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Abstract. In this paper we present a translation from the quantum pro-
gramming language Quipper to the QPMC model checker, with the main
aim of verifying Quipper programs. Quipper is an embedded functional
programming language for quantum computation. It is above all a circuit
description language, for this reason it uses the vector state formalism
and its main purpose is to make circuit implementation easy providing
high level operations for circuit manipulation. Quipper provides both an
high-level circuit building interface and a simulator. QPMC is a model
checker for quantum protocols based on the density matrix formalism.
QPMC extends the probabilistic model checker IscasMC allowing to for-
mally verify properties specified in the temporal logic QCTL on Quantum
Markov Chains. We implemented and tested our translation on several
quantum algorithms, including Grover’s quantum search.
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1 Introduction

The specification of algorithms in human readable form and their translation
into machine executable code is one of the main goals of high-level programming
languages. Quantum algorithms and protocols are usually described by quantum
circuits (i.e., circuits involving quantum states and quantum logic gates). Even if
such circuits have a simple mathematical description they could be very difficult
to realise in practice without a deep knowledge of the essential features of the
physical phenomena under consideration. The above reasons justify the need for
tools that permit to abstract from a low-level description of quantum algorithms
and protocols allowing also people that know very little of quantum physics to
program a quantum device.

The introduction of high-level formalisms allows to define and automatically
verify formal properties of algorithms abstracting away from low-level physical
details. Formal techniques are an important tool for the validation and ver-
ification of programs in classical computer science. Experimental verification
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(testing) could be done, but there is no assurance that each possible error is
avoided. With formal verification techniques such as model checking we can test
temporal properties of an algorithm evaluating all possible cases. In the context
of quantum computation, that is based on the counter-intuitive laws of quantum
physics, the possibility of testing quantum protocols is very important. In par-
ticular, protocols for quantum cryptography, that are deeply investigated at the
moment hoping for future applications in the secure transmission of information,
require certifications of correctness.

Although both the quantum computation and verification fields are quite
new, we found two interesting tools: the functional language Quipper [§] and the
model checking system QPMC [I], which we decided to use as a starting point for
the development of a framework providing both a high-level programming style
and formal verification tools. In particular, Quipper is a quantum programming
language based on Haskell that allows to build quantum circuits by describing
them in a simple programming style and provides the possibility to simulate the
circuit. QPMC is a model checker for quantum protocols that uses an extension of
PCTL, a probabilistic temporal logic, to verify properties of quantum protocols.
Quipper has been used to program a set of non-trivial quantum algorithms, it is
supported by a community and provides a high-level programming environment
based on Haskell. Unfortunately Quipper lacks of a built-in formal verification
tool. On the other hand, QPMC supports formal verification but it is based on
a low-level specification language. Hence, we decided to build a bridge between
them, translating Quipper code into the QPMC formalism, thus providing an
ad-hoc verification framework to Quipper programmers.

This is just a first step in the direction of providing a complete programming
framework for quantum computing. As the authors point out in [I], QPMC is
intended for verification of classical properties for which only the measurement
outcomes as well as the probabilities of obtaining them are relevant. Quantum
effects caused by superposition, entanglement, etc., are merely employed to in-
crease the efficiency or security of the protocol. Hence, more sophisticated logical
formalisms allowing to specify/verify quantum effects and more in general re-
versible computation properties should be introduced.

The paper is organized as follows. In Section [2| we recall some basic quan-
tum notations and briefly introduce Quipper and QPMC. In Section [3] we de-
fine an abstract algorithm for translating Quipper circuits int Quantum Markov
Chains, i.e., QPMC models. In Section [4 we describe our implementation of the
translation algorithm. In Seciton [5| we discuss some experimental results on the
verification of Grover’s algorithm and some scalability tests. Section [6] ends the

paper.
2 Preliminaries

2.1 Mathematical Quantum Models

Quantum systems are represented through complex Hilbert spaces. A complex
Hilbert space H is a complete vector space equipped with an inner product in-



Verifying Quantum Programs: From Quipper to QPMC 3

ducing a complete metric space. In particular, we will consider quantum systems
described by finite dimensional Hilbert spaces of the form C2". The elements of
‘H (vectors) are denoted by either ¢ or |¢) (i.e., ket notation). The notation ()|
(i.e., bra notation) denotes the transposed conjugate of |t). The scalar product
of two vectors ¢ and @ in H is denoted by (p|¢), whereas |¢) (1| denotes the
linear operator defined by |p) and (1p|. We use I to denote the identity matrix
and ¢r(-) for the matrix trace.

There are two possible formalisms based on Hilbert spaces for quantum sys-
tems: the state vector formalism and the density matriz one. We briefly intro-
duce both of them, since Quipper is based on state vectors, while QPMC exploits
density matrices.

State Vector Formalism The state of a quantum system is described by
a normalized vector |¢) € H, ie., |||v)]] = /{(¥|¥) = 1. The normalization
condition is related to the probabilistic interpretation of quantum mechanics.

The temporal evolution of a quantum system is described by a unitary oper-
ator (see, e.g., [6]). In particular, a linear operator U is unitary if its conjugate
transpose UT coincides with its inverse U~'. Unitary operators preserve inner
products and, as a consequence, norms of vectors. In absence of any measure-
ment process, the state i) at time tg evolves at time ¢; through the unitary
operator U to the state

1) = U [¢o)

An observable is a property of a physical system that can be measured, i.e.,
a physical quantity such as energy, position, spin. Observables are described by
Hermitian operators (see, e.g., [7]). A linear operator A is Hermitian if A = Af.
Assuming non degeneracy, an Hermitian operator A can be decomposed as

A= "ailei) (il
=1

where the a;’s (Ji;)’s) are the eigenvalues (eigenvectors, respectively) of A. The
eigenvalues of a Hermitian operator are real. Given a system in a state |¢), the
outcome of a measurement of the observable A is one of its eigenvalues a; and
the state vector of the system after the measurement is

(lpa) (il 1)
[ (leaX (i DI

with probability
pla;) = H(|<Pi><<ﬂi|)|1/}>||2 = (Y|(lpi) (i) [¥)

Density Matrix Formalism Here density matrices take the role of state vec-
tors. However, the states described by state vectors on Hilbert spaces are ideal-
ized descriptions that cannot characterize statistical (incoherent) mixtures which
often occur in Nature. Density matrices allow to represent also such mixed states.
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A matrix p is positive if for each vector |¢)) it holds that (¢|p|y)) > 0. The
state of a quantum system is described by an Hermitian, positive matrix p with
tr(p) = 1. Such matrices are called density matrices.

Given a normalized vector [¢) representing the state of a system through the
state vector formalism, the correspondent density matrix is [1)(1)].

Evolutions and measurements of quantum systems are now described by
superoperators [6]. A superoperator is a (linear) function £ : py — p; which
maps a density matrix pg at time ¢y to a density matrix p; at time ¢; > ¢y that
satisfies the following properties: £ preserves hermiticity; £ is trace preserving;
& is completely positive.

Given a unitary operator U the corresponding superoperator SO(U) can be
defined as follows:

SOU)(po) = UpoU'

A quantum measurement is described by a collection {M;} of measurement
operators satisfying the following condition

ZM}Mi =1

7

The index i refers to the possible measurements outcomes. If p is the state before
the measurement, then the result is ¢ and the state after the measurement is

with probability
p(i) = tr(MipM)

Given an observable A = Y"1 a;|¢;){¢;| in the state vector formalism, its
correspondent in the density matrix one is {|p;){w:|}.

2.2 Quipper

Quipper is an embedded functional programming language for quantum com-
putation [3] based on the Knill’'s QRAM model [4] of quantum computation.
This model uses both a classical and a quantum device to perform a quantum
computation. The classical device performs classical computations (control flow,
test, loops) and the quantum computer is a specialised device that is able to
perform only two kinds of instruction: unitary operations and measurements.

Quipper has a collection of data types, combinators, and a library of functions
within Haskell, together with an idiom, i.e., a preferred style of writing embedded
programs [3]. It provides an extended circuit model of quantum computation
which is concerned with qubits and unitary gates and allows also classical wires
(whose state is a classical bit) and gates within a circuit.

Quipper is above all a circuit description language, for this reason it uses
the state vector formalism and its main purpose is to make circuit implementa-
tion easier providing high level operations for circuit manipulation. A Quipper
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program is a function that inputs some quantum and classical data, performs
state changes on it, and then outputs the changed quantum/classical data. This
is encapsulated in a Haskell monad called Circ, which from an abstract point of
view returns a quantum circuit. The philosophy of the Quipper paradigm is that
qubits are held in variables and gates are applied to them one at a time. A set
of predefined gates (e.g., hadarmard, cnot, ...), together with the possibility of
specifying ancilla qubits and controls, are provided.

In this paper we focus on the Circ monad of Quipper, where a sequence of
unitary and measurement gates can be applied to qubits and bits. Quipper allows
to generate a graphical representation and to simulate through three different
simulators a circuit written in the monad. In Figure [1| we show the graphical
representation of a simple quantum circuit in which the Hadamard gate is applied
to one qubit. Such circuit is defined in Quipper through the following code.

oneq :: Qubit -> Circ Qubit
oneq q = do

hadamard_at q

return q

Fig.1: One qubit circuit

2.3 QPMC: Quantum Program/Protocol Model Checker

QPMC is a model checker for quantum programs and protocols based on the
density matrix formalism available in both web-based and off-line version at
http://iscasmc.ios.ac.cn/too/qme. It takes in input programs written in an ex-
tension of the guarded command language PRISM [5] that permits, in addition
to the constants definable in PRISM, the specification of types vector, matrix,
and superoperator. QPMC supports the bra-ket notation and inner, outer and
tensor product can be written using it.

The semantics of a QPMC program is given in terms of superoperator weighted
Markov chain, which is a Markov chain in which the state space is taken clas-
sical, while all quantum effects are encoded in the superoperators labelling the
transitions (see, e.g., [1J2]). Differently from what we defined in Section
QPMC superoperators are not necessarily trace-preserving, they are just com-
pletely positive linear operators. A trace-non-increasing superoperator describes
processes in which extra-information is obtained by measurement. Let S(H) be
the set of superoperators over a Hilbert space H and SZ(H) be the subset of
trace-nonincreasing superoperators. Given a density matrix p representing the
state of a system, & € ST(H) implies that tr(E(p)) € [0, 1]. Hence, it is natural to
regard the set ST(H) as the quantum correspondent of the domain of traditional
probabilities [1].

Let £, F € S(H) we say that ESF if for any quantum state p it holds that
tr(€(p)) < tr(F(p)). A QMC is a discrete time Markov chain, where classical
probabilities are replaced with quantum probabilities.
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Definition 1 (Quantum Markov Chain [21]). A superoperator weighted
Markov chain, also referred to as quantum Markov chain (herein QMC) over a
Hilbert space H is a tuple (S, Q, AP, L), where:

— S is a countable (finite) set of classical states;

— Q:8 xS — SE(H) is called the transition matriz where for each s € S, the
superoperator ZteS Q(s,t) is trace-preserving

— AP is a finite set of atomic propositions

— L:S — 247 s a labelling function

The aim of QPMC is to provide a formal framework where to define and
analyse properties of quantum protocols. The properties to be verified over QMC
are expressed using the quantum computation tree logic (QCTL), a temporal
logic for reasoning about evolution of quantum systems introduced in [2] that is
a natural extension of PCTL.

Definition 2 (Quantum Computation Tree Logic [2/1]). A QCTL for-
mula is a formula over the following grammar:

Pu=al| P |PAND| QD]
6= XD | DUSFP | QU

where a € AP, ~ € {<,2,=}, £ € ST(H), k € N. @ is a state formula, while ¢

~ A~

1s a path formula.

The quantum operator formula Q..[¢] is a more general case of the PCTL
probabilistic operator P, [¢] and it expresses a constraint on the probability that
the paths from a certain state satisfy the formula ¢. Besides the logical operators
presented in QCTL, QPMC supports an extended operator @ =7[¢] to calculate
(the matrix representation of) the superoperator satisfying ¢. Moreover, QPMC
provides a function geval ((Q =7)[¢], p) to compute the density operator obtained
from applying the resultant superoperator on a given density operator p, and

gprob((Q =7)[¢],p) = tr(geval((Q =7)[¢],p))) to calculate the probability of
satisfying ¢, starting from the quantum state p [IJ.

3 From Circuits to Quantum Markov Chains

In order to be able to define a mapping from Quipper to QPMC programs in this
section we work at the semantic level. This means that we consider a quantum
circuit generated by Quipper and we define a correspondent QMC having an
equivalent behavior.

3.1 Circuits

We first need a formal definition of quantum circuits generated from Quipper.
Even though Quipper supports also classical wires, here we focus on circuits over
quantum ones. As in Quipper, we consider only measurements of one qubit at
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a time with respect to the standard computational basis.We assume the reader
to be familiar with the classical notions of graphs and boolean circuits. Given
a node v of a directed graph we use the notation In(v) (Out(v)) to denote the
number of edges incoming (outcoming, respectively) in v. A quantum circuit
is an extension of a boolean circuit in which operation gates are labeled with
unitary operators. When a unitary operator is applied to k& qubits it is necessary
to know in which order the qubits are used for this reason each edge of a quantum
circuit has two integer labels.

Definition 3 (Quantum Circuit). A Quantum Circuit is a directed acyclic
graph (herein DAG) C = (V,E) whose nodes, also called gates, are of types
Qubit (Q), Unitary (U), Measurement (M) and Termination (T) and satisfy the
following conditions:

1. Q gates: each node v of type Qubit is an input node, i.e. In(v) = 0 and
Out(v) = 1;

2. U gates: each node v of type Unitary is labelled with an integer dim(v)
and a square unitary matriz U(v) of complex numbers of dimension gdim(v)
Moreover, it holds that In(v) = Out(v) = dim(v);

3. M gates: each node v of type Measurement is an output node, i.e. In(v) =1
and Out(v) = 0;

4. T gates: each node v of type Termination is an output node, i.e. In(v) =1
and Out(v) = 0.

5. Edges: each edge e € E is labelled with two integers S(e) and T (e) such that:

— for each node u the set of labels T (-) of the edges ingoing inw is {1,...,In(u)};
— for each node u the set of labels S(-) of the edges outgoing from w is
{1,...,0ut(u)}.

A Quantum Clircuit with k nodes of type Qubit is said to have size k.

Ezample 1. Let us consider the following Quipper function implementing Deutsch’s
algorithm.

deutsch :: (Qubit, Qubit) -> Circ Bit
deutsch (ql, q2) = do
hadamard qi
hadamard q2
qnot_at g2 ‘controlled‘ qil
hadamard qi
measure qil

Quipper graphically represents the circuit as shown in Figure [2]

JH
.

[(=][x=]

Fig. 2: Deutsch circuit in Quipper
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Our definition enriches the above representation with labels denoting the

order in which the qubits are used, as depicted in Figure [3]

90)

lq1)

-]

7]

1 IW 1 1 IWI
1 1 1 2 1
1H()

Fig. 3: Deutsch circuit with labels

Definition 4 (Circuit Normal Form). A Quantum Circuit of size k is said
to be in Normal Form if each Unitary node v in the circuit has dim(v) = k.

1
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[qr)
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k 1 :
7]

Fig. 4: Example of a circuit in Normal Form

Definition 5 (Strong Normal Form). A Quantum Circuit C of size k is said
to be in Strong Normal Form (herein SNF) if C is in Normal Form, for each
edge e € E between two Unitary nodes S(e) = T (e) holds and the first h < k
edges outgoing the last Unitary node enter into Measurement nodes.

1

|a1)
1

|g2)
1

|g3)

Uy

Uz

|gx)

h+1 1 -
k 1 @

Fig. 5: Example of a circuit in Strong Normal Form



Verifying Quantum Programs: From Quipper to QPMC 9

A circuit C in SNF is completely specified by the tuple (k,[U;,...,U,], h)
where k is the size of C, Uy, ..., U, are the Unitary operators in the order they
occur in C, and h is the number of Measurement nodes.

In Figure [4] we can see that in a circuit in Normal Form the order of the
labels on the edges is not preserved. This is due to the fact that many gates
require to be applied to a permutation of the input qubits. On the contrary, a
circuit in SNF requires a precise ordering of the input and output edges. We will
see that in order to match this requirement, SWAP operators have to be added.

We now need a notion of equivalence between quantum circuits. This will
allow us to move from a generic quantum circuit to a SNF circuit. Intuitively,
two quantum circuits are equivalent if, for any k-tuple of initial values of the
qubits, the values of the qubits before measurements/terminations are the same.
Moreover, to be equivalent two circuits need to give the same outputs with the
same probabilities. Formally, let C' be a Quantum Circuit of size k we denote by
Sem(C') the pair of functions (F(C), M(C)) where:

— F(C) : H¥ — H* is the function which maps k qubits to the value they
have just before the Measurement and Termination nodes;

— M(O) : HFx{0,1}" — [0, 1] is the function such that M (C)(|¢), (by, ..., b))
is the probability of getting output (by,...,b) € {0,1}" on input |1).

Notice that if C = (k, [U;, ..., U], h) is a SNF circuit, then F(C)(|7)) = Uy, ... Uy|7).

Definition 6 (Quantum Circuit Equivalence).
Given two Quantum Circuits C; and Cy of size k, C1 and Cy are equivalent,
denoted by C1 = Cy if and only if Sem(Cy) = Sem/(Cy).

Lemma 1. Every Quantum Circuit is equivalent to a circuit in Normal Form.

Proof. Let C be a Quantum Circuit of size k. C is a DAG so it admits a topo-
logical ordering of its nodes. Qubit nodes do not have any incoming edge so we
choose an ordering in which the first nodes are all the ones of type Qubit. Mea-
surement and Termination nodes do not have any outgoing edge so we choose
them as final nodes in the ordering. The nodes in between initial and final nodes
are only the one of type Unitary. We will proceed by induction on the number
n of Unitary nodes {Uy,...,Uy,}.

Base case: For n = 1 our circuit has only one Unitary gate. If dim(U;) = k
then the circuit is in Normal Form. _
If dim(Uy) = h < k we replace Uy with the node Uy = U; ® I where dim(I) =
k — h and then we append the remaining k — h edges.

Induction step: If n > 1 by induction we know that we can normalise the
first n — 1 Unitary gates and we proceed as in the base case on the last one. O

Lemma 2. Every Quantum Circuit in Normal Form is equivalent to a circuit
in Strong Normal Form.
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Proof. In order to prove our thesis we need a notion of generalised SWAP gate.
The SWAP gate takes in input two qubits and swaps them, i.e., SWAP|z,y) =
ly, x) A generalised SWAP gate is an operator acting on k qubits that returns
in output a permutation p; of them. It is possible to build such operators by
combining sequentially two-dimensional SWAP gates. Using the definition of
generalised SWAP gates the proof is strightforward. Given a quantum circuit in
Normal Form of size k, we obtain a circuit in SNC by opportunely swapping the
Qubit indexes after the application of a unitary gate. a

3.2 From Strong Normal Form Circuits to QMC’s

We are ready to define the QMC associated to a circuit in SNF. Intuitively, the
states of the QMC correspond to the edges of the circuit, while the edges of the
QMC connect subsequent states. Moreover, states without outgoing edges are
added in the QMC to represent all the possible outputs of the circuit.

Definition 7 (QMC associated to a Circuit). Let C be a Quantum Circuit
in SNF of size k with n Unitary nodes {Uy,...,U,} and h Measurement nodes,
the QMC Q¢ associated to C is defined as follows:

— the k-tuple of edges of C entering the Unitary node U; is associated to the
state s; in Qc¢;

— the k-tuple of edges outgoing from the last Unitary node U, is associated to
the state sp41;

— in Q¢ there are 2" states to,t1,... ton_1;

— for each i € {1,...,n} there is an edge from s; to s;+1 is labelled with the
superoperator SO(U;) associated to the Unitary gate U;;

— for each i € {0,...,2" —1} there is an edge from s, 1 to t; labelled with the
superoperator M; = M! @ I*=" where I*=" is the identity matriz of size
2k=h and Mih is a matriz of size 2" having 1 in the i + 1-th position and all

0’s in the remaining.

In Figure [] we can see the QMC associated to the example circuit shown in
Figure
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Fig.6: QMC associated to the circuit of Figure

Lemma 3. Given a quantum circuit C' in SNF we can always build the QMC
Q¢ associated to C' and it holds that:

1. V|7)eH, Vie{l,...,n},
Uilr) =) iff  SOU)Ir)(r|SOU)T = ) (]

2.¥|1) € H if F(C)(|7)) = [) and M(C)(|7),{b1,...,bn}) = p, with m =
bin(by ...by) (i.e., the natural with binary expansion by ...by) then:

p = tr(Mpn|) (] M],)

and - .
M |O) (| M = |by, .. by Y1y by

Proof. Tt immediately follows from our definitions. a

The above lemma states an equivalence between the semantics of a circuit C' in
SNF and its associated QMC. Thus, any Temporal Logic coherently defined on
both formalisms can be equivalently model checked either on the circuit or on
its associated QMC.

3.3 Translation Algorithm

The results described in the previous sections allow us to define an algorithm
that maps a quantum circuit into an equivalent QMC. In particular, Algorithm
Translate performs the following steps:

— it transforms a quantum circuit into a normal form circuit (see Lemma ;
— it transforms a normal form circuit into a SNF circuit (see Lemma [2));
— it transforms a SNF circuit into its corresponding QMC (see Definition @



12 Linda Anticoli, Carla Piazza, Leonardo Taglialegne, Paolo Zuliani

Hence, given a quantum circuit C the output of Translate(C) is a QMC equivalent
to C in the sense of Lemma 3

The computational complexity of Translate(C) depends on the number n
of Unitary nodes occurring in C' and on its size k. For each Unitary we need
to perform a number of binary swaps which depends on k. Without any effi-
cient strategy in the worst case we could perform ©(k?) binary swaps. Hence,
Translate(C) generates a QMC having O(n * k?) internal nodes. Each of this
step requires the computation of a matrix of size 2¥. However, we can lower the
complexity of the algorithm by directly implementing generalized swaps without
relying on binary ones. Such optimization would generate a QMC having at most
O(n) internal nodes, requiring the computation of O(n) swap matrices.

4 Implementation

In Section [3]we presented an abstract algorithm that translates a quantum circuit
into a QMC. We now describe an implementation of the Translation Algorithm in
which the input quantum circuit is a Quipper function in the Circ monad and the
output QMC is a QPMC model. Our implementation exploits the Transformer
module of Quipper —a library providing functions for defining general purpose
transformations on low-level circuits— and works at data structure level. Using
the Transformer module we can use Quipper’s code, avoiding to implement the
instructions again in an intermediate language.

The actual translation can be summarised in three steps. At first the gates
in the quantum circuit must be grouped together with their associated qubits,
taking care that the execution order is preserved. In this way we have an abstract
representation of both the states and the transitions of the QMC. Then, as a
second step, we calculate the matrix representation of the quantum gates. We
also implemented a set of functions useful to perform operations on matrices
(e.g., the tensor product). It is important to note that, since we need a circuit in
SNF, our code provides a set of functions that generate the required swaps using
compositions of binary swaps. Then our algorithm takes the resulting matrix and
associate it to the gate input qubits, while the identity matrix is associated the
remaining ones. Finally, the qubits are moved back in their original positions. All
the matrices are computed in MATLAB notation. The last step is the conversion
of the list of transitions into QPMC code. All these functions have been written
in order to be kept as polymorphic as possible.

Example 2. Let us consider again the Quipper function for Deutsch Algorithm
presented in Example[I] As we showed, it can be compiled in Quipper generating
the circuit represented in Figure

Our implementation converts Deutsch Quipper code into the QPMC model
below.

qmc

const matrix A1 = [(1 / 2),(1 / 2),(1 / 2),(1 / 2);(1 / 2),(-1 / 2),(1 / 2)
, (-1 / 2);10 /7 2),(0 / 2),(-1 / 2),(-1/ 2);1 / 2),(-1/ 2),(-1 / 2),1
/ 2)1;

const matrix A2 = [1,0,0,0;0,1,0,0;0,0,0,1;0,0,1,0];
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const matrix A3 = [(sqrt(2) / 2),0,(sqrt(2) / 2),0;0,(sqrt(2) / 2),0,(sqrt(2)
/ 2);(sqrt(2) / 2),0,((-1 % sqrt(2)) / 2),0;0,(sqrt(2) / 2),0,((-1 *
sqrt(2)) / 2)1;

const matrix A4 = [1,0,0,0;0,1,0,0;0,0,0,0;0,0,0,0];
const matrix A5 = [0,0,0,0;0,0,0,0;0,0,1,0;0,0,0,1];
module test

s: [0..5] init O0;

[1 (s = 0) -> <<A1>> : (s’ = 1);

[1 (s = 1) -> <<A2>> : (s’ = 2);

[1 (s = 2) -> <<A3>> : (s’ = 3);

[1 (s = 3) => <<A4>> : (s’ = 4) + <<A5>> (s’ = 5);

[1 (s =14) -> (s’ = 4);

[1 (s =5) -> (s’ = 5);

endmodule

Notice that, differently from what we wrote in our definition of QMC asso-
ciated to a circuit, in the implementation we do not distinguish states s;’s from
states t;’s in the generated QPMC model.

Our implementation is available at https://github.com/miniBill/entanglel

5 Experimental Results

We have tested our translation tool with our Quipper implementation of Grover’s
search algorithm [6]. The aim of Grover’s algorithm is that of searching for the
index z of an element in a N-dimensional space with no structure. We assume
N = 2" so that the indexes are represented by n-bit strings. The algorithm
solves the problem by considering a function f : {0,1}" — {0,1} such that
f(z) = 1if and only if the string z is a solution. Classically, this problem can
be solved in O(N) steps while using a quantum oracle it can be probabilistically
solved in O(\W ) steps. Grover exploits quantum parallelism to give to the quan-
tum oracle all the possible input strings at the same time. Then the oracle marks
the strings corresponding to possible solutions. At this point it performs some
steps of amplitude amplification in order to maximize the probability of getting
the desired result after the measurement. The result is the index of the searched
element. The algorithm is probabilistic, because of the amplitude amplification
step. Anyway, for N = 4, after one iteration it behaves in a deterministic way,
giving the right result with probability equal to 1.

For the experiment we decided to use a search space of size N = 4. The
oracle returns the string x = 3, so the state after the measurement will collapse
to |11)|1). The algorithm needs an ancilla qubit that can be easily discarded at
the end of the computation. The Quipper circuit of the algorithm can be seen
in Figure [7]


https://github.com/miniBill/entangle
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Fig. 7: Grover’s algorithm in Quipper

Quipper Implementation At first we implemented the circuit using Quipper
as shown below.

grover :: (Qubit, Qubit, Qubit) -> Circ (Bit, Bit)
grover (q1,92,93) = do

hadamard_at qi

hadamard_at q2

hadamard_at q3

qnot_at g3 ‘controlled‘ [ql, q2]

hadamard_at qi

hadamard_at q2

gate_X_at qil

gate_X_at q2

hadamard_at q2

qnot_at g2 ‘controlled‘ qil

hadamard_at g2

gate_X_at ql

gate_X_at q2

hadamard_at qi

hadamard_at q2

hadamard_at q3

measure (ql1,q2)

The first 3 Hadamard gates are needed to obtain the linear superposition of
the input qubits. The CCNOT gate is the oracle. The remaining gates, but the
last two, implement the amplitude amplification steps. The last Hadamard gate
on the ancilla qubit performs the interference. Finally, the first 2 qubits are
measured.

Translation and Validation Exploiting our implementation we automatically
generate the code for QPMC shown in the Appendix.

According to the calculations we should reach the terminal state si4 with
probability equal to 1, while the other terminal states must have an associated
probability equal to 0. We tested the formulas to evaluate the density matrix
associated to each terminal state with input state |1)(1]| and the results are the
following.
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qeval(Q=? [F (s = 11)1, 11>_8 <1|_8); qeval(Q=? [F (s = 12)], [1>_8 <1|_.8);

cocoooocooo
cocooocooo
cocooocoooo
cocoooooo
cocoooooo
cocoooooo
cooocooooo
cocoooooo
cocooocooo
cocoooooo
cocooocoooo
cocooocoooo
cocoooooo
cocooocoooo
cocooocoooo
cocoooooo

qeval(Q=? [F (s = 13)1, [1>_8 <1]_8); qeval(Q=? [F (s = 14)1, 11>_8 <1|_8);

cocooooooo
cocooocooo
cocooocooo
cooooooo
cocooocooo
cocoooocoooo
cocoooooo
cocoocoocoooo
cocooocoooo
cocooocoooo
cocoooooo
cocooooooo
cocooooooo
cocooooocoo
coooocoooo
mooooooo

It is possible to see that the trace of the first three matrices is equal to 0,
meaning that the probability of reaching those states is null. The density matrix
associated to the last state has trace equal to 1, meaning that the computation
will surely reach that state, validating in this way the expected results. We also
tested formulas to calculate the accumulated superoperators for each state, but
since the resulting matrices have size 26 x 26 we do not report them here. The
results can be found at https://github.com/miniBill/entangle

5.1 Scalability of the swap algorithm

We also decided to perfom some scalability tests on an artificial example which
requires a high number of swaps. Recall that, since we need the circuit to be
translated in SNF, for each Unitary gate we need to perform a number of binary
swaps depending on the number &k of qubits used in the circuit. In this part of
the experiment we focused on the execution time of our implementation, i.e.,
the time required to produce the QPMC model. The circuits given in input
have been choosen to maximize the number of binary swaps required by our
implementation. An example of such circuits of size 7 can be seen in Figure

Fig. 8: Test circuit of size 7


https://github.com/miniBill/entangle

16 Linda Anticoli, Carla Piazza, Leonardo Taglialegne, Paolo Zuliani

We decided to test circuits built using from 3 to 8 qubits. Times are recorded
using the time utility of the Bash shell on an early 2014 MacBook Air with a
1.4 GHz Intel Core i5 processor. For each size of the input, the program has
been executed five times and the mean time has been computed. The results are
shown in Figure [J] We can see that also for a circuit of size 8, when we have to
generate swap matrices of size 28 x 28 our algorithm works in reasonable times.
However, we are working on an improvement of our implementation in which we
directly generate the swap matrices without having to compose binary swaps.

Qubit swap times

[aV)
o
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S 4
L o E—
o 9
E o° —
o o
o T T T T T T
‘_ 3 4 5 6 7 8
# qubit

Fig.9: Scalability test

6 Conclusion

In this work we proposed a framework that performs a translation from Quipper
to QPMC. The main idea is to use this framework to create a tool that allows, on
the one hand, the description of quantum algorithms and protocols in an high-
level programming language, and on the other hand their formal verification.
In doing so we put particular attention in the translation at a semantic level.
Quipper uses the state vector formalism and the quantum circuit model of com-
putation while QPMC uses the density matrix formalism and QMC, allowing
to consider also the measurements in the verification of the algorithms. We im-
plemented and tested our translator on some common quantum algorithms and
the final results validated our expectations. We are working on enrichment and
optimization of our framework in order to match the requirement of validating
complex algorithms and protocols, e.g., the ones involving also a classical control
outside the Circ monad. Moreover, we intend to investigate the specification of
properties involving typical quantum and reversibility effects.
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Appendix

Exploiting our implementation we automatically generate the following code for
QPMC.

qmc
const matrix Al = [(sqrt(2) / 4),(sqrt(2) / 4),(sqrt(2) / 4),(sqrt(2) / 4),(
sqrt (2) / 4),(sqrt(2) / 4),(sqrt(2) / 4),(sqrt(2) / 4);(sqrt(2) / 4),((-1
* sqrt(2)) / 4),(sqrt(2) / 4),((-1 * sqrt(2)) / 4),(sqrt(2) / 4),((-1 *
sqrt (2)) / 4),(sqrt(2) / 4),((-1 * sqrt(2)) / 4);(sqrt(2) / 4),(sqrt(2) /
4) ,((-1 * sqrt(2)) / 4),((-1 * sqrt(2)) / 4),(sqrt(2) / 4),(sqrt(2) / 4)
,((-1 % sqrt(2)) / 4),((-1 % sqrt(2)) / 4);(sqrt(2) / 4),((-1 * sqrt(2))
/ 4),((-1 x sqrt(2)) / 4),(sqrt(2) / 4),(sqrt(2) / 4),((-1 * sqrt(2)) /
4) ,((-1 * sqrt(2)) / 4),(sqrt(2) / 4);(sqrt(2) / 4),(sqrt(2) / 4),(sqrt
(2) / 4),(sqrt(2) / 4),((-1 * sqrt(2)) / 4),((-1 * sqrt(2)) / 4),((-1 *
sqrt(2)) / 4),((-1 *x sqrt(2)) / 4);(sqrt(2) / 4),((-1 * sqrt(2)) / 4),(
sqrt (2) / 4),((-1 * sqrt(2)) / 4),((-1 *x sqrt(2)) / 4),(sqrt(2) / 4),((-1
* sqrt(2)) / 4),(sqrt(2) / 4);(sqrt(2) / 4),(sqrt(2) / 4),((-1 * sqrt(2)
) / 4),((-1 x sqrt(2)) / 4),((-1 * sqrt(2)) / 4),((-1 * sqrt(2)) / 4),(
sqrt (2) / 4),(sqrt(2) / 4);(sqrt(2) / 4),((-1 * sqrt(2)) / 4),((-1 * sqrt
(2)) / 4),(sqrt(2) / 4),((-1 * sqrt(2)) / 4),(sqrt(2) / 4),(sqrt(2) / 4)
,((-1 % sqrt(2)) / 4)1;
const matrix A2 = [1,0,0,0,0,0,0,0;0,1,0,0,0,0,0,0;0,0,1,0,0,0,0,0;
0,0,0,1,0,0,0,0;0,0,0,0,1,0,0,0;0,0,0,0,0,1,0,0;
0,0,0,0,0,0,0,1;0,0,0,0,0,0,1,071;
const matrix A3 = [(sqrt(2) / 4),(sqrt(2) / 4),(sqrt(2) / 4),(sqrt(2) / 4),(
sqrt (2) / 4),(sqrt(2) / 4),(sqrt(2) / 4),(sqrt(2) / 4);(sqrt(2) / 4),((-1
* sqrt(2)) / 4),(sqrt(2) / 4),((-1 * sqrt(2)) / 4),(sqrt(2) / 4),((-1 *
sqrt (2)) / 4),(sqrt(2) / 4),((-1 * sqrt(2)) / 4);(sqrt(2) / 4),(sqrt(2) /
4) ,((-1 % sqrt(2)) / 4),((-1 * sqrt(2)) / 4),(sqrt(2) / 4),(sqrt(2) / 4)
,((-1 % sqrt(2)) / 4),((-1 % sqrt(2)) / 4);(sqrt(2) / 4),((-1 * sqrt(2))
/ 4),((-1 x sqrt(2)) / 4),(sqrt(2) / 4),(sqrt(2) / 4),((-1 * sqrt(2)) /
4) ,((-1 * sqrt(2)) / 4),(sqrt(2) / 4);(sqrt(2) / 4),(sqrt(2) / 4),(sqrt
(2) / 4),(sqrt(2) / 4),((-1 * sqrt(2)) / 4),((-1 * sqrt(2)) / 4),((-1 *
sqrt(2)) / 4),((-1 * sqrt(2)) / 4);(sqrt(2) / 4),((-1 * sqrt(2)) / 4),(
sqrt(2) / 4),((-1 * sqrt(2)) / 4),((-1 *x sqrt(2)) / 4),(sqrt(2) / 4),((-1
* sqrt(2)) / 4),(sqrt(2) / 4);(sqrt(2) / 4),(sqrt(2) / 4),((-1 * sqrt(2)
) / 4),((-1 x sqrt(2)) / 4),((-1 * sqrt(2)) / 4),((-1 * sqrt(2)) / 4),(



18 Linda Anticoli, Carla Piazza, Leonardo Taglialegne, Paolo Zuliani

sqrt (2) / 4),(sqrt(2) / 4);(sqrt(2) / 4),((-1 * sqrt(2)) / 4),((-1 * sqrt
(2)) / 4),(sqrt(2) / 4),((-1 * sqrt(2)) / 4),(sqrt(2) / 4),(sqrt(2) / 4)
,((-1 * sqrt(2)) / 4)1;

const matrix A4 = [0,0,0,0,0,0,1,0;0,0,0,0,0,0,0,1;0,0,0,0,1,0,0,0;
0,0,0,0,0,1,0,0;0,0,1,0,0,0,0,0;0,0,0,1,0,0,0,0;
1,0,0,0,0,0,0,0;0,1,0,0,0,0,0,0];
const matrix A5 = [(sqrt(2) / 2 ,(sqrt(2) / 2),0,0,0,0,0;0,(sqrt(2) / 2)
,0,(sqrt(2) / 2),0,0,0,0;(s

0

(sqrt(2) / 2),0,((-1 *x sqrt(2)) / 2)

,0,0,0,0,0;0,(sqrt(2) / 2),0,((-1 * sqrt(2)) / 2),0,0,0,0;0,0,0,0,(sqrt

(2) / 2),0,(sqrt(2) / 2),0;0,0,0,0,0,(sqrt(2) / 2),0,(sqrt(2) / 2)
;0,0,0,0,(sqrt(2) / 2),0,((-1 * sqrt(2)) / 2),0;0,0,0,0,0,(sqrt(2) / 2)
,0,((-1 * sqrt(2)) / 2)1;

const matrix A6 = [1,0,0,0,0,0,0,0;0,1,0,0,0,0,0,0;0,0,1,0,0,0,0,0;

0,0,0,1,0,0,0,0;0,0,0,0,0,0,1,0;0,0,0,0,0,0,0,1;
0,0,0,0,1,0,0, 0 0,0,0,0,0,1,0,0];
const matrix A7 = [0,0,0,0,(sqrt(2) / 2),0,(sqrt(2) / 2),0;0,0,0,0,0,(sqrt(2)

/ 2),0,(sqrt(2) / 2),0,0,0,0,(sqrt(2) / 2),0,((-1 * sqrt(2)) / 2)
,0;0,0,0,0,0,(sqrt(2) / 2),0,((-1 * sqrt(2)) / 2);(sqrt(2) / 2),0,(sqrt
(2) / 2),0,0,0,0,0;0,(sqrt(2) / 2),0,(sqrt(2) / 2),0,0,0,0;(sqrt(2) / 2)
,0,((-1 % sqrt(2)) / 2),0,0,0,0,0;0,(sqrt(2) / 2),0,((-1 * sqrt(2)) / 2)
,0,0,0,0];

const matrix A8 = [0,0,(sqrt(2) / 2),0,0,0,(sqrt(2) / 2),0;0,0,0,(sqrt(2) /
2),0,0,0,(sqrt(2) / 2);(sqrt(2) / 2),0,0,0,(sqrt(2) / 2),0,0,0;0,(sqrt(2)
/ 2),0,0,0,(sqrt(2) / 2),0,0;0,0,(sqrt(2) / 2),0,0,0,((-1 % sqrt(2)) /
2),0;0,0,0,(sqrt(2) / 2),0,0,0,((-1 * sqrt(2)) / 2);(sqrt(2) / 2)
,0,0,0,((-1 * sqrt(2)) / 2),0,0,0;0,(sqrt(2) / 2),0,0,0,((-1 * sqrt(2)) /
2),0,0];

const matrix A9 = [(sqrt(2) / 2),0,(sqrt(2) / 2),0,0,0,0,0;0,(sqrt(2) / 2)
,0,(sqrt(2) / 2),0,0,0,0;(sqrt(2) / 2),0,((-1 * sqrt(2)) / 2)
,0,0,0,0,0;0,(sqrt(2) / 2),0,((-1 * sqrt(2)) / 2)
,0,0,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0];

const matrix A10 =

fo,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0;0,0,0,0,¢(
sqrt(2) / 2),0,(sqrt(2) / 2),0;0,0,0,0,0,(sqrt(2) / 2),0,(sqrt(2) / 2)
;0,0,0,0,(sqrt(2) / 2),0,((-1 * sqrt(2)) / 2),0;0,0,0,0,0,(sqrt(2) / 2)
,O,((—l * sqrt(2)) / 2)];
const matrix A11 = [1,0,0,0,0,0,0,0;0,1,0,0,0,0,0,0;0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;0,0,0,0,1,0,0,0;0,0,0,0,0,1,0,0;
0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0]1;
const matrix A12 = [0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0;0,0,1,0,0,0,0,0;
0,0,0,1,0,0,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0;
0,0,0,0,0,0,1,0;0,0,0,0,0,0,0,17;
const matrix A13 = [1,0,0,0,0,0,0,0;0,1,0,0,0,0,0,0;0,0,0,0,0,0,0,0;
0,0,0,0,0,0,0,0;0,0,0,0,1,0,0,0;0,0,0,0,0,1,0,0;
0,0,0, 0,0,0,0,0;0,0,0,0,0,0,0,0];
const matrix A14 = [0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0;0,0,1,0,0,0,0,0;
0,0,0,1,0,0,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0;
0,0,0,0,0,0,1,0;0,0,0,0,0,0,0,1];

module test

s: [0..14] init O;

[1 (s = 0) -> <<A1>> : (s’ = 1);
[1 (s = 1) -> <<A2>> : (s’ = 2);
[1 (s = 2) -> <<A3>> : (s’ = 3);
[1 (s = 3) -> <<A4>> : (s’ = 4);
[1 (s = 4) -> <<A5>> : (s’ = 5);
[1 (s = 5) -> <<A6>> : (s’ = 6);
[1 (s = 6) -> <<A7>> : (s’ = T7);

[1 (s = 7) -> <<A8>> : (s’ = 8);

[1 (s = 8) => <<A9>> : (s’ = 9) + <<A10>> : (s’ = 10);

[1 (s =9 -> <<A11>> :(s? = 11) + <<A12>> : (s’ = 12);
[T (s = 10) -> <<A13>> : (s’ = 13) + <<A14>> : (s’ = 14);

[1 (s = 11) =-> (s’ = 11);

[T (s =12) -> (s’ = 12);

[1 (s =13) -> (s’ = 13);

[1 (s = 14) -> (s’ = 14);
endmodule
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