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Abstract
A significant challenge in quantum annealing is to map a real-world problem onto a
hardware graph of limited connectivity. When the problem graph is not a subgraph of
the hardware graph, one might employ minor embedding in which each logical qubit
is mapped to a tree of physical qubits. Pairwise interactions between physical qubits
in the tree are set to be ferromagnetic with some coupling strength F < 0. Here we
address the theoretical question of what the best value F should be in order to achieve
unbroken trees in the pre-quantum-processing. The sum of |F | for each logical qubit
is defined as minor embedding energy, and the best value F is obtained when the
minor embedding energy is minimized. We also show that our new analytical lower
bound on |F | is a tighter bound than that previously derived by Choi (Quantum Inf
Process 7:193–209, 2008). In contrast to Choi’s work, our new method depends more
delicately on minor embedding parameters, which leads to a higher computational
cost.

Keywords Minor embedding · Adiabatic quantum computing · Job-shop scheduling

1 Introduction

Quantum annealing is a widely used tool for solving quadratic optimization problems
[1,2]. The problem is mapped to a Hamiltonian, HP , whose ground state encodes
the optimized solution. Exploration of the potential landscape is driven by quantum
fluctuations described by a driver Hamiltonian, HD . The overall system Hamiltonian
Htotal is a time-varying weighted sum of HP and HD such that at the end of the
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annealing process the quantum fluctuations are suppressed and Htotal = HP . A typical
annealing schedule is of the form

Htotal(s) = A(s)HD + B(s)HP , (1.1)

where 0 ≤ s ≡ t
t f

≤ 1, t is time, t f is the duration of the anneal, A(0) � B(0) and
A(1) � B(1). The origin of quantum annealing goes back to the quantum adiabatic
theorem with a gap condition, which was first shown by Born and Fock [3], then
Kato [4] simplified the proof of the theorem and extended it to allow degenerate
eigenstates and eigenvalue crossings. For closed quantum systems, Farhi et al. [5,6]
proposed adiabatic quantum computation as an alternative to tackle NP-complete
problems. For a recent review of the quantum adiabatic theorem, see for example
Albash and Lidar [7].

In view of the computational complexity of modelling interacting quantum systems
using classical computational resources, a potentially efficient way to find the ground
state of HP is to engineer a physical system whose dynamics follow that of Eq. (1.1).
One such physical system is based on a system of superconducting flux qubits with
tunable inductive interactions [8]. In this implementation the problem Hamiltonian is
of the Ising form:

HP =
∑

i

hiσ
z
i +

∑

i j∈E(G)

Ji jσ
z
i σ z

j . (1.2)

Here σ z
i is the quasi-spin of qubit i (corresponding to its flux state) and G is a graph

describing all possible two-qubit interactions. The total Hamiltonian is exactly the
transverse Isingmodel introduced byKadowaki andNishimori [9], which is a quantum
analogue of classical simulated annealing. Moreover, many NP-hard problems can be
translated into Ising Hamiltonians [10]. Now the expression (1.1) becomes

Htotal(s) = A(s)
∑

i

h̃iσ
x
i + B(s)

⎛

⎝
∑

i

hiσ
z
i +

∑

i j∈E(G)

Ji jσ
z
i σ z

j

⎞

⎠ . (1.3)

One problem for hardware implementation of quantum annealing now becomes
immediately apparent: for a system of N qubits it is at best very difficult to engineer
direct interactions between all 1

2N (N − 1) pairs. In current implementations of flux-
qubit quantum annealers the maximum degree of the hardware graph is 6—i.e. each
qubit is directly coupled to at most six other qubits1. It is therefore necessary to employ
minor embedding—i.e. to embed an Ising problem Hamiltonian whose connectivity
graph has degree DP onto physical hardware with connectivity graph of degree DH ,
where DH < DP ≤ N . The requirement of this embedding is that the ground state
of the embedded Hamiltonian of degree DH encodes the same solution as the ground
state of the problem Hamiltonian of degree DP .

1 Experiments are currently underway on a flux-qubit annealer with degree 15
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(a) (b)

Fig. 1 An illustrative example of a a logical graph ofmaximumdegree 6 and b a physical graph ofmaximum
degree 3. Logical qubit 1 [coloured in green in (a)] is mapped onto four physical qubits [all labelled by 1
and coloured in green in (b)]. J6,1 in (a) denotes the coupling between the sixth logical qubit and the first
qubit, which is mapped identically onto (b). h1 in (a) is the local field on the first logical qubit, which is
mapped onto h1(a), h1(b), h1(c)&h1(d) in (b). Other couplers and local fields are omitted for clarity (Color
figure online)

Choi [11] first proposed a method for minor embedding in which each logical
qubit is replaced by a tree of physical qubits. All the physical qubits within each
tree are constrained to be in the same spin state (which in turn is the spin state of
the logical qubit) by the implementation of ferromagnetic interactions of magnitude
|F | at each edge of the tree. In practice it is usual to use a one-dimensional chain of
physical qubits as the tree for minor embedding. A logical qubit consisting of a chain
of L physical qubits in a hardware graph of degree DH can now be directly coupled
to L(DH − 2) + 2 other logical qubits, thereby greatly increasing the connectivity.
Figure 1 shows an example of a minor embedding.

If |F | is sufficiently large, for a closed-system quantum annealer it can be assumed
that the ferromagnetic bonds between each physical qubit in the embedded logical
qubit are never broken, ensuring that all the physical spins are mutually aligned. In
a real quantum annealer, however, thermal fluctuations and other noise mechanisms
may break ferromagnetic bonds resulting in domain walls between locally aligned
regions. In this case the value of the logical spin cannot be unambiguously determined
(although majority vote may be used to estimate it). In such a real quantum annealer
therefore the probability that the embedded Hamiltonian anneals to the correct ground
state depends upon the probability of domain walls forming, which in turn is a function
of the strength, F , of the ferromagnetic interaction between the physical qubits in the
embedded tree. While at first sight it might appear that the ground-state probability is
monotonic in F , in a real quantum annealer the maximum absolute coupling strength
between any pair of physical qubits is finite. (In a flux qubit annealer, for example,
this maximum coupling is determined by the magnitudes of the persistent current and
mutual inductances.) Arbitrary increases in the embedding ferromagnetic coupling
strength normalized with respect to the energy scale of the problem Hamiltonian can
therefore only be achieved by reducing the latter. This in turn leads to an increase in
computational errors from thermal transitions to an excited state. Furthermore, if F
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is too small, domain walls will be present unavoidably. This suggests that there is an
optimum value for the embedding ferromagnetic coupling strength (internal coupling
strength) for any given embedding of the problem Hamiltonian. The existence of
optimumvalues for spin-glass problems is shown experimentally in [12]. Furthermore,
“Appendix A” also shows experimental confirmation of the existence of an optimum
value for a set of random job-shop scheduling problems. Another important feature
arises when we use minor-embedding. There may be more than one physical coupler
to represent a logical coupler for two adjacent logical qubits, when both of the logical
qubits are required to beminor-embedded. Assigning values to these physical couplers
is another freedom in the minor-embedding. The only constraint for the physical
couplers is that they need to add up to the value of corresponding logical coupler. In
fact, this will also affect the performance of minor-embedding (see Remark 2.8 for
details).

Several strategies for parameter setting on quantum annealers are developed by
Pudenz [13] to understand how the ferromagnetic coupling strength (within embedded
chains) would affect the probability of finding ground states on the D-Wave DW2 and
DW2X machine. Pudenz’s work focuses on mixed satisfiability problems. It shows
that higher ferromagnetic coupling strengths do not increase the chance of finding the
ground state on either machine. Moreover, different strategies for setting the logical
field magnitude hi(k) within the chains yield different performance. In particular,
the so-called single distribution method is less effective than other methods. This is
due to the fact that non-admissible minor embeddings are more likely to be used
in the single distribution method—see Remark 3.5 for details. Venturelli et al. [12]
studied the Sherrington–Kirkpatrick Model (SKM) on the D-Wave DW2 machine.
They experimentally confirmed the non-monotonic dependence of the ground-state
probability on F by using the D-Wave quantum annealer for up to N = 30 fully
connected logical spins.

In this paper we revisit minor embedding in order to determine the optimum ferro-
magnetic strength |F | for embedding trees in quantum annealers at finite temperature.
We will give a mathematical criterion for the best bound on the value of |F |. As a
consequence, the first two theorems by Choi [11] will follow immediately. It is not
hard to see that Choi’s first paper in minor embedding [11] gives the foundation for
the Chimera architecture of D-Wave machines given in [14]. Moreover, methods to
generate minor embedding on the Chimera graph can be found in [15]. Therefore, we
focus here on the analysis of minor embeddings rather than on architectures of quan-
tum annealers.Moreover, wewill see in Sect. 3.1 that condition (2.4) will influence the
bound of |F |. Our results can be applied to any architecture as long as the Ising nature is
preserved. Here the Ising nature should be understood in the broad sense, i.e. including
higher-order interaction terms. It is known that Hamiltonians with higher-order inter-
actions can be reproduced via a two-body Hamiltonian (see e.g. [16]). There are also
other techniques that can be used to reduce higher-order interactions into two-body
Hamiltonians (see e.g. [17,18]). In fact, reducing 3-body interactions to 2-body inter-
actions was introduced by Kolmogorov and Zabih [19]. A more systematic review on
reducing higher-order Hamiltonians to two-body Hamiltonians can be found in [20].
In order to achieve multi-body interactions via two-body Ising models, one has to cou-
ple logical qubits with ancilla qubits, which certainly increases the (vertex) degree of
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the corresponding two-body Hamiltonian. Minor embedding is the key tool to convert
graphs with higher degrees to graphs with lower degrees (see e.g. [21]). Therefore,
our paper will also be useful for generating multi-body interactions.

It still remains open to model the open system effectively. A simplified version can
be found in [22], where a system-bath Hamiltonian is studied in detail. The Hamilto-
nian is given by

H(t) = HS(t) + HB + HI ,

where HS , HB and HI correspond to the adiabatic system, bath and interaction Hamil-
tonians, respectively. Note that HI = g

∑
Aα ⊗ Bα . This special feature enables us

to use a perturbative method for small g as shown in the paper [22]. However, if g
depends non-trivially on the strong coupling, F , introduced by HS(t), then g might
become large for large F . Consequently, small order perturbations will not be enough
to analyse the behaviour of the system. Therefore, if HS = Htotal and we want to
use the model in [22], we need to minimize the strong coupling, F , in Htotal without
destroying the Ising problem HP in (1.1). This give another motivation for us to search
for the minimum coupling strength in HP .

2 Main results

2.1 Preparatory material

Firstly, we give a formal definition for minor embedding.

Definition 2.1 A minor-embedding [11] is a pair of mappings (ι, τ ) =: I that maps
a graph G to a sub-graph of another graph U . The pair of mappings satisfies the
following properties:

• ι : V (G) �→ V (U ) each vertex i in V (G) is mapped to a set of vertices (denoted
byι(i)) of a connected sub-tree of U ,

• τ : V (G) × V (G) �→ V (U ) such that for each i j ∈ E(G), τ(i, j) ∈ ι(i) and
τ( j, i) ∈ ι( j) fulfilling τ(i, j)τ ( j, i) ∈ E(U ). Note that τ induces the mapping
of edges, which we also denote by τ .

Note that given graphs G and U , there may be no minor embedding of G into U or
there may exist many (ι, τ )’s that embed G into U . For instance, by Kuratowski’s
theorem the complete bipartite graph K3,3 cannot be minor embedded into any planar
graph. Figure 1 illustrates how to embed a highly connected graph into a less connected
graph.

Let G be the logical graph corresponding to expression (1.2). To show its depen-
dence on G, we suppress the subscript P and rewrite the expression as

HG =
∑

i∈V (G)

hiσ
z
i +

∑

i j∈E(G)

Ji jσ
z
i σ z

j . (2.1)
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Suppose that there is another graph U , which we can interpret as the hardware graph.
Moreover, we assume that graph G can be minor embedded onto graph U . Then
Definition 2.1 induces a series of problemHamiltonians associatedwith graph I (G) ⊂
U :

HI (G) =
∑

i∈V (G)

⎛

⎝
∑

k∈V (ι(i))

hi(k)σ
z
i(k) +

∑

i piq∈E(ι(i))

F pq
i σ z

i p
σ z
iq

⎞

⎠

+
∑

i j∈E(G)

Ji jσ
z
τ(i, j)σ

z
τ( j,i) , (2.2)

where

∑

k∈V (ι(i))

hi(k) = h′
i ,

and the ferromagnetic coupling strength (also called internal coupling strength) within
each sub-tree ι(i) is bounded from above.

F pq
i < −Mi , for some non-negative Mi . (2.3)

In order to match the ground state of Hamiltonian (2.1) and that of Hamiltonian (2.2),
we can set h′

i = hi , which gives

∑

k∈V (ι(i))

hi(k) = hi . (2.4)

We also require that Mi be sufficiently large that all spins in the ground state of the
embedded tree are aligned.

A natural question to ask is: How small can Mi be?
Let EG be the energy corresponding toHamiltonian (2.1) and EI (G) for Hamiltonian

(2.2). Then we have

EG(s1, . . . , sN ) =
∑

i∈V (G)

hi si +
∑

i j∈E(G)

Ji j si s j , (2.5)

and

EI (G)

(
s1(1), . . . , s1(|ι(1)|), . . . , sN (|ι(N )|)

)

=
∑

i∈V (G)

⎛

⎝
∑

k∈V (ι(i))

hi(k)si(k) +
∑

i piq∈E(ι(i))

F pq
i si p siq

⎞

⎠

+
∑

i j∈E(G)

Ji j sτ(i, j)sτ( j,i) . (2.6)
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Definition 2.2 (Minor embedding energy) Let I = (ι, τ ) be a minor embedding. Then
its minor embedding energy (MEE) is defined by

EIMEE :=
∑

i piq∈E(ι(i))

|F pq
i |.

Note that minimizing Mi for each logical qubit i is equivalent to minimizing the minor
embedding energy.

2.2 Main theorem

Our task is to find themathematical criteria for all the bounds that preserve the ground-
state configuration of Hamilton (2.1). Now we will focus on the criteria for tree ι(i).

Definition 2.3 (Boundary operator) Let X be a graph and 2X denote the power set of
V (X). The boundary operator

∂ : 2X �→ E(X)

is defined as that for any W ⊂ V (X), ∂W gives the boundary edges of W . That is the
cut(s) between W and X\W . Moreover, the boundary operator ∂ annihilates both the
empty set and the total set V (X).

We will see later that the boundary operator has a strong relationship with the fer-
romagnetic coupling strength. For a graph with assignments (local h-field) on each
vertex, we define the following integral operator.

Definition 2.4 (h-integral operator)
Let X be a graph. The h-integral operator

h : V (X) �→ R

is defined as

h(W ) =
∑

k∈V (W )

hk for any W ⊂ X .

Similarly, we can define the J -integral operator for other non-negative external field.

Definition 2.5 (J -integral operator) Let X be a graph. The J -integral operator

J : V (X) �→ R+

is defined as

J (W ) =
∑

k∈V (W )

Jk for any W ⊂ X .
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At least one domain wall is present when there is the presence of an inhomogeneous
spin configuration in ι(i) or equivalently the presence of an anisotropic magnetization.

Definition 2.6 (Domain wall) If all particles have the same spin in Wi ⊂ ι(i) but
opposite spin in ι(i)\Wi , then ∂Wi is the domain wall associated with Wi .

We say a domain wall ∂Wi is positive (negative), if the spins are positive (negative)
within Wi .

Let us denote Onbh(i(k)) the original neighbourhood of the pre-embedded vertex
i that is connected to the embedded vertex i(k).

Now we are ready to state our main theorem.

Theorem 2.7 Let hi(k) be the local fields and Ji(k) := ∑
l∈Onbh(i(k)) |Jl,i(k)| be the

non-negative external fields on ι(i). Let Mi be the constant defined in (2.3) satisfying

Mi ≥ max
Wi

(
1

|∂Wi | min
{
|h(Wi ) − J (Wi )|, |h(Wi ) − hi − J (ι(i)\Wi )|

})
,

(2.7)

where the maximum is taken from all ∅ �= Wi � ι(i). Then we have

s∗
i p s

∗
iq = 1 , for all i piq ∈ E(ι(G)) , (2.8)

and

min EI (G)

(
s∗
1(1), . . . , s

∗
1(|ι(1)|), . . . , s

∗
N (|ι(N )|)

)
= EG(s∗

1 , . . . , s
∗
N ) , (2.9)

where s∗
k = s∗

k( j), for all j ∈ ι(k).

Remark 2.8 • If certain conditions are satisfied, then the bound given in inequality
(2.7) is valid for the worst-case scenario, i.e. it takes into account all possible spin
configurations in the neighbourhood of the logical qubit. See Sect. 3 for details.

• It gives the necessary condition such that Mi will preserve the equivalence of
ground states for EI (G) and EG . Moreover, it is the necessary condition for the
hi(k)’s and Ji(k)’s being pre-defined. Hence, Mi depends on hi(k) and Ji(k). In
practice, the Ji(k)’s are defined for a given minor embedding. However, the hi(k)’s
need to be determined. Therefore, the true optimal Mi should be

Mi = min
hi(k)

Mi
(
hi(k)

)
,

provided that some conditions are satisfied, see Sect. 3.
• When two minor-embedded qubits have more than one physical coupler between
them, one can distribute the value of the original logical coupler over the available
physical couplers. Different distributions will have different impacts on the value
of J (Wi ) and hence on the value of Mi . How to define the distribution of the phys-
ical couplers over a single logical coupler is another meaningful and interesting
question to be investigated.
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We will see later how this will give the true optimal bound for a simple example. Now
we show that two important theorems of minor embedding by Choi [11] follow as
corollaries of our main theorem.

Corollary 2.9 (Choi’s first theorem) Let Mi be the constant defined in (2.3) satisfying

Mi ≥ |hi | +
∑

j∈nbh(i)
|Ji j | , (2.10)

where nbh(i) means the neighbourhood of vertex i . We have

s∗
i p s

∗
iq = 1 , for all i piq ∈ E(ι(G)) , (2.11)

and

min EI (G)

(
s∗
1(1), . . . , s

∗
1(|ι(1)|), . . . , s

∗
N (|ι(N )|)

)
= EG(s∗

1 , . . . , s
∗
N ) , (2.12)

where s∗
k = s∗

k( j), for all j ∈ ι(k).

Proof It suffices to show that

|hi | +
∑

j∈nbh(i)
|Ji j | ≥ maxWi⊂ι(i)

(
1

|∂Wi | min
{
|h(Wi ) − J (Wi )|, |h(Wi )

−hi − J (ι(i)\Wi )|
})

. (2.13)

Since for each Wi ⊂ ι(i), we have

|hi | +
∑

j∈nbh(i)
|Ji j | ≥ |h(Wi ) − J (Wi )| ≥ 1

|∂Wi | |h(Wi ) − J (Wi )| ,

the inequality (2.13) follows immediately. ��
In order to get Choi’s tighter bound for the ferromagnetic coupler strengths, one needs
to introduce the following object.

C(i) :=
∑

j∈nbh(i)
|Ji j | − |hi | , for all i ∈ V (G) , (2.14)

which defines whether the spin of particle i is locally determinable or non-
determinable. When C(i) < 0, the spin of particle i is locally determinable, as the
local field hi is dominant, whereas when C(i) ≥ 0, its spin must be determined glob-
ally. Without loss of generality, we can assume C(i) ≥ 0. Now, we are ready to state
our second corollary.
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Corollary 2.10 [Choi’s second theorem] Let hi(k) satisfy

hi(k) = sgn(hi )

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

τ( j,i)∈Onhb(i(k))
|Ji j | − C(i)

l(i)
, where i(k) is one of the l(i) leaves of ι(i) ;

∑

τ( j,i)∈Onhb(i(k))
|Ji j | otherwise,

(2.15)

where Onbh(i(k)) means the original neighbourhood of vertex i(k) ∈ ι(i).Then

M ≥ l(i) − 1

l(i)
C(i) for all i ∈ V (G) (2.16)

yields the same result as Corollary 2.9.

Remark 2.11 (Comparison between Choi’s two theorems)

• Corollary 2.9 is independent of the values of the C(i)’s and is certainly larger than
the bound given in Corollary 2.10. However, Corollary 2.9 does not assign any
value to hi(k), whereasCorollary 2.10 holds onlywhen the hi(k)’s satisfy Eq. (2.15).

• Corollary 2.10 gives the best bound when C(i) = 0 for all i ∈ V (G).
• The larger (weaker) bound given by Corollary 2.9 does not require any topological
information about the minor embedding, while the smaller (stronger) bound given
by Corollary 2.10 depends non-trivially on the topology of the minor embedding.

• Both proofs for Corollaries 2.9 and 2.10 are quite different, and there is no obvious
derivation from Corollaries 2.9 to 2.10.

Now we give a simple proof of Choi’s second theorem as a corollary.

Proof It suffices to show that

l(i) − 1

l(i)
C(i) ≥ maxWi⊂ι(i)

(
1

|∂Wi | min
{
|h(Wi ) − J (Wi )|,

|h(Wi ) − hi − J (ι(i)\Wi )|
})

, (2.17)

for hi(k) setting as in Eq. (2.15) and for all ∅ �= Wi � ι(i). Now we have

|h(Wi ) − J (Wi )| = |∂(L(i) ∩ Wi )| × C(i)

l(i)
,

where L(i) is the set of leaves in ι(i). As |∂Wi | ≥ 1 for ∅ �= Wi � ι(i), one can easily
verify that

|∂(L(i) ∩ Wi )| ≤ |∂Wi | (|∂L(i)| − 1) = |∂Wi | (l(i) − 1) .
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Fig. 2 An example of ι(i). The
green tree represents the minor
embedding of i-th logical qubit,
where the local field hi has been
split into h1, h2, h3 and h4
(Color figure online)

Therefore, we have

1

|∂Wi | |h(Wi ) − J (Wi )| ≤ l(i) − 1

l(i)
C(i) ,

for all ∅ �= Wi � ι(i), which completes the proof. ��
As it remains open on the tightness of the bound in Corollary 2.10, we will give a
simple example in the next subsection, which shows that even for hi(k)’s given as in
Eq. (2.15), the bound is not tight. Furthermore, by relaxing the condition (2.15), one
can achieve the best bound.

2.3 An example: existence of a tighter bound

In this subsection, we give an example to show the existence of a tighter bound for the
ferromagnetic coupling strength compared with Corollary 2.10. Let us consider the
minor embedding of a vertex i as in Fig. 2. For the sake of this example, we set the
couplers and local fields such that

∑

1(k)∈Onbh(1)
|J1,1(k)| =

∑

2(k)∈Onbh(2)
|J2,2(k)| =

∑

3(k)∈Onbh(3)
|J3,3(k)| = 5h > 0,

(2.18)

and

hi = 3h. (2.19)

According to Corollary 2.10, for this example we have
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C(i) = 12h , l(i) = 3 , hi(0) = 0 , hi(1) = hi(2) = hi(3) = h.

(2.20)

More importantly, the bound for the ferromagnetic coupler strengths according to
Corollary 2.10 is given by

Fi < −8h. (2.21)

Our new tighter bound shows that a better bound exists, i.e.

Fi < −6h ,

is sufficient for this toy model. See “Appendix B” for details.
We will show later in Sect. 3 that the best bound for this example is Fi < −5h, if

we allow hi(k) to have different values.

2.4 Proof of themain theorem

In this subsection, we give the full proof of our main theorem.
In order for sufficiently large Mi to preserve the homogeneity of spins in ι(i),

we need to find a sufficient condition so that the formation of each domain wall is
forbidden. Now we have the following lemma.

Lemma 2.12

Mi ≥ 1

|∂Wi | min {|h(Wi ) − J (Wi )|, |h(Wi ) − hi − J (ι(i)\Wi )|} (2.22)

implies ∂Wi is not a positive domain wall within the ground-state configuration of
EI (G).

Proof by contradiction LetWi (±) denote the spin configuration for all spins being ±1
in Wi and Wi (·) be the spin configuration for the complement of Wi with respect to
ι(i). Now suppose ∂Wi is a positive domain wall within the ground-state configuration
of EI (G). Then we have

EI (G)

(
Wi (+),Wi (−), . . .

) ≤ EI (G)

(
Wi (−),Wi (−), . . .

)
, (2.23)

and

EI (G)

(
Wi (+),Wi (−), . . .

) ≤ EI (G)

(
Wi (+),Wi (+), . . .

)
. (2.24)

However, according to Eq. (2.6), we have
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EI (G)

(
Wi (+),Wi (−), . . .

) − EI (G)

(
Wi (−),Wi (−), . . .

)

= 2

⎛

⎝
∑

i(k)∈Wi

hi(k) +
∑

i(k)∈Wi

∑

l∈Onbh(i(k))
Ji(k)l sτ(l,i(k)) −

∑

i piq∈∂Wi

F pq
i

⎞

⎠

≥ 2

⎛

⎝
∑

i(k)∈Wi

hi(k) −
∑

i(k)∈Wi

∑

l∈Onbh(i(k))
|Ji(k)l | −

∑

i piq∈∂Wi

F pq
i

⎞

⎠

= 2

⎛

⎝h(Wi ) − J (Wi ) −
∑

i piq∈∂Wi

F pq
i

⎞

⎠

> 2 (h(Wi ) − J (Wi ) + |∂Wi | × Mi ) (2.25)

and

EI (G)

(
Wi (+),Wi (−), . . .

) − EI (G)

(
Wi (+),Wi (+), . . .

)

= 2

⎛

⎝−
∑

j(k)∈Wi

h j(k) −
∑

j(k)∈Wi

∑

l∈Onbh( j(k))
J j(k)l sτ(l, j(k)) −

∑

i piq∈∂Wi

F pq
i

⎞

⎠

= 2

⎛

⎝−
⎛

⎝hi −
∑

i(k)∈Wi

hi(k)

⎞

⎠ −
∑

j(k)∈Wi

∑

l∈Onbh( j(k))
J j(k)l sτ(l, j(k)) −

∑

i piq∈∂Wi

F pq
i

⎞

⎠

≥ 2

⎛

⎝h(Wi ) − hi − J (Wi ) −
∑

i piq∈∂Wi

F pq
i

⎞

⎠

> 2
(
h(Wi ) − hi − J (Wi ) + |∂Wi | × Mi

)
. (2.26)

Since our assumption also has

Mi ≥ 1

|∂Wi | min {|h(Wi ) − J (Wi )|, |h(Wi ) − hi − J (ι(i)\Wi )|} ,

we then have

EI (G)

(
Wi (+),Wi (−), . . .

) − EI (G)

(
Wi (−),Wi (−), . . .

)
> 0 ,

or

EI (G)

(
Wi (+),Wi (−), . . .

) − EI (G)

(
Wi (+),Wi (+), . . .

)
> 0.

This contradicts inequalities (2.23) and (2.24). Hence,
(
Wi (+),Wi (−), . . .

)
is not a

positive domain wall within the ground-state configuration of EI (G). ��
Now we are ready to prove the main theorem.
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Proof of themain theorem To prove

s∗
i p s

∗
iq = 1 , for all i piq ∈ E(ι(G))

and
(
s∗
1(1), . . . , s

∗
1(|ι(1)|)

)
is a ground-state configuration for Hamiltonian (2.2), we

can equivalently prove that no positive domain wall is present in the ground-state
configuration. Note that the existence of a positive domain wall is equivalent to the
existence of a domain wall.

Now, by Lemma 2.12, if ∅ �= Wi � ι(i) and

Mi ≥ 1

|∂Wi | min {|h(Wi ) − J (Wi )|, |h(Wi ) − hi − J (ι(i)\Wi )|}

we have that Wi cannot have a positive domain wall ∂Wi in the ground-state configu-
ration. Therefore,

Mi ≥ max∅�=Wi�ι(i)

1

|∂Wi | min {|h(Wi ) − J (Wi )|, |h(Wi ) − hi − J (ι(i)\Wi )|}

implies that no positive domain wall can be present in the ground-state configuration.
Hence, the ground-state configuration has no domain wall in ι(i). ��

3 Tightness of the bound

Now we want to show that, if the condition

h(Wi ) ≤ hi + J (Wi ) or h(Wi ) ≤ hi − J (Wi ) (3.1)

is satisfied, then

M(Wi ; h, J ) := 1

|∂Wi | min
{|h(Wi ) − J (Wi )|, |h(Wi ) − hi − J (Wi )|

}
(3.2)

is the best bound for∅ �= Wi � ι(i). That is for any ε > 0 and F pq
i = −M(Wi ; h, J )+

ε, we have that the ground state of EI (G) has a domain wall in ι(i) in the worst scenario.
Here, the worst scenario is understood in the following theorem.

Theorem 3.1 Suppose condition (3.1) is satisfied and let M(Wi ; h, J ) be defined in
Eq. (3.2). For any ε > 0, if F pq

i = −M(Wi , h, J )+ ε
|∂Wi | , thenEI (G)

(
Wi (+),Wi (+),

. . . ) and EI (G)

(
Wi (−),Wi (−), . . .

)
are not the ground-state configurations for some

values of sτ(i, j) with j ∈ nbh(i).

Before giving the proof of Theorem 3.1, we give some remarks and corollaries.
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Corollary 3.2 If

h(Wi ) ≤ hi + J (Wi ) or h(Wi ) ≤ hi − J (Wi ) (3.3)

is satisfied, then M(Wi ; h, J ) is the tightest bound.

Remark 3.3 • If condition (3.1) is satisfied for all non-empty Wi � ι(i), then the
right-hand side of expression (2.7) is the best constant.

• If hi and h(Wi ) are both positive, then M(Wi ; h, J ) is the best constant. Similarly,
if hi and h(Wi ) are both negative, then M(Wi ; h, J ) is the best constant. This can
be checked easily via validity of condition (3.1) and (3.3), respectively.

Now we give an easy proof for the best constant for example 2.3. The best bound for
the example given in Subsection 2.3 is 5h. Recall in Remark 2.8 that we need to relax
the assignment of h-fields. Moreover, in this example, we have only one non-trivial
embedding (the green vertices in Fig. 6) and hi = 3h > 0. By Remark 3.3, the best
bound is given by Mi = 5h, if we allow a more general distribution of hi(k). See
“Appendix C” for details.

Now we give the proof of Theorem 3.1.

Proof of Theorem 3.1 As in the proof of the previous lemma, one has

EI (G)

(
Wi (+),Wi (−), . . .

) − EI (G)

(
Wi (−),Wi (−), . . .

)

= 2

⎛

⎝
∑

i(k)∈Wi

hi(k) +
∑

i(k)∈Wi

∑

l∈Onbh(i(k))
Ji(k)l sτ(l,i(k)) −

∑

i piq∈∂Wi

F pq
i

⎞

⎠ .

For some sτ(l,i(k)) with i(k) ∈ V (Wi ), we have

EI (G)

(
Wi (+),Wi (−), . . .

) − EI (G)

(
Wi (−),Wi (−), . . .

)

= 2

⎛

⎝h(Wi ) − J (Wi ) −
∑

i piq∈∂Wi

F pq
i

⎞

⎠ = 2 (h(Wi ) − J (Wi )

+|∂Wi | × M(Wi , h, J ) − ε)

≤ 2 (h(Wi ) − J (Wi ) + |h(Wi ) − J (Wi )| − ε) . (3.4)

Case 1: h(Wi ) − J (Wi ) ≥ 0 . Let us consider the following difference

EI (G)

(
Wi (+),Wi (−), . . .

) − EI (G)

(
Wi (−),Wi (−), . . .

)

= 2

⎛

⎝
∑

i(k)∈Wi

hi(k) +
∑

j(k)∈Wi

∑

l∈Onbh( j(k))
J j(k)l sτ(l, j(k)) −

∑

i piq∈∂Wi

F pq
i

⎞

⎠ .

For some sτ(l, j(k)) with j(k) ∈ V (Wi ), we have
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EI (G)

(
Wi (+),Wi (−), . . .

) − EI (G)

(
Wi (−),Wi (−), . . .

)

= 2

⎛

⎝h(Wi ) − J (Wi ) −
∑

i piq∈∂Wi

F pq
i

⎞

⎠

= 2
(
h(Wi ) − J (Wi ) + |∂Wi | × M(Wi , h, J ) − ε

)

≤ 2
(
h(Wi ) − J (Wi ) + |h(Wi ) − J (Wi )| − ε

)

= 2
(
hi − J (Wi ) − J (Wi ) − ε

) ≤ −2ε < 0. (3.5)

In the last step we used the fact that C(i) ≥ 0 and hence |hi | ≤ J (Wi ) + J (Wi ).
Therefore,

(
Wi (−),Wi (−), . . .

)
is not a ground-state configuration. Moreover, one

can show that

EI (G)

(
Wi (−),Wi (+), . . .

) − EI (G)

(
Wi (+),Wi (+), . . .

)

= 2

⎛

⎝−h(Wi ) −
∑

i(k)∈Wi

∑

l∈Onbh(i(k))
Ji(k)l sτ(l,i(k)) −

∑

i piq∈∂Wi

F pq
i

⎞

⎠

= 2

⎛

⎝−h(Wi ) −
∑

i(k)∈Wi

∑

l∈Onbh(i(k))
Ji(k)l sτ(l,i(k)) + |∂Wi | × M(Wi , h, J ) − ε

⎞

⎠

≤ 2 (−h(Wi ) + J (Wi ) + |h(Wi ) − J (Wi )| − ε) = −2ε < 0 (3.6)

Hence,
(
Wi (+),Wi (+), . . .

)
is also not a ground-state configuration.

Case 2:h(Wi )−J (Wi )<0 .Wecaneasily see fromEq. (3.4) that
(
Wi (−),Wi (−), . . .

)

is not a ground-state configuration.
Now we show that

(
Wi (+),Wi (+), . . .

)
is also not a ground-state configuration. The

proof is similar to the previous case, but one needs to take care of the extra asymmetry
caused by hi . Let us start with the following expression

EI (G)

(
Wi (+),Wi (−), . . .

) − EI (G)

(
Wi (+),Wi (+), . . .

)

= 2

⎛

⎝−
∑

j(k)∈Wi

h j(k) −
∑

j(k)∈Wi

∑

l∈Onbh( j(k))
J j(k)l sτ(l, j(k)) −

∑

i piq∈∂Wi

F pq
i

⎞

⎠ .

For some sτ(l, j(k)) with j(k) ∈ V (Wi ), we have

EI (G)

(
Wi (+),Wi (−), . . .

) − EI (G)

(
Wi (+),Wi (+), . . .

)

= 2

⎛

⎝−h(Wi ) − J (Wi ) −
∑

i piq∈∂Wi

F pq
i

⎞

⎠

= 2
(
h(Wi ) − hi − J (Wi ) + |∂Wi | × M(Wi , h, J ) − ε

)

≤ 2
(
h(Wi ) − hi − J (Wi ) + |h(Wi ) − hi − J (Wi )| − ε

)
. (3.7)
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Case 2.1: If h(Wi ) − hi − J (Wi ) ≤ 0 , we can see from Eq. (3.7) that(
Wi (+),Wi (+), . . .

)
is not a ground-state configuration.

Case 2.2: If h(Wi ) − hi − J (Wi ) > 0 , then by condition (3.1), one must have

h(Wi ) ≤ hi − J (Wi ) ,

which is equivalent to

h(Wi ) − J (Wi ) ≥ 0.

Therefore, following the same as Case 1, we complete the proof. ��

3.1 Admissible minor embeddings

Now we show that conditions (3.1) and (3.3) should be satisfied for any reasonable
minor embedding. We call a minor embedding, say (I , h, J , F), admissible if the
following condition is satisfied.

• (I , h, J , F) does not exclude any possible spin configuration for any i ∈ G in any
embedded Ising problem.

Here F denotes the absolute value of the chain strength. Note that admissible minor
embeddings are more suitable for practical purposes, since for general NP-hard prob-
lems we do not expect any pre-assignment for any logical qubit in G. It can be shown
that the condition for admissible minor embeddings implies conditions (3.1) and (3.3).

Proof (Verification)

¬condition (3.1) ∨ ¬condition (3.3)

is equivalent to
[(−J (Wi ) > h(Wi )

) ∧ (J (Wi ) > h(Wi ))
]

∨ [
(−J (Wi ) > h(Wi )) ∧ (

J (Wi ) > h(Wi )
)]

�⇒ h(Wi ) < J (Wi ) for some Wi ⊂ ι(i).

By the Case 2 analysis in the proof of theorem 3.1, we see that
(
Wi (+),Wi (+), . . .

)

is the only possible ground-state configuration for some problems, if F pq
i >

−M(Wi , h, J ). This is a pre-assignment for the i-th logical qubit. Hence, it is not
an admissible minor embedding. ��
Now, an immediate consequence of Theorem 3.1 gives

Theorem 3.4 Let (I , h, J , F) be an admissible minor embedding and M(Wi ; h, J ) be
defined in Eq. (3.2). Then M(Wi ; h, J ) is the best constant for all Wi ⊂ ι(i). Hence,

max
Wi

(
1

|∂Wi | min
{
|h(Wi ) − J (Wi )|, |h(Wi ) − hi − J (ι(i)\Wi )|

})

is the tightest bound for admissible minor embeddings.
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Fig. 3 Experimentally determined optimummagnitude of the internal coupling strength for the Sherrington–
Kirkpatrick model on a complete graph (points on the dashed line are extracted from [12]). The points on
the solid line are bounds on the magnitude of the internal coupling strength obtained using the method
introduced in Sect. 2. The points on the dotted line are obtained by Choi’s method in [11]. The lines are a
guide to the eye

Remark 3.5 (Importance of the distribution ofhi(k)) An admissible minor embed-
ding (I , h, J , F) can be viewed as a minimum requirement for perfect (non-broken)
chains in theworst scenario. Theminimumstrength of F pq

i is determinedbyhi(k) and J
via the expression of M(Wi ; h, J ). However, if we fix the values of the F pq

i ’s, we can-
not choose the distribution of hi(k) arbitrarily, evenwith condition (2.4) (

∑
hi(k) = hi )

satisfied. This will not cause any trouble if the F pq
i ’s are sufficiently large. However,

when the F pq
i ’s are small compared with hi(k), one needs to be more careful. More

precisely, if we define C(Wi ) := J (Wi ) + |∂(Wi )| × F − |h(Wi )|, then C(Wi ) has
to be greater or equal to zero for admissible minor embeddings. In other words, we
must have |h(Wi )| ≤ J (Wi ) + |∂(Wi )| × F , which is an upper bound for hi(k). This
condition can be easily violated when hi(k) is concentrated in a single physical qubit
and F is comparably small. This is the situation when we apply the single distribution
method as defined in [13]. Therefore, there are likely to be some non-admissible minor
embeddings in the single distribution method.

4 Experimental results

In this subsection,wewill compare differentmethods for estimating the optimum inter-
nal coupling strength to show how close they are to the experimental optima. We use
the experimental data from Venturelli et al. [12], where fully connected Sherrington–
Kirkpatrick spin-glass problems are implemented on the D–Wave DW2Xmachine. As
we are only interested in optimal values of the internal coupling strength without bro-
ken chains, we extract the optimal values without any majority-vote post-processing.
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In Fig. 3, Choi’s first method is used in the comparison, since Choi’s second method
does not match the h(i)-distribution used in [12]. All the h(i)’s are set to zero in [12],
which violates condition (2.15). Therefore, only Choi’s first method and our work can
be used to compare with the experimental results in [12]. As we can see from Fig. 3,
our new tighter bound approaches more closely to the true experimental optima.

5 Conclusions and future work

There are many challenges for realizing a quantum annealer capable of outperforming
classical computation for some classes of problems. Our work shows the importance
of optimal ferromagnetic coupling strength and gives the best theoretical bound in
our main Theorem 2.7. However, this is valid under the condition given in our second
Theorem 3.1. In fact, we can give the best bound when the logical qubit has non-
negative hi(k)-fields. Our bound is certainly tighter than Choi’s bounds as shown in our
toy example 2.3. We have introduced the concept of admissible minor embeddings,
which means that condition (2.4) (

∑
hi(k) = hi ) is not sufficient to guarantee an

admissibleminor embeddingwhen F pq
i is small comparedwith hi(k). Note that having

an admissible minor embedding is necessary for practical reasons. For non-admissible
minor embeddings, one could in theory achieve a better bound and obtain a correct
ground state under quantumannealing, but this requires a pre-knowledgeof the ground-
state configuration of logical problem. The existence of an optimal coupling strength
is shown in “Appendix A”.

Experimental results from quantum annealers show that our new method can be
used to reduce the time-to-solution (TTS). However, this comes at a cost. The com-
putational effort to calculate our new bound is O(D2L) per logical qubit, where D
is the degree of the logical qubit and L is the chain length. Note that for Choi’s two
bounds, the computational effort are O(D) and O(DL), respectively. There are also
other techniques that can be used to reduce TTS. For instance, the majority vote is one
of the most popular “error-correction” methods used in the post-quantum-processing
procedure for quantum annealers. As our method is a pre-quantum-processing proce-
dure, one can employ both procedures to reduce TTS even further. Finally, we leave
two open questions for further investigations.

• How to assign admissible hi(k)-fields to yield the best performance?
• How to find the best distributions of physical couplers corresponding to the logical
coupler for two adjacent minor-embedded logical qubits?
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Appendix A: Job-shop scheduling problems on the D-Wave 2000Q
machine

We will now show some experimental results obtained on the D-Wave quantum
annealer. These illustrate the dependence on the internal coupling strength F pq

i and
show that there is an optimum value for it. In this subsection, we will use the per-
formance of the NP-hard job-shop scheduling problem (JSP) on the D–Wave 2000Q
to illustrate the importance of the best bound. Here we will follow the methodol-
ogy introduced by the NASA Ames team [23–25]. We will use time-to-solution as a
benchmarking metric.

A typical job-shop scheduling problem (JSP) consists of a set of N jobs J =
{ j1, . . . , jN } that must be scheduled on a set of machines M = {m1, . . . ,mP }. Each
job consists of a sequence of operations that must be performed in a predefined order
jn = {On,1 → On,2 → · · · → On,Ln }, where each job jn has Ln operations. Each
operation On,k has a non-negative integer execution time τn,k and has to be executed
by an assigned machine mn,k ∈ M . The goal of solving JSP is to find an optimal
scheduling that minimizes the makespan, i.e. the minimum time to finish all the jobs.

A generalized tabular representation of job shop scheduling problems is shown in
Table 1.

For any job-shop scheduling problem, we can easily write it in the above represen-
tation by setting τn,k = 0 for non-given operations and K = max

n
Ln . To translate the

Table 1 M-table and P-table for
JSP

Operation∗,1 Operation∗,2 . . . Operation∗,K

(a)Machine allocation

j1 m1,1 m1,2 . . . m1,K

j2 m2,1 m2,2 . . . m2,K

.

.

.
.
.
.

.

.

.
. . .

.

.

.

jN mN ,1 mN ,2 . . . mN ,K

(b) Time (per unit) spent on each operation

j1 τ1,1 τ1,2 . . . τ1,K

j2 τ2,1 τ2,2 . . . τ2,K

.

.

.
.
.
.

.

.

.
. . .

.

.

.

jN τN ,1 τN ,2 . . . τN ,K
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problem into an Ising Hamiltonian, we follow the method proposed by Venturelli et
al. [25] and assign a set of binary variables for each operation, corresponding to the
various possible discrete starting times the operation can have:

xn,k;t =
{
1 : operation On,k starts at time t ,

0 : otherwise.

Here t is bounded from above by the timespan T , which represents the maximum
time we allow for all jobs to be completed. The resulting classical objective function
(Hamiltonian) is given by

HT (x) = Eproblem (h1(x) + h2(x) + h3(x) + h4(x)) , (A.1)

where Eproblem is the energy scaling parameter and each penalty term is explained
briefly as follows.

• h1(x) = ∑
n,k

(∑
t xn,k;t − 1

)2 , checks that an operationmust start once and only
once.

• h2(x) = ∑
n
∑

k<n

(∑
t+τn,k>t ′ xn,k;t xn,k+1;t ′

)
, ensures that the order of the

operations within a job is preserved.
• h3(x) = ∑

t+τnK>T xn,K ;t , guarantees that the last operation in each job finishes
by time T .

• h4(x) = ∑
m

(∑
(n,k;t |n′,k′;t ′)∈Rm

xn,k;t xn′,k′;t ′
)
, Rm consists of two penalty sets

given in the following.

– Forbidding operation On′,k′ from starting at t ′ if there is another operation On,k

still running.
– Two operations cannot start at the same time, unless at least one of them has
an execution time equal to zero.

Due to the detailed structure of the JSP Hamiltonian, we have [from Eq. (2.14)]:

C(i) = 1

2
Eproblem ,

and the spectral gap is given by

� = Eproblem.

Hence, an easy follow-up from Corollary 2.10 can be derived (or see [11]). i.e. If
topological embeddings are chosen to embed the job shop scheduling problem Hamil-
tonian, we find that |F | ≥ 1

2 (C(i)+�) = 3
4 Eproblem is a sufficient lower bound which

preserves the spectral gap of the original Hamiltonian.
Theorem 2.7 and Corollary 2.10 are based on an ideal quantum annealer. It is clear

that l(i) depends only on the number of leaves in sub-trees of a minor embedding,
which is independent of the lengths of branches within the trees. This is a consequence
of Lagrange multiplier method, where a constrained optimization is equivalent to an
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Fig. 4 The graph shows the dependence of the time-to-solution on the internal coupling strength for solving
a job shop scheduling problem on the D-Wave 2000Q. See the text for details. The dashed line shows the
calculated value of the optimum internal coupling strength using the method of [11]. The error bars are
obtained by bootstrapping with 95% confidence intervals

unconstrained one by replacing the corresponding constraints into a penalty term with
a large multiplier. In other words, in the ideal case there is no difference between short
chains and long chains as long as Eqs. (2.15) and (2.16) are satisfied. However, this
is not the case in the D-Wave 2000Q. Long chains are more often to be found broken
[26], even if conditions (2.15) and (2.16) are satisfied. This is because of the noise
from the environment. Due to engineering limitations, there is an upper bound, say λ,
for both logical and internal coupling strengths in the actual machine. Therefore, one
has to rescale (i.e. decrease) the strength of the logical interaction in order for it to fit
into the confined range. This leads us to the existence of an optimal coupling strength
for chains in reality.
Figure 4 shows the importance of the optimal bound in the D-Wave 2000Qmachine, as
the shortest time to solution is achieved close to the theoretical bound that we derived
in the previous sections.

The data is obtained by running 200 random JSPs with size N = 3, K = 3 and
T = 8 on the D-Wave 2000Q machine. For each instance five minor embeddings
are randomly generated. At each value of the internal coupling strength the probabil-
ity of finding the correct JSP solution is experimentally determined by running the
annealer 10,000 times for each embedding. The time-to-solution (TTS) is defined as
the expected time taken to find the solution with probability p = 99.9% and is given
by [27]:

TTS = ta

(
log[1 − p]
log[1 − s]

)
,

where s is the success probability for each embedding and ta is the single-run annealing
time, which is equal to 2μs in our experiments. For each instance the minimum TTS
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Fig. 5 Flow chart for JSP
experiments on D-Wave 2000Q

Generate a
random JSP

Generate the cor-
responding QUBO

Five minor
embeddings
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Set the cou-
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within chains

Probability of
finding ground

state on D-Wave

Highest prob-
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Obtain data for
a particular JSP×200

×8
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for the five embeddings is recorded. The same procedure is conducted for the 200
random instances and then the mean TTS is the data shown in Fig. 4. Error bars are
obtained by bootstrapping method and the confidence intervals are chosen to be 95%.
Figure 5 shows the main procedures in our experiments.
Note that the geometry of minor-embedding also affects the TTS. We therefore need
to keep each minor-embedding unchanged when varying internal coupling strengths.
Here we use the minimum TTS as it is more suitable when comparing with a classical
computer. One could also use the average TTS over the five random embeddings,
which will give a similar result. As it still remains an open question how to choose a
good minor-embedding, the embeddings corresponding to our minimum TTS are by
no means the best embeddings. Our task is to see the dependence of TTS on internal
coupling strengths when the embedding is fixed.

We expect that the theoretical optimal bound plays an important role in a general
quantum annealer and it is not constrained to JSPs.

Appendix B: An example for the existence of a better bound

Here we show that tighter bounds exists than those given in [11] by continuing the
toy example of Fig. 2. According to Corollary 2.16, the assignments of local hi(k) are
given as in Fig. 6.

Let
( s1

s0
s2 s3

)
denote the assignments of spin values for vertices 0, 1, 2 and 3. For

example

( s1
s0

s2 s3

)
=

( −++ +
)

means that the spin value is −1 for vertex 1 and the spin values are equal to +1 for
the other vertices.

Fig. 6 An example of ι(i)

123



Minimizing minor embedding energy: an application in… Page 25 of 29   191 

Case 1 inequality

Now we have the following inequalities.

1

2

[
E

( −++ +
)

− E
( −−− −

)]
≥ 2 × h − 2 × 5h − F = −8h − F (B.1)

and

1

2

[
E

( −++ +
)

− E
( +++ +

)]
≥ −h − 5h − F = −6h − F . (B.2)

If the configuration
( −++ +

)
is not part of the ground-state configuration, then we

must have the right-hand side of either inequality (B.1) or inequality (B.2) greater
than zero. That is

F < −6h. (B.3)

Due to the symmetric property of our example, we have that
( ++− +

)
and

( +++ −
)

cannot be part of the ground-state configuration if F < −6h.

Case 2 inequality

Using the same method, one can derive that

1

2

[
E

( +−− −
)

− E
( −−− −

)]
≥ h − 5h − F = −4h − F (B.4)

and

1

2

[
E

( +−− −
)

− E
( +++ +

)]
≥ −2 × h − 2 × 5h − F = −12h − F . (B.5)

That is

F < −4h. (B.6)

Again, due to the symmetric property of our example, we have that
( −−+ −

)
and

( −−− +
)
cannot be part of the ground-state configuration if F < −4h.

Case 3 inequality

Using the same method, one can derive that

1

2

[
E

( +−+ −
)

− E
( −−− −

)]
≥ 2 × h − 2 × 5h − 2 × F = −12h − 2F (B.7)
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and

1

2

[
E

( +−+ −
)

− E
( +++ +

)]
≥ −h − 5h − 2 × F = −6h − 2F . (B.8)

That is

F < −3h. (B.9)

The symmetric property of our example tells us that
( −−+ +

)
and

( +−− +
)
cannot be

part of the ground-state configuration if F < −3h.

Case 4 inequality

Using the same method, one can derive that

1

2

[
E

( ++− −
)

− E
( −−− −

)]
≥ h − 5h − 2 × F = −4h − 2F (B.10)

and

1

2

[
E

( ++− −
)

− E
( +++ +

)]

≥ −2 × h − 2 × 5h − 2 × F = −12h − 2F . (B.11)

That is

F < −2h. (B.12)

According to the symmetric property of our example, we have that
( −++ −

)
and

( −+− +
)
cannot be part of the ground-state configuration if F < −2h.

Case 5 inequality

Using the same method, one can derive that

1

2

[
E

( −+− −
)

− E
( −−− −

)]
≥ 0 × h − 3 × F = −3F (B.13)

and

1

2

[
E

( −+− −
)

− E
( +++ +

)]

≥ −3 × h − 3 × 5h − 3 × F = −18h − 3F . (B.14)
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That is

F < 0. (B.15)

Case 6 inequality

Using the same method, one can derive that

1

2

[
E

( +−+ +
)

− E
( −−− −

)]
≥ 3 × h − 3 × 5h − 3 × F = −12h − 3F

(B.16)

and

1

2

[
E

( +−+ +
)

− E
( +++ +

)]
≥ −0 × h − 3 × F = −3F . (B.17)

That is

F < 0. (B.18)

Now from inequalities (B.3), (B.6), (B.9), (B.12), (B.15) and (B.18), we have that if

F < −6h , (B.19)

only homogeneous configurations within ι(i) (i.e. s0 = s1 = s2 = s3) are possible
for the ground-state configuration. Note that this is a better bound that the one (2.21)
given by Corollary 2.10.

Appendix C: Best bound on the example

Here we show how to derive the best bound on the internal coupling strength using
the toy model of Fig. 2 as an example. By Remark 3.3, we have that the best bound is
given by

Mi = min
hi(k)

Mi
(
hi(k)

)
.

Now let hi(k) = {a, b, c, d} andwehave the example as shown inFig. 7.Now follow
the same method as in “Appendix B”, we conclude from Case 1 and 2 inequalities
that

{
F < −(5h + a) ,

F < −(5h − a).
(C.1)
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Fig. 7 Example 2.3 with
unspecified hi(k)

Therefore we have F < −5h regardless of what value of a takes. This shows that the
best constant is Mi = 5h .
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