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A BSTR A C T

The Thesis applies evolutionary game theoretic ideas to the modelling of 
economic behaviour. The traditional approach is to assume that economic 
agents are perfectly rational. The rationality assumption requires that agents 
be very sophisticated in their decision making. This creates a gap between 
the behaviour postulated by economic models and real people’s behaviour. 
Recently, theorists’ attention has turned to models of bounded rationality in 
which agents are assumed to find their way to equilibrium by trial-and-error 
methods. The most widespread approach to modelling boundedly rational 
behaviour is the use of evolutionary game theory which also provides useful 
insights into the equilibrium selection problem. The first chapter is a critical 
survey of evolutionary game theory. In the second chapter we endogenize 
the learning rules in a modified version of Young’s bargaining model which 
provides an evolutionary explanation for the asymmetric Nash bargaining 
solution. The Nash Demand Game is played by two different populations. 
Players choose their strategies in the light of some limited information about 
the strategies players from the other population have used in the past. An 
interesting result is that the better informed population has higher bargai­
ning power. The main drawback in Young’s model is that the amount of 
information, and therefore the bargaining powers are fixed exogenously. We 
endogenize players’s learning rules and test for evolutionary stability. We 
study whether one population using a particular learning rule can be inva­
ded by a mutant learning rules. We show that, when information is costless, 
the only evolutionarily stable learning rule maximizes players’ information. 
If both populations follow the same learning rule, the equilibrium which is 
selected is the symmetric Nash bargaining solution. When information is 
costly there is a trade-off between costly learning and the rewards of being 
well informed. Finally we show that an economy populated by players who 
follow very simple imitative rules is socially more efficient than an economy 
of rational players. In the third and fourth chapters we introduce models 
which endogenize the equilibrium selection problem. We show that, in a 
model of a credit market an equilibrium is selected in which the market is 
fully developed, although the model has another equilibrium with interesting 
stability properties. The agents are assumed to follow very simple behavi­
oural rules and sometimes to experiment with unplayed strategies. Similar 
results are obtained after the introduction of a small proportion of rational 
players. The model predicts interesting dynamics which are consistent with 
some evidence about the Great Depression. Real shocks trigger episodes 
of credit-crunch and temporary financial collapse which is observed in the 
process of adjustment towards the post shock equilibrium.
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Introduction

Nash equilibrium is the most widely used solution concept in economic theory. 

In a Nash equilibrium every player plays a strategy which maximizes his 

expected payoff given the strategies chosen by all other players. No player 

has an incentive to deviate from the strategy assigned to him, provided that 

all the others are playing the Nash equilibrium strategy. In other words, 

when a Nash equilibrium is played, no player will regret his strategy choice.

There are two main open questions concerning Nash equilibrium play,

(i) How do uncoordinated players arrive to play Nash equilibrium?

(ii) When there are multiple equilibria, which one is actually going to 

emerge?

In recent years, the ‘evolutionary’ answers to these questions have raised 

an increasing enthusiasm among game theorists and economists. In the evo­

lutionary explanation the equilibrium is a long run phenomenon achieved by 

myopic players through iterative play. Players belong to large populations 

and randomly meet one another in paiwise interactions. Those strategies 

which perform better will be adopted by an increasing overtime proportion 

of people. The changes in the fractions of players employing the different 

strategies are caused by some type of natural selection (in a biological con­

text) or imitation (in economic applications) of more successful strategies. 

In this approach, Nash equilibria are stationary points of evolutionary pro­

cesses where players learn from the experience of their own population. The 

equilibria are not the result of complicated reasoning carried out by rational 

players but the result of an evolutive process.



In this Thesis we apply evolutionary game theoretic ideas to the modelling 

of economic behaviour. The first chapter is a critical survey of the literature 

mainly focussing on the problem of equilibrium selection in games. In the 

second chapter we propose an evolutionary model of bargaining which is close 

in spirit to the model of Young (1993b). In Young’s model, the Nash Demand 

Game is played by two different populations whose members may differ in 

the amount of information which they use. The main result is that each 

population’s bargaining power is determined by the least informed player in 

the population. We endogenize players’s learning rules and characterize those 

which are evolutionarily stable, i.e. which cannot be invaded by a mutant 

learning rule under natural selection. We show that some puzzling results of 

Young’s model are not evolutionarily stable. In the third chapter we study 

the implications on the equilibrium selection in asymmetric games of the 

introduction of a small proportion of rational players. It is known that mixed 

equilibria in asymmetric games cannot be evolutionarily stable. We show that 

the introduction of a small proportion of “rational players” makes possible to 

achieve mixed equilibria as long run outcomes of some darwinian processes. 

The fourth and last chapter is an evolutionary model of a credit market in 

which multiple equilibria exist. We show that, under “darwinian dynamics” , 

the model generates episodes of credit crunch and financial collapse which are 

observed during the process of adjustment which follows real shocks in the 

economy. The predictions of the model are consistent with some empirical 

evidence about the Great Depression.
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Chapter 1

Evolutionary Gam e Theory: A  
Critical Survey

1 Introduction

Recent research on the foundations of game theory has shifted the atten­

tion to evolutionary explanations of Nash equilibrium, since the traditional 

‘eductive’ theories (Binmore (1987a)) have not provided a satisfactory inter­

pretation. A Nash equilibrium is a strategy profile such that the strategy 

assigned to each player maximizes his expected payoff given that the other 

players play their strategies in the profile. In the ‘eductive’ interpretation, 

it is taken for granted that the players know the strategies that the other 

players will use. They are assumed to figure this out from the assumption 

that it is common knowledge that everybody is a rational utility-maximizing 

player, although there is no clear consensus among game theorist about how 

they do this in the general case. Even when the necessary calculation is clear, 

it often requires a large computational capability on the part of the players 

to carry through.

E q u ilib riu m  selection  Traditional game theory put all its emphasis on 

equilibrium states, without offering a convincing general theory of how play­

ers know that a Nash equilibrium will be played, and which Nash equilibrium 

it is appropiate to select in case of multiplicity. All the literature on refine­

ments of Nash equilibrium is based on the idea of requiring the equilibria 

to satisfy some stronger notion of rationality. A refinement is a test which
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allows to rule out some equilibria. Even when a refinement selects a uni­

que equilibrium, different refinements might select different ones. The main 

problem with refinements of Nash equilibrium is that any of them could be 

defended on some grounds as the right solution concept for a particular game 

but none of them provides a convincing general solution.

The evolutive approach stresses the importance of dynamics in explaining 

the emergence of equilibrium, thus providing an alternative rationale to Nash 

equilibrium and an important contribution to the literature on equilibrium 

selection. Evolutive theories see equilibria in games as stationary points of 

dynamics processes representing some kind of evolutionary adaptation. The 

main difference between the traditional and the evolutionary approach is 

that observed equilibria are not the result of a rational choice but stable 

population distributions achieved by an evolutive process. When the dyna­

mic processes are clearly specified it is not only stable Nash equilibria that 

are of interest but also other phenomena such as attractors (cycles, strange 

attractors, limit cycles) that, although not equilibrum points, could nevert­

heless serve to predict long-run behaviour (Taylor and Jonker (1978), Zeeman 

(1980), Schuster and Sigmund (1983)and (1986)).

B o u n d ed  ra tio n a lity  The evolutionary approach has also contributed to 

the growing litererature on bounded rationality. The general motivation of 

this literature is that economics and game theory assume that players are 

unrealistically rational. In fact economic agents are limited in their know­

ledge and computational capabilities. The limitation on computational ca­

pabilities, compared with the complexity of the problems, becomes evident 

when we consider repeated games. For example the hundred-times repeated 

prisoners’ dilemma has 2̂ °̂° pure strategies. It is therefore natural that 

early attempts to model boundedly rational players occur in the literature on 

repeated games (Neyman (1986),Rubinstein (1986), Abreu and Rubinstein 

(1988)). Neyman (1986) models players as finite automata. He considers
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only strategies that can be programmed using automaton of fixed size. He 

obtains cooperation in the finitely repeated prisoners’ dilemma even though 

all Nash equilibria result in players always defecting in the case when every 

strategy is available. Abreu and Rubinstein (1988) go a step further and 

endogenize the computational constraints of the machines. ^

A second level of bounded rationality is related to the players’ difficulty 

in receiving, decoding, and acting upon information they get in the course 

of playing games. This is the type of bounded rationality that is present in 

evolutionary models, where players face the same or similar situations in a 

repeated way. The crucial assumptions of evolutionary models are that inter­

actions are anonymous (to rule out repeated games effects) and that players 

are myopic. Evolutionary models are necessarily models of bounded ratio­

nality, which is reflected in the myopic rules followed by players in deciding 

how to behave in future encounters.

Binmore and Samuelson (1992) consider the two different levels of boun­

ded rationality. They consider repeated games played by automata with the 

election of automata driven by evolutive forces.

B iology vs. E conom ics. In their seminal paper ‘The logic of animal con­

flict’, Maynard Smith and Price (1972) provide an evolutionary explanation 

of conflicts between animals of the same species by means of individual ra t­

her than group selection. Since then, game theory has become a common 

tool in biology, although it was originally intended as a theory of strategic 

interaction between rational, utility-maximizing agents, with social science 

as the intended field of application. Animals are far from being the consci­

ous, rational agents with well-defined preferences which populate the world 

described by economic models. In applications to biology, the assumptions 

of rationality and utility maximization therefore had to be abandoned and a

^They consider a situation in which players select a finite automata to play the infinitely 
repeated prisioners’ dilemma. When two different automata receive the same payoffs the 
less complex is prefered.

13



new interpretation of strategies and payoffs was introduced in seeking game 

theoretic-explanation of animal behaviour.

A central assumption of classical game theory is that the play­

ers will behave rationally, and according to some criterion of self- 

interest. Such an assumption would clearly be out of place in 

an evolutionary context. Instead, the criterion of rationality is 

replaced by that of population dynamics and the self-interest cri­

teria by Darwinian fitness ( Maynard Smith (1982)).

The payoffs are interpreted as the number of offspring and the strategies as 

phenotypes  ̂ or genetically programmed ways of behaviour.

The evolution by natural selection rests on two mechanisms. On the 

one hand there are random changes or mutations which introduce genetical 

variations. On the other hand there is need of some mechanism which selects 

all those mutations which happen to be useful. Natural selection works by 

retaining a mutations if the organism in which it has occured can be expected 

to leave more offspring than others in the same species which have not been 

subject to the mutation. The evolutionary dynamics reflect this fact. Those 

genes which confer higher fitness will be found in higher proportion.

Evolutionary biologists think of players in terms of populations rather 

than individuals. The set of pure strategies is interpreted as a set of pheno­

types (the set of manifested attributes like eye colour, degree of agressiveness, 

blood group) which, in these simple models, are determined genetically. We 

may think of players as being programmed always to play the same strategy 

when meeting another individual. Individuals are randomly matched , re­

produce asexually and breed true. The result of the interaction is a change 

in Darwinian fitness, i.e. the expected number of offspring. Those organism 

which are better than others at leaving offspring which survive to reproduce

^The genetic program of an organism is stored in the chromosomes in different sites 
(loci). The alleles are the different types of genes that may occupy a locus and the genotype 
is the allele that actually occurs and it determines the phenotype.
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will be better represented in future generations.

The game-theoretic approach to animal behaviour has largely been cri- 

tized because of the assumption of asexual reproduction. Although asexual 

reproduction is not a good representation of the biological world in which 

reproduction is mostly sexual, it might be a better approximation to the evo­

lution of cultural traits, with culture understood as “the transmission from 

one generation to another, via teaching and imitation, of knowledge, values, 

and other factors that influence behaviour” (Boyd and Richer son (1985)). A 

cultural trait, such as look left and right before crossing a street, becomes 

part of the phenotype of an individual.

It is important to bear in mind that the “cultural parents” are not ne­

cessarily genetic ones. Cavalli-Sforza and Feldman (1981), for example, cite 

different circumstances in which an individual may have only one ‘cultural 

parent’ for certain traits. When the transmission takes place between pa­

rents and offspring (vertical transmission), although both parents contribute 

to the cultural traits inherited by the offspring, it may happen that the high 

specialization and division of labour among the sexes can lead to some traits 

being transmited in a uniparental way. Another example in which an in­

dividual has a unique cultural parent is in the relation teacher-pupil . A 

setting in which we think the assumption of asexual reproduction is a good 

approximation occurs when players are treated as roles (male/female in the 

battle of the sexes, seller/buyer in a market situation, borrowers/lenders in 

a credit market) and the strategies are possible behaviours in a role which 

evolve accordingly to their successes due to horizontal transmition (Cavalli- 

Sforza and Feldman (1981)), i.e. when the cultural trait is spread within the 

same generation. “The item of culture being spread horizontally acts like a 

microbe that reproduces and spreads rapidly because it is “infective” and has 

a short generation length compared to the biological generation..” (Boyd and 

Richer son (1985)). Clearcut examples are fashions and technical innovations.
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A literal application of the evolutionary approach as it is in biology to 

economics is problematic. The payoffs in economic models do not represent 

reproductive fitness, but profits or utilities. Nor are the derivations of the 

dynamic processes studied by biologists adequate to model a economic en­

vironment in which people endeavor to achieve a satisfactory performance 

and concious imitation and learning are present. However, in an economic 

enviroment Darwinian dynamics can sometimes be justified by some type of 

imitative behaviour, with individuals revising their strategies in the light of 

the different strategies’ relative successes. The dynamics in these cases re­

present the aggregate effect of the revising rules individuals employ. Nelson 

and Winter (1982), for instance, draw an analogy between economic compe­

tition and natural selection. In their theory firms are characterized by a set 

of routines (which are equivalent to genes). The profit maximizing routines 

happen to do better than others and spread in the population by imitation. 

The mutations in this framework are the techniques. Firm which have poor 

performances, because their profits fall bellow an aspiration level, introduce 

more efficient methods of production. Firm may also decide to im itate more 

succesful firms. At the end all firms adopt the new techniques.

Recent research justifies the use of ‘darwinian’ dynamics in the economic 

literature. Cabrales (1993) obtains the replicator dynamics in a model in 

which a small proportion of players are randomly paired with members from 

the same population and compare payoffs. The player with the lower payoff 

changes to the strategy of the one with higher payoff with a probability 

which is proportional to the payoff difference. The replicator dynamics are 

also obtained by Binmore and Samuelson (1993b) in a model in which, in 

every period, each agent has a small probability of comparing his payoff with 

a random aspiration level. If the payoff falls short of the aspiration level the 

player selects a new strategy which depends on the distribution of strategies 

in the population. Borgers and Sarin (1993) and Schlag (1994) justify the 

replicator dynamics in models with individual learning rather than in models

16



of learning in populations. Borgers and Sarin (1993) show that the replicator 

dynamics are a long run approximation to a learning process due to Cross 

(1973). In their model, players’ payoffs play a reinforcing role. Players adapt 

their mixed strategies according to the strategy they play and the payoffs 

they receive. Schlag (1994) obtain the replicator dynamics in a model where 

player select updating rules.

The standard assumption of random matching in large populations should 

be applied with caution in economics, where long term interactions and re­

putation are important elements. The assumption of myopia, common in all 

evolutionary models, which implies that players behave as if their enviroment 

is unchanging through time has been relaxed in the recent literature with the 

aim of incorporating some type of anticipatory behaviour. In models with 

finite number of long-lived agents it may be sub-optimal for players to choose 

strategies that are best replies to the current state. If all players simultane­

ously revise their strategies, it is possible that a good strategy today maybe 

bad tomorrow. It may also happen that with the choice of strategy a player 

influences other players’ future behaviour. The same is not true when we 

consider continuous-time dynamics or when only a small proportion of play­

ers are allowed to revise their strategies (there is inertia in the system). In 

these last cases it is likely that what is optimal today will still be optimal 

in the near future. Banerjee and Weibull (1991) and Stahl (1992) consider 

models in with more sophisticaded players than those usually assumed in 

evolutionary models.

The rest of the chapter reviews some of the main ideas developed in evo­

lutionary game theory. As we have mentioned above the first contributions 

were made by evolutionary biologist, but the increasing enthusiasm shown 

by game theorists and economists has contributed to the growing research 

in the field. The first section is devoted to the main equilibrium concept 

in evolutionary biology : evolutionarily stable strategies. In the second sec­

tion we stress the importance of the dynamics in the equilibrium selection

17



in games. After a general discussion about the most recent contributions 

we review some of the dynamics which have been most widely used in the 

literature. We consider deterministic and stochastic dynamics.

2 Evolutionary Stability

The main contribution of Maynard Smith and Price (1972) is the notion of 

evolutionarily stable strategy (ESS), which is the most widely used equili­

brium concept in evolutionary game theory. An ESS is a refinement of the 

concept of a symmetric Nash equilibrium with the theoretical contribution 

consisting in an additional stability requirement. An ESS is a strategy such 

that, if all the members of the population adopt it, no alternative m utant 

strategy can invade the population. A population consisting of members 

adopting an ESS will cease to evolve.

The concept of ESS is originated in a setting in which all members of the 

population adopt the same (possibly mixed) strategy and only one type of 

mutant, all playing the same strategy, are allowed to enter. The ESS con­

cept, as originally developed, applies to symmetric games in which animals 

from the same population are randomly chosen to occupy the two player 

roles. Selten (1980) extended the idea to asymmetric games by assuming 

that animals (who are still chosen from the same population) condition their 

strategy choice on the player role they are eissigned. In such asymmetric 

games, equilibria that have alternative best replies cannot be evolutionarily 

stable. Selten (1980) shows that in asymmetric games, a Nash equilibrium 

cannot be ESS unless it is strict. All mixed equilibria are ruled out in a very 

wide variety of games. In particular when extensive-form games are conside­

red, those equilibria in which some information set is not reached fail to be 

evolutionarily stability. As Swinkels (1992) points out ESS may fail to exist 

because all possible mutants have to be considered when we test for evolu­

tionary stability. Many of the mutant strategies can be unstable themselves.

18



Several refinements of the concept of ESS have appeared in the literature. 

Examples of them include, among others, neutraly stable strategies (May­

nard Smith (1982)), weak ESS (Hofbauer and Sigmund (1988)), limit ESS 

(Selten (1983)), equilibrium evolutionarily stable set (Swinkels (1992))and 

modified evolutionarily stable strategy (Binmore and Samuelson (1993b)).

In this section we introduce the concept in a model where players can use 

mixed strategies. We will illustrate the notion with the Hawk-Dove game. 

By means of an example due to Taylor and Jonker (1978) we show that ESS 

might not be the right equilibrium concept on which to focus.

Let us consider a large population of players. The members of the popu­

lation are randomly matched to play a symmetric two-player, normal-form 

game. The set of pure strategies is 5  =  { 1 ,... ,n}. Players can use mixed 

strategies. Throughout his life, each individual plays a fixed strategy which 

is genetically determined. The entries in the n x n matrix A  =  (oj-j) repre­

sent fitnesses i.e. the expected number of offspring. Individuals reproduce 

asexually and breed true unless there is a mutation.

Let us assume that all the members of the population play the same 

strategy p and a proportion e of mutants playing q ^  p appear. The random 

matching assumption implies that a player’s expected payoff in his match 

is equal to the expected payoff obtained if he were matched with a player 

using the mixed strategy eç -f (1 — e)p . This mixed strategy is exactly the 

population mix. The respective expected payoffs to strategies p and q in the 

post-mutation enviroment are given by:

P^A(eq 4- (1 -  e)p) ;

q'^A{eq-\-{l  -  e)p)  .

D efinition  1 (Evolutionarily stable strategy) A state p is an evolutio­

narily stable strategy if, for every state q:

p'^A{eq -f- (1 -  e)p) > q^A[tq +  (1 -  e)p)

19



for sufficiently small e.

Evolutionary forces will select against a m utant if and only if its fitness 

in the post-entry environment is lower than that of the incumbent strategy.

The condition above can be rewritten as the following two conditions, 

which are those originally proposed by Maynard Smith and Price (1972):

(a) Equilibrium condition:

q^Ap < p^Ap ( 1)

(b) Stability condition:

\i p and Ap =  p^ Ap, then q^Aq < p^ Aq (2)

The first condition is the definition of a symmetric Nash equilibrium. Evo­

lutionary stability therefore implies Nash equilibrium play. The stability 

condition guarantees non-invadibility in the case when alternative best rep­

lies exist (equality in the equilibrium condition). It requires that if there is an 

alternative best reply, the ESS must do strictly better again the alternative 

best reply than the alternative best reply does against itself. The following 

results hold for ESS in symmetric games (see Van Damme (1987)):

(i) if (p,p) is a strict Nash equilibrium, then p is an ESS.

(ii) if p is an ESS, then (p,p) is a trembling-hand perfect equilibrium.

(iii) if p is an interior ESS, then it is unique.

(iv) if p is an ESS, then (p,p) is a proper equilibrium.

The implication that ESS in a symmetric game gives rise to a symmetric 

Nash equilibrium follows from the assumption that players are drawn from 

the same population and cannot condition their action on their role as row or 

column players. However, as Hofbauer and Sigmund (1988) point out, many 

conflicts are asymmetric. “Food is more important for a starving animal than
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for a replete one, while the risk of injury is smaller for a stronger contestant. 

In fact, asymmetries are not incidental but quite often essential features of 

the game: for example, in conflicts between males and females, between pa­

rents and offspring, between the owner of an habitat and intruder,or between 

different species” .

We will consider asymmetric contests played by different populations. 

We consider two-player normal-form games in which Si =  { l,2 ...,m } and 

S 2 =  { l,2 ,..,n }  are the sets of pure strategies available to the row and the 

column player respectively. Mixed strategies x G and y G are

possible. A = {aij) and B  =  are the payoff matrices. We assume that 

there are two large populations X  and y  and that the members of these 

populations are randomly matched in pairs to play the game. Player from 

population X  fill in the role of row players while those from y  are the column 

players.

D efinition  2 (Evolutionarily stable strategies in asym m etric gam es)

A pair of strategies (p , q) with p G A ”^“  ̂ and q G A ” “  ̂ is an evolutionarily 

stable strategy if

p^Aq > Aq for all x G A ”^~^, x ^  p

and

q^Bp  > y^B p for all y G A ” “ ^ , x ^  q

The definition of ESS in an asymmetric game concides with the notion of 

“strict” Nash equilibrium. Thus, in asymmetric games, a mixed strategy can 

never be evolutionarily stable.

The following example, due to Maynard Smith and Price (1972), illus­

trates the concept of ESS and the different results obtained when different 

populations are considered.
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2.1 T he Hawk-Dove game

Imagine two animals that are contesting a resource of value V. The resource 

is, for example, a territory in a favourable habitat. The animal which obtains 

the resource has its Darwinian fitness increased by V. Let us assume that 

only two pure strategies are possible.

Hawk. An animal adopting the hawk strategy always fights. It stops fighting 

only after being seriously injured or when the opponent retreats.

Dove. An animal adopting the dove strategy threatens in a conventional way 

but immediately retreats if the opponent escalates.

When two hawks meet, both will escalate and a fight will result. It is 

assumed that such fights have an uninjured victor and an injured loser. The 

victor takes the territory and increases his fitness by V.  The loser’s fitness is 

decreased by C. Each hawk in a fight has an equal chance of winning. The 

expected payoff to a hawk that meets another hawk is, therefore, [V — C)/2.  

When a hawk meets a dove, the dove retreats and the hawk obtains the 

resource with neither being injured. The hawk’s fitness increases by V  while 

the dove’s fitness is unchanged. When two “doves” meet, they peacefully 

share the territory. Each then gains I//2 in fitness.

The game representation of the “hawk-dove” story is shown in Figure 1.

dove hawk

V
dove

\ y 0
0 I(V-C)

hawk
V è(v-c)

Figure 1

We assume a large population of animals which are matched in couples to 

play the Hawk-Dove game. Reproduction is asexual and takes place after the 

game is played. A new composition of the population is obtained and a new
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round takes place. Animals are genetically programmed to play a strategy 

that remains unchanged throughout thair lives. Animals breed true in the 

absence of mutations.

When V > C hawks is the only evolutionarily stable strategy because 

hawk strictly dominates dove. In a population of hawks and doves, the 

hawks have higher Darwinian fitness. Doves will gradually disappear and in 

the “long run” only hawks will exist. It is a Prisoners’ Dilemma situation.

When V  < C neither a population of all hawks nor one of all doves is 

evolutionarily stable. A mutant will spread through a pure population. When 

all are hawks, a dove has a higher httness and will spread in the population. 

The opposite happens in a population of doves in which the proportion of 

hawks will increase.

The only evolutionary stable strategy in a monomorphic population re­

quires that animals adopt mixed strategies. Let us assume that animals play 

hawk with probability x and dove with probability (1 — The only sym­

metric Nash equilibrim of the Hawk-Dove game when V  < C is p = V /H .  

Let us consider a population of p-strategists. Assume that a m utant playing 

q ^  p appears. Since all the strategies that are played with positive proba­

bility in a mixed strategy Nash equilibrium have the same expected payoff 

any q will fare against p as well as p does. The equilibrium condition (1) is 

therefore satisfied with equality. We have to test for the stability of p. The 

stability condition (2) requires comparing the payoffs to the two different 

strategies, p and g, when matched against q The m utant strategy q will be 

selected against if and only if it performes against itself worse than p. It is 

easy to see that the stability condition is satisfied by p, being the only ESS 

of the game when V < C.

Now, let us assume that the column and the row players are drawn from 

different populations. It is then evolutionarily stable for one popualation to 

consist of all doves and the other of all hawks. The dove strategy is the

*We will identify a mixed strategy with the vector x  =  (x, (1 — x)) or simply with x.
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best against a population of all hawks. Against “all doves” it is better to 

be a hawk. A situation in which all members of both populations adopt the 

mixed equilibrium strategy p is not evolutionarily stable. Let us consider the 

pair (p,p) and a mutant q (q ^  p) in population 1. The mutant will not be 

selected against. In the case we are considering of two separated populations, 

a mutant never meets itself. There is no analogue of stability condition (2) 

to restore the pre-mutation environment.

2.2 M ixed vs pure strategies

The use of mixed strategies has the nice property of convexifying the strategy 

space, which guarantees the existence of Nash equilibrium in finite games. 

In mixed strategy equilibria a player, although he is indifferent between all 

the pure strategies in the support of the mixed strategy, has to randomize in 

such a way that the opponent is indifferent between all the strategies which 

he is require to play with positive probability in equilibrium. A justification 

of mixed strategies is that people randomize to become unpredictable. This 

is the case in a game like “matching pennies”, when the game is played 

repeatedly and players choices are observable. The same explanation is not 

valid for evolutionary models where matching is random and past behaviours 

of the current opponent are not observed.

Underlying Maynard Smith and Price’s definition of ESS are the assump­

tions that populations are monomorphic, players can be genetically program­

med to play mixed strategies and that they breed true. All the strategies in 

the support of a mixed equilibrium have the same expected payoff. For evo­

lutionary stability, any mutant with the same support must have the same 

payoff against the incumbent as the incumbent itself, because all the straegies 

pay the same. The same is not true when we consider the payoffs a m utant 

receives when he meets someone like himself. Some of the pure strategies in 

the support of the mutant strategy may have a higher expected payoff. One 

could expect a change in the probabilities attached to these strategies with
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the population moving in the direction of increasing a pure strategy rather 

than towards an increase of the proportion of players employing the mixed 

m utant strategy.

E x am p le  1.1 This example shows that the results may differ when we com­

pare pure populations using mixed strategies and mixed populations using 

pure strategies. Equilibria in the latter case are said to be polymorphic. 

When there are only two pure strategies, if the mixed stategy is stable then 

so is a polymorphic population with the frequencies of the two strategies 

corresponding to the mixed equilibrium. For more general games this is not 

necessarily true.

Let us consider the following example by Taylor and Jonker (1978)

A =
2 1 5
5 1 0
1 4 3

The unique symmetric Nash equilibrium of this game is p =  (15,11,9)/35. It 

is not an ESS because we can find a mutant strategy q that fares better than 

p in a population consisting of a large proportion of p and a small fraction 

of q. Consider the perturbing state q =  (18,18,0)/35. The new population 

mix is given by (1 — e)p-f- eq. The payoffs to the different mixed strategies p 

and q in the post-entry enviroment are:

<1^ A{tq d" (1 — c)p) =  86/35 — 0.22c

A{cq -|- (1 — c)p) =  86/35 — 0.19c

We should therefore anticipate a tendency in the population towards q.

When we test for evolutionary stability a comparison is made between 

the payoffs to the different mixed strategies. If we view the different groups 

of p-strategists and g-strategists as subpopulations made up of players using 

pure strategies in the proportions p and q respectively, the evolution of the 

system would differ.
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The payoffs obtained by the three pure strategies in the post-entry envi­

roment are:

A(̂ cq -|- (1 — e)p) =  (86 — e)/35 

A[tq “I" (1 — c)p) =  (86 -f- 21e)/35 

A(^cq -h (1 — ^)p) — 86/35

where e* is the (1x3) unit vector with a 1 in the zth row and everywhere else. 

Clearly, the second strategy has a higher expected payoff. The evolution of 

the population will drive the population towards an increase in the second 

strategy rather than towards q.

In the light of this example and for the reasons explained above, we 

therefore confine our attention to what we regard as more realistic framework 

that in which only pure strategies are used. In the following section we will 

consider the situation in which different strategies can coexist in equilibrium. 

In this case a mixed equilibrium is to be interpreted as a population mix with 

the appropiate proportions of players using the pure strategies in the support 

of the equilibrium. ^

3 D ynam ics and equilibrium  selection

Although the definition of evolutionary stability is static it impHcity relies on 

an unmodeled dynamic story. The main intuition behind the ESS motivation 

is that, if the mutant strategy performs worse than the incumbent, then 

selection pressures will repel the mutants. An equilibrium is an ESS if the 

system returns to the equilibrium once a small shock moves the system an 

arbitrarily small distance from the equilibrium. •

In the early evolutionary game-theoretic literature, stress was put on the

'^Hofbauer and Sigmund (1988) echo Maynard Smith (1982) in pointing out that is rare 
to find phenotypes that realize mixed strategies in the type of situation with which we 
are concerned although mixed strategies are apparently commonplace when animals are 
“playing the field”.
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stability of the different equilibria that were tested with the introduction of 

one-shot mutations (the concept of ESS, for instance). When the underlying 

dynamic forces have been explicitly modeled, it becomes evident that some 

other elements such as limit cycles, cycles or strange attractors are interesting 

phenomena to be considered. The equilibrium selected by the ‘deterministic’ 

dynamics, when they converge, depends on the initial conditions. In brief, hi­

story matters. The scenario changes when the dynamic model is continuously 

perturbed. Mutations, experimentation, imigration and shocks are elements 

which play a crucial role in the equilibrium selection. The introduction of 

one of these elements which continuously perturbes the system helps in the 

selection of a particular equilibrium. The role played by perturbations is to 

eliminate the path dependence. The emphasis now, is put on long run équi­

libra rather than on absorbing states. A long run equibrium is a probability 

distribution defined on the state space. It is a measure of the proportion 

of time spent by the system at the various states as the time horizon tends 

to infinity. The idea is that in the presence of continuous perturbations the 

system will select a set of states near which it will stay. The first work in 

this line is due to Foster and Young (1990). Foster and Young (1990) consi­

der a continuous-time, continuous state-space formulation (as in Taylor and 

Jonker (1978)) with aggregate randomness due to several factors such as va­

riability of payoffs (due to changes in the environment), randomness in the 

matching process, mutations and possible inmigrations. The accumulation 

of stochastic effects may change the long-run behaviour of the system. Fo­

ster and Young (1990) offer a new concept of equilibrium, i.e, stochastically 

stable sets, which are those states that will be observed with positive proba­

bility in the long run, when the noise of the system is small does not vanish 

altogether. Although the stocastically stable sets are independent of initial 

conditions they depend on the fine details of the dynamics.

More recently, Kandori et al. (1993), Young (1993a) and (93b) propose a 

discrete-time, discrete state space models which are continuously perturbed
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by mistakes. The novelty with respect to Foster and Young (1990) is that 

the randomness is introduced at the individual rather than the aggregate 

level. In the models of Kandori et al. (1993) and Young (1993a) the best 

reply dynamics defined on the discrete space state defines a Markov Chain 

with multiple absorbing states. The introduction of mutations eliminates the 

absorbing states and makes the Markov Chain ergodic.

Kandori et al. (1993) consider coordination games and show that the 

equilibrium which is selected is independent of the initial conditions and on 

the details of the Darwinian dynamics. In their model, players from a sin­

gle finite population are repeatedly matched to play a coordination game. 

They assume Darwinian dynamics that satisfy a weak monotonicity condi­

tion reflecting the hypothesis of myopia and inertia. When there are no 

mutations, the dynamics are deterministic, the equilibrium that is selected 

is path dependent; once an equilibrium has been reached the economy stays 

there forever. When mistakes are allowed, they continuously perturb the 

system away from equilibrium making it possible to jump from the basin 

of attraction of one equilibrium into another. Kandori et al. (1993) focus 

on the long run behaviour of the system, when a non-negligible number of 

mutations occur, and show that such behaviour is independent of the initial 

conditions and the fine details of the dynamic processes considered; the weak 

monotonicity condition being the only restriction imposed.

Young (1993a) considers an n-person game played once every period by 

n players drawn at random from large populations. Each player who is called 

to play bases his choice of strategy on the observation of a random draw from 

the last m plays of the game. Young prefers to refer the rare perturbations 

that Kandori et al. (1993) call mutations as mistakes or experimentations. 

These mistakes constantly disturb the system. When the noise is small it is 

possible to show that the stationary distribution is concentrated around the 

‘stochastically stable’ conventions (Foster and Young (1990)).

Most evolutionary models incorporate “selection dynamics” which des­
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cribe the way players adjust their strategies according to some criteria rela­

ted to current payoffs. Under the so called Darwinian dynamics the strategy 

distribution moves towards what is best reply to the current situation. The 

most commonly used are the replicator and the best-reply dynamics.

3.1 R eplicator Dynam ics

The most common explicit dynamic process offered as a representation of a 

Darwinian selection mechanism is the ‘replicator dynamics’. The notion of 

replicator was put forward by Dawkins (1976) as the entity of the theory of 

natural selection. Replicators are any entity which can be copied and which 

determine the strategic behaviour in a game. Genes are replicators as well 

as rules-of-thumb, fashions and ideas. The idea behind the “replicator dyna­

mics” is that the fitness of an organism is measured by the frequency it gets 

to reproduce its replicators. Those replicators which confer higher fitness 

to the organism carrying them will come to control a larger proportion of 

the organism which survive. Some replicators are more succesful ar repli­

cating themselves than others. In the Hawk-Dove game, for instance, there 

are two replicators. The replicator dove induces the animal to play dove 

while the replicator hawk induces the hawk behaviour. The fitness of any of 

them depends on what replicators the other members of the populations are 

carrying.

3.1.1 D eterm inistic R eplicator D ynam ics

Taylor and Jonker (1978) first introduced the replicator dynamics to explain 

animal behaviour. We will follow them in our analysis.

Let us consider a large population of players. The members of the po­

pulation are paired at random to play a symmetric two-player, normal-form 

game. Each individual plays a fixed strategy i € { l , . . . , n }  that is gene­
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tically determined, i.e. carries a replicator^ which induces a pure strategy 

i. The payoffs a{j in an n x n matrix A  represent the expected number of 

offspring to a player who uses strategy i when his opponent uses strategy j .  

Individuals reproduce asexually and breed true provided that no mutation 

occurs. Let N  be the total number of individuals in the population and n,- 

the number of z-strategists (carriers of replicator i). The state of the popu­

lation at time t is given by an n-dimensional vector x = (%i,. . .  ,x„), with 

Xi =  rii/N  being defined as the proportion of players with phenotype i that 

is, who are programmed to use strategy i. The change in the distribution of 

strategies in the population is determined by the rate at which the users of 

each strategy reproduce. In this setting, we do not have mixed strategies. 

Instead, different players using different strategies may coexist in a polymor­

phic equilibrium. But from the point of view of a single players it is as if he 

were playing against an individual using a mixed strategy.

Let e, be the unit vector with a one in the i-th row and zero elsewhere. 

The expected payoff (fitness) to strategy i is e jAx .  The average fitness of 

the population is x^Ax.  Let us assume that that the rate of growth or decay 

of a certain strategy (replicator) is r,- and that the fitness of the strategy is 

an estimate of it:

Hi = riUi = riiejAx and N  = 'Y^NxiXi = N x ^ A x

Differentiating x, =  Ui/N we get the ‘replicator equations’

Xi =  Xi{ri — ^ r i X i )  = Xi{ejAx — x^  Ax)  (i= l,...,n) (3)

It is easy to see that the population share that grows at the highest rate 

uses the strategy that pays best against the current state of the system. 

However, the shares of more than one strategy may be increasing.

®In what follows we shall use the terms strategy and replicator indifferently. We asso­
ciate to a replicator the strategy it induces.
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The continuous time replicator dynamic approximates the trajectories of 

different discrete-time replicator dynamics, either with overlapping genera­

tions (Taylor and Jonker (1978), Hofbauer and Sigmund (1988) , Binmore 

(1991a)) or with nonoverlapping generations (Maynard Smith (1982) and 

Van Damme (1987)).

Let us assume that we have discrete overlapping generations and that r,- 

is the number of individuals born from an z-strategist in unit time

ni(t +  r)  =  rii(^)(l -f r r i )  (i= l,...,n)

Dividing by N{t  -f r )  =  Z)^t(l +  Tn) we get

Substituiting r{ by its estimate and rearranging we obtain the following dis­

crete time ‘replicator dynamics’

+  .) w
A problem of the process we have considered is that the population may 

grow without limit. We can obtain the same dynamics if we assumed a con­

stant population. Binmore (1991a) for instance obtains the same equations in 

a model in which the size of the population is kept fixed. After reproduction 

some individuals die (food is a scarce resource). All individuals, including 

newborns, can die.

The continuous time replicator dynamics (3) is obtained by taking the 

limit as T 0 in (4)

lim =  Xi(t)[e^Ax{t) — x{t)^Ax{t))  (i= l,...,n)
T—>̂ 0 T

If we consider non-overlapping generations i.e. all members from the current 

generations die and are substituted by newborn individuals, we have that 

rii{t +  1) =  riTii{t) and N(t  +  1) =
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......

which can be rewritten after substituiting r, by its estimate as

Van Damme (1987) obtains equation (3) from the straightforward approxi­

mation — ~  Xi and disregarding the denominator. This changes

the length but not the direction of the vector field. A general expresion which 

encompasses (4) and (5) is

+ =  (6,

with (7 (C =  0 in the nonoverlapping case and (7 =  1 in Binmore (1991a) 

and Taylor and Jonker (1978)) interpreted as the ‘common background fit­

ness’ (Hofbauer and Sigmund (1988). If a large enough constant C is added 

to all the payoffs, the strategies make a small contribution to the relative fit­

ness and therefore the different strategies will grow slowly. The larger C the 

better the discrete time replicator dynamics (6) approximate the continuous 

one (3).

In 2 X 2 games, if the mixed strategy p (in a monomorphic population) is 

stable then so is the corresponding polymorphism (where only pure strategies 

are allowed). The same is not true with games with more than 2 strategies 

(see Taylor and Jonker (1978))

The following results hold for n x n symmetric games (see Van Damme 

(1987)):

(i) If p is a Nash equilibrium, then p i s  a fixed point of the replicator 

dynamics, but the converse is not true.
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(ii) if p=Ci for i = l,2 ...n , then p is stationary in the replicator dynamics 

(any monomorphic population is a fixed point).

(iii) If p is an ESS, then the corresponding polymorphism is asymptotically 

stable in the replicator dynamics.

(iv) If p is  a mixed ESS, then the corresponding polymorphism is globally 

stable in the replicator dynamics.

(v) If p is  a local attractor the replicator dynamics, then p is  a Nash equi­

librium but the converse need not be true.

An interesting question is whether evolution wipes out irrational beha­

viour from the population. Samuelson and J.Zhang (1992) show that the 

population shares of non-rationalizable pure strategies converge to zero along 

any ‘interior’ dynamic path in the continuous replicator dynamics. ® If con­

vergence to an interior state occurs, then it is a Nash equilibrium (Nachbar 

(1990)). Dekel and S.Scotchmer (1992) show that if players can only inherit 

pure strategies, then strategies which are never best reply can survive rep­

licator dynamics. The result is based on the fact that better than average 

strategies grow under replicator dynamics even though they might never be 

best reply strategies. They show therefore that evolution need not select the 

fittest strategy.

Exam ple 2.1 Let us consider the Hawk-Dove game represented in Figure 

1. Let X be the proportion of players using the hawk strategy. The replicator 

dynamics in this case is:

X = x { l  -  x ) - { — -  x)

It is easy to see that, when C > V  x > 0 (< 0) if T < V/C  {x > V/C)  

and when C < V  i  > 0 for all x.

®Cabrales and Sobel (1992) extend this result to discrete time replicator dynamics (with 
C=0) when only a small fraction of players reproduce each period.
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The following figure represent the dynamics in these two cases. The filled 

dots are the stable points. The white dots are stationary points that are not 

stable (nor Nash equilibria).

O----------------- ------ #—  ---------------O
0 V/C 1

Phase diagram when V > C

O
0

Phase diagram when V < C 

Figure 2.

In the first case, the dynamics converge to a stable polymorphism which 

corresponds to the mixed equlibrium of the game. In the second case the 

only stable population consists of only hawks.

E x am p le  2.2 Let us consider the replicator dynamics in the Hawk-Dove 

game when it is played by members of two different populations.

The pair (x, y) represents the proportion of players from each population 

using the hawk strategy. The replicator equations are given by:

X = x( l  -  x ) - { — -  y)

ÿ =  ÿ ( l - ÿ ) y ( ^ - x )

Figure 3 represents the phase diagram of such dynamics for C > V.
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/'V

0
v/c0 1

Figure 3.

The mixed Nash equilibrium a= (V/C, V/C) is not a stable point of the 

replicator dynamics; it is saddle. Almost all orbits converge to one of the 

two equilibria in pure strategies, namely (0,1) and (1,0).

E x am p le  2.3 An example of asymptotic convergence to a Nash equilibrium 

which is not an ESS is the example of Taylor and Jonker (1978) reported in 

section 1.2. The following figure is a representation of such a example. At 

the vertices only one pure strategy is played.
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<53

5l
Figure 4.

A feature of this example, which is common to all interior equilibria that 

are asymptotically stable but not ESS, is that they are always foci. The 

equilibrium is reached after a period in which some cycling behaviour is 

observed, due to the higher growth rate of some pure strategy.

In many circumstances, the deterministic replicator dynamics does not 

help in selecting among different Nash equilibria.

All strict Nash equilibria are asymptotically stable points of the replicator 

dynamics.

E x am p le  2.4 Let us consider the following coordination game with two 

strict equilibria (A,A) and (B,B):
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A B

a 0
A

a 0

0 b
B

0 b

Figure 5

Let X be the proportion of player using strategy A. Under replicator 

dynamics,

X — x{\ — x){a +  h){x----------)
a 0

for which the phase diagram is shown in Figure 6.

0 b /(a+b)

Figure 6.

The population composition that will be achieved through Darwinian selec­

tion will depend on the initial state of the population. Either (A,A) or (B,B) 

will be selected. The mixed equilibria (a/(a-|-b),a/(a-|-b)) is a repellor. As 

we will see in the next section, the results obtained from the deterministic 

model change when stochastic effects are taken into account.

3.1.2 Stochastic replicator dynam ics

Foster and Young (1990) first introduced stochastic differential equations in 

evolutionary biology (in symmetric games). The main claim of Foster and 

Young is that neither ESS nor the more general concept of an attractor are 

the right concepts when stochastic effects are taken into account. Their main
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criticism of the previous approach is that only one-shot mutations are con­

sidered. The stability is tested with the introduction of mutants that either 

die out and the system goes back to the equilibrium (if it is asymptotically 

stable) or the population is destabilized and a new state is reached (in the 

case of convergence). When continuous mutations are considered it may be 

possible that their effects accumulate and even push the system away, from 

asymptotic attractor. They therefore stress stochastically stable sets rather 

than absorbing sets.

Due to the stochastic nature of the postulated dynamics, we cannot say 

that the system will be with certainty in an absorbing state (or set) but pro­

babilistic statements are possible. The route followed by Foster and Young 

(1990) is to characterize the limiting behaviour of the stochastic system when 

the variance of the noise tends to zero. The idea is to find the probability 

for the system to be near any given state and to characterize the limiting 

distribution. This will put weight only on the stochastically stable equilibria. 

The main result in their paper is that the stocha.stic model has an ergodic 

distribution, i.e, asymptotic distributions that are independent of the initial 

conditions.

As pointed out by Foster and Young (1990), biological models such us 

that introduced by Taylor and Jonker (1978) are inherently stochastic. The 

stochastic forces come from different sources: variability of payoffs (fitnes­

ses), randomness due to the matching process, background mutation and 

immigration. In Foster and Young’s model, the aggregate noise is appro­

ximated by a continuous-time, continuous-space Wiener process W  which 

enters additively into the continuous-time replicator equations (3) to give 

the following equation

dx{t)i =  x{t)i{ejAx{t))  — x{t)Ax(t))dt  +  (rd(W(f)))i i= l,...,n  (7)

where W  is a continuous, white-noise process with zero mean and unit
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variance covariance matrix. The first term on the right hand side represents 

the drift, it is the standard replicator dynamics. They study the asymptotic 

properties of the system as the variance <7̂  of the noise becomes arbitrarly 

small.

D efin ition  3 (S tochastica lly  s tab le  s ta te )  The population vector x* is 

stochastically stable if, as cr 0, the limiting density assigns positive proba­

bility to every small neighbourhood of x*.

In the coordination game of Figure 5, the stochastically stable states are 

either 1 or 0 depending on whether a >  b o t  b >  a. The intuition behind this 

result is that when a >  b the basin of attraction for 1 (everybody playing 

A) is larger {x > 6/(a +  6)). It is possible to go from 1 to 0 and from 0 to 

1, because the noise pushes the system away from the attractors, but the 

selection pressure towards 1 is greater. It is crucial for Foster and Young’s 

result that the boundaries be reflecting rather than absorbing. If it were not 

the case, the system as the muations tends to dissappear will eventually hit 

the boundaries because some strategy dies off. Once this happens the process 

can never leave the boundaries again. This problem is solved by restricting 

the process to the interior of the state space.

We can understand the selection pressure as a a river with two diffe­

rent branches which flow into two different lakes (the asymptotically stable 

points). The stochastic effects are the forces that push a boat upstream, 

fighting against the strength of the water which follows its natural course. 

The longer the distance to go upstream (the length of the branch) and the 

greater the strength of the flow (the relative payoffs) the more difficult it is to 

go from one lake to the other. The state of the system, in this parable, is the 

place where the boat is at any time. We can therefore define a probability 

measure over the different locations. The weight of a particular state in the 

measure is the probability of finding the system at that state. As the noise 

vanishes, it becomes more and more difficult for the boat to swim upsteam.
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The densitity function concentrates on either lake, or on both, depending on 

the strength of the flow and on the length of the branches. Figure 7 is a 

representation of the story described above. The rest points of the determi­

nistic dynamics are the two lakes (filled dots) and the state which joints the 

two branches (white dot). The latter is not stable, any mutation will push 

the boat into any of the branches and into the corresponding lake.

a+6

1
selection pressure, 

stochastic forces. 

Figure 7.

Foster and Young (1990) show that the stochastically stable states are 

not necessarily evolutionarily stable.

Related work of Fudenberg and Harris (1992), studies the evolution of 

the continuous-time replicator dynamics in 2 x 2 symmetric games, when 

the payoffs are subject to aggregate shocks. The main difference with the 

previous paper is that Foster and Young (1990) add the stochastic term to the 

continuous replicator dynamics for the population shares (xiY  (see equation 

(7)) while Fudenberg and Harris add the term to the expected payoffs in the 

equations reflecting the evolution of the sizes of the subpopulations using 

the different strategies and obtain the corresponding replicator dynamics for

^The share of strategy i is z,. If the population is of size R, the members of the 
population playing i are of size r,- =  R xi
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population shares. A problem of the model is that the population may grow 

without limit. The shocks on each strategy i are independent of the strategy 

with which it is matched. Shocks on different strategies are independent. The 

main result is that the model does not always have an ergodic distribution, 

and the asymptotic behaviour can depend on the initial conditions. For 

example, in the coordination game (Game 2) as the variances and crj) 

go to zero the probability that the system converges toÆ =  l (ir =  0) goes to 

one if the process starts in a: > 6/(a +  6) {x < b/{a-\-b). When also mutations 

are introduced in the model of Fudenberg and Harris, the dynamic process 

is ergodic for any positive rate of mutations. In the coordination game the 

equilibrium selected coincides with the stochastically stable equilibrium of 

Foster and Young (1990). Cabrales (1993) extends the model developed 

by Fudenberg and Harris (1992) to n-player games that are not necessarily 

symmetric and shows that strictly dominated strategies have little asymptotic 

weight.

3.2 B est-rep ly  dynam ics

In the replicator dynamics more than one strategy may be increasing their 

shares in the population. Those strategies which fare better than the ‘ave­

rage’ increase their frequencies, and viceversa. In this section we consider the 

‘best reply dynamics’. Under this dynamics, a strategy will increase its fre­

quency in the population only if it is a best reply to the current distribution of 

strategies in the population. In the first part we introduce the deterministic 

best reply dynamics. We will compare them with the replicator dynamics by 

means of few simple examples. As for the replicator dynamics we will con­

sider both symmetric and asymmetric games. In the second section we will 

introduce the models of Kandori et al. (1993) and Young (1993a). The two 

models have a finite state space and the dynamics can be represented by a 

Markov chain. When ongoing mutations are introduced the right equilibrium 

concept to focus on is, as in Foster and Young (1990), long run equilibrium
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rather than absorbing state.

3.2.1 D eterm inistic B est R eply Dynam ics

We consider two-person, symmetric games. Let us consider a situation in 

which, in each time interval the game is played 1 /r  (0 < r  < 1) times. Each 

time the game is played o :t  (0 < a  < 1) players are given the chance of 

revising their strategies. Those who change act myopically choosing the best 

reply to the current state of the system. When more than one best reply 

exist, each is chosen with equal probability.

Let BR(x)  Ç 5 be the set of strategies which are best replies to the state 

X and let \BR{x)\ be its cardinality.

The dynamics are represented by the following difference equations.

Vi € BR{x(t)) X i ( t  + r)  =  X i ( t )  +  . ^  X k ( t ) )  (8)
keBR(x( t ) )

Vj ÿ BR{x{t)) X j { t  t )  =  X j { t )  — r a x j { t )  (9)

where a  measures the population responsiviness.

Equation (8) represents the dynamics of those strategies which are a best 

reply to the current state. The first term on the right hand side is the 

fraction of players who are already using a best reply and do not change 

their strategies. The second term is the proportion of players who were 

playing some strategy which was not a best reply to x{t) and change to i. 

Only a proportion ar  of the players who are adopting a strategy which is 

not a best reply to the current state of the system have the opportunity of 

selecting a new strategy. We have assumed that they select any of the best 

replies i G BR{x[t)) with the same probability l / \BR(x{t))\ .  Equation (9) 

describes the dynamics for the strategies which are not best replies to the 

current state. All those player who are given the chance of revising their 

strategies (a proportion ar)  move to any of the best replies.
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It is interesting to notice that the strategies do not depend on the payoffs, 

except insofar as these determine the best reply correspondence. When 

T =  o; =  1 we have what is commonly known as ‘discrete-time best-reply 

dynamics’.

With T = 1 and a  < 1 we have what we shall call ‘slow best reply- 

dynamics’ (in discrete time). We obtain the ‘the continuous-time best-reply 

dynamics’ by making r  0

a
V i e B R { x )  X i { t ) =  (1 -  (10)

keBR{x{t))

Vj é  BR{x{t)) X j { t )  =  —a x j  (11)

If we compare these dynamics with the replicator dynamics (3) we ob­

serve that only the best-paying strategies grow in the population. The two 

dynamics are the same, for interior points, in the 2 x 2  caxse, but with diffe­

rent speeds. The difference is that the rate of adjustment is independent of 

the relative payoffs for best-reply dynamics. Another difference between the 

two dynamics is that in the ‘best reply’ dynamics the stationary points are 

necessarily Nash equilibria. The same is not true for the replicator dynamics 

where any distribution in which only a pure strategy is played is stationary.

When BR{)  is a singletone we obtain the following solution to the diffe­

rential equations (lO)-(ll)

for i =  BR{x{t)) Xi(t) =  1 —

y j  ^  BR(x{t)) X j { t )  =

where ak is a constant of integration. It follows that:

" 1 ^  =  constant Vj, A: ^  BR(x( t) )  (12)

this implies that the relative proportions of those strategies which are not 

best replies remain unchanged.
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E xam ple  2.5 Let us consider for example the ‘Rock-Scissors-Paper’ game:

0 1 -1
A = - 1 0 1

1 -1 0

We can represent the state space in an equilateral triangle. Each vertex 

corresponds to the state in which all players use the same pure strategy. The 

‘Rock-Scissors-Paper game’ has a unique equilibrium p* = (l/3 ,1/3,1/3). 

Figure 8 represents the state space and the best reply regions.

Figure 8.

This game is an example of non convergence in the ‘replicator dynamics’. 

Under replicator dynamics, X\X2Xz is a constant of motion (see Hofbauer and 

Sigmund (1988)). The dynamics are represented by closed orbits around the 

equilibrium point (see Figure 8).

Let us consider the continuous, best-reply dynamics (lO )-(ll). Condition 

(10) implies that the orbits are straight lines pointing at the vertex in which 

only the best reply to the current state is played.

Figure 9 represents the continuous time, best reply dynamics for ‘Rock- 

Scissors-Paper’. The system converges from any point to the mixed equili­

brium.
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Figure 9.

If we consider the discrete time dynamics (6)-(7) with a = t = I from 

any interior point the system converges to a cycle that ‘jum ps’ (clockwise) 

from one vertex to another clockwise.

We now consider the best reply dynamics when a game is played by two 

populations. Let x(t) be the state at time t of population X .  We denote 

by y(t) the state of population 3̂ . We assume, as in the one-population 

case, that in time interval r  a proportion tolx (Tay) is given the oportunity 

of changing its strategy. Those who do change their strategies move to a 

best reply to the current state of the system. The discrete time ‘best reply 

dynamics equations are given by:

Vi € BR{ y { t ) )  Xi{t + T ) =  %,(() +  Z  a:*(t)Xl3)
\BH{y[t))\ k£BR(y{t))

Vj ^ BR{y{t)) X j { t  -}- r)  =  X j { t )  -  T a x X j { t )  (14)

' ^ i e B R { x ( t ) )  yi{t + r ) =  +  T ^ ^ ^ T ÿ ü ( l  -  D  2/&( )̂)(15)
\nit{X[l))\ keBR{x{t))

y j ^ B R ( x { t ) )  y j ( t - \ - r )=  yj(t) -  Tayyj{t) (16)

The interpretation of equations (13) and (15) and (14) and (16) is similar to 

the interpretations offered for equations (6) and (7), respectively. The main
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difference is that each populations responds to the state of the other. The 

corresponding continuous time dynamics are given by:

\ / i e B R { y { t ) )  Xi=  - ^ ^ — ( 1 -  ^  x,{t))Vi € BR{y{t))
keBR{y{ t) )

Vi ÿ BR{y(t)) Xj  =  - a x X j { t )

V ^ BR{x(t)) ÿ j  =  - a y X j ( t )

When BR{)  is a singletone, the solution to these differential equations is

X i ( t )  = 1 — a f  e ‘

X j ( t )  =

y i { i )  = 1 — a f e '

y j W  = a j e - ^

Vi f  BR{y{t))

Vi f  BR{x{t))

The relative proportions of those strategies which are not best replies, and 

therefore are decreasing, remains constant. When the resposiveness in both 

populations is the same, the trajectories are straight lines pointing at the 

vertex where only the best reply is played. If we allow for different degrees 

of responsivenes in the different populations we have that:

Z ' ^
-^—— = const BR{w(t)) z ,w  £ {x, y}  z ^ w
Zk\t)

^  =  const Vi ^  BR{y{t)) and Vit ^  BR{x{t))
VkW

Exam ple 2.6 Figures 11 and 12 represent different continuous dynamics 

in ‘matching pennies’ played by different populations.
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HEADS TAILS

- 1 1
HEADS

1 - 1

1 - 1
TAILS

- 1 1

Matching Pennies. 

Figure 10.

In Figure 11 we have represented the Best-reply dynamics for Matching 

Pennies. The proportion of players in population X  using Heads is x 

[y). This dynamics converge to the unique (mixed) equilibrium of the game. 

In the long run equilibrium, half of each population will play Heads and the 

other half Tails.

0 X  1
Figure 11. Best-reply dynamics

Figure 12 represents the continuous Replicator dynamics. The dynamics 

are characterized by closed orbits around the mixed equilibrium.
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Figure 12. Replicator Dynamics

3.2.2 S tochastic  B est R ep ly  D ynam ics.

Until now we have only considered dynamic systems with a continuous state 

space, which we have represented as a simplex. In this section we introduce 

two models with discrete state space. The models due to Kandori et al. (1993) 

and Young (1993a) are important recent contributions two the literature of 

equilibrium selection in games. After introducing the main motivation of the 

models we will, by means of very simple examples, illustrate the main idea 

behind the equilibrium selection which is the same in both models.

K an d o ri, M aila th  and  R o b ’s dynam ics. Kandori et al. (1993) intro­

duce a discrete time system with a finite population, where each individual 

‘m utates’ from one strategy to another with positive probability. There are 

three hypotheses in their model: (z) The inertia hyphotesis implies that not 

all players simultaneously and instantaneously adjust to the environment. 

The assumption can be justified by the existence of adjustment costs and 

imperfect knowledge about the relation between payoffs and strategies, (ii) 

The myopia hypothesis implies that people do not take into account the long 

run implications of their choices. Finally, (iii) the mutation (experimen­

tation) hypothesis, according to which players, from time to time, play an 

arbitrary strategy. This last hypothesis has a nice economic interpretation:
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there is a small probability that a player exits the population and is replaced 

by a newcomer who knows nothing about the game and chooses a strategy 

at random.

Their main result is that the model has an ergodic distribution whose 

limit as the probability of mistakes goes to zero is concentrated at the risk- 

dominant equilibrium in 2 x 2 coordination games. This result is independent 

of the details of the underlying deterministic adjustment process provided 

that it satisfies a Darwinian property which implies that the best strategy 

must be better represented in the following period. The dynamic system 

considered by Kandori et al. (1993) can make discrete jumps. When the 

mutation rate is small the system spends most of its time at a strict Nash 

equilibria. Sometimes enough individuals m utate simultaneously to shift the 

state of the system to the basin of attraction of the other equilibrium. The 

limit distribution is shown to depend on the relative probabilities of the 

shifts from one equlibrium to the other, which only depends on the sizes of 

the basins of attraction.

In this section we use a simple example to illustrate the main ideas of 

Kandori et al. (1993). We will consider a simple bargaining game which has 

only one symmetric equilibrium (in mixed strategies) and two asymmetric 

equilibria in pure strategies. We will see that, in this case, the equilibrium 

selection depends on the speed of adjustment.

Consider a finite population of size N.  We could consider either of the two 

following matching technologies: (z) Each player is matched,in each period 

t = 0 ,1 ,.., with each of the remaining players to play the bargaining game 

represented in Figure 13. A player will be part of AT — 1 encounters, (ii) Each 

player is randomly matched with another. The payoffs have the alternative 

interpretation of average payoffs in case (z) or expected payoffs in case (zz). 

We shall follow the first interpretation.
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L O W HIGH

b a
L O W

b b

b 0
HIGH

a 0

0 <  6 <  a 

Figure 13.

This game has two asymmetric Nash equilibria in pure strategies ,(Low,High) 

and (High,Low) and a symmetric equilibrium in mixed strategies. In the 

mixed equilibrium Low is played with probability p = b/a. At the beginning 

of each period, players choose a pure strategy which they will play in all the 

encounters.

We define a state of the system by which denotes the number of players 

adopting the strategy Low. The state space is, therefore

Z  =  { 0 ,1 ,. .. ,  N}.

The average payoffs to the different strategies , in state Zt are:

—  b
Zt

N - 1
We assume that the players’ choice of strategy moves towards the best 

reply strategy to the current state of the population. It follows that the 

strategy with the highest payoff will be more frequent in the future. We will 

assume the following Darwinian property:

s i g n ( z t + i  -  z<) =  sign{TTLow{zt) -  TrHigh{zt))

Let ^  describe the dynamics of the system. The state tomorrow depends on 

the state today, ^{z t)  =  Zt+i.

We will consider the following extreme cases:
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• the best reply dynamics (r =  a  =  1) given by the following rule:

• the Slow hesr-reply dynamics with only one player revising his strategy:

^s{zt)  =  <
H” 1 5 ^  '^High{^t)

5 '^Low{^t)  —  '^High{^t)

 ̂ 1 5 ^  '^Highi^^t)

Furthermore, we assume that with probability e each player mutates, 

changing his intended strategy. The plausible story behind the mutations is 

that with probability 2e, each player dies and is replaced by a new player 

who knows nothing about the game. The newcomer chooses either strategy 

with probability 1/2.

We have the following timing:

Zt s e l e c t i o n !  .  jz(^zt) ----   I MUTATIONS!-----

Figure 14.

The state zt is observed by everybody. Players decide what strategy to use. 

The ‘intended’ strategies are described by J^{zt). Some players die and are 

replaced by newcommers who choose their strategies at random. The new 

state Zt+i s observed.

This structure defines the following stochastic difference equation:

Zt+I =  - \ - x t -  yt, (17)

where Xt and yt have binomial distributions:

Xt ~  Bin{N  — .F(z(), e) and yt ~  Bin{J^{zt), e).
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The Xt on the right hand side of equation 11, are those players who having 

decided to play High, die and are replaced by a newcomer who plays Low. 

Those newcomers playing High and which substitute players who had decided 

to play Low are yt.

The difference equation (17) defines a Markov chain on the finite state 

space Z, with transition probabilities,

Pij — — j \ z t  — î ) ,

with P{e) = [pij] being the Markov matrix.

With e > 0, all the elements of P{e) are strictly positive. In this case 

the Markov chain has a unique stationary distribution (see Kandori et al. 

(1993)) fjL =  (/io,/^i,. . .  ,^iv) E Aiv with A n  = {q e  >  0 for z =

0 , 1 , . . . ,  TV an d  =  1} satisfying

fxP{e) = fi (18)

We are interested in the long run behavior of the system when the pro­

bability of mutation is small. The aim is to find the lim it distribution  when 

it exists;

D efinition 4 A limit distribution fi* is defined by

fjL* — lirn//(e).

Those states which have positive weight in the limit distribution are said by 

Kandori et al. (1993) to be the long run equilibria.

When 6 =  0, the system of equations defined by (18), with P=P(0), 

may have multiple stationary distributions. This occurs, for example, when 

the game has multiple symmetric Nash equilibria in pure strategies. The 

distribution that puts weight 1 on the state in which all players play the 

same pure strategy Nash equilibrium is always a stationary distribution of 

P(0). Unlike the case with positive mutation rate, the long run distribution 

depends on the initial state.
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Kandori et al. (1993) offer a technique to compute the long run distribu­

tion. This technique uses trees connecting all the states in the state space 

Z. Let us consider a state z and a directed graph on Z such that, each state 

except z has a unique successor and there are no closed loops. This collec­

tion of arrows connects the elements of Z in such a way that every state in 

% \  {z} is the initial point of one and only one arrow, and from any state in 

Z  \ { z }  there is a sequence of arrows leading to z. Such a directed graph is 

called a z-tree. We associate to each arrow an integer denoting the number 

of mutations needed to reach one state from the other in a period. The idea 

behind Kandori et al. (1993) characterization of the long run distribution is 

to compute all possible z-trees for all states z in Z.

A transition between two connected states in the tree can occur as result 

of two possible forces:

the selection mechanism which facilitates the transitions without the 

need of mutations; in this case the number associated to the arrow 

connecting both states will be zero.

the mutations; in this case the transition will be associated with positive 

integer, corresponding to the number of mutations needed to reach one 

state (the end of the arrow) from the other (the origin of the arrow).

Kandori et al. (1993) show that the long run distribution will put positive 

weight on those states whose z-tree has the minimum cost of transition, 

understood as the total number of mutations needed to construct the tree

E x am p le  2.7 Let us consider a population of size N  = b and the bargai­

ning game of Figure 13, with a = 2/3 and b = 1/3. The mixed equilibrium 

is p =  1 /2. The state space is Z  = {0,1,2,3,4,5}.

®It is possible for a given state two construct several z-trees among which the one with 
the smallest number of mutations is considered.
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Let us consider the ‘slow’ selection mechanism When nobody has

played Low, zt =  0, the best reply is High. As only one player at a time is 

allowed to revise his strategy ^ 5 (0 ) =  1. There are needed 0 mutations to go 

from 0 to 1. The same argument applies for the transition between 1 and 2. 

When in the current state of the system there are 3 or more players playing 

Low the best reply is High. Given the ‘slow’ adjustment process, from any 

of these states the system moves to a new state with one player less playing 

Low. States 2, 3 and 4 can be reached from 3, 4 and 5, respectively, without 

the need of any mutation.

Figure 15 represents a 2-tree. The numbers in squares represent the 

states. Numbers in brackets report the number of mutations needed to have 

the transition represented by the arrow. It is a 2-tree because state 2 can be 

reached from any other state and from all states except 2 there is one and 

only one way out (arrow). The resistance associated to this particular 2-tree 

is 0. All the transitions need 0 mutations.

Figure 15. 2-tree

Let us consider now the 0-tree of Figure 16. The transtions out of 1,3,  

4 and 5 are as before. How can the system go from 2 to 0? If the state of 

the system is 2, all players are indifferent between playing High and Low, 

.F(2) =  2. To move from 2 to 0 we need that 2 players who intended to play 

Low mutate and play high. This will happen with probability e .̂ The easiest 

way to go from 2 to 0 is through 2 simultaneous mutations. All the other 

transitions take place under the ‘selection mechanism’.
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r
(2)

m -
(0) ^  (0) ^  (0)

Figure 16. 0-tree

(0)

We can construct trees for all the states. The 2-tree we have built is the one 

that minimizes the number of mutations for all possible trees and all states 

and, therefore, 2 is the only long run equilibrium of the system.

Let us now consider the best reply dynamics Under this selection

mechanism all players simultaneouly change to the best reply strategy. In 

this case the states with the smallest tree are 0 and 5. Consider the 5-tree in 

Figure 17. The transitions between 5 and 0 need 0 mutations, ^{ 0 ) b =  5 and 

T b (^) =  1. The same is true for the arrows out of 1, 3 and 4 ( ^ s ( l )  =  5, 

.F(3) =  .F(3) =  0).

To connect state 2 with any other state we need at least one mutation 

(^(2 ) =  2). Let us assume, for example, that one player who had decided to 

play High dies and is substituted by a new player who plays Low. This will 

happen with probability e. We can draw an arrow from 2 to 3 which has one 

mutation associated to it. From 3 it is possible to go to 5 without the need 

of further mutations.

(0)

Figure 17. 5-tree 

W ith similar argument we can build the following 0-tree.
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(0)

Figure 18. 0-tree

Any z-tree for z =  {1,2,3,4} needs more than 1 mutation and therefore 

the long run distribution will put weight on 0 and 5 only.

The equilibria which appear in the long run distribution are those from 

which more mutations are needed to scape. Mutations are the driving force 

of the equilibrium selection results. The system can only move from one 

equilibrium to another once a sufficient number of mutations have occured. 

The most unsatistactory feature of the model is that the selection is driven, 

in many cases, by very unlikely events. This fact implies that the economy 

can spend very long periods at a wrong equilibrium (see Ellison (1992)).

E vo lu tion  of conventions. In recent paper Young (1993a) explains the 

emergence and persistence of an equilibrium in n-person weakly acyclical 

games. These games have the property that from any initial choice of strate­

gies, there exist a sequence of best replies, in which only one player changes 

his strategy, that lead to a strict, pure strategy Nash equilibrium.

The model of Young (1993a) explains the emergence of social conventions. 

Money is one of the standard examples used by economist to illustrate the 

importance of conventions. Other examples include the use of a language, 

driving on the right-hand side or using compatible computers. A common 

feature of conventions is that everybody prefers to adhere to the conventional 

behaviour when everybody else does. A convention is a rule that tells you 

how to act in certain common situations which might otherwise be ambi­

guous (Warneryd (1990)). In other words, conventions solve the problem of 

multiplicity in coordination games.
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How do conventions emerge in a world of uncoordinated players? In the 

model of Young (1993a) a convention emerge because players may coordinate 

by chance. In Young’s model a n-person game is played once each period by 

n players drawn at random from finite, large populations. To rule out any 

possible of learning at the individual level or of building up a reputation, 

players are assumed to be different in each encounter. Although the indi­

vidual player has no memory, the society has recorded evidence about the 

most recent plays of the game (truncated history). The m most recent plays 

are recorded. Each time the game is played a new n-tuple of strategies is 

recorded and the oldest element in the history is lost.

Each player forms his believes about the remaining n —1 players by looking 

at what similar opponents did in the recent past. A player has access to some 

limited information about past plays of the game. He can observe a random 

sample reporting how the game was played in some previous encounters. 

Each element in the sample, whose size may differ among players, contains 

n — 1 strategies. A player does not observe what other players in the same 

role have done in the past. In a 2-person game, for instance, the row player 

has information about previous plays of the column players but not about 

other row players’ strategies. Players are assumed to play a best reply to the 

sample they have drawn. The adaptive play just described defines a Markov 

Chain whose states are the truncated histories of play. This process is similar 

to fictitious player with the difference that in the latter the players base their 

decisions on the entire history and not only on a limited sample of the recent 

history.

An interesting result is that, in weakly acyclical games, adaptive play 

converges with probability one to a strict, pure strategy Nash equilibrium 

provided that samples are sufficiently incomplete and that players never make 

mistakes. An equilibrium, in this contex, is the m-repetition of the same n- 

tuple Nash equilibrium strategy profile, which is called a convention. The 

conventions are the only absorbing states of the system. The convention

57



which is selected cannot be determined a priori. It will depend on the initial 

state and on the sampling processess (of players and samples). Once the 

system is in a convention, all players, by following what is conventional, 

behave optimally. The convention is established for ever. The convergence 

result follows from the fact that players may coordinate ‘by chance’ and if 

they do so often enough the process will eventually lock in to a convention. 

The result is driven by the fact that the finite memory allows the players to 

forget past miscoordinations and once a certain equilibrium has been played 

for long enough, being what everyone remembers, it becomes the conventional 

way of playing the game.

E xam ple  2 . 8  Consider the 2-person game in Figure 19.

H

H

1.2 3

1.6 1.6

, 1.2 0

3 0

Figure 19.

The arrows show the acyclical structure of the game. The transition between 

(L,L)  and (L ,H)  takes place because the column player moves to the ‘best 

reply’ to L. In any of the transitions only one player moves to the best reply.

Let us assume that both players (row and column) always draw samples 

of size 2. The history length is of 4.

The following sequence of four pairs is a history (state) of game.
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In each pair Q  the upper term i represents a strategy used by a row 

player and the lower term 2  the demand of a column player. The row player 

will observe some of the lower terms and the column player some of the upper 

ones.

The following sequence of 4-period histories represents a possible evo­

lution of the state of the system. The one-starred elements are drawn by 

the row player. The elements marked with the two stars are drawn by the 

column player. A state is obtained from the previous one by deleting the 

first element and adding in the last position a new pair. The entries in the 

new pair are best replies to the sample drawn from the previous state. For 

instance, the last element in the sequence corresponding to (̂  +  1) is obtained 

calculating the best replies to the starred elements in i.

t+i

t+2

t+ 3

.mm: mm:. (m-)m: mxmi
The last state contains 4 repetitions of a Nash equilibrium. It is a con­

vention. The following state will be again the same repetition of the Nash 

equilibrium, independently of the sample which is drawn. Such a state is an 

absorbing state and the system will remain there for ever. For notational 

convenience we will refer to the m repetition of the same pair Q  as Q  

We could have selected different samples and converge to the other con­

vention of the system
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The problem of the indeterminacy of the equilibrium is solved by Young 

by introducing mistakes. When players have a small probability of playing 

an arbitrary strategy the system has no absorbing states. The mistakes 

constantly push the system away from the equilibrium. The system has a 

unique stationary distribution which, as the noise goes to zero, puts positive 

weight only on the stochastically stable states (see section ).

E xam ple  2.9 Let us assume that the society is in the convention in 

time t and that the column player player makes a mistake. He plays High 

although Low is the best reply to a sample containing all High’s. The state 

of the system in (t +  1) will be

Low is the best reply to a sample with 1 High and 1 Low drawn by the 

row player (1.6  > 3/2). If the mistake is drawn and no further mistakes take 

place then the following states will be

The system, after a row player has made a mistake, has enter the basin of 

attraction of the convention (^)^- Observe the following ‘possible’ sequence 

of states

&■)•&■)■ a:
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t+7

We can also compute the number of mistakes needed to go out from , 

Let nic and rrir be the number of mistakes made by column players and row 

players respectively. Assume that the state of the system is How many

mistakes (Low’s) should a sample of size 2 drawn by the row player contain 

for High being the best reply?

3mc > 1.6 => TTic =  2

How many mistakes (High’s) should a sample of size 2 drawn by the column 

player contain for Low being the best reply?
2 — 777.7.

1.2 > 3— -—  => rrir =  2

It is easier to go out from than from As the mistake rate goes

to zero, the latter inhnetely more likely than the first and it will be the only 

stochastically stable convention.

Young’s equilibrium selection is based on counting the number of mistakes 

needed to jump from one equilibrium into the basin of attraction of another 

one. The same criticism we made to the model of Kandori et al. (1993) 

applies to Young’s model. The economy can spend very long periods at an 

equilibrium which is not stochastically stable. An advantadge of Young’s 

dynamics with respect to those of Kandori et al. is that the number of 

mistakes needed to scape from one convention can be considerably reduced 

if some people sample only a small proportion of the memory. In this case 

it is easier that players start playing a non-conventional strategy. The time 

spent at the “wrong” equilibrium may be shortened.

4  Conclusions

Traditional game theory has focus on equilibrium states without providing 

satisfactory answers to the questions of how players know that an equilibrium
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will be played and which one in the case of multiplicity. The evolutionary 

approach has provided new answers to these questions stressing the import­

ance of dynamic processes in the selection of equilibria. Other long run 

phenomena such as cycles and strange attractors turn out to be interesting 

predictions once the dynamic processes are fully specified.

The most traditional evolutionary approach to the equilibrium selection 

problem in games focused on evolutionarily stable states. The stability of 

such states was tested with the introduction of one shot perturbation. In 

this cases the equilibrium which was selected was dependent on the initial 

conditions. In this approach history was playing a very important role in 

the equilibrium selection. Recent work by Foster and Young (1990), Kandori 

et al. (1993) and Young (1993a) and (93b) has eliminated the path depen­

dence by introducing continuous mutations. For this authors it makes only 

sense to study the probabilities of finding the system at a particular equi­

librium. The main drawback of this last approach is that it neglects many 

equilibrium states that having zero mass in the long distribution maybe ob­

served during very long periods. We think it is useful to make a further di­

stinction between the “long run” and the “ultralong run” horizons. Binmore 

and Samuelson (1993a) define as “long run equilibria” all those equilibria 

where the system can spend very long periods and which typically depend 

on where the process started. We can consider the “long run equilibria” in 

the works of Kandori et al. (1993) and Young (1993a) as “ultralong run” 

phenomena which emerge when the role of history has been eliminated. It is 

only in this new time horizon where the concept makes sense.
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Chapter 2

A re large windows efficient? 
E volution o f learning rules in a 
bargaining m odel

1 Introduction

A standard feature of bargaining games is their multiplicity of equilibria. 

In the early fifties, Nash proposed two different approaches to solve the mul­

tiplicity problem. In a first paper, Nash (1950) formulated a set of axioms 

(Invariance, Symmetry, Pareto Efficiency and Independence of Irrelevant Al­

ternatives) which define properties that the outcome is required to satisfy, 

and which turn out to characterize a unique solution to the bargaining pro­

blem. Nash describes a ‘bargaining problem’ with all von Neumann and 

Morgenstern utility pairs representing the possible agreements available to 

the bargainers, and the utility pair that results in the case that no agreement 

is reached (the status quo). Nash shows that the unique solution satisfying 

the four axioms is given by the deal which maximazes the ‘Nash product’. 

When the Symmetry axiom, which asserts that in a symmetric situation, 

neither player will accept an agreement giving him a lower utility than his 

opponent’s, is abandoned, the other axioms together with the ‘bargaining 

powers’ associated to each player determine the ‘asymmetric’ Nash bargai­

ning solution. In a second paper Nash (1953) obtains precisely the same 

bargaining outcome by analyzing a static bargaining model, the Nash De­

mand Game, in which the players simultaneously announce demands, which
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they receive if and only if the demands announced are compatible. The Nash 

Demand Game has many Nash equilibria (for example, any Pareto-efficient 

outcome is a Nash equilibrium). In order to select only one equilibrium, 

Nash required that an equilibrium be robust to perturbations involving some 

uncertainty about the location of the Pareto frontier of the negotiation set S. 

When the perturbed Demand Game approaches the unperturbed game (for 

which the Pareto boundary is known with certainty), all the Nash equilibria 

of the perturbed game converge on the Nash solution (see Binmore (1987a) 

and (1987b))

The Nash solution is supported by various strategic models. Nash (1953) 

himself, with the perturbed Demand Game, provides a noncooperative sup­

port to his axiomatic solution. Another noncooperative defense of the Nash 

solution is the model of Rubinstein (1982). In Rubinstein’s model two play­

ers bargain over a pie of size 1 . Each period, one of the players proposes a 

partition and the other player either rejects or accepts. In the latter case, 

the game finishes and the agreement is implemented. If the offer is rejected, 

the play goes to the next period, in which it is the rejecting player the one 

who makes the offer. The unique subgame-perfect equilibrium of the game 

converges to the Nash bargaining solution, when the time interval between 

subsequent offers approaches zero. Furthermore, the bargaining powers are 

determined by the players’ time preferences. (See Rubinstein (1982) for the 

assumptions under which his result holds). In the case when the players are 

equipped with different discount factors it turns out that the most patient 

player enjoys a larger bargaining power.

More recently. Young (1993b) has provided a new interpretation of the 

Nash bargaining solution that still uses the Nash Demand Game, but leads 

to an asymmetric outcome in which the players have different bargaining 

powers. However the interpretation of these bargaining powers differs m ar­
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kedly from Rubinstein’s interpretation. The approach followed by Young 

(1993b) is to embed the Nash Demand Game in an evolutionary framework 

in order to explain the emergence and persistence of one particular outcome. 

An interesting feature of the model is that it provides an appealing inter­

pretation of the bargaining powers that characterize the asymmetric Nash 

bargaining solution. In Young’s model the Nash bargaining game, over how 

to share a pie, is played repeatedly by members from two different large po­

pulations. Two players, one from each population, are randomly selected to 

play the game; players announce a share of the pie which they get if the 

demands are compatible, otherwise they get nothing. A crucial assumption 

of Young’s model is that players learn how to play the game from the past 

behaviour of members from the other population. Players have access to a 

random sample, whose size may differ among players, drawn from the most 

recent demands which have been announced by the opponents. They take 

their sample as a predictor of the behaviour of the player they will face, 

and usually play a best reply to the empirical distribution derived from the 

sample. However, this behaviour is perturbed by rare ‘mutations’ so that 

sometimes the players make mistakes and announce a demand that is not a 

best reply to any possible sample.

An important feature of Young’s dynamic process is that, in the limiting 

case when the mutation rate goes to zero, the system converges to a fixed 

Pareto-efficient division that corresponds to the asymmetric Nash bargaining 

solution, with the bargaining powers determined by the distribution of sam­

ple sizes. The model implies that, when all members of the same population 

observe a sample of the same size, it is the better informed population which 

gets the larger share of the cake. A less appealing result is obtained when 

people with different sample sizes coexist in the same population. In this 

case poorly informed players exert a negative externality on the better in­

formed members of their population. The population’s bargaining power is
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determined by the members who draw the smallest sample, even though such 

individuals may be present only in very small numbers.

Young obtains the Nash bargaining solution under very weak informa­

tional assumptions: Players only know their own preferences and a small 

sample of what happened in some recent past. This is what typically hap­

pens in many real world situations. Students seeking houses to rent know 

how much landlords have asked in the past for similar apartments while 

landlords know by experience how much students are willing to pay for a flat 

in some particular areas. The model has several drawbacks. The crucial ele­

ments in determining the population’s bargaining powers and therefore their 

shares of the cake are fixed exogenously. Young leaves the most important 

element unexplained. The model has the unsatisfactory prediction that the 

share received by a population with one milhon types who use large samples 

is determined by just one further type who uses a small sample. It does not 

explain why different types of players, probably receiving different payoffs, 

may co-exist in the same population.

In this paper we endogeneize the size of the samples drawn by the players. 

We will present a model similar to Young’s, but with the added feature 

that people can change their learning rule by altering the sample size or 

‘window’ used. We will assume that players observe the payoffs received 

by other members from the same population and from time to time decide 

to imitate more successful behaviours. It is therefore as though people care 

about their relative performances within the social class to which they belong. 

If a learning rule performs better than its rivals, it is natural to expect that 

it will be employed by a growing proportion of people over time.

We can identify two opposite forces that affect the amount of information 

gathered by the players. On the one hand, players with small samples are 

more likely to draw a ‘wrong sample’ when the system is close to but not
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at a convention and to play a non-optimal strategy. If information is free, 

big samples will give a higher expected payoff. On the other hand, when 

the probability of mistakes is small, the system is close to a convention most 

of the time and those players who sample few elements will play optimally 

almost as often as players with big samples. If sampling costs grow with the 

size of the sample taken, ‘small windows’ will do better, and evolution will 

tend to reduce the amount of information gathered by the players.

In the paper we show that:

(i) When there are no sampling costs and the level of noise is arbitrarily 

small, people with ‘larger’ window sizes perform better, on average, 

than people with smaller sample sizes within the same population.

(ii) When there is no noise, for any positive sampling cost ‘smaller’ sample 

sizes perform better than larger samples. In this extreme case the 

evolutionary process converges with probability one to a convention 

and remains there for ever. In this case there is no need for agents to 

collect more than one unit of information - it is enough to see one car 

to realize that Londoners drive on the left. If we assume some type of 

imitation or Darwinian selection, we will observe, in a noiseless world, 

a tendency for ‘well informed’ people to disappear.

(iii) When there are sampling costs, one can always find small enough levels 

of noise such that the ‘smallest’ sample size will always pay best. The 

intuition underlying this fact is that, as the noise vanishes, so also does 

the advantage of sampling.

Finally, we characterize the evolutionarily stable sample sizes. The idea is 

to allow the entry of new people who bring with them new behaviours and to 

test their fitness in the enviroment. If there are samples that perform better 

than others, they will invade the population because everybody will adopt
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them. In the limiting case in which the noise tends to zero, we can charac­

terize not only the evolutionarily stable sample size, but also the long-run 

convention of the system. We compare our results with a situation in which 

each population can decide how much to sample. In particular we consider 

a thought experiment in which the different populations elect a representa­

tive to play the game who is committed to choosing a certain sample size. 

On comparing the Nash equilibrium of this game, where sample sizes are 

the strategies, with the outcome of an economy populated by uncoordinated 

myopic players who follow very simple imitative behaviour, we find that the 

latter is socially more efficient. We shall show that the economy of myopic 

players will always converge to the symmetric bargaining solution while this 

is not necessarily true for the economy populated by ‘rational’ players.

We offer an informal discussion of the case in which the asymptotic results 

do not hold. The assumption of very small mistake rates is made, in the 

works of Kandori et al. (1993) and Young (1993a and 1993b), for reasons 

of tractability rather than because the noisy case is thought uninteresting. 

The results of some simulations of the model show that, when the noise is 

large, the difference in the profitability of different sample sizes depends not 

only on the level of noise but also on the distribution of sample sizes in the 

populations. We provide a very simple example in which, when sampling 

is costly, large sample sizes are better than smaller ones for ‘intermediate’ 

levels of noise while they are worse for both small and large noise rates.

The paper is organized as follows: In the next section we introduced the 

model. In the third section we characterized players’ behaviour in terms of 

their windows sizes which is useful to compare expected payoffs to players 

using different learning rules. In the last two sections we present the main 

results of the paper.
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2  The model.

Suppose that the unperturbed Nash Demand Game is played once every pe­

riod by two players respectively drawn at random from two large populations 

which we follow Young in calling population I (landlords) and population II 

(tenants). Each player announces a share of the crop, and receives his de­

mand only when the pair of demands is compatible. Each player forms his 

beliefs about the enviroment he is facing knowing some part of the availa­

ble information about what other people have done in the past. Landlords 

(tenants) have access to a ‘library’ that contains information about m past 

demands of members of the other population. Players have access only to 

their own population’s library. A landlord (tenant) decides what strategy to 

use by taking a random sample of size k {w) from his population’s library 

and then playing the best reply to it. Players from the same population may 

use samples of different sizes.

The information stored in the landlord’s (tenant’s) library evolves as fol­

lows. Every time the game is played, the strategy played by the tenant 

(landlord) is stored. However, since the library has a limited capacity of m 

units of information another record of a play must leave the library.

The main difference of our model as compared with Young’s lies in the 

definition of the state space. A state of the system in the model of Young 

is the ‘ordered sequence’ of the last m  plays of the game. In our model, the 

demands are not ordered according to the time they entered the libraries. 

Every time the game is played a new element enters the library and the 

element it replaces is chosen at random from those previously present. Such 

a change in the model reduces considerably the state space. Our model has 

the advantadge of being much more tractable than Young’s. The changes in 

the model simplifies the analysis without doing any violence to the essentials 

of the process.
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We are interested in characterizing the evolution of the information stored 

in the libraries, since it determines the probability distribution of the future 

behaviour in the two populations. The evolution of the information in the 

libraries can be represented by a Markov chain defined on the state space Z. 

Let Z, the set of all possible stocks in the library, be characterized as follows:

^  =  {{(zf, Zg, . . . ,  . . . ,  e  {0 , 1 , 2 , . =  m}

where is the number of times the strategy i is recorded in the population 

j ’s library and n is the dimension of the strategy space (all possible announ­

cements). In order to characterize the evolution of the state of the system 

we make the following assumptions:

Assumption 1. Every sample is drawn with the same positive probabi­

lity.

Assumption 2. Every record of a past play leaves the library with the 

same positive probability.

Assumption 3. With positive probability e, players make mistakes^ by 

playing a strategy chosen at random. When a mistake is made, all 

strategies are possible. We will assume that all strategies occur with 

the same probability e/n.

Assumption 4- The probability densities for window sizes k and w are 

f{k)  and g(w) in populations I and II respectively. The probability 

that a landlord uses sample size k is equal to f (k ) .  The probability 

that a tenant uses sample size w is g{w).

We now define a convention. Consider the state in which =  m  and 

=  m. Whatever samples are drawn, the landlords will then demand x and

^For sake of simplicity we assume that the probability of mistakes is the same in both 
populations. The results do not change if different rates are assumed.
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the tenants (1 — a;). The states consisting of such a Pareto efficient division 

of the crop are the ‘conventions’ oi the system, i.e. the states that reproduce 

themselves^. The main feature of such conventional behaviour is that any 

player prefers to conform to it if everybody else does so. For notational 

convention we will refer to the m-repetions of the same partition (x, 1 — x)

Since our model differs from Young’s, it is neccesary to confirm the follo­

wing result. The proof is similar, although the current model allows a much 

less restrictive constraint on the minimum necessary sample size. Young 

requires that at least some players sample at most m / 2  records in their libra­

ries, whereas the following proposition works with m / 2  replaced by m — 1 . 

((m — 1) instead of m /2 ).

P ro p o sitio n  1 I f  at least one agent in each population samples at most m-1 

elements the system converges almost surely to a convention.

P ro o f. We need to prove that it is possible that the same sample will be 

drawn for some time with the result that the same best reply until is made, 

until we have built up homogeneous library records, one for each population, 

that correspond to Pareto efficient divisions of the crop.

To this end, we consider the extreme case in which some players in each 

population sample exactly m — 1 records, while the remainder may sample 

all the records. Suppose that players from population I who sample (m — 1) 

records happen to be selected to play the game (m — 1) times and that 

they happen to sample the same elements and so all play the same best 

reply x. This possibility occurs with positive probability, because the last 

element which enters the library can leave it in the following period. We 

can obtain a state of population I that contains (m — 1) copies of the same 

demand x. These (m — 1) elements can remain for some time in the library

^The conventions have the property that they are the only absorbing sets of the model 
we are considering.
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of population II, and so be drawn by the players from this population, who 

will, therefore, demand (1 — x). We thereby build a state of the system that 

contains (m — 1) copies of the observation (1 —x) in the library of population 

I and (m — 1) copies of the observation x in the library of population II. 

There is a positive probability that these are the samples drawn next period 

and that the elements that are different leave the corresponding library. We 

have reached a convention (c^) in (2 m — 1) periods with positive probability 

p. The probability that a convention is not reached in s{2m — 1) periods is 

(1 — p)®, which goes to zero as s —> oo. □

A convention can be abandoned only when some people start deviating 

from the behaviour prescribed by it. This is why in our model we introduce 

the possibility that people may make mistakes and play a strategy that is 

not a best reply to the sample they have drawn.

To illustrate this point consider the 2 x 2  bargaining game of Figure 1 :

L O W  HIGH

LO W

HIGH

b

h

a

b

h

a

0

0

a >  6 >  0 

Figure 1 : Game 1 .

The state space is:

z =  {(^1,^ 2 )k i ,Z2 e { 0 , 1 , 2 , . . . , m } }

where z\ (Z2) denotes the number of Low’s in the library to which players 

from I (II) have access.
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This simple game has only two conventions: (m,0) and (0,m). Let us 

assume that the established convention is (m,0 ) and that some tenents start 

making mistakes. Sometimes they demand Low although the best reply to 

any sample containing all Lows is High. The mistakes will, with positive 

probability, remain for some time in the landlords’ library. It is possible that 

a landlord will draw the mistakes and, if there are sufficiently many, he will, 

then, play a strategy that is not the conventional one. If all players have the 

same utility function, the probability that agents deviate from a convention 

in response to mistakes made in the other population will depend on the size 

of the sample they draw.

The introduction of mistakes keeps the system continuously in motion. 

Under assumptions (l)-(4) we can obtain a Markov Chain defined on the 

state space Z with the transition matrix:

M(e) =  M{e;mJ{k) ,g{w) ,G)  = [pij], (z,j G Z)  ,

where the transition probability pij is the probability of moving from state 

i to state j in one period

Introducing mistakes makes the Markov chain irreducible, i.e; all the 

states intercomunicate. As the Markov chain is also aperiodic, it is therefore 

ergodic and has a unique stationary distribution, i.e.,there exists a unique 

distribution (1 x \Z\) vector pc such that:

fi^M(e) =  /Ze (1)

thus, system settles down in the long run to a distribution which is in­

dependent of the initial conditions. The solution to (1) is a correspondence 

r  : e = >  which is upper hemicontinuous. The equilibrium selection

is continuous with respect to perturbations (see Kandori et al. (1992)).

^In what follows we will write M{ e )  instead of M { € , m ,  f { k ) , g { k ) , G ) .  The game, the 
memory size and the distributions of window sizes are fbced.
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The interpretation of the probabilities attached to each state in the long- 

run distribution, is the time spent by the system in the corresponding state.

It turns out that this long-run distribution often put most of its mass at 

just one of the possible conventions when the mutation rate is small. As the 

mutation rate tends to zero, all other states are assigned zero mass. We then 

say that the remaining convention has been selected in the long run. This 

conclusion is no longer valid when the mutation rate is set to zero from the 

outset. The convention that is then observed in the long-run depends on the 

initial conditions. When players do not make mistakes, the conventions are 

absorbing states, i.e. once the system is at a convention it is impossible to 

escape.

The trick in selecting a particular stationary distribution out of all possi­

ble conventions is the introduction of a small amount of noise into the system. 

Out of all the possible conventions we select one, by introducing noise in the 

system and letting it tend to zero.

We follow Young in assigning a ‘resistance’ to each convention. The 

convention that is selected is that from which it is most difficult to escape 

or, seen from another perspective, the one which is easiest to reach from 

any other convention. The computation of the ‘resistance’ associated to one 

particular convention involves counting the minimum number of mutations 

needed to reach such a convention from any other. As the mutation rate 

tends to zero only those states which are easiest to reach will be observed in 

the long run.

The convention which has the smallest resistance is therefore the one 

from which it is most difficult to escape. When we consider the possibility of 

going from one convention to another we have only to consider the minimum 

number of mistakes one of the libraries has to contain for ‘the most mistake- 

sensitive player’ to be capable of drawing a sample that prescribes a non- 

conventional choice. When all players from the same population have the 

same utility function, the most sensitive player is the person who draws the
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smallest sample.

P ro p o sitio n  2  (Young (1993a)) When the rate e of mistakes goes to zero, 

the stationary distribution will put weight only on the convention or conven­

tions with minimal resistance .

The main result of Young’s study of the Nash Demand Game is the selec­

tion of the asymmetric Nash bargaining solution as the long-run convention 

of the system. There are two conditions that need to be satisfied. The rate of 

mistakes has to be positive but vanishingly small. Also a very finely meshed 

stategy space has to be considered. That is to say

S  =  {0 ,6 ,26 ,36 ,..., 1 — 6 , 1 }

where the mesh-size 6 > 0 must be taken to be sufficiently small.

D efin ition  1 (A sym m etric  N ash  B argain ing  Solu tion) The Asymme­

tric Nash Bargaining Solution is the division {x, 1 — x) that maximizes

{u(x)}“{u(l — x)}^ subject to 0 < x <1

where u and v are the utility functions of players 1 and 2 respectively, and a 

and b are their bargaining powers.

The following proposition, drawn from Young (1993b), is true in our model:

P ro p o sitio n  3 (Young (1993b)) The evolutionary process described above 

converges to the asymmetric Nash solution as ^ 0, with each population’s

bargaining power equal to the smallest sample size used by an individual in 

that population.

P ro o f. Young’s proof also applies in our model. There is a correspondence 

between the conventions in our model and those in Young’s. The proof of the 

theorem depends on computing the number of mistakes needed to abandon 

one convention in order to enter the basin of attraction of another convention 

and the considering the limit as ^ 0 . □
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The proposition above implies that determining the convention that will 

be observed most of the time, requires focusing only on the evolution of 

k = mm{supp f{k)}  and w = min{supp g{w)}, where /  and g are the den­

sities that describe the distribution of sample sizes in populations I and II 

(see Assumption 4). The long run convention of the system is determined 

by the members of the populations who draw the smallest sample. In the 

conventions, the payoffs obtained by members from the same population are 

the same independently of the amount of information gathered.

The fact that people make mistakes implies that with positive probability 

the system is not at a convention at any particular time. In such cases, the 

expected payoff to different window sizes may differ. In order to compare 

the profitability to different sample sizes, we need to obtained the expected 

payoffs in each state as well as the long-run distribution of the system.

3 Long-run payoffs

We will assume that all players have the same utility function. This assump­

tion is necessary to rule out the influence of different levels of risk aversions 

in the selection of the long run convention. The difference in the expected 

behaviour of two players from the same population then depends only on 

how much information they gather from their library (sample size) and not 

on their attitudes towards risk.

Risk-aversion plays an important role in the models of Young (1993b) and 

Rubinstein (1982). In both models it is the player who is more risk averse . 

who gets the smallest share of the cake.

P la y e rs ’ s tra teg ies . Players use best replies against random samples drawn 

from their libraries. Before the sample is chosen, we can characterize the an­

ticipated behaviour of each player as a mixed strategy, with the probabilities 

attached to each strategy being determined by the current stock of infor­

mation on record. Each landlord (tenant) drawn to play, faces a tenant
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(landlord) who behaves as if he were using a mixed strategy. Notice that 

each player has some limited knowledge about the past behaviour of the 

other population, but not about his own.

Consider Game 1 of Figure 1 and a landlord who draws a sample of size 

k. The state of the system is z =  (zi, Z2) and the recorded history contains 

m past plays of the game.

Let us define p^{z-i,x)  as the probability with which player i plays stra­

tegy s when the state of the system is z and he draws a sample of size x.

When the library contains m records, there are possible samples of 

size k. High will be the best reply when the sample drawn contains at least 

lows
ïh 1 +

h{k) =

The probability with which a player from population 1, sampling k re­

cords, plays high in state z is therefore

This probability is non-decreasing in Z2 and is zero for Z2 < h and one 

for Z2 > m — (k — Z&).

The strategy played by any member of population I (II) depends on the 

state of the system in the other population, the payoffs (through lb) and on 

the size of the sample.

E xam ple  Choose the payoffs a and b of Game 1 to obtain:

4[r] ([%]+) denotes the greatest (smallest) integer smaller or equal (greater or equal)
than X.
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L O W HIGH

1.2 3
L O W

1.2 1.2

1.2 0
HIGH

3 0

Figure 2.

Assume that there are two types of landlord. When called upon to play, 

Type 1 samples only one past record; Type 2 samples three. All tenants 

sample 2 units of information. Tables 2, 3 and 4 report the mixed strategy 

(the probability of playing High) used by tenants, Type 1 and Type 2 landl­

ords respectively. Each entry corresponds to one state of the system. The 

horizontal dimension is the state of the tenants, i.e. the number of times 

in landlords’ library that a tenant played Low. The vertical dimension cor­

responds to the state of the landlords. Both range from 0 to 8 . The entry 

(6,3) in Table 1 says, for instance, that a tenant will play High with proba­

bility 27/28 when the landlords’ library records that tenants played Low 3 

times and the tenants’ library record that landlords played Low 6 times. The 

same entries in tables 2 and 3 represent the probabilities assigned to High 

by landlords who sample 1 and 2 records respectively.
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0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1
4 4 4 4 4 4 4 4 4

13 13 13 13 13 13 13 13 13
28 28 28 28 28 28 28 28 28

9 9 9 9 9 9 9 9 9
14 14 14 14 14 14 14 14 14

11 11 11 11 11 11 11 11 11
14 14 14 14 14 14 14 14 14

25 25 25 25 25 25 25 25 25
28 28 28 28 28 28 28 28 28

27 27 27 27 27 27 27 27 27
28 28 28 28 28 28 28 28 28

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

Table 1
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0 1 2 3 4 5 6 7 8

0
1
8

1
4

3
8

1
2

5
8

3
4

7
8 1

0 1 1 3 1 5 3 7 %
8 4 8 2 8 4 8

0 1 1 3 1 5 3 7 1
8 4 8 2 8 4 8

0 1 1 3 1 5 3 7 1
8 4 8 2 8 4 8

0 1 1 3 1 5 3 7 1
8 4 8 2 8 4 8

0 1 1 3 1 5 3 7 1
8 4 8 2 8 4 8

0 1 1 3 1 5 3 7 1
8 4 8 2 8 4 8

0 1 1 3 1 5 3 7 1
8 4 8 2 8 4 8

0 1 1 3 1 5 3 7 1
8 4 8 2 8 4 8

Table 2.
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0 1 2 3 4 5 6 7 8

0 0 3 2 1 5 25 1 1
28 V 2 7 28

0 0 3 2 1 5 25 1 1
28 V 2 7 28

0 0 3 2 1 5 25 1 1
28 7 2 7 28

0 0 3 2 1 5 25 1 1
28 7 2 7 28

0 0 3 2 1 5 25 1 1
28 7 2 7 28

0 0 3 2 1 5 25 1 1
28 7 2 7 28

0 0 3 2 1 5 25 1 1
28 7 2 7 28

0 0 3 2 1 5 25 1 1
28 7 2 7 28

0 0 3 2 1 5 25 1 1
28 7 2 7 28

Table 3.

Notice that the strategy used by each population depends neither on its 

own state (horizontal dimension for tenants and vertical for landlords), nor 

on the distribution of types in the two populations. Notice also, comparing 

tables 3 and 4, that there are two subsets of states in which a pure strategy 

is played and that these subsets grow with the size of the sample.

In the proposition which follows we formalize the intuition provided by 

the previous example. We characterize the set of states in which players use 

a pure strategy, when not making a mistakes.
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Let us consider Game 1 and define the following subsets of Z:

= { { z i , Z 2 ) \ z i  < X , Z 2 <  y }

Z x , y  =  { { Z U Z 2 ) \ Z I  > X , Z 2 >  y ]

Consider a landlord who samples k elements, with / which are Low’s. Low 

will be the best reply to that sample if / < kb/a. All possible samples drawn 

from;
kb
a }=  {(zi,Z2)ki < m , Z 2 <

will have at most [kb/aY lows and every landlord who samples k elements 

will play Low with probability one.

High will be played with probability one by any landlord with a sample 

of size k in all the states in Zo,[m-A:(a-6)/a]+ • In any other state it is possible 

to find samples of size k to which Low is the best reply as well as samples of 

equal size to which High is the best reply.

We are interested in identifying the sets of states in which only pure 

strategies are played.

Consider the following correspondence s* : => Z,

s*(m,x) =  {(zi,Z2)\ Pi{z-i,x) = 1 }

Note that L^{m,k)  =  and H'^{m,k) = Zo,[m-fc(a-6)/a]+*

P ro p o sitio n  4 L^{m,Xk) Ç L^(ni,k) and H^(rn^\k)  Ç H^(rn^k) for 

0 <  A <  1 .

P roo f. It follows from the definitions of and

Proposition 4 states that the set of states in which pure strategies are 

played shrinks with the sample size.

This result can be extended to the case in which there are more than two 

strategies. The different sample sizes need the same ‘proportion of mistakes’ 

to start playing a nonconventional strategy when the utility functions are the 

same.

82



P la y e r’s payoffs. In order to compare the profitabilities to different sample 

sizes we need to obtain the payoffs in each state as well as the long-run 

distribution

Different sample sizes will have the same expected payoffs in all those 

states in which the mixed strategies are the same. From the preceding propo­

sition, we know that in some states different sample sizes prescribe the same 

pure strategy. Clearly, in all such states, players using different amounts of 

information will have the same expected payoff, independently of the oppo­

nent’s strategy. In all other states different sample sizes prescribe different 

mixed strategies and, therefore, will have different expected payoffs.

The profitability of a learning rule (characterized by its sample size) de­

pends not only on the rate of mistakes but also on the composition of the po­

pulations which determines the actual long-run distribution. Let 7r^(c; z, g{w)) 

be the expected (gross) payoff in state z to a player who samples k units of 

information when the rate of mistakes is e. We can decompose this expected 

payoff into two components:

7Tfc(e; z, ̂ (w)) =  (1 -  e)7rj(e; z, ̂ (w)) -f eir^e; z, g{w)) (2 )

The first part of the payoff, 7r^(e; z,^(w)), is received when the player 

uses the information provided by the sample he has drawn. Players do not 

tremble, and therefore use the information available to them with probability 

(1 — e).

The second component, T^{e; z,g(w)),  is the payoff obtained when the 

player trembles and therefore plays an arbitrary strategy. This component 

which does not depend on the sample size is the same for all members from 

the same population.

Let c(k) > 0  be the cost of a sample of size k. We obtain the net payoffs 

by substracting c(k) > 0  from the right-hand side of equation (2 ).

The (gross) expected payoff to a player who uses a sample of size k when 

the long-run distribution of the system is is given by:
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' k̂{e’J{k) ,g{w))  =  Y^7Tk{e;z,g{w))g,{z)
z€Z

where ge{z) is the weight of the state z in the long-run distribution

We are interested in pairwise comparisons of sample sizes. In accounting 

for differences in window sizes, we shall consider first the simplest case.

Consider Game 1 . Assume that all tenants are characterized by the same 

sample size w. Consider two different samples k and A;' < A; in the population 

of landlords.

P ro p o sitio n  5 Let us consider sample sizes k and k' <  k. For m large 

enough there exist integers q\, q2 and q'2 > 92 such that

V 2T € Zrn,g2 ^  ^gi,0 Z, w) > (c; Z, w)

V Z e  u Zo,,/ 7T̂ (e; z, w) > 7r "̂(e; z, w)

P roof. Let qi as the smallest z% such that p^(z, w) > 6/a , and let Ç2 and q!̂

be the states such that,

for all Z2 < 92 Pi{^ 2 , k) < p f  (z2, A;') and

for all Z2 > 92 p f  (^2, A:) > p f  (z2, k')

The following figure is a graphical illustration of the previous proposition.

(0,0) 92^2 (0 ,m )

k' y  k k y  k'

k y  k' k' y  k

(m ,0)
Figure 3.

(m ,m )
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The state of population II is represented in the horizontal dimension. 

It ranks from 0 to m and represents the number of Low’s in the recorded 

memory. Similarly, the state of population I is represented in the vertical 

dimension, from up to down. The conventions are in lower-left and the 

upper-right corners (filled dots).

Let us consider the area labelled with k y  k' on the upper-right part of 

the figure, which are states in some neighbourhood of (0,m). The history 

available to the tenants has many High’s. Tenants will play Low with high 

probability. The best reply to < b/a is High. A player using a large 

sample will play High with higher probability than a player with a smaller 

sample. A similar argument applies to the states in the lower-left corner. 

The dashed areas correspond to the states in which landlors, either with k 

or k'  ̂ play the same (pure) strategy and, therefore, have the same expected 

payoff. The smallest sample pays better in the sets labeled with k' y  k.

4 The evolution of the learning rule.

The aim of this section is to endogenize the amount of information gathered 

by players. People can observe the payoffs of some members of their own 

population and imitate the most successful behaviour. Students may know 

how much other students are paying and how much they searched. We will 

assume that together with the average payoffs, players can observe the sample 

sizes drawn by other members from the same population.

C om parison  of payoffs. We will assume that the comparison of payoffs 

takes place relative to the long-run distribution and so does the evolution 

of sample sizes. We can justify this assumption on the grounds that the 

adjustment periods are negligible compared with the time the system spends 

in the long-run distribution.

When comparing the payoffs to two different sample sizes from the same 

population, we have only to consider the first part in equation (2).

85



The difference in payoffs to window sizes k and k', evaluated relative to 

the long-run distribution is given by

D7r{e] k, k \  f{k),g{w))  =  (1 -  e) z,g{w)) -  7r ,̂(e; z,g{w)))fi,{z))
zez

The function Dir is a polynomial in e and it is therefore continuous.

Consider the simplest possible case. There are two types of landlords, in 

proportions 9 and (1 — 0). The first type samples k records the second type 

sample k'. All tenants are of the same type, and sample w past records. The 

rate of mistakes is the same in both populations.

Let M (ri, T2) be the transition matrix when population I (II) follows rule 

Ti (r]) to play the game. The rule can be either to take a sample (k, k' or w) or 

to tremble (t). We can decompose the Markov matrix M(e; 9k-\-{l — 6)k', w) 

as follows:

M { e ;9 k - \ - { l -0 )k ' ,w )  =  0{{1 -  e f { M { k , w ) {1 -  e)eM{k,t))

(1 — ^)((1 — w) +  (1 — e)eM{k\ t))

-f (1 — e)cM{t, w)

Each time the game is played, a player sampling k is drawn with proba­

bility 9. With probabiliy (1 — e)  ̂ neither he nor the opponent, who samples 

w with probability 1, tremble. The transition matrix is given in this case 

by M{k,w).  With probability both players tremble; describe the

transition probabilities. With probability e(l — e) only one player trembles. 

The markov matrices when only the first or only the second player tremble 

are M (t ,w)  and M(k^t)  respectively. The terms multiplied by (1 — 9) have 

an analogous interpretation, with k' being the sample size used by the player 

drawn from the first population.

When e =  0,

M(0; 9k {I — 9)k', w) =  9M{k,  u;) +  (1 — 9)M{k\  w)
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and the system has as many absobing states as there are Pareto-efficient 

divisions of the cake. Once a convention has been reached, and it will hap­

pen with positive probability, the economy will remain there for ever. The 

set of absorbing states is independent of the composition of the populations. 

Independently of the value of 0, the conventions are the only states with 1 

on the diagonal of M (0,). Changes in 6 only affect the transition probabi­

lities but do not change the absorbing states. From any other state, it is 

possible to find a chain of transitions which ends up in one convention. The 

convention which will be selected depends on the initial conditions. In other 

words, history matters. In a convention, all players obtain the same payoff 

and, therefore D7t{0; k, k') =  0. The information given by a single unit of 

information is as good as the whole history.

When 6 = 1 ,

M{i-,ek + { i - e ) k ' , w )  = ^ M { t , t )  (3)

The long-run distribution depends neither on the composition of the po­

pulation nor on the sample sizes. Players play an arbitrary strategy. The 

expected payoff is the same for all players and k, k') =  0.

When 0 < e < 1, there are no absorbing states. The diagonal elements 

of M{e’,6k +  (1 — 6)k\w)  are all smaller than 1. The long-run distribution 

will depend on the specific way trembles are modeled and on the sampling 

process which is assumed. We shall assume that the probability of sampling 

an individual with sample size k is equal to its proportion in the population. 

The trembles have been modeled as the choice of any of the possible strategies 

with equal probability.

As the noise tends to zero, the long-run distribution concentrates around 

the convention whose basin of attraction is hardest to escape. If the noise 

is vanishingly small we can easily characterize the long-run distribution and 

the long-run payoffs. For very small noise rates, the system will be almost 

always in a convention, although all other states will be visited with positive
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probability. The closer the states are to the conventions, the higher will be 

their weights in the long-run distribution. For very small mistake rates we 

need to consider only states in neighbourhoods of the conventions to compare 

expected payoffs. In those states, as we have seen in the previous section, 

larger sample sizes have a higher expected payoff, due to the fact that, close to 

the conventions, it responds with smaller probability to the mistakes coming 

from the other population.

P ro p o sitio n  6 Let us consider two sample sizes k and k' < k. ForO < e < t  

and large m, D7r{e; k, k') > 0.

P roo f. See Appendix 1. We prove that for arbitrarily small positive e, the 

payoffs in the states where the larger window size pays best compensate the 

disadvantadge in all other states.

In Appendix 2, we report the results of a simulation of Game 1 with 

m =  4 and different values of e. Each entry is the probability attached to the 

corresponding state in the long-run distribution. We report the weight (p) of 

the conventions and the six neighbouring states (three for each convention) 

in the long-run distribution.

The larger the noise, the smaller the probability p. As the rate of noise 

grows p decreases and the probability mass shifts towards states in which the 

smallest sample performs relatively better.

We can conclude that D tt is 0 at e =  1 and e =  0 and growing at this last 

point.

The expected payoff to the different sample sizes depends on the mass 

put by the long-run distribution on all the states of the system. As the rate 

of mistakes e grows the probability weight moves from the conventions to the 

other states. The set of states in which the smallest sample size has higher 

expected payoflF depends on the payoffs, the sample sizes and the memory 

length. It is possible to find examples for which the largest sample is the 

most profitable for all rates of noise. There exists, also, the possibility that
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at high rates of noise, the smallest sample has a higher expected payoff. The 

states in which miscoordination is common are more likely when the noise 

is large. The smallest sample may be better as we shall see in the following 

numerical example.

A n ex am p le  Consider the game considered in the previous section. All 

tenants draw a sample of size 2. There are, as before, two types of tenants 

Type 1 tenants draw a sample of size k = Z. Type 2 sample k' = \ units 

of information. The proportion of members from the landlords’ population 

who sample k = Z '\s given by 6. The columns report, respectively, the rate of 

noise of the system and the difference in payoffs (Z)7r(e; 3,1) for the different 

rates of noise, in the long-run distribution.

e 0 =  0 0 =  0.5 0 =  1
0 0 0 0

0.05 0.024999 0.025198 0.02521
0.1 0.039749 0.04082 0.041329
0.2 0.048659 0.049013 0.050820
0.3 0.036386 0.039811 0.042752
0.4 0.023438 0.026059 0.028503
0.5 0.012609 0.014197 0.015741
0.6 0.0053594 0.0061561 0.0069475
0.7 0.0014224 0.0017458 0.00207
0.8 -0.00008059 0.00001237 0.00010585
0.9 -0.00019779 -0.00018624 -0.00017463

0.95 -0.000071602 -0.000070145 -0.000068685
1 0 0 0

Table 4 .

The last column shows the difference in expected payoffs when all mem­

bers of population I sample w =  3, evaluated relative to the long-run dis­

tribution. For all noise rates smaller than 0.8, the larger window size pays

®We have selected k and k' in such a way that the structure represented in Figure 1 is 
preserved.
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better than the smaller. Any mutant using a unit less of information will die 

out.

The following figures represent the two possible behaviours of D tt:

Figure 4

Figure 5

The function D tt is defined for fixed f { k )  and g ( w ) .  In the following 

section, we introduce dynamics in the distributions of sample sizes. As the 

proportion of players using different sample sizes change so does Dt:.

The following table shows the results of running the same simulation, but 

keeping the noise fixed and changing 0.
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6 T>7t(0.1;3,1) D7r(0.5; 3,1) D7r(0.8;3,l) Z)7r(0.9; 3,1)
0 0.039749 0.012609 -0.00008059 -0.00019779

0.05 0.039887 0.01277 -0.000071324 -0.00019664
0.1 0.040017 0.01293 -0.000062045 -0.00019548
0.2 0.040257 0.013249 -0.00004347 -0.00019317
0.3 0.04047 0.013566 -0.000024876 -0.00019086
0.4 0.040657 0.013882 -6 .2 6 1 10-G -0.00018855
0.5 0.04082 0.0141977 0.00001237 -0.00018624
0.6 0.04096 0.014509 0.00003102 -0.00018392
0.7 0.041078 0.01482 0.00004970 -0.0001816
0.8 0.041178 0.015129 0.0000684 -0.00017928
0.9 0.04126 0.015436 0.000087115 -0.00017696
0.95 0.041296 0.015588 0.000096481 -0.0001758

1 0.041329 0.015741 0.00010585 -0.00017463

Table 5.

The simulation suggests that that advantage of big samples increases with 

the proportion of individuals in the population using the same sample size. 

The introduction of smaller samples has an effect which is similar to the in­

crease in the noise. When there is no noise, there are some states which are 

ephemeral, i.e.,they are never visited unless they are the initial state of the 

system. The introduction of mistakes makes all states non ephemeral, opens 

way-outs from the conventions, and links states that before were uncomu- 

nicated. The introduction of smaller samples reduces the set of ephemeral 

states and opens new links between states. One can expect, that under our 

assumptions, an increase in the proportion of players using a small sample 

moves probability weight towards the states which are far from the conven­

tions.

5 Evolutionary stability.

We can only make qualitative statements about the relation between costs, 

noise and evolution of learning rules in the system. It is important to realize 

that all the results of Young (1993a), Kandori et al. (1993) and Young (1993b)
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are valid when the rate of noise is close to zero. Only in this special case in 

which can we characterize the long-run distribution of the system.

In this section we characterize the evolutionarily stable sample sizes. The 

idea is to perturb the distributions of sample sizes by introducing new people 

with different learning rules. Stable distribution are those that survive such 

a disturbance. The dynamics in the compositions of the populations will 

be driven by some type of imitation or Darwinian selection (the survival of 

the fittest). It is important to notice that we have two different levels of 

evolution. On the one hand we have the evolution of the system, as in Young 

(1993b), which is driven by the adaptive play and the mistakes. On the 

other hand we have the evolution of the learning rules which is driven by the 

imitation of more profitable learning rules and by mutations which affect the 

sizes of the sample. We do not take the distributions of sample sizes as given. 

We can consider two different relevant time horizons. In the long run we take 

the distributions of sample sizes, /  and as given with the system being in 

the long run distribution. We can think of a situation in which people adjust 

very slowly their learning rules compare to adjustments in the environment. 

In the ultra long run players have had time to adjust their learning rules. 

Our aim is to find two sample sizes k* and k* which are evolutionarily stable, 

i.e, cannot be invaded. In the ultra long run, the distributions /  and g will 

put weight only on k* and w* respectively. As we have seen in the previous 

section, there is always a sample size which dominates the others, i.e has 

a higher expected payoff. Under darwinian dynamics the populations will 

be invaded by such a sample. Selection imphes, in this case, homogeneous 

populations.

We will compare the results with an hypothetical situation in which sam­

ple sizes are selected at the population level. For this purpose we will asume 

that players, in each population separately, elect a representative to play the 

game on their behalf. The representative is characterized by the size of the 

sample he draws. Both populations behave this way, knowing the long-run
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implications of their choices.

5.1 A sym ptotic results.

The asymptotic results apply in the case when the noise is very small. We 

can focus on the behaviour of k and w, which are the sample sizes which 

determine the bargaining powers and the long-run distribution (Proposition 

2).
The distributions of sample sizes, f ( k )  and g { w ) ,  may change over time. 

When different sample sizes are present in the same population, there will be 

a process of selection that will wipe out inefficient learning rules. Only when 

these changes affect either k o i w  will the system move to a new convention.

5.1.1 C ostless w indow  sizes

From the previous section, we know that when information is free, and the 

noise tends to zero, big samples have higher expected payoff than small ones, 

although the advantage of sampling vanishes with the noise.

P ro p o sitio n  7 . W h e n  p l a y e r s  c a n  c h a n g e  t h e i r  s a m p l e  s i z e s  w i t h o u t  c o s t ,  

t h e  o n l y  e v o l u t i o n a r i l y  s t a b l e  s a m p l e  s i z e s  a r e  k  a n d  w .

P ro o f. Let us assume that all members in population 1 (2) are sampling 

k  <  k  ( w  <  w )  and that sampling is costless. These sample sizes are not 

evolutionarily stable. By proposition 6 any m utant who enters the population 

and samples more will have a higher expected payoff. □

When sampling is costless we will observe an endless process of growth 

in the samples. If there is a limit in peoples’ capacity to retain information, 

there will be full employment of this capacity, which will be the only uninva- 

dable sample size, with the population gifted with higher capacity receiving 

a greater share.
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N ash  equ ilib riu m  in sam ple sizes. In the analysis developed in the 

previous section, players do not have any concious choice of strategies. They 

simply apply the simple rule of playing a best reply to some observation 

about the past and sometimes imitate more succesful learning rules. We 

have assumed very little about players’ information. Players only know some 

limited information about previous demand and payoffs and window sizes of 

players from the same population. In what follows we compare the results 

obtained above with those obtained in the extreme case of perfect forsight. 

We shall assume that players are committed to play as before, but they 

are able to computing the long run distribution and know that with their 

choice of sample size can affect the convention which will be selected. The 

situation can be modeled as a one-shot game, with sample sizes as strategies 

and payoffs computed in the long-run conventions.

We consider the following thought experiment: Imagine that landlords 

and tenants have to elect a representative (a type) to play the Nash Demand 

Game on behalf of the population. The rules of the game are as before, 

with the difference that the player is not randomly selected but chosen by 

the population. The representative decides how to play by sampling the 

number of records that characterize his type. Players are aware that their 

joint choices will determine the bargaining powers and their shares of the crop 

in the long-run. They only care about long-run payoffs. Which sample size 

will they choose? They will select a player with a sample size that maximizes 

their payoffs given the other population’s choice of sample size.

The strategies spaces,

5* =  {1,2,3,.,% }

5^ =  {1 ,2 ,3 ,..,ü7}

are all the possible sample sizes. The capacity limits, k and ÜJ, are not 

necessarily the same.

Let us consider the simplest case in which the utility functions are linear.
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The asymmetric Nash bargaining solution, with bargaining powers are k and 

It;, is the partition (2 *, 1 — x*) which solves.

max 2^(1 — 2 )’

The solution is
k

X =
w -\-k

Landlords and tenants have to elect a representative to play Game 2. Each 

entry correspond to the (asymmetric) Nash bargaining solution (2 *, 1 — 2 *) 

for the different sample sizes.

1
1 2 
2

2
1 3 
3

3
1 4 
4

4
1 5 
4

5
1 6 
5

1
2 3
3

1
2 2 
4

3
2 5 
5

4
2 6 
6

5
2 7 
7

1
3 4
4

2
3 5 
5

1
1 2 
2

4
3 7 
7

5
3 8 
8

1
4 5
5

2
4 6 
6

3
4 7 
7

1
1 2 
2

5
4 9 
9

Figure 6. Game 2.

The entries on the diagonal correspond to the symmetric Nash bargaining 

solution, the fifty-fifty division, because both populations have the chosen 

the same sample size and therefore have the same bargaining powers. The 

optimal choice for each population, given the other’s sample size, is to elect a 

player who samples the most he can. In the unique Nash equilibrium of this 

game, the two populations select a player with the largest possible sample 

size. If the strategy spaces, and 5^, are the same for both populations, we 

will observe the fifty-fifty division and people sampling at the limit of their
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capacity. Notice that the Nash equilibrium corresponds to the evolutionarily 

stable sample size. It is interesting the fact that the observed behaviour 

is the same with myopic imitative players and with fully rational players. 

Evolution leads to the same result that concious rational choice.

5.1.2 C ostly  sam ple sizes.

We now study the more realistic setting in which sampling is costly. We 

assume that the cost of a sample is proportional to its size; all members of 

the same population have the same marginal cost, Ci for landlords and C2 for 

tenants.

P ro p o sitio n  8 . W h e n  s a m p l i n g  i s  c o s t l y ,  t h e  o n l y  e v o l u t i o n a r i l y  s t a b l e  

s a m p l e  s i z e s  a r e  k  =  w  = 1. F u r t h e r m o r e ,  i f  p l a y e r s  h a v e  t h e  s a m e  u t i l i t y  

f u c t i o n ,  t h e  l o n g - r u n  c o n v e n t i o n  w i l l  he t h e  f i f t y - f i f t y  d i v i s i o n .

P roof. When small samples are less costly a reduction in the sample 

size implies a saving in the cost while the worsening in the performance is 

negligible:

/zme_oi^7r(e; A:, 1) =  0 VA: > 1

lirnc(A:) — c(l) > 0  VA: > 1

The only uninvadable sample size is 1. This result is independent of the 

relative costs and of the shape of the cost function. In the particular case 

of homogeneous utility functions the fifty-fifty division will be the rule and 

decision costs will be minimized.

The results differ from the situation in which representative player is 

chosen by the populations.

Landlords and tenants choose sample sizes k * and w *  which maximize 

they long-run payoffs, taking the rival’s sample sizes as given.

The Nash equilibrium of the following one shot game is selected.
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| - C 2 I-2C2 | - 3 C 2 I -4C 2 6 “  ^̂ 2
1

I  - C l i - c i \ - C l

1 - ^ 2 | - 2 C 2 1 -  3C2 I -4C 2 I — 5c2
2

| - 2 c i 4 — 2ci | - 2 c i 6 ~  2ci I — 2ci

i - C 2 I-2C2 2 ~  3C2 1 — 4C2 1 -  ^̂ 2
3

| - 3 c i | - 3 c i 2 “ f — 3ci 8 -  3Ci

I--C2 I -2C2 # -3 c 2 2 ~  ^^2 9 “  ^^2
4

l - 4 c i | - 4 c i 1 -  4ci 2 ~  4ci I -4C1

Figure 7. Game 3.

Game 3 is obtained from Game 2 by simply substracting the sampling 

costs which are proportional to the window sizes.

The unique Nash equilibrium of Game 3 is given by,

k* =

w =

C2
(ci +  C2)2 

Cl
(Cl +  C2)2

The bargaining powers are inversely related to the relative costs:

k* C2
W* Cl

When the marginal costs are the same, Ci =  C2 , we will observe the fifty- 

fifty division. In this case there is social inefficiency because players incurr 

in a costs of sampling which are saved in the case in which players follow the
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very simple imitative behaviour we have assumed. We have an evolutionarily 

stable sample size [k = w = 1) which is not a Nash equilibrium of the game in 

samples sizes. The reason is that players, when changing their sample sizes, 

do not take into account neither the elfect of their action in the long-run 

nor any strategic consideration. Both populations could be better-off if they 

agreed on sampling only one unit of information. In this case they would 

save the sampling costs getting half of the cake. Both parts have incentives 

to deviate from such an agreement. It is prissoner’s dilemma situation.

An economy populated by myopic players is more efficient that one in 

which strategic considerations are taken into account and intra-population 

coordination is possible.

When the marginal costs are different the two populations get different 

shares, the higher one being received by those which have the smallest mar­

ginal cost.

5.2 N on asym ptotic results.

In section 3 we have obtained a relation between rates of noise and differences 

in expected payoffs to two different sample sizes. If sample sizes are costly, 

the same relation defines a locus of noise rates and differential costs which 

makes players indifferent between two different windows.

Let c{k) (c'{k) > 0) be the cost of keeping a window of size & > 0. For 

each e and two given sample sizes k and k' < k we can find a function 

d(e, k, k'), such that

i f  c{k) — c{k') = d{e;k,k') then 7r{e', k) — c{k) = 7r{e,z; k') — c{k')

Clearly, d(e; k, k') = Z)7r(e; k, k').

The analysis of the evolution of learning rules for non-negligible rates of 

noise requieres the study of the evolution of the whole D tt function. The 

asymptotic results do not hold. For any difference in sampling costs we can 

find rates of noise for which small sample sizes are more profitable, as well as
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other noise rates for which the largest sample is prefered. The characteriza­

tion of the evolutionarily stable sample sizes requires a better understanding 

of how changes in the proportions of sample sizes in the populations shift the 

D tt function.

Consider Figure 4, the rate of noise e = è and the difference in sampling

costs c{k)  — c{k') = d 
D7r(e)

d

Figure 8.

the largest sample size k  has, at 6, higher expected payoff 

7 r(ê ;  k) — c[k) > 7 r ( e ,  z\ k*) — c(k')

The proportion of player using k  will grow (change in 0 and / ) .  If the change 

in the distribution of sample sizes /  moves D tt upwards, the system will 

end up with an homogeneous population of Ar-players. Instead, if D tt moves 

downwards it may happen that the process of growth of k-users stops. This 

will occur if the new D tt falls below d  at è. In this last case we could have, 

in the ultra long-run, people in the same population using different window 

sizes.

As we have mentioned in section 3, the simulations of the model suggest 

that the advantadge of the large samples, for given noise rate, is greater the 

greater is its proportion in the population. This would imply that D tt moves 

upwards. In appendix 3 we report the results of the simulation described 

in section 3. The proportion of players sampling k = 3 and k' = 1 are 6
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and (1 — 0) respectively. All members from population II sample w — 2. 

The memory is of size m =  4 and e = 0.8. The tables 19-31 report the 

long run distributions for different compositions in population I. We can 

observe that as 6 increases ( the proportion of A;-strategist grows) the long 

run distribution put more weight on those states where the larger sample 

size has higher expected payoff. The following table reports the difference in 

payoffs for e =  0.8 and different values of 6.

0 D7r(0.8;3,l)
0 -0.00008059

0.05 -0.000071324
0.1 -0.000062045
0.2 -0.00004347
0.3 -0.000024876
0.4 -6 .2 6 1 10-G
0.5 0.00001237
0.6 0.00003102
0.7 0.00004970
0.8 0.0000684
0.9 0.000087115

0.95 0.000096481
1 0.00010585

Table 6.

The population will evolve, depending on the initial value of 0, towards 

0 =  1 (everybody sampling k) or towards a 0 =  0 (everybody sampling k'). 

For small initial proportions of A;'-players the smallest sample size performs 

better and will invade the population. The opposite is true for high enough 

O's. No general statement can be done about evolutionary stability for non- 

negligible rates of noise. The ultra long run distributions will depend on the 

initial distribution of sample sizes, the sampling costs and the rate of noise.
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6 Conclusions

In this chapter we have developed an evolutionary model of bargaining with 

endogenous bargaining powers. In the model there are two levels of evolu­

tion and noise. On the one hand there is the evolution of the state of the 

system which is driven by the adaptive play and the trembles affecting play­

ers’ demands. On the other hand there is the evolution of the distribution of 

window sizes which is continuously perturbed by mutants who employ diffe­

rent learning rules. When the second level of evolution is absent our model 

is observationally equivalent to Young’s. In this case the model predicts the 

negative externality exerted by poorly informed players on the whole popu­

lation. This result, which is obtained under the assumption of fixed samples 

sizes, leaves unexplained the main determinant of the bargaining powers. 

The model does not explain either the co-existence of different behaviours in 

the populations. By allowing players to imitate more succesful behaviours 

we endogenize the bargaining powers. We show that there will be a tendency 

towards homogeneous populations. All members from the same populations 

will, in the ultra-long run, receive the same share. It will happen not because 

there is a marginal player who determines the share received by everybody 

but because all players behave the same way. When sampling is costless 

both populations tend to be informed as much as they can. If there are no 

differences in the informational capacities of the two populations the process 

converges to the symmetric Nash bargaining solution. The same is true when 

sainpling is costly, though in this case both populations sample only one u n it. 

of information. Any asymmetry in the populations’ sampling costs are not 

reflected in the shares received. When we compare the results with those ob­

tained with populations of rational players we observe that the economy of 

myopic imitative players is more efficient. The main problem with the model 

is that all the results are obtained in the limiting case of very small rates of 

mistakes. More interesting situations are those in which the rate of mistakes
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are not necessarily small. In this case the symptotic results do not hold and 

we cannot characterize the long run distributions. Some simulations seem 

to suggest that a closer study of the relation between the rate of mistakes 

and the sampling costs is needed in order to characterize the evolutionarily 

stable learning rules.
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7 A ppendix 1

Let pif’,-) be the transition probability between state ( i , j )  and (k,l).  Let us 

consider a memory size m and a state (m^j )  and consider thet all players 

sample 1 unit of information.

P(mj) =

P(mj-i) =  -  1)

P(mj+i) =  7 (m ,i  +  + 1)

P(m-i,j) =  - 1 ,;)

P(m-i,i-i) =  -1 ,; '  -  !)«'("» -  i>i - 1 )

P(” -i,i+i) =  7(m -  +  l)<A(m -  1> j  +  1)

where

Let /i =  //(e, m) be the long run distribution.

P{rn, j+l )p[m, j+l)  +  P { m - l , j ) p [ m - \ , j )  "t" 

P { m - l , j - l ) p [ m J l , j - l )  “I” P { m - l , j - \ - l ) p [ m - l , j + l )
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Let

/^(^,m) =  ^(^,m)(2)^ +  f^Tm,m-l)(2^^ 

lirrie^o  =  0
/̂ (m,Tn—1)

Solving recursively, we obtain

lim^^o " =  0
f^ {m, j - l )

We can always find an ê such that for all e < ê, the larger window always 

pays best.
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8  A ppendix 2
0 1

0 3.810-* 0.0000446 0.000187 0.000821 0.00466

0.000186 0.000706 0.000908 0.000697 0.000331

0.00532 0.00535 0.00171 0.000285 0.0000213

0.1 0.0247 0.00198 0.00008 1.2410-6

0.785 0.0656 0.00171 0.0000151 3.1710-6

Table 7. e = 0.05, p = 0.98149

0.0000186 0.000184 0.000749 0.00265 0.00745

0.000791 0.0026 0.00344 0.00258 0.00111

0.0156 0.016 0.00635 0.00122 0.000105

0.158 0.0565 0.0073 0.000421 8.4310-6

0.607 0.104 0.00561 0.000102 4.2810-’̂

Table 8. e =  0.1, p  =  0.939487
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0.000109 0.000856 0.00317 0.00801 0.011

0.00327 0.00998 0.0136 0.00987 0.00362

0.0371 0.0464 0.0239 0.00576 0.000599

0.19 0.113 0.0247 0.00233 0.0000758

0.35 0.128 0.0148 0.000597 6.1510'®

Table 9. e =  0.2, p =  0.81265

0.000299 0.00207 0.00684 0.0134 0.012

0.00654 0.0204 0.0285 0.0201 0.00654

0.0503 0.0768 0.0479 0.0138 0.00165

0.166 0.142 0.0445 0.00596 0.000284

0.196 0.114 0.0215 0.00146 0.0000286

Table 10. e =  0.3, p  =  0.671295
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0.000583 0.0037 0.0109 0.0172 0.0114

0.00961 0.0313 0.0445 0.0308 0.00916

0.0543 0.099 0.0724 0.0242 0.00326

0.129 0.148 0.0614 0.011 0.000716

0.109 0.0909 0.0248 0.00256 0.0000835

Table 11. e =  0.4, p =  0.545698

0.000945 0.00558 0.0147 0.0194 0.0101

0.012 0.0411 0.0594 0.0405 0.0113

0.0522 0.112 0.094 0.0358 0.00539

0.0948 0.139 0.074 0.017 0.00146

0.061 0.0686 0.0258 0.00382 0.000193

Table 12. e =  0.5, p  =  0.444821
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0 1

0.00137 0.0076 0.0179 0.0201 0.00861

0.0137 0.0491 0.0718 0.0485 0.0128

0.0471 0.117 0.111 0.048 0.00799

0.0677 0.124 0.0826 0.024 0.00263

0.0345 0.0508 0.0256 0.00526 0.00039

Table 13. e =  0.6, p = 0.367024

0.00187 0.00966 0.0203 0.0198 0.00719

0.0148 0.0552 0.0815 0.0547 0.014

0.0409 0.116 0.125 0.0601 0.0111

0.0476 0.107 0.0881 0.0319 0.00437

0.0198 0.0374 0.0249 0.00698 0.00073

Table 14. e =  0.7, p =  0.307522
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0 1

0.00245 0.0117 0.0221 0.0188 0.00592

0.0154 0.0594 0.0884 0.059 0.0148

0.0346 0.111 0.134 0.0719 0.0146

0.0332 0.0907 0.0914 0.0408 0.00689

0.0115 0.0277 0.0241 0.00912 0.0013

Table 15. e =  0.8, p = 0.261521

0 1

0.00312 0.0137 0.0231 0.0173 0.00483

0.0157 0.0618 0.0924 0.0616 0.0153

0.0287 0.103 0.139 0.0832 0.0187

0.0229 0.0757 0.0932 0.0509 0.0105

0.00668 0.0207 0.0236 0.0119 0.00227

Table 16. e =  0.9, p  =  0.225114
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0 1

0.0035 0.0147 0.0234 0.0165 0.00435

0.0157 0.0623 0.0934 0.0622 0.0155

0.026 0.0986 0.14 0.0886 0.021

0.0189 0.0689 0.0936 0.0565 0.0128

0.00511 0.018 0.0235 0.0136 0.00298

Table 17. e =  0.95, p = 0.209543

0 1

0.00391 0.0156 0.0234 0.0156 0.00391

0.0156 0.0625 0.0938 0.0625 0.0156

0.0234 0.0938 0.141 0.0938 0.0234

0.0156 0.0625 0.0938 0.0625 0.0156

0.00391 0.0156 0.0234 0.0156 0.00391

Table 18. t  =  1, p  =  0.195312
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9 A ppendix 3
 0 1

0 0.0026561 0.012436 0.022212 0.017972 0.0055667

0.016105 0.061598 0.089242 0.058158 0.014406

0.03483 0.11154 0.13455 0.072529 0.014752

0.032162 0.088325 0.091026 0.04172 0.0071743

0.010718 0.025982 0.023517 0.0094132 0.0014047

Table 19. e =  0.8, 0 =  0 
1 2 3

0.0026349 0.012362 0.022193 0.01805 0.0056012

0.016037 0.061375 0.089153 0.058241 0.014444

0.034812 0.11146 0.13447 0.072473 0.01474

0.032263 0.088563 0.091067 0.041623 0.0071453

0.01079 0.026151 0.023575 0.0093823 0.0013944

Table 20. e =  0.8, 6 =  0.05
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0.0026139 0.012289 0.022175 0.018128 0.0056359

0.015968 0.061152 0.089064 0.058325 0.014483

0.034793 0.11138 0.13438 0.072416 0.014729

0.032364 0.088801 0.091107 0.041526 0.0071163

0.010863 0.026322 0.023633 0.0093518 0.0013843

Table 21. e =  0.8, 9 = 0.1 
0 1 2  3

0.0025721 0.012144 0.022143 0.018288 0.0057059

0.015831 0.060706 0.088886 0.058491 0.01456

0.034754 0.11121 0.1342 0.0723 0.014706

0.032566 0.089275 0.091188 0.041333 0.0070585

0.011009 0.026666 0.023752 0.0092916 0.0013641

Table 22. e =  0.8, 0 =  0.2
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0.0025308 0.012002 0.022114 0.018449 0.0057767

0.015693 0.06026 0.088708 0.058658 0.014638

0.034713 0.11103 0.13401 0.072181 0.014682

0.032767 0.089748 0.091269 0.04114 0.0070009

0.011156 0.027015 0.023876 0.0092325 0.0013441

Table 23. e =  0.8, 0 =  0.3 
0 1 2  3

0.00249 0.011861 0.022088 0.018613 0.0058482

0.015556 0.059815 0.088531 0.058823 0.014715

0.03467 0.11085 0.13382 0.072059 0.014658

0.032967 0.090219 0.09135 0.040948 0.0069435

0.011305 0.027368 0.024003 0.0091747 0.0013243

Table 24. e =  0.8, $ =  0.4
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0.0024496 0.011722 0.022065 0.01878 0.0059206

0.015419 0.059371 0.088353 0.058989 0.014792

0.034625 0.11066 0.13362 0.071935 0.014633

0.033167 0.090689 0.09143 0.040757 0.0068862

0.011456 0.027727 0.024134 0.009118 0.0013048

Table 25. e =  0.8, 6 =  0.5 
0 1 2  3

0.0024097 0.011586 0.022046 0.01895 0.0059937

0.015282 0.058928 0.088176 0.059153 0.014869

0.034577 0.11046 0.13341 0.071808 0.014608

0.033367 0.091157 0.09151 0.040566 0.006829

0.011609 0.028091 0.024269 0.0090625 0.0012854

Table 26. e =  0.8, 6 =  0.6

114



0.0023702 0.011452 0.022031 0.019122 0.0060677

0.015145 0.058485 0.087999 0.059318 0.014946

0.034527 0.11026 0.13319 0.071678 0.014582

0.033565 0.091623 0.091589 0.040376 0.0067721

0.011763 0.02846 0.024408 0.0090081 0.0012662

Table 27. e =  0.8, $ =  0.7 
0 1 2  3

0.0023312 0.011319 0.022019 0.019297 0.0061425

0.015008 0.058044 0.087822 0.059481 0.015023

0.034475 0.11004 0.13297 0.071546 0.014556

0.033763 0.092086 0.091668 0.040187 0.0067154

0.011919 0.028833 0.024551 0.0089548 0.0012472

Table 28. e =  0.8, 0 =  0.8
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0.0022926 0.011189 0 .02201 0.019474 0.0062181

0.014872 0.057603 0.087645 0.059644 0.0151

0.03442 0.10982 0.13274 0.07141 0.014529

0.03396 0.092548 0.091746 0.039998 0.0066588

0.012076 0.029212 0.024698 0.0089027 0.0012284

Table 29. e =  0.8, 0 =  0.9 
0 - 1  2 3

0.0022735 0.011125 0.022007 0.019564 0.0062563

0.014804 0.057383 0.087557 0.059726 0.015139

0.034392 0.10971 0.13262 0.071342 0.014516

0.034059 0.092778 0.091785 0.039904 0.0066306

0.012155 0.029404 0.024773 0.0088771 0.0012191

Table 30. e =  0.8, 9 =  0.95
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0.0022545 0.011061 0.022004 0.019655 0.0062946

0.014735 0.057163 0.087469 0.059807 0.015177

0.034364 0.10959 0.13251 0.071273 0.014502

0.034157 0.093007 0.091824 0.03981 0.0066024

0.012235 0.029596 0.024849 0.0088517 0.0012098

Table 31. e =  0.8, 9 = 1
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Chapter 3

R eplicator D ynam ics and  
R ationality in A sym m etric  
Games.

1 Introduction.

A common concept in evolutionary game theory is that of an evolutionarily 

stable strategy (ESS) (Maynard Smith and Price (1972)) originally used in 

the study of animal conflicts. ‘An ESS is a stategy, or phenotype, with 

the following property: if almost all the members of a population adopt 

that strategy, no alternative strategy arising by mutation can invade the 

population. In other words no other strategy can have as high a fitness: an 

ESS is a strategy that does well surrounded by copies of itself. Clearly if a 

population cames to consist of individuals adopting the ESS, it will cease to 

evolve’ (Maynard Smith (1993)).

The standard deflnition of an ESS applies to a symmetric game. Selten 

(1980) shows that its natural extension to asymmetric games turns out to be 

very restrictive, since the concept then simply characterizes the strict Nash, 

equilibria of the game. In order to prove his result Selten symmetrises an 

asymmetric game by allowing nature to make the first move by assigning a 

player-role to each agent at random. He shows that no mixed or polymorphic 

population equilibrium satisfies the ESS requirements.

Selten’s result has implications for problems of equilibrium selection in an 

evolutionary environment. In evolutionary models, the growth rate of each
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strategy is positively correlated with the current relative success (fitness) of 

each strategy. The result suggests that mixed Nash equilibria are not in 

general stable long-run outcomes of an evolutionary process, when m utati­

ons are allowed. In principle, mixed equilibria could be attained by large 

populations in which different agents in the same population play different 

pure strategies. However, such outcomes are not robust in asymmetric games 

against the introduction of mutant strategies.

We have the following issues:

When an asymmetric game has no Nash equilibria in pure strategies 

no ESS exists;

When an asymmetric game has both a strict Nash equilibrium and a 

mixed Nash equilibrium the former is more robust even though the 

latter may be Pareto-superior. Socially preferred outcomes might not 

be selected as long-run states of some dynamic systems.

We would like to stress the fact that we can find ‘darwinian’ dynamic 

processes for which mixed Nash equilibria are asymptotic equilibria of such 

processes. An interesting feature of all these examples is that the mixed 

Nash equilibria are, under Darwinian dynamics, either centers, saddle points 

or foci but never nodes.

In games played by different populations, the evolution in a population 

depends on the strategy distribution in the other. It is a well known fact that 

all the strategies which are played in a mixed equilibrium equilibrium obtain 

the same payoff. This implies that in an evolutionary enviroment, any mu­

tation with the same support of the equilibrium point will not be ‘corrected’ 

by the Darwinian selection in the population where the mutation has taken 

place. A mutation in one population will induce, however, a reaction in the 

other population. The return to the original equilibrium is not guaranteed 

under general darwinian dynamics.

119



In this paper we show that there exists a class of polymorphic Nash equili­

bria in asymmetric games that exhibits stability properties which are in some 

way similar to those exhibited by an ESS, provided that a small fraction of the 

population can anticipate others’ behaviour. First, we draw from Hofbauer 

and Sigmund (1988) the concept of Nash-Pareto Pair in a two-population 

asymmetric game. Hofbauer and Sigmund prove that under the replicator 

dynamics, if a small deviation from a Nash-Pareto pair occurs, then evolu­

tion will not push the system further away from the equilibrium (whereas in 

ESS the evolution pushes the system back towards the equilibrium).

Second, we assume that each population consists of two types of agents,to 

be called myopies and rationals. Myopic players follow some imitative beha­

viour of the kind commonly found in evolutionary game theory, resulting in 

an increase over time of currently successful strategies. We can rationalise 

this behaviour in terms of bounded rationality. Myopies can be thought of 

as people with high costs in collecting and processing information who find 

it convenient to behave conservatively by sticking to their current strategy, 

and only periodically deciding whether or not to revise their behaviour by 

imitating more successful strategies. Rational players, instead, correctly an­

ticipate changes in the environment, responding optimally to the one-stage 

game played each period. We assume, as always in standard discussions of 

the replicator dynamics, that the populations are large. The distinction bet­

ween myopies and rationals can be envisaged as representing, in a highly 

stylised and extreme form, a world in which agents face different costs in 

collecting and processing information, or in the adjustment cost for changing 

strategies.

The idea of two classes of players along these lines was first introduced 

by Banerjee and Weibull (1991) in a paper intended to show the possibility 

of survival of non-rational agents in strategic environments. Apart from the 

divergent motivations, their paper differs from ours in that they consider only 

symmetric games with a single population and apply replicator dynamics to
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the evolution of rational and myopic players in the population, whereas we 

assume that the proportions of types in each population are fixed.

In the first part of the paper we show that when some positive fraction 

of agents in each population behave rationally, there exists a set of distribu­

tions of myopic agents across strategies consistent with a polymorphic Nash 

equilibrium. The result holds irrespective of how small or large the fraction 

of rational players is assumed to be. Under the same assumptions we will 

show that any deviation from a Nash Pareto pair never makes the deviant 

population (including both rational and myopic agents) better off on average. 

This second result relates to the main finding of the second section in which 

we study the effect of the introduction of rational players on the behaviour 

of the system under replicator dynamics. We will show that under replicator 

dynamics an Nash-Pareto pair is asymptotically stable in the presence of 

rational players.

2 An evolutionary game.

Consider a two-player normal-form game G =  {Sx-, Sy, A, B ), where Sx is the 

set of n pure strategies available to player 1 , Sy is the set of m pure strategies 

available to player 2, A and B are the respective pay-off matrices. We assume 

that there are two large populations X  and 3̂  and that the members of these 

populations are randomly matched in pairs to play the game G. Some fraction 

of the agents in each population behave myopically, playing a fixed strategy 

and only occasionally considering a revision, on the basis of the observation 

of the degree of fitness (relative success) of the alternative strategies. At this 

stage we will not commit ourselves to any particular mechanism for how such 

revisions are made. We will only assume that the growth of each strategy 

has the same rank-order as the respective fitnesses ( Friedman (1992)). A 

certain fraction of agents in each population-no m atter how small or large- 

behaves rationally, in the sense that they maximize their expected pay-off
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in each one-shot game and correctly anticipate the proportion of players who 

are choosing each strategy in the opponent population. No agent is able, 

however, to recognise the strategy that is going to be played by his opponent 

with whom he is individually matched at each stage.

In formal terms, we assume that a fraction cr (0 < cr < 1) of rationals in 

population X  is fixed. Similarly for the fraction r  (0 < r  < 1) of rationals 

in population y .  Let A„ be the n-dimensional unit simplex. The vector 

a; E (1 — cr)An describes the myopic agents in population X.  The coordinate 

Xi is the fraction of the population who are myopies currently using strategy i. 

The vector X  E ( rAn  similarly describes the rational agents in population X.  

The vectors y E (1 — r ) A m  and Y  E r A m  fulfil the same roles for population

We define u =  x + X  to be the current vector of strategy frequencies 

in population X . Similarly, v = y Y  is the vector of strategy frequencies 

in population 3̂ . The vector pair (u, u) will be called the current strategy 

distribution. We shall say that (u,u) is a (polymorphous) Nash equilibrium 

if it is true that (u,u) is a (mixed) Nash equilibrium when u and v are 

interpreted as mixed strategies. Restrictions are placed on the admissible 

values of X and Y in order to justify their roles in describing the current 

behaviour of rational agents. We require that Xi = 0 unless i is a best reply 

to V and that Yj = 0 unless j  is best reply to u.

The fact that a pair (Y, Y )  always exists for each pair (x, y) follows from 

Nash’s theorem on the existence of Nash equilibria for finite games.

With these understandings, a state of the system is a quadruple 

(x ,X , Î/, Y). We will say that a pair (x,y)  is compatible with a Nash equi­

librium (u,u) =  {x X , y  -\-Y) when ( x , X, y , Y)  is a state of the system. 

As previously mentioned, we draw from Hofbauer and Sigmund (1988) the 

concept of a Nash-Pareto Pair. This characterises a subset of Nash equilibria 

satisfying certain stability conditions.

D efin ition  1 A strategy distribution (fi, v) is said to be a Nash-Pareto Pair
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if and only if the following conditions hold:

(i) (Û, {;) is a Nash equilibrium, so that

uFAv > u^Av (for all u) and 

v^B ^û  > v^B ^ü  (for all v)

(a) stability condition: for all states (u,v)  G A„ x such that equality 

holds in (i):

vF A v > vF A v => v^B ^u  < vFB^u and 

v^B ^u  > xFB^u  => Av < xFAv

One might summarize the stability condition by saying that if both players 

switch to alternative best replies then at least one would have done better 

sticking to the previous strategy.

The following proposition shows that, if a deviation occurs when the sy­

stem is at a Nash -Pareto pair, the deviant population is never better oif than 

playing the equilibrium strategy. This fact has an interesting imphcation for 

the dynamics of the system because the fact that the rational players do not 

follow the mutants will render our system asymptotically stable.

P ro p o sitio n  1 Let (u, v) be a completely mixed Nash Pareto pair and {x, X , y, Y) 

be the state of the system. Consider a new state { x , X , y , Y ) . Then:

{x,y) incompatible with (u,v)  => u^A v < iF A v,

where (u, v) is the strategy distribution when the state of the system is {x, X , y, Y ).

P roof. The proof is by contradiction.Note first that any u G A„ is an 

alternative best reply to ü because ü is completely mixed. Similarly any 

V G Am is an alternative best reply to v  because v  is completely mixed.

We need only consider condition (ii) in the definition of Nash-Pareto pair 

. Assume that { x , y )  is incompatible with { u , v )  but xFAv < vFAv. Since
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[ü^v) is a Nash-Pareto pair , then Av < u^A v  implies v ^B ^u  < vB ^u. 

But V = {y Y )  and v = {ÿ -\-Ÿ). The rationality condition implies that 

y^A u > y^Au, and hence v^Au > Au. This says that (û, û) is a Nash- 

Pareto pair . □

A result by Schuster and Sigmund (1983) shows that a completely mixed 

Nash-Pareto pair in 2 x 2 games is a stable fixed point of the asymmetric 

replicator dynamics. However, such a Nash-Pareto pair turns out to be only 

Ljapunov stable and not asymptotically stable; geometrically, it is the centre 

of a system of closed orbits. We will show that the presence of a minimum 

degree of rationality stabilises the system and makes the Nash-Pareto pair 

asymptotically stable.

Let us consider the generic 2 x 2  game with a unique and completely 

mixed equilibrium ( Van Damme (1983)). Matching pennies is an affine 

transformation of this game,

L R

0 6
u

a 0

c 0
D

0 d

0 , 6, c, d > 0 

Figure 1 . Game 1

The unique Nash equilibriumof this game is a Nash-Pareto pair In 

the absence of rationals (cr =  r  =  0 ), the basic replicator dynamic equations 

would be:

X =  x { l  — x ) [ { a  +  d ) y  — d\

^The other type of 2 x 2 with generic pay-offs which has a completely mixed equilibrium 
is the Battle of the Sexes. This Nash equilibrium is not a Nash-Pareto pair and the 
introduction of rationals desstabilizes it.
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ÿ =  1/(1 -  y ) [ c -  {c-\-b)x],

where x and y are the fraction of players using the first strategy in populations 

X and Y respectively.

A modified version of the replicator dynamics which allows for a positive 

proportion of rational players is:

X — [x Y )[l — (x +  X)][(a +  d){y +  Y) — d\ (1)

(2)

We will refer to this system as the modified replicator dynamics .

Let us consider Figure 1; it represents all possible states of myopic players, 

(x,y) G (1 — cr)A2 X (1 — t)A 2, in the game above. (Moving right increases 

the fraction playing U and moving up increases the fraction of L).

1-T

V
V*-T

A
(U,L)

a

(U ,R )
B

a' E

(D,L)
(D ,R )

D C

1-cr
Figure 2.

Consider the behaviour of rationals when the state of the system is point 

a £ A in  Figure 2. Whatever rationals in population y  do, it is best reply for 

rationals in population X  to play U, because the observed state y\-\-Y\ > v*. 

For population y  is optimal to play L. Let us also consider point a' £ A: 

The optimal behaviour of the rationals in X  depends now on the choice of
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the rationals in y \  if they choose L, the observed state will he yi -\-Yi > v* 

and the best reply to such state is U. But if the choice were R, then the best 

reply would be D because the observed state will satisfy yi -\-Yi < v*. For 

the rationals in F , L is the best reply (whatever happens in the observed 

state will be x i X i  > u*). It follows that (U,L) are the best replies in area 

A.

We can now write the modified replicator dynamics for any state of my­

opies in area A,

X = {x-\- cr)[l -  {x-{- a-)][(a -f- d){y r) -  d\

ÿ =  (y +  '^)[1 -  (2/ +  r)][c -  (c-k d){x -f a)]

The same argument applies for the other areas. In area B,

X = (x-\- a)[l -  (x -1- a)][(a -^d)y -  d\

= y)[c -  (c +  d){x -h a)]

In area C,

X = x[\  — x)[(a -|- d)y — d\ 

ÿ =  2/(1 - y ) { c - { c ^ - d ) x )

In area D,

X = x( l  — x)[(a -t- d){y +  r)  — d] 

ÿ =  (y +  r)[ l -  (y +  r)](c -  (c -h d)x)

This leaves area E which requires special comment. In this set of states 

X = y = 0, because the rationals act so as to make all strategies equally 

good. The observed state generates the polymorphic equilibrium in which 

X + X  = u* and y -\-Y  =  u*, with u* = c/(c +  6) and v* =  d/{d -f a).

Proposition 2 Let (u*,u*) be the completely mixed Nash-Pareto pair of 

Game 1. Let > 0 or r  > 0. Then (u*,u*) is asymptotically stable with 

respect to the modified replicator dynamics .
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P ro o f  We consider the case (j > 0 , r  =  0. Thus Ti =  0 in equations (1) 

and (2). Divide the RHS of (1) and (2) by (y){x-\-X){l — x — X ){ l  — y). The 

new equations, which have the same trajectories as the old, can be rewritten 

as

—d  CL
X =  h

y  1 - y
c b

y = X X  1 — (37 T X j  

In a region in which X  is constant, the fuction H defined by

(3)

(4)

II(x,  y, X,  0) =  clog(a; +  X) +  61og(l -  x — X )  +

dlog(y) +  alog(l -  y)

is a constant of motion because

H  = xy — yx = 0

Thus, the system (3)-(4) is piecewise Hamiltonian.

From the expression of H, it can be verified that:

H{x,  y, cr, 0) > H{x, y, 0,0) (a: 4-X) < =  u'

1

A

C

u
Figure 3.
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Consider an initial point such that y < v* and 2: -f X  > u* ( c in Figure 

3). From the modified replicator dynamics equations, it follows that X  = 0 

and d x / d t  =  d u / d t  < 0, d y / d t  =  d v / d t  < 0, while H remains constant. At 

some moment in time, the system will reach a state x X  = u* and y < v* 

(point d in Fig. 3) with d y / d t  > 0, d x / d t  < 0 and H constant. Once the 

system reaches a state in A (point a in Fig.3) with y = v* and x X  < u* 

the rational players, simultaneously, all change to strategy U, creating a 

new state of the form (a:,cr, y,0) (point a’) with d y / d t  > 0, d x / d t  > 0 and 

H jumps to a higher value until a new state in C (c’ in Fig.3) is reached. 

At this point all the rationals move to play D and H jumps up again. H 

turns out to be a stepwise increasing function which reaches its maximum 

when the state of the system becomes compatible with the Nash-Pareto pair 

(u*,u*), at which x Ç: [u* — a, u*] and y  = u*). Since the system admits a 

nondecreasing (piecewise increasing) over time Ljapunov function H  then it 

is an asymptotically stable fixed point of the modified replicator dynamics . 

The extension to the case in which r  > 0 is straightforward. □

A final remark concerns the extent to which the presence of rational agents 

is stabilising in an evolutionary environment. We have seen that in 2 x 2 

games with a Nash-Pareto pair , the rationals never follow the mutants and 

this has a stabilising effect on the equilibrium outcome. In higher-dimensional 

games things become more ambiguous, particularly when the Nash-Pareto 

pair has less than full support and other equilibria exist. In this case, if the 

proportion of rationals is relatively high, their presence could actually play 

a destabilising role. It is indeed possible to construct examples in which a 

mutation that would be killed off by the selection mechanism in a purely 

evolutionarily environment can instead invade the equilibrium because of 

the reaction of the rationals.

Consider the game represented in Figure 4,
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UP

MIDD LE

D O W N

L E F T R I G H T

1 1

2 - e 2 - e

2 4

4 0

2 0

3 1

Figure 4.

For e < 1 this game has two Nash equilibria, one in pure strategies in 

which Up and Right are played with probability one and one in mixed stra­

tegies with all the strategies but Up played with probability 1/2. This last 

equilibrium is a Nash Pareto pair. Consider a state compatible with the 

mixed equilibrium and a mutation in population X  such that the best re­

ply for population y  is Right, independently of what the rationals in X  do. 

If before the mutation it happened that the proportion of rationals playing 

Left was greater than e/2 then in the new population J^’s state more than 

1/2 -[- e/2 will be playing Right, being Up the best strategy for X.  The 

system, due to the reaction of the rational players, jumps into the basin of 

attraction of the Pareto inferior equilibrium (Up,Right).

3 Conclusions

The presence of rational players in small proportions renders asymptotically 

stable some mixed equilibria in 2-player asymmetric games. The mixed equi­

libria are necessarily Nash Pareto pairs. This property implies that only 

one side can benefit from a deviation from the equilibrium strategy. Our 

result holds for the standard replicator dynamics but can be generalized to 

other dynamics. Mixed Nash Pareto pairs are characterized under darwinian 

dynamics by some kind of cycling behaviour around the equilibrium. By al-
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ways selecting the best paying strategy the rational players move the system 

towards the mixed equilibrium. We only need to select the proportion of 

rationals large enough to amortiguate any possible divergent behaviour.
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Chapter 4

A n evolutionary m odel o f  
developm ent o f a credit 
m arket.

1 Introduction

In this chapter we construct a simple evolutionary model of credit acti­

vity, which aims at explaining the existence of credit cycles and rationing. 

We model the relations between firms (borrowers) and banks (lenders) as 

regulated by a very simple debt contract subject to the constraint of limited 

liability of investors. The two parts know nothing about each others’ history. 

For reasons which will be explained, agents cannot build up an individual 

reputation. Investors can decide to invest the money in a productive activity 

or to ‘take the money and run’; lenders can detect the fraudulent behaviour 

and enforce its punishment, but only if they engage in a costly monitoring 

process. The banks can invest in a low return safe asset or lend to a bor­

rower. They charge the same interest rate to all possible borrowers because 

these are ex-ante indistinguisable to them. If banks decided to monitor all 

borrowers, potentially bad borrowers would find it optimal to invest in the 

productive activity, because would certainly be penalized. If all borrowers 

were ‘good’ however, banks would maximize profits by not monitoring any 

project. For these reasons there exists one equilibrium in which we observe 

a mixture of good and bad behaviour on the borrowers’ side and the banks 

choosing to monitor only a positive proportion of the loans granted but not
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all of them. This is not the only Nash equilibrium. Our model, in fact, 

also exhibits equilibria with ‘financial collapse’. When lenders expect to find 

many bad borrowers they invest in the safe asset and do not grant any loan. 

If the proportion of borrowers who would cheat should they receive a loan is 

large enough the banks behave optimally an so do the borrowers.

Two are the evolutionary features which we introduce into the model. The 

first is that we model market interactions as taking place between members 

of different populations who meet and play a one-shot game representing 

the situation just described. Players are assumed to be of two possible ty­

pes: myopic and rational (as in Banerjee and Weibull (1991) and chapter 

3). Myopic players behave conservatively by sticking to a strategy, and only 

periodically deciding whether or not to revise their behaviour by imitating 

more successful strategies. Rational players always play a Nash equilibrium. 

The co-existence of two types of players can be thought as representing, in 

a highly stylised and extreme form, a world in which agents face different 

costs in collecting and processing information, or in the adjustment cost for 

changing strategies. The second feature, which is related to the existence 

of myopic players, is that off-equilibrium dynamics play the role of selecting 

one out of all possible equilibria. The fact that a large part of each popula­

tion changes its strategy only from time to time introduces some inertia in 

the system. This sluggishness implies that the scenario faced by the play­

ers tomorrow is not too different from the one they face today. In these 

circumstances even rational behaviour tends to exhibit some inertia.

The first result of this chapter is that equilibria without credit activity 

are not stable against ‘experimentation’. When some banks start granting 

some monitored loans good behaviour is encouraged and the credit market 

starts developing. So, the absence of credit market does not seem to be 

a robust stable outcome of the system. The second and more interesting
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result relates the behaviour of the system under ‘darwinian dynamics’ to 

the tendency of the economy to produce episodes of ‘credit crunches’ and 

temporary financial collapse. We show that once over ‘real shocks’ which 

affect the equilibria can trigger episodes of credit rationing and fluctuations 

in the activity levels throughout the process of adjustment towards the new 

Nash equilibrium. Consider a situation in which the rate of fraud in the 

economy is small enough to allow for the existence of a fully developed credit 

market: all borrowers are given a loan and the behaviour of banks creates the 

right incentives. An external shock which affects, for example the likelihood 

with which borrowers repay their debts or erodes the collaterals if they exist, 

may make that the safe asset a more profitable investment on average. The 

strategy followed by banks is to start lending less. The drain of investment 

funds, given the banks’ inability to screen the borrowers, affect also to the 

good borrowers and starts a process of credit crunch. This is argued to be 

consistent with Bernanke’s (1983) description of the Great Depression.

The model has important limitations, of which we must be aware. The 

most evident is that the borrower-lender relationship has typically a long­

term nature. This cannot be captured by the random matching, one-shot 

game set-up which we propose in this chapter. To rule out reputational 

effects in a credit relation is clearly hard to swallow. However, it can be 

argued that the set-up is not unrealistic for the inherently risky market for 

loans to new investors and small firms whose access to the credit market is 

sporadic and the information about whose past behaviour is little reliable. 

Bernanke (1983) observes that this segment of the market was significant 

and important during the Great Depression. Also customer relations were 

weakened in that period by the fact that many borrowers were separated 

from their banks when these were forced to close. This caused a considerable 

amount of borrowers to seek for credits in new banks. As we will discuss 

there is evidence that credit rationing issues apply more significantly to these
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segments of the market. So, this work may be viewed as focusing on the 

segment of the market which is most affected by drains in investment funds 

during a credit crunch: small businesses and households.

The chapter is organized as follows: In the first part we introduce the mo­

del. We will present the parable of a very economy of peasants characterized 

by the lack of collateral wealth. In the second section we introduce the dyna­

mics and study the behaviour of the economy when it is populated by myopic 

players. In the third section rational players are introduced. We relate the 

findings to the empirical evidence from the Great Depression. Finally we 

report the results of the simulations of the model.

2 Evolution of credit activity  in an econom y  
w ith lim ited collateral

We consider a stylized primitive economy in which potential investors hold no 

collateral. A typical problem faced by economic systems with a low amount 

of collateralizable wealth is that lenders are liable to large losses in the event 

of bankruptcy of the debtor. Furthermore, this raises an important incentive 

problem for borrowers.

Assume that the probability of success of an enterprise depends on some 

unobservable costly effort on the part of the entrepreneur. If he borrows 

funds with little or no collateral, he will typically put in less effort than in a 

world of perfect information. This happens because he is liable, in the event 

of bankruptcy, only for the value of his collateral, whereas the reward to its 

success is limited by the payment due to the lender. This is known in the 

literature as a debt-overhang problem with wealth constraints (Aghion and 

Bolton (1991)). For expositional purposes, we start by describing a standard 

problem of missing market due to incentive problems in a world of rational 

agents.
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We assume that:

- all the agents are risk-neutral;

- there exists a safe asset (outside option) in the economy that provides 

an exogenously given interest rate;

- potential investors needs to borrow a fixed amount of money W  and 

have no collateral at all;

- effort is a discrete choice variable; the entrepreneur may either exert 

effort (e > 0), or do nothing. To make the argument more concrete, we 

can think of a peasant-entrepreneur who may either use the borrowed 

funds to introduce technical improvements (paying the effort cost e) 

and so enhance the probability of a good crop, or divert the resources, 

buying consumption goods, and hope that good weather makes up his 

lack of effort.

- there are two states of the world, which are observable by everybody 

at the end of each period. To go back to the previous example, if the 

crop is good, the borrower gets revenue H  > W, pays back the debt 

with the agreed interest payment (R) and earns a net profit, whereas 

if it is bad the borrower gets nothing and cannot pay back the debt;

- there is no equilibrium value of R that makes the borrower’s choice in­

centive compatible, i.e. that induces the peasant to exert effort, while 

giving the lender a higher expected payoff than that warranted by in­

vesting in the safe asset.

We will define the following conditional probabilities:

7T=Pr (good crop | no effort);

7T +  a = P r  (good crop | effort).

We also define r as the gross payment obtained by the lender investing 

W  in the safe activity. Let us rule out for the moment that the agents
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may randomise their choices and play a mixed strategy. It is then possible 

to choose parameters such that a credit market would exist under perfect 

information, but the moral hazard problem prevents its existence in a world 

with imperfect information. This is the case if:

[tt a][H — R] > e and (tt +  a)R > r, f or  some R  (1)

but:

ttR < r, allR  (2)

and:

7c[H -  i?] > ( tt + a)[H - R ] - e  (3)

for all R’s that satisfy (1).

Equation 1 guarantees that under perfect information (observable effort) 

there would be credit activity for some range of values of R, with borrowers

exerting the effort. Equation 2 says, however, that if no effort is made by

the borrower, there is no R at which lenders are willing to grant credit. 

Equation 3 implies that for all R’s satisfying 1 there is an incentive problem 

(the expected payoff of the peasant is higher when he shirks). The source of 

this standard missing market problem is the absence of collateral to be held 

by investors.

The following additional assumptions are needed to fill out the model:

- there are in the market agents who act myopically, by playing an ar­

bitrary strategy which they possibly revise periodically according to 

some imitative adaptive rule;

- lenders are entitled to monitor the activity of the borrowers. If chea­

ting is detected, the lender asks for his money back (without earning 

interest) and the borrower is liable to legal prosecution, with a high 

loss in terms of utility. However, monitoring entails a cost M. We can 

imagine that lenders delegate and pay some specialised institution for
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this purpose. Monitoring reduces the risk involved in lending. In order 

to focus on the interesting case, we will assume that, when no cheating 

is detected, the payoff to the lender, net of the cost M, is still higher 

than if W were invested in the safe asset;

- interactions are anonymous in the sense that agents are randomly m at­

ched in a world with large populations, and so are unable to use what 

they know about their opponents’ identity to predict their behaviour.

If monitoring the investors is costly, not all the loans will be monitored in 

an equilibrium with developed credit activity. Once the threat of monitoring 

has induced all the entrepreneurs to be ‘honest’, any single lender no longer 

has an incentive to pay the monitoring cost. Every lender would like to free- 

ride and exploit the fact that there is a widespread belief that any cheating 

will be detected and punished.

Since several strategies will coexist at any time, including strategies which 

are not current best-replies and agents are randomly matched, the expected 

payoff to each strategy will depend on the probability of matching with each 

of the strategies played by the opponent population. In a world with many 

honest borrowers, to lend without monitoring is likely to be a successful 

strategy. In a world with almost all dishonest borrowers the best one can 

do is to invest in the safe asset. It is important to remark that in our world 

there are agents who go to the market with some strategy in mind and 

only periodically revise it, imitating more successful behaviours according 

to some rule to be specified. For this reason, in our framework, the model 

is closer to the class of adverse selection problems than to that of moral 

hazard problems^. Lenders’ decisions are affected by the knowledge that

^However, there are no trivial contractual arrangements that sustain a ‘separating 
equilibrium’, since borrowers are not good or bad as a result of some intrinsic personal 
characteristic, like a different disutility of exerting effort. If we like, we can think that they 
differ in their beliefs about the probability of being detected if they cheat. This difference 
cannot be exploited by the principals, by proposing distinct contractual solutions, each of 
which attracts a different type.
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at each period there both ‘good’ and ‘bad’ types in the market that are 

undistinguishable ex-ante.

In the next section we formalise our model as an asymmetric normal form 

game with two populations and random matching.

3 Game representation and dynam ic evolu­
tion o f a developing credit market

Consider the following extensive form corresponding to the situation descri­

bed above:

Lender

SA

Credit

Borrower

Lender

LM

W - M R
- F

Figure 1. Extensive forni

The lender decides whether to invest in a safe asset or to grant a loan. If the 

loan is granted the lender chooses between monitoring or not. The borrower,
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when he is given a loan, decides either to invest or to cheat. 

The corresponding normal-form of the game is:

SA

LM

I C

0 0

r r

( tt +  Oi)(H — R) — e 7t{H — R) -\-u

(tt +  a)R 7tR

( tt +  ol){H — R) — e - F

( tt +  ol)R — M W - M

Figure 2: Game G.

The three rows correspond to strategies SA (safe asset), L (loan) and LM 

(loan and monitor) respectively. The two columns correspond to strategies I 

(invest) and C (cheat).

The interpretation of each entry is straightforward. For example, strategy 

L matched with strategy I gives an expected payoff of (7r+a)i2 to lenders (the 

probability of success for a honest entrepreneur times the payment agreed 

in the case of success) and ( tt + Oi){H — R) — e to investors (the probability 

of success when effort is exerted times the net profit minus the effort cost). 

The quantity u represents the utility to borrowers of consuming the borrowed 

funds rather than investing them. The quantity F represents the disutility 

from the prosecution in the case of being caught when cheating.

Some notational conventions will be used in the formal discussion. Popu­

lation X  is the set of potential lenders. A vector x  =  {xsa-,^l->xlm) records 

the fractions of individuals in X  using each available strategy. We define 

P  = ^SA-) q = XL so that x lm  =  1 — p — g. A state of X  is then identified 

with a pair (p,q). Population 3̂  is the set of potential borrowers. A popula­

tion state (y/, yc) represents the fractions of borrowers using each of the two 

available strategies. We will identify a state in population 3̂  by y =  y/ so
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that yc = I — y-

We make the following assumptions about the parameters of the payoff 

matrices:

{t t a)R  — M  > r > W  — M  > ttR  (C l)

{ W - M - 7 r R ) ( { T - i - a ) R - W )  > {r -  (W -  M) ) {W -  ttR) (C2)

( 7 T - \ - a ) { H - R ) - e  > - F  (C3)

a { H - R ) - e  < u (C4)

(Cl) guarantees that when there are only honest borrowers {y = 1), the 

payoffs to the different strategies for population % are ordered as fol­

lows: L > LM  > S A  whereas when there are only dishonest borrowers 

this ordering is strictly reversed.

(02) and (Cl) together guarantee that every strategy, SA (for low levels of 

y), L(for intermediate values of y) and LM (for y large), is a strict 

best-reply for some range of y.

(C3) guarantees that, when all loans are monitored, I is the best-reply for 

the borrowers.

(C4) guarantees that, when no loan is monitored, C is the best-reply for the 

borrowers.

We will start the analysis by describing the set of Nash equilibria of game

G.

P ro p o sitio n  1 I f  conditions (Cl)-(C4) hold, then the game G has an in­

finite set of Nash equilibria, with two connected components: (i) a mixed 

equilibrium (0, ql, y l) ,where:

( tt -|- oc) { H  — R) — e F
=

yi =

Tr[H — R)  -f u +  F  
{W — M) — ttR  

W  — 7tR
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(a) A set of Nash of equilibria N, such that p= l and y € [0,y2], where:

r — iW  — M )
2/2 =  7(tt - f  a ) R  — W

The mixed equilibrium corresponds to the existence of a credit market. 

All of the equilibria in N imply no credit market. The problem of the exist­

ence of a credit market therefore reduces to studying an equilibrium selection 

problem in game theory.

It is important to notice that, since no strict Nash equilibrium exists, the 

game has no ESS as it has been shown by Selten (1983). It is also easy to 

check that under our assumptions about the payoff matrices, any equilibrium 

belonging to N, corresponding to the absence of a credit market, is Pareto- 

dominated by the singleton equilibrium.

The game has only one subgame-perfect equilibrium as can be seen by 

solving by backward induction. Our aim here is to investigate whether the 

(subgame-perfect) equilibrium with a developed credit market is also sup­

ported as the long-run outcome of an evolutionary process in which (at least 

part of the) agents behave myopically.

4 Replicator dynam ics w ith  myopic players

Let US start with the polar case in which all agents are myopic. It is import­

ant to note that the specification of the selection mechanism, that controls 

how myopic agents adjust their strategies, plays an important role. We can 

construct examples in which the Pareto-superior equilibrium is dynamically 

unstable (i.e. has a repulsive nature) as well as examples in which it is asym­

ptotically stable. The traditional replicator dynamics are a borderline case. 

For the game G, they take the form:

p  =  p[r -  TT/end]

q = q[y{7T +  a)R  +  7tR{1 -  y) -  TT/end] 

ÿ  —  2 / [ ( l  ~  p ) ( ( ^  4 -  0 : ) { H  —  R) —  e) —  'Khorrow]
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where TTiend and 'Khorrow are the average payoffs for lenders and borrowers 

respectively.

P ro p o sitio n  2 (Dynamical properties of N.) Each state of

= {(P, 9 ,P) G A 3 X A 2 IP =  1 ,g =  0 ,y G [0, y2[ } 

is locally Ljapunov-stahle. The set N ’ is therefore an attractor.

Proof - (see appendix 1).

Ljapunov-stability implies that if a small perturbation occurs when the 

state of the system belongs to N \ the system will not necesarily return to 

the same Nash equilibrium, but will settle down in another Nash equilibrium 

close to it (more precisely, belonging to N). Notice, however, that this set of 

equilibria is less robust and stable than an ESS.

We consider now the mixed isolated equilibrium. Let us state first its 

dynamic properties.

P ro p o sitio n  3 Under the conditions (Cl)-(C4), the isolated Nash equili­

brium (0,çi,yi) is a rest point belonging to the centre (linear) manifold J

J  C As X A 2, J  =  {(p,Ç, y) € A3 X A 2I p =  0}

Furthermore, the centre manifold J  is an attractor in the neighbourhood

o /(0 ,g i,p i) and, more in general, is an attractor for all points in J  such that:

*/ \ r — (W  — M )-\-q{W  — M  — 7tR)
+ a)i? - vy + q { W  -  irR) ^

Proof - see appendix 2.

It is easy to see that dy*(q)/dq > 0 and (Py*{q)/dq'^ < 0.

Although the isolated Nash equilibrium is not an ESS it satisfies cer­

tain stability condition common to all mixed Nash equilibria which are Nash 

Pareto-Pairs: Let us consider a two-player normal-form game G =  (2, Sx, Sy, A, B), 

where Sx is the set of n pure strategies available to player 1, is the set of 

m pure strategies available to player 2, A and B are the respective pay-off 

matrices. Game G is played by two populations X  and y .
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D efin ition  1 A strategy distribution (û, v) is said to he a Nash-Pareto Pair 

if  and only if the following conditions hold:

(i) (Û, 0) is a Nash equilibrium, so that

Av > u^A v (for all u) and 

v^B ^ü  > v^B ^û  (for all v)

(a) stability condition: for all states (u,v)  € A„ x such that equality 

holds in (i):

u^A v > u^Av  => v^B ^u  < v^B ^u  and

v^B^u > v^B'^u => ti^Av < u^Av

The intuition behind the stability condition is that both sides cannot be 

better off after a deviation. If a deviation is profitable for one side, the other 

is penalized. Hofbauer and Sigmund (1988) show that Ljapunov-stability is 

a necessary condition for an equilibrium to be Nash-Pareto.

Since the isolated equilibrium is a Nash-Pareto pair, borrowers and len­

ders cannot simultaneously gain from a deviation from equilibrium. Small

deviations that occur when the system is at the equilibrium are not correc­

ted by the selection mechanism, and the system starts periodically oscillating 

about the Nash equilibrium. One could argue, however, that the equilibrium 

state preserves a relevant economic interpretation. It can be shown (Schu­

ster et alia, 1981) that the time average of the orbits correspond to the 

equilibrium. So, if we ignore the short-run fluctuations of the economy, we 

could conclude that the polymorphic Nash equilibrium can be regarded as 

an average state of the system.

Under deterministic dynamics the basins of attraction for each absorbing 

set of the system are disjoint subsets of the state space. Computer simulations 

of the model, when the agents follow replicator dynamics, show that

a) (0, Ç2? Î/2) is the only state in N that is adjacent to the basin of attraction 

of J and
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b) All those states in J with i/ =  0 are adjacent to the basin of attraction 

of the set N.

b) All those states in J with ç =  1 and y < y2 are adjacent to the basin 

of attraction of the set N.

In order to make more precise stability statements, we need to be precise 

about the mutations envisaged. Like Foster and Young (1990),Kandori et al. 

(1993) and Young (1993a) we focus on the effect of permanent rather than 

transient mutations. But we are more restrictive than they and simply as­

sume that with some positive arbitrarily small probability each agent expe­

riments with a strategy different from that he would otherwise play. This 

essentially amounts to ruling out that a strategy can die, in the fashion of 

Foster and Young (1990). In other words, we assume that every ‘wall’ is 

a reflecting boundary, such that, when the selection mechanism pushes the 

system close enough to a border, ongoing experimentation generates an op­

posite force which maintains the state of the system in the interior of A3 x A 2.

Figure 3 represents the state space: Each state is given by a 3-tuple 

(p,q,y); the first two elements (p,q) ( the horizontal dimension) representing 

the state of the population of lenders. The vertical coordinate, y, corresponds 

to the state in the population of borrowers. The thick segment is the set N 

of Nash equilibria and the point e represents the isolated Nash-Pareto pair.
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(0 ,0 ,1) ( 1,0 ,1)

(0 ,0 ,0) lïÂ Ô J
Figure 3.

Let us consider a neighbourhood of a state belonging to N. The replicator 

dynamics would push the system to a stationary point in N’ ( p =  1,t/ < 

^2). However, given the reflecting nature of the boundaries, the system is 

prevented from reaching such an edge. Instead, due to ongoing mutations, 

a constant (arbitrary small) proportion of agents keep playing L and LM. 

Though proportions q and (1 — p — q) do not increase in the population, 

because of their lower than average fitness (as far as y < 7/2), they remain 

positive; in particular we assume:

q = n , 1 — p — q = m

where n and m are the probabilities that each agents experiment with L 

and LM, respectively. The existence of experimentation in the population of 

lenders affect the payoff of borrowers. We recall that the dynamic equation 

of y is simply obtained as the difference between the payoff of the strategy I 

and the average payoff for population 2, or:

ÿ =  yi'^i -  narrow) =  2/(1 “  F)[{m +  n)qi -  n]

n{l -  qi)
ÿ > 0  m >
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When the experimentation is intensive enough in monitored loans, the en­

vironment is favorable for good behaviour from borrowers and makes the 

strategy I increase. This ultimately drives the system away from N’. In fact, 

when due to the increase of y a neighbourhood of the critical state (1 ,0 ,2/2) 

is reached, the strategy SA starts giving a lower than average payoff (parti­

cularly, lower than LM) and credit activity starts growing with both y and 

(1-p-q) increasing ( see Figure 4). The set of Nash equilibria N’ is not robust 

against experimentation, when the boundaries are ‘reflecting’ rather than 

absorbing.

(1,0 ,1)(0 ,0 ,1)

(0 ,0 ,0)
Figure 4.

Clearly, the same does not happen when experimentation is relatively inten­

sive in unmonitored loans, against which the strategy ‘cheating’ exhibits the 

highest fitness. In this case, the system converges to the Nash equilibrium (1, 

0, 0). However, when any pattern of mutation is allowed, the strategy SA, 

the only which is played by population X  in the set of NE, can be ‘invaded’ 

and such equilibria are not robust to the introduction of mutants. In this 

case the economy leaves the trap of missing credit market.

When we allow for mutations/ experimentations of the type seen before 

(reflecting boundaries), we can appreciate that the wall J is evolutonarily 

more robust than the connected set N ’. Again, we assume that every agent
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experiments by using the non-played strategy (SA in this case) with a small 

probability. Let us focus first on orbits which are entirely contained in the 

region of the space in which y > y*{q) (see Figure 4). This implies that 

the outside option has a lower than average fitness and the selection mecha­

nism never amplifies, but in fact dampers, the effects of the experimentation 

process.

When the selection mechanism brings the system arbitrarily close to J, 

experimentation keeps it at a constant distance a from the boundary. When 

this distance is reached the dynamic equations become:

p =  0
/ \ q^ij^lend

q = q[T̂ L -  T̂ lend)-----------------------
i  — CL

ÿ  ~  '^boTTOw)

with p = a (time invariant), tt»- denotes, as before, the payoff of strategy i. 

The second term in the left hand side of q captures the process of experi­

mentation.

In order to keep p constant at a and maintain the reflecting nature of 

the boundaries, it is necessary to assume that mutations into strategy SA 

occur at a rate a^TTborrow ~  '^ s a )^ s o  as to offset the effect of the selection 

mechanism. It seems natural to assume that every agent, independently of 

the strategy which he is playing, experiments with the same positive pro­

bability. Accordingly, a proportion q /( l  — a) of mutants consists of people 

who should have played, following the replicator dynamics, the strategy L, 

whereas a proportion (1 — a — g )/(l — a) consists of people who should have 

played LM (the missing dimension). After substituting and rearranging, we 

can rewrite the previous system as follows:

q =  q { l - z - ^ ) { W - 7 r R ) { y - y i )  
i — a

ÿ = y{Tr{H -  R)-h u F ) { 1  -  y){qi{l -  a) -  q)
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It is easy to check that this system also admits a constant of motion, 

namely is represented geometrically by a set of closed loops about the equi­

librium {qi{l -  a), yi).

In summary, the existence of experimentation does not destroy, contrary 

to the case of equilibria with missing credit market, the Ljapunov stability 

nature of the polymorphic equilibrium. The requirement that the system 

does not hit the boundary is inessential when the system converges to an 

orbit of a small enough amplitude. Important changes occur instead when 

we consider orbits with a larger amplitude. The previous proposition makes 

it clear, that when the proportion of cheats is relatively high {y < y*{q)), J 

ceases to be an attractor (figure 5).

(1,0,1)(0,0,1)

(0,0 ,0) IÎÂÔT
Figure 5.

When moving along orbits of high amplitude, the system periodically 

enters the region [y < y*{q)) characterised by a high rate of cheating and 

bankruptcy.^ Here, the outside option turns out to be relatively profitable 

and the system falls, when boundaries are reflecting, into a progressive credit 

crunch. Notice, however, that this process does not lead to the complete

^We should stress here that the model associates a positive the rate of cheating with 
the rate of bankruptcy, and both of them change negatively the aggregate level of output 
and income. This is because the expected profit is higher the higher the effort exerted.
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disappearence of credit activity. It is destined to revert to a new stage of 

credit expansion accompanied by a reduction of the rate of bankruptcy (see 

figure 5). The basin of attraction of the set N, under deterministic dynamics, 

is adjacent to J only in the edge (0, g, 0) for all q and (0,1, y) for all y < y2 - 

All other states arbitrarily close to J are destined to be mapped into long run 

states belonging to J itself. It is important to notice that episodes of credit 

crunch are observed only if the orbit’s amplitude is large enough to cross the 

critical value y*.

In this section we have shown that it is possible to obtain episodes of 

credit crunch, followed by full development of the credit activity. The less 

appealing feature of this result is that it relies on player’s experimentation 

with non-played strategies. Imitative processes have the property that only 

existing strategies can be emulated. Once a strategy has dissappeared there 

is no way it appears again unless some type of experimentation is assumed. 

In the following section we show that it is posible to obtain the same quali­

tative behaviour without relying on mutations. We will assume that a tiny 

proportions of players behave rationally,i.e, they play Nash equilibrium. The 

role played by the rationals is to ‘resurrect’ strategies which have died or 

which have never before been employed. The appearence of a new stratat- 

egy,what will happen only if it is profitable, will be followed by the imitation 

by the myopic players.

5 R eplicator dynam ics w ith rational players

In this section we assume that the populations are made up by two types 

of players. A large proportion of players behave myopically, following the 

very simple imitative behaviour described in the previous section. A small 

proportion of players are rational. This last type of players always play Nash 

equilibria. Although very similar results could be obtained assuming that 

some players play ‘best reply’ to the current distribution of strategies, we
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think that our two types captures better the distintion we want to make 

between non rational and rational players. Best reply behaviour is not but 

another degree of myopia.

We assume that a certain proportion of players, a in the population X  

(lenders) and r  in the population y  (borrowers), behave rationally. The ra­

tional players are characterized by their ability to compute and play optimal 

strategies for the one-shot game. They always played a Nash equilibrium 

given the distribution of myopic players.

The effect of the presence of rational players is two-fold. On one side there 

is a shrinkage of the absorbing sets. On the other side the rational players 

render the mixed equilibrium asymptotically stable under replicator dyna­

mics (see chapter 3). We would like to emphasize that this result also holds 

for another specifications of the replicator dynamics, the only requirement 

being that the proportion of rationals is large enough.

We analyze the absorbing sets when proportions a (in %) and r  (in 3̂ ) are 

introduced and compare them with those of the system without rationals, N 

and J. Let x=(p, g) G (1 — (r)A3 be the vector which describes the myopic 

players in population X .  The vector X =(p’‘, g’’) G (rAg describes the rational 

agents’ behaviour in population %, it represents the rational players’ optimal 

behaviour given the state of the system. The vectors y=y G (1 — t)A 2 and 

Y =î/’’ G tA 2 fulfil the same roles for population 3̂ . A state of the system 

(only myopies) will be represented by a vector (p, g, y). The observed state 

is, therefore, (x+X ,y+Y ).

We now characterize the absorbing sets of the system when the propor­

tions of rational players in populations X  and 3̂  are a  and r  respectively.

i) =  { ( p , 9 , y )  €  (1 -  cr )A3 X (1 -  t ) A 2  I p  =  1 -  <7,2/ G [0,2/2 - 't]} 

and
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ii) J<7,T =  {(p,9,y) € (1 -  o-)A3 X (1 -  r )A 2 \ p = 0,q e [qi -  a,qi], 

y E [yi -T ,y i]}

Assume that the state of the system is in The state of the system is 

such that whatever the rational players from population y  do, the observed 

state will be y +  < y2- The proportion of ‘cheats’ is such that the most

profitable statrategy is SA. States in Ao,o/A^,T are in the basin of attraction 

of the basin of attraction containing the polymorphic equilibrium. When all 

the rational in y  play I, it becomes profitable for the rationals in X  to start 

granting monitored loans which incentives the good behaviour on the other 

side. The presence of rational players has the effect of making the system 

more easily invaded by mutations that are intensive enough in monitored 

loans.

Let us consider the set Once the strategy SA has been killed off by 

the selection mechanism, the results for 2x2 asymmetric games (see chapter 

3) apply and we know that asymptotic convergence to a Nash-Pareto pair is 

guaranteed under replicator dynamics. Since Ljapunov stability is preserved 

when the boundaries are reflecting, it should be also clear that the argument 

carries over to the case in which rational players are introduced. By simply 

applying the results of our previous chapter we can conclude that in the case 

of replicator dynamics the introduction of rational players turns the Ljapunov 

stability property of the Nash-Pareto pair into asymptotic stability. As we 

will see in one of the simulations reported in the last section the role of the 

rational players may be desestabilizing. It is possible that a ‘jum p’, due to 

the joint reaction of the rational players, pushes the system into the basin of 

attraction of the Pareto inferior equilibrium (the dissapearance of the credit 

market).

The presence of a small proportion of rational players makes possible to 

obtain periods of recesion and credit crunch without the need of assuming 

any type of experimentation or mutations. Rational players will always be 

followed by the myopic players. The role played by the rationals will be to
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resurrect non played strategies whenever they are the best paying strategies. 

The analysis of the previous section applies here although the locus of critical 

values is now y = y2 instead of y*{q) > y2 -

6 Empirical evidence

Our dynamics admit an economic interpretation in terms of the theory of 

financial crises. In his analysis of the Great Depression, Bernanke (1983) 

observes that the fall of output and adverse development in American ma­

croeconomy was accompanied by “exceptionally high rates of default and 

bankruptcy affected every class of borrower except the federal government”. 

Bernanke argues that the financial system did not simply respond without 

feedback to declines in output, as it is confirmed by the fact that problems of 

the financial system tended to lead to output declines. In fact, according to 

his analysis, the initial fall in output was dramatically amplified by a subse­

quent period of credit contraction, in which banks switched out of loans and 

into more liquid investments.Bernanke observes that “Credit outstanding de­

clined very little before October 1930, this despite a 25 percent reduction in 

industrial production that had occurred by that time. W ith the first ban­

king crisis of November 1930, however, a long period of credit contraction 

was initiated. ... In October 1931 ... the net credit reduction was a record 

31 percent of personal income” (p. 303). The response of the banks to the 

crisis and the increasing number of defaults was not to make loans to some 

people that they might have lent to in better times. “For example, it was re­

ported that the extraordinary rate of default on residential mortgages forced 

banks and life insurance to practically stop making mortgage loans... This 

situation precluded many borrowers, even with good projects from getting 

funds ... Money (was) available in great plenty for things that are obviously 

safe, but not available at all for things that are in fact safe, and which under 

normal conditions would be entirely safe, but which are now viewed with
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suspicion by lenders... The idea that the low yields on treasury or blue- chip 

corporation liabilities during this time signaled a general state of easy mo­

ney is mistaken; money was easy for a few safe borrowers but difficult for 

everyone else” .

An apparent problem in applying our model to the analysis of developed 

countries issues such as the Great Crisis seems to be the assumption of ab­

sence of collateral held by borrowers. However,even in a developed country, 

many investors have in fact less collateral than it would be necessary to in­

sure the lenders against the event of default. In particular, Bernanke stresses 

that an important effect of the crisis of the 30’s was the erosion of borrowers’ 

collateral, especially of small firms and householders. These were precisely 

the categories of borrowers who suffered the effect of credit rationing. It 

seems to be reasonable for modelling purposes to characterise the world as 

consisting of two types of agents: the ‘ultrasafe borrowers’ (large firms, go­

vernment), who kept receiving funds from lenders in the form of what we call 

safe asset^, and the other borrowers, who became particularly vulnerable in 

the 30’s because of the phenomenon of the erosion of collateral. Our model 

seems to be applicable to this important segment of the market.

We can think of a real negative shock as the moving event, whose effect 

is a fall in the probability of success of each project (tt in the payoff matrix) 

regardless of the effort taken. Let us assume that this event occurs when the 

system is in a long-run state described by an orbit (about the polymorphic 

equilibrium) of small enough amplitude to be stable against experimentation 

or against the presence of rational players. A fall in tt has two effects: it moves 

the mixed Nash equilibrium to the North-West (^yi/^7r < 0, SqilSir > 0) and 

it shifts the schedule y*{q) and t/2, upwards (see figure 6). Let the orbit o

^We can rationalise our story more precisely by imagining that in normal conditions a 
certain share of total credit is granted to risky projects, which is the part of the market 
which we focus on in our model. When lenders choose the strategy ‘safe assets’ they 
switch resources that are normally given to risky borrowers to ultrasafe investors. This 
is, according to Bernanke, what happened in the 30’s, as it is confirmed by the downward 
pressure on safe assets’ interest rates.
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be the long-run pre-shock equilibrium. Notice that it lies entirely above 

the schedule 2/*(g;7r), which guarantees that Ljapunov stability is preserved 

under mutations. Let us suppose that the shock hits the system when it 

is in the downturn of the cycle, say at point a. This shifts the post- shock 

NE from e to e', the relevant orbit from o to o' and the locus of critical 

points from y*{q\ tt) to y*\q\ tt') .  In the case represented, a becomes unstable 

against experimentation. As some lenders move to the outside options, others 

realize that this is a good choice and follow them, provoking a progressive 

credit crunch. Even in a case in which the productivity shock is reabsorbed 

soon, the credit crunch and the sluggish adjustment can make its effects long 

lasting before a new long run state without credit rationing emerges.

(1,0 ,1)(0 ,0 ,1)

(1,0,2/2 )

(0,0,0)

Figure 6.

The most interesting feature of the transition between Nash equilibria is 

that it is characterized by periods of credit crunch and recession followed by 

recovery and credit expansion which lead to a new long run equilibrium with 

the credit market fully developed.

In brief our model formalises in an evolutionary fashion Bernanke’s ideas 

about the relation between real and financial crises as well as his interpreta­

tion of the persistence of the crisis.
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7 Sim ulations

In this section we report the results of our simulations. The payoffs we have 

considered, which satisfied (C1-C4), are:

SA

LM

I C

1 1

3 3

4 7

5 0

4 0

4 2

Figure 7.

Figure 8 shows a case in which when all players are myopic, r  =  (j =  0. 

The system is initially in a state of full development of the credit market. 

The credit crunch starts when some people experiment with the strategy 

that is not played. If the experimentation occurs when the rate of cheating is 

high enough (under the critical relation y(q\ tt) it will be followed by a period 

of recession after which the credit market develops again. The reduction of 

the loans is accompanied by a higher proportion of monitored loans which 

incentives the good behaviour (Invest).

Figure 8 here.

Figure 9 shows the case in which a shock moves the Nash equilibrium 

to the North West. The previous equilibriums is such that, under the new 

conditions, the best strategy is SA. The rationals start reducing the number 

of loans they grant. After a period of recession the new mixed equilibrium is 

reached.

Figure 9 here.

Figures 9.1, 9.2, 9.3, 9.4 and 9.5 show the behaviour of SA, L, LM, 1 and C 

respectively. The discrete jumps are the result of the reaction of the rationals.
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A t f  =  0 there is a productivity shock which changes the fundamentals 

of the economy. At the pre-shock equilibrium the strategy L is no longer 

profitable and all the rationals ‘jum p’ and play the strategy SA (which before 

was not played by anyone). Some myopic players follow the rationals and 

SA starts growing. The system reaches a state in which the proportion of 

monitored loans relative to unmonitored ones is such that the best strategy 

for the rational borrowers is to Invest. It arrives a moment (t = 4) when 

SA is no longer the best strategy. This will happen when the proportion 

of honest players is such that granting monitored loans is more profitable 

than the investment in the safe asset. The monitoring incentives the good 

behaviour. The new equilibrium is reached with more monitored loans and 

higher proportion of honest borrowers. The period of credit rationing emerges 

during the transition between equilibria.

Figure 9.1 , 9.2, 9.3, 9.4, 9.5 here.

Figure 10 reports a case where the rationals play a distabilizing role. The 

proportions of rational players are ‘too large’ and have an undesirable effect. 

When the rationals resurrect the startegy SA they provoke a jump into the 

basin of atraction of N. Initially the proportion of non-monitored loans is 

very high and remains high for a period due to the slow imitative process. 

‘Cheat’ tend to grow what makes SA more and more profitable. In a certain 

moment the system enters a state where I is played by the rationals but the 

proportion of cheats is too large to revert the tendency towards the credit 

collapse.

Figure 10.

Figures 10.1-10.4 represent the behaviour of the safe assets, loans, moni­

tored loans and Invest, respectively.
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Figure 8.
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Figure 9
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Figure 9.1. Dynamics of Safe Asset
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Figure 9.2. Dynamics of Loans
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Figure 9.3. Dynamics of Monitored Loans
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Figure 9.4. Dynamics of Invest
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Figure 9.5. Dynamics of Cheat.
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Figure 10
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Figure 10.1. Dynamics of Safe Asset
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Figure 10.2. Dynamics of Loan,
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Figure 10.3. Dynamics of Monitored Loans (LM)
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Figure 10.4. Dynamics of Invest
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Under replicator dynamics players choose their strategies based only on 

information about current payoffs. In the the last part of chapter 4 we study 

the effect on the equilibrium selection of the presence of a small proportion 

of more sophisticated players. We could think of the existence of some play­

ers which, due to a higher degree of sophistication or to smaller costs of 

gathering information, use the information regarding to the state the system 

and not only the information about current payoffs. Players could simply 

follow myopic best reply or, under stronger assumptions of rationality, some 

anticipatory behaviour as in Banerjee and Weibull (1991). The effect on the 

dynamics and on the equilibrium selection of the introduction of a small pro­

portion of either rational players (who play a Nash equilibrium of the one 

shot game) or myopic best-repliers is very similar. This happens because, due 

to the inertia in the system, players playing best replies to the current state 

of the system behave ‘as if’ they played Nash equilibrium strategies most 

of the time. In both cases, the introduction of the ‘sophisticated players’ 

allows the resurrection of unplayed strategies without relying on mutations 

or experimentation.

In proposition 2 of chapter 3 we have shown that the presence of a small 

proportion of rational players renders the mixed equilibrium asymptotically 

stable. The convergence result rests on the collective rationality of the ratio­

nal players who ‘coordinate’ to play the mixed equilibrium. This assumption 

is clearly very strong in a model which pretends to explain the emergence of 

Nash equilibria in a world of boundedly rational players. Yet, very similar 

results are obtained under the assumption that the ‘sophisticated’ players 

select best replies to the current state of the system.

The following corollary to proposition 2 proves the convergence of the 

system to a cr-neighbourhood of the mixed equilibrium when a cr-proportion



of players use myopic best replies. All the results concerning the equilibrium 

selection and the dynamics with a cr-proportion of rational players hold true 

with a cr-proportion of players who follow best reply dynamics, provided that 

a is small enough.

C oro lla ry  1 Let be the completely mixed Nash Pareto Pair of Game

1 (figure 1 in chapter 3). Let a and t  be the proportion of players who follow 

myopic best reply in populations % and y ,  respectively. All other players 

follow replicator dynamics (erf (1) and (2), p. 125). When a > 0 or a > 0 

there exists a T  < oo such that

{UtjVt) € Sa,r{u*,V*) ^  t > T

where

Sa,T{u*, t;*) C =  {(u, u)|u € (u* — cr, u* + cr) and u € (u* — r, v* A r)}

P ro o f  We consider the case cr > 0 , r  =  0. Thus T  =  0 in equations (1) and 

(2). Now X  takes values cr and 0 because under myopic best reply all players 

select the same pure strategy. The behaviour of tha ‘best repliers’ only differs 

from that of the ‘rationals’ in Sa,o{u*.,v*) where the latter would coordinate 

to play the mixed equilibrium. The argument in proposition 2 ensures that 

from any (uo,uq) the system enters Sa,o{u*,v*). Let us assume that the first 

state in Scr,oiu*.,v*) which is reached under (1) and (2) is z. W ithout loss 

of generality let us assume that z =  (u* -j- cr% u*) where 0 < cr' < a. At z 

all best repliers, which before were playing Up, play Down and the system 

jumps from z into z' = {u* — (cr — At z' the best reply is Up and

the system jumps again into z and so on. The extension to the case in which 

r  > 0 is straightforward. □

The previous corollary guarantees that with a cr-proportion of best-repliers 

the dynamics converge to a cr-neighbourhood of the mixed equilibrium. The 

dynamics at any other state of the system are the same that those obtained



with a cr-proportion of rational players. The fact that there is inertia in the 

system guarantees that myopic best repliers almost always play Nash equili­

brium strategies. The only states where the behaviour of the rational players 

and that of the best repliers differ are those where rationals ‘coordinate’ to 

play the mixed equilibrium. The corallary applies to those states.



8 Conclusions

In this chapter we have developed an evolutionary model of a credit market. 

The model predicts periods of credit rationing followed by a fully active 

credit market. The main limitation of our model is that there is no explicit 

role for financial intermediation because each lenders finances, under direct 

lending, a whole project. In Williamson (1986) financial intermediatiors arise 

because with direct lending there is a duplication of monitoring costs. Each 

borrowers borrows from several lenders, and each of them monitors in case of 

default. Extensions of the model could consider more explicitely this aspect 

of ‘delegated monitoring’ and study more sophisticated micro-foundations of 

the simple model proposed.

However, we believe that such extensions would not alter the main idea 

of the paper. Credit rationing can be explained as a non-equilibrium phe­

nomenon within an evolutionary framework with exogenous real shocks. In 

particular, credit crunches are observed during the process of adjustment 

towards the post shock equilibrium. The advantage of this approach with 

respect to the equilibrium analysis a la Stiglitz and Weiss (1981) is that it 

allows to fully characterize the dynamics of a credit cycle, as opposed to just 

rationalizing the existence of credit rationing.

Although the evolutionary elements of the model model are not very 

realistic whenever long-term relations are important, we have argued, in line 

with Bernanke (1983) that such long-term relations are of little importance 

in significant segments of the credit market where information about agents’ 

past behaviour is either inexistent (newcomers) or unreliable. An example 

of such a market is the market for loans to new investors and small firms. 

We provide some evidence about the credit cycles observed during the Great 

Depression.
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9 A ppendix 1

Consider any state n £ N'. In any point contained in the neighbourhood of 

n the selection mechanism make SA increase and both L and LM decrease 

in the population. In fact, (Cl) guarantees that SA is dominating strategy 

when y < y2 . That LM decreases in the population can be proved by the 

fact that, as p % 1 and g % 0, the payoff of LM is lower than the average 

pay-off if and only if:
r — (W  — M)

%i< ( tt 4- a)R  — W
This is always the case for points in N’, since the right hand side is y2 . That 

L decreases in the population descends trivially from the fact that L gives the 

lowest pay-off amongst the strategies available to the lenders in the interval 

considered. □

10 A ppendix 2

First, we prove that the dynamic system restricted to the absorbing set J 

(subset of that is invariant, describes a continuum of closed orbits sur­

rounding the point (0 ,çi,y i). This proves that J is a centre manifold of the 

dynamic system defined on Z. To prove this, we show that the system is 

‘Hamiltonian’, that is there exists a function H[qt^ yt) defined in the interior 

of J, such that:

H{quyt) =  0 

H{qt,Pt) =  const

This function attains its maximum at the equilibrium (0, çi, î/i ). The con­

stant level sets

{{q,y) e intJ\H{q,y) = const} 

are closed orbits around the equilibrium ( Hofbauer and Sigmund (1988)).
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It is easy to verify that the function:

H{q,y) =  [{W — M) — 7tR] Iny +  M  ln(l — y) +  [(tt +  ct){H -  R) — e F]\nq

— -R) +  u — ( tt +  Oi){H — R) — e] ln(l — q)

satisfies these conditions. Next, we show that in a subset J ’ including 

(0 ,9i, yi) of the absorbing set J is attractor. We prove this by showing the 

existence of a local Ljapunov Function and appealing to the Ljapunov theo­

rem that states: Let V : Z' R  {Z  ̂ is defined in the text) be continously 

differentiable. If for some solution t —> x(f), the derivative V’(t) of the map 

t y(x(^)) satisfies the inequality V \ t )  > 0, then:

w(x) n Z ' G {x G Z '|ÿ (x  =  0}

(all orbits starting in Z’ converge to J). The proof can be found in Hofbauer 

and Sigmund (1988), page 49. In our case, such a function exists and is of 

the form:

^ (p ,9 ,y ) =  q\nq-\-(l -  g)ln(l -  9 ) +  A:[ylny +  (1 -  y)ln(l -  y)] 

whose time derivative is:

V  =  p[W — M  — r y a) R — W) k(yI — y)[e — c — F  — ( t  -{■ Oi){H — R)] 

where:
. W  — ttR
k =

tt(H — R) - \ - u  F
It can be easily verified that: (i)V'(t) =  0, when (p, q, y) have the same 

support as the equilibrium (namely, when p =  0); (ii)V'{t) > 0, when p > 0 

and
 ̂ r  — (W  — M)  -f yiA;[c +  (tt +  a){H — R) — e-\- F] _  ^

(TT + a ) R - W  + k[c + {ir + a ) { H - R ) - e  + F] "

This proves that the centre manifold is attractor for all (g, y) G J , such that

y > y*. The last thing to prove is that yi > y*. If this is true, then ‘close’ to
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the equilibrium point the selection mechanism ‘pushes’ the economy towards 

the centre manifold. The previous inequality can be rearranged to give:

r — {W  — M)
^  ( t t  + a ) R - W

By substituting the expression of yi, this becomes:

W  — M  — 7tR  ^  r  — (W  — M)
W  — ttR  ( tt + a)R  — W  

that is guaranteed by assumption (C2). □
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