γD[â1 + â2](ρ̂), (1)

where D[X̂](ρ̂) = X̂ρ̂X̂† − (1/2)(ρ̂X̂†X̂ + X̂†X̂ρ̂) is the standard Lindblad dissipator. In a frame rotating

with the pump frequency ωp the Hamiltonian reads

Ĥ =
∑

i=1,2

(−∆â†i âi + Uâ†i â†i âiâi) − J(â†1â2 + â1â†2) + F(â1 − â2 + (â1 − â2)†). (2)

Here, âi is the bosonic annihilation operator of the i-mode, ∆ = ωp − ωc is the frequency detuning

between the pump frequency and the resonant frequencies ωc of the two modes, U is the interaction

strength, J is the coupling between the two modes, F is the pump amplitude, and γ is the decay rate.

To better appreciate the effects the drive and the dissipation have over the two modes, we can rewrite the

Lindblad equation in terms of bonding and antibonding modes âB = (â1 + â2)/
√

2 and

2
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Figure 1. Semiclassical symmetry breaking. (a) Artistic representation of bonding (red) and antibonding (blue) bosonic
wavefunctions inside two coupled microcavity pillars. (b) Rescaled order parameter |α̃B| as a function of the rescaled pump
amplitude. Different regions denoted by capital Roman numerals are separated by blue vertical dashed lines and are discussed in
the main text. Black continuous (dotted) lines indicate attractive (non-attractive stable) fixed points, while black dashed lines
depict repulsive fixed points. (c)–(e) Phase space portrait for pump amplitudes F̃/γ = 0.5, 0.95, and 1.2, in regions I–III,
respectively. The parameters read ∆/γ = 0.8, J/γ = 1.1, and Ũ/γ = 1. We use the same parameter values throughout the
manuscript.

âA = (â1 − â2)/
√

2, respectively, obtaining ∂t ρ̂ = −i[Ĥ, ρ̂] + 2γD[âB](ρ̂) with

Ĥ =(−∆− J)â†BâB + (−∆+ J)â†AâA +
√

2F(â†A + âA) +
U

2

[

∑

k=B,A

(â†kâ†kâkâk)

+ â†Bâ†BâAâA + âBâBâ†Aâ†A + 4â†BâBâ†AâA

]

.

(3)

In this new basis we can note that only the bonding mode dissipates and only the antibonding mode is

driven, while the interaction (U) couples both modes. This bosonic dimer (although with local dissipation)

has been engineered using exciton–polaritons in microcavity pillars [54]. We illustrate our system in the

context of micropillars in figure 1(a) showing an artistic representation of how the bonding and antibonding

modes look in the two coupled pillars. The bonding (red colored) and antibonding (blue colored) modes

resemble the symmetric and antisymmetric wavefunctions, respectively, of the hydrogen molecule.

Semiconductor microcavities are not the only platform available to study dissipative and interacting bosonic

modes; circuit QED or optomechanical devices are also suitable. The drive we consider in this work can be

achieved in any of these three platforms by using two coherent drives, one for each one of the 1 and 2

bosonic modes, with a π-phase difference, as illustrated in figure 1(a). Our nonlocal dissipation could be

engineered in microcavity pillars by deliberately introducing defects in the overlap region of the two pillars

in order to increase nonradiative losses in the bonding mode. Alternatively, it could be engineered in circuit

QED devices by coupling two resonant modes to a microwave resonator at the same position, such that the

amplitude and phase of the linear coupling between the resonator and each mode are the same. Moreover,

reservoir-engineered nonlocal dissipation has already been used in optomechanical circuits to achieve

non-reciprocity [55, 56].

There is an exact semiclassical limit for the system governed by equation (1) in which the occupation

numbers of modes 1 and 2 diverge and the system’s criticality becomes manifest [57, 58]. It is defined by

taking F →+∞ while keeping F
√

U fixed. Is thus convenient to introduce a scaling parameter N to define

F = F̃
√

N and U = Ũ/N. From (1) we obtain the semiclassical mean-field equations

i∂tα̃B = (−∆− J − iγ)α̃B + Ũ(|α̃B|2α̃B + α̃2
Aα̃

∗
B + 2|α̃A|2α̃B) (4a)

i∂tα̃A = (−∆+ J)α̃A + Ũ(|α̃A|2α̃A + α̃2
Bα̃

∗
A + 2|α̃B|2α̃A) +

√
2F̃, (4b)

3
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where we have defined α̃A,B = αA,B/
√

N. We can see that these equations are scale invariant and, in

particular, they are exact (〈â1,2〉 = α1,2) in the weak-coupling N →+∞ limit, which we study in this work.

We will consider parameter values for which equation (4) are not amenable to perturbative expansions (see

[59] for instance), as all energy scales will be equally important. Note that in the laboratory, the interaction

strength U is not easily controlled, yet is usually weaker than all other energy scales. Therefore, a large N
limit is achieved solely by increasing the pump amplitude up to the level where the modes population

become large enough such that the effective interaction energy U〈â†i âi〉 is relevant. For this reason F is the

only parameter we vary throughout this work.

In a previous work [32] we considered the same model but with a pump acting over the bonding instead

of the antibonding mode. There we found that the time-translational symmetry of the steady state was

broken and it was accompanied by a first-order dissipative phase transition in the form of bistability. This

means there was a region of parameter space where one could see long-lived oscillations with one of two

different frequencies, depending on the initial conditions. In the current work the symmetries are different,

so bistability is now replaced by a second-order phase transition due to the breaking of a Z2 symmetry, as

we explain in the following.

2.1. Symmetries

Our system has a discrete (also dubbed weak, see [60]) Z2 symmetry â1 ↔ −â2 (or α̃1 ↔ −α̃2) described

by the bonding parity operator P̂ = (−1)â†
B

âB =
∑∞

n1,n2=0 (−1)n1+n2 |n1, n2〉〈n2, n1| (written in the Fock basis

of the 1, 2 modes). Note that due to the coherent drive, there is no U(1) phase invariance.

For any finite value of N, the dynamical equation (1) has a unique steady state (i.e., time-independent)

which is symmetric ρ̂ss = P̂ρ̂ssP̂†. However, both the Z2 symmetry and the time-translational symmetry of

the steady state can be broken in the N →+∞ limit where the number of bosons in the system diverge.

Naturally, then, our order parameters to witness spatial and time symmetry breakings in the semiclassical

limit should be limt→∞ α̃B(t) = limt,N→∞ N−1/2 Tr[âBρ̂(t)] and any time-dependent function

f (τ) = limt,N→∞ Tr[Ôρ̂(t + τ)], respectively. If f(t) is periodic, then the system would be in a

time-crystalline phase. In the next section we will show that we find periodic oscillations for all values of the

pump amplitude F̃, but the Z2 symmetry is broken only for a particular region.

3. Mean-field semiclassical dynamics and symmetry breakings

In this section we analyse the dynamical behaviour of our semiclassical model (4). We look for fixed points

and their stability, as well as the formation of limit cycles. In the first part we present the numerical results

we obtain by solving (4) and then we give an analytical explanation. But first, since the nomenclature for

nonlinear dynamics varies from one physics community to another, we first give a brief summary.

The fixed points are the stationary solutions, i.e., ∂tα̃
fp
A,B = 0, and their local stability is deduced from

the eigenvalues of the Jacobian matrix obtained linearising the equations around them. If we express (4),

and their complex conjugates, in vector notation as ∂tα = G(α) where α̃ = (α̃B, α̃∗
B, α̃A, α̃∗

A)T, the

expansion α→ αfp + δ for δ the fluctuations vector leads us to the linear equation ∂tδ = Mδ where

M = (∂G/∂α)|fp is the Jacobian matrix. Depending on the real part of the eigenvalues, the fixed point can

be (locally) attractive, stable but non-attractive, or repulsive, corresponding to having all eigenvalues

negative, at least one equal to zero, or at least one positive, respectively. A limit cycle is a periodic orbit in

phase space; when a trajectory enters a limit cycle it remains there forever.

3.1. Numerical results

We find five regions in parameter space which are shown in figure 1(b), highlighted in different colors and

annotated using Roman numerals. We plot the rescaled order parameter |αB|/
√

N of the Z2 symmetry as a

function of the rescaled driving amplitude F/
√

Nγ, showing that in regions II–IV the Z2 symmetry is

broken. The time-translational symmetry is broken in all regions. In the following we explain the dynamics

in each one of them.

In regions I and V there is a single non-attractive fixed point (dotted black line in figure 1(b)) which

preserves the symmetry. This fixed point is never reached; all the trajectories go into a family of limit cycles

on the antibonding mode alone, as the bonding mode amplitude goes to zero. These can be seen in panel

(c) of the same figure, where we show a phase space portrait for F̃ = 0.5 in region I. For panel (b) [as well as

for (c)–(e)] we allow 100 random initial conditions to evolve until they have become stationary and then

4
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Figure 2. Emergence of limit cycles. Amplitude of the bonding and antibonding modes as a function time and the Fourier
spectrum of the antibonding mode for different values of N. (a) Symmetry preserving oscillations for low pump
F/(

√
Nγ) = 0.5, in region I. (b) and (c) Symmetry-preserving and symmetry-breaking oscillations, respectively, for two

different initial conditions and F/(
√

Nγ) = 0.95 in region II. The initial conditions are coherent states with α2 = 0 and
α1/

√
N = −1, 0.5, and −0.5 for (a)–(c), respectively. The results for N = 10, 20, 30, and 50 were obtained averaging over

5 × 103 quantum jump trajectories, and for N = 200, averaging over 104 TWA trajectories. For the Fourier spectrum, the
antibonding mode was sampled with ∆tγ = 10−2 over total time T = 300 and 150 for the simulations with N > 200 and
N < 200, respectively. The rest of the parameters are (∆, J, U/N) = (0.8, 1.1, 1)γ, same as in figure 1.

we sample α̃A,B(t) with a rate (γ∆t)−1 = 10−2.

In regions II and IV there are three repulsive fixed points (dashed black line); one of them preserves the

symmetry and two of them belong to a symmetry-related pair (α̃B ↔ −α̃B) breaking the symmetry. Here

there is also a family of symmetry-preserving limit cycles revolving around the fixed point with αB = 0.

Additionally, there are symmetry-breaking attractive limit cycles: in the low end of region II, a pair of them

emerge from the fixed point as the pump amplitude rises, converging eventually to the fixed points with

symmetry-breaking when region III is reached (see below). The same happens in regions IV in reverse. The

different limit cycles can be seen in figures 1(d.i) and (d.ii), where we plot a phase space portrait for

F̃ = 0.95. Note we now plot the phase space of both modes as the bonding mode does not vanish.

Finally, in region III, the two symmetry-breaking repulsive fixed points of II and IV become attractive.

There are only symmetry-preserving limit cycles in this region and they revolve around the repulsive fixed

point with αB = 0. The fixed point (indicated by an arrow) and the limit cycles can be seen in panel (e),

where we plot a phase portrait for F̃ = 1.2. We do not show the bonding mode in this case, as it goes to zero

(for the limit cycles) or to the finite fixed point value indicated by the order parameter in panel (b).

We can connect the image in figure 1(a) with the dynamics just described to have a pictorial

understanding. Succinctly we can say: in regions I and V the red (symmetric) mode is not occupied and the

blue (antisymmetric) mode always oscillates; in regions II and IV both red and blue modes always oscillate;

and in region III either the blue mode oscillates and the red mode is empty or both modes are occupied

without any oscillations.

In figure 2 we show examples of limit cycles for regions I and II by plotting the modes’ amplitudes as a

function of time. For the moment we just focus on the curves for N = ∞, which correspond to the

semiclassical case. In panel (a), for low pump (F̃/γ = 0.5), we can see that the limit cycle is reached when

the bonding mode goes to zero on a short time scale. In panels (b) and (c) we show the same quantities for

a pump amplitude F/
√

Nγ = 0.95, inside region II. In panel (b) the initial condition is such that a

symmetry-preserving limit cycle is reached, while in (c), it is such that a symmetry-breaking limit cycle is

obtained. On the right hand side of the figure, we show the Fourier transforms of the antibonding mode

αA/
√

N and we observe there are equidistant frequency peaks akin to frequency combs. This implies the

corresponding periods are commensurate with each other, meaning a single common period governs the

oscillations. Nevertheless, the frequency difference between consecutive peaks has a nontrivial dependence

on all parameters. Although not shown, we note that all the frequency peaks can also be seen in the Fourier

spectrum of the dynamics after the transient, when the system is in a fully periodic motion. Moreover, the

same frequencies are obtained from the amplitude or phase oscillations.

5
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3.2. Analysis

Some intuition about the dynamical behaviour can be gained by noting that, if J −∆ > 0, which is our

case, a fixed point of (4) is given by

α̃
fp
B = 0,

α̃
fp
A =



− F̃√
2Ũ

+

√

F̃2

2Ũ2
+

(

J −∆

3Ũ

)3





1/3

−





F̃√
2Ũ

+

√

F̃2

2Ũ2
+

(

J −∆

3Ũ

)3





1/3
(5)

where α̃fp
A is real and negative and the solution of the depressed cubic equation Ũ(α̃fp

A )3 + (J −∆)α̃fp
A +√

2F̃ = 0. This is the symmetry-preserving fixed point found for all F̃ in the numerical analysis and shown

in figure 1(b). The eigenvalues of the Jacobian matrix which determines its linear stability are given by

λB
± = −γ ±

√

Ũ2(α̃fp
A )4 − (2Ũ(α̃fp

A )2 −∆− J)2, (6)

λA
± = ±i

√

(J −∆+ 2Ũ(α̃
fp
A )2)2 − Ũ2(α̃

fp
A )4. (7)

The eigenvalues λ±
A are purely imaginary meaning (5) cannot be attractive. Instead, a family of limit cycles

can be reached: whenever α̃B = 0 the two modes decouple, and the dynamical equation of α̃A(t)

corresponds to the semiclassical equation of a coherently driven, dissipationless nonlinear harmonic

oscillator

i∂tα̃A ≈ (−∆+ J + Ũ|α̃A|2)α̃A +
√

2F̃. (8)

The limit cycle attained depends on all parameters and the value of α̃A(t) at the time when α̃B vanishes. A

similar effective decoupling mechanism has been studied in [32].

There is an instability signalled by Re[λB
+] > 0 where two symmetry-breaking fixed points emerge. This

inequality is satisfied in a region where the following two conditions are fulfilled:

J +∆ > Ũ(α̃
fp
A )2 and

√

Ũ2(α̃
fp
A )4 − (2Ũ(α̃

fp
A )2 −∆− J)2 > γ. (9)

For the parameters we use in figure 1 (same throughout the manuscript) these two inequalities are

simultaneously satisfied in the region F̃/γ ∈ [0.927, 1.596], which corresponds to regions II–IV.

Interestingly, the bonding mode amplitude need not be zero for the effective decoupling of the two

modes. When the amplitude is small (|α̃B| ≪ 1), equation (4b) decouples from (4a), resulting in

equation (8) which drives the antibonding mode into periodic oscillations. At the same time, equation (4a)

becomes linear in the bonding mode while the antibonding mode acts as a drive giving

i∂tα̃B ≈ (−∆− J − iγ)α̃B + Ũ(α̃A(t)2α̃ ∗
B + 2|α̃A(t)|2α̃B). (10)

Note that only the time dependence of α̃A is written explicitly. This is to highlight that, since αA(t) is

periodic, it will cause the bonding mode to oscillate with the same period—this is, it is acting as a Floquet

driving. This explains why in regions II and IV a family of symmetry-breaking limit cycles organise around

the unstable fixed points emerging from the instability outlined in (9).

We remark on the importance of a pure nonlocal dissipation. If local dissipators in the form of

κ
∑2

i=1 D[âi](ρ̂) (with small κ ≪ γ) were to be added to (1), the oscillations in the bonding and

antibonding modes would be damped for all values F̃. Even though the system would preserve the Z2

symmetry, one would be able to observe long-lived oscillations only up to a time ∼κ−1.

Having given an analytical explanation for the phase space of our system in the N →+∞ limit, we

remark that an analysis that does not go beyond mean-field is incomplete: quantum fluctuations may well

destroy the semiclassical limit cycles. A transparent example can be found in [61], where a linearisation

method is developed to show that quantum fluctuations smear out the semiclassical limit cycle of the Van

der Pol oscillator. In order to prove the robustness against quantum fluctuations, we proceed in the next

section by solving our system exactly deep in the quantum regime (N = 1) and carrying out a ‘finite-size’

expansion in terms of the scaling parameter N.

6
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4. Quantum dynamics

For our numerical calculations in this section, we have appropriately truncated the Fock space in the 1–2

basis ensuring convergence in the results for each value of the scaling parameter N. For the time evolution

of expectation values, we solve (1) using a photon-counting unravelling [62] of the master equation and

averaging over 5 × 103 quantum jump trajectories, recovering to an excellent accuracy the full dynamics of

the density matrix. We also use the Wigner phase space representation and the truncated Wigner

approximation (TWA) [62]—we invite the reader to see appendix A for details.

By studying the time evolution of the rescaled expectation values 〈âA,B〉 (t)/
√

N for increasing values of

N, we gain insight on both symmetry breakings we are interested in. Firstly, the emergence of periodic

oscillations in | 〈âA〉 |(t)/
√

N for all the pump amplitudes we consider would highlight the time-translation

symmetry breaking. Secondly, if the Z2 symmetry is to be broken for an F̃ window (i.e., regions II–IV), the

response of | 〈âB〉 |(t)/
√

N should provide evidence for critical slowing down in this region due to the

necessary closing of the Liouvillian eigenvalue gap [63] (more to this below).

We compare the previously shown semiclassical limit cycles with the dynamics of the quantum regime in

figure 2. It clearly depicts the emergence of periodic oscillations in the antibonding mode as N is increased.

Recall that panel (a) corresponds to a low pump amplitude in region I, while panels (b) and (c) correspond

to region II with different initial conditions. Looking at the oscillations in the bonding mode in (b) and (c),

we can see that also in the quantum regime a symmetry-preserving or symmetry-breaking limit cycle is

approached with increasing N. Furthermore, we can observe in the Fourier spectrum of figures 2(a)–(c)

that the long-lived oscillations in the quantum regime have frequency peaks matching those of the

semiclassical limit. In particular, this proves that the period of the oscillations is robust against quantum

fluctuations. For N up to 50 we have used quantum jump trajectories while for the very high N = 200 we

have used the TWA which is a very good approximation for weak interactions (U = Ũ/N = 0.005).

Thanks to the linearity of the Lindblad equation we can expand its formal solution in eigenmodes of the

superoperator L as

ρ̂(t) = eLt(ρ̂(0)) =
∑

j>0

cje
λjt ρ̂j = ρ̂ss +

∑

j>1

cje
λjt ρ̂j, (11)

where ρ̂j are the eigenmodes, λj the complex eigenvalues, and cj coefficients that depend on the initial

condition. As our notation suggests, λ0 = 0 is associated with the steady state eigenmode ρ̂0 = ρ̂ss. The

other eigenvalues have negative real part (verified numerically), hence |Reλj| correspond to decay rates of

the transient modes, while Imλj are frequencies. Since the steady state preserves the symmetry of L, this

picture suggests that to have a phase transition at least one non-zero eigenvalue must vanish in the

N →+∞ limit (or in a thermodynamic limit, in general). This is analogous to the gap closing in a

second-order phase transition of a closed quantum system [64].

In order to obtain the eigenvalues of a general Liouvillian superoperator L, one normally proceeds by

first writing it as a matrix, Ľ, and then diagonalizing it. In our case, thanks to the discrete Z2 symmetry, the

Ľ obtained from (1) decomposes into two block matrices as

Ľ = Ľ+ ⊕ Ľ− =

[

Ľ+ 0

0 Ľ−

]

, (12)

where (±) refers to the two eigenspaces corresponding to eigenvalues ±1 of the symmetry operator

P̌ ≡ P̂ ⊗ P̂∗ that commutes with Ľ. Details can be found in appendix B. The usefulness of this is twofold.

Firstly, it reduces the computational cost of finding the eigenvalues. Secondly, eigenmodes in the

(+)-subspace are Z2-symmetric while eigenmodes in the (−)-subspace are antisymmetric. This means we

should be able to find evidence of the time-translational symmetry breaking in the spectrum of Ľ+ alone,

and of the Z2 symmetry breaking in the spectrum of Ľ−.

In figure 3 we show the non-zero eigenvalues of L with smallest absolute real part as a function of the

pump amplitude for different values of N. In panel (a), we show an eigenvalue (λ+

1 ) of Ľ+ which is purely

real and goes to zero as N increases. In panel (b), for the same symmetry subspace, we show a second

eigenvalue (λ+

2 ) which is complex. When N is increased, its real part tends to zero while its imaginary part

converges to a finite value. This eigenvalue is responsible for the emergent oscillations for all the pump

values we consider. In order to appreciate this, we have included in panel (b) the frequency predicted from

the semiclassical linearised equations, i.e., from (5) and (7). Clearly |Im λ+

2 | approaches the semiclassical

frequencies.

The smallest eigenvalue (λ−
1 ) of Ľ− tends to zero with increasing N in the region where the semiclassical

analysis predicts the broken Z2 phase. This is shown in figure 3(c), where we have delimited between

7



New J. Phys. 22 (2020) 075002 C Lledó and M H Szymańska

Figure 3. Liouvillian’s eigenvalues with smallest absolute real part as a function of F/(
√

Nγ) for different values of N. (a) and
(b) The two smaller eigenvalues of Ľ+. λ+

1 is real and λ+

2 is complex, with its imaginary part approaching the semiclassical
frequency (7) (black dashed line) as N is increased. (c) The smaller eigenvalue of Ľ−. Its real part approaches zero by increasing
N in a region where its imaginary part vanishes. The region between vertical dashed blue lines corresponds to regions II–IV
where the semiclassical analysis predicts breaking of the Z2 symmetry. The markers are just a guide; each curve contains 76
points.

Figure 4. Algebraic scaling of the eigenvalues. Re λ−
1 and Re λ+

2 as a function of N in log–log scale. For each N, we take the
largest value of the curves for Re λ−

1 in the left panel of figure 3(c). At the same values of pump amplitude, we extract the Re λ+

2 .
In the left (right) panel we see the eigenvalue show a dependence λ ∝ Nβ with β = −0.52 (β = −0.64) (fit, dashed blue).

vertical blue dashed lines regions II–IV (in the plot for the real part). The real part of the eigenvalue has an

inverted parabolic shape approaching zero with increasing N, while the imaginary part is zero throughout

this region. The asymptotic vanishing of this eigenvalue explains the critical slowing down in the

convergence to the steady–steady expectation values of non-symmetric operators, as shown for the bonding

mode in figure 2(c). Figure 2(b) does not show the same critical slowing down in the bonding mode in spite

of sharing the same pump amplitude. This can be understood by recalling that the coefficients cj in (11)

depend on the initial conditions; in the latter case the initial state does not couple to the eigenmode

associated to λ−
1 .

Figure 4 shows the scaling of Re λ−
1 and Re λ+

2 with N in a log–log scale. For Re λ−
1 , we take the largest

value of each curve shown in figure 3(c), and we extract Re λ+

2 for the same values of the pump amplitude.

We see that both eigenvalues are well fitted by an algebraic scaling λ ∝ Nβ with β = −0.52 for λ−
1 and

β = −0.64 for λ+

2 , showing that their real part vanish in the N →+∞ limit.

In region III the semiclassical prediction is not completely accurate. It predicts there is either a steady

state with Z2 broken or a limit cycle only in the antibonding mode. Yet from figures 3 and 4 one can deduce

limit cycles will always be found in both modes throughout region III. Even though one could fine tune the

initial condition such that a symmetric or non-symmetric steady state is reached—in the N →∞ limit

when the gaps are closed—any perturbation or time-delayed two-point measurement on the system would

be enough to make the bonding and antibonding occupations oscillate forever. To illustrate this point, we

show in figure 5 the second-order coherence of the bosonic modes â1 (left panel) and âB (right panel) for

8
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Figure 5. Second-order coherence of bosonic modes 1 (left) and B (right) in region III (F/(
√

Nγ) = 1.2) and for two values of
N. The first detection is done in the steady state.

F̃ = 1.2 in region III, and two values of N. In the long time limit, the coherence is given by

g(2)
j (τ) = lim

t→∞

〈â†j (t)â†j (τ + t)âj(τ + t)âj(t)〉
〈â†j (t)âj(t)〉2

=
Tr[â†j âjeτL(ρ̂′j)]

Tr[â†j âjρ̂ss]
, (13)

where j can be 1, 2, A, or B, and we have defined ρ̂′j = âjρ̂ssâ
†
j /Tr[â†j âjρ̂ss]. The last equality in the above

equation emphasises the following: the first detection transforms ρ̂ss into ρ̂′j, which is then evolved up to a

time τ where the second detection occurs. Noting that ρ̂′j can be expanded as a linear combination of L’s

eigenmodes, as in (11), we can conclude that the long-lived eigenmodes are probed by the measurement

[65].

5. Discussion and outlook

The time crystal discussed in this work pertains to the class of emerging semiclassical time crystals also

discussed in [22–28, 30, 32–36]. The mechanism behind it can be traced to the effective dynamical

decoupling between the bonding and antibonding modes. The key ingredients are that these modes are

nonlinearly coupled and that only one of them is explicitly damped (cf (3)). The other (non-damped) mode

can evolve autonomously when the population in the damped one is small. We note that this behaviour is

closely related to the one found in frequency combs in the weak-lasing regime of dissipatively coupled

condensates [66]. The mean-field model for the two dissipatively-coupled Bose–Einstein condensates

considered in that work, can also be obtained by the semiclassical limit of the Lindblad master equation

∂t ρ̂ =− i

[

2
∑

i=1

(

ωiâ
†
i âi +

α

4
â†i â†i âiâi

)

− J

2
(â1â†2 + â†1â2), ρ̂

]

+ γD[â1 + â2](ρ̂) +

2
∑

i=1

(Γ− γ)D[âi](ρ̂) + WD[â†i ](ρ̂),

(14)

which considers incoherent (W) instead of coherent pump. The dissipative coupling is crucial, and the limit

cycles are found when the population in the two modes are small and the nonlinearity α becomes

inefficient, like in our case.

This phenomenon can be generalised to spatially extended configurations of bosonic modes. In a ring,

for instance, one would need that the different linear modes (with well defined angular momentum) have

different dissipation rates. Then, coherently pumping one of the linear modes would result in periodic

long-lived oscillations in the mode(s) with smallest decay rate(s). If one of them has no decay channel—like

in the case discussed in this work—then a time crystal would be found.

It would be interesting to relate the limit cycles we find to the mechanism outlined in [67], where an

operator Â which commutes with the Lindblad operators, [L̂i, Â] = [L̂†
i , Â] = 0, is at the same time an

eigenoperator of the Hamiltonian [Ĥ, Â] = ωÂ. These algebraic conditions are sufficient to show the

existence of limit cycles, even in the quantum regime. In our current case, however, one would expect that

the frequency ω (in the N →∞ limit) is given by the semiclassical frequency in (7), which depends on all

parameters including the decay rate γ. The exact condition for coherent dynamics put forward by Buča et al
in [67] gives an ω depending on Hamiltonian parameters alone. We hypothesise there could be a

complementary, and less precise, case to that algebraic condition where Â, and thus the commutators as

well, depend themselves on expectation values, such that only in a thermodynamic limit some of them

vanish and a clear indication of coherent dynamics is obtained.
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Appendix A. Truncated Wigner approximation

In the Wigner representation one can obtain a generalized Fokker–Planck equation for the Wigner

quasi-probability distribution

W(α1,α ∗
1 ,α2,α ∗

2 , t) ≡ 1

π4

∫

d2z1 d2z2 Tr[D̂(iz ∗
1 ) ⊗ D̂(iz ∗

2 )ρ̂(t)]e−i(z ∗1 α ∗
1 +z1α1) e−i(z ∗2 α ∗

2 +z2α2) (A.1)

where D̂(α) = eαâ†−α∗ â is the displacement operator.

For the system we consider in this work, the truncated Wigner approximation amounts to neglecting the

third-order derivatives
iU

4

(

∂2

∂α2
j

∂

∂α ∗
j

− ∂

∂αj

∂2

∂(α ∗
j )2

)

W for j = 1, 2, (A.2)

which scale as ∝ N−3/2, while the first- and second-order derivative terms in the Fokker–Planck equation

are made of terms of orders N and 1.

The truncated Fokker–Planck equation for W can then be mapped into stochastic Langevin equations

for αi, yielding

∂tα1 = [i∆− γ/2 − 2iU(|α1|2 − 1)]α1 + (iJ − γ/2)α2 − iF +
√

γ/2 η1

∂tα2 = [i∆− γ/2 − 2iU(|α2|2 − 1)]α2 + (iJ − γ/2)α1 + iF +
√

γ/2 η2.
(A.3)

ηi are complex Gaussian noises satisfying 〈ηi(t)〉 = 0 and
〈

ηi(t)η∗j (t′)
〉

= δijδ(t − t′), where the average is

over stochastic realizations.

Appendix B. Symmetry of the Lindbladian

We briefly introduce the mapping of the super operator L into a matrix, which allows us to build upon

common linear algebra knowledge: if two matrices commute, it is possible to separate the matrix into

blocks.

In the doubled Hilbert space (or Liouvillian space) superoperators and operators are mapped into

operators and vectors, respectively. Choosing a row-wise reshaping, a superoperator S(ρ̂) ≡ Ĉ1ρ̂Ĉ2 becomes

Š|ρ〉〉 = (Ĉ1 ⊗ Ĉ⊤
2 )|ρ〉〉 where ⊤ is the transpose and ρ̂ =

∑

ijρij|i〉〈j| ↔ |ρ〉〉 =∑ijρij|i〉 ⊗ |j〉.
Our system has the discrete Z2 symmetry which can be expressed as L(P̂ρ̂P̂†) = P̂L(ρ̂)P̂† for any ρ̂, or

equivalently, (P̂ ⊗ P̂∗)Ľ = Ľ(P̂ ⊗ P̂∗). This is, they commute. Since P̂ has eigenvalues ±1, we can split the

Liouvillian into two blocks, and obtain (12):

Ľ =

[

Ľ+ 0

0 Ľ−

]

≡









Ľ++,++ Ľ++,−− 0 0

Ľ−−,++ Ľ−−,−− 0 0

0 0 Ľ+−,+− Ľ+−,−+

0 0 Ľ−+,+− Ľ−+,−+









, (B.1)

where Ľ++,++ corresponds to projecting onto the eigenspaces of P̂ and P̂∗ with eigenvalue +1 on the right-

and left-hand sides of Ľ, and so on.
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