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Zirconium Dioxide (ZrOz). Calculations have been performed using both the Hartree- 

Fock and Kohn-Sham Hamiltonians using a variety of Density Functional schemes 

proposed in the literature, including the LDA, GGA, and the new three-term hybrid 

functional schemes (B3LYP) have been examined in these solid state systems.

We report results obtained from the bulk cubic phase common to both materials, in 

addition to several of the stable ambient pressure ZrO: polymorphs known to exist 

experimentally. The energetics of the cubic-tetragonal Zr02 phase transition have also 

been examined closely, and the correct order of stability of these ambient pressure 

phases was predicted in agreement to both experimental and other recent theoretical 

studies.

Surface calculations were performed in addition to the bulk materials, with work 

concentrating primarily on the two most thermodynamically stable surfaces of the cubic 

phase; {011} and {111}. Calculated properties of these surfaces, including electronic 

and ionic relaxations, and surface energetics were in good agreement to available 

experimental data, similar ab initio calculations and also to a series of interatomic 

potential based calculations which we preformed. The relative stability of these two 

surfaces is in very good agreement to previous calculations and experimental studies.
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Chapter 1 : General Introduction

1 General introduction
This aim of this work is primarily to demonstrate that Hartree-Fock, and DFT, ab 

initio calculations can be performed on the bulk and surfaces systems of the two oxides: 

ceria and zirconia.

These materials are employed in a wide range of commercial applications, where 

they act to catalyse some very important chemical processes, with a potentially far- 

reaching environmental impact. The specifics of some of these applications, including 

automobile exhaust catalytic converters and Solid Oxide Fuel Cells (SOFCs), are 

discussed in greater detail in chapter 3. A detailed understanding about the nature of 

these materials, including both structural and electronic properties, will be of great 

interest to attempts to better understand the functioning of these materials.

At the time this work began, back in 1997, computing resources were much more 

limited than they are today. Previous attempts to examine these materials using quantum 

mechanical methods had shown severe downsides and were forced to make quite 

restrictive choices in order to proceed. The limited stability of the phases studies here 

has also meant that experimental data was quite limited, with the work concentrating 

more on the overall devices, rather than any one material in particular. In more recent 

times, environmental concerns have prompted several groups to rethink this attitude, 

and each day, more and more papers are published on these materials.

The work presented here is aimed at providing more complex studies of these 

materials with a well-understood base from which to begin, the subtleties of the zirconia 

phase stabilities discussed in chapter 5, and the comparison of the cubic phase in the 

two oxides (chapter 4) provide evidence demonstrating the suitability of the optimised 

basis functions to future studies, and draw important parallels between the high quality 

ab initio calculations and interatomic potential (IP) based studies. The latter shall 

remain important until such time as thermal effects (dynamics) may be incorporated into 

quantum mechanical as easily as is possible with many IP molecular dynamics 

programs.

Chapter 2 discusses the theoretical methods used to perform the various calculations 

reported in this thesis, including a general background to quantum theory. Chapter 3 

discusses briefly some of the commercial applications in which ceria and zirconia are
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Chapter 1 : General Introduction

used. The importance of these applications to our everyday lives, and also to the 

environment, is the key driving force which all future studies on these materials rely 

upon, and also helps to provide funding for research such as this reported here.

The remaining chapters discuss some of the results obtained in the course of this 

research, chapter 4 studies only the cubic fluorite structure which is common to both 

ceria and zirconia, and helps to establish the parameters needed in order to perform 

more complex studies in the later chapters. Chapter 5 examines the two non-cubic 

phases of zirconia stable under ambient pressure, the tetragonal and the monoclinic. In 

particular, the energetics and electronic features behind the cubic-tetragonal phase 

transition are examined in much greater detail than previous calculations were able.

Catalytic applications of these materials are very much concerned with the properties 

of material at a surface, the manner by which the oxide is able to interact with exhaust 

gases or act as a support for noble metal depositions are of great interest. Chapter 6 

therefore provides results from an examination of the bare {011} and (111) surfaces of 

these materials, chosen as they are believed to be the two most thermodynamically 

stable surfaces. Chapter 7 provides a final brief summary of some of the more important 

conclusions which can be drawn from the results presented in this thesis.
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Chapter 2: Theoretical Methods

2 Theoretical Methods

2.1 A Personal Introduction to Quantum Mechanics...

Quantum Mechanics (QM) is, undoubtedly, a remarkable breakthrough of the last 

century of scientific research; of comparable importance to Einstein’s theory of general 

relativity. QM represented a fundamental change in the way the world around us is 

considered, and caused many arguments among the greatest minds of the era. QM even 

prompted the man who derived the fundamental equations governing its use to state: “I 

don’t like it, and I’m sorry I ever had anything to do with it!” (Erwin Schrodinger).

One of the central controversies surrounding quantum theory is, quite simply: what is 

light? Isaac Newton suggested, over 300 years ago, that beams of light were actually 

made from individual tiny particles of light. However this ‘corpuscular theory of light’ 

was largely ignored by the majority of scientists in favour of Huygens’ wave theories, in 

which light was considered to be a continuous wave of varying electric and magnetic 

fields. Further work in the 1800s by Young, Fresnel, Maxwell and Hertz appeared to 

finally seal the coffin on Newton’s particle theory forever -  no easy task given Newtons 

formidable reputation. However, even this wave theory was not able to explain some 

experimental observations.

At the same time, the assumption that all matter was constructed from individual 

atoms was being refined in Europe by many, including Boltzmann. He used an atomistic 

picture of gases, and a statistical interpretation of the more traditional laws of 

Newtonian mechanics, to explain many properties observed in gaseous systems. His 

work was not universally accepted, until a paper by (the then unknown) Albert Einstein 

was published in Annalen der Physik in 1905. Einstein actually published three papers 

in this particular issue: one detailing his theory of special relativity,* the second on the

Einstein went on to extend this theory to include non-inertial reference frames into his theory of 

general relativity in 1919
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Chapter 2: Theoretical Methods

interactions which occur between light and electrons, and the final one on Brownian 

motion -  which finally established the existence of atoms beyond any reasonable doubt.

In the early 1900s, the picture of the atom changed almost daily. Work on radioactive 

decay by Rutherford and Geiger established that Thompson’s ‘Christmas pudding’ 

model was clearly wrong -  in order to explain their results from alpha-particle 

scattering, the majority of the atom must be empty space: a pinhead (positively charged) 

nucleus containing most of the mass of the atom orbited by the negatively charged 

electrons like the planets orbit the sun seemed to be the best we could get! The Bohr 

model, as it was known, is still taught in many schools today. This model greatly 

concerned Rutherford: how were the (negative) electrons and the (positive) nucleus kept 

apart and the atom not collapse in upon itself? The answer lay in the way in which light 

interacts with matter.

When an object gets hot, it emits light: as it is heated, a metal rod glows red, then 

yellow, and finally white before melting into a liquid. The hotter the metal becomes, the 

more intense the light it emits, and the shorter the wavelength of that light. Maxwell’s 

earlier work had suggested that this light came from the motion of charge carriers, i.e. 

electrons, which generated electro-magnetic fields given off as visible light. The 

problem was that classical descriptions of how the electrons would move to generate 

those fields, gave a very different picture to that actually observed from the metal rod. 

By analogy to waves on a string,  ̂and the result that the energy of the radiation emitted 

is directly proportional to the frequency of that radiation, the predicted emission 

spectrum from a hot object led to an “ultraviolet catastrophe” — a blackbody should 

produce huge amounts of high frequency (short wavelength) radiation — as there are 

many more combinations of short wavelengths which can ‘fit’ into a given length of 

string than there are long wavelengths! In fact, at higher energies (shorter wavelengths)

The electron had been discovered by J. J. Thompson just seven years earlier at the Cavendish 

Laboratory in Cambridge, who then proposed his “Christmas pudding” model o f  matter -  announced at 

the Royal Institution.

 ̂using a perfect emitter (and absorber) or radiation -  known as a “blackbody”
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the amount of radiation emitted actually falls to zero -  in clear contradiction to the 

classical prediction.*

This concerned one particular German physicist: Max Planck, who spent the end of 

the 19  ̂ century trying to solve it. He finally found a solution in the summer of 1900 

when he applied the equations of statistical mechanics derived by Boltzmann  ̂ to the 

problem -  he split the total energy up into n discrete packets. This process is illustrated 

in figure 2.1, which shows the energy of a particle (£) orbiting a central nucleus versus 

the equilibrium radius (r) of the orbit; the classical (Newtonian) view of energy is 

shown by the solid curve, and our particle may possess any arbitrary

amount of energy it chooses. Plank restricted the amount of energy to just those discrete 

blocks indicated by the crosses, which would restrict the radius of the orbit to a set of 

permitted values, separated by a ‘forbidden band’. This process is known as 

quantisation of the particles energy, with each energy packet called a 'quanta\

* although classical theory was able to explain the low frequency end of the spectra quite comfortably!

 ̂Planck actually spent much o f his life arguing that Boltzmann’s theories were preposterous, as they 

predicted that (statistically) entropy could decrease, but was highly unlikely to do so -  traditional views 

were that entropy must always increase, never decreasing in any circumstances. The competition between 

the two grew so intense that Boltzmann committed suicide (as his career and reputation lay in ruin) just 

before Planck realised that Boltzmann was right all along. In his final publication before his death, 

Boltzmann wrote “I write this in the hope that should my theories be proven correct, not too much work 

will have to be repeated” (Quoted in ""The Historical Development o f  Quantum Theorÿ\ Volume I, page 

16 by Mehra, J. and Rechenberg, H.).

Page 5



Chapter 2; Theoretical Methods

>(

X
X

X
AE

X

Figure 2.1: A comparison of classical (Newtonian) mechanics, the solid curve, to 
Planks quantised energy levels (crosses). The crosses indicate Planks permitted 

energy levels, the solid curve represent the classical energy of an electron in 
‘orbit’ around Bohr’s atom. Transitions between the defined energy levels 

involve absorption or emissions of an energy quanta, having energy AE.

A single quanta has an individual energy which is given by equation (2.1) where h is 

Planck’s constant, 6,62608x10'^'^ Js; n is an integer, 0,1 ,2 ,...; and v is  the frequency o f 

the radiation. Each ‘packet’ was considered using Boltzmann’s statistical mechanics 

theories derived originally for the study o f gases. Mid-way through the derivation Plank 

spotted the end result he was searching for, and simply quoted it as the end result; he 

forgot that (according to classical theories) he needed to re-combine all the discrete 

quanta into the whole by integrating to reform an energy continuum (the original solid 

curve in figure 2.1).

E ~ nhv (2 . 1)

This was a significant breakthrough, and represented a massive change in scientific 

opinion. After more than 300 years, Newton’s corpuscular theory o f light began to raise 

its head once more -  and it fell to Einstein to make the connection.

This simple restriction altered the whole picture o f the atom in a way not even Plank 

could have foretold: now, the electron orbits could only have fixed radii*, and were able

* Bohr calculated the radius of the simplest orbit, that of the isolated hydrogen atom -  a value known 

today as the Bohr radius -(0.5291775Â)

Page 6



Chapter 2: Theoretical Methods

to absorb or emit energy in fixed amounts in order to move between the energy levels -  

a result which explained the appearance of the atomic emission spectra of Hydrogen gas 

and helped such a controversial theorem become widely accepted (after much initial 

resistance) by the scientific community.

2.2 Molecular Orbital Theory

Already in 1905 Planck had theorised that the true nature of light was both 

particulate and wave-like, a concept which was ratified by Einstein shortly after. 

However, it was not until 1926 that a coherent mathematical theory was developed by 

Erwin Schrodinger (1), which explained how this could be so and the consequences of 

it. Central to this theory lays Schrôdinger’s wave equation, the time-independent form 

of which is shown in equation (2.2).

Ûy/ = Ei// (2.2)

In the derivation of equation (2.2), Schrodinger postulated that all information 

regarding each and every particle present in the system (even in a system as large as the 

universe itself!) was contained within a single universal function, which he named the 

“wavefunction”,

Later, Bom suggested a more physical interpretation to T: he stated that the (scalar) 

quantity where 'P* is the complex conjugate of'P, should be interpreted as the

probability that a particle described by 'P was contained within the element of volume, 

dV\ or as it is more commonly known, the charge density - dp  (2). At any point in time, 

the particle must exist somewhere in the system, therefore we can say that the sum of all 

such probabilities must be unity providing that the wavefunction is normalised (see 

later), or more mathematically that:

I '¥"'¥dV = 1 (2.3)

Every experimentally observable quantity is associated with a quantum mechanical 

operator; the mean value of the operator is the average (expectation) value of the 

property. There are operators which determine momentum, dipole moments, energy, 

and every other measurable experimental property. In quantum mechanics, our primary

Page 7



Chapter 2: Theoretical Methods

concern is usually with the energy of a system or particle; the operator which 

determines energies is known more commonly as the Hamiltonian, H , after the 

mathematician Walter Hamilton who was one of the pioneers of the matrix algebra 

fundamental to the solution of Schrôdinger’s wave equation.

The Hamiltonian is given by a summation of all of the independent terms which 

make up the total energy of the system; i.e. a summation of the individual kinetic (T  ) 

and potential energy (V ) operators for every particle considered in Y. The resulting 

operator will be a second order partial differential equation with many variables.*

Because we are primarily concerned with the electronic distribution of a system, and 

as electrons are able to respond almost instantaneously to any changes in the positions 

of the nuclei, then the electrons can be assumed to be considered as being in equilibrium 

with the nuclei at all times, with the nuclei themselves being effectively stationary. This 

is known as the Bom-Oppenheimer approximation (3), and can reduce the complexity 

of the equations quite considerably, since terms involving only nuclear motion can be 

treated separately in the total Hamiltonian, leaving behind the remainder, which is more 

commonly known as the ‘electronic Hamiltonian’, .

The electronic Hamiltonian will contain terms involving the kinetic energy of an 

electron {Te), the electrostatic interaction between the electron and the nuclei, and the 

interactions between multiple electrons. The simplest electronic system which can be 

studied with the Hamiltonian is that of a single, isolated hydrogen atom, containing a 

single proton-electron pair,̂  and is shown in equation (2.4). In this equation: h is 

Planck’s constant, nie is the electron rest mass, gg is the electronic charge, r is the 

electron-proton separation, \f/ is the electronic wavefunction and E is the corresponding 

energy of the system.

* There must be three variables for each particle considered, due to the three independent coordinate 

axes (note we have so far neglected electron spin, which is a fourth variable to be considered!)

 ̂The other special case is that o f a uniform electron gas, but this is not considered here...

Page 8



Chapter 2: Theoretical Methods

* = (2.4)
[ 8;r ^

This equation can be solved by writing ifj as the product of a radial function, R{f)  ̂

and an angular function, & (û ). Applying the method o f separation o f variables to this

equations produces a series of solutions for ij/, and therefore a value for E. The 

eigenfunctions obtained contain four parameters, which alter the physical properties of 

the solutions but can take on a range of values. These parameters are known as the four 

quantum numbers of the hydrogen atom, and are:

• n, the primary quantum number. This can be any positive integer greater than 

zero, and defines the ‘range’ of the solution.*

• /, the angular quantum number. This has values 0..(«-l) and defines the shape

of the orbital.

• mi, the azimuthal quantum number. This has values of 0..±/ and defines the 

directionality of the orbital

spin. This takes on one of two values, ±!6, and allows a single orbital to hold 

up to two electrons without violating the Pauli exclusion principle.

These solutions are the well known “atomic orbitals” (AOs), or more commonly 

known as the s, p, d, and/orbitals of an isolated hydrogen atom. In this case, n defines 

the ‘shell’ the orbital lies in (Is, 2s...); I distinguishes between the s,p , d... orbitals in a 

single shell; and mi identifies the individual px, Py, Pz- ■ ■ orbitals, for example.

In larger systems, containing many nuclei arranged into molecular structures, each 

containing several electrons, complications manifest themselves in two ways: firstly the 

Hamiltonian operator must contain potential energy terms for the interaction between 

two electrons. The presence of these terms makes a separation of variables impossible, 

therefore another mathematical procedure must be used to determine the equilibrium 

wavefunction. A second problem is that there will exist an infinite number of functions

The larger the value o f n, the more diffuse the orbital is in space.
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which are mathematical solutions to equation (2.2), however the majority of them do 

not have properties which we require for a wavefunction. Y must be:

• continuous (and also have a continuous first derivative),

• be single-valued,

• tend to zero at infinity

• be “physically reasonable”

• be anti-symmetric on interchange of any two electrons

These concerns are addressed by use of a “variational” technique in solving the 

Schrodinger equation. This is simply an alternative method of solving a second order 

differential equation, and is as mathematically valid as a separation of variables method 

used previously. The variational approach relies on the result that if a function is a 

solution to equation (2.2) then the derivative of the calculated energy must be zero since 

the solutions correspond to a minimum energy configuration of the electrons. Therefore, 

if a function y/triai can be found which gives little or no change in the calculated energy 

of the system when changed by the infinitesimal amount di{/tnau then {j/triai must be a 

solution to the many-electron Schrodinger equation.

Since a variational technique does not require a separation of variables, the 

functional form which the Hamiltonian operator takes is of lesser importance. In 

addition, it is possible to restrict the functional forms chosen for in the variational 

solution to only those which exhibit the features required for the final solution (save for 

certain adjustable parameters). In so doing, we determine the best approximation to the 

“true” solution that is possible, subject to the restrictions imposed on ij/triai. The more 

degrees of freedom if/triai is allowed to have, then the closer the variational solutions will 

be to the “true” solution, however the computational costs incurred will be significantly 

greater. By imposing no restrictions on we again obtain an infinite number of 

solutions and recover the original problem!

It must be noted that if a function y/triai is found to solve the Schrodinger equation, 

then the function aijJtriai must also be a solution, for any arbitrary value of the scalar
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multiplier a. A variational technique is not able to assign a value to a. Using the Bohr 

postulate mentioned earlier, and a little elementary probability theory, the sum of all 

such probabilities over all space must be unity: a result which can assign a value to a  

via equation (2.5) below. This is a process known as normalisation of the wavefunction.

= l (2.5)

All that remains to be defined now is the many-electron Hamiltonian operator and 

the functional forms of the trial wavefunctions used in the variational procedure. The 

two most common ways used to construct the Hamiltonian operator are that derived by 

Hartree (4-6) and Fock (7), or that derived by Kohn and Sham (8). These operators 

contain identical one-electron terms (i.e. kinetic energy and electron-nuclear 

interactions) but differ in the way in which each incorporates the two-electron terms. 

The form used for the resulting wavefunction is dependent on the computer code used 

in the calculations: the work presented here has been performed using the only 

commercially available periodic Hartree-Fock code — CRYSTAL (9,10) which uses 

Gaussian functions to represent the crystalline wavefunctions and is also capable of 

using both the Hartree-Fock and the Kohn-Sham Hamiltonians with similar functions, 

this will be explained in greater detail in sections 2.3 and 2.4.

2.3 Hartree-Fock Theory

The concepts of Hartree-Fock theory are much simpler to understand when referring 

to molecular systems (in fact, the Hartree-Fock equations were derived for molecular 

studies). The work described in the following chapters of this thesis was performed 

mostly using periodic Hartree-Fock calculations, which are an extension of the 

molecular Hartree-Fock theory to examine periodic systems. These are covered in 

greater detail in section 2.3.3.

2.3.1 Molecular Hartree-Fock Theory (Cluster Methods)

In the majority of quantum mechanical calculations, the primary concern is with the 

chemistry of the system being studied, i.e. the chemical features of the A-electron 

wavefunction of the system, i//. The Schrodinger equation can only be solved for the 

simplest cases of the isolated hydrogen atom, and the uniform electron gas. The most 

notable result from the hydrogen atom is that we obtain a series of eigenstates which
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form the one-electron atomic orbitals denoted as the s, p, d, and/ orbitals (depending on 

their angular properties and energy level) according to the observed spectroscopic 

properties of atomic hydrogen.

In an 7V-electron system, the total wavefunction (Y) may be broken down into a 

product of #  one-electron atomic or molecular orbitals (MOs),* as shown in equation 

(2.6). In the case of molecular systems, the one-electron MOs are in turn often taken to 

be constructed from a Linear Combination of one-electron yftomic Orbitals (the LCAO 

method), denoted by q>i. These q>i often take a functional form of one of the s, p, d, and/  

AOs described earlier fi-om the isolated hydrogen atom; the whole approach therefore 

connects the calculated equilibrium waveftmction for an N  electron system to the more 

conventional chemical description of the individual AOs on each ion. The intermediate 

step, constructing a series of one-electron MOs is analogous to the formations of bonds 

between different species present in the system.

(2.6)
/=!

A = (2-7)
>1

Each atomic solution must be linearly independent (orthogonal) to the others, i.e. the 

atomic orbitals must be mutually orthogonal, and also each molecular solution 

constructed be linearly independent to all others as well.

The atomic and molecular orbitals described so far are purely spatial orbitals. Results 

from the isolated hydrogen atom indicate that electrons possesses a fourth degree of 

freedom known as the ‘spin’. The Pauli Exclusion principle (11) states that no two 

electrons may possess identical sets of four quantum numbers, i.e. a spatial AO/MO can 

hold more than one electron provided that they have different spins, one ‘spin-up’ 

{Ui = T), and one ‘spin-down’ {fti = J<).

* Each molecular orbital is one possible solution to the chosen Hamiltonian
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A more common representation of the molecular orbitals is to consider instead so- 

called spin orbitals te): an electron spin orbital is a combination of the (spatial) 

molecular orbital the electron is within, and the spin the electron has. This procedure 

creates two distinct spin molecular orbitals from each spatial molecular orbital, if we 

have 2n electrons present, then we must also have 2n spin orbitals: xi ^ Z2 = P<l>i-

The wavefunction must also obey the anti-symmetry principle * any interchange of 

two electrons causes the sign of the wavefunction to reverse (but does not alter its 

magnitude). If we consider for a moment, a two electron system with electron A in spin 

orbital and electron B in spin orbital then the total wavefunction of the

system, Y(rA,rB) = %KrA);̂ {rB), is clearly not anti-symmetric, since if we interchange 

electrons A and B:

^(fA ,rB ) =  Z/(rA)Zy<rB) '^(rB,rA) =  Xi(rB)Xj{i'A)

^(rA,rfi) ^ -'P(rB,rA)

However, if instead we set Y(rA,rB) = XiM xA^b) - Xi(^B)Zj(^A), and interchange the 

two electrons:

'ï'(rA,rB) = zM zA^b) - Zi{^B)Zj{rA) ^(rB,fA) = Zi^B)Zji^A) - zM Z ji^B )

^ (fA ,rB ) =  -^ (rB ,rA )

As the number of electrons in a system grows, the complexity of this wavefunction 

will increase dramatically. To simplify the notation, we can represent this wavefunction 

by the determinant of the 2x2 matrix:^

This feature arises because electrons are identical fermion particles -  any interchange o f any two 

electrons must cause a change in sign o f  the wavefunction. This property is common to all particles which 

obey Fermi-Dirac statistics.

 ̂ A determinant representation is used since an interchange o f two rows in a determinant does not 

change the value o f the determinant, only its sign.
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(̂ A, fg) = Z, (̂ A ) %, (fs) -  Z, )

^ Z. K )  Z j ( r J  
Z k )  z / f a )

(2.8)

For the more general case of the ^-electron wavefunction, we use the determinant of 

the nxn matrix shown below. This construction ensures that the wavefunction is always 

anti-symmetric, due to the very nature of matrix arithmetic, and is known more 

commonly as a Slater determinant (12,13).*

X M ) Xzir,) ■■■ Z«(r,) 
Z ,W  Ẑ Ĉ j) ••• Xn M

XiM Xi{r,d -  Za-Ĉ n)

(2.9)

Now that we have a mathematical relationship describing the formation of the one- 

electron molecular orbitals from the provided atomic orbitals, we can begin to calculate 

the energy of the interactions between two of these orbitals, defined in equation (2.10)), 

and for computational efficiency is generally represented by an nxn matrix, Hy.

(2 .10)

The primary problem in solving the Schrodinger equation in a multi-electron system 

is the presence of electron-electron interactions. The Heisenberg uncertainty principle 

(14) tells us that we can never know exactly the precise location of an electron, at the 

same time as its velocity; in order to sum the kinetic energies of the electron we 

therefore lose all information regarding the position of the electron at that instant. The 

same is true in reverse. To overcome the problem, Hartree-Fock theory uses what is 

known as a mean field theory, rather than considering the electrostatic interactions 

between two individual electrons at a moment in time, we instead examine the extent of

The Slater determinant will also have a normalising constant pre-multiplying the determinant, which 

has been omitted here for simplicity. This normalising constant is equal to ( # ! )
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the interaction between a particular electron and an averaged potential field created by 

the remaining electrons.

To achieve this, we construct a Hamiltonian-like operator, called the Fock operator 

F , which contains only one-electron terms which can be readily calculated. F can be 

represented by an n^n matrix, just as the Hamiltonian can be. The elements of the Fock 

matrix, Fÿ, are defined by the set of n differential equations formed from the 

Schrodinger-like equation shown in equation (2.11).

F i¥,='^Eii¥j (2.11)
M

The Hamiltonian operator is also reduced to the summation of two separate 

operators: one containing all terms involving only a single electron, Hj (e.g. electron- 

nucleus potential energy, kinetic energy), the other containing all terms including two 

electrons, Ĥ  (e.g. electron-electron potential energy, etc) where H s  = Hj + .

The total energy of the system (with total wavefunction 'P) is then given by:

HTOT H ,'P )+  (2.12)

It can be shown that in the expansion of the right hand side of the above equation, 

many of the cross-terms vanish with the end result being that each component can be 

written as:

;=1

= + (2,14)
I J * ,

Page 15



Chapter 2: Theoretical Methods

where:

H „=\[ii^:{\)n ,w ,{\)]dV , (2.15)

4  = dV,dV̂ =Y,{vW) (216)
12 J J kl

\

= Z |  1 V'’ i W k (2) -  W , (2) W f ,  '£{il\k j)  (2,17)
w V V 12y J kl

The operator J , called the Coulomb operator, can be represented by a nxn matrix

(with elements Jij), while K is the Exchange operator, represented by a matrix with 

elements K̂ . The equations for these operators can be simplified so that the total energy 

of the system is given by:

+ (218 )
• i j

It is useful at this point to mention that we can define a one-electron orbital energy to

be:

+ (2.19)
J

where E, represents the energy of an electron described by the molecular orbital ii/j 

interacting with the bare nucleus, as well as the average potential field due to the 

remaining { 2 n - \ )  electrons/ This definition further simplifies the expression for the 

total energy of the system to become:

= 2 ( E ,  + H, )^  2^ E , - Ë Z ( 2 y ,  -  K„) (2.20)
J=1 <=] /=1 _/=l

Often, this is instead the potential field due to all electrons present in the system -  the potential due 

to the considered electron itself is later subtracted by one o f several available schemes, although for the 

purpose o f this discussion I shall ignore this effect.
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The Hartree-Fock, Schrodinger-like differential equation follows directly from the 

above results if  we define the elements of the Fock matrix as + ^  .(2J^ “ •

The various terms in this operator can be better understood if we examine the physical 

forces they represent:

• Hi — This operator contains all of the one-electron terms present in the 

Hamiltonian: including the kinetic energy and the interaction between an 

electron and the nucleus.

• Jii (= AT,/) — The operator to determine the energy for the Coulomb interaction 

between the two electrons in the molecular orbital ^  (one has spin a, the other 

has spin p)

• Jij — The operator to determine the energy for the Coulomb interaction between 

the electron in molecular orbital and the electron in molecular orbital

• Kij — The operator to determine the exchange energy between the two electrons 

in molecular orbitals ij/i and ij/j. This is an energy which arises due to the Pauli 

exclusion principle and acts to stabilise the spatial separation of two electrons 

which have the same spin.

Each of these integral terms must be evaluated and then used in the determination of

the ground state wavefunction. Since the computational procedure employed used a

variational approach to determine the ground state molecular wavefunction, which is 

described using an LCAO scheme, then all that remains to be done is to determine the 

values of the coefficients in equation (2.7), which is achieved by means of the 

Roothaan-Hall equation (15-17), shown in equation (2.21)):

FC = SCE (2.21)

S,j=j{v/iV^j)dK (2.22)

In equation (2.21), F is the Fock operator, represented by an nxn matrix (F) with 

elements Fy = F E a diagonal matrix with elements that are the one-electron

orbital energies, E, (= Eu) defined in equation (2.19); S is a matrix of elements which are
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the overlap integrals between two different one-electron orbitals as defined in equation

(2.22); and C is a matrix of the coefficients, Q. This equation can be reduced to the 

form of a standard eigenvalue equation, which can then be solved using an iterative 

approach; a trial solution for C allows us to determine a trial solution for the Fock 

matrix, which can then be used to determine a better estimate for C, followed by a better 

estimate for F, and so on. There will come a point when our solution for C gives a Fock 

matrix which returns the same coefficient matrix again (within a certain tolerance). The 

system at this point is said to be self-consistent, since the electron distribution is 

consistent with the potential field which it creates. This iterative process is more 

commonly known as the Self-Consistent Field (SCF) procedure.

2.3.2 Basis Sets

A basis set is simply the set of functions which is used to describe the space that the 

wavefunction exists in. They are effectively a set of “building blocks” from which we 

can describe the complex features of the atomic orbitals, the calculated molecular 

orbitals, and the total wavefunction itself.

Ideally, an atomic basis set would be constructed from an infinite set of (orthogonal) 

functions, alloying it to represent exactly the electronic configuration of any “real 

world” system defined in the same space that the basis functions describe. However, 

instead we need to approximate this ideal basis v^th a finite number of functions; the 

size chosen by balancing several key factors including:

(1) the accuracy required of the calculations,

(2) the functional form used in the basis,

(3) available computational resources,

(4) the property being examined,* and

(5) the nature of the system under study.

For example, calculation of dipole moments requires extensive polarisation functions to be included 

in the basis set, while a geometry optimisation o f the same structure may not.
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Generally, unless there are overriding concerns, the functional form used for the 

atomic basis is chosen to best suit the system under study; the challenge lies in 

balancing the accuracy required of the calculations with the resources available (known 

as the ‘cost’ of the calculations). An extensive basis set containing a great many 

fiinctions would provide very accurate results, but would also require a substantial 

amount of time and space to provide them!

Now that we have established a framework for solving the Schrodinger equation in a 

many-electron problem, all that remains is to define the set of one-electron atomic 

orbitals, to be used in the calculations -  i.e. the “basis set”.

It is generally accepted that the solutions derived by Slater as the exact solutions for 

the hydrogen atom (16,17) are of the best type, and are known as Slater-Type Orbitals 

(STO). A STO has the form illustrated in equation (2.23), with the variables Ai and or,, 

however it is found that if such a function is used to represent an atomic orbital then 

many of the integrals which we need to calculate become impossible to perform 

analytically, only numerically. In addition, overlap integrals involving atomic orbitals 

centred on different atoms become very costly to evaluate.

To simplify the mathematics, a series of N  Gaussian functions, called a Gaussian 

contraction, is used to form a Gaussian-Type Orbital (GTO) which best approximates 

the STO, shown in equation (2.24)) with variables By and Py.

(2.23)

(2.24)

Gaussian functions have the advantage that integrals involving the atomic orbitals 

can be calculated analytically, however due to the difference between the shape of a 

Gaussian and a STO we need to consider more Gaussian’s than we would STOs. GTOs 

do have certain problems associated with them, the most obvious is the fact that a GTO 

tends to the value of By at the origin while a STO tends to A[ (known as a “cusp”). In 

addition, a GTO also tends to zero much faster than a STO does. This is rarely a 

problem in practice, however: the chemistry of a particular system is dictated by the 

valence electrons, which are adequately described by GTOs.
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The standard nomenclature for a GTO is to label the basis set as “STO-«G”, where n 

is the number of Gaussian functions used in the contraction to represent the STO (the 

same as the value of N  in equation (2.24)). If the chosen representation contains only 

enough orbitals to accommodate the total number of electrons on the atom, the basis set 

is said to be ^^minimar; for example, a minimal basis set for hydrogen or helium 

contains only the U orbital, while for lithium it would contain the I5  and 2s orbitals. 

Minimal basis sets are quick and simple to perform calculation on. However, they do 

have one major inadequacy: atoms at the end of a row (in the periodic table) have the 

same number of basis functions as those at the start of the row, despite the fact that they 

have more electrons. This feature leads to a large anti-symmetry in the basis set, and is 

especially problematic when studying oxygen or fluorine-containing compounds with 

minimal basis sets.

These problems can be overcome by using more sophisticated, and complex, basis 

sets. The simplest approach is to increase the number of Gaussian contractions used to 

describe each orbital. A basis set using two contractions is called a “double-zeta” basis 

set, and the same applies to triple-zeta basis sets.* The innermost Gaussian contraction 

is termed the “contracted” function, while the outermost is termed the “diffuse” 

function. The overall orbital is a linear combination of the two functions.

The problem with using such a basis set is that it can quickly become rather 

expensive, which may be counteracted by representing the valence orbitals by double- 

zeta basis functions and leaving the core orbitals represented by a single Gaussian 

contraction. This procedure generally works quite well since it is only the valence 

electrons which are involved in the chemical description of the system, and therefore 

need to be described most accurately. Such a basis set is said to be of a '"split-valence 

double-zeta'" quality, and is represented in the form j-klG  — where j  is the number of 

Gaussian contractions used to represent the core orbitals (one for each orbital), k is the 

number of Gaussian’s used to represent the contracted valence orbitals and I is the

These terms are really only applicable to molecular studies, in periodic codes such as CRYSTAL the 

basis set usually only have a “double-zeta quality”. In practice, the basis functions o f neighbouring ions 

complement each ions basis set so that triple-zeta (or higher) basis functions are rarely necessary.
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number used to represent the diffuse valence orbitals. One other important extension 

which can be made to the basis set is to include polarisation functions, which are 

orbitals that have an angular quantum number one larger than the outermost valence 

orbitals (i.e. p  orbitals for hydrogen, or d  orbitals for the heavier elements).

Another very effective simplification which we can make is to remove the core 

electrons from the basis set completely, and instead represent their interaction with the 

outer valence electrons by an averaged potential field surrounding the nucleus, known 

as an Effective Core Potential (ECP). This assumption generally works well since the 

core electrons are not involved in the chemical bonding of the system and can greatly 

reduce the cost of the calculations. There are two types of ECP available: a small-core 

ECP and a large-core ECP. Small-core ECPs are preferable since they leave more 

electrons for explicit study in the calculations and therefore recreate the chemistry of the 

system well, but for very expensive calculations a large-core ECP may have to be used. 

A large-core ECP describes all electrons up to the noble gas before the ion under 

consideration by the potential field. For example, in zirconium, a large-core ECP 

describes all electrons up to Kr while a small-core ECP describes electrons up to Ar.

2.3.3 The Pseudopotential Approximation

It is important to realise that different expressions for the basis functions can be 

implemented in the same QM code. It is, in fact, even possible to combine multiple 

functional forms of the basis functions to exploit the benefits of each. For example, 

plane waves are suited to describe highly delocalised electronic systems, but are unable 

to adequately represent the more localised regions of electron density which surround 

the nucleus of an ion. In this case, an accurate description would require several million 

functions, at great computational cost. To counteract this difficulty, atom centred 

functions can be included in the basis to represent the core regions of an ion, while 

plane waves are used to cover inter-ionic regions where electrons are delocalised 

(subject to the constraint that the electron density be continuous across the boundary 

between the two functional forms). This is illustrated in figure 2.2

A split-valence triple-zeta basis set would have the form j-klmG
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atom-centred 
J pseudopotential

— ions

—  valence basis 
set

Figure 2.2; This figure illustrates how the pseudopotential approximation 
works. The use of a potential field localised around the nucleus allows core 

electrons to be represented separately to the valence basis functions. A similar 
technique is used in Linear Augmented Plane-wave (LAPW) calculations to 

represent core electrons differently to valence electrons.

If a system contains heavy ions, it is well known that one simple way to dramatically 

reduce the cost of the calculations is to use the ‘pseudopotential (PP) approximation’. In 

a study of catalysis, we are primarily concerned with the chemistry of the system, which 

depends mostly upon the valence electrons; electrons lying deep in core states are 

generally unimportant and, particularly on heavy ions, constitute a significant 

proportion of the total number of electrons present in a system. For this reason they are 

usually not included explicitly in ab initio calculations. Instead a potential field 

surrounding the nucleus of the ion is used, which is designed to represent the 

electrostatic repulsion effect the core electrons would exert on their outer neighbours 

and thereby reduce significantly the overall cost of the calculation without sacrificing 

the chemical description of the material This potential field is known as a 

pseudopotential (PP), or alternatively as an Effective Core Pseudopotential (ECP).

In the work described in this thesis, we chose to use the Hay and Wadt small-core 

pseudopotentials, as they have been successfully used in similar studies of metal oxides 

(18,19), and are available for both Ce and Zr ions. Equation (2.25) shows how the 

electrostatic potential energy (IFpp) is calculated for the Hay and Wadt family of 

pseudopotentials; in which Zm is the effective nuclear charge (the actual nuclear charge 

minus the number of electrons which the pseudopotential represents). Pi is an operator 

connected to the angular quantum number of the orbitals replaced; M, %, «w, Q/,

and ocki are the atomic pseudopotential parameters which define the pseudopotential.

(  M

1 +
r  3

E
~M,

Pi
V t- J \k=l // ^  1=0 Lfc=i J y

(2.25)
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2.3.4 Periodic Hartree-Fock

Until now we have examined only molecular systems. There are, however, a great 

many systems which are not molecular in nature, the most obvious being crystalline 

lattices that are periodic in three dimensions, or surface structures with two-dimensional 

periodicity.

The description of Hartree-Fock theory given so far is applicable only to molecular 

systems. For this reason, molecular Hartree-Fock theory was extended to include also 

crystalline materials, and is implemented in the QM code CRYSTAL (9,10).

Periodic Hartree-Fock theory is identical to the molecular case in many ways, with 

only a few subtle differences, the greatest one between the two techniques is the 

functional form which the atomic orbitals assume: in the periodic scheme the atomic 

orbitals are actually Bloch functions, (pj r̂), shown in equation (2.26) where the sum 

over g indicates a summation over all reciprocal lattice vectors, while the atom centred 

atomic orbitals (pj r̂) are a series of Gaussian contractions as in the molecular case. A 

Bloch function is simply a representation of the basis set in reciprocal space, and this 

function has the same periodicity as the ciystal lattice; these features mean that by using 

Bloch functions to solve the Hartree-Fock equations we are able to fully exploit all 

translational symmetry operation present in the system.

(2.27)

The resulting crystalline spin orbitals, %/(r,k), see equation (2.27), are the periodic 

equivalent of the molecular orbitals in molecular Hartree-Fock theory, and are again 

formed using a LCAO approach (although this time the atomic orbitals, (o(r,k), are 

replaced by the Bloch functions of equation (2.26)). The coefficients of the 

crystalline orbitals are again calculated through the Roothaan-Hall equation (15-17).

The Roothaan-Hall equations are solved self-consistently, as they were in the 

molecular scheme. These equations would ideally be solved at every allowed A-point in 

the first Brillouin zone, as a different solution is obtained from every A:-point; in 

practice, however, reciprocal space is sampled by a finite grid of A:-points with the
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solution at intermediate points being determined by extrapolation of solutions 

calculated. The first Brillouin zone is the irreducible portion of reciprocal space; a grid 

of X:-points is generated which spans the whole volume of the irreducible zone. Each 

point is represented by a unique k-vector, and these points are weighted according to the 

Pack-Monkhorst scheme (20); the Roothaan-Hall equations are then solved at each 

^-point so that the shape of the bands across the whole Brillouin zone can be determined 

(which is not a concern in molecular studies).

2.4 Density Functional Theory

Density functional theory (DPT) is an alternative approach for constructing the 

Hamiltonian used in solving the Schrodinger equation for many-electron systems. The 

primary difference between DFT and Hartree-Fock theory is the way in which exchange 

and correlation energies are determined; Hartree-Fock derives an exact expression for 

the exchange operator while totally neglecting the correlation contribution. DFT 

schemes, on the other hand, use approximate expressions for both exchange and 

correlation operators. This technique is coded into a great many computational 

programs, and is often the technique of choice in many studies. However, since the 

component energy terms are only approximate there will always be doubt regarding the 

quality of the results: the exchange energy may be calculated accurately while the 

correlation may be much less so, or vice versa. In some cases, it is found that a 

fortuitous cancellation of errors occurs in DFT, with errors in the exchange energy 

being cancelled out by errors in the correlation energy, leading to calculated results that 

are on a par with experiment.

The first implementations of DFT used a “Local Density Approximation” (LDA): the 

functionals used to calculate the exchange and correlation energies were functions of the 

local electron density only. These functionals are derived mathematically from the case 

of a uniform-electron gas — an infinite system containing electrons of uniform charge 

density p. In a crystalline system, the irreducible cell is divided into a grid of points and 

the charge density determined at each point; the exchange and correlation energies can 

then be calculated by comparison to this free-electron gas model and then summed over 

all points considered in order to determine a “total energy”. LDA schemes generally 

underestimate the experimental lattice parameter by -2%, and the band gap by as much
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as 50%. In this thesis, the LDA functionals proposed by Perdew and Zunger (21-24) 

were employed.

To improve the agreement of LDA calculations to experiment, the functionals 

employed were made more complex: in particular the exchange and correlation 

functionals were assumed to be functions of both the local charge density and the local 

charge density gradient. New and improved functionals were derived in this way and are 

called a “Generalised Gradient Approximation” (GGA). Their application to solid-state 

systems can either underestimate or overestimate experimental observables depending 

upon the system under study, and the exact fimctional chosen -  the GGA calculations 

performed in this thesis used the Perdew-Wang functionals (22-25).

2.5 Problems with Hartree-Fock Theory

In Hartree-Fock theory, the total wavefunction of a particular system (T) is 

represented by the product of 7/ one-electron molecular orbitals (equation (2.6)). In 

equation (2.7) we saw further that each of these N  molecular orbitals was to be 

represented using a linear combination of one-electron atomic orbitals (ç).

When Hartree-Fock theory is implemented into a computational code, we provide a 

basis set of atomic orbitals and calculate from this a series of one-electron molecular 

orbitals. Rather than calculating a set of molecular (crystalline) functions from which 

the total wavefunction is represented (by equation (2.6)), instead we simple take the 

single solution which provides a system of minimum energy, and discard all others.

This approach is known as a single-determinant solution, because we have calculated 

a single set of possible eigenstates (of the Hamiltonian matrix) to provide a single 

solution of minimum energy.

An additional problem is the total elimination of the energy contribution due to 

electron correlation: the mean field approximation used in Hartree-Fock theory 

considers each electron moving in the average potential field created by the other 

electrons. Electron correlation arises because the motion of a particular electron is 

dependent on the relative motions of the other electrons at any moment in time. The 

slightest change in the direction (say) of one electron causes the motions of all the other
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electrons to adapt. With a mean-field approximation, these effects cannot be 

incorporated into our description of the system.

Hartree-Fock theory does, however, provide an exact expression for the exchange 

energy, at the cost of totally removing the correlation energy. Density functional 

schemes operate in a slightly different way, by providing analytic expressions based on 

the total electron density. These expressions can be derived from the uniform-electron 

gas model and are able to include approximate correlation energies, in addition to the 

approximate exchange energy. In general, the exchange energy is larger than the 

correlation energies by an order of magnitude, so often the Hartree-Fock approach is 

perfectly adequate (especially in systems where electron correlation effects are low).

Correlation acts as a binding energy, i.e. it must be subtracted from the exchange 

energy and will be larger for more compacted systems. Inclusion of correlation effects 

into Hartree-Fock calculations, either a posteriori or self-consistently, cause a reduction 

in the pure Hartree-Fock minimum energy lattice parameters, band gaps, and a 

corresponding increase in the elastic constants.

2.6 Hybrid HF-DFT Schemes

HF and DFT calculations often provide errors in opposite directions when compared 

to experimental data : when one scheme overestimates, the other often underestimates. 

An obvious way of improving the accuracy of the calculations is therefore to combine 

the HF and DFT components into the same Hamiltonian,

We can achieve this goal in one of two ways: either Hartree-Fock calculations can be 

complemented a posteriori using a correlation-only density functional on the Hartree- 

Fock equilibrium charge density, to calculate an approximate value of the electron 

correlation energy. Since this estimate for correlation is added a posteriori, then the HF 

electron density is unable to adapt to the inclusion of the correlation effect -  resulting in 

the modified results overestimating the “rigidity” of the system to external 

perturbations. Often the pure Hartree-Fock results are preferable to those corrected 

a posteriori, since we are certain where our deficiency lies.

An alternative that is currently becoming increasingly popular is to employ a mixed 

Hartree-Fock and Density Functional exchange Hamiltonian. Much of the early work
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was done in molecular studies by Becke et a l (26-28) who developed the B3LYP 

hybrid scheme using the Lee-Yang-Parr correlation functional (29). Hybrid methods 

calculate the exchange energy as a combination of the Hartree-Fock exchange and a 

chosen DFT exchange functional, and then add in the appropriate DFT correlation 

functional. Such schemes commonly produce results midway between the DFT and 

Hartree-Fock results, as we should expect, but they are capable of reproducing the 

experimental band structure much more accurately than either Hartree-Fock or pure 

DFT calculations are capable of; they also have the added advantage that the exchange 

energy is determined more accurately by using a proportion of the exact Hartree-Fock 

value. In this work we have begun to examine the performance of the new B3LYP 

scheme in zirconia, one of the first applications of the method to the solid-state.

2.7 Geometry Optimisation

The geometiy of the materials examined in this thesis were optimised to a state of 

minimum total energy when calculating equilibrium properties. The primary QM code 

used in this research (CRYSTAL) permits calculation of the total internal energy (E) of 

a given system, but it does not currently calculate forces acting on individual species 

present.* All geometry optimisations must therefore be performed numerically, using a 

conjugate gradient, or steepest descent approach.

An initial reference geometry is defined for the system and the total internal energy 

for that configuration, is calculated (with a single-point calculation). Next, every 

movable atom is displaced in turn, by a small amount dx along each crystallographic 

axis in sequence while the other atoms remain fixed in their reference positions. The 

total energy of the system is calculated at each step from a series of single-point 

calculations to provide the two energies Ei{x^+dx) and Ei{x^-dx\ for every degree of 

freedom, as shown in figure 2.3.

The total force on an atom is given by ~  ~ ^ ^ / d x  are the
i \ ^

independent coordinate axes).
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Figure 2.3: Schematic of the energy changes which occur during a numerical
geometry optimisation.

These individual energy gradients can be combined to form a total energy gradient 

for the optimisation as a whole, G. All degrees of freedom are then relaxed 

simultaneously by a displacement vector, d, along the combined energy surface 

constructed from the energy gradient G. Once a minimum energy configuration is 

obtained, the ion configuration forms a new reference geometry, with energy fJ .

As the optimisation progresses, the displacement vector d is carried through to the 

next optimisation step, a process which can greatly reduce the number of optimisation 

steps needed to reach the optimised geometry. As the geometry reaches its optimal 

configuration, the energy difference between consecutive cycles slowly decreases: the 

accuracy of the individual single point calculations is dynamically increased to ensure it 

remained at least two orders of magnitude higher than this difference at all times.

After k cycles have completed, the value of Ff-F̂ '̂  will eventually drop below a 

given threshold (which was taken to be 10"̂  Ha in the current series of calculations, or 

10'̂  Ha for higher tolerance calculations), or each component of G becomes smaller 

than 10’̂  Ha/À. At this point, the optimisation was considered to have converged, and 

the configuration of step k is taken as the optimal geometry of the system under study.

This method of geometry optimisation is a ‘conjugate gradient’ approach, which is 

an improvement to a standard ‘steepest descent’ method. The primary difference 

between the two schemes is that a steepest descent approach does not account for
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previous knowledge obtained about the profile of the energy surface: for every step 

taken, the direction chosen depends only on the energy gradients surrounding that point 

-  the direction taken being that which has the steepest gradient.

In contrast, a conjugate gradient method uses information found from previous steps 

to reduce greatly the number of future optimisation steps and reduce the inherent “back­

tracking” that a steepest-descent approach involves. The idea is to let each search 

direction be dependent of all other directions searched previously to find the minimum, 

so that the system is able to converge to a minimum much faster than would be 

achieved by simply taking the steepest gradient at each step.

The use of this process, although expensive in comparison to internal force-based 

optimisations, is remarkably powerful and provides optimised configurations in good 

agreement with experiment.

2.8 Interatomic Potential Methods

Interatomic potential (IP) based studies describe the nature of the bonding between 

two ions via a simple expression. There are many different forms this expression can 

assume, in the present work the Buckingham form was used: shown in equation (2.28) 

where refers to the energy of the two body interaction between ion i and ion j.

= (2.28)&

The Buckingham model can be used in connection with the ŝhelV model, in which 

ions are constructed of two components: a central point nucleus -  containing the entire 

mass of the atom {mn) and having charge surrounded by a mass-less shell with 

charge T; the total charge on the ion being X+Y. The shell is then connected to the core 

by a spring, with force constant k. The use of a shell model allows the interatomic 

potentials to attempt to represent the polarisability of the ion, the (negative) shell can 

move separately from the (positive) core, permitting the ion to possess an overall dipole 

moment which a non-shell model is not able to do. lon-ion interactions are modelled 

through the interaction of shells on neighbouring ions through the Buckingham 

equation.
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Figure 2.4: The shell model of an atom. The meaning of the symbols is given in
the text.

The ions in the structure are then relaxed at constant pressure, to allow the bulk unit 

cell dimensions to change, to minimise all internal forces between the ions. The energy 

of the minimised configuration is then easily calculated. The low cost of IP calculations 

makes them ideal for studying complex systems with low symmetry, such as supercell 

defect clusters, or low index surface structures. In addition, kinetic effects may be 

included into the calculation through use of a harmonic-oscillator approximation in 

lattice dynamics simulations.

A ‘potential set’ is a collection of all parameters needed in order for a particular ion 

to be included into an IP calculation. The parameters are usually generated empirically, 

by fitting the Buckingham equation to experimental observables -  often the lattice 

parameter, ion positions and the independent elastic constants (or bulk modulus), as 

these are the most readily available properties. The results of ab initio calculations can 

also provide data for use in improving the available potential sets, since the same 

quantities can be calculated for a wide range of systems in various configurations.

2.9 Surface Modelling

In a simulation, a surface is simply a two-dimensional version of a three-dimensional 

crystal, with a surface normal along a particular crystallographic direction. Generally, 

we can extract a ‘slab’ of material, infinitely repeated in two-dimensions, and with a 

finite thickness in the third dimension from our crystal structure quite simply. 

Calculations using this cleaved surface slab will be significantly more expensive than 

the bulk crystal and increase rapidly as the slab thickness is increased, because the 

number of symmetry operators present in the slab is less than that of the bulk, and also 

the number of atoms in the crystallographic unit cell has increased.

In a computational code, there are several ways in which the surface itself can be 

represented internally.
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(1) Construct a local cluster of ions arranged in the chosen surface configuration, 

surrounded by a periodic representation of the remainder of the surface 

structure, and proceed as in the three-dimensional cluster calculations.

c#o o#o
Figure 2.5: Graphic illustrating the cluster method of surface modelling. The 
cluster is embedded in a grid of point charges to reproduce the electrostatic

effects of the crystal.
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(2) Construct a block of material that represents the surface under study, which is 

contained within a three-dimensional unit cell repeated to create a family of 

two-dimensional slabs separated by vacuum in the third dimension. The size 

of this vacuum needs careful optimisation to ensure that the slabs do not 

interfere with one another.

Figure 2.6: Graphic illustrating surface model used in CASTEP. A three- 
dimensional unit cell is built which creates a series of parallel surface planes,

separated by vacuum.

Page 32



Chapter 2: Theoretical Methods

(3) The two-dimensional surface can be cleaved from the three-dimensional 

crystal and subsequent calculations made only in two-dimensional space.

Figure 2.7: Graphic illustrating the two-dimensional surface model used in 
CRYSTAL. The slab has a finite thickness in the third dimension.

The first of these methods is used in molecular cluster studies, such as the 

calculations reported in section 4.4.2 which made use of the Gaussian̂ '̂  code (30); the 

second is generally used in calculations employing plane-wave basis functions. If we 

cleave a general crystal along the {hkl) planes, we can create one of two basic surface 

types, illustrated in figures 2.8(a) and (b), depending on the types of ions present and 

their local arrangement in the crystal. Figure 2.8(a) shows a surface constructed from 

layers of equally charged ions, where each layer in the surface is electrically neutral. 

Surfaces of this type can have any thickness we desire as the resulting slab (as a whole) 

satisfy the two requirements that they must be (1) electrically neutral and (2) have no 

overall dipole moment acting across them.
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Figure 2.8: Possible surface types created from cleaving a three-dimensional 
crystal, (a) Surfaces constructed from individually neutral atomic layers; (b) 

Surfaces constructed charged layers, where a series of layers defines a 
(repeating) neutral unit

Surfaces of the type shown in figure 2.8(b) however, are not; in this case each layer 

itself is not electrically neutral. We clearly cannot choose an arbitrary number of atomic 

layers in this situation since the resulting slab is likely to possess a large dipole moment 

acting across it, which would act to destabilise the ions in the slab. Figure 2.9 illustrates 

two methods of removing this dipole, the first in figure (a), creating a symmetrised slab, 

involves constructing a neutral repeating unit from adjacent layers of material. By 

constraining the slab to contain a whole number of these blocks, the resulting slab will 

not have an overall dipole moment. The second method in figure (b), creating a 

reconstructed slab, involves selectively removing ions from the upper and lower 

surfaces to cancel out the total dipole moment. There is a third method which can be 

used, but which is not covered here, which is to hydroxylate the surface ions and cancel 

out the slabs overall charge.
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Figure 2.9: Ways of neutralising slabs with a non-zero dipole moment.

For any surface, we have defined the surface energy {Esurface) of that surface as 

shown in equation (2.29); where Esiab is the energy calculated for the slab, Eaystai is the 

energy calculated for the perfect three-dimensional crystal, and A is the surface area of 

the cleaved slab. This equation then gives us the energy, per unit area, required to cleave 

the surface from the perfect bulk ciystal.*

J7 _  ^ s la b  crystal
^surface ~  ^

After cleavage of the prefect crystal, it is often possible to reduce the total energy of 

the slab by relaxing ions away from the positions they occupied in the bulk material. 

The surface energies corresponding to such slabs are referred to as relaxed surface 

energies. In order to keep the calculations affordable, only ion relaxations which did not 

destroy symmetry operations were allowed in the current work. Both the relaxed and 

unrelaxed surface energies for the various slabs studied are reported in sections 6.1 and 

6.4.

The model employed in the IP study to represent a surface uses a two region partition 

of the system: ions near the surface are attributed to region I, and are fully relaxed to

* The factor o f two arises because the cleaved slab actually has two surfaces, an upper and a lower 

face!
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minimise the internal energy; ions further away from the surface form region II, and are 

fixed to their lattice positions. Region II represents the bulk continuation of the surface, 

and creates the correct embedding forcefield in which region I ions move. Given the 

relatively low cost of IP calculations, no constraints were imposed on the ionic 

relaxations, which could therefore include symmetry-breaking displacements. The 

results showed however that such relaxations were energetically unfavourable, 

validating the choice of a constrained relaxation in the QM calculations.

2.10 Elastic Properties

The calculated lattice parameter depends on the position of the minimum of the 

energy surface described by the combination of basis functions and Hamiltonian: if  the 

experimental and calculated ûTcub agree closely, then the theoretical energy surface has a 

minima localised in approximately the correct location, which however does not 

necessarily imply that overall energy surface is the same as the experimental one -  

figure 2.10 illustrates this point. An experimental energy surface is shown (in two 

dimensions) by the solid line, alongside two distinct theoretical descriptions of that 

surface: Theory A (dashed line), and Theory B (dotted line). From this figure, it is clear 

that neither theory provide an accurate description of the overall energy surface, even 

though both give the same energy minimum as experiment. Any correct theoretical 

energy surface must also have the same curvature around the minimum as the 

experimental surface.

Page 36



Chapter 2: Theoretical Methods

c3
to

•e
<
LU

Experiment 
Theory A 

Theory B

Minimum

Position on Energy Cross-Section (Arbitrary Units)

Figure 2.10; Schematic illustrating the importance of correctly reproducing the 
curvature of the energy surface around the minimum.

In general, the elastic constants of a general anisotropic material form a forth rank 

tensor: Cp/, having 21 independent coefficients. By application of the Voigt convention, 

which separates the strain tensor into translational and rotational components this can be 

reduced to just two indices: known as the Voigt indices Q.

The procedure for determining the independent elastic constants varies between 

actual computational code used: many are able to work directly with the first (and 

second) derivatives of the energy as this is how the majority of geometry optimisers 

function (the force acting on a particular atom is given by the energy gradient 

surrounding it). The CRYSTAL code however, used extensively throughout this thesis, 

is not able to do so.

Instead, the crystallographic unit cell is deformed by application of an external stress 

tensor, which preserves the total volume of the unit cell but alters its shape accordingly. 

The magnitude of this external stress is then altered, the resulting change in internal 

energy of the cell being related to the value of the elastic constant modelled by the
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applied distortion. In the cases examined here, the change in energy is expressed as a 

Taylor series, below in equation (2.30):*

(230)

A clear account of the theory behind this process is documented in the CRYSTAL 

user manual (9). For reference, the necessary stress tensors for calculation of the Cn, 

Cj2, C44 and the bulk modulus, B, are given below, which form the complete set of 

independent elastic constants of cubic systems, like ceria and cubic-zirconia. In these 

equations, V is the volume of the primitive cell (since for cubic systems, the primitive 

unit cell contains one formula unit).

~5 0 0"
Cn e - 0 0 0 Cjj = 2blV

0 0 0

Ô 0 O'

Cj2 e - 0 - 8 0 C]]~Cj2 — blV
0 0 0

'0 8 8 ~
C 4 4 £ = 8 0 8 C44 = b iev

8 8 0

~8 0 0"

B e - 0 8 0 B = 2b!9V
0 0 8

The bulk modulus is the single most representative quantity of all

properties. It can be determined as mentioned above, or from the fact that in cubic

* The Taylor expansion o f the energy as a function o f  the applied strain has no term proportional to 5, 

this is because the elastic constant must be calculated for a cell in equilibrium; the term proportional to Ô 

gives the gradient of the energy acting on the atom. If this were not zero, there would be a net force acting 

on the atom and the system is not in equilibrium.
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systems: B = {Cn+2 Ci2)iy, there are also many more sophisticated equations of state 

reported in the literature (31) which can be used to provide a more detailed 

interpretation of the energy/strain relationship than a simple parabola, as used above. 

Results from all three sources will be quoted in this thesis, although as the above 

methods are valid only for cubic systems (and the calculations become much more 

complex for non-cubic crystals), we shall often only report figures from the more 

detailed equations of state, which are dependent only on the calculated internal energy 

as a function of cell volume.

The calculation of these elastic properties not only demonstrates that our ab initio 

model provides an accurate description of the true energy surface of a material, and 

allows comparison of calculated properties to those determined experimentally, but they 

are also instrumental in developing improved interatomic-potential parameters for 

future studies beyond the capabilities of quantum mechanical codes.
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3 Commercial Applications
The following chapters aims to give a brief account of some of the more 

commercially attractive applications of ceria and zirconia, not as cheap filler materials, 

but as active catalysts in their own right. Also, it shall discuss some of the more 

pertinent questions raised by experimental studies, and demonstrate the ways in which 

theoretical simulations can assist in providing the answers.

Most applications which make use of the catalytic properties of ceria and zirconia 

rely primarily upon the extremely high oxygen ion conductivity that they possess. An 

important feature of this conductivity, is that it can be controlled and carefully designed 

to a particular level simply by doping with various amounts and proportions of metal 

oxides. By adding a lower valent oxide such as Y2O3 or CaO, in order for the material to 

maintain overall charge neutrality then vacancies must be introduced onto the oxygen 

sub-lattice. Here, two host metal ions, M(+IV), are replaced by Y(+III) ions; this 

introduces a (-II) charge discrepancy which can be compensated for by removal of a 

single oxygen ion. In the infamous Kroger-Vink notation this can be expressed by 

equation (3.1).

(3.1)

If instead, a higher valent metal oxide is added, we must introduce oxygen ions into 

interstitial sites to counter the higher positive charge of the dopant metal ions, as shown 

in equation (3.2). In this situation the material can act as an oxygen source.

2M^ + 2Xlf + Ojfjj (3.2)

3.1 Automobile exhaust three-way catalytic converters

Three-way catalytic converters (TWCs) have been fitted to the exhausts of new cars 

in Britain for several years now. They remove harmful pollutants present in the engine 

exhaust fumes (e.g. NOx, CO, and uncombusted fuel (32,33), forming CO2, NO2 and 

water as the reaction products. The conversion of exhaust fumes occurs naturally at a 

very slow rate, although it was found that by passing the exhaust fumes over certain 

noble metals (such as platinum or rhodium) then the speed and efficiency of the 

conversion was significantly improved.
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A typical catalytic converter has a honeycomb cordierite shell, creating the 

maximum surface area possible to interact with the exhaust gases. This shell is then 

coated with a mixture of alumina and ceria; a noble metal (often Pt) is then deposited 

onto the surface, see figure 3.1. An alumina support is used to improve the cohesion of 

the Pt droplets to the cordierite shell and experiments revealed that the efficiency of the 

converter was improved even further when small quantities of ceria were added. The 

present understanding why this occurs is that the ceria allows the support to act as an 

oxygen reservoir (as explained above) and this ensures that the environment 

surrounding the Pt droplets is always optimal for the conversion to occur.

Exhaust
Fumes

Pt

AI O + CeO
2 3 2

CORDIERITE SHELL

Figure 3.1: Schematic of an Automobile Exhaust Three-Way Catalytic 
Converter, illustrating the honeycomb cordierite shell of the device, and a 

closer view of the surface of the shell.

Catalytic converters operate most efficiently within a specific temperature range, 

usually between 250°C and 900°C, when the temperature of the converter is sustained 

by the exothermic conversion reactions occurring within it. The time taken for this 

condition to be reached is known as the ""light-off time’\  and it is also during this period 

when the engine is generating the largest quantity of harmful products. Clearly, a 

reduction in the length of the light-off time is desirable; it was observed that by adding 

ceria to the Pt support, the light-off time decreased by an appreciable amount.

3.2 Solid Oxide Fuel Cells

SOFCs convert chemical energy directly into electrical energy, bypassing the highly 

inefficient conversion to mechanical energy which most electricity generation methods 

currently in use employ (34). It is a very simply concept; a hydrogen-rich fuel is passed 

over an anode, and a gaseous oxygen source passed over the cathode. These two
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electrodes are separated by a solid electrolyte, yttria-stabilised cubic-zirconia, although 

Ga-doped ceria can also be used.

An yttria-stabilised cubic phase is employed for two main reasons: most importantly 

since yttrium has a formal charge of +III, in order to maintain charge neutrality oxygen 

vacancies are introduced into the material, increasing the materials ionic conductivity. 

Secondly, a stabilised cubic phase is used is to ensure that no phase changes occur as 

the cell is heated up to its operating temperature (approximately lOOOX). If any phase 

changes occurred, the cell volume would inevitably change and after several thermal 

cycles could result in the anodic material spalling away from the zirconia electrolyte, 

and the cell would then no longer function.

At the anode, the fuel oxidises oxygen ions incorporated into the lattice - releasing 

electrons and increasing the local oxygen vacancy concentration. These electrons then 

travel via an external circuit towards the cathode (35); the difference in oxygen vacancy 

concentrations between the two electrodes causes the migration of oxygen ions though 

the electrolyte. At the cathode, the electrons released reduce gaseous oxygen to restore 

the equilibrium vacancy concentration and the cycle repeats. This procedure is 

illustrated in figure 3.2.

Oxygen
Source

/ O + 2e O2 2
Cathode

Y203/Zra
Electrolyte O V

to]

^  Hydrogen-rich 
Fuel

Figure 3.2: Schematic showing the operation of a Solid Oxide Fuel Cell.

For efficient operation the electrolyte material clearly needs a high ionic conductivity 

and a low electronic conductivity. It must also be stable at the fuel cell operating 

temperature and be easily fabricated. Yttria-stabilised zirconia has all of these features 

and is therefore the usual choice of electrolyte.
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3.3 Sensors

The Solid Oxide Fuel Cell just described, used an oxygen concentration gradient to 

drive ions through the zirconia electrolyte and ‘complete the circuit’ electronically, 

providing power to an external source and using up fuel at the electrodes themselves. If 

this process were operated in a slightly different manner (and on a much smaller scale!) 

we find that it is possible to construct a solid device which can be used to monitor the 

oxygen concentration in a given source.

If one side of the material is exposed to a standard atmosphere containing 20% 

oxygen, then oxygen concentration changes on the opposite side of the material would 

result in charge transfer across the material and an external current which can be 

monitored and used to control a larger device.

This process is best illustrated by example: the most common oxygen sensor in 

conunercial use lies inside the exhaust stream of an automobile, and is more commonly 

referred to as the lambda probe (the air/fuel ratio is given the symbol ‘vi.’). In the 

internal combustion engine, the precise value of À is of great importance -  if it is too 

high, then the amount of fuel present in the reaction chamber is too great and the 

engines performance is very low. This situation can be detected by a lambda-probe, 

since the outlet exhaust fumes would contain a much higher oxygen ratio than normally 

expected, the sensor can then trigger the fuel injection system to increase the fuel flow 

rate and restore optimal conditions. Conversely, if X is too low, the there is not enough 

oxygen present in the reaction chamber, and the exhaust fumes contain large amounts of 

uncombusted fuel (therefore decreasing the oxygen content to almost nothing). Under 

these conditions the engine is wasting fuel and running highly uneconomically, the 

sensor can respond by altering the fuel inlet to restore the optimal balance.*

* There are however, circumstances which do require such conditions in the engine; at this point the 

engine power will be a maximum, although uneconomical to maintain, it may be desirable for short 

periods o f time.
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3.4 Acid Catalysts

In the last 1970’s, Hino et al. (36,37) treated the surface of a zirconia sample with 

sulphuric acid, and created a material known as a ‘superacid catalyst’; in this case, the 

resulting material acted to catalyse the isomérisation of hydrocarbons. More recently, 

the addition of a wider range of anions, has produced solids having incredible acidic and 

catalytic properties.

The formation of these acids has massive industrial implications; the isomérisation 

reactions of many common hydrocarbons involve the use of extremely hazardous 

materials, including liquid HF, H2SO4 and AICI3/BF3 (Friedel-Crafts reagents). The use 

of a solid acid is highly preferable, as storage and handling requirements are much safer, 

making the entire process much more profitable.

Replacement of the existing catalysts can only be considered when the catalytic 

activity of the superacid is equal to, or better than, the activity of the (hazardous) 

catalyst, unless some other overriding concern is considered. Electronic structure 

calculations on the common surfaces of this material will play an important role in 

tailoring the specific acid properties of zirconia, and hopefully permit a closer 

understanding of the source of this acidity.
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4 Fluorite

4.1 A Structural Overview of Ceria and Zirconia

It is generally accepted that CeOz exists with just a single bulk structure -  a cubic 

phase having the fluorite (CaF]) structure, illustrated in figure 4.1. The primitive cell for 

this phase contains two ions: an oxygen ion is located at the point with fractional 

coordinates and represented by the yellow spheres in figure 4.1; and secondly

a metal ion, represented by the blue spheres, is located at the origin [0,0,0]. The 

complete lattice is then generated by applying the symmetry operators of space group 

number 225 (F m 3 m).

cub

Figure 4.1: The fluorite structure common to both CeOj and c-ZrOz (under the 
appropriate experimental conditions). Blue ions represent the cations (Ce/Zr); 

yellow ions represent anions (O).

In such a structure, the anions are coordinated by a tetrahedron of the four closest 

cations; cations are instead surrounded by a cube of the eight closest anions. We can 

view this geometry in two different ways, with reference to the cation and anion 

sublattices, respectively:

(1) a face-centred cubic (fee) array of metal ions, surrounded by oxygen ions that 

fill all tetrahedral interstices in the structure, or equivalently

(2) a cubic close-packed (ccp) array of oxygen ions, in which the cations occupy 

alternate cubic interstices, so that exactly half are filled.
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The experimental cubic lattice parameter of ceria, Gcub, as determined from X-Ray 

Diffraction (XRD) studies is 5.411 Â (38), a highly reproducible figure illustrating the 

extremely high stability of the material. The corresponding bulk modulus, Bcub, of ceria, 

determined by ultrasonic measurements is 236 GPa (39).

Cubic

A Cubic’
3
2

Tetragonal
2 .
E

Monoclinic \  Ortho Ortho II

►
Pressure

Figure 4.2: A schematic of the zirconia phase diagram. This image is 
reproduced from that in Ref. (40)

In contrast to ceria, the phase diagram of zirconia (an illustration from Ref. (40) is 

reproduced in figure 4.2) shows several different structural forms, each of which is 

stable inside a given temperature and pressure range (41). In this thesis, I am primarily 

concerned with the use of zirconia in applications operating under atmospheric pressure. 

For this reason, only the three phases stable under ambient pressure conditions are 

discussed here.

The high temperature phase, stable for T>  2600K, assumes a cubic fluorite structure 

analogous to that of ceria, which I refer to as c-ZrO: in this thesis. In this cubic 

fluorite-like phase, the experimentally determined lattice parameter lies with the range 

cicub = 5.121 - 5.191À (38,42), approximately 5% lower than in ceria.

The range of experimental values is caused by the limited stability of this phase; x- 

ray diffraction (XRD) studies at temperatures as high as 2600K are firstly difficult to 

perform; secondly, thermal vibration of the ions creates a large broadening of the peaks 

in the recorded x-ray spectrum, resulting in a great degree of uncertainty in the 

configuration of the refined structure which makes it extremely difficult to draw any 

meaningful conclusions from experiment.

To try and circumvent the problems of high-temperature XRD studies, instead, non- 

stoichiometric zirconia can be examined under less-hostile environments. As mentioned
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earlier in this thesis, the cubic phase can be artificially stabilised outside its normal 

stability field by the addition of large amounts of Y2O3 , Ce0 2  or CaO to the pure phase. 

Using this method it is possible to stabilise the cubic phase of zirconia down even to 

room temperature, for further experimental analysis.

In the work by Kandil et al. (43), the independent elastic constants of the cubic phase 

were determined using ultrasonic techniques for a series of zirconia samples (doped 

with pre-determined levels of yttria), over temperatures ranging from 20°C to 700°C. 

Kandil used commercially-prepared samples containing 8.1, 11.1, 12.2, 15.5 and 17.9 

mol% yttria * The data was then extrapolated back to predict what the measured elastic 

properties would have been in an yttria-free sample. This extrapolation technique has 

been used by several groups attempting to study the properties of pure (and doped) 

zirconia systems experimentally.

In the following discussion, we should always remember that thermal effects cannot 

be included into ab initio QM calculations at the present time.  ̂All calculations reported 

in this thesis were performed at the effective temperature of absolute zero. Thermal 

effects, including lattice expansion and thermal vibrations can all become significant 

factors, especially when studying systems only stable above temperatures as high as 

2600K!

4.2 Previous Studies

There have been numerous interatomic potential based studies performed on ceria 

and zirconia in recent years (44-48) while the number of ab initio quantum mechanical 

studies is more limited. The reason for this is clear: until recently, calculations of this 

nature were far too expensive to be cost effective, meaning that substandard basis sets 

generally had to be used. Because of this, results from interatomic potential (IP) studies 

were often more reliable and accurate than the ab initio studies. Ab initio calculations

* These concentrations were chosen based on the earlier work by Glushkova et al. (82) where they 

found that a minimum of 8 mol% yttria was needed to stabilise c-ZrO: at room temperature.

 ̂ Without incurring severe cost penalties. As computer power increases, this will no longer be the 

case.
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are usually preferable to IP calculations since they make no assumptions about the 

nature of the interactions between the ions in the material. As these interactions define 

the overall chemistry of the material, the detailed analysis permitted by QM studies can 

be of great importance in better understanding the chemical (catalytic) properties of the 

material.

The work discussed in this thesis forms the first joint (periodic) Hartree-Fock study 

of both ceria and zirconia. Although similar work has been performed on either ceria or 

zirconia independently, such as the papers by Hill and Catlow (49); Stefanovich et al. 

(50), and Orlando et a l  (51) for example, these studies are not directly comparable to 

one another in the same way as the calculations reported here.

It is therefore important to reinvestigate these two oxides with a more accurate 

procedure, and in a consistent manner to enable a direct comparison of the calculated 

properties of ceria and zirconia. In this section, I shall provide a brief summary of the 

important conclusions from papers in the literature most relevant to the current study.

4.2.1 Ceria

Few studies have been performed on either the bulk or surface structure of ceria 

employing a Hartree-Fock approach, and little more with DFT methods. The only HF 

study of note is that by Hill and Catlow in 1993 (49). Even as recently as eight years 

ago, it was only possible to perform such calculations using minimal basis sets on the 

ions. In actual fact, this particular work employed a minimal (ST0-3G) basis set on the 

oxygen ions along with a minimal basis set for a cerium atom; such a combination is 

“unbalanced”. It is our belief that such basis functions would not permit a sufficiently 

large enough variational freedom of the orbitals on the anions: the only unoccupied 

orbitals present in this description of ceria are the outermost valence orbitals on the 

cerium ions, therefore these orbitals must be used to reproduce the chemical properties 

of the material as a whole.

Hill and Catlow concluded that ceria is a partially covalent insulator, with a cubic 

lattice parameter of 5.385 Â and a bulk modulus of 357 GPa; the (Mulliken) charge 

assigned to the cations was +2.35 |e| (and therefore -1.17 |e| to the anions), and the 

calculated HF band gap reported as 11.25 eV. They quote an experimental value, 

determined by Wuilloud et al. using XPS measurements (52), of between 4-5 eV. More
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specifically, the metal c/-band dispersion was 5.80 eV and that of the oxygen p-bands, 

8 . 8 6  eV.

The literature contains several well developed (and much tested) potential sets which 

have been used to successfully model the bulk and surface properties of ceria: a 

comprehensive IP study of all {hkl} surfaces in which + P' < 20 was perfomied 

by Vyas, etal. (46,48) using the two potential sets he derived (and are listed for 

reference on page 124, in tables 6.1 and 6.2). In this work, Vyas concluded that 

potential set 1 best described the properties of simple surfaces and of the bulk material -  

including defect structures and simulated bulk annealing studies; potential set 2  was 

created to improve upon potential set 1 in studying high index faces where the original 

potential set failed. Vyas et al. used slabs having a (region I) thickness of approximately 

25 Â, much larger than is possible in any QM study at present. This potential set was 

also used more recently by Baudin et al. (53), who performed a Molecular Dynamics 

(MD) simulation of the {011} and {111} surfaces of ceria.

The Vyas study was extended in the course of the current calculations to provide 

additional data not reported in the literature; chapter 6  details our extended IP study of 

the {0 1 1 } and { 1 1 1 } surfaces examined here, while various structural properties of the 

bulk are reported later in this discussion for reference.

4.2.2 Zirconia

Zirconia currently has many more practical applications than ceria, due in part to its 

abundance on Earth which makes zirconia the cheaper of the two. This has created a 

greater driving force towards performing ab initio calculations on zirconia-based 

systems, despite their extreme computational cost.

Orlando et al. examined the cubic and tetragonal phases of bulk zirconia, and also 

the {011} surface. Although ab initio results were desirable, the low symmetry of the 

non-cubic phases and the thickness of the surface slabs studied, meant that lower quality 

basis functions had to be used. Their basis set was not minimal, however it did make 

use of a large-core ECP on the Zr ions: a choice which leaves only the outermost four 

metal ion electrons to be studied explicitly in the calculations. Their choice substantially 

reduces the cost of the calculations, but may significantly reduce the confidence we can 

have in the calculated properties of the material.
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In the work by Stefanovich, et al. (50), both periodic HF and IP calculations were 

performed on pure and doped zirconia systems; the aim of this work being to analyse 

the energetics of the phase transitions occurring between the three ambient pressure 

phases. The periodic HF calculations performed in this paper made use of the same 

small-core Hay-Wadt pseudopotential used here, with the valence basis functions 

reported in their earlier paper (54); for cost reasons a Durand-Barthelat pseudopotential 

(55) was also applied to the oxygen ions.

Their analysis of the non-cubic phases vWll be studied in greater detail later in this 

thesis; the study of the cubic phase attributed a (Mulliken) charge of +3.038 |e| to the Zr 

ions (and therefore -1.519 |e| to the oxygen ions) in a cubic unit cell with a lattice 

parameter of 5.154 Â.

In the work by Fabris et al. (56) an empirical tight-binding (TB) approach was used, 

the implementation of which is discussed in Reference (56), and the connected work by 

Finnis et al. (57) used a Linear Muffin Tin Orbital scheme (LMTO) to study the 

properties of the cubic and tetragonal phases of zirconia, and in particular the energetics 

associated with the phase transformation between the two.

Of the remaining key QM studies on ZrO], such as the work by Stapper et al. (58) 

and that by Christensen and Carter (59), the basis functions used are plane-waves; these 

do not require the laborious and careful optimisation of the atom-centred Gaussian basis 

sets used in CRYSTAL, however, the non-localised nature of the plane wave basis 

functions makes it difficult to derive detailed chemical interpretations from the results 

obtained -  which were a key requirement of the calculations reported here.

The work by Christensen and Carter used the LDA Hamiltonian with a plane wave 

cut-off energy of 800 eV, and applied a A-point separation of 0.05 A'̂ ; for comparison 

the CASTEP calculations performed here using ultrasoA pseudopotentials with an 

energy cut-off o f430 eV, and the same ^-space grid density.

Interatomic potential calculations on stoichiometric cubic zirconia are few and far 

between, as the phase has such restricted stability. Instead, many of the IP studies 

employ potential sets optimised for use in doped systems; several of these sets were 

tested on the pure phase, but their performance was less than adequate. The best
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potential set we have found in the literature to date is that derived by 

Balducci, et a l (44,47,60) shown in table 6.3.

4.3 Basis Set Optimisation

In any computational study there are a series of definable options and tolerances 

which need to be carefully chosen so that the calculations performed provide an 

accurate model of the system, without being unnecessarily expensive. Among the most 

important choices we must define, we have:

1. the Hamiltonian used

2 . features of the basis sets

3. limits imposed on the orbital-orbital interactions included

4. the density of the grid which samples reciprocal space

The first and second choices are often due to the QM codes available to perform the 

calculations, since each will allow a limited choice of Hamiltonians and basis functions. 

The CRYSTAL program used in this work has the ability to use several different 

Hamiltonians, many of which were used in the course of this work; however all 

calculations must make use of atom-centred contractions of Gaussians as the atomic 

basis functions.

Once the Hamiltonian and basis set are defined, in CRYSTAL calculations, the next 

most important tolerance is the limit imposed on the number of orbital-orbital 

interactions which are explicitly examined in the calculations. The ‘size’ of an orbital 

overlap is easily visualised by the region indicated in figure 4.3; in the calculation, any 

overlap which is greater than a given threshold is calculated and used in the evaluation 

of the internal energy. The calculated overlap between AO’s also form the elements of 

the overlap (S) matrix, in equations (2.21) and (2.22).
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Overlap

Figure 4.3:The shaded region illustrates the * orbital overlap’ area for orbital A
interacting with orbital B.

By decreasing the threshold we include into the calculations longer range 

interactions. Every overlap included helps to improve the overall accuracy of the 

calculation, however the CPU and storage requirements of the calculation increase 

dramatically as the number of included overlaps increase. However, as the value of the 

overlap decreases, then individual contributions to the total solution become negligible 

compared to the required accuracy of the calculated properties. In this study, I used the 

(standard) limits of 6,6,6,6,12 (meaning that integrals between AO’s with overlaps 

lower than 10*̂  are neglected); for higher tolerance calculations (and our DF 

calculations) the higher 7,7,7,7,14 limits were used instead.

In addition to the overlap tolerances, the criteria by which we consider the 

calculations to have converged must also be chosen. There are two alternatives:

1 . the calculated internal energy of the system changes less that a specified 

tolerance AE, on subsequent SCF cycles.

2. the eigenvalues of the system change less than a given tolerance AC, between 

consecutive SCF cycles.

The values which we assigned to AE and AC are listed for reference in table 4.1. The 

limits for the DFT calculations are generally lower than those using the HF Hamiltonian 

due to the CRYSTAL implementation of DFT: the use of an auxiliary basis set to 

sample the calculated density matrix, in fact, may limit the accuracy of the calculation 

and increase the number of cycles required to achieve the SCF convergence. When the 

solution in subsequent SCF cycles shows only minor differences (mostly when the SCF
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is close to convergence), the numerical noise due to the fitting may significantly affect 

the results, the calculations are therefore halted at a point when the SCF convergence is 

close to the numerical noise. This effect is even more important when performing 

numerical geometry optimisations using CRYSTAL: the use of lower convergence 

tolerances makes the calculations faster and improves the accuracy in the numerical 

estimate of the gradient.

Table 4.1: SCF tolerances for both HF and DFT calculations used in this thesis.
Hamiltonian Quantity Standard High Tolerance

HF AE \0 * 1 0 '
AC 1 0 '̂ 1 0 "̂

DFT AE 1 0 '̂ 1 0 *
AC 1 0  " -  lO"’

The final tolerance parameter that can influence the quality of the calculated results 

(that I shall examine here), is the reciprocal space shrinking factor, that is the density of 

the A:-space sampling grid. As was explained in section 2.5, the Hartree-Fock/Kohn- 

Sham Hamiltonian matrix for a solid is evaluated at a discrete grid of points spanning 

the whole of the irreducible Brillouin zone (which represents all of reciprocal space). 

The eigenstates at points other than those explicitly calculated can be determined by 

extrapolation from the collection of points available. Clearly, if the number of points in 

the grid is too small, then the extrapolation of the intermediate values will be highly 

inaccurate. Conversely, should the grid contain too many points, the time taken to 

evaluate the solution is too great, and extrapolation can provide an adequate description 

of the intermediate points much more cost-effectively.

If we wish to draw quantitative and qualitative conclusions from a comparison of the 

ceria and zirconia calculations, equivalent approximations must be used in both cases 

(in addition, of course, to the use of identical Hamiltonians, A:-point sampling densities, 

and integration tolerances). If a small-core pseudopotential is to be used on cerium, then 

comparisons must be made to equivalent calculations using a small-core 

pseudopotential on zirconium. As small-core Hay-Wadt pseudopotentials are available 

for both Ce and Zr ions, their use here is ideal. Also, both materials make use of the 

8-51G oxygen basis set (61) which has been used to model the structural and electronic 

properties of other metal oxide systems highly successfully (18,19).
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4.3.1 Ceria

The fundamental starting point used in the derivation of the cerium basis set is that 

optimised for an isolated, uncharged, gaseous cerium atom using the Hay and Wadt 

small-core pseudopotential (62). The use of pseudopotentials in the description of the 

heavy metal ions is highly desirable to keep the overall cost to a minimum, the 

applicability of the pseudopotential approximation (and in particular the performance of 

the Hay and Wadt pseudopotentials) in solid state materials such as ceria and zirconia 

will be examined later in this discussion. From the isolated Ce atom, we first 

constructed a basis set to describe an isolated Ce"̂*̂  ion, as the difference in 

electronegativity between the metal and the oxygen ions lead us to expect the electronic 

distribution in the solid to be closer to an ionic model than to neutral atoms: the basis 

for the isolated gaseous ion is therefore a more accurate starting point to optimise the 

crystalline basis functions in CeOi

The Hay-Wadt pseudopotentials are originally derived for molecular HF 

calculations, i.e. codes such as Gaussian (30) and GAMESS (63) codes, but can be 

applied in the same format also for the periodic Hartree-Fock calculations in the 

CRYSTAL program (9,10). The primary difference in basis set requirements between 

molecular and crystalline systems is that the former require very diffuse functions to 

correctly represent the decay of the wavefunction away from the nuclei. In a periodic 

code, this decay is described by the basis functions associated with the neighbouring 

ions: inclusion of functions which are too diffuse may cause numerical instabilities 

when diagonalising the Hamiltonian matrix, with no appreciable increase in the overall 

accuracy of the calculation, and therefore is best avoided in solid-state calculations.

The second major difference in the basis-set requirements, and possibly the most 

important in the current discussion, is that the present version of CRYSTAL does not 

allow /typ e functions to be included into either the effective core pseudopotential 

(ECP) or the valence basis functions. Because of this deficiency, we were forced to 

remove all /functions before the isolated ion basis set can be used within CRYSTAL. 

As in the isolated ions the s, p, d, and /functions are mutually orthogonal to one 

another, the optimised s, p , and d  functions of the basis set are not affected by the 

removal of the /  AO’s (i.e. the optimal values for the parameters of the remaining 

orbitals is left unchanged during this operation).
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After removal of the outermost unoccupied diffuse functions, the isolated ionic basis 

can be inserted into a description of the crystal at the experimentally determined 

geometry {acub = 5.411Â (38)) using the standard oxygen 8-5IG set derived by Dovesi 

and Causa (61). A final basis set re-optimisation produced the fully optimised 

ciystalline basis set for the Ce'̂  ̂ions.

The coefficients and exponents of the Gaussian shells were optimised using the same 

numerical procedure employed in the geometry optimisations (see section 2.7 for further 

detail), and were considered to have converged when the energy change on subsequent 

cycles became smaller than lO'̂ Ha. After a full optimisation of the cerium basis set, the 

functions used on the oxygen ions were checked to ensure that they were optimal for 

use in ceria. The final basis set obtained for crystalline Ce ions is shown for reference in 

the appendix, in table A2 (on page 159); the oxygen 8-51G basis set is also listed in 

table A5.

4.3.2 Zirconia

The next stage in the basis set construction is the optimisation of a similar basis for 

zirconium ions. To ensure a qualitative and quantitative analysis can be performed using 

the calculated results, it was decided to base the zirconium basis set on the parameters 

already optimised for the crystalline cerium ions. To do this, the cerium lattice was 

altered to that of cubic zirconia by switching cerium for zirconium and reducing the 

lattice parameter, and the Hay and Wadt pseudopotential parameters changed to those 

reported for zirconium leaving the metal ion valence orbitals unchanged. Due to the 

degree of uncertainty in the ‘true’ experimental minimum energy structure, we took the 

midpoint of the experimental values as a ‘best-guess’ structure, thus the chosen lattice 

parameter for the cubic phase was = 5.15Â. The coefficients and exponents of the 

basis functions were then energy minimised in this structure to create the optimised 

crystalline Zr basis set, which is reported in table A3 (on page 160). The latter 

represents a crystalline Zr"̂  ̂ ion, and by construction is qualitatively comparable to the 

Cê  ̂basis set employed in ceria. The same oxygen basis set is also used in both oxides.

To verify the accuracy of our solid state calculations on ceria and zirconia, in the 

following sections we shall compare the calculated bulk properties obtained from the 

newly derived pseudopotential basis sets to results determined from experiment. In 

addition, comparisons to the results of similar calculations using optimised all-electron
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(AE) basis functions were made. The Zr basis set used to do the latter comparison was 

kindly obtained from Roberto Dovesi, the Ce AE basis was created from the Zr basis in 

a similar way to the pseudopotential basis functions just described. The AE basis sets 

are listed for reference in tables A7 and A8  on page 162.

In addition, the suitability of the Hay-Wadt pseudopotentials employed has also been 

assessed: we were able to do this for zirconia only, by constructing a basis set of the 

same quality, but using instead the Stoll-Preuss pseudopotential (64) rather than the 

Hay-Wadt. This new basis set is given in table A4, on page 160. A corresponding 

cerium pseudopotential was not available at the time this work was performed, but the 

study of zirconia-only should be adequate for our needs.

Another interesting feature of the CRYSTAL program, which we have exploited in 

this work, is the ability to perform ab initio calculations using either the Hartree-Fock, 

or the Kohn-Sham (KS) Hamiltonian, the latter using a wide range of Density 

Functionals (DFs) in the Local Density Approximation (LDA), Generalized Gradient 

Approximation (GGA), or hybrid schemes such as B3LYP. A comparison of results on 

zirconia obtained with all the above Hamiltonians is given in chapter 5.

DFT calculations in CRYSTAL employ a somewhat unorthodox approach compared 

to the majority of pure DFT codes, since CRYSTAL is originally a HF code. In a DFT 

calculation the exchange and correlation forces are defined as functionals of the electron 

density, E=J{p). The functional dependence requires us to know the value of the 

electrostatic density (LDA) and of its first derivatives (GGA) in each point of the 

primitive unit cell. Since the basis set in CRYSTAL describes the wavefunction and not 

the electron density, an accurate evaluation of the functionals required in the DFT 

calculations would be very demanding. To circumvent this problem and analytically 

represent p  in the unit cell, a second basis set is defined in the DFT calculations, which 

we refer to as the “auxiliary basis set”. This auxiliary basis set is constructed from a set 

of atom-centred even-tempered Gaussians, having an angular dependence based on 

those of the s, p, d, f  g, etc. solutions obtained for the hydrogen atom. At each SCF 

cycle, the calculated electron density is expanded onto the auxiliary basis set, and the 

coefficients of the even-tempered Gaussians are determined from a least squares fit. 

Calculating the density and the first derivatives needed for the DFT calculations in this
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manner is extremely fast and straight-forward, although we must now define a suitable 

auxiliary basis set for the DFT calculations.

The atom-centred even-tempered auxiliary basis set is specified by giving the orbital 

type ( 5 ,  p, d, etc), the number of Gaussians of this type to include in the set, and the 

smallest and largest exponents to be used. The exponents of the individual Gaussians 

are chosen to regularly span this range of exponents.

The production of an auxiliary basis set is extremely lengthy, and due to a lack of 

fine control in the individual Gaussian exponents it can appear to be rather arbitrary at 

times. It is often recommended (65) that the properties of the even tempered set be 

chosen so that the individual exponents differ by a factor of three: the properties of 

Gaussian functions ensure that this will produce maximum coverage with the minimum 

number of Gaussians, and the following calculations should therefore minimise the cost. 

The method used to optimise an auxiliary basis set is to manually determine the 

parameters which provide the lowest least squares fit from the calculated density. We 

considered satisfactory an error in the fit of 10 .̂ The auxiliary basis sets optimised for 

zirconia are listed in table A9; we did not repeat this procedure for ceria.

Table 4.2 lists the calculated cubic lattice parameter and the independent elastic 

constants calculated for the cubic phase of ceria and zirconia, with experimental values 

collated from the literature given for comparison. From the experimental figures, we see 

that ceria and zirconia have remarkably similar elastic properties, although the 

limitations of ultrasonic techniques and the extrapolation used for zirconia may 

influence this comparison. It is, however, greatly encouraging to see that the calculated 

lattice parameters are remarkably close to experiment in both cases.

Table 4.2: A comparison of calculated properties of ceria and zirconia for basis 
set optimisation at the HF level. All use Hay and Wadt small-core 

pseudopotential and an oxygen 8-SlG basis set. The values of C4 4  in parenthesis

Ceria Zirconia
Calculated Experiment Calculated Experiment

^ c u b  (À) 5.546 5.41 5.130 5.121-5.191
Cii (GPa) 459 403 617 401
C 1 2  (GPa) 1 0 2 105 97 163
C 4 4  (GPa) 164(119) 60 166(128) 55

t  See Reference (38)
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The equilibrium lattice parameter indicates where the energy surface has a minima, 

and whether this is located at the appropriate point, but does not contain any further 

information on the profile of the energy surface around the minimum, and if the latter 

correctly models the properties of the material obtained from experiment. One simple 

way to ascertain if this is the case, is to examine the elastic properties and the bulk 

modulus of the materials: here the minimum energy geometry is deformed slightly by 

application of an external stress, as detailed in section 2.10. The elastic constant is 

directly proportional to the second derivative of the energy profile obtained as the 

magnitude of the applied force is varied. The agreement of the calculated bulk modulus, 

B, to that determined experimentally gives a clear indication of how well the 

calculations performed reproduce near-equilibrium conditions. The bulk modulus can be 

determined by more sophisticated Equations of State (EOS) proposed in the literature 

(16,31,66-70) or from a linear combination of the independent elastic constants: in 

cubic systems such as ceria and zirconia, Bcub = (G ; + lC j2)ll. In assessing the quality 

of our calculations, and to compare the results provided by difference computational 

settings, we shall make use not only of the calculated equilibrium lattice parameter, but 

also of the elastic constants and bulk modulus so as to obtain a more complete 

characterisation of the results.

Table 4.3 shows how the minimum (calculated) crystal energy and optimised lattice 

parameters vary as the number of A:-points (shrinking factor) in ceria. From these values, 

we see that the variation in both the energy minimised lattice parameter and the 

calculated energy is effectively zero as a function of the A:-point grid density: on 

changing the A-point sampling ratio from 4 to 10, the resulting change in energy is of 

the order of 10‘̂ Ha, and the change in predicted lattice constant of the order of lO'̂ Â. A 

similar picture is obtained for zirconia whereby the minimum energy changes by 

~10'^Ha, even smaller than in ceria, and the lattice constant by lO'̂ Â. We conclude that 

a shrinking factor of six or eight to be more than adequate in the bulk cubic systems to 

give converged results. The latter grid spacing corresponds to a sampling of the 

irreducible Brillouin zone with 29 symmetry unique ^-points.
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Table 4.3: This table reports the values obtained for the optimised lattice 
parameter and calculated minimum energy of the cubic phase of ceria and

shrinking factor
Ceria Zirconia

ĉub (Â) Emin (Ha) ĉub (À) Emin (Ha)
4 5.543770 -188.074385 5.130742 -196.160162
6 5.541864 -188.074444 5.130763 -196.160160
8 5.541853 -188.074445 5.130764 -196.160158

1 0 5.541853 -188.074452 5.130764 -196.160158

In this thesis we have defined the lattice energy of a crystal through equation (4.1), 

where is the calculated energy (per formula unit) of the energy minimised crystal

structure, and is the energy of an isolated atom (summed over all atoms in the

formula unit).

r-MOj _  _  /  r M  , 9 ^ 0  \
lattice crystal atomic atomic )

4.3.3 Ceria Plane-Wave Calculations

(4.1)

The basis sets used in plane wave calculations are very different to the atom-centred 

Gaussian contractions just examined: instead the electron density is modelled using tens 

of thousands of periodic functions, spanning the entire unit cell. These individual plane 

waves are not localised onto any particular ion in the material, and the description of 

highly localised bonding features requires the combination of a great many plane waves. 

For this reason, such calculations are often used to model metallic systems in which the 

electrons in the valence band are not associated with any particular ion.

The core states of an ion form a set of very highly localised energy states -  they are 

centred around its nucleus. To correctly describe core electrons using only plane waves 

would require a huge number of functions at great computational cost: instead the plane 

wave basis is augmented using a collection of atom-centred functions to describe the 

core states with electrons in the inter-ion regions of space described by the plane wave 

basis. By ensuring that the two types of function remain continuous as we move away 

from the nucleus the description of the system need not be reduced: usually the primary 

concern lies with the valence electrons, since these dictate the chemistry of the material.
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This approach is similar to the pseudopotential method explained in section 2.3.3: the 

cost of the calculations is reduced through the use of multiple functional forms to 

describe the space used in the construction of the Hamiltonian matrix.

The CASTEP calculations performed here made use of an ultrasoft pseudopotential 

on both the metal and oxygen ions. The electronic configuration of the species present 

in these calculations were Ce {5s^5p^ f̂'6s )̂ and O (2s^2p )̂. The cut-off radius (rcut) 

used in these calculations was dependent on the /-value of the orbital on the cerium 

ions: values of 1.60, 1.80 and 2 . 0 0  a.u. for the 5 , and / were employed here, on the 

oxygen ions a cut-off of 1.30 a.u. was used for all functions.

Optimisation of a plane wave basis set is very different to that detailed in the 

previous section: here we need to determine the minimum number of functions which 

must be included into the plane wave basis in order to correctly model the system. Often 

a series of calculations are performed with various plane wave cut-off points: each 

function has a unique periodicity in a similar way as the Bloch functions constructed in 

the CRYSTAL calculations.

This periodicity is associated with a given energy: functions with low periodicity 

represent low energy functions, while a high periodicity is associated with a large 

energy. By setting an upper limit on the periodicity of the wave, and defining the step in 

periodicity between adjacent functions, we can construct a set of N  distinct plane waves 

to use as the basis for the following calculations. The higher this energy cut-off point 

lies, the greater the number of functions which need including into the set -  improving 

the overall accuracy of the calculations but dramatically increasing the cost. To balance 

the two, a series of calculations are performed on the bulk phase using a range of energy 

cut-offs, the plot of calculated internal energy against this cut-off energy (an example of 

which is given in figure 4.4.
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Figure 4.4: Typical internal energy versus plane wave energy cut-off plot. The 
internal energy is calculated for a series of cut-off energies, and the optimal 

configuration used in future calculations.

The point at which the calculated internal energy has converged (ensuring the other 

properties of the system are correctly described) is then used in future calculations as 

the optimal balance between the number of plane waves which must be included and the 

accuracy of the calculations. In addition to this, we have also to optimise the density of 

the grid sampling reciprocal space: periodic DFT calculations are solved in exactly the 

same way as the periodic HF, with the Kohn-Sham equations being solved at a discrete 

grid of points spanning the whole of the irreducible Brillouin zone.

Table 4.4: Energy minimised lattice parameter and internal energy calculated

Plane-wave cut-off 
energy (eV) ĉub (Â) Erriin (cV)

370 5.4560 -7805.9059
400 5.4541 -7805.9523
415 5.4197 -7805.9882
430 5.4195 -7806.0108
445 5.4195 -7806.0443

Table 4.4 reports the energy minimised lattice parameter and calculated internal 

energy obtained for plane-wave cut-off energies from 370 eV to 445 eV, using a ^-space

sampling grid of 2x2x2 (corresponding to a ^-point spacing of 0.05 Â*̂ ) and a GGA
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Hamiltonian. We consider as converged the results obtained with a cut-off energy of 

430 eV, and shall employ this value in all future bulk phase DFT calculations on ceria 

performed with the CASTEP code. We should note also that the energy minimised 

lattice parameter appears in excellent agreement to the experimental (room temperature) 

figure of 5.411 Â.

Table 4.5 reports the changes calculated in the equilibrium lattice parameter and 

internal energy for increasing A:-space shrinking factors: we see from these results that 

the current grid of 2 x2 x2  is already converged in the bulk systems, and there are no 

benefits to increasing this any further.

Table 4.5: E n e i^  minimised lattice parameter and internal energy calculated

A:-space shrinking factor
(nxnxn points) ĉub (^) Emir, (eV)

2 5.4195 -7806.0107612
4 5.4195 -7806.0107618
8 5.4195 -7806.0107676

4.4 Results and Discussion

In order that the predictions and conclusions made by detailed electronic structure 

calculations on ceria and zirconia can be considered accurate, reproduction of existing 

experimentally-determined properties is of paramount importance.

4.4.1 Ceria

Starting with bulk ceria, and using the pure Hartree-Fock (HF) Hamiltonian, the 

calculated energy-minimised cubic lattice parameter (given in table 4.6 for the complete 

range of available basis functions and Hamiltonians examined in this work) is 

overestimated by 2.5% compared to experiment (5.411 Â from reference (38)). It is 

widely accepted that calculations using a pure HF Hamiltonian overestimate 

equilibrium bond-distances by as much as 5%, due to the internal energy not including 

electron correlation contributions, a range that our calculated value is well within.

Using the “enhanced” 8-411dG oxygen basis set, constructed from the 8-510 

detailed in section 2.3.2, the calculated lattice parameter is reduced to 5.525 Â, 

demonstrating the small binding effect that the oxygen « -̂functions have on the
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structural properties of the stoichiometric bulk material, although this may not apply to 

surface or non-stoichiometric systems.

Table 4.6: The physical properties calculated for hulk stoichiometric CeOi at 
the HF and HF+C levels with a variety of ion basis sets. Results obtained 

through interatomic potential calculations are given for comparison, along with

Basis Set t̂ cub Ch Ci2 C 4 4 B
Ce 0 (A) (GPa) (GPa) (GPa) (GPa)

HW 8-51 5.546 459 1 0 2 119 2 2 1

& 8-411* 5.525 449 79 — 2 0 2

AE 8-51 5.567 613 173 213 320
8-411* 5.534 575 139 153 285

Hill and Catlow (49) 5.385 — — — 357
HFC HW 8-51 5.419 503 129 148 254

Ou Potential set 1 5.411 554 125 124 268V-4 Potential set 2 5.411 573 148 147 289
Experiment (38,71) 5.411 403 105 60 204

Experiment (39) — — — — 236

The two experimental determinations of the bulk modulus are 204 GPa from the 

elastic constants determined by Nakajima (71), and 236 GPa from Gerward et al. (39); 

the HF estimate of 221 GPa, both as linear combinations of the Cyy and Cn values, as 

well as from fitting the energy versus volume curve, lies within the two experimental 

measurements. The HF value of the Cyy and Cŷ  elastic constants and also of the bulk 

modulus, calculated as detailed earlier, agrees quite well to the experimental values 

these papers report.

Comparing the results of the all-electron and pseudopotential calculations, we notice 

in table 4.6 that the Hartree-Fock calculations yield a lattice parameter of 5.52-5.54Â 

when the Hay and Wadt pseudopotential basis set is used, or 5.53-5.57Â using an 

all-electron basis set. We believe that the small discrepancy of -0.01 Â between these 

two values is due to relativistic effects, which are important for heavy atoms such as Ce. 

While the all-electron calculations do not include relativistic effects either, the 

derivation of the Hay and Wadt pseudopotential made use of a relativistic Hamiltonian 

which provides a slightly smaller effective radius for the core states. Comparison of the 

two values suggest therefore that the pseudopotential basis functions are a good 

approximation to the all-electron basis set, but also that the pseudopotential basis set 

optimised in this work provides a good representation of the properties of bulk ceria.
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The energy minimised lattice parameter and the symmetry unique elastic constants of 

bulk ceria have also been calculated with the pseudopotential basis sets complementing 

the Hartree-Fock results with an a posteriori estimate of the correlation energy. This 

correction is evaluated using the correlation-only Perdew-Wang 91 (often referred to as 

the Perdew-91 functional) density functional (24) on the HF electron-density. This 

correlation contribution was not included self-consistently into the calculation of the 

ground state electronic wavefunction; instead, the energy minimisation of the cubic 

geometry was performed using the correlation-corrected energy rather than the pure 

Hartree-Fock energy as before. The a posteriori corrected calculations have been 

labelled as ‘HFC’ throughout this thesis.

When the estimate of the energy contribution due to electron correlation is included a 

posteriori^ the modified energy surface has a minimum much closer to the experimental 

lattice structure: the calculated lattice parameter is in fact reduced to 5.419 A. This 

result would tend to suggest that electron correlation effects are important in CeOz, 

although it must be remembered that the Perdew-91 correlation function was not 

designed to be used in conjunction with the Hartree-Fock exchange.

When comparing calculated and experimental results we should finally take into 

account that experimental studies are conducted at high temperatures (usually room 

temperature or above), while the current ab initio calculations have been performed at 

an effective temperature of absolute zero, therefore thermal expansion ought to be taken 

into consideration.

Table 4.7: Comparison of various 
modulus in CeOi

equations of state in determining the bulk 
at the Hartree-Fock level.
t̂ cub (Â) Emin (Ha) B (GPa)

(Cii+2Ci2)/3 5.546 — 2 2 1

Parabola 5.546 -188.07163 218
Mumaghan (69) 5.546 -188.07164 227

2̂  ̂order Birch-Mumaghan (6 6 ) 5.546 -188.07164 223
3*̂  ̂order Birch-Mumaghan (6 6 ) 5.546 -188.07164 227

3̂"̂ order Lagrangian 5.546 -188.07164 227
Davis and Gordon (6 8 ) 5.546 -188.07164 227

Bardeen (31) 5.546 -188.07164 227
Slater (16) 5.546 -188.07164 227

Brennan and Stacey (67) 5.546 -188.07164 227
Experiment 5.411(38) — 200-240 (39,71)
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Often determination of the individual elastic constants for a material is an extremely 

lengthy computational process: the required deformation can involve rather complex 

stress tensors and internal relaxations in non-cubic systems in fact. This is a less severe 

problem in cubic crystals such as ceria, and we have exploited the structural simplicity 

of the unit cell to evaluate the three symmetry independent elastic constants C n,C i2 and 

C 4 4 .  Moreover, once the internal energy has been calculated as a function of unit cell 

volume, we can also employ one of the several different equations of state reported in 

the literature (66,69) for determining the minimum energy lattice parameter 

(16,31,67,68), and the corresponding bulk modulus, B, for the solid.

Results for ceria are presented in table 4.7. The bulk modulus, B̂  is directly 

proportional to the curvature of the energy surface surrounding the minima, with the 

actual value (and the functional dependence of the energy on the volume V) being 

defined by the equation of state in use. The general process corresponds to a fit of the 

parameters of the chosen equation of state to the calculated energy surface: E=fiY). 

Table 4.7 lists the calculated bulk modulus as determined from a fit to eight different 

equations of state, as well as to the a simple parabola, and also from a linear 

combination of the Cu and C12 elastic constants as explained earlier in section 2 . 1 0 .

It is clear from this table, that all equations of state considered provide the same 

value for the bulk modulus, minimum energy volume per CeOi formula unit (a direct 

measurement of the internal energy at the minimised cubic lattice parameter), and more 

importantly that a simple parabolic fit appears already of adequate accuracy in 

detennining the minimum energy lattice parameter and bulk modulus.

Table 4.6 (on page 63) lists the physical properties calculated for bulk Ce0 2  at the 

HF level, while table 4.18 (on page 84) lists the corresponding values calculated for c- 

Zr0 2 . The calculated figure for C44 is quite considerably larger than experiment in both 

ceria and zirconia -  because a rigid deformation of the unit cell, without allowing the 

fractional coordinates to relax, does not take into account that the metal-oxygen bond, 

lying along the < 1 1 1> crystallographic direction, is able to stretch and deform during 

the C 4 4  relaxation. This relaxation reduces the total energy and thus make the 

deformation ‘easier’ and softer than predicted from a strictly rigid model of the C 4 4  

defonnation. To correctly account for this effect, it was necessary to fully relax the 

metal-oxygen separation for each magnitude of the applied external stress, and
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determine the ‘true’ (i.e. relaxed) value of C 4 4  from the curvature of the energy surface 

formed from these relaxed minimum energies, rather than the unrelaxed energies. Table 

4.2 reports both of these figures, with the relaxed values being given in parenthesis.

The relaxation produces a significant reduction in the value of C44, in ceria it is 

reduced from 164 GPa to 119 GPa (at the Hartree-Fock level), and from 166 GPa to 

128 GPa in zirconia; a decrease of over 20%. In both materials the effect has a similar 

magnitude -  hinting to a similar chemical behaviour of the metal-oxygen interaction in 

both ceria and zirconia in the fluorite structure. The amount of metal-oxygen relaxation 

was roughly identical in both cases: 0.03Â for an external strain tensor (e) with 

individual elements (defined in section 2.10) ranging between -0.05 < % < 0.05.

Even after this relaxation effect is included into the model, the calculated values of 

C 4 4  are still around twice the experimental value. As we shall see later in the discussion 

of zirconia, extension of the oxygen basis set to allow for a better description of the 

oxygen ion polarisability by inclusion of af-orbitals further reduces this figure, although 

it continues to remain significantly larger than the experimental value.

Results of interatomic potential (IP) calculations on ceria are also reported in table 

4.6, the agreement of such calculations to the current ab initio calculations is, in general, 

satisfactory for the optimised geometry of this cubic phase. The optimised geometry 

obtained with IPs reproduces closely the experimental structure, as we would expect 

since the equilibrium structure was among the experimental observables against which 

the parameters of the interatomic potential set were originally fitted. However, the 

agreement between the elastic constants calculated from IP calculations and their 

experimental and HF values is not as good, for either ceria potential set used, being on 

average 40% higher {Cu). This result implies that the interatomic potential parameters 

used here overestimate the rigidity of bulk ceria towards external deformation.

The minimal basis set of Hill and Catlow (49) predicted the bulk modulus of CeOz to 

be 357 GPa, in comparison to 221 GPa with the present split-valence quality basis 

functions. The poor representation of the 0^‘ ions with the minimal basis set clearly 

shows in the high calculated value of B\ a minimal basis set does not allow a sufficient 

relaxation of the electronic distribution on changing the cell volume, thus resulting in a 

large overestimation of the calculated bulk modulus.
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We shall now examine the metal-oxygen bonding properties of bulk ceria. This can 

be achieved in two ways: firstly by examining the dispersion of energy levels in 

reciprocal space (the band structure of the solid); and secondly by analysing the 

calculated electronic distribution.

If a crystal were composed of perfectly non-interacting ions, i.e. each ion has distinct 

and separate orbitals which do not combine to form molecular (crystalline) orbitals with 

neighbouring ions, then we would expect to find a set of dispersion-less energy levels in 

reciprocal space: i.e. if we plot the energy levels along a path in reciprocal space, they 

would be perfectly flat. In such a case, the material would be 100% ionic.

In practice, however, orbitals on the metal and oxygen ions do interact, and combine 

into crystalline orbitals. The energy levels change depending on the extent of the metal- 

oxygen hybridisation; the single atomic orbitals are converted to Bloch functions within 

CRYSTAL, each Bloch function being modulated by a wave-like coefficient e'̂ *”: the 

extent of the metal-oxygen interaction will, in general, differ at different points of 

reciprocal space (k), giving rise to a dispersion of the energy levels in the band- 

structure. The deviation from perfectly flat bands allows us to examine the nature (and 

effectiveness) of the metal-oxygen interactions: as a general rule, the greater the energy 

dispersion, the more effectively metal and oxygen AOs are mixed in the crystalline 

wavefunction. In oxides where the metal has a formal electronic configuration of 

as is the case with ceria (and also zirconia), then metal-oxygen interactions are 

bonding in the valence band (VB), in which the 0(2/?) energy levels are stabilised 

relative to the perfectly ionic solution, while the conduction band (CB) contains anti­

bonding combinations of the M{d) and 0(2/?) AOs.

In crystals where the interactions are highly directional, i.e. where the bonding is 

predominantly covalent, such as diamond, we observe very large deviations from a 

perfectly flat band as we move across bonding and non-bonding regions of the crystal. 

In contrast, in a perfectly ionic material there will be much smaller dispersions. We are 

therefore able to estimate the degree of ionicity in the crystal in a way complementary 

and independent from standard methods of analysis, such as the population analysis of 

the electronic density. Both techniques will be applied in this chapter to compare the 

metal-oxygen chemical bonding in ceria and zirconia.

Page 67



Chapter 4: Fluorite

Before examining the calculated band structures, it is important to mentions that HF 

calculations will overestimate the band gap compared to experiment; the difference 

being a factor of two or more in many cases. In our calculations we shall compare the 

features of the band structure for ceria and zirconia, in which we have used the same 

Hamiltonian, computational tolerances and oxygen basis set, and where the metal ion 

basis sets have an equivalent quality, all of which permit a meaningful comparison of 

the two materials, at least qualitatively.

Figure 4.5 illustrates the HF band structure calculated for ceria at the energy 

minimised geometry. Alongside the band structures, we also show the Density of States 

(DOS) calculated for the crystal. This is a plot of the relative number of orbitals in the 

crystal which have a particular energy: the width of a peak on the DOS plot indicates 

the extent of the dispersion of a set of energy bands in the same way the dispersion can 

be seen on the band structure plots. The total DOS includes all orbitals present in the 

system, in addition we are also able to plot the levels due only to a given set of bands in 

the band structure (for example, only the oxygen J-levels), creating a plot known as the 

Projected DOS (PDOS).

The DOS for ceria is shown in figure 4.6 and includes both the total calculated DOS 

and the individual projections (labelled as the PDOS plots in figure 4.6) of the total 

DOS onto the basis functions of the metal and the oxygen ions, as labelled. From the 

DOS, we clearly see that the levels immediately below the Fermi level (J?/, defined 

throughout this thesis as the highest occupied energy level) are due to the oxygen 

orbitals (more specifically, the Ip  orbitals) and the first set of levels above Ef have 

important contributions from the metal ions (they are in fact the Ce Sd orbitals). This 

configuration is as we would intuitively expect, in the formation of the crystal from 

isolated gaseous atoms, electrons are transferred from the metal towards the oxygens: 

the oxygens therefore acquire a net negative charge, and the metal ions become 

positively charged.
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Figure 4.5: The Hartree-Fock calculated band structure for the energy
minimised geometry of CeO^.
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Figure 4.6: The Hartree-Fock calculated total Density of States (DOS) for 

CeOz. Atomic projections (PDOS) onto the metal and oxygen ion basis 
functions are also shown.

The band structure shown in figure 4.5 is plotted for the path (across reciprocal 

space) illustrated in figure 4.7 -  chosen to connect the origin o f reciprocal space (G, or
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F) with the three points (X, M, and T) on the edges o f the first Brillouin zone. The 

labelling o f the individual points used in the band structure is summarised in table 4.8, 

for reference. The minimum energy band gap is a direct transition occurring at the M 

point o f reciprocal space; it corresponds to an energy difference of 14.01 eV between 

the oxygen 2p (located at Ef)  and the cerium 5d  levels. The experimental figure for the 

band gap is believed to lie in the range o f 3-6 eV, a figure quoted by Norenberg and 

Briggs (72,73) from an aggregation o f the experimental works by Marabelli and 

Wachter (74), Butorin et aL (75), Pfau and Schierbaum (76) and Koelling, et al. (77).

Figure 4.7: This figures illustrates graphically the path across the irreducible 
Brillouin zone used to plot the band structures shown in figure 4.5.

Table 4.8: Description of the labels used in plotting the cubic band structures.
Coordinates in Brillouin Zone Label o f Point

0, 0] G (the r  point)
' ^ 0 , 1 ] X

1, I] M
*/2[l, 1, 1] T

The experimental difficulty in assigning a more precise value to the band gap is due 

to the presence o f dopant ions in the bulk phase -  obtaining a highly pure sample o f 

CeO] is in fact extremely difficult. Even the smallest quantity o f dopant materials may 

have a significant effect on the energy levels, since dopants and defects are likely to 

introduce defect levels in the band gap or close to the edges o f the valence and 

conduction bands. It will therefore affect the measured band gap. The same dopants 

however, do not affect the other observables of bulk CeO?, such as the lattice parameter; 

the cubic lattice parameter o f ceria remains 5.411 À even in systems with 20% of the Ce
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ions substituted by dopant metals. Even accounting for dopant effects, the calculated 

figure o f 14 eV is more than twice the accepted experimental value, as we expect from 

the HF calculations. The HF Hamiltonian in fact does not provide an accurate 

description o f unoccupied orbitals, whose energies are much higher than we would 

normally expect. This phenomenon is a well understood and recognised failing o f HF 

calculations. For comparison, the band gap detennined by Hill and Catlow, 11.25 eV, is 

similar to that calculated here, and also overestimates the experimental value.

g
S -5-
croÛQ

- 10-1

-15 H--------------- ----------- -----------------------------------
X G T M G

Figure 4.8: CASTEP calculated band structure of ceria (GGA).

DFT calculations, on the other hand predicted a band gap o f 8.16 eV (GGA, 

CASTEP), a figure much closer to experimental observations. The CASTEP calculated 

GGA band structure and DOS are shown in figures 4.8 and 4.9. From analysis o f the 

DOS, we can assign the levels m the conduction band mainly to the metal ion d  and /  

functions, the / functions being slightly higher in energy than the d  (and therefore the d  

levels will be occupied before the /  levels, an important consideration that will be 

examined further in section 4.4.2). As in the CRYSTAL HF calculations, levels in the
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valence band are mainly due to the oxygen 2p levels (in the DOS, the energy levels at 

-28 eV are due primarily to oxygen 2s states, which are not included in figure 4.8). It 

should be noted here that the CASTEP band structure is shown for the conventional unit 

cell, rather than the primitive unit cell which the CRYSTAL calculations make use of. 

This is the cause o f the additional bands in figure 4.8.
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Figure 4.9: The calculated band structure obtained from the plane wave code 

CASTEP on the optimised structure of bulk CeO^. The total density of states is 
indicated by the red dashed line, with the bands due to the metal ion d  and/- 

levels indicated by the solid green and blue lines respectively. From this figure 
we can clearly see that the d  levels are slightly lower in energy than the/levels  
in the stoichiometric oxide. T he/levels are important for the description of the 

oxide, but in an ionic material such as the bulk phase they can be safely 
neglected without severely disrupting the calculated properties of the band

structure.

In table 4.9 we have reported the calculated ionic charges for the energy minimised 

structure, assigned to the ions using a Mulliken scheme (78). In CRYSTAL, the 

Mulliken charge partitioning scheme simple splits the electrons in a particular 

crystalline orbital and assigns an amount o f charge to every ion depending on the 

weighted proportion that the atomic orbitals on that ion contribute to the crystalline 

orbital. For example, if  a crystalline orbital were found to be composed o f 2x20% 

oxygen orbitals and 60% cerium orbitals, and contained a total charge o f 0.1 electrons, 

then the Mulliken scheme would assign (0.1x20%) = 0.02 electrons to each oxygen ion, 

and the remaining 0.06 electrons to the metal ion. By summing over all crystalline
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orbitals, we can attribute each and every electron present in the system to a particular 

ion.

Table 4.9: Mulliken charges, and bond populations calculated for bulk CeO^, at
the HF level.

CRYSTAL 
Hay and Wadt/8-51G

CASTEP
GGA Hill and Catlow (49)

g(Ce) +3.461 +1.410 +2.350
Mulliken gb(CeO) -0.043 +0.200 +0.160

del) G(0) -1.730 -0.705 -1.175
(?b(00) -0.030 -0.070 —

Band Width CQd 7.01 — 8.86
(eV) O p 5.35 — 5.80
Band Gap (eV) 14.01 8.16 11.25

The situation is somewhat different in plane-wave codes such as CASTEP: plane 

waves are delocalised, and cannot be attributed to any particular ion in the material. 

Instead, the plane waves are projected onto the ions using a localised basis set according 

to the method proposed by Sanchez-Portal (79), and implemented into CASTEP by 

Segall et al. (80,81). Various atomic properties, such as the Mulliken charge or the local 

bond populations, can then be calculated using the localised basis rather than the 

complete set of plane waves. The atomic charges obtained from such an analysis will 

always be less accurate than those obtained from the CRYSTAL implementation, since 

the choice of localised basis set projection employed in CASTEP will greatly affect the 

final charges obtained.

In a perfectly ionic system, the ionic charge would be the formal charges: +4 for Ce, 

and -2 for O. The current HF calculations instead attribute +3.461 electrons to the metal 

ions and -1.730 electrons to the oxygens, demonstrating that this phase has a limited 

degree of covalency, but remains highly ionic in the current study.

In addition, a bond population analysis attributed a slightly negative electron 

population (-0.043 |e|) to the Ce-0 bond in the current HF calculations. The bond 

population provides information regarding the number of shared electrons between the 

two ions, and therefore gives an indication as to the extent of covalency present in the 

material. In the current CRYSTAL HF calculations, both of the important ionic 

interactions (Ce-0 and 0 -0 )  in the bulk material were assigned a negative bond 

population, indicating that the electrons associated with the ‘bond’ in question belong to
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neither of the ions simultaneously -  instead they belong to only one of the pair. This 

finding is interpreted as an ionic interaction, therefore the current HF bond analysis 

demonstrates the high ionicity of the bulk phase, but at first appears to disagree with the 

predictions of Hill and Catlow, and also of the current CASTEP calculations.

The CASTEP result can be explained quite simply: the use of non-local plane waves 

makes determination of localised phenomena such as bond populations rather arbitrary, 

a comparison to results from an atom-centred basis set will always differ, with the latter 

often providing the more realistic description of the solid. However, the results of Hill 

and Catlow are a different matter: the minimal basis set employed in their calculations 

is unable to provide a sufficient amount of variational freedom in the description of the 

material. A consequence of this effect, mentioned previously in this discussion, is that is 

becomes necessary for the unoccupied functions on the cations to be used to describe 

the valence electrons on the oxygen ions. This effect manifests itself as a spurious Ce-0 

covalence in the bond population analysis, as the orbitals on the metal ion now seem to 

contain electrons from the oxygen ions, and therefore have a positive bond population -  

however this is certainly not the case.

The shortcoming of the basis set of Reference (49) may also help to explain the 

understated cubic lattice parameter (compared to the experimental value) and also the 

significantly higher bulk modulus predicted: the spurious metal-oxygen interaction acts 

to ‘bind’ the two ions together more tightly than normal, reducing the lattice dimensions 

and increasing the rigidity of the bulk material.

e

# A

Figure 4.10: Location of electron density cross-sections in the fluorite unit cell.
Figure (a) shows the {Oil} plane; the remaining fîgures show the two 

considered positions of the {001} plane, chosen to intersect (b) the oxygen ions;
or (c) the metal ions.

»
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In figures 4.11 and 4.12, we report difference electron density plots obtained from 

the current HF calculations across the {011} and {001} crystallographic planes. These 

images are produced by subtracting, from the calculated equilibrium electron density of 

the bulk material, the electron density which would have been obtained if completely 

non-interacting isolated ions were placed at each of the lattice sites. Such images 

therefore allow a clear assessment of the effects of covalence, and illustrate graphically 

any charge transfer which occurs on formation of the crystalline lattice from isolated 

gaseous ions. There are two distinct positions of interest for the {001} plane, either (a) 

intersecting the metal ions, or (b) intersecting the oxygen ions -  both of which are 

examined in figure 4.12. For clarity, images illustrating the surfaces along which the 

electron density cross-sections are plotted are given in figure 4.10, which clearly 

distinguishes between the alternate choices used for the {001} plane.

Superimposed onto the electron density contour maps are the position of the ions in 

the material -  the standard colours used throughout this thesis of blue cations and 

yellow anions is repeated here, although only for those ions intersected by the cross- 

section. The cations coloured in grey, and the anions coloured in green denoted the 

locations of ions close to the plane, but which do not intersect it.

The contours maps presented in these figures represent the change in electron density 

which occurs during the SCF part of the calculation, they are generated by taking the 

electron density created by non-interacting ions located at the appropriate sites in the 

crystal, and then subtracting this density away from the calculated density of the fully 

optimised crystal. Contour maps of this type provide a greater insight into the chemical 

properties of the crystal, and illustrate the electron transfer which must occur on 

formation of the crystal from the isolated gaseous ions. The individual contours in these 

images range from -0.05 |e| to +0.05 |e|, with 30 contours used to span the density 

range. The contours are coloured such that the lower end of the scale (close to -0.05 |e|) 

are plotted in the ‘colder’ colours: blue and purple, while contours at the high end of the 

scale are coloured ‘warmer’ colours: red and orange. Contours in the middle of the 

range are coloured from green (slightly negative) to yellow (slightly positive). Note that 

in an electron difference plot, regions which become electron-rich (negatively charged) 

during formation of the crystal (in comparison to the isolated atomic electronic 

structure) are indicated by the positive contours, since these have a higher electron
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density. Conversely, regions which become electron-deficient (positively charged) are 

indicated by the negative contours.

Figure 4.11; Difference HF electron density maps for the {011} plane in bulk 
ceria. Grey cations, and green anions are out of the plane examined, the blue 

cations and yellow anions lie in the plane.

We see from figures 4.11 and 4.12 that there is no significant electron transfer 

apparent in the bulk phase calculated here. Just a small back-donation of electrons from 

the (formally charged) Ô ' ions into the /̂-levels of the Cê  ̂ can be seen, in agreement 

with results from the Mulliken population analysis. There are no significant 

cation-cation interactions visible, and only a small repulsion of electrons in the regions 

between neighbouring oxygen ions (see figure 4.11). This is as we would expect for a 

highly ionic material like ceria: the individual ions act as roughly hard spheres, 

interacting to a very small extent with the surrounding ions. For this reason, we believe 

that calculations using the IP Hamiltonian would be capable of providing a reasonably 

accurate model of this material.
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v ; v-v wÊom
\ / # a   ̂ C( #D#

G e
Figure 4.12: Difference HF electron density maps for the {001} plane in bulk CeOj. 

Figure (a) intersects the metal ions, while figure (b) intersects the oxygen ions 
(shown in figure 4.10). Grey cations, and green anions are out of the plane 

examined, the blue cations and yellow anions lie in the plane.

4.4.2 Importance of the Ce f-levels In bulk Ce02

It was remarked earlier in this thesis that the CRYSTAL program does not currently 

permit the atomic basis sets to include /-type functions in either the valance Gaussian 

contractions, or the pseudopotentials used on the heavy metal ions. For the purpose of 

the calculations reported so far, it has been assumed that the 4f levels present on the 

Cerium ions are unoccupied in the (highly ionic) bulk phase of Ce02. The results 

presented in the previous section appear to suggest that this necessary assumption is 

valid, although here we aim to quantitatively demonstrate that this is the case.

The precise electronic configuration of Ce(IV) in the solid state has been a pertinent 

question for quite some time: several experimental studies have attempted to ascertain 

the ‘true’ description, and in so doing begin to explain some of the more 

uncharacteristic properties of CeOz.

The common viewpoint among many is that proposed by Wuilloud et al. (52) in 

which the /-levels are completely unoccupied in the bulk phase. The same situation does 

not hold for non-stoichiometric samples, since Wuilloud’s experiments revealed a series 

of completely unoccupied /levels within the band gap, while the conduction band 

demonstrated non-negligible /character. Therefore, in an appropriately doped sample
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we would expect back-donation of electrons onto the metal ions, which we would 

expect to occupy the lowest energy /-levels just described.

To further verify Wuilloud’s model, we performed additional calculations on the 

bulk and {011} surface of ceria using the molecular HF code Gaussian94 (30), which 

allows us to use the same Hay-Wadt pseudopotential and a similar set of valence 

functions as the CRYSTAL calculations.

In the Gaussian94 calculations, the {011} surface is represented by the CeeOii 

cluster illustrated in figure 4.10, while the bulk phase was modelled by a cluster of 21 

ions (12xCe, 9x0) representing the bulk unit cell as shown in figure 4.1. These ions are 

then embedded in a grid of point charges, used to represent the Madelung potential of 

the infinite crystal and its effect on the ions in the cluster.

Figure 4.10: The Ce^Oiz {011} surface cluster used in the Gaussian^  ̂cluster 
calculations. The cluster is surrounded by an array of -7000 point charges to 

simulate the infinite crystal, and the central CeOz atoms in this cluster 
(highlighted by the red halo in the figure) were relaxed to a minimum energy

configuration.

The optimised geometry of the bulk and surface systems obtained with two different 

cerium basis sets (one containing/states and a second in which they had been removed) 

were compared to one another in an attempt to determine the effect that the/levels have 

on the electronic and structural properties of stoichiometric CeO], in both bulk and 

surface environments. In the surface calculations, the positions of the ions highlighted 

in red were energy minimised, all remaining ions were kept stationary in their bulk 

equivalent lattice positions.
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Table 4.13: Summary of results from Gaussian and CASTEP bulk ceria 
calculations compared to CRYSTAL results.

Gaussian
w ith /

Gaussian
n o /

CRYSTAL
HF/8-51

CASTEP
GGA

(PW-91)

Experiment

rCeO (Â) 2.344 2.343 2.401 2.347 2.343
ĉub (Â.) 5.413 5.411 5.546 5.449 5.411

Qce  (|e|) +3.242 +3.390 +3.461 + 1.41
-1.621 -1.677 -1.730 -0.710

O /C eo; --------- — -1.730 -0.705 —

q / o o ; --- — -0.030 -0.070 —

0.06 — — 0.860 0(52)

This test with molecular calculations has been extended to the full cluster of figure

4.10, since metal ions lying on a surface are expected to possess a higher electron 

population than equivalent ions in the bulk due to the lower Madelung field at the 

surface. Surface ions are therefore more likely to have occupied /-levels than the 

corresponding bulk species, and the test employing the surface cluster is more stringent 

than the corresponding bulk-like cluster. It is also important for the CRYSTAL surface 

calculations reported in chapter 6 that the /electron effect be negligible in such 

simulations, as well as in the bulk phase.

Table 4.14: Summary of results from the Gaussian and CASTEP surface {011} 
calculations compared to the six layer CRYSTAL calculations. r(CeO) refers to 
the distance from the surface Ce ion to the oxygen in the sub-surface layer (the

Gaussian HF CRYSTAL
(HF/8-51)With F No F

Surface
Layer

Qce +2.16 +2.37 +3.05
Qo -1.32 -1.49 -1.54

0.17 — —

rfCgCy (Â) 2.228 2.229 2.272

Central
Layer

Qce +3.24 +3.39 +3.45
Qo -1.59 -1.68 -1.72

..... 0.06 — —

The surface calculations show the metal ion /levels  to contain just 0.17 electrons on 

the outermost surface ions, falling to 0.06 electrons on metal ions deep in the bulk 

material. In all cases examined here, the population of the /̂-levels was greater than that 

of the /levels, suggesting that these are more important than the /levels  in the 

stoichiometric bulk and surfaces examined here. Most importantly, the changes in the
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energy minimised configuration of the bulk and surface clusters studied here after 

inclusion of the Ce /-levels was negligible in comparison to the accuracy of the 

calculations themselves, being well within the background noise expected from a 

change of basis set: the Ce-0 bond in the surface cluster for instance was shortened by 

less than 0.001 Â when/states were included in the Ce basis set.

These results are in agreement with the conclusions reported by Wuilloud et al: in 

stoichiometric ceria, the /leve ls  remain completely unoccupied. This situation will not 

hold, however, for non-stoichiometric ceria in which the Ce"̂"̂ ions are reduced to Cê .̂

4.4.3 Zirconia

In contrast to CeOi, the experimentally determined properties of c-ZrOi are less 

well-defined, due to the experimental difficulties encountered in studying the pure cubic 

phase -  c-ZrOi is stable only at temperatures above 2600K, as can be seen in the 

schematic of the phase diagram shown earlier in figure 4.2. For this reason, there is a 

large uncertainty in the experimental values, even for simple observations like the 

lattice parameter of the pure cubic phase. Two distinct experimental techniques have 

been used to attempt to determine the lattice parameter:

1. X-ray diffraction (XRD) studies of pure ZrOi, performed at extremely high 

temperatures. The observed lattice parameter is then corrected for thermal 

expansion to provide a room temperature equivalent. At such high temperatures, 

thermal motion of the ions produces a significant broadening of the measured 

spectra, causing great difficulties in accurately refining the geometry.

2. XRD studies are performed on samples of Y2 0 3 -stablised c-ZrOz, having 

varying concentrations of Y2O3. Experimental work by Gluskhova et al. (82) 

determined that the cubic phase is stabilised when the dopant concentration is 

greater than 8  mol%. The lattice parameter of pure Zr0 2  is determined by 

extrapolating the value obtained for the doped materials to the limit of zero 

dopant concentration, assumed to represent the undoped Zr0 2  crystal. The 

elastic constants of cubic zirconia reported in this thesis were obtained with this 

technique by Kandil, et al. (43).
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The generally accepted lattice parameter of c-ZrO:, as rationalised in the discussion 

by Mackrodt and Woodrow (42), lies in the range of values from 5.1-5.2Â;. We 

commonly take the mid point, 5.15 Â, for convenience in some of the following 

calculations.

In the following discussion, HW shall refer to calculations performed using the 

small-core pseudopotential by Hay and Wadt, while SP refer to those using the 

pseudopotential by Stoll and Preuss; the label ‘AE’ is used to denote the use of an 

all-electron basis set. Table 4.17 lists the optimised lattice parameter and bulk modulus 

of the cubic phase calculated with several Hamiltonians (in the current work) in 

comparison to several similar ab initio calculations (and the IP study by Balducci et al.) 

performed in recent times, and the available experimental data.

It has been mentioned several times in this thesis, that the minimum energy 

configuration of the material is determined through a parabolic fit on the calculated 

internal energy surface of the material, using the chosen basis set and Hamiltonian in 

question. Clearly, if accurate results are to be obtained, the quality of this fitting must be 

high -  and therefore we must be sure that:

(a) a parabolic fit forms a sufficient model of the calculated energy profile, and

(b) the number of points used to sample the energy surface span a sufficiently wide 

range to be able to reproduce accurately the internal energy profile of the solid.

To assess both of these factors, the fitting is performed using a series of polynomials 

ranging from a parabola (a polynomial of order two) through to the more complex sixth 

order function. A collection of eleven data points were chosen, with the central point 

being the minimum energy configuration; the energy profile for a collection of eleven, 

nine, seven and five data points are used to calculate the coefficients of the polynomials 

used here, and the minimum point calculated. In addition, the bulk modulus of the solid 

-  being directly proportional to the rate of curvature of the energy surface at the 

minima, can be reported for the same set of data points. In tables 4.15 and 4.16 we 

report the calculated minimum energy lattice parameter and the corresponding bulk 

modulus for each of these cases (using a strain tensor with components <^-0.05... 0.05).
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Table 4.15: Determination of Ucut zirconia (HayWadt/8-51G) by a fit to

Order of 
Polynomial

Number of Data Points
11 9 7 5

2 5.149 5.150 5.150 5.152
3 5.147 5.147 5.147 5.147
4 5.147 5.147 5.147 5.147
5 5.147 5.147 5.147 —

6 5.147 5.147 5.147 —

Table 4.16: Determination of in zirconia (HayWadt/8-51G) by a fit to

Order of 
Polynomial

Num )er of Data Points
11 9 7 5

2 269 262 257 253
3 274 274 274 273
4 273 273 273 274
5 272 272 271 —

6 274 274 274 —

There is a clear ‘central’ region in these tables, where the calculated minimum 

energy lattice parameter and the predicted bulk modulus of the material are invariant of 

both the number of data points used in the fit and the order of the function used in the 

fitting, being 5.15 Â and 270 GPa. We can conclude from this that a parabolic fit to the 

calculated energies is a close enough representation to the lattice parameter and the 

predicted bulk modulus for our requirements, compared to the experimental values, 

provided (or course) that enough points are included in the fitting.

Use of a higher order polynomial in the fitting provides a smaller lattice parameter 

(and therefore a larger bulk modulus) than the simple parabola, although all remain well 

within the experimental range of values and there appears little to be gained from use of 

a higher order polynomial.
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Table 4.17: Geometric data obtained from a geometry optimisation of the cubic 
phase of ZrO;. Results from the GW approach (Kralik, et at) (83), experiment 

and the large-core pseudopotential used by Orlando et al (51) are given for

a(Â) V/atom B (GPa)
HFHW 5.125 11.22 273

o HFAE 5.130 11.25 285
p: HFCHW 5.010 10.48 325
g LDA HW 5.067 10.84 273
3 GGAHW 5.150 11.38 241
o B3LYP HW 5.145 11.34 244

Orlando (51) 5.035 10.64 222
Stapper (58) 5.078 10.91 268

Fabris TB (56) 5.020 10.54 310
Finnis LMTO (57) 4.996 10.39 —

Kralik (83) 5.035 10.64 —

Balducci (44) 5.050 10.73 285
Experiment (42,84) 5.121-5.191 11.19-11.66 194 - 254

The study by Kralik et a i makes use of a GW extension to traditional DFT 

calculations: the DFT calculated band structure is modified through use of a 

quasiparticle approximation to the electron. Such a technique is rather new and 

extremely difficult to apply, although it is believed to replicate the salient features of the 

band structure more accurately then either HF or DFT currently can.

We see from this table that all of the current calculations, either HF or DFT provide 

remarkably similar values for the optimal geometry of this material, more importantly 

which are also in good agreement to the other quoted results. A more comprehensive 

listing of the individual elastic constants determined in several of these studies are given 

in table 4.18, in which one of the most important results to note is the good 

correspondence of the all-electron calculations to those using the two pseudopotentials 

studied here. All calculations using the standard 8-510 oxygen basis set are in good 

agreement when we examine the optimised geometry of the cubic phase, as are those 

performed using the enhanced 8-41 IdG set. In addition, the predicted energy minimised 

lattice parameter is within the range of data observed experimentally.
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Table 4.18; The physical properties calculated for bulk stoichiometric c-ZrOz

Basis Set ĉub Cl I Ci2 C 4 4 B
Zr 0 (A) (GPa) (GPa) (GPa) (GPa)

HW 8-51 5.130 617 97 128 270
8-411* 5.125 617 84 91 262

SP 8-51 5.136 611 88 124 263
8-411* 5.136 617 80 84 259

AE 8-51 5.152 645 110 143 290
8-411* 5.131 660 107 98 286

Orlanc 0  et a l (51) 5.035 628 19 82 222

HW 8-51 5.030 666 119 202 301
HFC 8-411* 5.015 — — --- 325

Ph Balducci et al. (44) 5.035 616 120 101 285
HH Mackrodt and Woodrow (42) 5.121 841 162 75 388

Experiment (42) 5.191 401 163 55 242
Experiment (43) --- 417 82 47 194

The figures for the currently calculated bulk moduli reported in tables 4.17 and 4.18 

were determined in the same manner as previously used in ceria: the calculated internal 

energy was determined as a function of cell volume and then fitted to a collection of 

equations of state in the literature, a sample of which (for the HW/8-51G calculations) is 

listed in table 4.19. We see here that all equations of state provide a similar value both 

the lattice parameter and the bulk modulus, thus reinforcing our confidence in values 

reported here.

Table 4.19: Comparison of various equations of state in determining the 
modulus in ZrOj at the Hartree-Fock level.

bulk

(̂ cub (A) Emin (Ha) B(GPa)
(Cii+2Ci2)/3 5.130 — 270

Polynomial (see tables 4.15 and 4.16) 5.147 -196.12782 273
Mumaghan (69) 5.147 -196.12776 272

2"̂  order Birch- Muma^an (66) 5.147 -196.12777 274
3̂  ̂order Birch- Mumaghan (66) 5.147 -196.12776 273

3̂"̂ order Lagrangian 5.147 -196.12778 275
Davis and Gordon (68) 5.147 -196.12776 273

Bardeen (31) 5.147 -196.12776 273
Slater (16) 5.147 -196.12776 273

Brennan and Stacey (67) 5.147 -196.12776 273
Experiment (42,43) 5.121-5.191 — 220-245

The reported experimental elastic constants determined by Kandil et al. (43) are also 

replicated with reasonable accuracy in table 4.18: the calculated value of Cu
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(>600 GPa) is, however, significantly higher than the observed 417 GPa although we 

must remember that the experimental data refers to an extrapolation of doped systems to 

the limit of the pure sample -  addition of yttria increases the equilibrium oxygen 

vacancy concentration of the bulk phase, which is likely to alter the elastic response of 

the material under tensile strain quite substantially and in a non-linear manner. The 

work of Kandil used zirconia samples having yttria concentrations between 8 mol% up 

to almost 18mol%, with the cubic-phase stabilisation effect noticeable only above 

8 mol%. The trend in measured elastic properties across the 8 mol% barrier is unlikely 

to be linear, and the extent of the extrapolation is extremely large given the span of the 

experimental observations.

The values of and C44 however are much closer to those determined such a 

technique: a response which may arise as the C22 and C44 deformations require 

application of shear strains, and are therefore more dependent upon the torsional 

properties of the metal-oxygen (and oxygen-oxygen) interactions, rather than the 

compressibility of the material.

We obtained several different sets of interatomic potential parameters from the 

literature (44,48) which are listed in tables 6.1-6.3. Although we are able to compare the 

predicted elastic properties obtained from IP calculations, we must always remember 

that such parameters are often used in the initial derivation of the potential parameters, 

in particular the bulk modulus. We therefore expect our IP calculations to accurately 

reproduce the experimental bulk modulus. The agreement of the individual elastic 

constants may not be as good, unless such parameters were also used in the fitting. In 

the zirconia IP calculations (reported in table 4.18), this does appear to be the case; the 

calculated elastic properties from the two ceria potential sets are much better, 

suggesting that these constants were used to derive the potential sets. We believe that 

the discrepancy between the IP and experimental elastic constants is caused by the IP 

Hamiltonian being unable to provide an inadequate representation of the oxygen 

polarisability in the calculations, which then overestimates the rigidity of the material 

under external stresses. The predicted elastic constants are therefore much larger than 

experiment, as observed.

For this effect to be the case, we would expect that in the current ah initio HF 

calculations, the calculated value of the elastic constants would decrease as the
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description of the oxygen ion basis is improved to include polarisation functions. In 

table 4.18 this is the observed result. On changing the oxygen basis from the standard 

8-51G to the extended 8-41 IdG set, the calculated value of C72 and € 4  ̂decreases quite 

significantly, thus confirming our conclusions regarding the IP calculations.

The previous work by Orlando et al. (51), was also performed at the HF level and 

using the CRYSTAL code, but the authors employed a large-core pseudopotential on 

the metal ions, leaving two sp shells and two sets of d  functions; the oxygen basis used 

here was the same 8-51G set used in the current calculations.. On closer examination of 

their results, it was noted that they obtained the unusually small value for Cj2 of 

19 GPa, much lower than the experimental value of 83 GPa (or 163 GPa in the 

Mackrodt and Woodrow paper (42)). To attempt to understand why they obtained a 

value so small, we performed a Mulliken population analysis using the basis functions 

and optimised geometry which they had obtained, reported in table 4.20.

Table 4.20: Mulliken orbital populations of the Orlando et al. study of bulk

s { q ) sp (|e ) d ( e ) Total Ion Population ( e )
Zr — -0.006, -0.754 0.354,0.747 0.342
0 2.006 4.668 3.156 9.829

The results of this Mulliken analysis attribute an appreciably negative electron 

population of -0.760 electrons to the inner two zirconium sp contractions: which tends 

to suggest that these functions overlap appreciably with the region of space described by 

the large-core ECP, which is likely to create nodal planes in the calculated 

wavefunction. We believe that the appearance of such a small value of Cn is caused by 

this spurious description of the metal-oxygen interaction. The current high quality QM 

studies provide a figure for in excellent agreement to the figure quoted by Kandil.

The polarisation of the oxygen ions is believed to be an important factor in correctly 

modelling the non-cubic phases of zirconia, and in particular the energetics of the cubic 

to tetragonal phase transition -  the problem studied by Orlando in reference (51), and 

the application of basis functions providing a description of the metal-oxygen 

interaction as observed above could only provide misleading results.
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All theoretical studies performed on both ceria and zirconia so far have 

overestimated the value of quite considerably compared to the experimental values. 

Inclusion of polarisation functions on the oxygen ions in the current study reduced the 

calculated value of C44 substantially. Results using the large core ECP (Orlando et al.) 

gave an even smaller value for C44, indicating that their chosen basis set, and in 

particular the large-core ECP underestimate the short-range repulsion with the Zr outer 

core electrons compared to the small-core ECP and all-electron basis sets employed in 

the current study. Due to this, we believe that the calculations of Orlando et al. in. 

reference (51) overestimated the polarisability of the oxygen ions through use of the 

metal ion basis functions as extensions to the anion basis.

As noted with the EP calculations earlier in this section, a correct description of the 

oxygen polarisability is of great importance in correctly describing the elastic properties 

of the bulk material. The anomalous description of the oxygen polarisation functions in 

the work by Orlando greatly reduces the calculated elastic properties, as was observed 

here on changing the oxygen basis set from the 8-51G to the 8-41 IdG set, however it is 

not a true property of the material -  rather an inadequacy in the basis functions 

provided.

Table 4.21 lists the ground state atomic energies calculated for Zr and oxygen with a 

variety of Hamiltonians -  these figures are used in the determination of the enthalpy of 

formation of the crystal -  / l̂attice, also known as the lattice energy of the solid, using 

equation (4.1). Figures for the calculations including the a posteriori correlation energy 

are not included here, since the correlation correction is not included self-consistently 

into the calculated wavefunction, so the atomic energies reported would not be 

appropriate for a correlation corrected Hamiltonian.

Table 4.21: These are the calculated atomic energies for each of the Zr basis 
sets employed, and each of the Hamiltonians studied here (all calculations use

Atomic Energy (Ha)
Hamiltonian Zr Basis Set Zr 0 Ecaic (Ha) AE(Ha)

HF AE -3538.946464 -74.801129 -3689.113020 -0.5643
HF HW -45.978518 -74.801129 -196.160129 -0.5794

LDA HW -46.276408 -74.511115 -196.270884 -0.9722
GGA HW -46.443886 -75.075623 -197.403341 -0.8082

B3LYP HW -46 383686 -75.059191 -197.280801 -0.7787
Krâlik (GW) (83) — --- — -0.7665
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We shall now examine the electronic structure properties calculated for the bulk 

phase. A Mulliken population analysis, given in table 4.22 shows that the charge on the 

metal ions is predicted to range from -+2.2 |e| in the current DFT calculations to around 

+2.8 |e| in the HF calculations, a trend commonly observed between the different 

Hamiltonian schemes. We expect little difference between the traditional HF 

calculations and those including an a posteriori correlation correction, as the correlation 

correction is not included self-consistently into the wavefunction explicitly, its only 

influence being due to the contraction of the lattice parameter from the pure HF 

calculations (from 5.125 Â to 5.010 A) which will produce a small change in the 

effectiveness of the metal-oxygen hybridisation: the shorted ionic separation will allow 

a more effective mixing of the two orbitals, producing a negligibly higher electron 

transfer of around 0.04 |e| per cation.

Table 4.22: Electronic structure data obtained from a geometry optimisation of

Band Width 
(eV)

g(Zr) g ( 0 ) &(ZrO) gb(OO) Zr 0 Band Gap (eV)
HFAE +3.331 - 1 . 6 6 6 -0.017 -0 . 1 0 1 --------- — —

HFHW +2.788 -1.394 0.038 -0.054 7.05 7.54 13.36
HFCHW +2.751 -1.375 0.031 -0.073 7.23 7.61 13.62
LDAHW +2.127 -1.063 0.063 -0.050 6.35 6.16 3.18
GGAHW +2.205 -1 . 1 0 2 0.066 -0.034 5.63 5.76 3.15

B3LYPHW +2.330 -1.165 0.061 -0.041 6 . 0 1 6.16 4.92
Krâlik GW (83) 6.50 5.55

Orlando (51) +3.658 -1.829 -0.049 -0.063 — 7.97 12.30
Stapper (58) —

Experiment (42) 4-6

We note here that in zirconia, the bond population for the shortest metal-oxygen 

interaction is approximately 0.04 |e| in the HF calculations, and 0.06-0.07 |e| in the DFT 

calculations. This positive bond population reinforces our belief that this material has a 

limited degree of covalency, while still remaining largely ionic. Again, the inadequate 

basis set employed in the study by Orlando leads to a misleading Mulliken population 

analysis of the bulk phase: here the material is predicted to be almost perfectly ionic, 

possessing both a substantially negative Zr-0 bond population but also extremely high 

ionic charges, which are very close to the formal +IV and -II charges. As with the Hill
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and Catlow study detailed in section 4.4.1, this effect is not a property of the material, 

but rather a limitation of the basis sets.

A sample band structure, and corresponding density of states is illustrated in figure

4.11, calculated here with the HW/8-51G basis sets -  the path used is the same as in 

ceria, illustrated in figure 4.7 and with the point labels as listed in table 4.8. The band 

gap is again a direct transition occurring at the M point, with the corresponding band 

gap energy this time being calculated as 13.36 eV.

0.655

0.413

5  0.170
LU

- 0.072

Fermi Level

- 0.315

- 0.557
Figure 4.11: The HF calculated band structure of c-ZrOz, using the Hay-Wadt

pseudopotential and the oxygen 8-51G basis set.
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PDOS 
(arb. un)

PDOS 
(arb. un)

Total

DOS
(arb. un)

0.9570.185 0.571-0.587 - 0.201

E [a.u ]
Figure 4.12; The HF calculated density of states of c-ZrO^, using the Hay-Wadt 
pseudopotential and the oxygen 8-51G basis set. Projections onto the metal and 

oxygen ion basis functions are also reported, as labelled in this figure.

The calculated DOS shown here demonstrates that levels immediately below the 

Fermi level are almost entirely due to states on the oxygen ions (the 2p orbitals), while 

the first set of empty levels above the Fermi level are due primarily to levels on the 

metal ions (the Ad orbitals in this case). These same features were also observed in the 

band structure calculated for ceria, in which we also note that the topology of the energy 

levels is identical in both cases.
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Figure 4.23: Difference HF electron density maps for the {011} plane in bulk 
cubic-zirconia. Grey cations, and green anions are out of the plane examined, 

the blue cations and yellow anions lie in the plane.

In figure 4.23, we report the contour maps illustrating the equilibrium electron 

density for the bulk phases along the {0 1 1 } crystallographic plane, which cuts the cubic 

interstice occupied by the metal ions along the diagonal. This images represents the 

difference obtained when the electron density due to isolated and ions is 

subtracted from the total density, and therefore represents the backdonation of electrons 

from the filled 0(2/?) to the empty M(<Y) AOs caused by covalence effects. The contours 

in this image range from -0.005 |e| to +0.005 |e|, with the thirty contours shown spaced 

linearly across this whole range. The contours are again coloured such that the ‘cooler’ 

colours (blue and purple) represent the highly negative end of the difference density 

range, while the ‘warmer’ colours (red and yellow) represent the highly positive end of 

the range. Note that since these images are difference density plots, areas indicated as 

positive represent regions which become more positive on formation of the crystal 

lattice, i.e. electrons are moved away from the regions with red/orange contours, while 

the blue/purple areas indicate regions which receive electrons.
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»tym̂ imm

wmKm
Figure 4.24: Difference HF electron density maps for the (001} plane in bulk 

c-Zr02. Figure (a) intersects the metal ions, while figure (b) intersects the oxygen 
ions (shown in figure 4.10). Grey cations, and green anions are out of the plane 

examined, the blue cations and yellow anions lie in the plane.

These density maps confirm that zirconia is significantly more covalent than ceria: 

the electronic density on the metal ions is in fact higher in zirconia than in ceria; 

furthermore the difference electron density has a region of negative values between 

nearest neighbour Ce and O ions in CeO], excluding appreciable sharing of electrons in 

the intemuclear (bond) region, whereas in the difference electron density plot of 

zirconia there is a positive electron difference between metal and oxygen nuclei, 

indicative of a more effective sharing of electrons in the Zr-0 bonds compared to the 

Ce-0 bonds.

In figure 4.24 it is important to note the depletion of electron density (represented by 

the red contours, since such regions will be positively charged in comparison to the 

atomic density) in the regions between neighbouring oxygen ions, especially between 

the oxygens around a common metal ion. This effect is much larger in zirconia than 

previously observed in ceria, as was suggested earlier during the analysis of the band 

structures; we attribute this to the smaller lattice parameter of zirconia resulting in the 

neighbouring oxygen ions being closer to one another, and therefore interacting to a 

greater extent. The above interactions, both metal-oxygen covalence and the oxygen- 

oxygen repulsion was also quantified by the results of the Mulliken population analysis 

on the bulk electronic distribution, discussed earlier in this chapter. We note, in 

particular, the highly ionic nature of both materials studied, which is even greater in
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ceria than in zirconia. The net charge attributed to the cerium ions is +3.46 |e|, very 

close to the formal charge of +4 |e|, while the zirconium net charge is +2.99 |e|. 

Furthermore, the population of the metal-oxygen bonds in ceria is negative, confirming 

the highly ionic nature of the cerium-oxygen interaction, while in zirconia it assumes a 

positive value, due to the more effective covalent hybridisation of the frontier atomic 

orbitals on the zirconium and oxygen ions. The inter-oxygen repulsion manifests itself 

in the highly negative population of the oxygen-oxygen bond, calculated as -0.068 |e| in 

zirconia and in ceria as -0.030 |e|.

4.5 A Comparison of the Two Materials

Z1O 2 has a considerably smaller lattice parameter than CeOi, 5.14Â compared to 

5.55Â at the HF level, and in good agreement with experiment. The difference is 

obviously caused by the larger ionic dimension of the Ce"̂  ̂ ions {rionic = 101pm (85)) 

when compared to the ions (rionic = 8 6 pm (85)); ceria therefore requires larger 

interstices in the oxygen sublattice, and an increase in the oxygen-oxygen spacing in the 

crystal in order for the larger cerium ions to be accommodated. Given the shorter 

metal-oxygen, the calculated bulk modulus of ZrO] is larger than that of Ce0 2 : 

defonnation of the crystal is more difficult as the interaction itself is more effective, 

thus strengthening the bond.

This finding is confirmed by experiment, the experimentally determined bulk 

modulus of Zr0 2  is in fact larger than that of Ce0 2  (242 versus 204 or 236 GPa), but the 

calculated difference (270 versus 221 GPa) appears slightly overestimated.

A closer examination of the elastic constants Cu and C12, reported in tables 4.6 and 

4.18, shows that in ceria both of the calculated values (and therefore the value of the 

bulk modulus) are close to the measured ones; in zirconia, Cu is systematically 

overestimated in all of the calculations, both ab initio and interatomic potential. The 

calculated value of C12 is always smaller than the measured ones. Improving the basis 

set used in the calculations, by using instead the 8-41 IdG oxygen basis set does not 

modify the description of Cu and Cj2. Where the extended oxygen basis set 

considerably improves the results is in the description of the third elastic constant, C 4 4 .  

As noted in the previous section, neighbouring oxygen ions relax towards one another 

during the C 4 4  distortion, and we therefore expect an accurate description of the oxygen
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polarisation to be especially important in reproducing this “softer” distortion of the 

material.

Since the improved oxygen basis set introduced little change in the calculated 

equilibrium geometry and in the Cu and Cu elastic constants, in the remainder of the 

study we shall use only the Hay and Wadt ECP and the simpler 8-51G oxygen basis set; 

this choice minimises the computational requirements, which is especially important for 

the surface studies.

Figures 4.5 and 4.11 give the CRYSTAL HF calculated band structures for CeOi and 

c-ZrOi respectively; the path along which this band structure is calculated is illustrated 

in figure 4.7 -  passing through the four high symmetry points present in the fluorite 

structure: the origin, [1 ,0 ,0 ], and [1 ,1 ,0 ] and [1 ,1 ,1 ].

It is clear in these band structures that the topology of the energy bands in reciprocal 

space is identical in both ceria and zirconia, which suggests that they have similar 

qualitative features to the metal-oxygen interactions. Quantitatively, however, we 

expect them to differ: in particular the hybridisation of the metal and oxygen valence 

orbitals due to the increased covalence of zirconia in comparison to ceria.

Zirconia is calculated to have a slightly smaller band gap than ceria (13.21 eV versus 

14.01 eV), as expected since the Zr Ad orbitals are closer in energy to the oxygen 2p 

atomic orbitals than the cerium 5d orbitals are. In reality, the band gap of ceria is less 

than that of zirconia, due to an oxygen 2p to Ce 4 /  transition. We recall however that we 

represented the Ce'̂  ̂as a /  ion, and the Ce(4/) bands, which are the lowest unoccupied 

levels in the solid, are not present in our calculations; nevertheless the latter are not 

expected to influence strongly the bonding in the solid as the /  electrons are highly 

localised on the metal sites. Due to the lower p-^d  band gap, the hybridisation of the 

metal d  and oxygen 2 /?-orbitals is more effective in zirconia, making it a more covalent 

material than ceria. This latter effect is apparent in the much larger calculated valence 

band-width of zirconia compared to ceria (7.43 eV and 5.35 eV, respectively).

The oxygen-oxygen interactions overlap the effect of metal-oxygen covalence in the 

valence band (VB); interoxygen repulsion, if present, causes the top of the VB to be 

shifted to higher energy levels. If we examine the band structures of bulk ceria and 

zirconia (in figures 4.5 and 4.11), we can see that this latter effect is indeed present, and
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is much larger in ZrOi than it is in CeOz. The uppermost energy level of the valence 

band at the M  point (0 , 1 , 1 ) of reciprocal space is in fact destabilised in energy due to 

anti-bonding combinations of the 2p  levels on neighbouring oxygens.

4.6 Conclusions

The calculations reported in this chapter have demonstrated that both ceria and 

zirconia are largely covalent materials, with ceria being more ionic than zirconia. The 

calculated HF Mulliken charge of the Ce ions in stoichiometric ceria was +3.461 |e|, 

while that of the Zr ions was +2.788 |e|. The greater degree of covalence present in 

zirconia was also evident in the electron density plots reported here, and in the 

calculated (HF) band structure of the bulk phase: even though the topology of the 

energy levels in reciprocal space was identical in both materials, the degree of 

dispersion in the oxygen 2p  bands in ZrOi was much greater than that observed in 

Ce0 2 . The HF Hamiltonian greatly exaggerates the calculated band gap of the material, 

as is always the case, with the bang gap of ceria being calculated as 14 eV and that of 

zirconia as 13.4 eV. The experimental band gaps for both materials lies in the range of 

4-6 eV.

In addition, the calculated Density of States (and the associated projections onto the 

metal and oxygen ions) provided evidence that the energy states immediately below the 

Fermi level were due mostly to the oxygen 2p levels, while those immediately above the 

Fermi level were due to the metal d  bands, in both ceria and zirconia. The DOS 

calculated with the plane wave code CASTEP illustrated that the Ce /  levels, which 

cannot be included into the CRYSTAL calculations at present, lie slightly higher in 

energy than the d  levels, and are therefore expected to remain unoccupied in the bulk 

material.

We also observed that the expansion of the oxygen basis set to the 8-41 IdG set, 

which includes additional polarisation functions compared to the standard 8-51G basis 

set, did not significantly alter the properties of the bulk cubic phase, although it did 

greatly improve the reproduction of the elastic deformation in the material when 

metal ion relaxation (along the <111> direction) were included. This suggests that the 

oxygen polarisation functions may play an important role in the displacive 

cubic-tetragonal phase transition which we shall examine in the following chapter.
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5 Ambient pressure phases of zirconia
The previous chapter was concerned with the high symmetry cubic phase that is 

common to both ceria and zirconia. In the following chapter, I shall examine the two 

remaining ambient pressure structures assumed by zirconia: the tetragonal (r-ZrO]), and 

the monoclinic phases (w-Zr0 2 ).

—I—j—

! I

Figure 5.1: A graphical overview of the tetragonal assumed by ZrOi under 
ambient pressure conditions between 1440K and 2600K.

As the temperature begins to fall below 2600K, two distinct processes occur. First 

the unit cell deforms, with the cell volume increasing by approximately 4% and the

CteJatet ratio increasing from the value of Vz (1.414) observed in the cubic phase. The 

second process is a uniaxial displacement of the oxygen ions along the [0 0 1 ] direction, 

by a small amount dz. Experimental investigations by Aldebert and Traverse (8 6 ) 

determined that the CteJatet ratio increases to 1.451, and the oxygen ions displace by 

0.057c,e,. In the cubic structure, the vertical position of the oxygens {Qz) is !4c,g,.

There is still a great deal of debate as to the true nature of this transformation, and 

experimental investigations are hampered by the formation of a metastable tetragonal 

phase on quenching of non-stoichiometric samples of zirconia. This metastable structure 

has the same space group as the true tetragonal phase, but the presence of the impurities 

alters the composition of the material and greatly affects experimental observations of 

the phase transformation. Rather than the simplistic overview of the cubic-tetragonal 

{c-t) transformation just presented, the formation of the metastable phase is not 

considered in the investigations of the pure phase in this thesis.
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The tetragonal phase is characterised by Utet = btet = 3.64Â, and Ctet = 5.25Â (8 6 ) and 

the newly formed primitive tetragonal unit cell contains two ZrO: formula units (twice 

as large as the cubic) and is illustrated in figure 5.1. In this image, the red horizontal 

lines represent the planes z = ± % «cub, which correspond to the location of the oxygen 

ions in the cubic fluorite phase.

The volume change accompanying the c-t transition is highly undesirable in 

commercial applications of zirconia -  if such an expansion were to occur during the 

normal heating/cooling cycles experienced in SOFC applications (for example), the 

device would eventually destroy itself, or at least cause any external coatings to spall 

away. It is therefore often desirable to prevent such a phase transition from ever 

occurring, often achieved by using an artificially stabilised phase which is stable over 

the entire operating temperature range. In addition, ZrOi is most often used in Oxygen 

Storage (or transport) applications, whereby vacancies are introduced onto the oxygen 

cubic sublattice by doping the material with lower valent cations (often Y2O3, CaO, or 

CeOi). The process of doping the material also has the additional advantage in that it 

stabilises the cubic phase at much lower temperatures than present in the stoichiometric 

Zr0 2  -  often as low as room temperature in some cases, as well as significantly 

improving the mechanical strength and toughness of the material.

5.1 The idealised c-t Phase Transition

As previously mentioned, the c-t phase transition can be fully characterised by a 

displacement of the oxygen ions away from their high symmetry cubic lattice sites, and 

subsequent relaxation in both the unit cell volume and the CtJatet ratio. To attempt to 

better understand the chemical effects which help stabilise the tetragonal phase (with 

respect to the cubic phase), we examined at great length the physical and electronic 

changes which occur in the material on transformation from the cubic phase. A model 

of the full deformation is somewhat complex, so it was decided to perform an initial 

analysis of an ‘idealised’ cubic-to-tetragonal transformation, in which the cell volume 

and CteJatet ratio were kept fixed at their optimised cubic values, although the oxygen 

ions were slowly displaced away from their high symmetry sites. The cubic structure 

can be represented in the tetragonal structure space group by setting the CteJatet ratio to 

4 2  and having

Page 97



Chapter 5: Ambient pressure phases of zirconia

Although such a model is not able to provide a quantitative analysis of the 

transformation, it is our belief that the displacement of the oxygen ions is the key 

process in better understanding the relative stabilities of the two phases.

Figure 5.2: The energy changes observed during the idealised cubic-tetragonal
phase transition.
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The simplest property which we can study in our idealised model is the changes in 

the internal energy of the system as the deformation begins: for the transformation to 

occur naturally, there must be an overall reduction in the internal energy as the oxygen 

ions displace (by an amount d̂ ) away from their equivalent positions in the cubic phase. 

Figure 5.2 shows graphically the energy double well obtained in our model from 

calculations using both the HF and DFT Hamiltonians;* a similar profile was originally 

obtained from the Full potential Linear Augmented Plane-Wave (FLAPW) LDA 

calculations by Jansen in collaboration with Gardner (87), and again later in Reference 

(8 8 ). A similar profile is obtained in all high quality ah initio studies performed today 

and is generally well accepted.

In this figure, the internal energy obtained from each of the four Hamiltonians 

examined was normalised so that the zero of the energy was that of the geometry 

optimised cubic phase, in order that the four schemes may be better compared to each 

other. Negative values on this scale correspond to configurations having lower energies

* All calculations in this section shall make use o f the Hay and Wadt small-core pseudopotential and 

oxygen 8-41 IdG basis sets unless stated otherwise.
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than the cubic structure, and are therefore thermodynamically more stable. The presence 

of a minimum energy point for oxygen away from the central dz = Vz point confirms that 

the tetragonal phase is predicted to be (thermodynamically) more stable than the cubic 

in our idealised model. Since this model only represents a small part of the total 

transformation, the energy changes reported in figure 5.2 are much smaller than we 

would expect from a complete transformation (see section 5.1 for the fully optimised 

tetragonal phases), however qualitatively the analysis is appropriate.

Figure 5.2 shows an obvious discrepancy between the HF/LDA calculations and the 

GGA/B3LYP calculations, with the GGA-based Hamiltonians providing a much larger 

energy change, and a slightly greater minimum energy oxygen ion displacement than 

the HF or LDA calculations.

In the work by Fabris, et al (56), tight binding parameters were derived to model the 

cubic-tetragonal phase transition. They found that an additional polarisation parameter 

was required on the oxygen ions in order to correctly model the transition; their study 

provided an optimised geometry in good agreement to the GGA/B3LYP Hamiltonians 

in our current work. On removal of this additional polarisation parameter, the geometry 

of the fully relaxed tetragonal phase in this case was more like the HF/LDA situation 

found here; a result which suggested that the HF and LDA Hamiltonians were providing 

an inadequate description of the oxygen polarisation in our present model.

To determine if this was the case, we examined the change in the dipole moment on 

the oxygen ions during the idealised cubic-tetragonal phase transition: as we can see 

from figure 5.3, there is no discernable difference between the different Hamiltonians -  

suggesting that each level of theory provides an equally good representation of the 

oxygen polarisability and that the difference between the HF/LDA and GGA/B3LYP 

schemes must be due to some other factor.
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Figure 5.3: The change in the oxygen dipole moment observed during the 
idealised c-t phase transition.
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Table 5.1: Electronic properties of the energy minimised tetragonal structure, 
as obtained from each of the Hamiltonians studied.

HF LDA GGA B3LYP
Zr Mulliken 
O Mulliken -1.397

+2 . 1 2 0

-1.060
+2.182
-1.091

+2.341
-1.170

Zr-0 Overlap 
(short)

+0 034 
(2.137Â) .

+0.070
(2 .1 1 0 Â)

+0.077
(2.118Â)

+0.067
(2.116Â)

Zr-O Overlap 
(long)

+0.035
(2.315À)

+0.052
(2.285À)

+0.050
(2.355À)

+0.046
(2.353À)

0 - 0  Overlap 
(short)

-0.057 
(2.567Â) ^

-0.048
(2.534Â)

-0.032
(2.575Â)

-0.039
(2.572Â)

0 - 0  Overlap 
(long)

-0.052
(2.585À)

-0.045
(2.552Â)

-0.027
(2.608Â)

-0.033
(2.605Â)

In calculations performed using the 8-51G basis set, the cubic phase was found to be 

more stable than the tetragonal, which we attributed to an inadequate description of the 

oxygen polarisability. Table 5.1 lists the calculated bond populations determined using 

the Mulliken analysis in this idealised tetragonal structure; while results of this analysis 

as the idealised distortion progresses are shown graphically in figure 5.4 for the shortest 

0 - 0  interaction; the longer 0 - 0  interaction is in the direction of the ion displacement; 

this separation remains unchanged during the phase transition. For reference, the 

equivalent table for the fully optimised tetragonal structure is given in the following 

section, in table 5.3. We note that the ionic Mulliken charge is approximately equal in 

both the idealised and fully optimised structures, and only minor discrepancies exists
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between the bond populations predicted in each case. From this we can conclude that 

the idealised model of the phase transition is of a sufficient accuracy to enable a detailed 

examination of the phase transition to be perfonned.

In figure 5.4, the bond population has been normalised so that the cubic phase lies at 

the zero point. We see a clear distinction between the DFT calculations and those 

performed using the HF Hamiltonian; 0 -0  interactions under the HF Hamiltonian 

become more negative as the distortion progresses, or as the cubic phase distorts. This 

suggests that short-range hard-ion repulsion effects may be influencing the 

displacement of the oxygen ions: in effect the oxygen ions are already impacting upon 

one another in the cubic structure and any reduction in their separation is greatly 

unfavourable on energetic terms. If this is the case, it would clearly restrict the 

stabilisation of the tetragonal phase and lead to the negative Mulliken 0 -0  bond 

populations observed here.

Figure 5.4: Variation in 0 - 0  bond population with idealised c-t transition.
Results for the shortest 0 - 0  band are shown.
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We also note that there was no evidence of this effect in any of the DFT calculations 

performed here, including those using LDA. As the optimal lattice parameters of the 

LDA structures are less than the experimental (a common trend), we could expect that 

this effect would be the cause of the close agreement between the HF and the LDA 

idealised c-t energetics (in figure 5.2). However, we found no evidence of this in the 

calculations performed, suggesting the correlation to be merely coincidental, although
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the smaller cell volume of LDA calculations is believed to be the most probably cause 

for the low energy barrier between the two phases: as the LDA Hamiltonian 

underestimates the bulk lattice parameter, the displacement of ions in such a 

compressed structure is energetically unfavourable compared to the much larger 

geometries obtained from the other Hamiltonians studied.

5.1.1 The Stability of Tetragonal Ceria

In this section I aim to briefly outline the stability of ceria in a similar tetragonal 

phase as zirconia. Experimentally there is just a single structure for CeOi, the common 

deviation from this being the formation of the reduced oxide CezOs. It is our belief that 

the simplest deformation which could occur in CeO] is that of the c-t transition, and so 

in a similar manner to the zirconia study just examined, we displaced the oxygen ions in 

the fluorite structure away from their high symmetry positions. The resulting energy 

profile (obtained using the Hay-Wadt pseudopotential and oxygen 8-41 IdG basis set) is 

shown below in figure 5.5.
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Figure 5.5: Energy surface obtained for the distortion of (cubic) ceria to the 
tetragonal structure. Energies are normalised so that the cubic phase is zero, 

and positive values are higher energy configurations. The cubic phase is 
characterised by Oj= Vi (d% = 0).

By comparison to the profile obtained with zirconia (see figure 5.2), we immediately 

note that absence of the ‘double well’, first predicted by Jansen (87,88), in the model of 

the defonnation analysed here. The minimum energy configuration of ceria is in fact 

predicted to be the cubic fluorite phase. The gradient of the energy surface is quite 

steep, an oxygen ion displacement of O.OSctet (close to the minima observed in zirconia) 

would result in an increase in the internal energy of around 0.06 Ha in ceria, and the 

energy continues to increase rapidly as the oxygen ions are further displaced, presenting 

a significant barrier to the formation of the tetragonal phase -  a result in line with the 

experimental observation that this phase is not thermodynamically stable.

5.2 Tetragonal Zr02

In this section I shall present results from a complete geometry optimisation of the 

tetragonal phase using both HF and DFT Hamiltonians in the CRYSTAL code.
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Table 5.2; Optimised parameters for the tetragonal phase of ZrOi.

QM Functional
ate/^tet 

(-)
a

(fractional)
A V

(Â /̂ZrOz)
B

(GPa)
A E

(mHa/ZrO])
HF/8-411dHW 1.427 0.035 0.6241 266 0.58
HF/8-51dHW 1.415 0.003 0.3363 — -0.03
HF/8-51d SP 1.417 0.006 0.0696 — 0.50

LD A/8-4 lid  HW 1.424 0.035 0.4444 260 0.87
GGA/8-411dHW 1.441 0.048 0.7849 236 2.83

B3LYP/8-411dHW 1.440 0.049 0.7016 250 2.80
Orlando HF (51) 1.478 0.065 1.3706 236 7.30
Stapper PW (58) 1.435 0.042 0.6624 197 1.76
Carter PW (59) --- 0.033 < 1 % — > 0

Jansen FLAPW (87,88) 1.425 0.029 — — 2 . 2 0

Finnis LMTO (57) 1.434 0.051 0.7157 — 1.80
Fabris TB (56) 1.442 0.047 0.6416 — 1.51
Cohen PIB (89) — — — 179 —

Jomard PW/LDA (90) 1.456 0.050 0.8800 — 0.75
JomardPW/GGA(90) 1.468 0.060 1.3600 — 2.97

Experiment (8 6 ) 
Experiment (43,91,92)

1.451
1.426

0.057
0.057

0.7650
151-194 2 . 1 0

KEY:
F L A P W  —  F u ll potential L inea r A ugm ented  P lan e  W ave. Jansen’s w ork  in  R eferences (88) u sed  an L D A  H am ilton ian
L M T O  —  L inea r M uffm -T in  O rbital
TB  —  T igh t B ind ing
PIB  —  Poten tia l Induced B reath ing
P W  —  P lane W ave
H W  H ay  an d  W adt sm all-core Z r p seudopoten tia l 
SP S to ll and  P reuss sm all-core Z r p seudopoten tia l

In order to fully model the c-t phase transition, the changes in unit cell volume and 

CteJatet ratio must be examined in addition to the oxygen ion displacement studied in the 

idealised model. Table 5.2 lists the optimised parameters for the tetragonal phase 

determined with each of the Hamiltonians studied here, in comparison to the optimised 

geometries determined in other theoretical and experimental studies.

In table 5.2, we have defined the energy difference for the cubic-tetragonal 

transformation through equation (5.1), as the change in the internal energy between the 

two fully optimised structures. In this notation positive values of AE represent a cubic 

phase higher in energy than the tetragonal, and therefore less thermodynamically stable. 

With the exception of the HF/8-51G calculations, all of the studies reported in table 5.2 

correctly place the cubic phase higher in energy than the tetragonal, in line with the 

zirconia phase diagram (see figure 4.2).

^  cubic ^tetragonal (5.1)
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We note a clear correspondence of the HF and LDA optimised geometries, while the 

GGA/B3LYP schemes provide much larger distortions of the cubic cell during the 

relaxations. The restricted relaxation in the HF/LDA calculations results in a calculated 

energy difference between the cubic and tetragonal phases which is much smaller than 

determined in the other theoretical and experimental studies which are available to us, 

with the sole exception of the results reported by Jomard et al. (90) who performed 

plane wave calculations using both the LDA and GGA Hamiltonians in the VASP (93) 

program. Although Jomards’ LDA calculations yielded larger changes in both the value 

of CteJatet and the equilibrium oxygen displacement than either the current LDA 

calculations or the early LDA work by Jansen (87,88), the energy change predicted for 

the transformation by Jomard is, in fact, remarkably similar to the value which was 

obtained in our own LDA calculations.

It should also be noted that the GGA/B3LYP calculations provide a very good 

agreement to the optimised plane-wave geometries obtained by Stapper et al. (58), 

Carter et al. (59), and also to the tight-binding (TB) calculations of Fabris et al. (56)

Table 5.3: Electronic properties o f the optimised tetragonal phase with each of
the Hamiltonians studied.

HF LDA GGA B3LYP
Zr Mulliken +2.805 +2.123 +2.185 +2.338
0  Mulliken -1.403 -1.061 -1.092 -1.169

Zr-O Overlap +0.026 +0.072 +0.081 +0.068
(short) (2.133Â) (2.105Â) (2 .1 1 0 Â) (2.106Â)

Zr-0 Overlap +0.026 +0.051 +0.047 +0.044
(long) (2.343Â) (2.312Â) (2.403Â) (2.378Â)

0 - 0  Overlap -0.096 -0.042 -0.023 -0.034
(short) (2.594Â) (2.557Â) (2.627Â) (2.595Â)

0 - 0  Overlap -0.095 -0.041 -0.023 -0.031
(long) (2.596Â) (2.564Â) (2.627Â) (2.615Â)
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Figure 5.6: Calculated band structures obtained from the fully optimised tetragonal 
zirconia structures using (a) Hartree-Fock, (b) LDA, (c) GGA and (d) B3LYP 

Hamiltonians in the CRYSTAL program.
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Figure 5.7: Calculated density of states of tetragonal zirconia, using (a) Hartree-Fock, (b) 
LDA, (c) GGA and (d) B3LYP Hamiltonians in the CRYSTAL program. For each 

Hamiltonian, we report the total DOS and its projections onto the oxygen and zirconium
basis sets, as labelled.

The calculated band structures for r-ZrOi are given in figure 5.6, and the 

corresponding DOS plots in figure 5.7. A summary of the points in reciprocal space 

used in the band structure plots is shown for reference in table 5.4. On examining figure 

5.6, we note initially, that the topology of the energy levels predicted by all the 

Hamiltonians employed to study the tetragonal phase appears identical, although the 

energy scales of these plots differs greatly in each case. The calculated electronic 

properties for each of the Hamiltonians available are listed in table 5.5, and clearly show 

the Hartree-Fock calculations as providing a theoretical band gap energy very much
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greater than any DFT study, although in good agreement with the previous HF study by 

Orlando et al. of around 13.3 eV. This overestimation is expected from the Hartree- 

Fock Hamiltonian, as mentioned in the previous chapter; the LDA calculations show 

instead the opposite behaviour and underestimate the experimental band gap -  which 

varies between 4 and 6  eV, depending on the purity of the sample used and the method 

used to measure the band gap. The agreement between our current LDA calculations 

and the plane-wave LDA calculations by Jomard again confirms this is a systematic 

feature of the LDA Hamiltonian, rather than a particular deficiency in the CRYSTAL 

calculations.

The calculated DOS confirms that, as in the cubic phase, the energy bands 

immediately beneath the Fermi level are due primarily to the oxygen (i.e. 2p) levels, 

while the first set immediately above the Fermi level are due mainly to the Zr levels (i.e. 

4ûf), a configuration we would expect to observe in a largely ionic material. The 

calculated HF band gap of this phase is remarkably similar to that calculated for the 

cubic phase, as we would expect given the similarities between the two materials and 

the poor performance of the HF Hamiltonian on the calculated band gap; of the DFT 

Hamiltonians studied here, the tetragonal band gap is slightly higher than that calculated 

for the cubic phase (see table 4.22 on page 8 8  for the calculated band gaps of the cubic 

phase). In both phases, LDA and GGA provide a roughly equal band gap, -3.7 eV in the 

tetragonal, and -3.2 eV in the cubic phase; a similar trend is observed in the B3LYP 

calculations, where the band gap is 4.9 eV in the cubic phase and 5.6 eV in the 

tetragonal phase. From these results we conclude that the band gap of the tetragonal 

structure is approximately 0.5 eV higher than that of the cubic phase.
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Table 5.4: Description of the labels used in plotting the tetragonal band
structures.

Coordinates in Brillouin Zone Label of Point
m  0 , 0 ] G (the r  point)
m o ,  1 ] Z
*/2[l, 1 , 1 ] A
y2[i, 1 , 0 ] M
V'2[l,0, 1] R

Table 5.5: Electronic properties of optimised tetragonal Z1O 2 with each of the
Hamiltonians studied.

6 (2 /:) 6 (6 ; 6 6 (2 r6 ) 6 ^ro6 ) Band Gap
QM Functional d el) d e l) d e l) d e l) (eV)
HF/8-411dHW +2.991 -1496 +0 . 0 1 2 -0.070 13.28

HF/8-51 HW +2.991 -1.495 +0 . 0 1 2 -0.071 13.33
HF/8-51 SP +2.926 -1.463 +0.007 -0.073 13.28
LDAHW +2.123 -1.061 +0.072 -0.042 3.67
GGAHW +2,185 -1.092 +0.081 -0.023 3.78

B3LYP HW +2.338 -1.669 +0.068 -0.034 5.60
Orlando HF (51) +3.285 -1.642 -0 . 0 1 0 -0.036 13.30

Carter (PS-B) (59) 1 . 0 2 0 -1.440 — — —

Jansen (87,88) +2.820 -1.470 — --- —

Krâlik GW (83) — — — --- 6.40
Jomard LDA (90) — — — --- 3.90

Experiment — — — --- 5.78 (94) 
4.2 (95)

It is of interest to note the close correspondence of the B3LYP calculated band gap 

energy (5.60 eV) to that obtained by Krâlik et al. Although Krâlik initially used an LDA 

scheme to obtain the original band structure, he made a modification to the calculated 

energy levels using a recent GW quasiparticle approximation. Limited experience exists 

as to the applicability of this modification in situations such as these, although 

theoretically the quasiparticle approach should provide the best description of the 

electronic band structure which we can hope to produce in any ab initio calculation. As 

the figure reported by Krâlik is within the range of figures determined by experiment, 

then this would appear to be the case. The current B3LYP calculations also provide a 

remarkably similar band gap energy to this, suggesting the B3LYP Hamiltonian does 

perform better than was originally anticipated in zirconia.
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Figure 5.8: Calculated electron density difference plots calculated for tetragonal 
zirconia, using (a) Hartree-Fock, (b) LDA, (c) GGA and (d) B3LYP Hamiltonians. The 

cross-section shown here is taken parallel to the {001} plane, intersecting the oxygen 
ions. The coloration of the contours is the same as for all previous electron density 

plots, and the contours range from -0.005 |e| to 0.005 |e|, with 30 contours being used to
evenly span this range.
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Figure 5.9: Calculated electron density difference plots calculated for tetragonal 
zirconia, using the cross-section taken parallel to the (a) the {001} plane, intersecting 

the metal ions, and (b) {011} plane, intersecting both metal and oxygen ions.

Electron density plots (which again have the electron density due to isolated ions at 

the lattice sites subtracted from the total calculated electron density) o f the tetragonal 

zirconia phase are given in figures 5.8 and 5.9, for the HF, EDA, GGA and B3LYP 

optimised tetragonal structures. All o f these images use the same contour range and 

spacing: the blue/purple contours indicate zones o f highly negative difference electron 

density (-0.005 |e|), while the red/orange contours represent the larger positive densities 

(+0.005 |e|); the range was then spanned linearly by thirty individual contours.

Figure 5.8 shows the electron density across the oxygen-oxygen {001} plane; the 

zirconium ions illustrated here lie above and below the plane through which the electron 

density is calculated (but are given in the figure for reference). There is a clear 

anisotropy between the two distinct oxygen-oxygen bond lengths: the c~t phase 

transition involves a shortening o f half the oxygen-oxygen bonds and a lengthening o f 

the remaining half; as schematic illustrated in this figure, the phase transition involves 

the oxygen ions moving vertically in the plane o f the image: the two left hand oxygens 

move upwards and the two right hand oxygens move downwards.

The shortened oxygen-oxygen separation is clearly indicated by the greatly increased 

electron density in the [110] direction in this plane, the dense region o f negative 

(cyan/green) contours indicates that charge is transferred into the inter-oxygen region 

during formation o f the crystal (relative to isolated gaseous ions), compared to the cubic
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phase (which showed a more restricted oxygen repulsion in the same region, see figure 

4.24). Ion separation in the vertical direction remains relatively unchanged from that of 

the cubic, only increasing slightly due to the volume increase in the CteJcitet deformation.

5.3 MonocUnic ZK>2

The monoclinic polymorph, shown in figure 5.10, cannot be characterised by a 

simple structural distortion from the other two ambient pressure phases; it is formed 

instead during a reconstructive phase transition from the tetragonal phase. It is also 

rather unusual in that it contains a seven-fold coordinated Zr ion and a three-fold 

coordinated oxygen ion (labelled A in figure 5.10) in its primitive unit cell, which 

contains four ZrO] formula units and is therefore four times as large as that of the cubic 

structure. The affinity which Zr(IV) appear to have for lower-coordinate geometries is 

caused by the relative size of the Zr(IV) ion in comparison to the lattice site it occupies. 

Using a simplistic ‘radius-rules’ approach, the Zr ion appears slightly too small for a 

pure fluorite structure, but yet too large for a rutile structure as observed in SnO]. This 

effect could explain the appearance of the seven-coordinate metal ions in the monoclinic 

phase and its unexpected stability over the high symmetry cubic or tetragonal phases.

Figure 5.10: A graphical overview of the monoclinic phase of ZrOa stable for 
temperatures below 1440K.

Experimental work by Teufer (96) found that the monoclinic phase is characterised 

by a„,ono = 5.15Â, hmono = 5.27 Â, Crnono = 5.67 A, Ymotw = 99.23°(intemal ion coordinates, 

are listed in table 5.6). Until recent ah initio studies became practical to perform, no 

theoretical study (the majority being based on IP methods) had been able to predict the
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correct order of stability of the three phases. In this thesis, the energy difference 

between the monoclinic and the cubic phase has been defined through equation (5.2), 

where all calculated internal energies are quoted per formula unit. This definition is 

such that positive values of àEc~m refer to schemes in which the monoclinic phase is 

predicted to be thermodynamically more stable than the cubic (the experimental 

observation).

^ cu b ic  ^monoclinic (^ '^ )

The monoclinic phase has been optimised here using both Hartree-Fock and DFT 

Hamiltonians, the latter employing LDA, GGA and B3LYP formulations of the 

exchange and correlation energies. The work reported here is the only 

many-Hamiltonian study of the monoclinic phase .Due to the complexity of this phase, 

it was found that the auxiliary basis sets used on ions in the earlier density functional 

calculations required an additional set of /  and g-type orbitals in order to accurately 

sample the calculated electron density in the DF fitting. These additional orbitals were 

completely unused in the cubic and tetragonal systems due to the symmetry of the 

crystal, preventing polarisation effects that required their presence. This was checked 

and confirmed in order to validate our use of the simpler auxiliary basis in the earlier 

calculations.
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Table 5.6: The optimised parameters obtained for the monoclinic phase. AE, 
is the energy difference (in mHa) between the monoclinic phase and the

m~*c
cubic,

Current Work
HF GGA B3LYP LDA Experiment

(86,97)
t̂ mono 5.2370 5.2433 5.2468 5.1794 5.1505
l̂ mono 5.2482 5.2632 5.2563 5.1936 5.2710
m̂ono 5.3638 5.4016 5.4019 5.3049 5.6717

Ymono 99.230 99.229 99.229 99.228 99.23
Xzs 0.2733 0.2757 0.2752 0.3047 0.2754
TZr 0.0383 0.0438 0.0417 0.0546 0.0395
ZZr 0.2082 0.2115 0.2098 0.2156 0.2083
JCO 0.0669 0.0673 0.0649 0.0565 0.0700
To 0.3244 0.3289 0.3237 0.3252 0.3317
Zo 0.3553 0.3493 0.3534 0.3457 0.3447
Xq' 0.4555 0.4548 0.4550 0.4500 0.4496
To’ 0.7549 0.7573 0.7569 0.7572 0.7569
ZO’ 0.4785 0.4756 0.4779 0.4773 0.4792

AEc-m (mHa) +1.98 +3.07 +4.78 +0.61 +4.41

Table 5.7: Parameters obtained for the monoclinic phase in previous theoretical
studies.
Fabris (56) Finnis (57)

Stapper (58)^ LMTO TB Kralik(83)
m̂ono — 4.983 5.076 5.086

l̂ mono — 5.163 5.081 5.208
m̂ono — 5.267 5.172 5 226

Ymono — 98.57 98.0 99.21
Xjs 0.277 0.274 0.272 0.278
T Z r 0.043 0.040 0.027 0.042
ZZ r 0 . 2 1 0 0 . 2 1 2 0.217 0 . 2 1 0

JCo 0.064 0.069 0.078 0.077
To 0.324 0.339 0.336 0.349
zo 0.352 0.338 0.342 0.331
Xo’ 0.450 0.448 0.452 0.447
To’ 0.756 0.753 0.752 0.759
Z O ’ 0.479 0.478 0.472 0.483

AEc-^ (mHa) +4.05 +3.85 +3.70 +4.40
§ 'l l ie  study by  S tapper e t al. d id  no t op tim ise  the  cell vo lum e o f  the  m onoclin ic  phase , only  th e  in ternal coord inates o f  the  ions. 

T hey used  the  experim ental la ttice  param eters  determ ined  by H ow ard  e t al. (97) lis ted  above.

Table 5.6 lists the optimised values of the 13 adjustable variables in the monoclinic 

structure, while table 5.7 shows a comparison to those available in the literature. The 

extensive plane-wave study by Stapper et al. did not allow the monoclinic unit cell 

volume to relax, instead they optimised only the internal coordinates of the ions 

beginning with the experimental data provided from the Teufer paper in reference (96).
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It is important to note that the current series of calculations have all established the 

correct order or stability of these ambient pressure phases: The energy

difference between the cubic and monoclinic phases, at the Hartree-Fock level was 

approximately 2 mHa, or 0.054 eV; in tables 5.6 and 5.7, a negative value of AEm-K 

indicates that the monoclinic phase has a lower energy than the cubic -  all figures 

reported here correctly predict that the monoclinic phase is the most thermodynamically 

stable, in comparison to the cubic. It is interesting to note that the previous theoretical 

studies of the monoclinic phase by Stapper et al. (58), Fabris et al. (56), Finnis et al. 

(57) and Krâlik et al. (83) using a variety of Hamiltonians all provide monoclinic-cubic 

energy differences of around 4 mHa, reasonably similar to the value predicted in the 

current GGA and B3LYP calculations and in rather good agreement to the 

experimentally determined 4.41 mHa.

All studies shown here produce values for the internal ion coordinates in excellent 

agreement to the experimental values, regardless of the method used to study the 

material. We recall that the work by Stapper did not permit the monoclinic cell to 

deform from the experimentally determined values, taken from Reference. (97); for this 

reason we have not quoted those figure in table 5.7. Of the remaining calculations, all 

appear to predict correctly the cell angle y, to within 1° of the experimental value. In 

Reference (57), Fabris and Finnis conclude that it is the covalency of the material which 

acts to stabilise the monoclinic phase relative to the cubic, rather than the subtle 

polarisation effects believed to help stabilise the tetragonal phase. The current 

calculations have determined that the Zr and O ions in the monoclinic phase have lower 

charges (attributed using the Mulliken scheme and reported in table 5.8) than in the 

cubic and tetragonal phases, while all metal-oxygen bond populations in m-ZrOi have 

large positive values -  indicating that the electrons associated with the interactions are 

most definitely shared between the ions.

Table 5.8: Mulliken population analysis of monoclinic zirconia. refer to the

Hamiltonian Zr q (4) Zr-0 ^̂^ 0(3) Zr-0(3)
HF +2.792 -1.450 +0.045 -1.342 +0.035

LDA +2.091 -0.995 +0.088 -1.096 +0.062
GGA +2.141 - 1 . 1 2 2 +0.097 - 1 . 0 2 0 +0.068

B3LYP +2.308 -1.206 +0.088 -1 . 1 0 1 +0.058
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Calculations performed at the HF level, and using the smaller 8-51G basis set for 

oxygen were not able to correctly place the monoclinic phase as the most stable; it is 

our belief that this is due to the additional degree of freedom allowed by the 8-4110 

basis to the outer sp functions, rather than an inclusion of ̂ /-polarisation functions into 

the basis set. In all Hamiltonians studied here, the Mulliken population of the oxygen 

(/-levels was at most 0.020 |e| (in the GGA calculations), a negligible amount; in all 

other cases the (/-shell population was much lower than this.

Table 5.9: Comparison of the oxygen orbital population in monoclinic zirconia 
with the 8-51G and 8-411dG basis sets at the HF level.

Oxygen Basis Coordination s sp sp sp d Total
8-51G 3 2.006 4.693 2.694 — 9.393

4 2.006 4.653 — 2.863 — 9.522
8-41 IdG 3 1.996 2.630 2.639 2.069 0.008 9.342

4 1.996 2.634 2.556 2.258 0.006 9.450

To test this hypothesis, calculations were performed using both the 8-41 IdG oxygen 

basis set, and a 8-411G set constructed by simply removing the additional (/-functions 

from the enhanced set. Both predicted an almost identical energy minimised structure, 

and also that the monoclinic phase is lower in energy than the cubic, the energy 

difference being approximately 2 mHa with both basis sets. The same result was 

observed with all four Hamiltonians studied here. On the contrary, we saw in the 

previous section that polarisation functions on the oxygens are more crucial to describe 

the phase transition between the cubic and tetragonal structures. Calculations with an 

inadequate representation of the oxygen basis functions, in fact, did not correctly 

establish the tetragonal phase as the most stable. The latter results, therefore, appear to 

confirm the conclusions made by Finnis et (z/., i.e. that polarisation effects are more 

important in the tetragonal phase.

In the HF calculations, the Mulliken population of the orbitals in the oxygen basis are 

listed in table 5.9, and clearly show that the population of the oxygen (/-functions is 

negligible, while the major differences are localised into the outer sp shells. The 

addition of the second set of sp shells seems to allow the ‘41’ split set to contain a 

greater electron density than a single set o f ‘5’ Gaussians.
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Table 5.10: Description of the labels used in plotting the monoclinic band
structures.

Coordinates in Brillouin Zone Label of Point
^[0 , 0 , 0 ] G (the r  point)
m o ,  1 ] Z
m  LO] Y
y 4 - i  1 ,0 ] A
%[-!, 0 , 0 ] B
V2[0, 1 , 1 ] C
m , o ,  1 ] D
V2[-h 1 , 1 ] E

Table 5.10 details the eight high symmetry points of the monoclinic reciprocal lattice 

through which the band structures shown in figure 5.11 are plotted. The corresponding 

DOS for this phase calculated here is given in figure 5.12. The topology of the 

calculated band structures with all Hamiltonians studied here, using the relevant 

optimised geometry, were identical and so only that obtained for the HF Hamiltonian is 

shown in figure 5.11. This plot shows a great many individual energy levels, many more 

than the previous band structures on the cubic and tetragonal phases; the reason for this 

is that the monoclinic unit cell contains four formula units, and therefore here we show 

the four times as many energy levels as was given in the cubic band structure. The DOS 

plots show that the energy levels immediately below the Fermi level are due to the 

oxygen levels, while those above are due to the zirconium level; the same trend as was 

found in the other two ambient pressure phases.
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Figure 5.11: Band structure calculated for /M-ZrOz. The image shown here was 

obtained from the geometry optimised using the HF Hamiltonian.
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Figure 5.12: Density of States calculated for m-ZrOi.

The calculated band gap obtained with each of the Hamiltonians studied in the course 

of this work are reported in table 5.11, where again we see the exaggeration so common 

with the HF Hamiltonian. In comparison to the band gaps which were obtained for the 

two remaining ambient pressure phases, the calculated band gaps of the monoclinic
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phase are greater than those predicted for the cubic structure (using the equivalent 

Hamiltonian), but less than those of the tetragonal structure. Jomard et al. (90) 

calculated the monoclinic band gap energy to be 3.42 eV (GGA) and 3.51 eV (LDA) in 

his work, in good agreement with the results calculated here.

Table 5.11: The calculated band gap of m-ZrOz, obtained with all Hamiltonians
studied here.

Hamiltonian Calculated Band Gap (eV)
HF 13.36

LDA 3.56
GGA 3.36

B3LYP 5.13
Jomard LDA (90) 3.51
Jomard GGA (90) 3.42
Kralik GW (83) 5.42
Experiment (94) 5.83-7.09

5.4 Conclusions

The work reported in this chapter has demonstrated several important results 

regarding the ambient pressure phases of zirconia. Most importantly, throughout this 

work, the correct order of stability of these three phases is in line with the experimental 

phase diagram observed (shown previously in figure 4.2): the monoclinic phase is 

predicted to be the most stable of all three phases studied here, with the tetragonal being 

higher in energy, and the cubic even more so.

Many studies are able to correctly predict the monoclinic phase as more stable than 

the tetragonal, using either ab initio or interatomic potential methods; the subtleties of 

the cubic-tetragonal displacive phase transition are, however, much more difficult to 

replicate. To my knowledge, there are no zirconia potential sets capable of correctly 

reproducing the c-t transition, and establishing the tetragonal phase as the most stable. 

The precise energetics of the c-t transition are in good agreement to those observed 

experimentally (91) or in the many theoretical studies reported in table 5.2 (on page 

104).

Furthermore, the quality of the oxygen basis set appears a key component in 

correctly modelling the transition, calculations performed using our standard 8-51G 

oxygen basis set did not correctly model the phase transition -  the extended 8-41 IdG 

basis set was required. We believe that, since D P  schemes include polarisation effects
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through the (somewhat crude) shell model, that this is one plausible reason for their 

failings in modelling the tetragonal structure.

The monoclinic phase appears less sensitive to the oxygen basis, suggesting that the 

stability of this phase is caused by some other factor, the lower coordination of the 

metal ion could be a significant driving force for the phase transition -  as the size of the 

zirconium ion appears too large for the fluorite/tetragonal structures and too large for 

the rutile structure, using a simple ‘radius-rules’ approach.

The calculated band gaps of the three phases have been reported throughout the 

previous two chapters, and although the HF Hamiltonian greatly exaggerates the 

calculated band gap, our parallel DFT calculations allow close comparison to other 

theoretical studies. The tetragonal phase is predicted to have the largest band gap 

(5.60 eV with the B3LYP Hamiltonian), in comparison to the quasiparticle GW 

calculations performed by Krâlik et al. (6.40 eV). The monoclinic band gap (5.13 eV) is 

slightly larger than that of the cubic phase (4.92 eV), while Kralik et al. calculated the 

reverse. Due to the experimental difficulties in examining the cubic phase, the only 

reported experimental value for the cubic band gap is between 4-6 eV, a range the 

current predictions lie within.

From these calculations, we are able to conclude that the current parameter set is 

capable of describing the three ambient pressure phases remarkably well, and also 

describe the details of electronic processes which occur during the c-t phase transition. 

A wide range of Hamiltonians have been studied, and the calculated properties and 

energetics of each being in line with those determined with equivalent Hamiltonians in 

other reported theoretical studies.
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6 Surfaces of Ceria and Zirconia
By definition, a catalyst is a material which increases the overall rate of a particular 

chemical process by providing the system with an alternate pathway to form the 

required end product(s). The key to this process often involves creation of an 

intermediate species, which possesses a lower energy barrier to formation than the 

reaction process that normally occurs with no catalyst present.

It is therefore of great desire that the catalyst is able to interact both electronically 

and sterically with the reagents in the most efficient way possible. In practical 

applications involving the use of ceria and zirconia, the reagents are usually gaseous -  

so in order to obtain a greater insight into the mechanisms by which these materials are 

able to catalyse such processes, a detailed understanding of the local surface features, 

including the electronic properties of the surface which are likely to dominate any 

solid-gas chemical interactions, will be of great assistance to efforts in improving the 

design and efficiency of such heterogeneous catalysts.

By optimising the nature of the surface, with respect to the steric and electronic 

requirements for the active site in the material to function at its best, it may be possible 

to reduce the operating temperatures (or the time taken to reach peak performance) for 

catalysis -  and may one day lead to cost-effective SOFC power stations, or greatly 

improved exhaust catalysis becoming a reality.

6.1 General Introduction to Surface Modelling

All calculations reported in the previous chapters have been periodic in three 

dimensions of a bulk crystal -  for surface structures this is no longer the case. The 

methods used to model surfaces in the current series of calculations were detailed at 

great length earlier in this thesis, in section 2.9.

In the slab model, a supercell is generated which has one face parallel to the chosen 

surface, and a finite height equal to the specified slab thickness. This slab is periodic in 

two-dimensions, and finite in the third. We therefore generate two symmetry equivalent 

surfaces in this model, at the upper and lower ends of the supercell; the height of the 

slab is (often) measured in the number of atomic planes which are used. We must take 

great care to ensure that any perturbations created by the upper and lower surfaces do

Page 121



Chapter 6: Surfaces of Ceria and Zirconia

not interfere in the bulk of the slab, and so the thickness of the slab is carefully chosen 

to ensure that both the electronic and physical properties of the surface are correctly 

reproduced whilst also minimising the overall cost of the calculations. To make certain 

that this was the case here, the convergence of any ionic relaxations, the calculated 

surface energy, and the electronic structure were examined as a function of slab 

thickness.

We have chosen to study only surfaces of the pure cubic materials; surfaces of the t- 

and m-ZxOi phases were examined in the paper by Christensen and Carter (59). 

Although we expect these phases to possess surfaces which are more stable 

thermodynamically than those of the cubic phase, they are not be considered here for 

several reasons:

(1) Even though the fluorite structure is not the most stable (thermodynamically), 

this phase is often the most desirable form of zirconia in many commercial 

applications. Any phase changes which occur during the normal heating and 

cooling cycles during operation of the device involve volume changes which 

can crack the ceramic itself, or result in expensive active coatings to break 

away. This will ultimately destroying the operation of the device. By using an 

artificially stabilised cubic phase over the entire range of temperatures which 

the device functions, we ensure that this is not the case. In such a system, any 

surface-gas interfaces will now be those of a (stabilised) fluorite structure, 

rather than tetragonal or monoclinic. The additional effects caused by 

compositional changes which occur in the stabilisation of the cubic phase are 

not examined here for reasons of cost.

(2) Ceria exists only in the fluorite structure. Examination of only cubic zirconia 

surfaces permits a more direct comparison of the two materials.

(3) Surface calculations are significantly more expensive than those of the bulk 

material due to the reduction in symmetry on moving to a two-dimensional 

unit cell. Surfaces of tetragonal or monoclinic systems are beyond the current 

computational resources available for the CRYSTAL code (at the time of 

writing -  the rate of increase in computing power means this will no longer 

be the case in the future!).
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This work shall only consider the two surfaces shown to be the most 

thermodynamically stable during the earlier study (on ceria) by Vyas et a l (45,46,48) 

and separately in the study of ceria/zirconia mixtures by Balducci et al. (47) using 

interatomic potentials. These two surfaces are the {011} and the {111}, and will be 

discussed in the remainder of this chapter.

One of the most important quantities used to characterise a surface is the surface 

energy -  defined as the amount of energy (per unit area) required to cleave the bulk 

material along a selected crystallographic face. In this thesis, the surface energy is 

defined by the relationship given in equation (2.29) (detailed in section 2.9).

After cleavage of a surface from the bulk, the internal energy of the slab may be 

reduced quite substantially from its ‘just-cleaved’ (unrelaxed) value by displacement of 

the ions away from the positions which they occupy in the bulk lattice. This relaxation 

becomes possible because a number of symmetry operators present in the bulk are 

destroyed in the generation of the slab. In order that our calculations remained viable 

given the limited time and resources available, it was necessary to restrict these ionic 

relaxations to only those which maintain all remaining symmetry operators of the slab. 

This assumption, although intuitive, was validated through both interatomic potential 

studies, and the independent plane wave calculations by Alfredsson et a l (98) using the 

CASTEP (99) and VAS? (93) codes.

6.2 Interatomic Potential Surface Calculations

To complement the current ab initio investigations, and also assess the applicability 

of interatomic potentials studies in surfaces of these materials, an additional series of IP 

calculations were performed on selected surfaces of these two materials. Potential Sets 1 

and 2 (ceria) by Vyas et al. (48) listed in tables 6 .1 and 6.2, and the zirconia potential 

set derived by Dwivedi and Cormack (100) listed in table 6.3, used in the work by 

Balducci et a l, (44) on mixed ceria and zirconia systems were employed here.
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Interaction (eV/Â) f(A ^ ) C(A") k{oW k^) 7(e) Cut Off (A)
0 ^ — 0 ^ 9547.92 0.2192 32.00 9.3 -2.04 1 2 . 0

Cê  ̂— 0 '̂ 1809.68 0.3547 20.40 177.84 -0 . 2 0 1 2 . 0

Table 6.2; CeOz Interatomic Potential Parameters for Potential Set 2 (48)
Interaction A (eV/A) C(A") k{QVk^) 7(e) Cut Off (A)
0 ^ — 0 '̂ 9547.92 0.2192 32.00 10.3 -2.04 1 2 . 0

Cê '" — 0 '̂ 2531.5 0.335 20.40 177.84 -0 . 2 0 1 2 . 0

Interaction A (eV/Â) P(A-‘) C(A«) k(eVA-^) y(e) Cut Off (Â)
0 '̂ — 0 ‘̂ 22764.3 0.149 27.89 27.29 -2.077 1 2 . 0

985.869 0.376 0 . 0 169.617 1.35 1 2 . 0

In IP surface modelling, a slab model similar to that used in the current CRYSTAL 

calculations is employed. However, the IP slab is divided into two separate regions, as 

shown in figure 6.1: ions forming region I are explicitly relaxed to minimise the internal 

forces using the Buckingham equations, while ions forming region II are kept stationary 

at all times. Region II exists to recreate the effects of the infinite crystalline field of the 

lattice on the ions moving in region I.

Figure 6.1: The Interatomic Potential Slab model. This figure illustrates the 
distinction between Region I and Region U ions in the IP slab model.

Surface plane

o o o o oo o oo oo oo o ooo o ooo o o o oo o oooo o oo oo o oo oo oo o oo o oo oo o oo oo o C) o o

Region I

Region II

In the present study, region II ions were not included in the calculations. This 

approach was taken because the resulting slabs are analogous to the slab geometries 

examined in the ab initio calculations -  the use of a region II model to include the
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Coulombic effects of an infinite crystal lattice on the examined section cannot be 

replicated in the present ab initio calculations. Surface energies for infinite slabs were 

calculated using the full two region approach to provide data to compare to that from 

smaller slabs

The aim of these IP calculations is to permit a more direct comparison of the ab 

initio and the interatomic potential calculations. These IP potentials also allow the 

convergence of the (limited) ab initio calculations regarding the calculated surface 

properties (e.g. the surface energy, or ion relaxation) to be assessed, by permitting 

investigation of much larger slabs than is possible with the current QM calculations.

6.3 The {011} Surface

Even though the {011} surface is found to be thermodynamically less stable than the 

{ 1 1 1 } surface, it shall be discussed first since the results obtained proved to have a 

more interesting and relevant consequences to the catalytic application of these two 

oxides.

V
Figure 6.2: Graphic illustrating the location of the {011} surface in the fluorite

structure.

The {011} plane in the fluorite unit cell is shown for reference in figure 6.2. During 

the construction of the ab initio slabs, the symmetry of the system requires that the 

centre of the slab be a mirror plane. In slabs containing an odd number of layers (like 

the five layer slab shown in figure 6.3(a)), then the central atomic layer must belong to 

this mirror plane, and any ions within this layer may be displaced parallel to the surface 

normal without destroying the slabs mirror symmetry. However, in slabs containing an 

even number of atomic layers (such as the six layer slab shown in figure 6.3(b)), then all
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ions present may be displaced along the [0 0 1 ] (plane normal) direction with no loss of 

symmetry.

Number Number

i  t  1 f  i
(a) (b)

+ i  +
C2 C l  C2C1 01

Figure 6.3: A graphical overview of the {011} surface of fluorite-structured 
CeOz and C-Z1O 2 . Surface structural relaxations were permitted in the 
present series of calculations, and the two possible surface geometries 

obtained from this construction are shown here: (a) an odd number of layers, 
where the central plane of atoms is a mirror plan in the slab height; (b) an 

even number of surface layers.

In the unrelaxed (‘just-cleaved’) slabs we observe little difference between the slabs 

having an even number, or an odd number of atomic planes. For example, table 6.4 lists 

the calculated Mulliken charges on the metal and oxygen ions in a five, and again in a 

six-layered slab. As these results are for the unrelaxed slabs, there can be no structural 

differences between the two, other than the obvious additional layer in the six-layered 

slab. We clearly see in table 6.4 that both slabs provide an almost identical electronic 

description of the unrelaxed surfaces throughout the entire depth of the material, and 

also note that ions at the centre of either slab possess an electronic configuration which 

we would expect (from the previous calculations examined in chapter 4) for ions 

forming part of the bulk material. We should also mention that even though the only 

data reported here is for ceria, an identical result was obtained for zirconia.

Table 6.4: A comparison of the calculated Mulliken properties of unrelaxed

Five Layers Six Layers Bulk
+3.023
-1.536

+3.024
-1.536

—

+3.427
- 1 . 6 8 6

+3.427
- 1 . 6 8 6

+3^61
-1.730
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On the {011} surface, the metal ion coordination is reduced to six, and the oxygen 

ion coordination to three; for reference, in the bulk the metal ions are eight-fold 

coordinated and the oxygens four-fold. The {011} surface may be viewed as being 

constructed from repeated oxygen-metal-oxygen platelets, with each platelet separated 

from the next by a row of interstitial sites in the plane of the surface. These surface 

interstitials alter the environment surrounding the surface oxygen ions to one which is 

more representative of a surface defect or a kink site, rather than that expected of a flat 

surface. This may be an important property of the {Oil} surface, as numerous 

independent studies on a wide range of materials have shown that such surface defects 

can function as centres for surface catalysis, especially in heterogeneous systems like 

the SOFC or an automobile exhaust catalytic converter. In addition, these interstitial 

sites may play a highly important role in situations where the material is used as a 

ceramic support for some other active species, often a noble metal. One such example of 

this is in the automobile three-way exhaust catalytic converter, in which the active 

element is platinum (or alternatively rhodium) metal deposited onto a ceria/alumina 

support; these surface interstitials could assist the deposition of the metal by acting as 

open ‘docking’ sites on the surface in which the metal atoms can adsorb.

For future reference in the following discussion, I shall mention now that the metal 

ions in the {0 1 1 } slabs appear to lie in two independent columns running through the 

thickness of the slab, perpendicular to the plane of the surface. The first of these 

columns, labelled as Cl in figure 6.3, contains the outermost surface cations and all 

metal ions belonging to the odd-numbered atomic layers; the second, labelled as C2 in 

figure 6.3, contains all cations in the even-numbered atomic layers, and is a symmetry 

inversion of Cl around the centre of the slab. As we shall see in the following sections, 

the relaxation induced by creation of the surface appears to involve a large correlation in 

the displacement of ions in these two columns.

6.3.1 Slab Relaxation

As previously mentioned, the cubic phase of zirconia is thermodynamically unstable 

at low temperatures, and undergoes a phase transition to a tetragonal structure by 

displacement of the oxygen ions along the <001> direction. It is therefore natural to 

assume that since the surface is initially cleaved from a cubic lattice, ions on the surface 

would revert to a geometry corresponding to one of the lower symmetry phases during
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surface relaxation, rather than maintaining a cubic-like symmetry. For this reason, in 

their recent paper on the bulk and surface structures of ZrOz, Christensen and Carter 

(59) did not calculate relaxed surface configurations for cubic-ZrOi systems.

In order to ascertain if the c-t phase transition could be represented in our current 

calculations, we need to establish whether or not this transition can be modelled by 

oxygen ion displacements which do not create further loss of symmetry in the newly- 

cleaved slab. Figure 6.4(a) illustrates the direction ions must move to revert to a 

tetragonal structure, while figure 6.4(b) shows the directions permitted for ions on this 

surface in order to maintain symmetry. The two are clearly unequal, and thus we 

conclude that our relaxed {0 1 1 } surface configurations do in fact refer to the cubic 

phase at all times, and that the ionic relaxations cannot be form the tetragonal phase in 

the process.

(b)

Figure 6.4: Image (a) shows the ion displacements which occur during the c-t 
phase transition in a {011} surface unit cell. Figure (b) shows the symmetry 

permitted oxygen ion relaxations. The two perpendicular mirror planes 
(dashed lines) bisect tbe unit cell and force all oxygens to relax either inwards 
or outwards to maintain symmetry. It clear from these figures that the phase 

transition is forbidden in the present calculations.

Confirmation of this result may be found by examining the calculated ion 

displacements at various depths through the slab. If a phase transition were to occur, it 

would involve relaxation of all oxygen ions in a similar manner, regardless of their 

position in the slab. The calculated displacements, listed in table 6.7, decrease in 

magnitude on moving from the surface to the lower surface, and are therefore not 

associated with the c-t transition. The relaxations associated with the experimentally 

measured phase transition by Fukuhara et al. (8 6 ) and also by Kisi et al. (92) were 

0.057c/e/ = 0.3 Â, a figure much larger than the oxygen relaxation observed here in the
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centre of the slab. The calculated oxygen displacements reported in table 5.2 (on page 

104), and are somewhat smaller than this experimental value -  corresponding to an 

oxygen ion relaxation of approximately 0.2 Â. Although this figure is similar to the 

relaxations predicted for the outermost surface oxygen ions, it is significantly larger 

than those at the slab’s centre, and therefore cannot be associated with a global phase 

transformation.

The symmetry operators present in the {011} (and also in the {111} slabs) are 

therefore sufficient to prevent the occurrence of the c-t phase transition, and therefore 

the slabs studied here do in fact correspond to those of a cubic phase at all times.
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Figure 6.5: The trend in relaxed (calculated) {011} surface energies with slab 
thickness for (a) ceria, and (b) zirconia {011} slabs. HF are calculations 

performed at the Hartree-Fock level, HFC include an a posteriori estimate of 
the electron correlation energy, while interatomic-potential calculations are

given for comparison.

We have performed ab initio calculations on {011 } slabs containing three, four, and 

six atomic layers (w); and furthermore have complemented these using interatomic 

potential calculations on {0 1 1 } slabs containing up to twenty atomic layers (using the 

region I only model detailed earlier in this chapter). The calculated relaxed and 

unrelaxed {Oil} surface energies of such slabs are illustrated graphically as a function 

of slab thickness in figure 6.5, and are also listed in table 6.5.
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Table 6.5: Calculated {011} surface energies of CeOz and Z 1O 2 , for increasing 
slab thickness, n (in number of atomic layers).

Ce0 2  C1/m l ZrOz (J1/m l
n Unrelaxed Relaxed Unrelaxed Relaxed
3 2.669 2.264 3.038 2.625

HF 4 2.648 2.082 3.033 2.335
6 2.624 2.106 3.035 2.406
3 2.983 2.724 3.533 3.170

HFC 4 2.970 2.538 3.524 2 . 8 8 6

3 3.563 2.314 3.642 2.327
4 3.559 2.062 3.636 2 . 0 0 1

6 3.560 2.125 3.638 2.137
2 0 3.560 2.166 3.638 2.147
00 3.560 2.130 3.638 2.148
3 3.781 2.576

<N 4 3.776 2.378
(L>

CO 6 3.777 2.427
& 2 0 3.777 2.464

00 3.780 2.440

Concentrating on the ceria slabs for the moment, we immediately see a close 

correlation between the ab initio and interatomic potential calculations: potential set 1 

closely reproduces the ab initio calculations performed using a pure HF Hamiltonian, 

while potential set 2 reproduces the calculations including the Perdew-91 (101,102) 

estimate of correlation a posteriori on the Hartree-Fock density during the numerical 

optimisation.

It should be noted that the agreement between the two sets of calculations is 

quantitative, as well as qualitative; both interatomic potential and ab initio calculations 

provide an {011} surface energy of approximately 2.1 -  2.4 J/m̂ ; I am unaware of any 

published experimental studies reporting surface energies of ceria with which to 

compare, however the IP ceria study by Sayle, et a l (103) and the investigations by 

Conesa (104) provide {011} surface configurations and energetics which are in good 

agreement with those calculated here.

The IP surface study by Balducci (47) predicted an {011} surface energy of 

2.40 J/m  ̂ for ceria, and approximately 2.10 J/m̂  for zirconia, figures in excellent 

agreement to the current range predicted. They also observed a similar reduction in the 

surface energy on relaxation of the surface ions, with their reported unrelaxed surface 

energies ranging from 3.5 J/m̂  (CeOi) to 3.6 J/m̂  (ZrOi). A significant discrepancy is
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often tolerated in reported values of surface energies, due primarily to the intrinsic 

experimental difficulties which need to be overcome in order to quantify such a highly 

subjective surface property, a variation of 0.3 J/m̂  between the results reported here is 

of little importance, and can be easily disregarded.

The agreement of interatomic potential studies to the current ab initio results is 

highly encouraging, given the prohibitive nature of quantum mechanical calculations, 

although is not entirely unexpected. Our previous studies on the bulk phases (see 

chapters 4 and 5 for further details) have shown these materials to have a highly ionic 

nature: Ce having a calculated charge of +3.46, Zr of +2.99, in comparison to the formal 

charge of +IV. Interatomic potential studies are well known to accurately model both 

bulk and surface systems in which the interactions are highly characterised as either 

highly ionic, or largely covalent, rather than an intermediate state.

We observe from figure 6.5 and table 6.5, that inclusion of electron correlation into 

the internal energy minimisation causes the calculated surface energy to increase. It is 

important to remember that surface energies calculated at the HF-only level of theory 

are fully consistent with the Hamiltonian used, something which is not the case for the 

HFC energies in which the electronic distribution at the surface cannot adapt to 

correlation effects being included. The two-step approach used in the HFC studies has 

been applied in several investigations on bulk materials (18,19,105,106), and generally 

improves the quality of the calculated properties, especially for the heat of formation of 

the solid. However, there is little experience on the validity of such an approach to 

studies of surface in the manner we have used here. As a consequence, we expect the 

HFC calculations to underestimate the electronic relaxation introduced by formation of 

the surface from the bulk crystal, and therefore to overestimate the predicted surface 

energies. If the effects of correlation were to be included self-consistently in the 

Hamiltonian, as was the case in the LDA calculations by Christensen and Carter (59) 

then we expect the calculated HFC surface energy to decrease.

Although Christensen and Carter did not calculate the relaxed geometries of 

cubic-zirconia slabs, they did report relaxations observed in the tetragonal and 

monoclinic surfaces studied. In general, they observed (averaged) relaxations of 

0.1-0.3 Â on all their examined surfaces; the observed relaxations in the current work 

( - 0 . 2  Â) are of a similar magnitude, suggesting the two studies are in qualitative
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agreement with one another. Christensen and Carter calculated the unrelaxed surface 

energy of the cubic {011} surface as 2.29 J/m̂ . When the effects of electron correlation 

were included a posteriori into the current HF surface calculations, then the predicted 

{011} surface energy increased by approximately 0.50 J/m ,̂ although the energy change 

introduced by relaxation of the ions remained unchanged at 2 0 % of the unrelaxed 

energy.

On comparing ceria and zirconia, we find that (in the ab initio calculations) the 

calculated surface energy of ceria is approximately 1 0 % smaller than that of zirconia, 

using both the HF and the HFC Hamiltonians. Zirconia has slightly more covalent 

bonding than ceria -  due no doubt to the smaller ionic radius of the Zr(IV) cations 

increasing the degree of interaction to neighbouring anions which results in zirconia 

possessing a higher lattice energy than ceria. Clearly, more energy will be required to 

cleave a Zr-0 bond than is needed to cleave a C e-0 bond, and so we expect zirconia to 

have a higher surface energy than ceria, although this effect may be masked by the 

reduction in surface energy caused by ion relaxations.

This trend is not observed in the (unrelaxed) interatomic potential calculations, 

which instead predict that the surface energies of both materials should be at best 

identical (using CeOi potential set 1 ), or even lower in zirconia (using CeOz potential 

set 2). This is believed to be because such calculations are only able to take into account 

the electrostatic potential between two ions, and not the subtleties permitted by ab initio 

calculations.
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Table 6.6: Calculated relaxation (in Â) of the outermost cerium ions at the 
{011} ceria surface. The ions have been separated into columns C l and C2, as 
labelled in figure 6.3(b). The sign of these relaxations is such that a positive 

displacement is towards the upper surface of the slab, and a negative towards
the lower.
6  layers 2 0  layers

Atomic HF IP Set 1 IP Set 2 IP Set 1 IP Set 2
Layer Cl C2 Cl C2 Cl C2 Cl C2 Cl C2

1 -0.17 -0.23 -0 . 2 1 -0 . 2 1 -0 . 2 0

o § i  'rt 2 +0.09 +0.17 +0.13 +0.16 +0.14
H g  "53 3 -0.04 -0.07 -0.04 -0.03 -0 . 0 2

4 — — — +0.03 +0 . 0 2

4 — — — -0 . 0 2 -0 . 0 2

§  ( 2 3 +0.04 +0.07 +0.04 +0.03 +0 . 0 2Ç -̂4O cd (/) 2 -0.09 -0.17 -0.13 -0.15 -0.14CQ
1 +0.17 +0.23 +0 . 2 1 +0 . 2 1 +0 . 2 0

We shall now examine the convergence of the calculated surface energies on 

increasing the slab thickness. In figure 6.5 we observe that the surface energy oscillates 

as a function of slab thickness; in particular slabs having an odd number of atomic 

layers have larger surface energies than slabs containing an even number of layers. We 

can explain this result by a closer examination of the physical nature of the ionic 

relaxations which occur in each slab.

Table 6.7: Calculated relaxations (in Â) of the Zr ions at the {011} surface. The

Number of layers in slab
6  layers 2 0  layers

HF IP IP
Atomic Layer Cl C2 Cl C2 Cl C2

1 -0 . 2 1 -0.18 -0.18

- 1
2 +0 . 1 0 +0.14 +0.13

£  o 3 -0.07 -0.06 -0.03
H  ° 4 — — +0 . 0 2

g 4 — — -0 . 0 2

1 ^ 1
PQ

3 +0.07 +0.06 +0.03
2 -0 . 1 0 -0.14 -0.13
1 +0 . 2 1 +0.18 +0.18

Note that in the six layer slab, atomic layer number four is a symmetry reflection of atomic layer 

number three.
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The calculated magnitudes of the cation relaxations are reported in tables 6 . 6  (CeOi) 

and 6.7 (ZrO]), in the remainder of this discussion we denote those relaxations directed 

away from the centre of the slab as positive, and those relaxations directed towards the 

slab centre as negative. In tables 6 . 6  and 6.7, for clarity, the ions have been separated 

into the two distinct columns labelled as Cl and C2 in figure 6.3.

Although only cation displacements along the direction perpendicular to the surface 

were permitted (by symmetry), the oxygen ions could also relax horizontally in the way 

illustrated in figure 6.4(b). During the relaxation of the bulk-terminated surface, the 

anionic movements can be described as a “rolling” of the oxygen around the metal ions, 

maintaining a roughly constant metal-oxygen separation near the surface. This was 

further verified through the use of plane wave calculations by Alfredsson (98), and by 

interatomic potential calculations, in which all ions in the slab were allowed to relax 

fully.

The vertical cation relaxation appears to have a strong correlation in each of the 

columns Cl and C2. The metal ions in column Cl (of a slab with an even number of 

layers) displace away form the upper surface and towards the lower surface, while ions 

belonging to C2 do the reverse. In slabs with an odd number of layers, this effect is 

destroyed since the central layer may not be displaced along the plane normal, and 

instead the ions relax either away from the central layer (if the half-column is surface- 

terminated) or towards it (if the column terminates on the subsurface layer). This effect 

is indicated by the arrows on figure 6.3(a) and (b).

The extra stabilisation caused by the columnar relaxation explains why the surface 

energy calculated with slabs having an even number of atomic layers is always lower 

than that for slabs with an odd number of layers. When we examine the unrelaxed 

surface energies for the same slabs (given in table 6.5) we see a much smoother 

behaviour as the thickness of the slab is increased -  confirming that the oscillation in 

relaxed surface energy relates entirely to the ionic relaxation.

Concentrating now on the cation relaxations in Ce0 2  (table 6 .6 ), we note that in the 

six layer {0 1 1 } slab, the relaxations predicted by interatomic potentials in each atomic 

layer are remarkably similar to those determined in the ab initio study. The 

displacement of the outermost atomic layers obtained using twenty-layer IP slabs are
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also shown for comparison; it can be clearly seen that even though the magnitude of the 

relaxations does decrease (by approximately 0 .0 1 -0 . 0 2  Â), such a reduction appears 

negligible. There will therefore be only a small gain in the accuracy of the predicted 

relaxations by using ab initio slabs thicker than six atomic layers.

The calculated values for zirconia (listed in table 6,7) show a similar pattern. The 

potential set used to describe ZrOz provides a less satisfactory quantitative agreement 

with the ab initio results for the surface energy; however, appears to work well when 

describing the ionic relaxation at the surface.

During the course of this work, the computing power available meant that ab initio 

calculations could be performed on slabs possessing up to six atomic {0 1 1 } layers 

(which corresponds to an irreducible unit cell containing 18 atoms). Given the good 

correspondence of results between ab initio and interatomic potential calculations, we 

have extended the study to slabs of up to twenty atomic layers. When the thickness of 

the slab becomes large enough for ions in the centre to be unaffected by the surface, 

both halves of the slab can fully relax without influencing each other. We see in figure 

6.5 that at this point, the calculated surface energy becomes invariant of slab thickness. 

Comparing this trend in calculated surface energies, we estimate that eight {011} 

atomic layers would be the minimum slab thickness required to fully converge the 

calculated surface energy; the atomic relaxations calculated with the six layer slabs are 

however already very similar to the twenty layer slabs, such that even a six layer {0 1 1 } 

slab represents (with sufficient accuracy) the equilibrium energy minimised surface 

structure and energetics.
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Table 6.8: Mulliken charges as a function of slab thickness (n, in atomic layers) 
for the {011} surfaces of ceria and zirconia. Results relating to the bulk 

structures are also reported for comparison. *Depth* refers to the position of 
the atomic layer within the slab (*1' is the uppermost surface, '3* is three 

atomic layers below layer ‘1’). g(M ) and Q {0)  are the net charges of the metal 
(M) and O ions in the specified layer, while gb(MO) and Cb(OO) are the bond

Depth
n 1 2 5 Bulk

GrCe) +3.046 +3.405 — +3.461
+0.006 -0.072 - -0.043

oro; -1.541 -1.667 - -1.730
-0.076 -0.028 - -0.030
+Î042 +3.395 - -

4 -0.004 -0.050 — -

u oro; -1.538 -1.680 - -

-0.072 -0.030 - -
+3.045 +3.410 +3.448 —
-0 . 0 0 2 -0.007 -0.039 -

orq; -1.542 -1.693 -1.717 -
-0.073 -0.039 -0.031 -
+2.773 +2.948 — +2.992
+0.053 -0.018 - +0 . 0 1 2

oro; -1.379 -1.490 - -1.496
-0.104 -0.065 - -0.070

6 (2 /:) +2.755 +2.925 - -
o 4 6 6 (Z/"6 ) +0.042 +0 . 0 0 2 - -

N grq; -1.362 -1.478 - -
6 /OQ) -0.103 -0.068 - -

6 (2 r) +2.762 +2.945 +2.982 —
6 6 (Z/"Q) +0.045 -0 . 0 0 2 +0.016 -

gro) -1.367 -1.487 -1.490 -

-0 . 1 0 1 -0.069 -0.071 -

A Mulliken population analysis on the electronic distribution for ions at the surface 

and in the centre of the slab (the results of which are given in table 6 .8 ) shows that 

surface ions are more polarised and have a lower ionic charge than their equivalent ions 

in the bulk, as we would intuitively expect. The Mulliken charges appear to have 

converged for slabs with more than four atomic layers; the difference between the 

Mulliken population of ions in the central layer of the six layer slab and that calculated 

for the bulk material is just 0.010 |e| in zirconia, or 0.013 |e| in ceria -  sample 

calculations on an eight layer slab (which did not include a complete relaxation of the 

ions in the slab) demonstrated that there was little change in the Mulliken populations

Page 136



Chapter 6: Surfaces of Ceria and Zirconia

from the six layer slab, although the cost of calculations on these slabs were extremely 

prohibitive at the time.

Electron density maps calculated through the fully relaxed {011} slabs are shown in 

figures 6 . 6  and 6 . 8  for a variety of cross-sections slicing through the upper half of a 

fully-relaxed six layer slab: the plane of figure 6 . 6  shows the electron density within the 

metal ion column C l, while figure 6 .8 . shows the plane which intersects one of the 

oxygen-metal-oxygen platelets on the outermost surface layer.

The plane of figure 6 . 6  highlights the different behaviour of the two columns {Cl and 

C2) described earlier in this chapter. This plane contains only the cations belonging to 

odd-numbered atomic layers, i.e. column C7; ions in the even numbered layers (C2) lie 

above and below this plane, although their locations relative to the plane of figure 6 . 6  

are shown for reference. It is clear from these figures that all cations are polarised away 

from the lower surface towards the upper surface, which is where the column 

terminates. We also note that the effectiveness of the polarisation decreases on moving 

through the slab away from the surface-terminated cation. The plane intersecting cations 

in the even-numbered atomic layers, i.e. column C2 was the exact inverse of figure 6 .6 : 

here, all metal ions electronically polarise towards the lower surface (note that in 

column C2 the surface-terminating cation now lies on the lower surface).
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C1 C2 C1 C2 C1

V

Figure 6.6: Electron density plot for six-layer {011} (a) ceria and (b) zirconia, intersecting 
the metal ion columns labelled as Cl  in figure 6.3. These images show the density obtained 

when the initial (atomic) electron density is subtracted from the total calculated. The 
contours range from -0.005 |e| to 0.005 |e|, with 30 contours spanning this range linearly. 
The colourings are such that negative values are ‘cooler’ dark blue and purple; positive 

values are ‘warmer’ red and orange. Yellow and green contours are close to zero

The electronic perturbations therefore appear to be transmitted from the surface to 

the subsurface layers differently in each of the two previously identified cation columns, 

in the same way as the ion relaxations discussed earlier in this section. Figure 6 . 6  

therefore suggests an electronic explanation for the observed columnar relaxation effect 

in these materials -  electrons on ions in the column are polarised towards the surface- 

terminated cation and the effect continues through the entire column. As the outermost
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ion in the column relaxes away from the centre, the remainder of the column move with 

it, the macroscopic effect being that the columns Cl and C2 relax in opposite directions.

□

Figure 6.7: Electron density plot for five -layer {011} (a) ceria and (b) zirconia, intersecting 
the metal ion columns (labelled as C l  and €2  throughout this thesis).

Figure 6.7 shows the same plane as figure 6 . 6  but for a slab containing only five- 

atomic layers through the Cl metal ion column. By comparison to the six layer slab, the 

differences are clear: rather than the electron density moving in the same direction 

across the entire column (in the even layered slab), the requirement that the central 

plane be a mirror plane instead forces each half of the column to distort in opposite 

directions -  each end of the column terminates on the outermost surface layer. As result 

of this is that the electron density is unable to fully relax, being constrained by the 

additional mirror symmetry on the central plane and therefore the calculated internal 

energy of such slabs is greater than those obtained for the even layers slabs (in which 

both the ion position and the electron density are able to fully relax). This effect is the 

cause of the oscillations observed in the calculated surface energies shown in figure 6.5: 

slabs with an odd number of layers possess a larger surface energy than those with an 

even number of layers.
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I

5r"Xm 1

Figure 6.8: Electron density plots produced from the optimised Hartree-Fock 
calculations performed on 6-layer slabs of (a) ceria and (b) zirconia. Tbe chosen 

cross-section intersects one of the surface metal-oxygen platelets described in the text, 
and also contains the slab surface normal along the vertical axis.
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In figure 6 .6 , we observe that cerium ions have a lower J-orbital population than 

zirconium ions on the surface, since the contours on the zirconium ions appear to have a 

more pronounced ^/-component than they do on cerium; the same trend observed in the 

bulk materials is therefore preserved at the surface. In table 6 . 8  we see that in both ceria 

and zirconia, cations on the surface have a larger electron population (and therefore a 

lower positive charge) than those in the subsurface layers or in bulk: in ceria, the surface 

Ce ions contain approximately 0.4 more electrons than those in the centre of the 

six-layer slab, in zirconia the difference is smaller at 0 . 2 2  |e|, but is still an extremely 

large amount. These electrons are concentrated ahnost exclusively into the metal ions 

( -̂orbitals, the smaller charge transfer in zirconia may therefore be a result of the already 

significant population of these functions on ions in the bulk material and the increased 

electrostatic repulsion these would produce. The appearance of large areas of positive 

electron density (coloured red) in the ZrOi electron density plots in the regions between 

ions compared to those of ceria again demonstrates the higher covalence of zirconia

This observation confirms an increased covalence in the metal-oxygen bonding at the 

surface, where the Madelung (Coulomb) field is less favourable to formally charged 

and ions. The increased electron population of the surface ions is oriented 

perpendicularly to the surface; the latter effect is clear in both figures 6 . 6  and 6 .8 , but 

even more so in the latter. Figure 6 . 8  shows the electron density in a plane passing 

through the outermost oxygen ions on the zirconia slab. As for surface Zr ions, the 

surface oxygen ions are distorted; the electron distribution of the outermost oxygens in 

figure 6 . 8  shows highly pronounced deviations from spherical symmetry, much greater 

than those seen on the subsurface oxygen ions.

Comparing the convergence properties of the surface energy and ionic relaxations 

examined earlier in the discussion, we conclude therefore that the latter converges more 

rapidly on increasing the slab thickness; further oscillations in the calculated surface 

energies are due to a longer-ranged electronic perturbation, which appears to be more 

“sensitive” to the surface than the ionic relaxations. Overall, a slab with not less than six 

{0 1 1 } atomic layers should be employed for calculations to model the {0 1 1 } surface of 

ceria and zirconia with sufficient accuracy. The interatomic potentials employed in the 

present study reproduce the QM results concerning the surface relaxation and the 

change in surface energy as the slab thickness is increased. However, they may be less

Page 141



Chapter 6: Surfaces of Ceria and Zirconia

accurate in predicting the absolute value of the surface energy; in particular the 

comparison between the two materials does not reproduce the QM results.

6.4 The {111} Surface

L

Figure 6.9: Graphic illustrating the location of the {111} surface in the fluorite
structure.

The position of the {111} planes in the fluorite structure are illustrated in figure 6.9, 

with a sample cross-section through a {111} slab being given in figure 6.10. It can be 

viewed as a stepped {0 1 1 } surface, in which the oxygen-metal ion-oxygen platelets 

partially overlap those in the layer below. Such a construction generates a rumpled 

surface, with highly exposed terminal oxygen ions. At the surface of the slab, the 

outermost oxygen ion is coordinated by three neighbouring metal ions; the outermost 

metal ion is instead surrounded by seven oxygen ions. It is interesting to note that this is 

the same coordination number as is found in monoclinic zirconia, the 

thermodynamically stable polymorph of the material of ZrOi. The {111} surface was 

found to be the most stable surface in both experimental and in previous theoretical (IP 

based) studies. Since the oxygen and metal ions belong to different {111} atomic 

planes, each MO2 formula unit is split into three atomic layers along the { 1 1 1 } 

direction. A {111} slab containing the same quantity of material as the six layer {011} 

slab would therefore require eighteen { 1 1 1 } atomic layers.
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Figure 6.10: A graphical overview of the {111} surface obtained from cleaving a 
sample of CeOz and c-ZrO;.

The STM (Scanning Tunnelling Microscopy) study by Norenberg and Briggs (72,73) 

is one of the only known experimental attempts to directly image the surface structure 

of ceria, in this case the (111} surface was examined. They found that the surface was 

well-ordered, and terminated by oxygens in the manner shown in figure 6 .1 0 , as we 

would expect since this construction avoids the formation of a polar surface.

6.4.1 Slab Relaxation

During relaxation of the surface ions (which, as for the {011} surface, was restricted 

to retain all the symmetry operators present in the slab) only the outermost oxygen ion 

underwent any noticeable displacement, and even in this case by only -0.05 Â, much 

smaller than the 0 . 2 1  A relaxations of the outermost (0 1 1 } surface ions. A summary of 

the calculated relaxations for the outermost three atomic layers in the ( 1 1 1 ) slabs is 

reported in table 6.9, comparing the HF and IP calculations.

Table 6.9: Relaxations of the outermost three layers in the eighteen layer {111} 
slab of ceria and zirconia. As for the {Oil}, positive relaxations are directed
away from the slab centre; ne;;ative relaxations are towards the slab centre.

n HF IP Set 1 IP Set 2
1 (()) -0.045 -0.090 -0.086

2 (Ce) -0.009 -0.029 -0.025
0 3 (0 ) -0.024 -0.005 -0.005

1 (()) -0.044 -&058 -

s 2 (Z0 -0.004 -0 . 0 0 1 —

N 3 (0 ) 4)029 +0.013 -

One additional consequence of the almost negligible ionic displacements of the 

( 1 1 1 ) surface will be that the calculated properties of the relaxed and unrelaxed slabs 

will be virtually identical; the predicted ( 1 1 1 } surface energy for a range of slab
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thicknesses are summarised in table 6.10. The reduction in the calculated surface energy 

due to the ionic relaxations is only 0.032 J/m̂  in the 18-layer slabs (HF/CeO]), an 

almost negligible amount. A second consequence is that the calculations are much faster 

to converge than the {0 1 1 } slabs, both in the geometric optimisation of the ions and also 

in the SCF procedure; a much greater proportion of the {111} slab resembles the 

electronic configuration of the bulk material and has a higher ionicity in comparison to 

the {011} slabs. The calculations begin from a description of the system containing 

formally charged ions, which is a closer description to the electronic structure of the 

{111} slab than the {Oil}.

To confirm that the rapid convergence is not a result of our (necessary) restriction in 

the form of the ionic relaxations, sample calculations were repeated in the CASTEP 

program on similar slabs but without this relaxation restriction by both myself, and by 

Alfredsson (98,107); in addition, Alfredsson also performed the same calculations using 

the VAS? program (93). The results of these calculations were in agreement to the 

unrestricted IP calculations performed here: the ions in the {111} slabs relax along the 

direction of the surface normal, there was no relaxation in the plane of the surface, 

which validates the use of our restricted relaxation in the work discussed here.

The LDA plane wave study of zirconia surfaces by Christensen and Carter (59) did 

not provide relaxed surface geometries for the cubic phase, however as we have just 

demonstrated that the relaxation effects in the { 1 1 1 } surface are almost negligible, then 

their calculated (unrelaxed) { 1 1 1 } surface energy of 1 . 1 2  J/m  ̂ is a close indication of 

what the relaxed energy would be. This value is in very good agreement to the figure of 

1.49 J/m  ̂calculated here.

Of somewhat greater importance is the difference in energies between the {111} and 

the {0 1 1 } surface energies: the experimental observation is that the { 1 1 1 } surface is the 

thermodynamically stable structure, a result echoed in the current study where the 

{111} surface has a surface energy approximately 1 J/m̂  smaller than the {Oil}. This 

result was also found by Christensen and Carter, although without precise values of the 

relaxed surface energies of the cubic phase we can only estimate the energy difference 

that would be calculated between the two relaxed slabs to be of similar magnitude as 

that observed here. In their calculations of the tetragonal phase, the r-ZrO] {011} 

surface energy (1.53 J/m )̂ is 0.3 J/nf greater than that of the relaxed t-ZrOi {111}
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surface. We also note here that the results provided by Christensen and Carter tend to 

indicate that the surfaces of the cubic phase would have lower surface energies than the 

equivalents in the tetragonal phase: in particular, the relaxed energy of the tetragonal 

{111} surface (1.53 J/m )̂ is still somewhat larger than the quoted unrelaxed energy of 

the cubic {111} surface (1.19 J/m )̂ -  clearly the cubic {111} surface is significantly 

more stable than the tetragonal {111} surface. We would expect this same trend to be 

seen in the current CRYSTAL calculations of the cubic and tetragonal phases, although 

time did not permit such a study to be performed.

As was the case with the {011} surfaces, the ceria surface energy calculated with IP 

Set 1 is very similar to those obtained with a pure HF Hamiltonian. The surface energy 

predicted by IP Set 2 is approximately 0.2 jW  larger than the HF values, the same 

trend as observed on the {011} surface is preserved here. IP Set 2 was optimised by 

Vyas et al. for the study of high index surfaces which IP Set 1 was unable to do so. In 

his work, Vyas noted that on such surfaces the mass less shells surrounding the surface 

oxygen ions on these slabs completely separated away from the core of the anion: IP Set 

2 therefore contains a larger core-shell spring constant than IP Set 1 in order to limit this 

unfeasible polarisation effect and encourage the anion core and shell to remain linked at 

all times.

Table 6.10: Relaxed and unrelaxed surface energies calculated for the {111}
slabs

CeOz (.iW ) ZrOz (JrW)
Unrelaxed Relaxed Unrelaxed Relaxed

9 1.340 1.313 1.513 1.488
HF 1 2 1.277 1.293 1.514 1.487

18 1.277 1.245 1.514 1.485
9 1.638 1.364 1.448 1 . 2 1 0

1 2 1.638 1.365 1.448 1 . 2 2 0
CO
Oh

18 1.638 1.367 1.448 1.226
HH

00 1.630 1.350 1.448 1.226
<N 9 1.820 1.555 — —

0> 1 2 1.820 1.556 — —
0 0

&
18 1.820 1.558 — —

00 1.820 1.550 - -

A Mulliken population analysis on the electronic distribution for ions at the surface 

and in the centre of the slab (the results of which are given in table 6 .1 1 ) shows that 

surface ions are more polarised and have a lower ionic charge than their equivalent ions
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in the bulk, as we observed for the {011} surface. Ionic charges are largely unaffected 

by increasing the slab thickness beyond four atomic layers; at this point, the electronic 

distribution of the ions in the centre of the slab approximated the bulk materials 

reasonably well. We conclude therefore that the electron density, as well as the ionic 

relaxations, converges rapidly as a function of slab thickness, which is of course 

important if a slab model is to be used to represent the chemical (i.e. catalytic) activity 

of the surface examined.

Table 6.11: Mulliken charges and bond populations for ions in an eighteen 
layer {111} slab. The columns refer to a particular O, Oc platelet, as

Oa-Mb-Oc platelet
O1-M2-O3 O4-M5-O6 O7-M8-O9

e(Oa)
gb(OaCeb)

O(Ceb)
2 b(Ceb-0 c)

6 (0 c)

-1.565
+0 . 0 1 2

+3.247
-0.045
-1.705

-1.703
-0.046
+3.456
-0.042
-1.731

-1.727
-0.041
+3.457
-0.042
-1.729

6 (0 a)
gb(OaZrb)

6 (Zrb)
Qb(Zrb-Oc)

e(Oc)

-1.404
+0.062
+2.909
-0.004
-1.504

-1.492
+0 . 0 1 0

+2.989
+0.013
-1.497

-1.497
+0.014
+2.991
+0.013
-1.496

Table 6 .11 shows the results from a Mulliken analysis performed on the equilibrium 

HF electron density. These values illustrate that even for the thinnest slab used 

(containing only 9 {111} atomic layers, the equivalent number of ions as are contained 

in a 3 layer {011} slab) the ions at the centre of the slab already closely resemble those 

of the bulk material, and increasing the slab thickness does not alter the charge 

attributed to any of the ions in the slabs; we can therefore consider a 9 layer {111} slab 

as being fully converged.
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Figure 6.11: Electron density plot for 18-layer {111} of (a) ceria and (b) zirconia.

Page 147



Chapter 6: Surfaces of Ceria and Zirconia

Results of the QM calculations confirm that the {111} surface is energetically stable 

compared to the {0 1 1 } surface in both CeO] and ZrO], with the difference in surface 

energy between the two being approximately 1 J/m  ̂ in both cases. The experimentally 

observed order of stability of these two surfaces is correctly replicated, and the surface 

energies of each are in good agreement to calculations using interatomic potentials.
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7 Conclusions
The work reported here has provided several key results which may be of great 

interest to future similar studies:

o Ceria is a highly ionic material, and while zirconia demonstrated a greater 

degree of covalence that ceria, it remains a largely ionic material.

o The order of stability of the ambient pressure zirconia phases was correctly 

predicted. The monoclinic phase is the most stable (approximately 

2 mHa = 0.054 eV lower in energy than the cubic, at the HF level), followed 

by the tetragonal (0.58 mHa = 0.016 eV lower in energy than the cubic, again 

at the HF level). Such energy differences are typical of temperature-driven 

phase transitions such as these.

o The energy double well observed in all previous theoretical studies of the c-t 

zirconia phase transition is observed.

o Oxygen polarisability appears to be a key feature of the c-t phase transition -  

studies which are incapable of providing an adequate representation of the 

oxygen basis functions generally are unable to predict the tetragonal phase as 

thermodynamically more stable than the cubic. This appears to be a major 

failing of the interatomic potentials derived by Dwivedi et al. (100), used in 

this thesis.

o Ceria exists only in a fluorite phase. Attempts to stabilise non-cubic ceria 

structures produced systems having significantly greater internal energy than 

the fluorite.

o The most thermodynamically stable surface, in agreement to the (ceria) IP 

study by Vyas et al. (45,48), or the ab initio plane wave results of Christensen 

and Carter (59) is the {111}, having a (relaxed) surface energy of around

1.25-1.3 J/m̂ .

o Ion relaxations in the {111} surface are almost negligible, indicating the 

extreme stability of the cleaved { 1 1 1 } planes.
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o The second most stable surface, in agreement with the studies of both Vyas 

and Carter, is the {Oil}. In the current HF calculations, the {011} (relaxed) 

surface energy is found to be 2 . 1  J/m̂ .

o The higher surface energy of the {011} slabs (in comparison to the {111}) 

suggests that the {0 1 1 } surface is likely to be more catalytically active than 

the { 1 1 1 }.

o The structural and electronic relaxations in the {011} slabs are much more 

significant than those observed in the { 1 1 1 } surface, and appear correlated 

into two distinct columns, each relaxing towards the opposite end of the 

slabs.

A great many avenues for future study have been opened as a result of this work, in 

fact the results of some of the zirconia calculations have already been used in the study 

by Alfredsson et al. (98) to study the effects of noble metal deposition onto zirconia 

{0 1 1 } and { 1 1 1 } surfaces.

Although time eventually ran out during the course of this work, partial studies were 

underway into similar surface deposition on ceria {0 1 1 } and {1 1 1 } surfaces, using the 

CASTEP code, based on the results of the preliminary plane wave calculations reported 

in this thesis. A similar bulk study of the electronic properties of yttria was performed, 

but not reported here, to allow future study of stabilised zirconia systems, and the 

properties of the resulting defect clusters. Until recent times, this was only possible 

through the use of interatomic potentials, although the recent work by Stapper et al. (58) 

proves that this is no longer the case. The difficulties encountered as a result of the 

optimisation process involved in CRYSTAL calculations made this a more lengthy 

process than that performed by Stapper, although we believe the additional benefits of a 

combined HF/DFT study possible with CRYSTAL are worth the additional expense.
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Appendix A: Tables of Basis Sets
This appendix reports tables listing the various parameters derived for use in the 

Gaussian basis sets in the CRYSTAL calculations which were performed in this thesis.

Table A l:  Hay and Wadt small-core pseudopotential parameters for Ce. The

Ce Hay and Wadt
CCkl Cki

9.20747930 -15.3487561 -1

1.86730116 -5.84323953 - 1

1.89370134 -255.562383 0

1.97914859 307.313928 0

10.7429697 10.6699017 - 2

7.75592979 12.2292109 - 2

1.81564126 124.942466 0

1.67164719 -84.5999868 0

1.70642047 24.9446755 0

6.48933742 10.2861447 - 2

Table A2: The optimised Ce Hay and Wadt small-core pseudopotential valence
basis functions.

Coefficient
Type Exponent s pox d
Asp 3.45700 3.137491 1.949717

4.29100 -1.429517 -0.912311
2.29000 -2.675848 -2.020037

5sp 0.668400 1 . 0 1 . 0

6sp 0.285700 1 . 0 1 . 0

3d 0.591600
0.300200

0.278320
0.458630

Ad 0.124400 1 . 0
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Table A3: The optimised Zr Hay and W adt small-core pseudopotential basis
set.

Coefficient
Type Exponent s pOTd
3sp 6.625845

2.226134
1.690689

-0.061704
4.210912
-2.584539

0.056691
0.913255
-1.202152

4sp 0.690186 1 . 0 1 . 0

5sp 0.301306 1 . 0 1 . 0

3d 2.642989
1.646424
0.615145

-0.037002
0.237752
0.653019

4d 0.187449 1 . 0

Table A4: The optimised Zr Stoll-Pruess small-core pseudopotential basis set
Coefficient

Type Exponent s p O T d

3sp 6.267700 -0.662120 0.132450
4.054500 1.463980 0.556330
1.352000 -0.347380 -0.839680

4sp 0.571300 1 . 0 1 . 0

5sp 0.182100 1 . 0 1 . 0

3d 2.642989
1.646424
0.615145

-0.037002
0.237752
0.653019

4d 0.187449 1 . 0

Table A5: The optimised oxygen All-Electron 8-51G basis set
Coefficient

Type Exponent s p o T d

Is 4000.00
1355.58
248.545
69.5339
23.8868
9.27593
3.82034
1.23514

0.00144
0.00764
0.05370
0.16818
0.36039
0.38612
0.14712
0.07105

2sp 52.1878 -0.00873 0.00922
10.3293 -0.08979 0.07068
3.21034 -0.04079 0.20433
1.23514 0.37666 0.34958

0.536420 0.42248 0.27774
3sp 0.21830 1 . 0 1 . 0
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Table A6: The oxygen 8-41 IdG basis set.
Coefficient

Type Exponent s p or d
l i 4000.00

1355.58
248.545
69.5339
23.8868
9.27593
3.82034
1.23514

0.00144
0.00764
0.05370
0.16818
0.36039
0.38612
0.14712
0.07105

2sp 49.430 -0.00883 0.00958
10.470 -0.09150 0.06960
3.235 -0.04020 0.20650
1.217 0.37900 0.34700

3sp 0.5000 1 . 0 1 . 0

4sp 0.2183 1 . 0 1 . 0

3d 0.5000 1 . 0
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Table A7: The Zr All-Electron basis set.
Coefficient

Type Exponent s p or d
s 3085030

418055
82533
19662

5438.44
1712.33
604.764
235.135
95.5675

0.000038
0.000362
0.002349
0.012527
0.053130
0.175607
0.393718
0.474028
0.178180

sp 6807.1 -0.000404 0.001043
1535.29 -0.007462 0.010164
453.951 -0.066553 0.063259
155.134 -0.166837 0.248721
59.8272 0.251220 0.515161
25.687 0.782849 0.450879
11.4476 0.298580 0.120840

sp 151.789 0.004661 -0.014487
51.2486 -0.042645 -0.088443
20.6628 -0.395485 0.979073
8.5248 0.217897 1.163788
3.6821 1.164957 1.453538
1.4944 0.288347 0.359850

d 297.855
87.4716
31.5134
12.3703
4.9738
1.957

0.00597
0.0474
0.1925
0.4114
0.4381
0.1588

sp 3.8653 -1.595 -0.1149
1.739 -0.364 0.514

0.7875 4.9455 1.3848
sp 0.33848 1 . 0 1 . 0

d 2.6978
0.9959

0.08308
0.34899

d 0.413544 0.52029
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Table A8; The Ce All-Electron basis set.
Coefficient

Type Exponent s pox d
s 17261.00

2614.223
575.254

0.0607638
0.3656923
0.6920432

s 765.722
75.1958
31.3814

-0.111540
0.733938
0.342436

s 67.4758
12.4380
5.35753

-0.280158
0.894026
0.266555

s 11.4136
2.79730
1.34464

0.379774
-0.851733
-0.389023

s 2.20972
0.43697
0.19858

0.997277
-2.317257
-1.026952

s 0.15000 2.757516
sp 1141.0638

267.8100
80.1475

0.079533
0.419739
0.640965

0.079533
0.419739
0.640965

sp 159.3610
29.0221
11.5685

-0.033281
0.3970831
0.6699493

-0.033281
0.3970831
0.6699493

sp 4.8235
2.1015
0.7859

0.463126
0.581822
0.075023

0.463126
0.581822
0.075023

sp 0.5000 0.999715 0.999715
d 164.1335

46.5081
15.1987

0.115244
0.492516
0.609939

d 8.4807
3.1599
1.2103

0.275854
0.581454
0.292116

d 0.1500 10.466991
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Table A9: Density Functional auxiliary basis sets optimised for zirconium and 
oxygen. These basis sets were used in the CRYSTAL LDA, GGA and B3LYP

Zirconium
Type Number of Gaussians Smallest Exponent Largest Exponent

s 8 0.07 50
g 3 0 . 2 1 . 8

i 2 0 . 2 0 . 6

Oxygen
Type Number of Gaussians Smallest Exponent Largest Exponent

s 1 2 0 . 1 2 0 0 0

p 4 0 . 1 5.0
d 3 0 . 2 2.5

Coefficient
Type Exponent s pox d

Is 4000.00
1355.58
248.545
69.5339
23.8868
9.27593
3.82034
1.23514

0.00144
0.00764
0.05370
0.16818
0.36039
0.38612
0.14712
0.07105

Isp 49.430 -0.00883 0.00958
10.470 -0.09150 0.06960
3.235 -0.04020 0.20650
1.217 0.37900 0.3470

3sp 0.4819 1 . 0 1 . 0

4sp 0.1736 1 . 0 1 . 0

5sp 0.0462 1 . 0

Page 164


