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Abstract
Matched filters for optical correlators detect the presence of objects immersed in 
white noise, but are unable to discriminate between similar, noisy input patterns. 
Also, the dynamic range of optical systems often limits the size of the images 
th a t can be recognised. We develop two algorithms for designing filters for optical 
pattern  recognition. The first algorithm suppresses the similarities between the 
training images and creates a set of filters, which are m utually orthogonal to them. 
Our filters tolerate 7 dB more additive input white noise than  matched filters and 
the required dynamic range is reduced by 25 dB. In addition, the filters obtained 
after only two iterations tolerate 2 dB more additive input white noise than linear 
combination filters (LCF), which results in an improvement in the probability of 
discrimination of about 30% for the same amount of noise. The correlation outer 
products for the 2 iteration Similarity Suppression (SS) algorithm are substantially 
lower than  those for the LCFs. The second, Feature Enhancement and Similarity 
Suppression (FESS), algorithm designs filters for multi-class pattern  recognition. 
Each of these filters can recognise all the members of a group and distinguish them  
from other groups. The probability of recognition for a training set of faces is 100% 
w ithout noise, compared to 90% using matched filters and the required dynamic 
range is again reduced by 25 dB. We prove the m athem atical equivalence between 
these algorithms, the back-propagation algorithm for training neural networks 
and the method for designing general synthetic discriminant functions (SDF). 
Our algorithms also design filters for two or more cascaded banks of correlators 
and can train  multilayer neural networks. Conversely, m atrix inversion methods, 
which are generally used for designing SDFs, can train  neural networks and give 
the same results as obtained with the back-error propagation algorithm.
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Chapter 1

Introduction

In this thesis we develop two algorithms for designing filters for optical pattern  
recognition. We investigate their performance using theoretical calculations and 
computer simulations. In addition, we compare our algorithms to relevant exist­
ing techniques for designing filters for optical pattern  recognition and to neural 
network training algorithms.

The original aim of this project was to develop an optically implementable 
algorithm for training neural networks. This was based on an initial version of 
one of our algorithms for designing filters for optical pattern  recognition, which 
was based on the Gram-Schmidt orthogonalisation procedure, and on the already 
known relationship between neural networks and optical correlators [4]. Our initial 
aims were to further demonstrate, develop and improve our algorithm and to  assess 
its limitations. To investigate whether it could be used to tra in  neural networks 
and its relationship to other neural network training algorithms. And to design 
and build an optical system which would implement our training algorithm.

Various reasons, most im portant among which being the interesting results 
we obtained from our computer simulations and the theoretical comparisons with 
other training algorithms and filter design techniques, led us to emphasise the 
theoretical part of the project. In addition, we focused on the optical filter design 
side of the project and not on the neural network side, because of the currently 
higher interest in optical filters rather than optical neural networks. In the fol­
lowing paragraphs we present some background information on the relevant fields, 
namely optical pattern recognition and neural networks, which will help us place 
our work in the context of related research.

Optical pattern  recognition has been a vibrant field of research over the last 
forty years [5]. Correlation [6, 7], a very well known m athem atical m ethod for 
comparison, is very often used for optical pattern  recognition. Optical correlators
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have the advantage th a t they are very fast compared to computers. This speed 
advantage is a consequence of the inherent parallelism of optics and the speed 
of light. Moreover, there are optical correlators, which can correlate many im­
ages with one in parallel [8]. The most im portant component of any recognition 
system based on a correlation is the tem plate, or filter, with which the input p a t­
tern is compared. This filter depends on the correlator implementation (optical, 
electronic, hybrid etc.). Some optical correlators use filters in the space domain 
[9, 10] and others in the Fourier domain [5]. Furthermore, the filters depend on 
the particular task at hand. Some systems’ prim ary aim is to detect the pres­
ence of an object in a noisy background. For example, matched filters, which are 
the complex conjugates of the spectrum of the original patterns, are optim al for 
detecting signals in white, Gaussian noise [11]. The aim of other systems is to 
recognize the presence of any one of several patterns in the input, for example, 
SDF filters [12, 13, 14, 2] and optimal trade-off filters [15, 16, 17]. O ther systems 
aim to distinguish between very similar objects, for example, mutually orthogonal 
filters [18]. All of these are not completely different tasks, on the contrary, they are 
inter-related and many filters are designed with all of these aims in mind. Most 
of the previously mentioned filters are linear combinations of training patterns 
and their design methods are based on solving a set of simultaneous equations, 
to calculate an array of coefficients. These coefficients can then be used to lin­
early combine the training patterns, to create the filters in such a way th a t their 
correlations with the input patterns yield the desired output values.

Neural networks [3] are simplified models of the human brain. They consist of 
many simple processing units called neurons. These neurons are interconnected 
with connections of different strengths. The strengths of these interconnections 
are called weights and determine the behaviour of the network. The methods 
for modifying these weights are called training algorithms. Most of them  are 
iterative and they apply a m athem atical rule to modify the network’s weights, 
usually based on a number of training examples. Sometimes, these m athem atical 
rules are rather complicated. In addition, many iterations and a large number of 
training examples may be necessary for the network to yield the desired outputs. 
Therefore, the training of a neural network is often a time consuming process. 
Furthermore, as the desired network behaviour may change with time, the network 
may need to be retrained.

These disadvantages of the neural network training process and the known 
structural equivalence between optical correlators and single layer neural net­
works, were what initially motivated us to s tart this project. An algorithm which 
could be implemented optically and could be used to train  neural networks would 
use the advantage of the speed and the parallelism of optics to speed up the pro­
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cess of training neural networks. During the project, we decided not to  work on 
the practical optical system to implement our training algorithm, but instead to 
concentrate on the algorithm development. Also we shifted the emphasis from 
neural networks to optical filters and we investigated the relationship between 
neural network training algorithms and optical filter design techniques using our 
algorithms as an intermediate step for the comparisons, which led to some very 
interesting results. So our revised, final aims are summarised below:

1. To further demonstrate, develop and improve our algorithm.

2. To assess its limitations.

3. To develop, demonstrate, and assess the lim itations of a second algorithm 
which addresses the problem of multi-class pattern  recognition.

4. To investigate the relationship between our algorithms and some neural 
network training algorithms.

5. To compare our algorithms to some relevant optical filter design techniques.

The layout of this thesis is as follows: We start with some background theory 
and a review of some of the relevant research, in the next three chapters. Then 
we present our work and we finish the thesis with our conclusions. Specifically, 
the next chapter contains some introductory theory on optical correlators. We 
briefly describe the 4-f correlator and the joint transform correlator. This chapter 
is useful for the reader who has no prior knowledge of optics, and particularly 
correlators. A reader who is already familiar with these can proceed straight 
to the next chapter. Chapter 3 presents some of the most relevant methods for 
designing filters for optical pattern  recognition. In chapter 4 we present some 
introductory theory on single layer and multilayer perceptrons. This is a theory 
chapter, aimed at the reader who has no neural network knowledge and can be 
om itted by a reader who is already familiar with them. The next four chapters 
present our work. Chapter 5 contains the derivation and theoretical analysis of 
our first algorithm, called the similarity suppression (SS) algorithm. In addition 
in chapter 5 we theoretically compare the similarity suppression algorithm with 
relevant filter design techniques and the Hebbian learning law for training neural 
networks. In chapter 6 we present the computer simulations of the SS algorithm. 
Each section of th a t chapter presents the simulations th a t prove, or investigate 
the accuracy of the theory tha t was presented in the corresponding section of 
chapter 5. Our second algorithm, called the feature enhancement and similarity 
suppression (FESS) algorithm, along with its theoretical analysis and comparisons 
with relevant filter design methods, is presented in chapter 7. The layout of
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chapter 7 is very similar to the layout of chapter 5, so th a t the reader can make 
comparisons between the two algorithms. Chapter 8 follows, with the computer 
simulations for the FESS algorithm. An overview of our work, along with a list 
of our main achievements and new ideas, and some proposals for further work are 
presented in chapter 9. Appendix A presents some m athem atical preliminaries 
th a t are useful for the reading of the thesis. Appendix B presents the m athem atical 
analysis of the changes th a t occur to the filters’ magnitudes during the training 
with the SS and the FESS algorithms. Appendix C contains all of the training 
images used for the FESS algorithm. Finally, appendix D contains the graphs of 
the simulations of the FESS algorithm, which were not included in chapter 8.
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Chapter 2 

Optical inner product correlator 

fundamentals

2.1 Introduction
Optical inner product correlation is the tool on which optical pattern  recognition 
is based. So, in this chapter we present some elementary background theory on 
optical correlation, starting with the optical Fourier transform  and ending with 
some implementation considerations and some performance measures. In the sec­
ond section we present the Fourier transform property of a lens. In section 2.3 
we present some of the most common optical correlators. Section 2.4 describes 
the optical matched filters which were first used for optical pa ttern  recognition. 
Section 2.5 presents some principles and im portant issues concerning implemen­
tations of optical correlators. Finally, section 2.6 presents some frequently used 
performance measures for the evaluation of optical pattern  recognition filters. The 
theory presented in this chapter is aimed at the reader with no prior knowledge 
of correlators and is written with the purpose of familiarising h im /her w ith some 
correlator fundamentals, which are necessary for the understanding of the main 
work of this thesis. If the reader is already familiar with optical correlators and fil­
ter performance measures, he/she can proceed to the next chapter, which presents 
some of the filters th a t have been designed for use with these optical correlators.
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2 .2 . OPTICAL FOURIER TRANSFORM

2.2 Optical Fourier transform
According to the Fraunhofer approximation [19], when an aperture is illuminated 
with coherent light the far-held diffraction pattern  is the Fourier transform  of the 
complex aperture distribution, as shown in equation 2.1

J l  dÇdr, (2.1)
— OO

where, A is the wavelength of the light, z is the distance from the aperture and 
k =  ^  is the propagation number, the magnitude of the propagation vector, k. 
If a lens is inserted immediately after the diffracting aperture, then it focuses the 
far-held pattern  onto the focal plane. The amplitude distribution at the focal 
plane of the lens is

E {x, y) =   ̂ JJ d^drj (2.2)
— OO

where the constant phase factor is ignored and /  denotes the focal length of 
the lens. This equation is almost identical to the 2-dimensional Fourier transform 
equation shown in equation 2.3. The only difference between the two equations is

j k ( x ^ + y ^ )
the quadratic phase factor term e 2/

F { x , y ) =  [  (2.3)
J x  J y

It has been shown [19] th a t when the diffracting aperture is located at the front 
focal plane of the lens, then this quadratic phase factor is removed and an exact 
Fourier transform relationship exists between the front and back focal planes. As 
far as the inverse Fourier transform is concerned, which is shown in equation 2.4,

J { x , y ) =  [  f  F(Ç,77)e'('=*f+*=»’')dÇd)? (2.4)
J x  J y

this can be obtained by performing a forward Fourier transform  optically and then 
calculating the mirror image along the x  and the y axes of the output.

2.3 Optical Correlators
By making use of the convolution theorem^, it is possible to compute the con­
volution of two functions much faster by performing two FFTs, one inverse FFT

^See appendix A
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Figure 2.1: 4-f correlator after Collings 1987 [1]

and N multiplications instead of 2N ‘̂ multiplications th a t would be necessary for 
the convolution [20]. Even then, however, the convolution or correlation of two 
functions can be a time consuming calculation, and dedicated chips have been 
manufactured to perform them [21]. Optical convolution or correlation is very 
fast, because an aperture can perform a Fourier transform with a lens bringing it 
into the near field and giving it the correct phase. Also the multiplication is very 
easily implemented optically [22], by, for example, illuminating a sandwich of the 
two images. The speed of the optical implementation of the correlation has led to 
the design of several kinds of optical correlators.

2.3 .1  4 -f C orrelator

A very simple optical correlator is shown in figure 2.1. It is called the 4~f corre­
lator or the frequency plane correlator. The first lens is performing the Fourier 
transform of the input function, i{x, y), which is displayed on the first spatial light 
m odulator (SLM) and is illuminated with coherent light. The complex conjugate, 
F*{u, u), of the Fourier transform of the filter function, f {x ,  y), is displayed at the 
back focal plane of the lens using the second SLM. The two Fourier transforms are 
multiplied, the light leaving the second SLM is the product I(u,  v)F*{u, v), and at 
the back focal plane of the second lens, which is performing another Fourier trans­
form, the output is equal to the cross-correlation of the two functions in the space 
domain [20]. The 4-f correlator uses Fourier domain matched filtering because the 
Fourier transform of the filter must be displayed on the second SLM. Obviously 
the Fourier transform of any filter is a complex function. The photographic film 
th a t was initially used for the implementation of the 4-f correlator was not orig-
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Figure 2.2: Joint transform correlator after Collings 1987 [1]

inally [23] able to accommodate complex transm ittances. Vander Lugt^ [5] was 
the first to propose a method for bypassing the problem by using a holographic 
filter. To do that he recorded the intensity of the interference between the filter 
F{u,v)  and an off-axis reference beam. According to Kumar in [23], ''when this 
mask is placed in the back focal plane of the first F T  lens, the light leaving it 
has three distinct components [23]: First is the product kI(u ,v)[A^  4 - \F {u ,v)\ ‘̂], 
where k is a normalising constant and A is the amplitude of the reference beam, 
and its inverse F T  appears centered on the optical axis at the output plane. The 
second term is kAI{u, v)F(u, v)e^‘̂ ,̂ where a is related to the angle of the reference 
beam. Its inverse F T  is the convolution between the filter and the input functions, 
a,nd it is placed along the x-axis on one side of the origin. The third term is 
kAI[u,v)F*{u,v)e~^°‘''̂ , whose inverse F T  produces the desired correlation along 
the x-axis at the opposite side of the origin.^' Obviously the reference beam angle, 
a, plays an im portant role to the placement of the correlation at the output plane 
and a steep enough angle must be chosen to ensure good separation between the 
three terms.

2.3 .2  Join t-transform  correlator

The joint transform correlator (JTC)  [9, 10] is based on a different approach, 
where the prior Fourier transformation of the filter is not necessary. In the joint

^Vander Lugt used amplitude masks made of photographic film and not SLMs in his imple­

mentation
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Figure 2.3: O utput of the joint transform correlator after Collings 1987 [1]

transform correlator, figure 2 .2 , the input image and the filter are presented at 
the input plane of the FT lens (L3) a t the same time, and are then both Fourier 
transformed by the lens. The interference pattern of their Fourier transforms is 
recorded in a real-time recording material such as a photorefractive crystal which 
is a t the back focal plane of the FT lens. The hologram is interrogated with a 
collimated beam. The output beam is sent through a second FT lens and the 
correlation of the input and the filter patterns is obtained at the output. The 
reconstructed beam in the JTC consists of three terms (figure 2.3). The on-axis 
term  is the sum of the auto-correlations of the object and the scene, 7?(|Fp-f 1/|^). 
The off-axis terms are the terms of interest because they are the cross-correlations 
of the input and the filter, RFI*  and RF*I,  where i?, denotes the am plitude of 
the reference beam. To obtain a convolution, the mirror image of either the filter 
or the input function must be placed at the input of the JTC.

The main difference between the JTC and the 4-f correlator is th a t the JTC 
performs spatial-domain instead of Fourier domain filtering. In other words, the 
filter th a t is placed in the 4-f correlator must already be in the Fourier domain, 
while in the JTC the filter must be in the space domain. The main advantage of 
the JTC is tha t no great accuracy in the positioning of the input and the filter is 
required [1]. However, any change in the positioning of the input relative to the 
filter (or visa versa), will result in the change of the angle 2a between them and 
hence, the position of the cross-correlation peak at the output, as can be seen in 
figure 2.3. Provided tha t real-time devices are available, search routines can be 
performed at the frame rates of the SLMs. In addition, the JTC can be used for 
adaptive pattern recognition, where the input signal is continually being compared 
to a reference signal which is changing in time [23]. However, the optical quality 
of the input devices, and the FT lens used in the JTC must be high.
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2.4 Optical Matched filters
A matched filter is a time-reversed version of the input signal h{x) = s{—x), where 
s{x) is the input signal. If the input signal is complex and 2D, then the time 
reversed complex conjugate of its frequency spectrum, h{x, y) = s*{—x, —y), is its 
matched filter. It has been proved th a t matched filters are optimal for detecting 
the presence of the signal s(a;) in a noisy input, when the noise is white with a 
constant power spectral density [11, 23]. This optim ality of the matched filters in 
detecting signals buried in noise is proved because it maximises the output Signal- 
to-Noise Ratio (SNR), which leads to a minimum probability of error [24]. An 
optical m atched filter can be implemented by a hologram containing the complex 
conjugate of the frequency spectrum of the pattern  [1 ], or using an am plitude and 
a phase SLM.

2.5 Practical correlator implementations
Purely optical correlators have the advantage of being very fast, operating a t over 
kHz rates [25, 26], but they suffer from several disadvantages such as the lack 
of versatility and programmability, and low accuracy due to the analogue nature 
of optics and the low dynamic range [27]. On the contrary, all of the previously 
mentioned deficiencies of the optical systems, are strong points of electronic com­
puters. It is not strange, therefore, th a t many hybrid systems have been developed 
which combine the advantages of both worlds [16, 28, 29, 30, 31, 32, 33, 34, 35].

In many cases the input image must be correlated with a very large number 
of reference images. These reference images can either be stored in a computer 
and down-loaded to the correlator sequentially, or they can be stored optically. 
In th a t case the storage device is part of the correlator. Optical disks have been 
successfully used in correlators [36, 37, 38, 39]. Another solution is the use of 
photorefractive materials, which offer large storage capacity [40], high resolution 
and real-time recording and several correlators have been built which utilise them  
[41, 42, 43].

One other disadvantage of optical correlators is their bulk and large weight, 
as well as the fact th a t they are very sensitive to vibrations because precise align­
ment of the input and the filter image is necessary in some of them  (4-f correlator) 
and, therefore, cannot easily be moved. In recent years, several attem pts have 
been made to  built compact correlators th a t are also able to endure vibrations 
[44, 45, 46]. Finally, several planar correlators have been built by integrating all 
of the optical components on the surfaces of a single substrate using lithographic 
fabrication techniques [47, 48, 49]. Most of these systems use spatial light mod-
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ulators for the data  input to the optical part of the system and CCD cameras 
for the correlation readout. Then the computer makes the decision based on the 
correlation output. In addition, all of the preprocessing of the data  before it is 
down-loaded to the SLM and the post-processing of the correlation output is done 
by the computer.

It is apparent tha t the SLMs play a very im portant role in these architectures, 
since they depend not only on their speed, but also on their ability to m odulate the 
am plitude or the phase of the passing light, or both [50, 51]. There is currently 
no SLM commercially available, which can simultaneously fully m odulate the 
am plitude and the phase of the passing light. Therefore, several filters have been 
designed, which use only a part of the complex plane [16, 52]. In addition, a 
combination of two SLMs can be used for simultaneous am plitude and phase 
m odulation [52, 53, 54, 55].

2.6 Performance measures
Several different performance measures have been proposed by various authors 
for the assessment of the performance of optical filters. The most frequently used 
of these performance metrics were summarised in a paper w ritten by Kum ar and 
Hassebrook [56]. Later in the thesis we are going to use some of these performance 
metrics to  assess the performance of our filters and to compare it with the per­
formance of other filters. Therefore, following the Kum ar and Hassebrook paper, 
we present and explain the following performance metrics:

1 . Signal-to-Noise Ratio

The Signal-to-Noise Ratio (SNR) is defined as the ratio of the square of 
the average magnitude of the correlation peak, over the variance of the 
magnitude of the correlation peak:

The SNR gives us a measure of how much the correlation peak fluctuates 
when random noise is added to the input signal. Obviously, it is desirable to 
keep these fluctuations as small as possible, or in other words to maximise 
the SNR. It is evident from equation 2.5 th a t to  calculate the SNR, one 
needs to calculate the average and the variance of the magnitude of the 
correlation peak. Therefore, many experiments with different noise samples 
have to be conducted for the SNR to be estimated.

2. Peak-to-correlation Energy
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The Peak-to-Correlation Energy (PCE) is defined as the ratio of the square 
of the magnitude of the correlation peak, over the correlation plane energy:

P C E  = (2 .6 )
t /y

where

/ OO

\y{x)\ dx (2.7)
-OO

The PCE measures the sharpness of the correlation peak. When the cor­
relation has a sharp high peak and low outer products, the energy of the 
whole correlation Ey will not be much larger than the energy concentrated 
on the peak, and the PCE will be large (close to 1). If the correlation peak 
is not sharp, or the outer products are large, then the PCE will be closer to 
0 .

3. Horner efficiency

In 1982 Horner [57] introduced the Horner efficiency criterion. The Horner
efficiency is the ratio of total light energy in the output plane to the light
energy at the input plane and is described by the following equation

where f { x )  is the input function, h{x) another function, r}M the diffraction 
efficiency of the recording medium, and the operator 0  indicates correlation. 
The Horner efficiency measures the amount of light th a t passes through the 
system.

2.7 Conclusions
In this chapter we have presented a theoretical background for optical correlators, 
which are the basic tools for optical pattern  recognition. We explained the Fourier 
transform  property of the lens, and described the two most im portant optical 
correlators, the 4-f correlator or frequency plane correlator, and the joint transform  
correlator. We introduced the concept of the matched filters, which are optim al in 
detecting the presence of a signal buried in white noise. We briefly reviewed the 
most im portant optical and electro-optical correlator implementations. Finally, we 
presented some of the most well known performance measures for the assessment 
of optical filters. In the next chapter we are going to review some filter design 
techniques.
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Chapter 3 

R eview  of spatial filter design  

algorithms for optical correlators

3.1 Introduction
Optical pattern  recognition is a multi-faceted problem. It includes the detection 
of objects buried in noise [58, 59, 60, 61], the discrimination of different objects 
[62], the recognition of different views of a 2D [63, 64] or 3D [65, 6 6 , 67] object 
and the discrimination of them from other views of a different 2D or 3D object 
[6 8 ]. Due to the complexity of these different recognition or discrimination prob­
lems, researchers have proposed many different methods and algorithms for the 
development of the appropriate filter for each case [69]. In this chapter, we review 
some of the algorithms proposed in the literature. Only a few of these algorithms, 
which are the most similar to our work and which will be compared to it in later 
chapters are presented in detail here. Different authors have used different nota­
tion in their publications. For the sake of clarity, we have changed th a t notation 
where necessary and we have used one set of symbols consistently throughout the 
chapter.

First a few words about notation: Throughout this thesis we denote patterns 
as vectors Sj =  [sji, Sj2 , ..., of size N, where Sj is the pattern  of M patterns 
and N  is the number of pixels in each image. We refer to g  ̂ as being the filter 
for the input vector after the application of the filter design algorithm. The 
un-normalised filters are denoted with g j . If the patterns are completely orthog- 
onalised by this procedure we refer to the patterns as u^ . is used to refer to 
the un-normalised orthogonal patterns. The central peak of the cross correlation 
of two patterns is their inner product and it will be denoted by g • s and is equal
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 PRO CED U RE

to gfc ' Sjfc or in vector notation g^s.

3.2 The Gram-Schmidt orthogonalisation

procedure

Given a set of vectors Si, 8 2 , Sm,  in TV dimensional space R ^ , M  < N ,  the Gram- 
Schmidt Ortho-normalisation procedure [70] constructs an orthonormal basis set 
of vectors spanning the space 5'=span(si, 8 2 , (which is the set of all linear
combinations of the vectors 8 1 , 8 2 , 8 m)- The algorithm begins by normalising 
the first vector 8 1 ,

where || • H2  denotes the Euclidean norm

N  \  1/2
(3.2)

8 2  is made orthogonal to 8 1  and it is normalised by the following two iterative 
steps;

Ufc+l = S/c+i) (3.3)

Then 8 3  is made orthogonal to 8 1  and 8 2  and normalised and so on using the 
same iterative and normalising equations. Once k vectors have become orthogonal 
spanning a subspace Sk C 5, s^+i is projected onto the subspace orthogonal to 
Sk- Finally, all of the M  vectors will be orthogonal, so S m  will be equal to S.

3 .3  Linear Combination Filters
Matched filters are not very sensitive to geometric distortions and therefore, not 
very successful in multi-class pattern  discrimination [18]. However, they can dis­
crim inate between input patterns, when these are orthogonal or can be made or­
thogonal. This is a result of the lower dynamic range th a t is required by the optical 
recognition system for correct discrimination of the orthogonal input patterns. A 
two step procedure for the design of Linear Combination Filters (LCFs) which
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were mutually orthogonal^ (MO) was proposed by Caulfield and Maloney [18] as a 
solution to  the discrimination problem. Each of the filters had unit ou tput when 
correlated with one of the input patterns and zero with all of the others. The 
first step of the procedure was to calculate the vector inner-product m atrix  of the 
training patterns

f  'I'll y 12 • ’ ' Î 1m \
^21 'f'22 • • '  T 2 M

\ f ' M l  'f'M2 • • •  'Tm m J

(3.5)

where Vij =  Sj • Sj or in other words each element of the m atrix was equal to 
the inner product between the input patterns s% and Sj. Caulfield’s and Maloney’s 
aim when testing pattern  for its identity to pattern  S)t, was to obtain an output, 
Fife, equal to  one i ï i  = k and equal to zero l i i  ^  k, i.e.,

Fik =  Fkk^ik (3.6)

They achieved their aim with the second step of the procedure, which was to 
form linear combinations of the responses r^  . Using these linear combinations the 
final response when testing pattern  s% for its identity to would be

Elk — Tik T  ^  1 OklTii (3.7)
l^k

The M  — 1 %’s for which % ^  A: led to a set of M  — 1 simultaneous equations 
w ith M  — 1 unknowns, the coefficients Cki- A different set of M  — 1 simultaneous 
equations with M —1 coefficients had to be solved for each of the M input patterns. 
After calculating the coefficients Cki, Caulfield and Maloney used equation 3.7 to 
see whether an input pattern, s% was the same as pattern  s^. If the equation 
output was equal to one, then pattern  i was the same as pattern  k, and if it was 
equal to zero, then pattern  i was different from pattern  k. Caulfield’s method does 
not actually produce new filters. Rather, it combines the inner products between 
the training patterns to obtain an output which will determine whether an input 
pattern  is the same as another pattern. However, their coefficients can be used 
to  create the actual filters, which will yield the desired outputs. Caulfield and 
Maloney mentioned this in their paper, but a t the time th a t they wrote it, it was 
difficult to  make these filters.

Later Caulfield and Haimes [71] proposed a more generalised solution to  the 
multi-class - multi-object recognition problem with the Generalised Matched Filter 
(GMF). Their aim was to create filters which would be able to recognise all of the

^We call these cross-orthogonal, but our term has the same meaning.
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patterns within a class and, in addition, discriminate between members of different 
classes. They supposed th a t each input object, s was of size N .  For each class of 
objects they calculated a Linear Discriminant Function (LDF), which they used 
as the generalised matched filter. This filter would have a high correlation output 
with any pattern  th a t belonged to the class it represented and a low output for 
any pattern  which belonged to any of the other classes. The LDF  was a real 
function of the training pattern  s

LDFi{s) =  Vj • s +  Qoi =  Fi{s) (3.8)

where V% = (Vi,V 2 , . . .  , was a set of real numbers and Qoi was a real number. 
They chose the LDF  which would have a high output with the members of the class 
it represented and a low output with all of the other input objects by maximising
the equation

E[LDFi{s  € Classi) — LDFi{s  ^  Classi)] (3.9)

where E[-] was the expectation operator. In other words LDFi was th a t linear 
function of s th a t maximised the probability to distinguish s € ClasSi from s ^ 
ClasSi. If the LDFs were normalised, then

E \LD F i{s  G (7/assj)] =  6ij. (3.10)

Equations 3.10 and 3.6 show th a t the mutually orthogonal filters are a subset of 
the generalized matched filters, because if each of the classes only consists of one 
pattern , then equation 3.10 expresses the same condition as equation 3.6.

A filter th a t would have equal correlation outputs with all of the patterns
representing one class in a multi-class recognition problem was proposed by Hester
and Casasent [72]. It was called the Equal Correlation Peak (ECP) filter. Firstly 
the Gram-Schmidt procedure was used to orthogonalise the training images Sj 
and to produce a new set of orthogonal vectors th a t formed an orthonormal 
basis of the space of the input and training images. Then the input images, f,
and the training images, s were expanded in this set of orthonorm al vectors Uj

f  =  ^  ^j'^j (3 11)
j

S =  12 (3-12)
3

and the input and training images could be represented by the coefficients Uj and 

bj

f  =  ((%1, <22) • • • ) ®/c) (3.13)

s =  (6i, &2 ) • • • (3.14)

35



3.4. SYNTH ETIC DISCRIM INANT FUNCTIONS

In terms of these expansions the inner product of f  and s could be described by

Tfs = f  'S  = ' ^  üjbj (3.15)
j

The objective was to design a filter, g, which would have equal correlation outputs 
with all of the inputs, fj, which belong to the same class. Hester and Casasent 
argued th a t this filter had to be a specific linear combination of the input images, 
each of which was another linear combination of the basis functions u

g =  e  =  T  CjU, (3.16)
j j

and the correlation outputs could then be described by

j

So after finding the orthogonal vectors Uj, using the Gram-Schmidt orthogonali­
sation procedure, and the coefficients bj, using equation 3.12, the objective was to 
find the coefficients Cj and finally the filter g for which r in equation 3.17 would 
yield the correct correlation performance. If one required rgg (equation 3.17) to 
be equal for all training patterns s, he could solve the resulting set of equations 
to obtain the coefficients Cj.

3.4 Synthetic Discriminant Functions
The work on linear combinations of training images, i.e. LCFs, ECPs and GMFs, 
was summarised by Caulfield [73] and Casasent and Kum ar et. al. and it was 
formulated as a m atrix/vector problem [13, 74]. The solution vectors to the 
LCFs were described by the equation

^  = ^  (3.18)
ai =  R  di

where R  was the M  x  M  correlation (alternatively called vector-inner product) 
m atrix  of the input images and d  was the vector with the desired correlation 
outputs. The vector-inner product m atrix R  was invertible if and only if the 
input patterns were linearly independent [69]. Then the filters could be obtained 
using these solution vectors

Si ~  ^  V Q'fcSfc (3.19)
k
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where ak are the elements of the solution vector a%. Depending on the desired 
correlation output vectors, d%, equation 3.18 was equivalent to equation 3.7, if 
m utually orthogonal filters were required.

Caulfield’s and Maloney’s approach (mutually orthogonal filters) meant th a t 
one filter had to be designed for each of the M  patterns th a t one wanted to recog­
nise. Each input pattern  had to be correlated with all of them. Therefore, M 
correlations were necessary for correct recognition. Braunecker et. al. [75] sug­
gested th a t M  filters were redundant and tha t one only needed to perform at most 
L  = logg M  correlations to correctly recognise M  filters. Braunecker’s approach 
was based on the fact th a t L  =  logg M  binary digits can form any number between 
0 and M .  For example, to recognise 4 patterns one needed only two filters, the 
first of which should yield a high correlation peak only with the second and the 
fourth input pattern  and the second filter should produce a high correlation peak 
only with the third and the fourth input pattern. Braunecker’s approach could 
also be applied to multi-class pattern  recognition. The two previously reviewed 
methods, i.e. linear discriminant functions and equal correlation peak filters de­
signed one filter for each class. Therefore K ,  where K  is the number of classes 
one wants to recognise, correlations were necessary for correct recognition of an 
input pattern. According to Braunecker’s method, only L — logg K  correlations 
are necessary.

Even faster recognition could be achieved if only one filter was designed, which 
gave the same correlation peak value for all of the patterns th a t belonged to one 
class and a different, in intensity, correlation peak value for all of the patterns th a t 
belonged to another class and so on. This particular linear combination filter was 
called a Synthetic Discriminant Function (SDF) [13, 74]. The advantage of SDF 
was th a t only one correlation would be necessary to recognise any of the input 
patterns. Their disadvantage was th a t they required th a t the recognition system 
had a high dynamic range, because several different correlation peak values had 
to be correctly identified a t the output plane. A year later, in 1983, the Modified 
Hyperplane Method (MHP) for more efficient design of Linear Combination Filters 
(LCFs) was proposed by Kumar [76]. A systematic procedure for determining the 
output correlation values for SDFs, instead of arbitrarily setting them  to 0 and 
1, was proposed by Sudharsanan and Mahalanobis et. al. [77]. The proposed 
technique provided an optimal selection of the output correlation values in the 
sense th a t they resulted in a minimization of the probability of error (PC F) in 
detection.

Several variations of the SDFs were proposed in the following years. Kall- 
man [78] showed th a t standard SDFs were less than optim al due to low output 
SNR. In other words, SDFs correlated very well with true targets, but also very
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often they gave high correlations with false targets. He observed th a t only inten­
sities were detected at the correlation plane, so output correlation values could 
have arb itrary  phase. He used this additional degree of freedom to reformulate 
the equation describing the SDFs (equation 3.18) in the following m anner

g • Si =  ZiXi { l < i <  M)  (3.20)

where Si,(l <  i < M)  were the complex images of objects one wanted to  recognise 
The Ai were given positive numbers and Zi were complex numbers of modulus
1. Equation 3.20 gave M  simultaneous equations th a t g had to satisfy and a 
particular solution to this equation would have the form

go =  ttiSi - |-. . .  -f clm̂ m  (3.21)

where Gi . . .  a u  were a set of complex numbers. These numbers could be found 
by substituting equation 3.21 into 3.20

(S i-S j)(aj) =  {ziXi) (3.22)

Equation 3.22 uniquely determined the complex numbers Oi if the images S i . . .  Sm 
were linearly independent and is identical to the general SDF solution equation 
shown in 3.18. Kallman proposed th a t one could maximise the SNR of the filters 
by varying the z* phase values of the inner products and choosing the appropriate 
of many possible solutions to equation 3.20. Using his m ethod, Kallman managed 
to construct filters with their SNR properties improved by a factor of seven [78].

3.4 .1  M in im u m  V ariance S y n th etic  D iscrim in an t F u n ction

As we saw in the previous section, SDFs yield one correlation peak with a different 
intensity value for each of the classes to be recognised. As the number of classes 
increases, the different values of the correlation peak will be closer to each other, 
because more of them  will be needed in an overall lim ited range. This means th a t 
the variance^ of the correlation peak is critical for the filter’s performance. The 
Minimum Variance Synthetic Discriminant Function (MVSDF) which minimised 
the variance of the correlation peak, which was caused by noise, was introduced by 
Kumar [14]. Kum ar addressed the problem where the input was one of the training 
images w ith some additive noise. In th a t case the output of the correlation a t the 
origin of the correlation plane would be

y = g+(si -f n) =  Ci -f g+ n  (3.23)

^For a definition look at appendix A
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where g denoted the filter which was designed to satisfy equation 3.18, g+ denoted 
the conjugate transpose, s% denoted the input pattern  and n  was a zero-mean noise 
vector with a covariance^ m atrix E. The output in this case was the desired output 
Ci plus an undesirable random variable g^n . The MVSDF attem pted to design 
the filter g in such a way so th a t the variance in the output caused by the input 
noise was minimised while satisfying equation 3.18. The variance of the output 
caused by g ^ n  was

=  ^ { |g ^ n p }  =  E{g+nn+g} =  g+E g (3.24)

and minimising shown in equation 3.24 led to the following MVSDF

gMVSDF = E -1S (S + E -iS )-M *  (3.25)

where d  denoted the vector with the desired filter outputs, d* was the complex 
conjugate and S was a data  m atrix with the vector s% as i t ’s ith column. Kumar, 
Bahri and Mahalanobis showed [66] th a t the output noise variance of minimum 
variance synthetic discriminant functions (MVSDFs) could be further reduced by 
selecting the phase values of the output correlation in an optimal fashion, an 
idea similar to th a t of Kallman [78]. They proposed using the same MVSDF as 
described in equation 3.25, but also to properly select the phases of the desired 
correlation outputs di = (3iexp{j9i), z =  l , 2 , . . .  , V  in such a way so th a t the out­
put variance (Xm vsd f  was minimised. The exact reduction in variance could vary 
from being negligible to being significant and depended on the training images, 
the noise covariance m atrix and on the constraint magnitudes. The synthesis of 
the MVSDF was simplified by eliminating the need to  invert large noise covari­
ance matrices when the background clutter was modeled as sample realisations of 
a Markov noise process by Kumar and Casasent et. al. [79].

SDFs which were not affected by noise with non-zero mean were proposed by 
Arsenault and Sheng et. al. [80]. They noted th a t any noise with a non-zero mean
could be w ritten as the sum of a zero mean noise plus a constant. Therefore, the
correlation between a filter and an input image corrupted by non-zero mean noise 
would be

OO

g • {s n  P) = rgs rgn + P g{x, y) dx dy
(3.26)

— T  P K ,

where
OO

K  = J J  g{ x , y ) dx dy  (3.27)

Tor a definition look at appendix A
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which meant th a t the effect of the non-zero mean part of the noise was to add to 
the correlation a term  which was proportional to the mean (I of the noise. They 
proposed modifying the composite filters which were linear combinations of the 
training images by adding a term which discriminated against a constant back­
ground. For example, for two training images si, « 2  the composite filter proposed
by Caulfield and Maloney [18] was

gi =  asi -h hs2 (3.28)

where a and b were constants which were found by solving the simultaneous equa­
tions

h v ~  1 (3.29)

®̂ S2Sl T  '̂̂ S2S2 ~  (3.30)

The composite filter proposed by Arsenault et. al was given by the equation

Q2 = asi -f bs2 +  c( (3.31)

where the constants a, b, c where found by solving the set of linear equations

92- S i = ars.si +  =  1 (3.32)

92- S2 = +  brs^s2 +  =  0 (3.33)

92 ' ^ ~  -f- bv ŝ2 T  =  0 (3.34)

where ^{x,y)  was a uniform background with an image size equal to or greater 
than  the training images Si and S2 - The modified filter nullified the effect of the 
non-zero mean of the noise and hence the output correlation did not depend on 
the mean /? of the noise.

A special case of input noise is the nonoverlapping target and scene noise. For 
example, in military applications very often one is trying to recognise armored 
vehicles which are positioned on a varying terrain, i.e. a noisy background, but 
the targets themselves are not obstructed by anything. Javidi, Réfrégier and 
W illet designed a filter for pattern recognition with nonoverlapping target and 
scene noise [81]. They showed that in this case the filter did not depend on the 
noise statistics.

3 .4 .2  M inim um  A verage C orrelation  E n ergy  filters

The MVSDF and the other filters discussed so far only controlled one point a t the 
origin of the correlation plane. However, in many applications, for example target 
detection in the military, we do not know were exactly in the input scene the
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target lies. Therefore, the filter must be able to locate the target and, in addition, 
to recognise it. In th a t case, a sharp correlation peak is preferable to a correlation 
plane full of high side-lobes. The Minimum Average Correlation Energy (MACE) 
filter which was introduced by Mahalanobis and Kumar et. al. [82] minimised 
the average correlation plane energy over all of the training images. The authors 
calculated the average correlation plane energy over all of the training images to 
be

E a v e  =  g+Dg (3.35)

where D denoted a N  x  N  diagonal matrix. The entries along the diagonal were 
obtained in the following manner: first one calculated the average of the energies of 
the two-dimensional Fourier transforms v)\'^,i = 1 ,2 , . . .  , M  of the training 
images S i ( x , y ) .  Then he scanned this average from left to right and from top to 
bottom  and placed each value on the diagonal of m atrix D. N  was the size of the 
complex column vector s% obtained by sampling Si{u, v). g was the SDF satisfying 
the constraint

S+g =  d* (3.36)

where S was a N x M  m atrix with s* as its ith column. Minimising Eave in equation 
3.35 subject to the constraints in equation 3.36 led to the following filter

g M A C B  =  D - i S ( S + D - i S ) - ' d *  ( 3 .3 7 )

MACE filters produced sharp correlation peaks but had some drawbacks. The 
first was th a t no noise tolerance had been built into these filters. The second 
was th a t MACE filters seemed to be more sensitive to intraclass variations than  
other composite filters [83]. Also the MACE filter was calculated in the frequency 
domain. However, while the MACE filter minimised the energy of the circular 
correlation, most optical and electronic systems generate linear correlations and 
ideally one would want to minimise the energy of those. The main difference 
between the circular and the linear correlation of two patterns of size N ,  is th a t 
the linear correlation has a length equal to 2 N  — 1, while the circular correlation 
has a length equal to N .  This length difference between the linear and the circular 
correlation results in a difference in their energies. A space-domain MACE filter 
termed the SM ACE  filter was proposed in 1990 by Sudharsanan et. al. [84]. 
The SMACE filter avoided the problem of circular correlations of MACE filters, 
however, this advantage came at the cost of having to invert a m atrix which was 
not diagonal like the D matrix of the MACE filter.

In 1988 Bahri and Kumar [12] offered a general SDF solution in both spatial 
and frequency domains and derived and proved the uniqueness of the MVSDF
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and the MACE filters. This general SDF solution for the spatial domain was

g =  go +  F z (3.38)

where

go =  S (S ^ S )- 'd , (3.39)

E  =  S (S ^ S )- 'S ^  (3.40)

and

F  =  Id -  E  (3.41)

where z was an arbitrary element of R^. By allowing z to vary throughout one
could get all of the possible SDFs and by subjecting them  to various performance
criteria like minimum noise variance or correlation energy for example one could 
get specific SDF filters like the MVSDF, MACE filters, etc.

з .4 .3  M IC E  and M IN A G E filters

The Minimum Correlation Energy (MICE) filter which provided better intraclass 
recognition than the MACE filter and the Minimum Noise And Correlation Energy 
(MINACE) filter which minimized the correlation plane energy resulting from the 
training images and the noise were proposed by Ravichandran and Casasent [2]. 
The authors noted tha t minimising the average correlation plane energy provided 
little control over the variance of the correlation plane energies of the training 
images. In other words, large side-lobes could occur even though the average 
energy E  was minimised. The MICE filter was described by the following equation

% M I C B  =  T - i S (S + T - 'S ) -M  (3.42)

where T  was a N x N  diagonal matrix whose diagonal elements were obtained in a 
similar manner to those of matrix D in the MACE filter. Specifically, the energies 
of the two dimensional Fourier spectra of the training images were calculated 
again, but in this case the maximum of the \Si{u,v)\‘̂ ,i = 1 , 2 , . . .  , M  for each
и, V was chosen. This was scanned from left to  right and from top to bottom  and 
the values were placed at the corresponding diagonal elements of m atrix T . The 
result of this difference was that the MICE filter reduced the biggest side-lobes 
instead of the average energy over all of the training images. Also the MICE filter 
provided less amplification of the input data a t high frequencies and, therefore, it 
had reduced sensitivity to finer image details which resulted in improved intraclass
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recognition capability. The MINACE filter in addition minimised the correlation 
plane energy which resulted from the input noise. Its construction was very similar 
to th a t of the MICE filter but in this case, the diagonal elements of m atrix T were 
the maximum of the corresponding elements of the spectra of the training images 
and the input noise. In the absence of input noise, the MINACE filter reduced to 
the MICE filter.

3.5 Phase-Only Filters
Caulfield commented tha t an increase in Horner efficiency could result in a de­
crease in the quality of discrimination with many filters [85]. He also noted th a t 
the phase-only filter (POE) is the only one which can provide 100% efficiency 
and also lead to good discrimination. In 1984 Horner and Gianino [86] compared 
the classical matched filter with the amplitude- and the phase-only matched filter 
using the criteria of discrimination, correlation peak and optical efficiency. They 
came to the conclusion tha t the phase-only filter (FOE) has higher optical ef­
ficiency and a sharper correlation peak (lower side-lobes) than  the others, a t a 
cost of lower SNR. In 1985 Horner and Leger [87] compared the phase-only filter 
with the binary phase-only filter (BPOE) and reported th a t there were several 
advantages in using the BPOE, mainly in their fabrication, a t the cost of slightly 
lower SNR at the output. Horner and Gianino [88] also compared a phase-only 
and a binary phase-only SDE with a classical SDE and reported th a t the PC  SDE 
and the BPO SDE produced sharper correlation peaks, higher SNR and increased 
correlation intensity.

Eilter implementation constraints i.e. discrete SLMs etc. were used directly in 
the filter (SDE) calculation equation by Jared and Ennis [89]. One conclusion they 
came to, was th a t when doing tha t for POEs, one cannot set the correlation peaks 
to absolute values, but rather specify the proportionality between the correlation 
peaks for a given training set, a conclusion very similar to th a t of Kallman in [90]. 
One such filter synthetic discriminant function (fSDE) for a set of space shuttle 
training images and a specific magneto-optic SLM (MOSLM) was calculated by 
Reid and Ma et. al. [67] by building a correlator and using th a t to calculate it.

3.6 Optimal Trade-ofF Filters
The Optimal Trade-off Filters (OTFs) were introduced by Réfrégier in [17], where 
he used the Optim al Gharacteristic Curve (OCC) to design filters th a t were opti­
mized between two criteria: the correlation peak sharpness and the noise robust­
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ness. Réfrégier and Huignard [91] showed th a t the optim ization of the sharpness 
of the correlation peak was more fruitful and of equal complexity with the variance 
reduction. In 1991 [92] Réfrégier added the Horner efficiency to the criteria used 
for the design of the OTFs presented in [17]. Later Laude and Réfrégier [16] intro­
duced a m ulti-criteria optimization method based on a geometrical interpretation 
of trade-offs between criteria, for any Fourier SLM coding-domain constraint and 
applied it to  the SNR, peak-to-correlation energy (PCE), and Horner efficiency 
(tjh) criteria.

3.7 Discussion and summary
There are a variety of pattern recognition problems th a t the held of optical pattern  
recognition addresses, and therefore, several different hlters have been designed 
to  solve them. All of the hlters th a t we have reviewed in this chapter fall under 
the general category of linear combination hlters. They are all composed using 
different linear combinations of the training patterns. The mutually orthogonal 
hlters are good at recognising the one pattern  which they represent. They mainly 
address the problem of discriminating between objects, each of which is repre­
sented by one pattern  only. Their main disadvantage is th a t a large number of 
them, equal to  the number of the input patterns, and consequently a large number 
of correlations is needed for correct recognition.

Equal correlation peak hlters address the opposite problem of recognising sev­
eral patterns, all of which belong to the same class. W hen several of these classes 
exist, one can design an equal correlation peak hlter for each one of the classes, 
a method proposed by Caulheld [73]. Using this m ethod one needs a number 
of hlters, and subsequently correlations, equal to the number of classes. Brau­
necker’s suggestion th a t only L = logg (number of patterns or classes) correlations 
are necessary, applies to both the discrimination problem addressed by the mu­
tually orthogonal hlters and to the multi-class recognition problem addressed by 
Caulheld in [73]. The advantage of using Braunecker’s m ethod is th a t the number 
of necessary correlations for correct recognition is greatly reduced. In addition, 
each of the hlters still has to produce only two outputs, one and zero. Therefore, 
the dynamic range th a t is required by the recognition system is not increased 
when using Braunecker’s method. However, one must be very careful when choos­
ing the patterns or classes to which each of the hlters is going to  respond with a 
high output.

Synthetic discriminant functions are also linear combinations of the training 
patterns. One hlter is now used to recognise any number of patterns or classes. 
In multi-class pattern  recognition, the hlter is designed to produce a specihc cor-
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FILTER CHARACTERISTICS

Filter T.D. Discr. Rec. N.T. Corr. plane D.R.R.

M-P M-C M-P M-C P.S. P.V. S.R.

LCF V V

GMF V V V V

ECP V V V V

SDF
F.C. V V V V
PO F V V V V V

MVSDF V V y V V V

MACE y V V V V V V

MICE V V V V V y y

MINACE V V V V V V V V

GTE V V V V V V V V V

Table 3.1: Summarised filter characteristics. T.D. : Target detection, Discr.

: Discrimination, Rec. : Recognition, N.T. : Noise tolerance, Corr. plane : 

Correlation plane, M-P : M ulti-pattern, M-C : Multi-class, P.S. : Peak sharpness, 

P.V. : Peak variance control, S.R. : Side-lobe (outer product) reduction, D.R.R.

: Dynamic range reduction.

relation peak magnitude for all of the patterns th a t belong to one class. This 
output correlation peak value has to  be different for each of the classes. The ob­
vious advantage is tha t only one filter and one correlation is required to recognise 
any of the input patterns. The disadvantage of SDFs is th a t a higher dynamic 
range is now required by the recognition system because more than  two different 
output correlation peak values will have to be distinguished. Several variations of 
the SDFs were proposed to improve their performance. Minimum variance SDFs 
(MVSDF) minimise the variance of the output correlation peak resulting from 
input noise. Minimum average correlation energy filters (MACE) minimise the 
average correlation plane energy over all of the training images. The motivation 
for th a t is to decrease the correlation side-lobes, so th a t the correlation peak can 
be easily located. Minimum correlation energy (MICE) are similar to the MACE 
filters, but instead of minimising the average correlation plane energy, they min­
imise the highest side-lobes. Minimum noise and correlation energy (MINACE)
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Figure 3.1: Spectral power distribution of an input pattern

filters also minimise the highest side-lobes, but in addition, they take into account 
the input noise.

In multiclass pattern recognition, there is a trade-off between intra-class dis­
tortion tolerance and inter-class discrimination ability. The filter must be tolerant 
to intra-class distortions, or in other words, must be able to recognise different 
patterns, which belong to the same class. In addition, the filter must be able to 
discriminate these patterns from other patterns belonging to other classes. Let 
us consider the spectral power distribution of an input pattern. For simplicity we 
will consider the simple case of a distribution resembling a Gaussian as shown in 
hgure 3.1. The low frequencies in the area around the DC term  represent the very 
general features of the pattern and are usually features which are common to many 
patterns of different classes. Therefore, for good inter-class discrimination ability, 
these frequencies must be suppressed by the filter. A typical example for such 
a task is the inverse filter (figure 3.2), which suppresses the low frequencies and 
enhances the low power, high frequencies, which express the finer image details, 
and, hence, has a high inter-class discrimination ability. It is however, sensitive 
to intra-class pattern variations. On the other hand, the matched filter, which 
is the complex conjugate of the pa tte rn ’s frequency spectrum  and which has a 
spectral power distribution, which is the same as th a t in figure 3.1, suppresses 
the low power, high frequencies and, hence, the finer image details. This leads to 
high tolerance to intra-class distortion, but low inter-class discrimination ability. 
Therefore, for overall high multiclass recognition performance, a bandpass filter 
(hgure 3.3) is required, because it suppresses both the high and the low frequencies
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Figure 3.2: Inverse filter for the gaiissian distribution of figure 3.1
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Figure 3.3: A bandpass filter for multiclass pattern  recognition

47



3.7. DISCUSSION AND SUM M ARY

-  -  MACE preprocessor 
  MINACE preprocessor

0
Frequency

Figure 3.4: Effect of the MACE and MINACE preprocessors on the signal. Graph 

adapted from [2]

(including the DC term) of the input p a tte rn ’s frequency spectrum.
A bandpass filter is, therefore, the goal and most of the existing filters, in­

cluding the MACE and the MICE filters, are designed with th a t goal in mind[2]. 
However, they are not true bandpass filters because they suppress the low frequen­
cies but they do not suppress the high frequencies. In th a t respect they are closer 
to inverse filters. The filter (of the ones reviewed in this chapter), which most 
closely approaches the bandpass goal is the MINACE filter, but even this does 
not suppress the high frequencies. However, it does not enhance them as much as 
the MACE, MICE and inverse filters do. The MINACE filter is described in equa­
tion 3.42. The relationship between the MINACE and a bandpass filter can be 
seen more clearly if the MINACE filter is viewed as a general SDF for recognising 
input patterns, which are preprocessed by a m atrix [2].

S m i n a c e  =  T - ‘/^ [Y (Y + Y )-'d ] (3.43)

where the columns of the matrix Y  are the preprocessed training images Y%, 
The preprocessor matrices for the MACE and the MINACE

filters (look back in section 3.4.2 for a description of m atrix T) are shown in figure 
3.4. From this figure, the preprocessor for the MACE filter has a form similar to 
tha t of an inverse filter. The preprocessor for the MINACE filter does not enhance 
the high frequency components of the spectrum of the input signal as much and 
therefore, it resemples a bandpass filter more closely.

The optimal trade-off filters (OTF) are filters which simultaneously optimise
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more than one criteria, for example, the correlation peak sharpness and the noise 
robustness. All of the reviewed filters are complex. The phase-only filters (POF) 
and the binary phase-only filters (BPOF) are the same as the previously described 
filters but with only their phase information retained. Their main advantages are 
th a t it is easier to  use them  in optical correlators using a phase SLM, they have 
higher optical efficiency compared to amplitude or fully complex filters and they 
produce a sharper correlation peak. Finally, in table 3.1 we can see a summary of 
the characteristics of all of the filters. We have marked a box in table 3.1, when 
the corresponding filter is capable of performing th a t task and not only when it 
is the best filter a t the corresponding task.
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Chapter 4 

Neural networks: Perceptrons 

and learning algorithms

4.1 Introduction
In this chapter we present some basic theory on neural networks and in particular 
perceptrons. Neural networks are not the main application area for this thesis. 
Therefore, the theory presented here does not cover the whole field of neural 
networks, but rather a specific type of them: the perceptron. In addition, the 
perceptron is not explained in detail, only the information which is necessary for 
the understanding of our work is presented.

Artificial neural networks are highly parallel systems consisting of a large num­
ber of simple, interconnected, processing units. They store da ta  in the form of the 
strengths of the interconnections between the units [3]. Information processing 
in neural networks occurs through the interactions between the processing units. 
They interact with each other by sending signals, either excitatory or inhibitory. 
The interconnection strengths are usually called weights [3]. Work on artificial 
neural networks started when scientists realised th a t the human brain works in 
an entirely different way from the conventional digital computer. The brain is a 
highly complex, nonlinear, and parallel computer. It consists of approximately 
100 • 10® simple computational units called neurons [93]. The neurons are con­
nected to each other with synapses and there are approximately 60 • 10^  ̂ of them  
in to tal in the human brain [94]. Artificial neural networks were first designed 
to mimic the structure and function of the human brain. Due to their origin in 
human brain research, they have borrowed the biological terminology. Therefore, 
their processing units are called neurons and the interconnections between neurons
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are often referred to as synapses.
Rum elhart et al [95] point out th a t knowledge in neural networks, as in the 

brain and not as in conventional computers, is not an actual copy of the data  th a t 
is stored. Rather, it is the strengths of the interconnections between neurons th a t 
are modified in such a way, so tha t the stored data  can be recreated when it is 
called up. This has great implications in the way th a t neural networks can be 
trained. Learning with this model is not a m atter of finding a way to represent 
the information to be learned with the weights, bu t rather tuning them  in such a 
way so th a t the right pattern of activation can be created as a result of a specific 
input. This is a very im portant property of this kind of model, because it means 
th a t they can learn the interdependencies between the various activations to which 
they are exposed by tuning their weights during the course of processing. The 
procedure used to perform the learning process is called a learning algorithm and 
it is a simple mechanism which modulates the interconnection strength according 
to the information locally available a t the connection.

The learning procedure can be supervised or unsupervised. When it is super­
vised, some form of teacher exists. The network is presented with pairs of inputs 
and desired outputs. The weights are modified in such a way so th a t the error, 
which is defined as the difference between the network output and the desired 
output, is minimised. In the unsupervised or self-organised learning there is no 
external teacher. Some measure of the correctness of the representation of the 
statistics of the environment is defined and the network modifies i t ’s weights so 
th a t i t ’s performance is optimised with respect to this measure [96].

4.2 The Perceptron
The perceptron, which was introduced by Rosenblatt [97], is the simplest form 
of a neural network . It only consists of one layer of neurons connected to the 
inputs through weighted connections. The simplest form of the perceptron con­
stitu tes only one neuron with any number of inputs as seen in figure 4.1. The 
perceptrons can only be used for the classification of linearly separable patterns 
[98]. Patterns are called linearly separable if they lie on either side of a hyperplane 
in N-dimensional space. A single neuron can separate two classes. An example 
of two linearly separable classes in two-dimensional space can be seen in figure
4.2. If the perceptron contains more than one neuron it can perform separation of 
more than two classes as long as they are linearly separable. The neurons output
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Threshold

Inputs Output

Figure 4.1: A single layer perceptron with only one neuron
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Figure 4.2: An example of two linearly separable classes in 2-D space.
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+1

Figure 4.3: A hard limiter activation function

is given by the following equation

N
V =  ' ^  W iXi — 6

y  =

(4.1)

(4.2)

where == 1, . . .  , A  are the network inputs, WiO = 1, • • • , N  denote the weights 
of the network and 9 is the threshold, v is sometimes called the net internal activity 
level of the neuron. Usually function (/>(•) is a non linear hard limiter (See figure 
4.3) and the neuron output is either 1 or -1. The separating hyperplane is defined 
by the equation WiXi — 0 =  0. The first learning algorithm for the perceptron 
was developed by Rosenblatt [99], [100]. The proof of convergence is known as 
the perceptron convergence theorem.

4.2 .1  H ebbian  learning

Hebh’s postulate of learning [101] is the oldest and most famous learning rule. Its 
purpose is to discover significant patterns of features in the input data. To do 
tha t, the algorithm is provided with a set of rules of a local nature, which enable 
it to learn to compute an input-output mapping with specific desirable properties. 
The original Hebb’s rule has been expanded and rephrased by Stent [102], and 
Changeux and Danchin [103] and can be described as follows:

1 . When two neurons on either side of a synapse are activated simul­
taneously, then the strength of the synapse is selectively increased.

2. If the two neurons on either side of a synapse are activated asyn- 
chronously, then th a t synapse is selectively weakened or eliminated.
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The Hebbian learning law has been expressed m athem atically in various ways. 
One of the simplest is with the following equation

Awkj{n) =r)yk{n)xj{n), 0 < rj < 1 (4.3)

where Awkj  is the change th a t will be applied to the weight Wkj and ry is a learning
rate param eter. This particular formulation of Hebb’s law is sometimes called the 
activity product rule. Repeated application of Xj leads to an exponential growth 
th a t finally drives Wkj to saturation [3]. The activity product rule described in 
equation 4.3 is an unsupervised rule. A supervised version of Hebb’s law exists 
and is described by the following equation [104]

Awkj{n) = T]{tk{n) -  yk{n))xj{n),  0 <  77 <  1 (4.4)

Where tk{n) denotes the neuron’s target output. It is often called the Widrow-
Hoff rule. Rum elhart et. al. [95], however, called it the delta rule because the 
weight change Awkj  was proportional to the difference between the neuron output 
and the target output provided by a teacher.

4.3 Multilayer Feed-forward Networks
Perceptrons operate under the constraint th a t the input patterns are linearly 
separable [3, 98]. Whenever the input patterns are not linearly separable, the 
network needs to form an internal representation of the input to perform the 
necessary input-output mappings. This internal representation can be formed 
with one or more hidden layers. Multilayer feed-forward networks consist of a 
set of sensory units th a t constitute the input layer, one or more hidden layers of 
neurons, and an output layer of  neurons. These networks are commonly referred to 
as multilayer perceptrons (MLPs) [3]. A multilayer perceptron has three distinctive 
characteristics:

1 . The model of each neuron includes a nonlinearity a t the output end. The 
nonlinearity must be smooth (i.e. differentiable everywhere). A commonly used 
form of nonlinearity th a t satisfies this requirement is a sigmoidal nonlinearity 
defined by the function:

% =  1  +  e-% (4.5)

where vj  is the net internal activity level of neuron j, and yj is the output of the 
neuron.

2 . The network contains one or more hidden layers. These enable the network 
to form an internal representation of the input.
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Output
layer

Hidden
layer

Inputs

Figure 4.4: A Multilayer Perceptron with 1 hidden layer

3. There is a high degree of connectivity between the neurons of the network. 
Usually each neuron is connected to all of the neurons th a t are in the adjacent 
layers of the network.

The input signals propagate layer-by-layer through the network in a feed­
forward direction. MLPs can be trained in a supervised manner with an algorithm 
known as the error back-propagation algorithm [95].

4.3 .1  T h e B ack-P ropagation  learn ing a lgorith m

The main concept of this algorithm is tha t the error of the output neurons of the 
network is propagated back through the network and there it is used to update all 
of the weights. Figure 4.4 is illustrating a MLP with a hidden layer and an output 
layer. Full interconnection of the neurons of the network is supposed throughout 
this section. The derivation of the back-propagation algorithm follows the one 
presented by Haykin (1994) [3] and is shown here because we use it in the next 
chapter to help us design some of our own filters. We first present a summary of 
the notation used in the presentation of the back-propagation algorithmL 

N o ta tio n

• The indices j  and k refer to different neurons in the network; with signals 
propagating through the network from left to right, neuron k lies in a layer 
to the right of neuron j, when neuron j  is a hidden unit.

• The iteration n refers to the nth training pattern  presented to the network.

UVe wish to thank Simon Haykin for the adaptation of the notation and the derivation of 

the Back-propagation algorithm from his book [3]
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Target 
value

Neuron j | Neuron k
Error

#  #

Inputs Hidden 
layer

Output
layer

Figure 4.5: Signal-flow graph highlighting the details of output neuron k and 

hidden neuron j, adapted from Haykin (1994) [3]

• The symbol ej(n) refers to the error signal at the output of neuron j  for 
iteration n.

•  The symbol dj{n) refers to the desired response for neuron j  and it is used 
to compute ej{n).

•  The symbol y j ( n )  refers to the function signal appearing at the output of 
neuron j  at iteration n.

• The symbol Wji{n) denotes the synaptic weight connecting the output of 
neuron i to the input of neuron j  at iteration n. The correction applied to 
this weight at iteration n is denoted by Awji{n).

•  The net internal activity level of neuron j  at iteration n is denoted by 'L’j(n); 
it constitutes the signal applied to the nonlinearity associated with neuron

j-

•  The activation function describing the input-output functional relationship 
of the nonlinearity associated with neuron j  is denoted by

• The threshold applied to neuron j  is denoted by 9j] its effect is represented
by a synapse of weight Wjq = 9j connected to a fixed input equal to -1.

• The zth element of the input vector (pattern) is denoted by X i { n ) .

•  The learning rate parameter is denoted by rj.

Consider the signal-flow graph shown in figure 4.5, where the details of output 
neuron k for pattern n are highlighted. The inputs to neuron k are the outputs
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of all of the neurons in the previous layer yj{n). The internal activity level a t the 
input of the non-linearity associated with neuron k is

M
M n )  = Y .  Wkj{n)yj{n) (4.6)

where M  is the to tal number of inputs excluding the threshold which is repre­
sented by the synaptic weight WkQ. The associated input yo is fixed and equal to 
-1. The function signal a t the output of neuron k a t iteration n is

yk{n) = (l)k{vk{n)) (4.7)

The error signal at the output of neuron k a t iteration n when neuron k is in the 
output layer is defined by

ek{n) = dk{n) -  yk{n) (4.8)

The instantaneous sum of squared errors E{n)  is obtained by summing the squared 
errors of all of the neurons in the output layer

= (4.9)
^  keC

where C contains all of the neurons in the output layer. The average squared error 
Eav equals to the sum of E{n)  over all n normalized w ith respect to  the set size 
N.

è  (4.10)
n=l

The back-propagation algorithm updates each synaptic weight Wkj {n) by applying 
to  it the correction Awkj{n)  according to the delta rule [95]

where rj is the learning-rate parameter of the back-propagation algorithm. The use 
of the minus sign accounts for gradient descent in weight space. We may express 
the instantaneous gradient dE[n)/ dwkj{n) as follows:

dE[n) _  dE{n) dek[n) dyk{n) dvkin)
dwkj (n) dek (n) dyk (n) dvk (n) dwkj (n)

From equation 4.9 we get

S - ( - )
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From equation 4.8 we get 

From equation 4.7 we get 

From equation 4.6 we get

dekjn) ^  
dyk{n)

dvk{n)
dwkj{n)

So:

dE{n)
dwkj{n)

= -ek{n)(l)'k{vk{n))yk{n) (4.13)

From equation 4.11 and equation 4.13 the weight update Awkj{n)  may be ex­
pressed as

Awkj{n) = r]ek{n)(l)'k(vk{n))yk{n)

We define the local gradient ôk{n) by

Therefore, the weight update Awkj{n)  may be expressed as

Awkj{n) = r]6k{n)yk{n) (4.15)

The derivation of the local gradient ôk{n) is rather straightforward in the case 
th a t neuron k is an output neuron. We will derive the local gradient 5j{n) for the 
case th a t neuron j  is in a hidden layer, again with the help of figure 4.5, which 
depicts the signal-fiow diagram for neuron j  when this is in a hidden layer. In this 
case, the local gradient 5j{n) may be redefined by

dE{n) dyj{n) 
dyj(n) dvj{n)

— 6', (vi (n)] , where neuron j  is hidden
()%,(m) \  ̂ / /  (4T6)

We may calculate the partial derivative dE{n) /dyj{n)  as follows

E{n) = i  ^  e^(n) , neuron k is an output neuron
^  keC
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Differentiating with respect to the output signal yj{n), we get

dE{n) _ ^  dekjn) dvk{n) 
dyj{n) Y  '‘9vk{n) dvj(n)

However

efc(n) =  dk{n) -  yk{n)

= dk[n) — (})k{yk{'^Ÿ} 5 neuron k is an output neuron

Hence

(4.18)

Also:

because

dvk{n)

dvkjn)
dyj{n)

= Wkj{n) (4.19)

M

'^k{n) =  Y^Wkj{n)yj{n)  
j=0

where M  is the to tal number of inputs (excluding the threshold) applied to neuron 
k. From equations 4.17, 4.18 and 4.19 we get

= {i^)'Wkj (n) (" '̂20)
k

Finally, from equations 4.16 and 4.20 the local gradient Sj(n) for hidden neuron j  
is given by

Sj(n) = (f>'j(vj{nŸj ' ^ h { n ) w k j { n )  , when neuron j  is hidden
 ̂ (4.21)

So to summarise, the weight update for all of the weights in the network is 
given by the generalised delta rule and is

Awji{n) -  r)Sj{n)yi{n) (4.22)

where r) is the learning rate parameter, yi{n) is the input to  neuron j  and can be
the output of neuron i in the previous layer or an input Xi, and ôj{n) is the local
gradient and is given by the equations

ôj{n) =  ej{n)^' j(vj{n)^, when neuron j is an output neuron (4.23)

0j{n) = (j)'j(vj{n)'^ ' ^ h { n ) w k j { n )  , when neuron j  is a hidden neuron
 ̂ (4.24)
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The training of the network occurs in two phases: During the first phase, an input 
pa ttern  is presented propagated through the network and the output values are 
computed. In the second phase, these output values are compared to the target 
values and the local gradients are calculated for the output neurons using equation 
4.23. Then their weights are updated (equation 4.22) and the local gradients are 
computed for the neurons in the previous layer using equation 4.24 and so on until 
all of the weights in the network are updated.

4.4 Summary
In this chapter we have introduced the basic principles of artificial neural networks. 
We briefly discussed two very widely used classes of neural networks, perceptrons 
and multilayer perceptrons. We also presented a learning algorithm  for the percep­
tron based on the Hebbian learning law, and the error back-propagation algorithm 
for training multilayer perceptrons. In the following chapters we are going to de­
rive and investigate the performance of the similarity suppression algorithm  for 
designing pattern  discrimination filters.
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Chapter 5 

Sim ilarity Suppression filter 

design algorithm

5.1 Introduction
In the previous chapters we presented some background theory which is necessary 
for understanding our work and we reviewed some of the most well known filter 
design algorithms. In this chapter we present our similarity suppression (SS) 
algorithm  for designing filters for optical pattern  discrimination. We s ta rt with 
the derivation of the algorithm in section 5.2. The magnitude of the designed 
filters is analysed in section 5.3. In section 5.4 we compare the SS algorithm 
with relevant filter design algorithms, like the Gram-Schmidt orthogonalisation 
procedure, linear combination filters and synthetic discriminant functions and 
with the Hebbian learning law for training neural networks. Finally, in section 
5.5 we expand the SS algorithm to design filters for 2 or more cascaded banks 
of correlators. In this chapter we examine the SS algorithm from a theoretical 
viewpoint. In the next chapter we present the computer simulations for this 
algorithm, which verify its performance. Before we start, we must point out th a t 
the algorithm  presented here is the final product of several years of continuous 
changes and improvements, which were the result of computer simulations and 
long discussions.
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5.2 Derivation of the similarity suppression 

algorithm
We will s ta rt (section 5.2.1) with the derivation of a slightly different algorithm 
from the one we use for the design of our filters. We call this, the similarity sup­
pression (SS) orthogonalisation algorithm. It is described as a necessary precursor 
to the description of the algorithm which we use for the filter design (section 5.2.2), 
because it was the one we developed initially and the algorithm we now use was 
developed as an improvement on that. From this point forward, we will refer to 
the inner product of a pattern  with itself as the auto-inner product and the inner 
product of a pattern  and another pattern  as a cross-inner product.

5.2 .1  D eve lop m en t o f th e  sim ilarity  su pp ression  orth ogo­

n a lisa tion  algorithm

Our aim is to distinguish one pattern  from another. This becomes difficult if the 
patterns are similar. Our aim then is to suppress the similarities, quantified by 
the inner product correlations, between all pairs of the known training patterns to 
be distinguished. However, if two patterns are similar but different from the other 
patterns in a group it is im portant not to lose the features which are common 
between the two patterns. These features allow each of them  to be distinguished 
from the other members of the group. At the same time we want to make each 
of the two similar patterns less similar to each other to allow each of them  to be 
distinguished from the other. This highlights the trade off th a t is necessary.

For simplicity just consider two patterns for now. We will generalise this to 
more patterns later. For just two patterns we would like to subtract the similar 
features of the two patterns from the first pattern, initially. The magnitude of 
the similar features is given by the inner product Si • S2 but this does not specify 
what the similar features are. Ideally we would like to subtract from pattern  Si, 
the similar features multiplied by a weighting factor Si • S2 , so th a t the similar 
features are removed at once.

gi Si — (si • S2 ) {normalised similar fea tures)  (5.1)

We would also like to do this to the second pattern  in a similar way

g2  =  S2 — (si • S2 )[normalised similar fea tures)  (5.2)

However, we do not know what the similar features are, so the best we can do 
is to subtract the whole of the second pattern  from the first after weighting the
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second pattern  by Si • S2 , the amount of similarity.

gi =  Si -  (si • 8 2 ) 8 2  (5.3)

g 2 =  8 2  -  (si • 8 2 ) 8 1  likewise (5.4)

We can expect this subtraction to suppress the similarities between the two images, 
as similar regions in the two images will have approximately equal am plitudes and 
the result of the subtraction will locally be close to zero. However, this subtraction 
may or may not remove the similar features completely, since some features may 
be very similar, while others may only be slightly similar. In this case the most 
similar features will be suppressed. However, the only slightly similar features 
will be over compensated and in the worst case they may even be enhanced in 
m agnitude although having a negative sign. The distinguishing features of each 
pattern  which are not present in the other pattern  will also be added (with negative 
sign) into the other pattern  which is highly undesirable as we want to  keep the 
distinguishing features of each pattern  in th a t p a tte rn ’s filter only.

Instead of making such a large change let us introduce a factor /3", less than 
one, giving

gi =  Si -  ^ " ( 8 1  • 8 2 ) 8 2  (5.5)

g 2 =  8 2  -  l3”(si • 8 2 ) 8 1  likewise (5.6)

If /?" is small enough we can be sure tha t all of the similar features are suppressed
by a small amount and th a t only a small amount of the distinguishing features of 
one pattern  are added into another pattern. If we now start afresh beginning with 
only the patterns gi and g 2 , ignoring any patterns at earlier iterative steps in our 
algorithm and apply the same algorithm, we will suppress the similar features of 
patterns gi and g 2 - However, since their similarities are mainly determined by 
(or inherited from) the similarities between the preceding set of patterns a t the 
last iteration, this means th a t the original similarities are suppressed by a small 
amount on each iteration. Let us say th a t the new patterns are g'j, and gg.

gi =  gi -  /^"(gi • g 2 )g 2 (5.7)

g 2 =  g 2 -  /^"(gi • g 2 )gi likewise (5.8)

Note th a t the original distinguishing features of 8 1  and 8 2  which are now partially
present in the other pattern, g 2 and gi respectively, will give a negative contribu­
tion to gi • g 2 since they now represent a similar feature, having some presence in
each g pattern, but with an opposite sign. If the originally similar features had 
been completely removed by the first use of the algorithm, then the second use of 
the algorithm will just about remove the originally distinguishing features which
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had been added (with a negative sign) to the other pattern. This occurs because 
this algorithm suppresses similar features whether they have the same sign or not.

So, by repetitive application of the algorithm similarities are suppressed until 
the patterns are effectively orthogonalised, assuming (I" is chosen small enough to 
ensure gentle monotonie convergence and assuming tha t the iterations are allowed 
to continue to convergence. In other words, the correlation between the final pair 
of patterns is zero. In order to extend this to deal with more than two patterns a t 
each iteration step we simply subtract from each pattern  all of the other patterns, 
each weighted by P” times its similarity with the pattern  itself:

g; — gj “  P"{^j • g i)g i ~  P”iëj  * g2)g2------ * S m )Em  (5.9)

This is repeated in the same way for each of the j  =  1 to  M  training patterns 
and a set of new patterns, which are denoted by the symbols g ' , j  =  1 . . .  M , are 
obtained. This can be w ritten in a more compact form

i f  =  {gf"" • gt"''}gi'"'' (5.10)

where the superscript, i, denotes the iteration number. The tilde symbol over 
the g indicates th a t the pattern has yet to be normalised, as described later. In 
equation 5.10 we subtract all of the other patterns in the set a t the {i — 1)*  ̂
iteration, except for the pattern being processed itself, from each of the 
patterns.

The danger of subtracting so many patterns from one pattern  is th a t the 
pattern  will be dominated by the effect of the subtractions and lose its own identity 
so we need to ensure th a t P" is kept sufficiently small. Even so, the subtraction 
of a lot of weak pattern vectors from one pattern  vector is likely to diminish 
its strength, or magnitude, as similarities are gradually removed. It may not 
m atter if all of the pattern  vectors are diminished by the same amount, bu t this 
is unlikely to be the case, resulting in a variation in the m agnitude (in term s of 
the vector length or the Euclidean norm) from pattern  to pattern. This is highly 
undesirable as it would lead to a bias or preference for some patterns if the g 
patterns were used as filters in an inner product correlator. T hat is to say th a t if 
white noise or completely random patterns were input, the system would indicate 
th a t more of the stronger patterns were present than the weaker ones, whereas all 
should be equally likely. So all of the patterns need to be normalised to  have the 
same strength (or length), say unity. It is not sufficient to allow the algorithm 
equation, (5.10), to converge and then to normalise the final g patterns because if 
the preceding g and even s patterns had not been normalised the algorithm  itself
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would not have been even handed towards each pattern  so some patterns would 
have had an undue effect on their term  in the subtractions. Therefore, in order 
to  trea t each pattern  equally, throughout the process, we need to normalise the 
s patterns at the s tart and then renormalise the g patterns a t the end of each 
iteration. Our aim is to produce a set of orthogonal patterns of equal strength, 
therefore, we need to normalise the Euclidean norm or length of the g vectors in 
the set at each iteration to be a constant:

ilSj 11

assuming ||g'*"'*|| =  1
I s )  II

(5.11)

So to summarise, the SS orthogonalisation algorithm is described by the following 
two equations:

g f  = g f ' )  -  0" E  jgf-'> . gi‘- ‘> j g f ' ’ Vj (5.12)

=  (5.13)
|g

(5.14)

5.2 .2  D evelop m en t o f th e  sim ilarity  su p p ression  cross - 

orthogonalisa tion  algorithm

The SS orthogonalisation algorithm described in the last section tends to  orthog- 
onalise the original patterns and create a set of g patterns which are orthogonal 
to each other, without bias to any one pattern. So the final patterns would be 
good at recognising and discriminating the presence of any of the final patterns 
a t the input.

We have assumed th a t as we were only making a series of small subtractions 
and then amplifying the whole by renormalisation, th a t we have retained all of 
the distinctive features of the original corresponding patterns, so th a t the final 
patterns, when used as filters, would be good at recognising the input patterns. 
Unfortunately, this is not necessarily the case. In N-dimensional space (N is the 
number of pixels in each image), which will be called pattern-space from now on, 
each pattern  defines one point, which shows the pa tte rn ’s position in the pattern- 
space. While the patterns are being orthogonalised, as the algorithm  changes the 
individual pixel values, it is possible for all of the patterns to  drift slowly away

65



5.2. DERIVATION OF THE SIM ILAR ITY  SUPPRESSION
____________________________________________________________________________________ ALG O RITH M

from their original positions, because no knowledge of the original positions is 
explicitly used in the algorithm to anchor them  or to pull them back. A t each 
iteration we only use the pattern  set available a t th a t iteration. So while the final 
patterns may no doubt be good at recognising themselves in the input, they may 
not be good at recognising the original patterns in the input. For example, the 
final gi pattern  may still have cross correlations with the 8 2 , 8 3 , 8 4 , . . .  patterns 
comparable to gi • 8 1 , which is the opposite of the original aim.

It is better to develop the algorithm further by defining what we want and 
designing the algorithm to make it happen. We would like each final filter g 
pattern to have as low an inner product correlation as possible with the original 8 
patterns, except for the original s pattern from which it was derived, with which 
it must have a constant high inner product correlation. This can be achieved by 
ensuring th a t these two types of inner product which we call respectively, the cross- 
inner product and the auto-inner product between the two sets, are incorporated 
into the algorithm itself. The aim will, therefore, be not to  orthogonalise the g 
patterns as compared to other members of their own set, but to  cross-orthogonalise 
the set of g patterns with respect to the set of 8  patterns. In this case the filters, 
g, are said to be mutually orthogonal to the training patterns, 8 .

This can be achieved by replacing some of the g patterns on the right of 
equation 5.9 by their corresponding original 8  patterns to give

gj- = gj — * Si)si — • 82)82 • • • — • Sm )s m  (5.15)

W ritten in a more compact form it becomes

Sk^Sk (5.16)

where the superscript i denotes the iteration number. In equation 5.16 we subtract 
all of the other patterns in the original training set, except for the pa ttern  being 
processed itself, from each of the patterns. Here, as before, we take a
set of patterns and derive from them  another set of patterns in a one to  one 
correspondence. At each iteration a number of term s are subtracted from one 
pattern  which is then renormalised and this is repeated in the next iteration and 
so on. However, the cross-inner product correlations between the two sets quantify 
the similarities between the gj pattern and all of the other original Sk patterns. 
Then we reduce those similarities by subtracting from the gj pattern , the Sk 
pa ttern  with which it was being compared, weighted by the inner product gj • Sk 
in a similar manner as in our earlier derivation, (section 5.2.1), also including 
a small convergence term  fi”. This ties the new gj patterns back to  all of the 
original patterns (apart from the one from which it was derived) and forces the
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cross-correlations between the two sets to be reduced. In addition we need to tie 
the gj pattern  back to the Sj pattern  from which it was derived and this is carried 
out by modifying the normalisation step to keep their inner product constant, i.e. 
Sj • gj = const which can be brought about by the normalisation equation:

g f  = g f 4 ( r  (5.17)
g} • Sj

This can be confirmed by finding the inner product of each side with Sj. Assuming
th a t the original training patterns are normalised to a constant value denoted
henceforth by P  the previous equation can be rewritten in the following manner, 
since =  Sj and consequently • Sj =  P, Vz:

gj"' =  (5.18)
gj • Sj

In most cases, P  is equal to 1 but this is not necessary for the convergence of the 
algorithm.

Returning to the full algorithm we now describe it with the following two 
equations:

i f = g r > - ^ " E { g r > - s . } s .  (5.19)

5 .2 .3  A d van ced  a lgorithm  w ith  im proved con vergen ce  

param eters

Computer simulations (section 6.2) have shown us th a t the algorithm  is sensitive 
to small changes in the convergence factor /3". Large (5” values resulted in oscil­
lations, while very small p" values ensured convergence but the algorithm  needed 
many iterations to converge to the desired values. We found th a t the algorithm 
converged faster and to a lower minimum if the value of j3" was changed as the 
algorithm was converging. Larger values of /3" a t the beginning allowed faster ini­
tia l convergence, while smaller values later assured a finer search for the minimum 
and avoided oscillations. In addition, it seems to make more sense to  force the 
larger cross-inner products down more strongly as in MICE filters, ra ther than 
the MACE, where the largest side-lobes are forced to decrease. We can achieve 
both  of these goals by making the /3" factor of each term  depend on the difference 
between the inner product in tha t term  and the desired value, in this case zero.
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In order to  do th a t (5" is calculated using the following expression (which has to 
be put INSIDE the summation)

g( z - l )
St (5.21)

where (3' is the new convergence constant. Computer simulations have shown, th a t 
setting (3' < 1  ensures th a t (3" does not become too large and th a t the algorithm 
does not become unstable. When j3" is substituted into the algorithm (equation 
5.19) one obtains the final version of the algorithm shown in equations 5.22 and 
5.23

g f = g r >

.(•) _  =(') 6;
>3 -  S] -(i)

(gj' ' St) I >Sfc (5.22)

(5.23)

Equation 5.22 can also be written in the following form

g f  =  g ^ "

g f  = i f  ̂
(i- l)

i f

(5.24)

(5.25)

where in the ±  sign the plus sign is used when > 0  and the minus

sign is used when < 0. Equation 5.24 is very similar to  equation
5.19 with the only differences being th a t the term  in the brackets is now squared 
while preserving the sign. This version of the algorithm performed considerably 
better in our computer simulations. This can be explained if one considers th a t 
the term  th a t is now squared is the difference between the current value of the 
cross-inner product gj • and the desired value (which is equal to zero). This 
difference is then used as the weight for the subtraction of the Sk pattern . By 
squaring it we emphasise the subtractions of the patterns th a t are most similar 
to the gj pattern, thus forcing the largest cross-inner products, in particular, to 
decrease. A cubic power or higher power (while preserving the sign) would make 
the strength of convergence depend more strongly on the size of the cross-inner 
product. Computer simulations however, showed th a t higher powers tended to 
make the algorithm unstable, forced us to use a smaller convergence param eter, 
j3' and overall did not produce a better result.

One final issue tha t we would like to address, is the size of . The size of the 
sum, in equation 5.24, is proportional to the to ta l number of patterns, M  and to
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the size of the square of the inner products, Therefore, the convergence factor 
has to  be of the order of - p ^ .  So the algorithm (equations 5.24 and 5.25) can 
also be w ritten in the form

i f  =  (5.27)

(5.28)

where now the new, final (3 is not related to the size of the inner products, which 
for binary, bipolar patterns is directly proportional to the size of the training 
patterns. In addition, (3 is not related to the number of patterns in the training 
set any more and it takes small values around unity.

5.3 Analysis of the normalisation step
It is logical to  assume tha t the magnitudes of the g patterns, defined by the 
squared Euclidean norm shown in equation 3.2, which we rewrite here,

/AT \ 1/2
Euclidean norm: ||s | | 2  =  I ^  (5.29)

will change since we are continuously subtracting other patterns from them . In 
addition, any change in the g patterns will, as a result, change the magnitudes 
of the inner products between them and the corresponding s patterns they repre­
sent. However, we would like to keep these inner products as stable and high as 
possible, because th a t would enable us to correctly recognise a pattern  by setting 
the appropriate threshold or just by choosing the highest inner product. To see 
the effect of equation 5.16 on the magnitudes of the g patterns we can rewrite it 
for the simple case of just two patterns Si and S2 .

g 2  ̂ =  g 2 -  /^"(g2 * S l ) S i  (5.30)

or in m atrix  notation

g f = -  /3"gr^>^s,s,

=> g 2  ̂ =  g 2 -  /5"sis^g^'"^^ since s^g =  g^s =  scalar
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We can calculate the squared Euclidean norm of the g 2 pattern  in the same way 
as [70] to  see whether it increases or decreases or remains constant when equation 
5.30 is used iteratively.

iiŝ îr=g W =gi'-"ii - 0'%sjni -
=  -  / } " g t ' V ) ( g t ' >  -  /3 " s is T g r" )

= IlgMir -  2/}"(gt'^\f + /3"̂ ||siir(gi*-‘>"’si |̂ 32) 
^  l|g^''ll' -  l |g ^ " |p  =  / ) '" l |s i l l '( g ^ ' '" 's i ) '  -  2^"(g<’-'>^S i)' 

=  /3 " ( g r '> V ) ^ ( /3 " |k i i r - 2 )

Equation 5.32 expresses the slope of the g 2 squared Euclidean norm, ||g 2 |p. If the 
right hand side of equation 5.32 is positive then the magnitude of g 2 will increase. 
If it is negative the norm will decrease and if it is equal to zero the m agnitude of g 2 

will remain constant. The sign of the slope depends on the sign of the expression 
(^ " ||s i |p  — 2 ), which depends on the value of /?", since is constant, and for 
binary patterns is equal to N.

•  If 13” =  then the slope is zero and the norm of g 2 is constant.

•  If j3" < then the slope is negative and the norm of g 2 decreases. Even­

tually, as the inner product (g2^~^^^Si)^ decreases, the right hand side of 
equation 5.32 tends to zero. So after a number of iterations the norm of g 2 

will stabilise to  a very low value. However, as l|g2 |P decreases, the auto-inner 
product g 2 • S2 will decrease as well and this not always the most desirable 
result.

•  If then the slope is positive and ||g 2 |P will increase. This happens
because a t each iteration large values are subtracted from the g 2 pixels and 
their sign is reversed but their absolute values increase and, therefore, ||g 2 |P 
increases. This however, results in the increase of the cross-inner product 
g 2 • Si, which again may not be the most desirable result.

In section 5.2.3 we chose to use P” = 1 /P M ,  which corresponds to  p' = 1 / P ‘̂ M  
for the improved algorithm, as our convergence parameter. This P ”  is smaller than 
2 / ||s || {P — ||s||) and according to the previous analyses the magnitudes of the g 
filters will decrease. T hat is the reason why we chose to normalise the g patterns 
in such a way so th a t all of the auto-inner products gj • Sj remained constant and
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equal to the initial value of the auto-inner products of the s patterns. To do th a t 
we used equation 5.17 which we rewrite here

=  (5.33)
S j ’ -Sj

at each iteration after equation 5.16. By using equation 5.33 at each iteration of 
the algorithm we force gj • Sj = Sj • Sj, Vj. This equation has an effect on the 
magnitudes of the g patterns as well. Their magnitudes now increase as long as 
the right hand side of equation 5.32 is not equal to zero. This happens because 
of equation 5.33 which amplifies them after every iteration. As the algorithm 
converges and g 2 • Si -> 0 , for two patterns, ||g2 || stabilises a t a higher level 
than  what it was before the training. This analysis can be extended to  an M  >  2 
number of patterns with very similar results^. It is logical to predict th a t amongst 
several filters, the one whose corresponding training pattern  is most similar to 
other training patterns will have at the end of the training the largest magnitude. 
This will happen because the algorithm affects filters tha t are derived from similar 
patterns more and it does not induce large changes to the filters th a t correspond 
to  patterns th a t are very different to each other.

One last thing th a t we would like to point out here is th a t there is a drawback 
in using this normalisation. In section 5.2.1 we said tha t we would prefer all of the 
filters g to be of equal magnitude, so tha t no bias for some patterns would exist. 
Now, however, we have shown th a t the magnitudes, ||g ||, of some of the filters will 
increase, and, therefore, a bias will exist. This makes the rejection of unknown 
random patterns difficult because they may give a higher correlation peak with a 
high magnitude filter. On the other hand this normalisation enables us to correctly 
discriminate amongst the known patterns by setting the appropriate threshold, or 
ju st by choosing the highest peak. We could use a different normalisation equation 
and normalise the magnitudes ||g|| of the g filters themselves, for example equation 
5.11, which we rewrite here

g f  = g f & 3  (534)
l | g }  II

This normalisation would ensure tha t all of the filters would be of equal magnitude, 
and th a t an unknown random pattern  would give approximately equal correlation 
peaks with all of them. The choice of which normalisation to use depends on 
the task at hand. If we know th a t all of the possible input patterns belong in a 
specified set and we want to discriminate among them, then the first normalisation 
described in equation 5.33 is preferable. If we want to detect the presence of an

^See appendix B for the mathematical analysis
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object in the input, or if there is a chance th a t a pattern  which does not belong to 
our set and must be rejected is present in the input, then it is im portant to  have 
unbiased filters and the second normalisation described in equation 5.34 may be 
preferable.

5.4 Comparison with other filter design  

algorithms

In the previous sections we derived the SS orthogonalisation and the SS cross 
orthogonalisation algorithms. In this section we are going to  compare them  from 
a theoretical viewpoint with some relevant filter design techniques. We did these 
comparisons to find out how our algorithms relate to other filter design techniques, 
where they differ and their advantages and disadvantages. This knowledge can 
help one decide when to use our algorithms to design filters. In addition it has 
helped us improve our algorithms by borrowing ideas from similar techniques and 
applying them  to our work. We will s tart by comparing the SS orthogonalisation 
algorithm to the Gram-Schmidt orthogonalisation procedure. We will then com­
pare the SS algorithm with the Linear Combination Filters developed by Caulfield 
and Maloney [18]. Finally, we present the comparison between the SS algorithm  
and the Hebbian learning law for training single layer neural networks.

5.4 .1  C om parison  o f th e  G ram -Schm idt orth o g o n a lisa tio n  

procedure w ith  th e  sim ilarity  su p p ression  o rth o g o ­

n a lisa tion  a lgorithm

The Cram-Schmidt orthogonalisation procedure was described in section 3.2 and 
the orthogonalisation equations are rewritten here

f k
ûfc+i =  SA+i, (5.36)

 ̂j=i

In order to  compare our algorithm with it, we note th a t the vectors U i,..., u^, are 
already orthonormal in the iterative equations 5.36 so th a t the cross-terms in the
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product r ij= i(I  — “ J tij)  disappear, therefore, we can write equation 5.36 in the 
form [70]

Ufc+l =
3 = i

X .  T X (5.38)
=  Xfc+l -  2^(Uj X*+i)Uj

Equations 5.10 and 5.11, which we rewrite here,

g f  =  g ^ ''  -  P" E  { e r ' '  • (5.39)

,(0 _  i f
" IlifI

(5.40)

(5.41)

are very similar to equations 5.38 and 5.35 defining the Gram-Schmidt ortho­
normalisation which is not surprising as our algorithm also leads to  orthogonal­
isation of the original patterns. However, our final set of orthogonal patterns is 
different to  the one obtained with the Gram-Schmidt procedure. In fact the basic 
SS algorithm is a symmetrical and iterative version of the Gram-Schmidt process. 
The main differences between the two are that:

i. In the SS algorithm all of the patterns are changed by a small am ount in each 
iteration, treating each pattern in the same equal handed way. However, in 
the Gram-Schmidt procedure, the first pattern  is not changed at all and all 
of the others are changed to become orthogonal to it. The final result is, 
therefore, highly dependent on the order in which the patterns are chosen as 
first, second, and so on. A different presentation order would lead to  different 
set of orthogonal patterns. The order is unim portant for the SS algorithm  
as the iterative equation does not use any patterns already modified earlier 
in the current iteration but only patterns from the previous iteration which 
are fixed throughout.

ii. The SS algorithm has a convergence factor, (3" while the Gram-Schmidt 
procedure has not.

If the orthogonal patterns resulting from the Gram-Schmidt orthogonalisation 
procedure are used to recognise and distinguish the presence of themselves in the 
input, the system would work well as the patterns are orthogonal. However, in
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many cases it is not possible to choose the patterns to be recognised to be members 
of a particular orthogonal set.

If the patterns resulting from the Gram-Schmidt orthogonalisation process 
were used as filters to try  to distinguish the original input patterns, the later 
patterns have had so much removed from them th a t it is likely th a t their original 
own distinctive features have been obscured to such a degree th a t they may be 
considered to  have been lost. W ith the Gram-Schmidt algorithm, in Ædimensional 
pattern  space, the first pattern remains at the same position, while subsequent 
patterns move further and further from their original position despite being finally 
resolved onto an orthogonal axis. This means th a t the inner products between the 
final and the corresponding original patterns are likely to be smaller for patterns 
which were towards the end of the presentation order during orthogonalisation, 
resulting in a bias towards the first patterns in the presentation order.

Moreover, in the Gram-Schmidt procedure the first patterns still retain  the 
original similarities th a t they had with most of the other patterns so when used 
as filters they will register a large output when any of the other similar original 
patterns are input leading to incorrect discrimination.

5.4 .2  T h e relationsh ip  b etw een  th e  SS cross orth o g o n a lisa ­

tio n  a lgorithm  and C aulfield ’s and M a lo n ey ’s L inear  

C om bination  F ilters

The SS cross orthogonalisation algorithm is described by equation 5.16 which we 
rewrite here:

gj’’ =  g j'‘ ’̂ -  ^  T  • Sfcjsfc (5.42)

there is also a normalisation step (equation 5.20) which is not necessary for our 
analysis here and it is omitted for the sake of simplicity as is the square in equation 
5.27. Equation 5.42 shows tha t at every iteration all of the training patterns are 
subtracted from each of the filters, with different weights. We can consider th a t 
the training patterns th a t correspond to each of the filters (when A: =  j  in equation 
5.42) are subtracted from them  with their weights set to  zero. Lets consider what 
happens to an individual filter throughout the training. At each iteration, all of 
the training images are subtracted from it, each with a different weight. After all 
of the iterations a to tal amount of each of the training images has been subtracted 
from it. This to tal amount is equal to the sum of all of the individual weights 
which were used for the subtraction of each training image during the training.
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The same thing happens to all of the filters. Therefore, they can be given by the 
following equations:

C i i S i  +  C 12S 2 +  • • • +  G i m S m  =  g i  

C '2 l S i  +  C 2 2 S 2 +  • • • +  G 2 M ^ M  =  g 2

(5.43)

C'miSi +  G m 2 ^ 2  +  • • • +  G m M ^ M  =  gM 

where each of the coefficients C n ,  C 1 2 , . . .  , G mm is equal to  the sum of all of the 
individual weights th a t were used for the subtraction of each of the training images 
during the training. These coefficients are all negative, except from Vj which 
are equal to zero. It is obvious th a t if the coefficients C u ,  C 1 2 , . . .  , Cmm  can be 
calculated then the final filters can be created w ithout the need for an iterative 
procedure. The aim of the cross orthogonalisation algorithm is to design the filters 
in such a way so tha t each of them has an inner product equal to one (or some 
other constant) with the corresponding training pattern  and equal to zero with 
every other pattern. These conditions can be expressed by the following set of 
equations:

Si • gj =  1 if i =  j  

Si - gj  =  0 if 2 7^

The previous set of equations are w ritten in a m atrix form as follows:

/ s i  \

S2

(5.44)

, g l  g 2 ) =

\Sm J

/  S i  • g i  

S 2 • g i

51
52

g 2

g 2

g M

51 • g M

5 2 • g M

/ I  0 • • • 0̂
0 1 . . .  Q

Vo 0 . . .  \j
\ / I  0 •• • 0\

= 0 1 ••' 0

/ 0̂ 0 • y

(5.45)

or.
\ S m  • g l  S M  '  g 2  ' • ' S m  * g M /  \ 0  0

SG ^ =  I

(5.46)

( 5 . 4 7 )

where S is a  M xl vector whose elements are the training patterns s, G  is a M xl 
vector whose elements are the filters g and I  is an MxM identity m atrix. Equations 
5.43 can be written in a m atrix form as follows:

f G n
G21

G\2
C2 2

Gim \  
G2M

\G m I Gm 2

f  S i \

S2
f g l ^

g 2
( 5 .48)

C m m )  \ S m /  \ g M /
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or,

CS =  G (5.49)

where C  is an MxM m atrix each element of which is the coefficient Cij. From
equation 5.49

Tr^T

and substituting equation 5.50 into equation 5.47

SS^C F = I 

=> RC^ =  I 

= » C ^  =  R -^ I  

=4- C  =  R -^^

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

where R  is an MxM m atrix each element of which, rriij, is equal to the inner 
product between the training patterns s% and Sj. So, the coefficients Cij can be 
calculated from equation 5.54 as long as m atrix R  can be inverted. In th a t case 
the final filters can be calculated directly from equation 5.49 by substitu ting the 
coefficients m atrix C from equation 5.54

G  =  R -IT, (5.55)

As we saw in chapter 3, Caulfield and Maloney [18] calculated their Linear
Combination Filters in two steps. The first step was to calculate the vector inner
product matrix, R , of the input patterns. This m atrix had each of i t ’s elements 
Tij equal to  the inner product between the training patterns s* and Sj

/  1̂1 T12 • • • TiM \
2̂1 T’22 ' ’ • f'2M

R  = (5.56)

V Ml f'M2 Tm m J

where Tij = Sj • Sj.
In the second step they formed linear combinations of the responses rijS. Using 

these linear combinations, the final response when testing pattern  s% for its identity 
to Sjfc would be

^ik — Tjfc +  ^  ] Ckl' îl 
l^k

(5.57)

They imposed the constraint tha t Fik had to be zero unless i = k and nonzero if 
i = k, i.e..

(5.58)
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Equations 5.57 and 5.58 were formulated as m atrix equations [74, 13] leading to 
the general SDF described by equation 3.18 which we rewrite here

(5.59)

Equation 5.54 is in essence the same as equation 5.59. We have calculated the 
coefficients for the M filters, while equation 5.59 calculates the coefficients for a 
single filter. In addition, the m atrix with the desired values in our case is the iden­
tity  m atrix, while equation 5.59 is more general. The vector-inner product m atrix  
R  is transposed as well as inverted in our equation (5.54) because we have defined 
the coefficient vector for each of the filters as a 1  x M  vector while in equation 
5.59, a j  is a M  X  1 vector. So in effect we see th a t the SS cross orthogonalisation 
algorithm should finally converge to the solution which is obtained using general 
synthetic discriminant functions or Caulfield’s and Maloney’s method. The main 
difference between our algorithm and the two methods, is th a t our algorithm  is 
iterative. The first question th a t automatically arises is whether the SS algorithm  
converges to exactly the same solution as the other two methods. We provide 
an answer to this question in the next chapter using computer simulations. The 
advanced form of the SS cross orthogonalisation algorithm described by equation 
5.27 has the subtraction weight squared. This square does not affect the previ­
ous result, as it can be included in the coefficients Cij w ithout any change in the 
subsequent analysis.

5 .4 .3  E quivalence b etw een  a bank o f correlators and  a  

sin gle layer o f neurons

In this section we explain the equivalence between a bank of correlators and a 
single layer of neurons to pave the way for the comparison between the SS cross 
orthogonalisation algorithm and the Hebbian learning rule presented in the next 
section. We will follow the analysis presented in [4].

For an input pattern  s of size N  and a filter g also of size N  the value of the 
central peak of the correlation at the output plane of a correlator is equal to  their 
inner product which can be written

N

yc  = Yl^ ig i  (5.60)
i=l

The output of a single neuron using neural network notation, where Xi denotes the 
input i and wi the weight of the connection between the neuron and th a t input.
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</>(•) is the activation function (usually nonlinear) and 9 is the threshold, is [3]:
N

Vn  = (f>{vN) = (pÇ^XiWi -  9) (5.61)
i=l

Using our notation, equation 5.61 is written
N

tjn = (I>{v n ) = ^i9i -  ^) (5.62)

Equations 5.60 and 5.62 are very similar with the only difference being the thresh­
old and the activation function in equation 5.62. If the threshold 9 is set to  zero 
and we use the identity function ^(z) =  % as our activation function, then equa­
tion 5.62 becomes identical to 5.60. On the other hand, we can include a threshold 
in equation 5.60 by increasing the size (the number of pixels) of the filter g and the 
input s and filling the remaining pixels of the filter with a constant background 
of the appropriate value. The inner product will then be

M N M N
He — ^2 ~  53 T 53 ^i9i ~  53 ^i9i T 9 (5.63)

i=l i=l i=N+l i=l

where M , M  > TV is the new total number of pixels. By choosing the appropriate 
pixel background value for the filter and setting the corresponding pixels a t the 
input image to 1 , we can create any desired threshold, even a negative one. So 
to conclude, each correlator in a bank of correlators corresponds to  a  neuron in 
a single layer of neurons. Each individual pixel value of the filter placed in the 
correlator corresponds to an individual weight of the neuron. The central peak of 
the correlation (the inner product) between the input and the filter corresponds 
to the neuron output when its activation function is linear and its threshold is 
equal to zero.

5.4 .4  C om parison  o f th e  sim ilarity  su p p ression  a lgorith m

w ith  th e  u nsu p erv ised  H ebb ian  learn ing  law

Motivated by the equivalence between a single layer of neurons and a bank of cor­
relators, in this section we are going to investigate the relationship between the 
similarity suppression algorithm and the unsupervised Hebbian learning law [101], 
which is one of the most common algorithms for training single layer neural net­
works. We are going to use both our and the usual neural network notation to 
make this comparison clearer. The unsupervised Hebbian learning law is also 
called the activity product rule and is expressed by the equation 4.3 which we 
rewrite here

AWjm = VVjXm (5.64)
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x i*

Inputs Neurons

Y]

Figure 5.1: A single layer of neurons.

where (see figure 5.1) Wjm is the interconnection weight between the input m  and 
neuron j. t) is the convergence parameter. Xm is the value of the input, m and, i/j 
is the output of the neuron j  and is given by the following equation

N

V] =  E (5.65)
m=l

where N is the total number of inputs or the number of pixels in our training 
patterns. Rewriting the two previous equations in our notation they take the 
form

^9jm = mjSm  or Agj  = T]yjS

for the weight vector and

N

y j =  9jmSm or yj = g j - s  or y^ = g^ s
771=1

(5.66)

(5.67)

where as before, we denote our training patterns with s and the filters, whose 
pixel values correspond to the weights of the network, with g. If the network is 
trained in the batch mode, where the weight update is performed once after all of 
the training patterns have been presented to the network, then the weight update 
is given by (without summation convention)

M
AWjm y ^  ̂Vkj^kr 

k=l
(5.68)

where k indicates the training pattern and M  is the total number of training 
patterns. In our notation this equation can be written

M M r  1
^ 9 3 m = y Y . y k 3 ^km or Ag^ =  7y ^  • S)fc Ufc (5.69)

fc=l k—l V J
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for the weight vector. The similarity suppression algorithm in its simplest form is 
given by equation 5.16 which we rewrite here

ë f  =  E  jg j  • |s *  (5.70)

=> Agj =  jg j  • Sfcjsfc (5.71)

Notice th a t we have om itted the square in equation 5.27 to make the comparison 
easier. Equations 5.69 and 5.71 are very similar. /? and 77 play the same role in 
both  algorithms i.e. convergence factors. Equation 5.69 shows th a t the weight 
update is equal to the product of the output from the neuron, ykj  and the input, 
Sfcyn, th a t is connected through the non-updated weight. This product is summed 
over all training examples, if the system is trained in batch mode. Similarly, the 
change in one of the stored filters in a bank of correlators, given in equation 5.71, 
is equal to the product of the central peak of the output of the correlator and the 
corresponding input.

There are two differences between the two algorithms.

i. The first is the different sign in equations 5.71 and 5.69. M athem atically 
this means th a t the magnitude of the weight vector in the Hebbian learning 
will increase while in the case of the similarity suppression algorithm  the 
magnitude of the weight vector may increase or decrease depending on the 
value of the convergence factor (as we saw in section 5.3). The plus sign in 
the Hebbian learning law can be interpreted as feature or similarity enhance­
ment instead of similarity suppression th a t our algorithm performs. Thus 
the Hebbian Law performs generalisation, which means th a t the network is 
trained to give a high output for all of the training patterns and for other 
patterns similar to them. On the other hand, the SS algorithm performs 
discrimination, which means th a t the correlators are “trained” (or one can 
say th a t the filters placed in them  are designed in such a way) to give low 
outputs with all but one of the training patterns.

ii. The second difference between the two algorithms is th a t in the Hebbian 
learning law the summation is done over the products of the output and 
all of the input patterns, while in the SS algorithm one product, th a t of 
the output and the input pattern  corresponding to  the updated filter, is 
excluded from the sum. This would be the biggest term  in the sum m ation 
provided th a t the weight vector (or the g pattern  in our case) is normalised, 
since the normalisation changes the g filter in such a way so th a t its inner
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product with the corresponding s pattern is held constant. If th a t term  was 
included in the SS algorithm, the result would be tha t the filters would be 
trained to discriminate against all of the input patterns and they would not 
produce a high output for any of them.

Both algorithms need a normalisation step to become stable and in th a t case the 
Hebbian learning law is called the normalised Hebbian rule [70].

5.5 Extension of the Similarity Suppression al­

gorithm to train two or more consecutive 

banks of correlators
In this section, we extend the SS algorithm to calculate the filters for each of 
two cascaded banks of inner product correlators. Since one bank of correlators 
is m athem atically equivalent to a single layer neural network, it cannot classify 
patterns th a t are not linearly separable. Two or more consecutive banks of cor­
relators however, correspond to two or more interconnected neural network layers 
and can classify patterns th a t are not linearly separable. It is necessary however, 
th a t each correlator in the first bank is followed by a non-linear activation func­
tion, because from neural network theory we know th a t hidden units w ith linear 
activation functions provide no benefit in classifying patterns th a t are not linearly 
separable [3]. Based on the similarity between the SS algorithm and the Hebbian 
learning rule shown in the previous section, we are going to follow the well known 
derivation of the back-propagation learning algorithm using our filter formalism.

In figure 5.2 we can see two cascaded banks of correlators. There are T  cor­
relators in the first bank and M  in the second. The same pattern  s is input to 
all of the correlators in the first bank. The input to the correlators in the second 
bank, which is the same for all of them, is formed by the outputs of the correlators 
in the first bank. The correlation peak of each one of them, after the activation 
function is applied to it, corresponds to one pixel of the pattern  which is input 
to the correlators in the second bank. Therefore, the filters in the first bank are 
of size N ,  where N  is the size of the input patterns and the filters in the second 
bank are of size T, where T  is the number of correlators in the first bank. The 
nonlinear activation functions between the two layers are not shown in figure 5.2

First let us define (following the definition in [95]) the average squared error 
to be equal to the mean of the squared errors of the outputs of all of the filters in
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Figure 5.2: Two cascaded banks of correlators.

the output bank of correlators for all of the training patterns

M  M

En,, —
1

2 M E E
fc=l A=1

(2) . 2
'Xk (5.72)

where A indicates the filter number in the output bank, k indicates the training 
pattern  number and the number in the parenthesis on the top left of the each 
symbol (in this case (2)) indicates the bank number. The output bank is bank 2 
and the hidden is bank 1 . We have made the assumption th a t the number of the 
hlters in the output bank is equal to the number of the training patterns. The 
error of each filter in the output layer is

The change A to each of the pixels of filter will be:

(5.73)

(5.74)

where m  denotes pixel number. By applying the chain rule of multi-variable 
differential calculus we have

From equation 5.73 we get

(5.75)

=  - 1 ( 5 .76)
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and from equation 5.62 {y^f = <I>{v n ) = s«Si — S)) we get

(5.77)-  (2 )^'
d^'^hjk

and from equation 5.62 also

where is the output of filter i in the previous bank of correlators and the 
input to the second bank of correlators and corresponds to  s% in equation 5.62. So 
using equations 5.75-5.78, equation 5.74 becomes

rj ^

A ^  E  (5.79)
k=l

SO the equation for the update of the filters in the output layer when they are 
regarded as whole images is obtained by substituting equations 5.73 and 5.62 into 
equation 5.79

 ̂ > (5.80)

where as usual all of the bold symbols denote vectors. The local gradient for the
filter in the output layer is defined to be

(5.81)

and the filter update equation can be rewritten by substituting equation 5.81 into 
equation 5.80 in the following form

=  (5.82)
k=l

For the update of filter in the hidden layer we cannot use the local gradient
defined in equation 5.81 because the calculation of the error is not straight­
forward because we do not know what the desired outputs of the correlators in
the first bank should be. We define the local gradient as follows

M 3 )

Using equations 5.72 and 5.62, we can calculate the partial derivative dEav/d^^^yjk 
as follows

dEgy _  1 A  ^ (2 )  _  J l  V  V  (2) d^'^'^exkd^’̂'^vxk
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In the output layer

M

è  (5.85)

or for images

"̂̂ V̂xk =  (5.86)

Prom equations 5.62, 5.73 and 5.76 we get

d^'^hxk 
d^^hxk

and from equation 5.85 we get

=  -  (5.87)

(5.88)
d^^^Vjk

so substituting equations 5.87 and 5.88 into equation 5.84 we get

dE, -i M M1 M M
=  E  E  (5.89)

and substituting equation 5.89 into equation 5.83 we get

■t M M
V  = i & E E  (5.90)

^  A:=l A=1

and from equation 5.82 the filters in the first bank of correlators can be updated 
by the following equation

A ^  E  E  E  ( ' ' « A ,
k'=ik=ix=i (5 .9 1 )

or the same equation for the whole images can be w ritten

M M M
A«g, = j ^ E E E ^  (5.92)

k ' = l  k = l  X=1

where

. 4 = 1  -  *^VA(®gA • *'Vt)b^*0Â(*^’gA • -s&')s&'
'■ ’ (5.93)

Equation 5.80, which describes the update of the filters in the second bank
of correlators, is very similar to the basic equation of the SS algorithm with the
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main difference being the presence of the non-linear activation function and i t ’s 
derivative. So in effect it trains the filters in the output bank to  distinguish among 
the images th a t are output from the first bank. Equation 5.92 which describes the 
correction th a t must be applied to the filters in the first bank of correlators, is not 
as straightforward to explain. It updates the filters in the first bank, based on the 
average error of the filters in the second (output) bank, which can be measured. 
The algorithm which calculates the filters for more than  two cascaded banks of 
correlators can be derived in a similar manner using the same chain differential 
rule for the other layers.

5.6 Discussion and conclusions
In this chapter we have addressed the problem of designing a set of filters which 
are mutually orthogonal to a set of training patterns. We developed a similarity 
suppression algorithm which starts from a set of training patterns, and creates a 
set of filters. Each of the filters has a high inner product (equal to 1, assuming 
th a t all of the training patterns are normalised) with only one of the training 
patterns; the one th a t it was derived from. In addition, each of the filters has very 
low inner products with all of the other training patterns.

We showed tha t with our choice of convergence param eter the magnitudes 
of the filters will decrease, unless a normalisation step is used. We chose to 
normalise the filters in such a way th a t we ensured th a t their auto-inner products 
would remain stable at a desired value. However, by doing th a t we increased the 
magnitudes of the filters themselves and we now suspect th a t if a random pattern , 
or white noise is input to the system, the output will be biased towards the filter 
whose magnitude is the largest. There is, however, a way around this if we use a 
diflFerent normalisation.

In the third section of this chapter we compared the SS algorithm to some other 
filter design techniques. The first version of the algorithm which orthogonalises 
the filters themselves is a symmetrical, iterative version of the Gram-Schmidt 
procedure.

We also compared the SS algorithm to the Linear Combination filters and to 
the general Synthetic Discriminant Function filters. The SS algorithm converges 
towards the LCFs and SDFs solution. The two filter design methods are, there­
fore, roughly equivalent. In the next chapter we are going to investigate whether 
the algorithm will converge to the exact solution as the LCFs with the help of 
computer simulations.

It is well known [4] that a bank of correlators is m athem atically similar and, if 
the threshold is equal to zero and the activation function is linear, in some cases
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equivalent to a single layer of neurons. Therefore, it can be used to  implement 
a 1-layer neural network. There is also an obvious similarity in the equations 
describing the SS algorithm and the unsupervised Hebbian learning law. Their 
main difference is th a t in its present form the SS algorithm performs discrimi­
nation, while the Hebbian law performs generalisation. However, a single layer 
of neurons and a bank of correlators can only perform correct recognition when 
the patterns to be recognised are linearly separable. The back-propagation learn­
ing algorithm  is well known for its ability to train  neural networks w ith hidden 
layers of neurons. Based on the equivalence between the SS algorithm  and the 
Hebbian law we have extended the SS algorithm to design filters for two or more 
cascaded banks of correlators. In doing tha t, we have not devised a completely 
new training algorithm, but rather expressed the back-propagation algorithm  in 
term s which refer to whole images and are better suited to  the design of filters for 
optical correlators.

In the next chapter we are going to  present some computer simulations of 
the SS algorithm. W ith these simulations we are going to  verify the theoretical 
analyses presented in this chapter and investigate the ability of the final filters to 
recognise noisy patterns.
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Chapter 6 

Com puter simulations of the  

Sim ilarity Suppression algorithm

6.1 Introduction
In chapter 5 we described the similarity suppression algorithm. In this chapter we 
are going to present some of the computer simulations which we conducted while 
we were developing the algorithm. Some of these simulations helped us do some 
modifications to the algorithm and others verified our theoretical conclusions. In 
section 6 . 2  we use the algorithm to calculate two sets of filters to recognise two 
different sets of training patterns in the presence of noise. We investigate the 
effect of the convergence param eter on the speed of convergence and on the final 
solution. In addition, we observe the magnitudes of the filters to verify the con­
clusions we drew in section 5.3. In section 6.3 we present computer simulations 
which test the performance of one of the sets of filters, calculated in section 6 .2 , 
in recognising images buried in additive input white noise. Section 6.4 presents 
com puter simulations which compare the SS algorithm with linear combination 
filters. These simulations verify the theoretical comparison between the SS al­
gorithm  and linear combination filters shown in the previous chapter and clarify 
the relationship between the two methods even further. Finally, in section 6.5 we 
use the results of computer simulations to optimise the number of times th a t the 
algorithm  is allowed to iterate, which yields some surprisingly beneficial results.

87



6.2. CONVERGENCE SIMULATIONS

6 . 2  Convergence Simulations
This section presents the performance of the algorithm during the iterative tra in ­
ing phase. The next section presents the performance of the filters, g, so produced, 
a t discriminating patterns in noise. In order to assess the efficacy of the algorithm 
it is necessary to choose and to devise appropriate performance measures. These 
are introduced below, followed by a detailed description of the simulation param ­
eters and results.

6.2 .1  P erform ance M easures

We define three performance metrics:

i. Cross-inner product m atrix

A m atrix  R  which we call the cross-inner product m atrix was calculated at 
each iteration. The Rij element of the cross-inner product m atrix was equal 
to the value of the inner product of the patterns gi and Sj. The goal of the 
training is to minimise all of the elements of the cross-inner product m atrix 
except from the ones th a t are on the diagonal, which remain constant and 
equal to the normalised magnitudes of the training patterns, P. In the first 
iteration, when the g patterns are identical to the s patterns, m atrix  R  is 
the vector (auto) inner product matrix of the input patterns as defined in 
[66].

ii. Global Energy

A term  which we will call the to tal energy of the system was defined as

1 M M
(6 .1)

^  i=l j=l

In other words the to tal energy of the system is equal to the normalised sum 
of the modulus of all of the elements of the cross-inner product m atrix. The 
to tal energy is a measure of the height of all of the cross inner products. As 
the algorithm converges, we expect the to tal energy to decrease.

iii. Largest cross-inner products

In order to monitor the system’s convergence, another figure of m erit was 
calculated. This figure of merit was the average size of the modulus of 
the three largest cross-inner products as a fraction of P , calculated a t each 
iteration.
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6.2 .2  B inary, b ipolar p a ttern s

Our aim when conducting these simulations was to  see how much the cross-inner 
products were reduced, how many iterations it took for these reductions to  take 
place and how the final cross-inner product values and the convergence speed were 
affected by the convergence param eter p. The first training set of patterns to  be 
recognised, consisted of 32, 16x16 binary, bipolar patterns denoted by s*,% =  
1 , . . .  ,32. We chose to  use binary, bipolar patterns for their simplicity which 
helped us to evaluate the results in the early stages of the development of the 
algorithm. Eight patterns in the training set were chosen to have random elements. 
Those were patterns numbers 1,7,10,11,17,20,21 and 2 2  as they appeared in the 
set. The other patterns were similar to  one of patterns 1, 11 or 22, differing by 7, 
14, 28, 56 and 1 1 2  pixels. Table 6.1 shows the order of the patterns in the training 
set, the similar patterns and by how many pixels they differ. The patterns th a t 
are similar to one another were created by copying the initial pattern  and then 
randomly changing the desired number of pixels. We constructed this specific 
training set so th a t there were some very similar and some very different patterns 
in it. If all of the training patterns had been chosen to be different, the algorithm 
would not produce much benefit, because if all of the cross-inner products were 
already small there would not be any reason for them  to change.

Pattern No: 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 13 14 15 16

Similar to : - 1 1 1 1 1 - 2 2 2 2 - - 1 1 1 1 1 1 1 1 1 1

Differing by: - 7 14 28 56 1 1 2 - 7 14 - - 7 14 28 56 1 1 2

Pattern No: 17 18 19 2 0 2 1 2 2 23 24 25 26 27 28 29 30 31 32

Similar to: - 1 1 1 1 - - - 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 1

Differing by: - 7 14 - - - 7 14 28 56 1 1 2 7 7 7 14 14

Table 6.1: Number of pixels differing in the training set.

The advanced algorithm, described in equations 5.27 and 5.28, was tested with 
several different values of the convergence param eter p. Here we present some 
representative results for 6  different values of p, which are p  =  0 .01,0 .1 ,0 .5 ,1 ,4  
and 6 . For most of the P values the algorithm converged to a sufficiently stable 

solution within the first 1500 iterations.
In figure 6.1 one can see the three dimensional graph of the initial state of the 

cross-inner product matrix. The palest shading shows the highest peaks. The large 
values on the diagonal represent the auto-inner products. All of the other peaks, 
some of which are large (but no bigger than  the auto-inner products) represent
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Onginal filters
15

Training patterns

Figure 6.1: Cross-inner product m atrix before the training. The graph is shown 
with the X and y axes reversed for clarity.

the cross-inner products and those are the ones th a t we want to decrease. The 
total energy index is plotted in figure 6.2 as a function of iteration number. For 
most of the (I values,the to tal energy reduces rapidly, which means th a t the cross- 
inner products decrease. In addition, for most of the values the to tal energy 
decreases exponentially. The decrease is very fast initially and slows down later. 
The average of the absolute value of the three largest cross-inner products as a 
fraction of the auto-inner product’s normalised value P , is shown in figure 6.3, as 
a function of iteration number. The algorithm converged to the desired solution

1= 0.01
1= 0 .1
1=0.5

0.18

0.16
1=4

0.14

IUO.12

0.08
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Iteration Number

Figure 6.2: Total energy index.
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Figure 6.3: Absolute average values of the 3 largest inner products as a function 
of iteration number for various values of the convergence factor, /3.

for most of the values of (3. As we expected, convergence is a lot faster when 
(3 is large (figures 6.2 and 6.3). In addition, the cross-inner products converged 
to lower values as (3 increased. However, (3 values larger than 6 , destabilised the 
algorithm and as a result the inner products oscillated between their initial and 
very large values. Figure 6.3 shows tha t even the largest cross-inner products 
converged to a value less than 10% of the auto-inner product value P  for most 
of the P values (after about 800 iterations). In the best case {/3 = 6 ) most of 
the convergence has taken place after just 100 iterations. The three dimensional 
graph of the cross-inner product m atrix after training with f3 = 6 is shown in 
figure 6.4. It is very easy to see, by comparing figures 6.4 and 6 .1 , th a t the SS 
algorithm has been very successful at suppressing all of the cross-inner products.

6.2 .3  M agn itu d es o f norm alised  and un-norm alised  filters

In this section we will focus on the magnitudes of the filters throughout the train­
ing phase. In section 5.3 it was shown tha t without a normalisation step and 
with our choice for the convergence parameter, /?, the magnitudes of the filters 
would decrease during the training. In figure 6.5 we can see the magnitudes of 
some of the filters (filters 1,2,5,13,20,22 and 23) as the algorithm converges to 
the final solution, when the normalisation equation is not used. We have chosen 
to show these particular filters because some of them (filters 1,2,5,13,22 and 23) 
were derived from patterns tha t were more or less similar to others and some
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Training patterns

Figure 6.4: Cross-inner product m atrix after 1500 iterations for a convergence 
factor 0 Î P = 6. The graph is shown with the x and y axes reversed.

(filter 20) were derived from patterns different to all others. First of all we must 
point out th a t in figure 6.5, the magnitudes of all of the filters have the same 
initial value, 256. We can see in the figure tha t the magnitudes of all of the filters 
decrease as was predicted in the theory in section 5.3. However, they do not all 
decrease by the same amount. A first observation one can make in this figure is 
tha t the largest drop in the filters’ magnitudes takes place in the first iteration. 
In addition, the amount tha t the filters’ magnitudes decrease, depends on the 
similarity between their corresponding initial patterns and other patterns in the 
set. A general trend seems to exist: the amount of the decrease of a filter’s mag­
nitude during the training without normalisation depends on the initial pattern 
from which it was derived and it is proportional to the similarity between tha t 
pattern and the other patterns in the set, as well as to the number of these similar 
patterns. This can be verified in figure 6 . 6  which shows the magnitudes of all of 
the filters, each one depicted with an “x” on the graph, after the training without 
normalisation. They are plotted versus the similarity amongst the corresponding 
training patterns.

This similarity amongst the training patterns was calculated in the following 
manner: for each of the training patterns, we calculated the number of pixels 
which had equal value to pixels in other patterns. For example, the first training 
pattern has 249 pixels equal to pixels in the second pattern  (they differ by 7 pixels, 
therefore, 256-7=249), another 242 pixels equal to pixels in the third pattern  and 
so on and in total it has at least 1803 pixels equal to pixels in all of the other
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Figure 6.5: Unnormalised magnitudes of some of the filters as a function of the 
number of iterations.
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Figure 6 .6 : Un-normalised magnitudes of all of the filters after the training versus 
similarity amongst the corresponding training patterns.
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Figure 6.7: Cross-inner product m atrix after 1500 iterations without normalisation 
for a convergence factor of /? =  6 . The graph is shown with the x and y axes 
reversed for clarity.

patterns in the training set. We used the terms “at least” , because the previous 
calculation did not take into account the pixels which randomly happen to have 
equal values with pixels in other patterns. The second training pattern  has 249 
pixels equal to pixels in the first pattern, 256-7-14=235 pixels equal to pixels in the 
th ird  training pattern and so on and in to tal it has 1754 pixels equal to pixels in 
all of the other patterns. Again, this number is not accurate, but just an estimate, 
but it suffices for our purpose here. The graph shown in figure 6 . 6  verifies our 
previous conclusion, th a t the amount th a t a filter’s magnitude is going to decrease 
during the training depends on the similarity between th a t filter’s corresponding 
training pattern  and all of the other patterns in the training set.

So the filter magnitudes do decrease and tha t has an effect on their auto-inner 
products with the corresponding training patterns. Since there is no normalisation 
step, these will decrease as well. In figure 6.7 we can see the final state of the 
cross-inner product matrix. All of the cross-inner products have decreased to very 
low values, but some of the auto-inner products have decreased as well and this 
is undesirable. To recognise its corresponding training pattern  correctly, each of 
the filters must have an auto-inner product with it which is higher than the cross- 
inner products with the other patterns. Again one can observe tha t the decreased 
auto-inner products are the ones th a t correspond to initially similar patterns. 
We introduced the normalisation step to stabilise the auto-inner products and 
solve this problem, but we predicted th a t this normalisation would increase the
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Figure 6 .8 : Normalised magnitudes of some of the filters as a function of the 
number of iterations.

magnitudes of the filters unevenly. This can be verified in figure 6 . 8  which shows 
the magnitudes of the same filters but in this case when they were normalised 
throughout the training. Due to the normalisation, the strongest filters are the 
ones tha t were the weakest without the normalisation step.

This increase in the magnitudes of some of the filters after using the normali­
sation is undesirable, because, as we said in section 5.3, there will now be a bias 
towards them if random patterns are presented into the recognition system. This 
bias is quite strong, as from figure 6 . 8  we can see tha t the strongest filters are 
roughly 33 times stronger than the weakest.

6.2 .4  P eak-to-C orrelation  E nergy o f th e  correlations b e­

tw een  th e  train ing p attern s and th e  tra ined  and un­

tra ined  filters

The SS algorithm is very successful at decreasing the cross-inner products between 
filters and patterns tha t do not correspond to them. Each filter starts by being 
identical to one of the training patterns and then changes so tha t it becomes 
different to all of the other patterns in the set. These changes, however, must have 
an effect not only on the inner product between the filters and the patterns, but on 
the whole correlation plane. The algorithm forces the inner products to decrease 

but it does not place any constraints on the outer products. In figure 6.9 we can see 
the intensity profile in the correlation plane for two correlations. Subfigure 6.9-(a)
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Figure 6.9: Correlation plane intensity for auto-correlation of pattern 1  and cor­
relation between pattern 1  and filter 1

depicts the auto-correlation of pattern 1 . Subfigure 6.9-(b) depicts the correlation 
between pattern  1 and filter 1 , which was obtained after 1500 iterations with 
^  = 6. We can see tha t the auto-correlation of pattern  1  has a sharp peak (as 
expected) and a PCE (as defined in chapter 2, equation 2.6) equal to 0.53. When 
using the filter corresponding to pattern 1 , the inner product has remained stable, 
but the outer products have increased a lot and the PCE is now only 0.027. For 
a correlation between a filter and the pattern  it corresponds to, we want a high 
correlation peak and low side-lobes, therefore, a high PCE as close to 1 as possible 
is desirable. Therefore, the fact the PCE has decreased so much in the correlation 
between the first pattern and its corresponding filter is a disadvantage.

Figure 6.10 shows the intensity profile of the correlation plane for the correla­
tions between pattern 1  and pattern 2  (subfigure 6 .1 0 - (a)) and between pattern 1 

and filter 2 (subfigure 6.10-(b)). The correlation between the two initial patterns 
has a high, sharp central peak because the patterns are very similar. W ith filter 2, 

the central peak of the correlation has decreased (to less than 10% of P) but the 
outer products have increased to about 65% of the auto-correlation peak value, 
P.

Another interesting example can be seen in figure 6.11 which shows the cor­
relations between pattern 7 and pattern 1 (in subfigure 6 .11-(a)) and pattern 7 
and filter 1 (in subfigure 6.11-(b)). In the correlation between patterns 7 and 1 
there is no correlation peak and the outer products are all low, because the two 
patterns are very different. However, when using filter 1, the central point of the
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(a) Si g) S2 (b ) S i (g) g2

Figure 6.10: Correlation plane intensity for correlations between pattern  1 and 
pattern  2  and between pattern  1 and filter 2 .

correlation plane, i.e. the inner product, may still have a very low value, but the 
outer products have increased dramatically and one of them  is about 80% of the 
auto-correlation peak value, P.

To conclude, the algorithm reduces the inner products, but does not put any 
constraints on the outer products, so they increase. Not all of the correlations 
have their outer products increased by the same amount. The biggest increase 
in the outer products occurs in correlations of filters tha t were derived from pat­
terns which were similar to others a t the beginning of the training. The auto-

0 0 0 0

(a) S 7 (8 ) S i (b ) S7 (8) g l

Figure 6.11: Correlation plane intensity for correlations between pattern  7 and 
pattern  1 and between pattern  7 and filter 1.
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correlation’s outer products increase a lot because of the normalisation step. A 
filter is changed during the training but th a t makes it different from the pattern  
from which it was derived, as well as from other patterns. W hen it is normalised 
so th a t i t ’s auto-inner product reaches the desired level, i t ’s magnitude increases 
as we saw in the previous section and as a result, all of the outer products of the 
correlation increase.

This increase in the outer products in the correlations plays no role in electronic 
systems, but is a m ajor drawback in optical systems, unless the input images are 
always centered. In the case when the location of the object in the input scene is 
not known precisely, the increased outer products would make an optical system 
a lot less useful, because a high outer product could be mistaken for a correlation 

peak.

6.2 .5  R eal valued patterns

In addition to binary, bipolar patterns, we tested the algorithm with some real 
valued patterns. The training set consisted of ten patterns. Each was 112 x 92 
pixels. The patterns were monopolar, grey-level and the pixels took integer values 
between 1 and 256. Each pattern was a photograph of a person’s face. The p a t­
terns were part of the Olivetti Research Laboratory (ORL) faces database. The 
photographs th a t were used can be seen in figure 6.12. We used the algorithm 
on this second training set, mainly to demonstrate th a t it works with real valued 
patterns as well. In addition we use this training set to test the Feature Enhance­
ment and Similarity Suppression (FESS) algorithm, which is presented in the next 
chapter and these simulations will help us to compare the two algorithms.

The patterns th a t are shown in figure 6.12 are not normalised. They were 
normalised, however, before they were presented to the algorithm. The vector- 
inner product m atrix for the normalised patterns before the training is shown in 
figure 6.13. It is clear from the graph th a t the initial patterns are all very similar. 
All of the cross-inner products are high and their magnitudes are about 80-90% 
of the auto-inner products. We used the algorithm with a convergence factor 
/? =  0.65. We let it run for 2000 iterations until it converged to a stable solution. 
The final cross-inner product m atrix after the training is shown in figure 6.14. 
Again we can see th a t all of the cross-inner products have decreased to very small 
values. The algorithm, therefore, works equally well with real valued patterns.

Finally, figure 6.15 shows the filters th a t were created. The resulting filters 
were bipolar, real valued. A better understanding of the way th a t the algorithm
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Figure 6 .1 2 : Training set consisting of ten people’s faces.
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Figure 6.13: Vector-inner product m atrix before the training.
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Figure 6.14: Cross-inner product m atrix after 2000 iterations for a convergence 
factor of (3 = 0.65.

creates the filters can be gained from these figures because unlike the previous 
random patterns, these represent human faces and have a meaning to us. Some 
of the filters have features of other patterns in them but with a negative sign, 
like for example the glasses on the first filter. Most of the filters have some areas 
strengthened (very bright, or very dark) or weakened (grey) and usually bright 
areas in one filter correspond to dark areas in the others.

6.3 Probability of discrimination and dynamic 
range

Optical inner product correlator pattern  recognition systems suffer from the lim­
ited dynamic range inherent in optics. For example, in the extreme case of two 
bipolar N pixel patterns, tha t differ only by one pixel and which need to be 
distinguished, the dynamic range of the optical system has to be greater than 
20 logio N /2  dB in the inner-product correlator domain, for correct recognition. 
Taking into account tha t the dynamic range of a typical optical system can be 
about 30dB, one can see tha t the pa tte rn ’s number of pixels cannot be greater 
than 64, meaning tha t no larger than a 8 x8  pixel image can be recognised optically.

The SS algorithm minimises the cross-inner products and holds the auto-inner 
products constant so tha t they differ by a larger amount. The dynamic range 
required by a detector at the output inner-product plane of an optical system is
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Figure 6.15: Final filters for the faces set.

reduced and less sensitive equipment is needed. So the SS algorithm allows us to 
increase the size of the images tha t can be recognised by an optical system.

In most cases the pattern tha t needs to be recognised will contain an amount 
of noise, where we are using the word “noise” in a broad sense indicating additive 
or multiplicative noise or distortion, rotation or a proportion of another pattern. 
It is im portant to see how much noise can be tolerated before the pattern  becomes 
unrecognisable, and how much the required dynamic range is, for each noise level. 
We conducted simulations with analogue additive noise. The dynamic range re­
quirements for correct discrimination and the probability of discrimination were 
calculated for different levels of noise. The noise added to the patterns was nor­
mally distributed with a zero mean. The input signal to noise ratio (SNR) varied 
from 20 to -lOdB. The results shown in this section were obtained using the filters 
which were calculated with p  = 6. The method for calculating the probability 
of discrimination, was to calculate all of the inner products between an input 
pattern  and all of the filters and then to choose the highest of them. For correct 
discrimination, the highest inner product had to be the one with the filter which 
corresponded to the input pattern. The experiment was repeated for all of the 
training patterns for 5000 different samples of noise for each different noise level. 
We did not use a threshold because the SS algorithm addresses the problem of 
discrimination between patterns and not detection.

The resulting curves for the probability of discrimination before and after 
training are shown in figure 6.16. We can see, in th a t figure, th a t there is a signif-
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Figure 6.16: Probability of discrimination versus input signal to noise ratio

icant increase in the probability of discrimination after the training. For example, 
with an input signal to noise ratio of 3 dB the probability of discrimination is 2% 
before the training and it increases to 83% after the training. Also the probability 
of discrimination falls to 50% at an input signal to noise ratio of 8.9 dB before 
the training and 0.8 dB after the training. The curve after the training is almost 
a shifted version of the curve before the training, although it is a bit steeper. 
This means tha t the same pattern discrimination behaviour versus SNR can be 
achieved but we can tolerate 7dB more noise.

The dynamic range of the recognition system was defined to be the ratio of the 
difference between the auto-inner product and the maximum cross-inner product, 
to the corresponding auto-inner product, in decibels. This can be written as:

S i '  g i  -  m a 2 ; V j ( s ,  • g j )  1 \
dynamic range = m a x i i  ^ — 2 0  log 

i = 1. . .  M , j  = 1. . .  M,  j  ^  i

10
S i ' g i

(6 .2)

This definition assumes tha t the system has some form of autom atic gain control 
which, for example, scales the maximum auto-inner product to a constant near 

the top of the dynamic range.
The resulting plot of the dynamic range versus the signal to noise ratio before 

and after the training is shown in figure 6.17. The error bars in figure 6.17 indicate 
the standard deviation (as defined in appendix A) of the calculated dynamic range 
values for 5000 measurements. We can see from figure 6.17 tha t there is a very 
large reduction in the dynamic range required for correct discrimination, of the
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Figure 6.17: Dynamic range of the recognition system as a function of the signal 
to noise ratio. The error bars show the standard deviation for 5000 measurements.

order of 25 dB, after the training. The amount of reduction lessens for higher 
amounts of noise. The error bars increase as the noise is increased due to the 
random nature of the noise. The worse case after the training is better than the 
best case before the training, for the same amount of additive noise, because the 
error bars do not meet. The curve before the training does not extend to higher 
noise levels because, from figure 6.16, when the probability of discrimination drops 
to zero it is not meaningful to plot the dynamic range. From graph 6.17 we 
can also see th a t if an optical system has a dynamic range of 30dB this means 
tha t, before training, patterns can be recognised having an input SNR of 15dB 
upwards whereas, after training, the dynamic range of the system does not limit 
discrimination.

6.4 Comparison between the filters produced with  
the SS algorithm and the linear combination  
filters

In section 5.4.2 we compared the SS algorithm to the method proposed by Caulfield 
and Maloney in [18] for designing linear combination filters and we concluded 
tha t the SS algorithm converges to the same solution as the one provided from 
Caulfield’s and Maloney’s method. In this section we use th a t method to create

103



6.4. COMPARISON BETW EEN THE EILTERS PRODUCED WITH THE S3
ALGORITHM AND THE LINEAR COMBINATION FILTERS

, 0 .8 -

t3 0.6

q.0.4

- 0  2 -

Training patterns

20
Matrix mettiod filters

Figure 6.18: Cross-inner product m atrix between the input patterns and the filters 
created using equation 5.55. The graph is shown with the x and y axes reversed 
for clarity.

filters which are mutually orthogonal to the binary, bipolar patterns in our first 
training set and compare them to the filters th a t were created with the SS algo­
rithm. We calculated the cross-inner product m atrix between the input patterns 
and the set of filters created with the m atrix method. The three dimensional 
graph of this m atrix can be seen in figure 6.18. This can be compared to figure 
6.4 which shows the cross-inner product m atrix between the input patterns and 
the filters th a t were created using the SS algorithm.

We can see from figure 6.18 th a t the filters created using equation 5.55 are 
completely cross-orthogonal to the input patterns as it was expected. The filters 
th a t were created using the SS algorithm are almost (figure 6.4) - but not com­
pletely - orthogonal and the SS algorithm may converge to the same solution if 
it is allowed to run for more iterations. To investigate further we looked at the 
actual filters. An example is shown in figure 6.19, which shows the two versions 
of filter 2 . Subfigure (a) depicts filter 2  created by the SS algorithm and subfigure 
(b) depicts filter 2 created with the m atrix method. The differences between the 
two filters are plotted in figure 6 .2 0 , which shows the filter created with the SS al­
gorithm after we subtracted the filter which was created with the m atrix method. 
We can see from the three graphs tha t the filters are very similar and it looks 
like the algorithm given time will converge to exactly the same solution th a t is 
obtained with the m atrix method.

One might argue at this stage th a t there is no point in using the SS algorithm
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(a) Filter created with the SS algo­
rithm

(b) Filter created with the matrix 
method

Figure 6.19: Pixel values of the two versions of filter 2

0) 10

y -10

Figure 6.20: Differences between pixel values of the two versions of filter 2
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Figure 6.21: Probability of discrimination versus input signal to noise ratio

to create the filters since they can be obtained with fewer calculations, and, there­
fore, faster from equation 5.55. However, since the filters obtained with the two 
different methods are not identical, we decided to test the tolerance to input noise 
and the dynamic range tha t would be required by an optical system for correct 
discrimination, when using the second set of filters (the ones calculated with the 
m atrix method). We conducted the same simulations as in the previous section.

The resulting curves for the probability of discrimination using the two filter 
sets are shown in figure 6.21. Also in the same graph there is a third curve 
which shows the probability of discrimination before the training. We can see, in 
th a t figure, th a t there is a significant increase in the probability of discrimination 
after the training whichever of the two sets of filters we use. However, the filters 
obtained with the SS algorithm are slightly more tolerant to noise.

The plot of the dynamic range versus the signal to noise ratio, again using 
both filter sets, is shown in figure 6.22. As with the probability of discrimination 
graph, the dynamic range graph shows us tha t the filters obtained with the SS 
algorithm are a bit more (maximum difference between two sets of filters ~1 dB) 
noise tolerant. Obviously for small amounts of noise the filters obtained with the 
m atrix method (equation 5.55) yield better dynamic range results because they are 
completely orthogonal to the input patterns. How can these results be explained? 
It may be th a t completely cross-orthogonalising the filters to the patterns is not 
the best solution after all. Maybe the m atrix method results in some kind of over­
fitting to the training data which makes the final filters less able to generalise and.
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Figure 6 .2 2 : Dynamic range of the recognition system as a function of the signal 
to noise ratio.

therefore, less tolerant to input noise.

6.5 Optimisation of number of iterations for the  
similarity suppression algorithm

The results shown in the previous section motivated us to investigate the noise 
tolerance of the various sets of filters obtained when using the SS algorithm and 
allowing it to run for different numbers of iterations. To do tha t we used the SS 
algorithm to train  the filters for the binary, bipolar patterns in our first training 
set and during the training, after each iteration, we calculated the probability 
of discrimination and the dynamic range required for correct discrimination with 
the newly produced set of filters. Each time the same amount of random noise 
was added to the input. As before the noise was analogue, normally distributed, 
with zero mean and with constant variance equal to 1. The probability of 
discrimination versus iteration number is shown in figure 6.23. We can see th a t 
there is a sharp increase of the probability of discrimination in the first iterations 
and then the probability of discrimination decreases, until it finally converges to 
a relatively constant level. The dynamic range required by the optical system 
for correct discrimination versus iteration number is shown in figure 6.24. As we 
can see the required dynamic range decreases very quickly and after the first few 
iterations it converges to a constant level. The first ten points of the two previous
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Figure 6.23: Probability of discrimination versus number of iterations.
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Figure 6.24: Dynamic range of the recognition system versus number of iterations.
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Figure 6.25: Probability of discrimination versus number of iterations for the first 
1 0  iterations.

graphs can be seen in figures 6.25 and 6.26. In figure 6.25 we can see th a t the 
the probability of discrimination reaches a maximum at the second iteration and 
then it decreases. In hgure 6.26 we can see tha t the dynamic range required by an 
optical recognition system decreases sharply in the first two iterations and then 
it gradually stabilises.

We then calculated the probability of discrimination and the dynamic range 
required by the optical system for correct discrimination using the filters obtained 
after the first few iterations. The corresponding graphs for the probability of 
discrimination can be seen in figure 6.27. As we can see from the probability of 
discrimination curves, the filters produced after only 2 or 4 iterations perform 
slightly worse for a higher signal to noise ratio but as the SNR worsens, these 

filters perform better than the ones obtained after the algorithm has converged 
completely (after around 1500 iterations) and better than the ones which are 
calculated using the m atrix method of equation 5.55. In figure 6.28 we have 
plotted the difference between the probability of discrimination when using the 
filters produced after 2  iterations of the algorithm and when using the filters 
produced after 1500 iterations. The other curve in the same graph is the difference 
between the probability of discrimination when using the filters produced after 2  

iterations and the filters produced with the m atrix method. We can see in figure 
6.28 th a t the largest benefit, 29%, in using the filters produced after two iterations 
is with an SNR of about 0 dB. When the SNR is about 6  dB it is better to use
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Figure 6.26: Dynamic range of the recognition system versus number of iterations 
for the first 1 0  iterations.
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Figure 6.27: Probability of discrimination as a function of the signal to noise ratio.
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Figure 6.28: Probability of discrimination difference as a function of the signal to 
noise ratio.

the hlters produced after 1500 iterations.
How can this improved performance, in terms of probability of discrimination 

in the second iteration, be explained? In figure 6.29 we plot the second training 
pattern  and the corresponding filter in the first four and in the final iteration. 
In addition, in figure 6.30 we plot the differences between the individual pixels 
of hlter 2 in the first four and in the final iteration. We can see in the two 
figures, tha t there is a big change in filter 2  in the first iteration (before the 
training, filter 2  is identical to the second training pattern). Some pixels take 
large positive or negative values and we can assume th a t these pixels define the 
features of this particular training pattern. In the next three iterations there 
is a steady, gradual enhancement of the same features as we can see both in 
hgure 6.29 and in hgure 6.30 where the pixel differences from one iteration to the 

next are shown. In hgure 6.31 we can see the cross-inner product m atrix before 
the training, in the hrst four iterations and after 1500 iterations. The m atrix is 
depicted from the side to enable us to see the negative cross-inner products. We 
can see tha t initially there are cross-inner products with large positive values. In 
the hrst iteration the cross-inner products are reduced considerably and some of 
them increase, but with a negative sign. In the next three iterations, the main 
feature, apart from the reduction of the positive values, is the increase of the 
negative cross-inner products. However, all of the cross-inner products, positive 
and negative have almost disappeared in the hnal iteration. Although interesting.
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(a) Training pattern 2 (b) Filter 2 after 1 iteration

(c) Filter 2 after 2 iterations (d) Filter 2 after 3 iterations

(e) Filter 2 after 4 iterations (f) Filter 2 after 1500 iterations

Figure 6.29: Pixel values of pattern  2  and filter 2 in the first 4 and the final 

iteration.
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(c) Differences between filter 2 in the 
and 3’’̂  ̂ iterations.

(d) Differences between filter 2 in the 
1500*  ̂ and 2”^̂ iterations.

Figure 6.30: Differences between pixel values of the second filter in various itera­
tions.
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the previous observations do not shed light on the question of why the probability 
of discrimination is highest in the second iteration and not in the first or the th ird 
for example. There are no sharp changes either in the filters themselves, or in the 
cross-inner product m atrix between the first and the third iterations. The negative 
cross-inner products may play a role but th a t role is not clear from the d a ta  we 

have here. However, we can explain why the system performs better in the initial 
iterations compared to the final iterations. Subfigure (b) in figure 6.31 shows th a t 
the cross-inner products decrease rapidly from the first iteration. Therefore, we 
can expect a higher probability of discrimination in the first iteration compared 
to the untrained filters. Then, as the algorithm converges, the filters become 
“over-trained” and they are less tolerant to input noise. The data  we have here, 
however, does not help explain why the probability of discrimination maximum 
occurs in the second iteration and not in the th ird for example. And although we 
guess th a t the same thing will happen with other training sets as well, we have no 
m ethod of predicting the exact iteration at which the system ’s performance will 
be optimised.

The dynamic range curves comparing the performance of the filters after 2, 4 
and 1500 iterations with the performance of the filters calculated with the m atrix 
method, are shown in figure 6.32 and are what one would have predicted based on 
the knowledge gained from the probability of discrimination curves. The filters 
which are obtained with the m atrix method give the lowest required dynamic 
range for high SNR since they are orthogonal to the input patterns. However, 
as the SNR decreases the curves meet and a t very high noise levels the filters 
obtained after only 2 or 4 iterations perform slightly better.

Before we discuss the trade-off between probability of discrimination and dy­
namic range, we are going to investigate the height of the outer products of the 
correlations when the 2 iteration filters are used. In figures 6.33, 6.34 and 6.35 we 
can see the correlation plane intensities for the correlations between some of the 
input patterns and the filters produced with the SS algorithm after two iterations. 
In the same figures we have also included the corresponding correlations with the 
filters th a t were produced after 1500 iterations of the SS algorithm. We have 
shown these 1500 iteration graphs before in section 6.2.4 but we plot them  again 
here so th a t the reader can make a comparison. Specifically, in figure 6.33 we can 
see the correlations between the first training pattern  Si and the corresponding 
filter gi. Subfigure (a) shows the correlation of Si with the filter, gi, obtained 
after 1500 iterations and subfigure (b) shows the correlation of Si with the filter.
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Figure 6.31: Cross-inner product m atrix before the training, in the first 4 and 
in the final iteration. The m atrix is depicted from the side. C.i.p.: Cross-inner 
product.
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Figure 6.32: Dynamic range of the recognition system as a function of the signal 
to noise ratio.

g i, obtained after 2  iterations. We can see in figure 6.33 th a t the outer products 
are lower when the filter obtained after 2 iterations is used. In fact, none of the 
outer products is now higher than 50% of the correlation peak compared to more 
than 70% of the correlation peak with the filter obtained after 1500 iterations. 
This is a very im portant improvement because now we can not only correctly 
recognise the pattern, but also locate it in the input scene if its exact location is 
not known. In addition, we can see tha t the correlation peak is sharp. This is 
im portant when more than one target exist in the input scene, in which case the 
two or more peaks will be distinguishable even if one is near the other.

Subfigure 6 .34-(a) shows the intensity of the correlation between the first tra in­
ing pattern, Si and the second filter, g 2 obtained after 1500 iterations. Subfigure 
6.34-(b) shows the intensity for the same correlation but with the filter g 2 ob­
tained after 2 iterations only. Again, the outer products are lower when the filter 
which was obtained after 2 iterations is used. The reduction of the outer prod­
ucts is even more prominent in figure 6.35, which shows the correlation between 
the seventh training pattern, S7 and the first filter, g i, obtained after 1500 it­
erations (subfigure 6.35-(a)) and after 2 iterations (subfigure 6.35-(b)). None of 
the outer products is higher than 50% of the auto-correlation peak value, when 
the 2 iteration filters are used, while with the 1500 iteration filters there where 
outer products which were as high as 80% of the auto-correlation peak value. This 
reduction of the outer products allows us to use the filters obtained with the SS
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=  0.4

0 0

(a) Si (8) g i, 1500 iterations, 
PCE=0.027

(b) Si 0  g i, 2 iterations, PCE=0.1

Figure 6.33: Correlation plane intensity for correlation between pattern  1  and 

filter 1 after 1500 and after 2 iterations.

0 0

(a) Si 0  g 2 , 1500 iterations (b) Si 0  g 2 , 2 iterations

Figure 6.34: Correlation plane intensity for correlations between pattern  1  and 
filter 2 after 1500 and after 2 iterations.
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0 0

(a) S7  0  g i, 1500 iterations (b) S7  0  g i , 2 iterations

Figure 6.35: Correlation plane intensity for correlations between pattern 7 and 
filter 1 after 1500 and after 2 iterations.

algorithm after 2  iterations to recognise or discriminate input patterns even when 
the exact location of the object in the input scene is not known, a t least when no 
noise is present in the input.

So from the two graphs, the one for the probability of discrimination (figure 
6.25) and the one for the dynamic range (figure 6.26), we can see tha t there is a 
trade-off between probability of discrimination and dynamic range. If the dynamic 
range of the system is absolutely critical, then one can choose to use the filters 
which are completely cross-orthogonal to the input images, thus minimising the 
required dynamic range at the expense of probability of discrimination at higher 
noise levels. In the opposite case when one wants to maximise the probability 
of discrimination, then the filters obtained after only 2  iterations give the best 
results of all. Another consideration is the type and amount of noise present. If 
the main type of noise present is system noise then dynamic range is critical and 
the filters created with the m atrix method may be the best choice. If on the other 
hand, there is a lot of input noise and not a lot of system noise then one can 
sacrifice dynamic range for a higher tolerance to input noise which is provided by 
the filters produced after only 2 iterations. In addition, our final decision of which 
filter to use must also take account of the height of the outer products. When the 
exact location of the object in the input scene is not known, it is better to use 
the filters produced with the SS algorithm after 2  iterations, even if the dynamic 
range required by the recognition system is higher. We summarise the previous 
conclusions in table 6 . 2
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SS - LCF COMPARISON

Use the H.I.N. L.I.N. H.D.R. L.D.R. Loc. High Disc. High Rec.
SS 2  i. V V V
LCF V V V

Table 6 .2 : Comparison between the filters produced with the SS algorithm after 
2  iterations and the LCFs. SS 2  i.: SS algorithm 2 iterations, H.I.N.: High input 
noise, L.I.N.: Low input noise, H.D.R.: High required dynamic range, L.D.R.: 
Low required dynamic range, Loc.: Location detection. High Disc.: High Dis­
crimination ability. High Rec.: High recognition ability

6.6 Conclusions

In this chapter we presented the computer simulations for the SS algorithm. We 
started  by showing th a t the algorithm is actually doing what it is intended to do, 
th a t is, it is reducing the cross-inner products between filters and patterns th a t 
do not correspond to them, while it keeps the auto-inner products stable. We 
saw th a t the convergence param eter has a strong infiuence on the convergence 
speed and on the final result. In general the algorithm converges when ^  takes 
values around 1. However, values a lot smaller than th a t can make the algorithm 
too slow, and values a lot larger than th a t can lead to oscillations. The first 
few hundreds of iterations are usually enough for the algorithm to converge to 
a sufficiently good solution. The normalisation step is very im portant and also 
has a strong influence on the final result. If it is not used, then the auto-inner 
products do not remain stable and decrease as the filters are weakened from the 
continuous subtractions. W hen the normalisation step is used, the auto-inner 
products remain stable at the desired level, but some of the filters are strengthened 
unevenly compared to some others, and as a result there is a bias towards them  
when random patterns or noise is input into the system. The algorithm also 
effects the outer products of the correlations between the filters and the patterns. 
The algorithm places no constraint on them, so they increase as the filters are 
amplified during normalisation. This has the direct consequence th a t the PCE 
of the correlations with the filters decreases, compared to  th a t of the correlations 

with the initial patterns.
The motivation behind the development of the algorithm was to be able to 

discriminate amongst similar patterns which were buried in noise. In the second 
section of this chapter we tested the filters produced by the SS algorithm  in
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discriminating between patterns with additive input noise. The input SNR varied 
from 20 to -10 dB and we saw th a t the filters were tolerant to 7 dB more input 
noise compared to the initial patterns. Another im portant m atter is the dynamic 
range of the optical system compared to the dynamic range th a t is required for 
correct discrimination. Usually after an optical system is built, i t ’s dynamic range 
is fixed and cannot be increased, as a m atter of fact it usually decreases due to 
dirt, vibrations, etc. Therefore, it is im portant to minimise the dynamic range 
th a t is required for correct discrimination. We saw th a t when using the filters, 
the required dynamic range is reduced by as much as 25 dB for th a t particular 
training set.

In section 6.4 we verified the conclusions of the theoretical comparison between 
the SS algorithm and the linear combination filters. The algorithm converges 
towards the same solution as the one provided with the m atrix method. The 
filters th a t were produced by the SS algorithm after 1500 iterations were very 
similar to the filters produced using Caulfield’s method. They were not identical, 
however, and when the two sets of filters were compared with respect to the 
probability of discrimination and dynamic range, the filters which were produced 
using the SS algorithm performed slightly better. This led us to think th a t it may 
be better not to allow the algorithm to converge fully because in th a t case the 
filters may be over-fitted to the patterns in the training set and th a t may make 
them less tolerant to noise. In the final section of the chapter we compared the 
filters produced only after the first few iterations to all of the other filters produced 
so far. The filters which were produced after only 2 iterations performed a lot 
better as far as probability of discrimination was concerned, particularly for high 
additive noise. Of course the required dynamic range when using these filter 
was higher because they were not allowed to become orthogonal to the training 
patterns. In addition, the filters produced after 2 iterations produced lower side- 
lobes compared to the filters produced after 1500 iterations. T hat allows us to use 
them even when the exact location of the object in the input scene is not known. 
One can make a choice of which filters to use, based on the application a t hand, 
the amount of noise in the input and the amount of system noise. If the optical 
system has a low dynamic range then the filters produced with the m atrix m ethod 
may be the best choice because they are orthogonal to  the input patterns and, 
therefore, require the minimum dynamic range. If, on the other hand, dynamic 
range is not critical and the inputs are buried in a lot of additive noise, or if the 
location of the object in the input scene is not known, then the filters produced by
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the SS algorithm after only 2  iterations are the best choice. For any requirements 
in between (lower required dynamic range - higher probability of discrimination) 
one can produce the appropriate filters by stoping the algorithm after a certain 
number of iterations.

The filters produced by the SS algorithm are very good at recognising the 
patterns from which they were derived. In many cases, however, two different 
patterns may represent the same object, for example two photographs of the same 
person, and the filters produced by the SS algorithm are designed to recognise one 
of these patterns only and reject all of the others. In the next chapter we present 
the Feature Enhancement and Similarity Suppression (FESS) algorithm which 
deals with such cases.
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Chapter 7 

Feature Enhancement and 
Similarity Suppression filter 
design algorithm

7.1 Introduction

In chapters 5 and 6  we developed the similarity suppression algorithm and tested 
it using computer simulations. Each of the filters designed by the SS algorithm 
can recognise one specific pattern. In some cases it is necessary to design a filter, 
which can recognise a group of patterns. In this chapter we introduce the Fea­
ture Enhancement and Similarity Suppression (FESS) algorithm which designs 
such filters. In the next section (section 7.2) we present the motivation for the 
development of the FESS algorithm and we describe how it is derived from the SS 
algorithm. Section 7.3 compares the FESS algorithm to  other filter design tech­
niques. The final section (section 7.4) of the chapter presents the expansion of the 
FESS algorithm to more than 1  layer. This whole chapter is a theoretical analysis 
of the FESS algorithm. The next chapter contains the corresponding computer 
simulations, which validate the theory.

7.2 Derivation of the Feature Enhancement and 
Similarity Suppression Algorithm

We will s tart by defining some terms which are necessary for the description of 
the FESS algorithm.
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•  Class: A group of objects, which fall under the same category and have some 
common characteristics. For example: doors belong in a class, chairs in 
another, people in another, etc. In pattern  recognition, a group of patterns, 
which represent the same thing. For example: different photographs of the 
same person, different views of an airplane, etc.

•  Class representative filter: A filter specially designed to recognise patterns, 
which belong to a specific class.

•  Auto-inner products: Inner products between the class representative filter 
and all of the patterns th a t belong to the corresponding class.

•  Cross-inner products: Inner products between the class representative filter 
and all of the patterns th a t belong to other classes.

Where possible, we are going to use the same notation as in the previous chapters 
but some additional symbols need to be introduced. All of the training patterns 
are going to be denoted by Sj, i =  1 , . . .  , M , where M  is the to ta l number of tra in ­
ing patterns. N  denotes the number of pixels in the patterns and the filters. The 
filters themselves are denoted by g. K  denotes the number of classes. Each class i 
contains Li training patterns. Obviously Li =  M.  The training patterns will 
be denoted with a second index on some occasions i = 1, . .  . K , j  = 1 , . . .  Lj. 
In th a t case, the first index refers to the class th a t the pattern  belongs to and the 
second is the pattern  number in th a t class.

7.2 .1  B asic  a lgorithm

The SS algorithm designs filters th a t have a high inner product with only one 
pattern  and are orthogonal to all of the other training patterns. This means 
th a t the number of filters is equal to the number of training images. In many 
real life situations however, a single object can be represented by many slightly, 
or very, different patterns. For example, a recognition system might need to 
recognise rotated, scaled or shifted views of an object. There are filters designed 
specifically for rotation invariance [63, 67, 105] or scale invariance [106, 107], and 
translation invariance is an inherent characteristic of many optical correlators, 
but the recognition problem gets a lot more complicated when the three types of 
distortion are combined. In addition, there are other kinds of distortions which are 
found in three dimensional objects and which are a lot more difficult to  describe 
and analyse mathematically. A typical example is the human face, which can be
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distorted in an infinite number of ways due to changes of expression, changes of the 
physical characteristics, etc. The problem becomes even more complicated when 
more than one class needs to be recognised. For example, in face recognition each 
person is a class, which contains many different patterns, which are distorted views 
of the same face. If we were to design filters for such a recognition problem using 
the SS algorithm, we would need to create one filter for each possible distorted 
view of the object th a t we were trying to recognise. This is not only unfeasible 
for most real life situations, but also impractical as a very large number of filters 
would have to be created and every input pattern  would have to  be compared to 
each and every one of them.

The ideal solution, provided by the SDF approach [74] (section 3.4), is to 
create one filter, which correctly recognises all of the input patterns of all classes. 
This filter has to produce a different output inner product magnitude value for 
each class. In addition, this output value has to be the same for all of the patterns 
th a t belong to a single class. The performance of such a filter depends on several 
parameters. First of all on the similarity between the patterns of the various 
classes. It is easier to design a filter which has the same inner product value with 
several different patterns when these patterns are similar than  when these are very 
different to each other. Secondly, on the number of classes to be recognised and 
on the dynamic range of the optical system. The dynamic range required by the 
recognition system increases with the number of classes. The required dynamic 
range is equal to —20 lo g (l/i^ ), where K  is the number of classes, and is very 
small for two classes, goes up to 20 dB for 10 classes, 40 dB for 100 classes and 
so on. Therefore, the actual dynamic range of the recognition system limits the 
number of classes th a t can be recognised by one filter. Of course these calculations 
were done for a completely noiseless system, which is not really feasible. In reality 
such a filter will not work for more than a few classes (less than  1 0 ) and most such 
filters are designed for two or three classes [77]. Braunecker et. al. [75] (section 
3.4) proposed the use of L =  logg 7T filters for the recognition of K  classes and 
Mui et. al. [108] proposed a technique based on a tree structure where each filter 
would have to discriminate between two classes. Caulfield proposed the use of one 

filter for each class [73].
We have chosen to use one filter for each class. The filter only has to distinguish 

the patterns th a t belong to the class it represents from all of the other patterns 
which are members of the other classes. Therefore, only two output values are 
needed. This minimises the required dynamic range of each detector and the only
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problem remaining is to design the filter so th a t it produces the desired outputs 
with all of the patterns. Of course the number of the filters used can become very 
large if the number of classes is large but in such cases a single filter would not 
work anyway. Our technique can be easily modified to design filters th a t recognise 
more than one class. However, in this and the following chapter we are going to 
focus our attention on filters th a t only recognise one class.

So the filters th a t we want to design must have the following characteristics:

i. Each class representative filter must have constant, high auto-inner products 
with all of the patterns in its class.

ii. Each class representative filter must have very low cross-inner products with 
all of the patterns not in its class.

The SS algorithm can be used to reduce the cross-inner products by subtracting 
the training patterns, which belong to other classes, from each filter. However, if 
all of the training patterns in all of the classes are similar to each other, then these 
subtractions are going to reduce the auto-inner products. We need to modify the 
algorithm a little so th a t a t the same time it enlarges the auto-inner products. 
We saw in chapter 5 th a t cross-inner products can be reduced using weighted 
subtraction. Based on the same logic we can increase the auto-inner products 
using weighted addition. The idea is to add at every iteration all of the training 
patterns in the class to the class representative filter.

= gj* +  ^''WjiSji +  . . . +  ^'WjLjSjLj (7.1)

/3' is a convergence param eter which we are going to analyse in more detail in the 
next section. Wji are the weights. The superscript i denotes the iteration number. 
Our aim when adding the patterns to the class representative filter is to copy 
their features into it. In order for all of the auto-inner products to become almost 
equal, the filter must be shifted in pattern-space towards the centre of the area, 
which is formed by the patterns it represents. In addition, the filter will have the 
smallest auto-inner products with the training patterns th a t are most different to 
it, so their weight in the addition must be the largest. Conversely, if a pattern  is 
already similar to the class representative filter, their inner product will be large 
and doesn’t need to increase any more, so the addition weight needs to be small. 
We may rewrite equation 7.1 in the following manner

g f  = g^" + P ' ( P  -  gr '>  • s,)s, +  . . .  + 13'{ P  -  gf-')  •
(7 .2)
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In equation 7.2 the weights of the additions depend on the similarity between the 
filter and the pattern. If a pattern  is already similar to the filter, the corresponding 
auto-inner product will be high and the difference from the normalised auto-inner 
product value, P , will be small. If the pattern  is different, the difference between 
P  and the corresponding auto-inner product will be large and the pattern  will 
be amplified before it is added to the class representative filter. If an auto-inner 
product between the filter and one of the training patterns is negative, then its 
absolute value will be added to P  and, therefore, the pattern  will be added to the 
filter with a strong weight. T hat will make the filter more similar to the pattern  
until eventually their inner product becomes positive. So the algorithm can be 
described by the following equations which are both used a t each iteration

i ?’ =  T  ( ( 7 . 3 )
r = l k = l  L )

sf  =  E  { f  -  (7.4)

where (just a notation reminder) K  denotes the to ta l number of classes, denotes 
the number of training patterns in the r class, Lj  denotes the number of training 
patterns in the jth class and Sjk is the kth training pattern  in the jth class. The tilde 
over the symbol of the new filters shows th a t the filters are not yet normalised. 
Equation 7.3 is the SS algorithm applied to all of the patterns of all of the other 
classes, w ithout the normalisation.

We know from the analysis of the SS algorithm th a t unless we normalise the 
filters at every iteration, their magnitudes are going to decrease due to the contin­
uous subtractions. Consequently equation 7.3 will have the same effect on these 
filters, i.e. their magnitudes are going to decrease. The FESS algorithm, however, 
adds some patterns to the filters and obviously equation 7.4 will have the opposite 
effect on the filters, i.e. it increases their magnitudes.

The filter’s magnitudes are going to increase or decrease depending on the 
number of patterns and on the similarity between patterns. Usually, but not 
always, the patterns th a t belong to each class will be a subset of the to ta l training 
set so in most cases the number of patterns th a t are subtracted from the filter 
will be larger than  the number of patterns th a t are added to  it. In addition, if 
we assume th a t a t the beginning of the training most of the patterns are similar, 
then the subtraction weights are going to be larger than  the addition weights. 
Hence the effect of the subtractions will be stronger than  th a t of the additions
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and the filter’s magnitudes are going to decreased We may be able to alleviate 
with a careful choice of the two convergence parameters, jd[ and /?2 - In th a t case, 
a normalisation of the filters’ magnitudes should not be necessary. However, if 
the filters’ magnitudes cannot be stabilised th a t way, then a normalisation step is 
necessary after each iteration.

As we said earlier, in the SS algorithm there was a straightforward solution to 
th a t problem, and th a t was to normalise the auto-inner product between the filter 
and the pattern  it represented to the desired value using equation 5.17 which we 
rewrite here

(7.5)
g) -Sj

We cannot do the same thing here. If we normalise the auto-inner product of 
the class representative filter with one of the patterns in the class, then all of the 
other auto-inner products will be different, usually lower, because if gj • Sjk = P  
then gj • Sji /  P , for V/ /  k. Another solution is to normalise the inner product 
between the filter and the mean of all of the patterns in the class:

gf = g f 4 A ^  (7 6)
g) -Sj

where

1
= (7.7)

k=l

However, if the training patterns are all very similar then by doing th a t we will 
probably increase all of the cross-inner products as well. This may happen because 
the mean pattern  Sj may also be similar to patterns which belong to  other classes. 
We chose to normalise the filters to themselves to keep their magnitudes stable and 
equal to the m agnitude of the training patterns, P , using equation 7.8, because 
by doing th a t we avoid any bias towards any specific filter.

40 _  %(:, i i g p ' i i
V -  G;

l l i f l l
— (i) P

= g ) '
i i i f i r

assuming
(7.8)

=  P

By using equation 7.8 together with equations 7.3 and 7.4, we keep all of the 
filters normalised, and with the additions and the subtractions we move them  in

^The corresponding mathematical analysis is presented in appendix B
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N-dimensional space, until their position is such th a t the auto-inner products are 
maximised and the cross-inner products are minimised.

One final issue th a t needs to be addressed a t this stage is the initial value of 
each of the class representative filters. Each of the filters can initially be one of 

the patterns th a t belong to the corresponding class. Or it can be equal to the 
mean of all of the patterns th a t belong to the corresponding class. Or it can be 
random. In the next chapter we are going to compare the results for these initial 
filter values. So, to summarise, the FESS algorithm is described by the following 
equations:

i f  =

i f  = gj

A= 1  V 
, , K  Lr ((*-1) J

j  • Sjü \sjk

s f  = s f a

(7.9)

(7.10)

(7.11)

We deliberately wrote equations 7.3 and 7.4 in the opposite order (equations 7.9, 
7.10) because we want to point out th a t the order in which these equations are 
applied does not m atter as long as they are both applied a t each iteration before 
the normalisation.

7.2 .2  A dvanced  a lgorithm  w ith  im proved  con vergen ce  

param eters

Based on the analysis presented in section 5.2.3, we chose the following values for 
the convergence param eter in each equation so th a t it is inversely proportional to 
the to ta l number of training patters used in th a t equation, times the square of 
the power, P,  of the normalised patterns.

1

A  =  f t

LjP^ P  -  • Sj.

(M  -  Lj)P^

(7.12)

(7.13)
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and after inserting the convergence parameters described in the previous equations 
the final algorithm is:

Li
+  (7,14)

^  -  ( M - % ) P 2 1 1  { ^  (^15)

® a  I '

s ( i )  ( i - 1 ) _________A  ^  ^

r^j

In the ±  sign in equation 7.15, the plus sign is used when >  0 and

the minus sign is used when < 0. The param eters A  and f t  take
small values around 1 .

7.3 Comparison of the FESS algorithm w ith rel­
evant filter design and neural network train­
ing algorithms

In the previous section (section 7.2) we described the FESS algorithm. In this 
section we are going to compare the FESS algorithm with some relevant filter 
design techniques and neural network training algorithms. These comparisons are 
going to help us study the relationship between the FESS and other algorithms 
and find its advantages and disadvantages. Our aim is to gain a better insight 
and improve our algorithm.

7.3.1 C om parison  o f th e  FE SS a lgorith m  w ith  th e  

Sim ilarity  S uppression  A lgorith m

We have already described how the FESS algorithm is an extension of the SS 
algorithm. To compare the FESS algorithm with the SS algorithm we are first 
going to combine the two equations describing the FESS algorithm (7.3 and 7.4) 
into one, equation 7.17. It can be written as follows:

M (  \

-  /Î è  (7.17)

where /? is the convergence parameter, and djk is the desired value for each inner 
product. If we substitute djk — P  for the training patterns th a t belong to class
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j  and djk = 0  for the training patterns Sk th a t don’t belong to class j ,  equation
7.17 can be split back to equations 7.3 and 7.4.

Equation 7.17 is a supervised version of the SS algorithm (equation 5.19), 
which we rewrite here

i f  =  g f ' ’ -  /5" E  { s f '*  • S t j s t  (7.18)

This can be easily seen if we consider th a t in the SS algorithm the desired value 
for all of the cross inner products {k ^  j  in equation 7.17) is zero. Therefore, 
\fk /  j  equation 7.17 becomes

g f  =  gj‘“ '  ̂ -  /5 E  • s t j s t  (7.19)

which is the same as equation 7.18. W hen k = j  in equation 7.17, the pattern  Sk 
which is subtracted is the one tha t corresponds to the filter gj and in th a t case the 
desired value for the auto-inner product is equal to P.  However, the auto-inner 
product • Sk=j is already equal to P  because the normalisation equation
(in the SS algorithm) set it to th a t value in the previous iteration. Therefore, 
the whole term  • Sk=j — djk is equal to zero and the pattern  Sk=j is not
subtracted from the filter gj. There are, however, some differences between the 
two algorithms:

• The initial filters for the SS algorithm are the training patterns. For the 
FESS algorithm the initial filters can be one of the training patterns of each 
class, or the average of the training patterns of each class, or random. In the 
first case the choice of which pattern  to use as the initial filter for each class, 
could be random. The second choice at least ensures th a t the initial filter is 
going to contain the features of all of the patterns in the class. However, if 

the training patterns are very similar, there is not much difference between 
the two cases.

•  Both algorithms move the filters in N-dimensional space until the constraints 
th a t they impose are satisfied. These constraints are different for each al­
gorithm. The FESS algorithm imposes the constraint th a t the filter must 
contain all of the features of the patterns of the class it represents. It is 
this constraint th a t forces the auto-inner products to  converge to  the de­

sired value and not the normalisation step. The SS algorithm forces each
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of the filters to become orthogonal to all of the other training patterns, the 
ones it does not represent. Initially each of the filters is made identical to 
the pattern  it represents. After tha t, however, the SS algorithm equations 
do not force any of the filters to keep any of the features of the pattern  

they represent. The normalisation step ensures th a t the auto-inner product 
between the filter and the pattern  it represents has the correct value. This 
indicates th a t the filter th a t is created by the SS algorithm does not need to 
contain any features of the pattern  it represents. However, we have not yet 
conducted any simulations which prove the previous argument.

•  The SS algorithm normalises the inner product between the filter and the 
pattern  it represents. The FESS algorithm normalises the filter itself to the 
mean power of all of the training patterns.

The FESS algorithm, like the SS algorithm, can cross-orthogonalise the filters 
to the training patterns th a t belong to other classes. Since we are normalising 
the magnitude of each of the filters to the normalised power of all of the training 
patterns, P,  th a t is gj • gj =  P, Vj, it is not possible for the algorithm to force all 
of the auto-inner products to converge to P.  They will converge to a value which 
is lower than P,  because if gj *gj =  P, Vj and s&'S& =  P, V/c, then gj *Sfc < P, Vj, k. 
This means th a t a higher dynamic range will be required by the recognition system 
compared to the dynamic range th a t is required when the SS algorithm is used. 
The advantage when using the FESS algorithm is the lower number of filters 
necessary for recognition.

7.3 .2  C om parison  o f th e  FE SS a lgorith m  w ith  S y n th e tic  

D iscrim in ant F unctions

We saw in section 5.4.2 th a t the SS algorithm converges to the same solution th a t is 
provided by the m ethod proposed by Caulfield and Maloney for designing mutually 
orthogonal linear combination filters. In this section we are going to investigate 
the relationship between the FESS algorithm and synthetic discriminant functions. 
The FESS algorithm can be seen as a more general version of the SS algorithm 
and following a similar analysis to the one we followed for the SS algorithm we
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can derive the filters by solving a similar set of linear equations:

C ' l i S i  +  C 1 2 S 2  +  • • • +  G i m ^ m  —  g i  

C 2 1 S 1  +  C 2 2 S 2  +  • • • +  G 2 M S M  =  g 2

C'iClSi +  G k 2 2̂ +  • • • +  G k m Sm  =  giC

(7.20)

where M  is the to ta l number of training patterns, K  is the number of classes and 
consequently filters, and each of the coefficients C n , C 1 2 , .. , Ck m  is equal to  the 
sum of all of the individual weights th a t were used for the addition or subtraction 
of each of the training images during the training. The constraints th a t the FESS 
algorithm imposes on these filters are the following:

g j  • Si =  P  

g i  • Si =  0

if Sj 6  class j ,  

if Si ^  class j
( 7 .2 1 )

Equations 7.21 can be written in a m atrix form as follows:

f d n du • diK ^

S2
• (gl g 2 • • Bk ) =

^ 2 1 ^ 2 2 ' d2K
(7.22)

\ smj [ d u i du2 ' ’ dMKJ

(7.23)

or

S G ^ =  D ( 7 .2 4 )

where S is a M  x 1 vector whose elements are the training patterns s, G  is a x 1  

vector whose elements are the class representative filters g and D  is a M  x ÜT 
m atrix whose elements dij are equal to the desired values of the inner products 
between pattern  s% and filter gj. These values are subject to  the constraints shown 
in equations 7.21. The set of equations 7.20 can also be w ritten in a m atrix  form

C S =  G ( 7 .2 5 )

where C  is a Æ x M  m atrix whose each element is the corresponding coefficient 
Gij. From equations 7.24 and 7.25 we get

T-d - I T (7.26)
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Figure 7.1: A single layer of neurons.

where R  =  SS^ is the M x M  vector-inner product m atrix of the training patterns. 
The final class representative filters can be calculated using equations 7.25 and 
7.26

G =  D 'RT-o-lTi (7.27)

(7.28)

Ecpiation 7.26 is very similar to equation 3.18 which describes the SDF approach 
and we rewrite here:

Ra^ =  d;

=> =  R  d;

The main difference is th a t with the SDF method, one filter is synthesised, while 
our method creates a number of filters equal to the number of classes. However, 
our method reduces to the SDF if one filter is created for all of the classes. In 
addition, the FESS algorithm is iterative while the SDF method is not. Equations 
7.26 and 7.28 however, show tha t if the number of filters (=1) and the desired 
correlation peak values are the same, the FESS algorithm will finally converge to 
the solution given by the SDF method. The squares in equations 7.14 and 7.15 
can be included in the coefficients Gij without changing the previous results.

7.3 .3  C om parison  o f th e FE SS a lgorithm  w ith  th e  su p er­

v ised  H ebbian  law

In this section we compare the FESS algorithm with the supervised Hebbian law, 
which is also called the Widrow-Hoff rule or the delta rule and is described by 
equation 4.4 which we rewrite here

Kwjm ni^j yj)^m^ 

133

0 < ?7 < 1 (7.29)
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where (see figure 7.1) Awjm  is the change applied to  the weight Wjm between 
neuron j  and the input m, dj is the target value for the output of neuron j ,  yj, 
and Xm is the value of input m.  Using our notation we can rewrite equation 7.29 
in the following manner:

AÇjm yj)^m (7.30)

and considering th a t yj = gj • s (equation 5.67), the weight update for the whole 
weight vector (or filter) g becomes

Ag; =  T]{dj -  gj • s)s (7.31)

In the batch mode of training, the weight update is described by

M

AWj.jrn Tf ^  ] jdki Vkj^^km^ 0 <C ?7 ^  1 (7.32)

In our notation and for the whole weight vector equation 7.32 is written

Ag; =  7 ? ^  I^djk -  gj • Sfcjsfc (7.33)

The weight update described in equation 7.33 is identical to th a t given in equation
7.17 which describes the FESS algorithm:

s f  = + PY^ldjk- gj'"'' • St W
(7.34)M r  N 1

-  gj'" • s* jst

since 77 and j3 are both convergence parameters. The two algorithms are equivalent 
and will create the same filters if the same target values are given. The only 
difference between them stems from the manner of presentation. The Hebbian 

law refers to individual weights. The FESS algorithm refers to whole images.

7 .4  Extension of the FESS algorithm to two or 
more consecutive banks of correlators

In section 5.5 we used the insight gained in the previous sections (5.4.3 and 5.4.4 
to derive a SS algorithm which created filters for two or more cascaded banks of 
correlators. In th a t derivation we included the desired values so the derivation
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Figure 7.2: Two cascaded banks of correlators.

applies for the FESS algorithm with the following minor changes. In section 5.5 
we assumed th a t the number of filters in the output bank was equal to the number 
of training patterns. This is not now the case. We now want to design one filter 
for each class so the number of filters in the output bank of correlators will be 
equal to the number of classes, K .

In figure 7.2 we can see two cascaded banks of correlators. There are T  cor­
relators in the first bank and K  in the second. The same pattern s is input to 
all of the correlators in the first bank. The input to the correlators in the second 
bank, which is the same for all of them, is formed by the outputs of the correlators 
in the first bank. The correlation peak of each one of them, after the activation 
function is applied to it, corresponds to one pixel of the pattern  which is input 
to the correlators in the second bank. Therefore, the filters in the first bank are 
of size TV, where N  is the size of the input patterns and the filters in the second 
bank are of size T, where T  is the number of correlators in the first bank. The 
non-linear activation functions are not shown in figure 7.2.

The average squared error is given by the following equation [95]

Emi —
1

2 M

M K
E E

A=1
'Xk (7.35)

where A indicates the filter number in the output bank and k indicates the training 
pattern number. The derivation of the filter update equations is exactly the same 
as in section 5.5 from this point forward and will not be repeated here. The final
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filter update equation for the output bank is:

A ^  E  (  • (')y*) '^>y.
 ̂  ̂ (7.36)

and for the hidden bank the filter update equation is:

^  M  M  K

A « g ,. =  ^ E E E A  (7.37)M 2 k'=l jfc=l A=1

where

A =  < • ‘‘Vt) I '^VK' '̂gA • *̂’y/t} ®SAi 'St')s&/
(7.38)

Equation 7.36, which describes how the filters in the output bank of correla­
tors must be updated, is very similar to equation 7.17 which describes the FESS 
algorithm. The only difference between the two equations is th a t equation 7.36 
is more general and takes into account the non-linear activation functions th a t 
may exist after each of the correlators. It trains the filters in the second bank to 
recognise the output produced by the correlators in the hidden bank. Equation 
7.37 updates the filters in the first bank of correlators based on the error of the 
correlators in the output bank. The two equations (7.36 and 7.37) enable us to 
create filters which can be used in two consecutive banks of correlators. These 
are m athem atically equivalent to a 2 -layer perceptron and, therefore, can be used 
to recognise patterns which are not linearly separable [3], although they cannot 
solve all solvable problems.

7.5 Discussion and conclusions

In this chapter we have designed filters for multi-class pattern  recognition. In 
multi-class pattern  recognition the task is to design one or more filters, which can 
discriminate one class from another. We developed an algorithm, which we called 
the Feature Enhancement and Similarity Suppression (FESS) algorithm. We used 
it to  design filters tha t can discriminate each class from all of the others. This 
means th a t the number of necessary correlations is equal to the number of classes. 
However, the algorithm can also design filters, which recognise more than  one 
class if needed. The FESS algorithm is iterative and is based on the SS algorithm. 
It uses weighted additions to combine the features of all of the patterns th a t
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belong to one class into the class representative filter. As in the SS algorithm, 
weighted subtractions are used to orthogonalise each class representative filter 
to the patterns th a t belong to other classes. In addition, a t each iteration the 
filters are normalised so th a t their magnitudes remain stable. This normalisation 
ensures th a t no bias towards any of the filters will exist if random patterns are 
input.

As we already said, the normalisation keeps the magnitudes of the filters stable 
throughout the training. However, it does not set the auto-inner products of the 
filter with the patterns it represents to a specific value. These are forced to 
converge towards the desired value by the addition equation (7.4). Since we are 
normalising each of the filters to the power of the normalised training patterns, 
P , it is not possible to set all of i t ’s auto-inner products equal to the same value, 
P , which is the desired one. So we expect them  to be lower than  P , but higher 
than the cross-inner products, which will converge to zero. The difference between 
the value th a t the auto-inner products will converge to, and the value th a t the 
cross-inner products will converge to, will define the dynamic range th a t will be 
required by the optical system for correct recognition.

The third section of the chapter presented the comparisons between the SS 
algorithm and relevant filter design techniques. The FESS algorithm can be seen 
as a supervised version of the SS algorithm. The SS algorithm forces the cross- 
inner products to decrease. It does not copy the features of the training pattern , 
th a t the filter represents, to the filter a t every iteration. The normalisation step 
ensures th a t the auto-inner product will take the desired value. The filters th a t 
are created by the SS algorithm, yield exactly the desired value for the auto-inner 
product and very close to the desired values for the cross-inner products. They are 
very good at discriminating but cannot generalise and th a t is a necessary a ttribu te  
for recognising classes of patterns. The FESS algorithm places the additional 
constraint th a t the class representative filter must contain all of the features of 
the patterns th a t belong to th a t class. It normalises the filter itself and not an 
inner product between the filter and one of the patterns. The filter definitely will 
not be able to discriminate between individual patterns within a class, which is 
not what we want anyway, but it will be able to generalise and recognise all of the 
patterns th a t belong to the class, even the ones th a t were not used in the training, 
provided th a t the training patterns span the class space.

We transformed the algorithm equations into a m atrix  form and saw th a t 
the FESS algorithm is very similar mathem atically to the synthetic discriminant
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functions (SDF) approach. The SDF method designs only one filter for all of the 
classes, and the FESS algorithm can do th a t without modifications.

We have also shown th a t the algorithm is m athem atically equivalent to  the 
supervised Hebbian law, also known as the Widrow-Hoff rule. By doing th a t we 

have clarified the relationship between neural networks and optical correlators. 
Each neuron in a layer of a neural network corresponds to a correlator in a bank 
of correlators. The inner product between the input and the filter is equal to  the 
internal activity level of the neuron. Neural network training algorithms like the 
Hebbian law or the back-error propagation algorithm change the weights of the 
neurons. Each individual weight corresponds to a pixel of the digitised filter. By 
using a simple change of notation we can rewrite these neural network training 
algorithms in such a way so th a t they refer to whole images and use them  to 
create filters for optical correlators. The equivalence between the FESS algorithm 
and the supervised Hebbian law and between the FESS algorithm and the SDF 
method suggests th a t the SDF method can be used to calculate the weights of a 
single layer neural network without the need for an iterative procedure. Finally, 
like the SS algorithm, the FESS algorithm can be extended to design filters for 
2  or more cascaded banks of correlators, which compared to a single bank of 
correlators, have the advantage th a t they can be used to recognise patterns th a t 
are not-linearly separable.

This chapter presented the development and the theoretical analysis of the 
FESS algorithm. The computer simulations, which verify our theoretical conclu­
sions for the algorithm will be presented in the following chapter.
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Chapter 8 

Computer sim ulations of the  
FESS algorithm

8.1 Introduction

In the previous chapter we presented the theoretical analysis of the FESS algo­
rithm . In this chapter we describe computer simulations, which helped us assess 
the performance of the FESS algorithm. In the second section (section 8 .2 ) we 
use the algorithm to create filters to recognise a set of faces, which is a typical 
problem of multi-class pattern  recognition. As we saw in the previous chapter, 
the initial filters before the training can be random, or equal to the mean of all 
of the training patterns within their class, or equal to just one training pattern. 
Here we describe the results of the training with all of the different initial values 
for the filters. In addition, we show the effect of the algorithm on the auto- and 
cross inner products and also on the outer products of the correlations between 
the filters and the training patterns. In section 8.3 we calculate the probability 
of recognition, false positives and false negatives and the dynamic range required 
by the optical system for the training set and for a test set. We finish the chapter 
with the conclusions.

8.2 Computer Simulations

In this section we evaluate the performance of the FESS algorithm during the 
training phase, to see whether the algorithm converges to the desired solution, how 
many iterations it takes to do tha t, which is the best choice for the convergence 
param eter and which initial filter values lead to the best performance after the
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training. We define the following performance metric, which will help evaluate 
the convergence of the FESS algorithm:

•  Energy ratio

A term  which is equal to the ratio of the normalised sum of the auto-inner 
products to the normalised sum of the cross-inner products of all of the 
filters and is described by the following equation:

normalised sum of all of the auto-inner products
r =

normalised sum of all of the cross-inner products
Y.f=iEti\Si-Sii\/M (8-1)

Ef=i Ef=i Ej-ii |& • s,j\/{M{K -  1))
k^i

The energy ratio gives us a measure of how much the auto-inner products in­
crease in comparison to the cross-inner products. We expect it to increase as the 
algorithm converges.

8.2 .1  Training set d escrip tion

We used the algorithm to create filters for face recognition. Face recognition is 
one of the typical problems the algorithm is designed to tackle, because many 
different patterns can all represent the same person, in other words belong to 
the same class, and one filter has to be designed to recognise all of them. Each 
person’s face can be distorted in many different ways. In addition to in and out 
of plane rotations, translation and scale variations, facial distortions also include 
changes of expression, elastic distortions and changes in the facial characteristics 
due to ageing, fattening etc. All these types of distortions are very difficult to 
express mathematically. The training set^ we used was part of the Olivetti Re­
search Laboratories faces database and it consisted of faces of ten people. Each 
person was represented by six photographs. So there were sixty images in to ta l in 

the training set. For some of the subjects, the images (see figure 8.1 for a sample 
of the training set) were taken at different times, with a slightly varying light­
ing, different facial expressions (open/closed eyes, smiling/non-smiling) and facial 
details (glasses/no-glasses). All of the images were taken against homogeneous 
backgrounds and the subjects were in upright, frontal position (with tolerance for 
some side movement). The images were grey level and each pixel had an integer 
value between 1  and 256. There are, in theory, two ways to represent these images

^See appendix C for the complete training set.
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Figure 8.1; A sample of the training set, which consists of six pictures of each 
person. Only three examples of each subject are shown in this figure.
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Figure 8 .2 : Cross-inner product m atrix for the monopolar patterns before the 
training. The filters are initially equal to the first pattern  of each of the classes.

in an optical system using SLMs. One can use a multi-level amplitude or phase 
SLM with 256 levels and represent the images in intensity or phase. Or, two SLMs 
can be used, one amplitude and one phase SLM and the pixels can be represented 
with values between -127 and 128, using a binary phase SLM to represent the sign 
and the grey level amplitude SLM to represent pixel values. Of course the first 
way which needs only one SLM is easier to implement, but in this chapter we will 
present simulations for both optical representations. We will refer to the patterns 
whose individual pixels have values between 1 and 256 as monopolar patterns and 
to the patterns whose pixels have values between -127 and 128 as bipolar patterns.

The cross-inner product m atrix before the training, for the monopolar pa t­
terns, can be seen in figure 8 .2 . The first photo of each of the people was used 
as the initial, untrained filter for tha t class in the calculation of this cross-inner 
product matrix. The cross-inner product m atrix is not square any more, since 
there are ten filters and sixty training patterns. Also each of the filters has six 
auto-inner products so the final cross-inner product m atrix is not diagonal.

The surface graph shown in figure 8.2 does not give us a very clear view of 
all of the auto- and cross-inner products. We are going to create one graph for 
each of the rows of the cross-inner product matrix. Each row contains the inner 
products between the corresponding filter and all of the training patterns. It will 
be depicted as a bar chart. Each bar represents the value of an inner product. 
The bars are normalised to 1. They are divided into groups of six. Each group 
of bars represents the inner products with the six patterns tha t belong to th a t 
corresponding class.

In figure 8.3, subfigure (a) shows the first row of the cross-inner product m atrix

142



8.2. COMPUTER SIMULATIONS

s-, 0.4

4 5 6 7
6 training p a tte rn s  in e a c ti c la s s

0 1 2 3 4 5 6 7 8 9  10
6  tra in ing  p a tte rn s  in eactr c la s s

(a) Inner products of the 1®̂ untrained 
filter

(b) Inner products of the 6̂  ̂ untrained 
filter

Figure 8.3: First and sixth row of the initial cross-inner product m atrix of the 
monopolar patterns.
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for the monopolar patterns. Subfigure (b) shows the sixth row of the same matrix. 
Subfigures (a) and (b) in figure 8.4 show the first and sixth row of the cross-inner 
product m atrix for the bipolar patterns respectively. The similarity between all 
of the training patterns is evident in figure 8.3, because all of the auto- and 
cross-inner products are of almost equal magnitudes. Since the patterns are all 
normalised, and we used the first example of each subject as a filter, only the first 
auto-inner product is equal to one in all of the graphs shown in figures 8.3 and 
8.4. A second observation we can make is th a t the bipolar patterns seem to be a 
lot less similar to each other than the monopolar patterns. This happens because 
due to the shifting and sign change, similar pixels in the monopolar patterns 
may have an opposite sign in the bipolar patterns and this reduces some of the 
inner products. Another observation one can make, is th a t the first filter, which 
represents the first class, seems to be more similar to all of the training patterns 
than the sixth filter which represents the sixth class. This means th a t we can set 
the appropriate threshold and use the sixth filter to successfully recognise all of 
the patterns th a t belong to the sixth class and reject all of the others. However, 
the same thing is not possible with the first filter which would give wrong results. 
In fact we chose to show these particular rows of the cross-inner product matrices 
because they represent the worse (H*) and best (6 *̂ ) filters in terms of similarity 
to other patterns. Finally, we should note th a t some of the cross-inner products 
for the bipolar patterns are negative. If we set a threshold to distinguish between 
the auto- and the cross-inner products, these negative cross-inner products will 
be below the threshold and will be correctly rejected only in a system, which 
can detect their sign, for example an electronic recognition system. In an optical 
recognition system which only detects intensity on the output plane, these negative 
inner products would also be considered positive. Therefore, when using such a 

system there is no benefit in letting the cross-inner products converge to  large 
negative values. All of the rows of the cross-inner product matrices before the 
training, for both the monopolar and bipolar patterns are shown in appendix D.

8.2 .2  Training

For the training we let the FESS algorithm run until it converged to a relatively 
stable solution. In most of the simulations this happened within 30000 iterations. 
For the training we used equations 7.14, 7.15 and 7.16 with a minor modification. 
Instead of using two different convergence parameters and ^ 2 , the convergence 
param eter was the same in equations 7.14 and 7.15, and equation 7.15 was applied
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Figure 8.5: First and sixth row of the final cross-inner product m atrix of the 
monopolar patterns after the training with the FESS algorithm. The initial filters 
were equal to the first example of the corresponding classes.

only once every D  iterations. The final results were similar for D  values between 
15 and 30. The results presented here were obtained with an D  value of 25.

We conducted simulations with all three different values for the initial, un­
trained class representative filters: each one of them equal to one of the patterns 
belonging to the corresponding class, or the mean of all of the training patterns 
belonging to the corresponding class, or a random pattern. Here we present the 
results for all three cases^. We have to point out tha t regardless of whether the 
initial filters are monopolar or bipolar, they are going to end up with their pixels 
having both positive and negative values.

Figure 8.5 shows the bar charts for the first and sixth rows of the cross-inner 
product m atrix, which was calculated using the monopolar patterns and the filters, 
which initially were equal to the first training pattern of the corresponding class. 
The first observation one can make looking at these graphs, is tha t all of the 
auto- and cross-inner products have decreased. The cross-inner products are now 
consistently lower than the auto-inner products. They are on average lower for 
the filter than for the filter. The first of the auto-inner products for each 
filter is slightly larger than the others because the filter was derived from the 
corresponding training pattern, but this difference is not large. A threshold can 
be set now to correctly recognise all of the training patterns.

^Look in appendix D for the graphs of all of the rows of all of the cross-inner product matrices 
after the training.

145



8.2. COMPUTER SIMULATIONS

s  0. 4

4 5 6 7 8
6 training p a tte rn s  in e a c h  c la s s

1 2 3 4 5 6 7 8 9  10
6  tra in ing  p a tte rn s  in e a c h  c la s s

(a) Inner products of the 1® filter (b) Inner products of the 6̂  ̂ filter

Figure 8 .6 : First and sixth row of the final cross-inner product m atrix of the 
monopolar patterns after the training with the FESS algorithm. The initial filters 
where equal to the mean of all of the examples of the corresponding classes.

The cross-inner product matrix, whose first and sixth rows are shown in figure 
8 .6 , was calculated using the monopolar patterns and the filters, which initially 
were equal to the mean of the training patterns of the corresponding class. The 
auto-and cross inner products are very similar to the previous case. There seem 
to be slightly larger differences between the auto-inner products of each filter but 
the magnitudes of the auto- and cross-inner products look the same on average.

Figure 8.7 shows the first and sixth rows of the cross-inner product matrix, 
which was calculated using the initially random filters and the monopolar patterns. 
The only thing tha t needs to be pointed out here is tha t the magnitude variations 
among the auto-inner products of each filter are very small. It is clear th a t the 
original filters had no individual features of the training patterns in them. They 
gained them during the training by the addition equation 7.14. These additions 
are weighted in such a way so tha t each of the filters finally becomes equally 
similar to all of the training patterns it represents. T hat is a possible explanation 
why the auto-inner products are almost equal in figure 8.7.

Figures 8 .8 , 8.9 and 8.10 show the first and sixth rows of the cross-inner product 
matrices for the bipolar matrices and the different initial filter values. In figure 8 . 8  

we can see th a t the first auto-inner product is a lot higher than the others for both 
filters, obviously because they were derived from the corresponding pattern. Most 
of the cross-inner products have become negative or zero. In addition, there is a 
considerable difference between the behaviour of filter one (subfigure 8 .8 - (a)) and
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Figure 8.7: First and sixth row of the final cross-inner product m atrix of the 
monopolar patterns after the training with the FESS algorithm. The initial filters 
were random.
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Figure 8 .8 : First and sixth row of the final cross-inner product m atrix of the 
bipolar patterns after the training with the FESS algorithm. The initial filters 
where equal to the first example of the corresponding classes.
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Figure 8.9: First and sixth row of the final cross-inner product m atrix of the 
bipolar patterns after the training with the FESS algorithm. The initial filters 
where equal to the mean of all of the examples of the corresponding classes.

filter six (subfigure 8 .8 - (b)). Most of the auto-inner products for the first filter are 
almost double the size of the auto-inner products of the sixth filter. Most of the 
cross-inner products of the first filter have negative values, while most of the cross- 
inner products of the sixth filter are equal to zero. Consider what would happen 
if we used these filters to recognise the second training example of the sixth class. 
Its auto-inner product with the sixth filter is smaller (in absolute values) than its 
cross-inner product with the first filter. In an optical system which only detects 
intensity on the correlation plane, this would result in incorrect recognition.

The filters’ performance is quite different when they are initially equal to the 
mean of all of the training patterns they represent (figure 8.9). The auto-inner 
products have similar values and they are all higher than all of the cross-inner 
products. Another observation we can make is tha t in this case all of the auto- 
inner products have values which are very close to the value of the first auto-inner 
product for each class in figure 8 .8 . Finally, the cross-inner products have reduced, 
but they have higher absolute values compared to the ones in figure 8 .8 . Again, 
a threshold would allow correct recognition. W ith random initial filters, (figure 
8 .1 0 ) all of the auto-inner products of each filter have the same m agnitude and 
the cross-inner products are very low or zero.

Essentially the information contained in all of the bar charts (the six in this 
chapter and the ones in appendix D) can be summarised in the following tables. 
Table 8.1 shows the mean and standard deviation of all of the auto- and cross
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Figure 8.10: First and sixth row of the final cross-inner product m atrix of the 
bipolar patterns after the training with the FESS algorithm. The initial filters 
where random.

inner products between the three different filters and the monopolar patterns. 
The same information for the bipolar patterns is displayed in table 8.2.

After studying the bar charts and tables 8.1 and 8.2 we can make the following 
statem ents for the filters after the training using the FESS algorithm:

• Monopolar patterns

-  All of the cross-inner products are smaller than all of the auto-inner 
products for all of the classes for all three different initial filter values. 
Therefore, a threshold can be set to distinguish the training patterns 
at least.

Monopolar patterns

Auto-inner products Cross-inner products Auto
C ross

MEAN STD DEV MEAN STD DEV

Initial Filters 0.9706 0.0061 0.9020 0.0347 1.076

Filter 1 0.4612 0.0156 0.2500 0.0387 1.845

Filter Mean 0.4660 0.0244 0.2288 0.0541 2.037

Filter Rand 0.4567 0.0024 0.2702 0.0354 1.690

Table 8.1: Mean value and standard deviation of the auto- and cross-inner prod­
ucts for the monopolar patterns. The last column in the table shows the ratio of 
the mean of the auto-inner products over the mean of the cross-inner products.
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Bipolar patterns

Auto-inner products Cross-inner products Auto
C ross

MEAN STD DEV MEAN STD DEV

Initial Filters 0.8077 0.0384 0.4653 0.0180 1.735
Filter 1 0.1693 0.1325 0.0351 0.0246 4.823
Filter Mean 0.4203 0.0370 0.1009 0.0618 4.165
Filter Rand 0.1498 0.0007 0.0062 0.0058 24.161

Table 8.2: Mean value and standard deviation of the auto- and cross-inner prod­
ucts for the bipolar patterns. The last column in the table shows the ratio of the 
mean of the auto-inner products over the mean of the cross-inner products.

-  The mean magnitude of the auto- and cross-inner products is very 
similar for all three different initial filter values. However, the filters, 
which were initially equal to the mean of all of the patterns of the 
corresponding classes, produced the highest mean for the auto-inner 
products and the lowest mean for the cross-inner products.

-  The standard deviation of the auto-inner products is an order of mag­
nitude smaller for the filters th a t were initially random, than  for the 
other two. The mean filters produced auto- and cross-inner products 
with the highest standard deviation.

•  Bipolar patterns

-  The filters th a t were derived from one training pattern  only, produced 
some cross-inner products higher than auto-inner products. Subse­
quently, 1 0 0 % correct discrimination could not be achieved by using a 

threshold.

-  In addition, the filters th a t were derived from one training pattern  only, 
produced the auto-inner products with the highest standard deviation, 
which was almost equal to the mean of the magnitudes.

-  The filters tha t were derived from the mean of the training patterns of 
the corresponding classes, produced auto-inner products significantly 
higher than the other two kinds of filters. However, their cross-inner 
products were higher as well, although always lower than  the auto-inner 
products.
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-  The filters th a t were initially random, forced almost all of the cross- 
inner products to zero. Their auto-inner products had the lowest mean 
but also by far the lowest standard deviation. In addition they were 
consistently higher than the cross-inner products.

Figures 8.11 and 8 . 1 2  show all of the final filters th a t were created using the 
monopolar and the bipolar patterns and the three different initial filter values. 
The first observation one can make, is th a t areas th a t are enhanced in some images, 
are also enhanced in some others, but with an opposite sign. For example, the area 
of the hair in the first subject is very bright and the same area in the sixth subject 
is very dark. In the monopolar, initially random filters the features of each subject 
are now identifiable. Some features are identifiable in the bipolar, initially random  
filters but not as many as in the filters derived from the monopolar patterns. The 
bipolar filters, which were initially equal to one training pattern  are all blurred in 
a very similar fashion and only have some form of edge enhancement. We note 
th a t the final filters are similar to their initial value. Therefore, the choice of 
the initial filters is very im portant when the initial filters are equal to one of the 
patterns of the class they represent. Finally, several superimposed images can 
be seen in the filters derived from the mean of all of the corresponding training 
patterns for both the monopolar and the bipolar filters.

8 .2 .3  C onvergence sp eed

In this section we discuss the convergence speed of the algorithm for the bipolar 
and monopolar patterns and for the different initial filters. In the beginning of 
section 8.2 we introduced the energy ratio figure of merit. We have plotted the 
energy ratio as a function of iteration for all of our simulations.

In figure 8.13 we can see the energy ratio plotted against iteration number for 
the monopolar patterns and the three initial filter values. Notice th a t the x  axis 
in subfigures (a) and (b) extends only to 10000 iterations. This is because in those 
simulations the algorithm had already converged within the first 1 0 0 0 0  iterations. 
The energy ratio converges to about the same value for all three different initial 
filter values, although a lot slower for the initially random filters. Figure 8.14 

shows the same plots for the bipolar patterns. These graphs are more interesting. 
First of all we see tha t the graph for the random filters is thick as if the energy 
ratio oscillated. This is actually true, not only for the energy ratio of these filters 
but also for the energy ratio of all of the filters, for the bipolar and the monopolar
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Figure 8.11: Final filters for the first five subjects, for monopolar and bipolar 
patterns and for all three initial filter values. 1*̂  Column : monopolar patterns, 
initial filters equal to one pattern. 2"^ Column : monopolar patterns, initial filters 
equal to  the mean of the patterns. 3^  ̂ Column : monopolar patterns, random 
initial filters. 4̂  ̂ Column : bipolar patterns, initial filters equal to one pattern. 
5̂  ̂ Column : bipolar patterns, initial filters equal to the mean of the patterns. 

6^  ̂ Column : bipolar patterns, random initial values.
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Figure 8.12: Final filters for the last five subjects, for monopolar and bipolar 
patterns and for all three initial filter values. 1 ®̂ Column : monopolar patterns, 
initial filters equal to one pattern. 2 ^  ̂Column : monopolar patterns, initial filters 
equal to the mean of the patterns. 3^  ̂ Column : monopolar patterns, random 
initial filters. 4*̂  Column : bipolar patterns, initial filters equal to one pattern. 
5*̂  Column : bipolar patterns, initial filters equal to the mean of the patterns. 
6 ^̂  Column : bipolar patterns, random initial values.
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(a) Initial filters equal to 
one of the training pat­
terns

(b) Initial filters equal 
to the mean of the train­
ing patterns

(c) Initial filters random

Figure 8.13: Energy ratio for the FESS algorithm plotted against number of 
training iterations for the monopolar patterns.

Neration numberX 10* X 10* X 10*

(a) Initial filters equal to 
one of the training pat­
terns of the correspond­
ing classes

(b) Initial filters equal 
to the mean of the train­
ing patterns of the cor­
responding classes

(c) Initial filters random

Figure 8.14: Energy ratio for the FESS algorithm plotted against number of 
training iterations for the bipolar patterns.
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patterns. These oscillations are not visible in the other curves because they were 
a lot smaller and all of the curves were plotted on the same scale for comparison. 
These oscillations happened because the subtraction equation was used only once 
every 25 iterations. The energy ratio actually decreased as the addition equation 
was applied and it jum ped to a higher value every time the subtraction equation 
was applied. The other two graphs in subfigures (a) and (b) show a bump at the 
beginning of the training (after 351 iteration in subfigure 8.14-(b)). We found 
these hard to explain because the cross-inner product matrices a t those particular 
iterations were not very different from the matrices a t the final iteration. We 
believe, however, th a t they resulted from relatively large inner product value 
fluctuations due to sign changes.

8 .2 .4  P eak  to  C orrelation  E nergy (P C E ) o f  correla tions  

b etw een  th e  in itia l p a ttern s and th e  final, tra in ed  

class filters

Like the SS algorithm, the FESS algorithm does not place any constraints on the 
outer products of the correlations between the filters and the training patterns. 
In this section we investigate whether the outer products increase or decrease or 
remain stable after the training. We use the peak to correlation energy (PCE), 
defined in chapter 2 , section 2 .6 , equation 2 .6 , to measure the sharpness of the 
correlation peaks, which are located in the centre of the correlation plane at point 
(65,65) in each graph. In all of the following simulations in this section and in 
the next one, we have used the first training example of each of the classes as the 
representative filter for th a t class before the training.

Figure 8.15 shows the correlation plane intensity for the correlations between 
the monopolar training pattern  Sgi, which belongs to the sixth class and the 
untrained (subfigure a) and trained (subfigure b) filters representing the first class. 
The trained filter used for this correlation was the one th a t was derived from 
the mean of all of the training patterns of the first class. The results using the 
other methods for the initial values of the trained filters were very similar for the 
monopolar patterns. We can see from figure 8.15 th a t the outer products have 
not increased. On the contrary they have decreased. The PC E for this correlation 
was 0.018 before and 4.8 • 10“  ̂ after the training. This is good, rather than  bad 
however, because we do not want this correlation to produce a correlation peak, 
because filter gi must reject pattern  Sei.
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H0.6J
S  0.4

(a) S6 1  (g)Su, PCE=0.018 (b) S6i(g)gi, PCE=4.8 • lO-"̂

Figure 8.15: Correlation plane intensity for correlations between a photo of the 
sixth subject and the untrained (a) and the trained (b) filter for the first subject 
using the monopolar patterns. Filter gi was initially equal to the mean of all of 
the training patterns in the class. Correlation peak location: (65,65)

0 0

(a) S6 1  <g)S6i, PCE=0.024 (b) sgi (g)g6, PCE=0.006

Figure 8.16: Correlation plane intensity for correlations between a photo of the 
sixth subject and the untrained (a) and the trained (b) filter for the sixth subject 
using the monopolar patterns. Filter ge was initially equal to the mean of all of 
the training patterns in the 6 *̂  class. Correlation peak location: (65,65)
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g 0.6. S  0 .6.

(a) S6 1  ® Su, PCE=0.001 (b) S61 (g) g i, PCE=4.6 • 10 - 9

Figure 8.17: Corrélation plane intensity for correlations between the sixth subject 
and the untrained (a) and the trained (b) filter for the first subject using the 
bipolar patterns. The trained filter was initially equal to the mean of the training 
patterns it represents. Correlation peak location: (65,65)

The same cannot be said for the correlations depicted in figure 8.16. In th a t 
figure, subfigure (a) shows the auto-correlation of pattern  Sei and subfigure (b) 
shows the correlation between pattern Sei and the trained filter for the sixth class. 
Again the monopolar pattern  was used for these correlations and the trained filter 
was initially equal to the mean of the patterns of the sixth class. We observe the 
same outer-product behaviour for these correlations as well. They have decreased 
in absolute terms, but they have increased relative to the correlation peak. The 
PCE for the auto-correlation was 0.024 and for the correlation with the final filter,
0.006. In this case, we do want an existing correlation peak so the reduced PCE 
is a disadvantage.

Figures 8.17 and 8.18 show the same correlations for the bipolar patterns. In 
both figures the initial values of the trained filters were equal to the mean of 
the training patterns in the corresponding classes. First of all we can see th a t 
the outer-products are a lot lower in general when using the bipolar patterns. 
Particularly in the auto-correlation of Sqi shown in subfigure (a) of figure 8.18, 
the correlation peak is a lot sharper than in the same auto-correlation using the 
monopolar version of the pattern. The PCE is 0.071. Using the trained filter for 
the sixth class (subfigure 8.18(b)), the PCE falls to 0.004. However, the correlation 
peak is clearly higher than all of the outer products. For the correlation between 
pattern s^i and the untrained and trained filters representing the first class (figure
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r0.6>
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(a) S6 1  <8>S6i, PCE=0.071 (b) S61 ® g6, PCE=0.004

Figure 8.18: Correlation plane intensity for correlations between a photo of the 
sixth subject and the untrained (a) and the trained (b) filter for the sixth subject 
using the bipolar patterns. Before the training, gg was equal to the mean of all of 
the training patterns it represents. Correlation peak location; (65,65)

8.17), the PCE is 0.001 and 4.6 -10“  ̂ respectively.
Finally, figure 8.19 shows the correlations between pattern  Sgi and the trained 

filters representing the first (subfigure a) and the sixth (subfigure b) classes. The 
filters used for these correlations were the initially random filters. Both correla­
tions have very low outer products. The correlation with the filter representing 
the first class has no correlation peak at all and, therefore, a very low PCE, 
5.99 • lO 'ii and the correlation with the filter representing the sixth class has a 
discernible although very low in magnitude correlation peak and a PCE equal to
0.028. The PCE is relatively high, compared to the other correlation in subfigure 
(a), although the correlation peak is so low, due to the almost complete absence 
of outer products.

To conclude, we have seen through these examples th a t for monopolar patterns 
the training increases the outer products relative to the correlation peak and 
reduces the peak-to-correlation energy. For the bipolar patterns, the correlation 
peaks are a lot sharper before the training. The outer products do not increase 
with the training, but the PCE decreases because the correlation peaks decrease. 
However, for all of the cases for the monopolar and the bipolar patterns, after the 
training, the auto-correlations have a higher PCE than the cross-correlations.
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t=0.6> F  0.6

0 0

(a) Sfii (g> g i, PCE=5.99 ■ 10 - 1 1 (b) sgi (g)g6, PCE=0.078

Figure 8.19; Correlation plane intensity for correlations between a photo of the 
sixth subject and the trained filter for the first subject (a), and trained filter for 
the sixth subject (b) using the bipolar patterns and the initially random filters. 
Correlation peak location: (65,65)

8.3 Probability of recognition and dynamic range

In the previous section we described the simulations of the FESS algorithm during 
the training. In this section we present the results of the probability of recognition 
and the dynamic range tests. These were calculated for both the training set and 
for a test set. The test set will be described later in the section after we present 
the results for the training set. Equation 6.2, which we rewrite here was used for 
the calculation of the dynamic range required by the optical system

dynam ic range =  m a x^i (  -  2 0  log^o |  ~  | ) ,

2 =  1 . . .  M , j  = 1. . .  M , j  ^  i (8 .2 )

First in table 8.3 we present the results for the training set.
Table 8.3 shows the probability of recognition and dynamic range for the 

monopolar patterns and for the bipolar patterns for the following two cases. The 
first is when the optical system used (if an optical system is used) has some kind 

of interferometric phase detection at the correlation plane, which allows us to de­
tect the phases (+,-) of the correlation peaks. The second case is for when there 
is no phase detection and we can only measure the intensity of the correlation 
peaks. The method for calculating the probability of recognition for the tests 
with the training set, was to calculate all of the cross-inner products between an
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TRAINING SET

Prob. Rec. (%) Dyn. Range. (dB)

Monopolar
patterns

Initial filters 8 8 ^ 30.8
Filter 1 1 0 0 . 0 9.06
Filter Mean 1 0 0 . 0 8 . 8 8

Filter Rand 1 0 0 . 0 9.74

Bipolar
patterns,
phase
detection

Initial filters 95.0 8.59
Filter 1 95.0 -
Filter Mean 98.3 4.79
Filter Rand 1 0 0 . 0 0.72

Bipolar 
patterns, 
no phase 
detection

Initial filters 95.0 8.59
Filter 1 55.0 -
Filter Mean 98^ 4.79
Filter Rand 1 0 0 . 0 0.72

Table 8.3: Probability of recognition and dynamic range using the training set.

input pattern  and all of the filters and then to choose the highest of them. For 
correct recognition, the highest inner product had to  be the one with the filter 
which corresponded to the input pattern. No threshold was used, since there is 
no need to reject any patterns when using the training set. We can see th a t when 
using the monopolar patterns, the results are very similar for all three initial filter 
values. In all cases the probability of recognition has increased to 100% after the 
training and the required dynamic range has decreased by about 21 dB and is 
now around 9 dB.

When using the bipolar patterns, the results are different for the three initial 
filter values. Only the initially random filters increase the probability of recogni­
tion to 100% after the training. The filters th a t were initially equal to the mean 
of the corresponding training patterns, increase the probability of recognition to 
98.3%. The filters th a t were initially equal to one pattern  only, produce the worst 
results: when using phase detection the probability of recognition is 95%, equal to 
what it was before the training. W hen not using phase detection, the probability 
of recognition falls to 55% with the filters th a t were initially equal to the first 
example of the classes they represent. The required dynamic range is a lot lower 
for the bipolar patterns compared to the monopolar, before and after the training. 
The initially random filters produce the lowest required dynamic range of all.
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The test set did not include any common patterns with the training set. It 
consisted of sixty faces in total. Forty of these patterns belonged to  the same 
ten people th a t the system was trained to recognise, but they were different from 
the corresponding examples in the training set. The remaining twenty patterns 
were faces of five other people. In this case, we used a threshold to calculate 
the probability of recognition. A part from the probability of recognition and 
dynamic range, we have also calculated the False Positive and False Negative 
percentages for the test set. We get a false positive when the input pa ttern  does 
not belong to the memorised set, in other words, it does not belong to any of 
the classes our filters were trained to  recognise and one of the correlations with 
the filters has a central peak higher than the designated threshold. In th a t case 
the system wrongly recognises an unknown pattern. A false negative is registered 
when the input pattern  represents one of the subjects of the memorised set, bu t the 
correlations with all of the filters have peaks lower than the designated threshold. 
In th a t case the system wrongly rejects a known pattern. We can trade these off 
against one another by raising or lowering the threshold. Therefore, to calculate 
the probability of recognition, the False Positives and the False Negatives for 
the test set, we used the following method: we calculated all of the cross-inner 
products between an input pattern  and all of the filters and then chose the largest 
of them. Then we had the following cases:

•  Correct recognition when:

i. The input pattern  belongs to one of the memorised classes.

ii. Its largest inner product is with the filter which represents the class in 
which the input pattern  belongs.

iii. Its largest inner product is larger than  the set threshold.

•  Wrong recognition when:

i. The input pattern  belongs to one of the memorised classes.

ii. Its largest inner product is not with the filter which represents the class 
in which the input pattern  belongs but with another filter.

iii. T hat largest inner product is larger than  the set threshold.

•  False positive when:

i. The input pattern  does not belong to one of the memorised classes.
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TEST SET

Thr PR  (%) FP (%) FN (%) DR (dB)

Monopolar
patterns

Initial filter 0.922 93.3 0 . 0 0 . 0 26.2
Filter 1 0.391 91.6 3.3 3.3 8.38
Filter Mean 0.385 85.0 8.3 6 . 6 7.66
Filter Rand 0.397 96.6 0 . 0 3.3 9.35

Bipolar
patterns,
sign
detection

Initial filter 0.717 70.0 8.3 18.3 1 0 . 1

Filter 1 0.053 6 6 . 6 23.3 3.3 -
Filter Mean 0.358 70.0 3.3 26.6 3.25
Filter Rand 0.089 85.0 8.3 3.3 1.96

Bipolar 
patterns, 
no sign 
detection

Initial filter 0.753 71.6 0 . 0 26.6 1 0 . 1

Filter 1 0.089 38.3 30.0 5.0 -

Filter Mean 0.358 70.0 3.3 26.6 4.37
Filter Rand 0.089 85.0 8.3 3.3 2.35

Table 8.4: Probability of recognition, false positives, false negatives and dynamic 
range using the test set. Thr: Threshold, PR: Probability or recognition, FP: 
False Positives, FN: False Negatives, DR: Dynamic Range.

ii. One of its inner products with one of the filters is larger than  the set 
threshold.

•  False negative when:

i. The input pattern belongs to one of the memorised classes.

ii. Its largest inner product is lower than the set threshold.

The probability of recognition was equal to the number of correct recognitions 
expressed as a percentage. Obviously, the percentages of correct and wrong recog­
nition, along with the percentages of false positives and false negatives add up to 
a hundrend percent. One other thing th a t we must point out is th a t we used the 
same threshold for all of the filters.

Table 8.4 shows the corresponding results when using the test set. Again 
starting with the monopolar patterns, we see th a t the initially random  filters 
provide the highest probability of recognition, 96.6%. The filters th a t were initially 
equal to the mean of the corresponding training patterns produce the worse results 
mainly because of the high number of false positives and false negatives. All of
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the filters for the monopolar patterns reduce the required dynamic range by about 
17 dB.

The probability of recognition is in general lower when using the bipolar filters. 

However, the required dynamic range is also lower. The worst results are produced 
by the filters th a t were initially equal to  only one training pattern  and the best 
results are produced by the initially random filters which increase the probability 
of recognition to 85% and require very low dynamic range, around 2 dB. The filters 
th a t were originally equal to the mean of the corresponding training patterns, do 
not provide any significant performance improvement over the untrained filters.

To summarise, we saw tha t the dynamic range requirements are greatly low­
ered when using the trained filters for both the training and the test set. The 
probability of recognition rises to 1 0 0 % for the training set, but does not im­
prove greatly when using the trained filters to recognise the patterns in the test 
set. This did not happen because the patterns were wrongly recognised, on the 
contrary the filters displayed very good generalisation ability and were able to 
correctly recognise most of the test set patterns, which represented the subjects 
th a t they were trained on. The low performance resulted from the high number 
of false positives and false negatives (table 8.4). We might be able to improve 
the performance if we used a different threshold for each of the filters. The high 
number of false positives and false negatives was expected. As we have said be­
fore this bank of correlators corresponds to a single layer of neurons. It is known 
from neural network theory, th a t a single layer of neurons cannot solve non-linear 
problems. To obtain better results we must use at least two cascaded banks of 
correlators and thresholds, which correspond to a multilayer network. Even in 
th a t case, however, it has been proved [109] th a t the network cannot form closed 
separation surfaces around the classes, which would eliminate the false positives, 
if the number of neurons in the first hidden layer is lower or equal to the number 
of inputs. Even if the number of neurons in the first hidden layer is higher than  
the number of inputs, Gori et. a/. [109] prove th a t the network may or may not 
form closed surfaces. In other words, the number of correlators in the first hidden 
bank must be at least equal to the size of the images {T > N  in figure 7.2) and 
even th a t does not ensure th a t the false positives will be eliminated.

Another issue th a t we would like to discuss briefly, is the necessary training 
time for the convergence of the extended SS and FESS algorithms, which tra in  two 
consecutive banks of correlators. We have already shown th a t these algorithms 
are mathem atically equivalent to the BEP algorithm for training neural networks.

163



8.4. CONCLUSIONS

The com putation of the weights of a multilayer feed-forward neural network, using 
the BEP algorithm is NP-complete [110, 111, 112, 113]. This means th a t the 
computing time necessary for the training, scales with 01, where O is the number 
of neurons, or in our case correlators, in the to ta l network. Since the number of 
correlators in the hidden bank must be greater than or equal to the number of 
pixels of an input image, the training period required for complete convergence 
is going to  be very lengthy for any reasonable input image size, for our extended 

SS and FESS algorithms. Our simulations in chapter 6  have clearly shown th a t 
a t least for a single layer of correlators, complete convergence leads to over-fitting 
of the filters to the training patterns and lower generalisation ability. It is more 
fruitful, therefore, to stop the algorithm after a few iterations only. It may be 
better to  stop the training of the two consecutive banks of correlators after a 
few iterations as well. W hether the undertraining of the two consecutive banks 
of correlators will also produce better results can only be confirmed with further 
computer simulations. In addition, we must point out th a t the SS algorithm 
incorporates a nonlinearity in the form of the squared term , which speeds up the 
convergence, particularly in the initial iterations, when the cross-inner products 
are large. This results in the convergence index (total energy) curve having a 
shape similar to th a t of the solid curve in figure 8.20. This figure shows two 
representative convergence index curves for the SS algorithm with and w ithout 
the squared term. When the weighting term  in the SS algorithm is not squared the 
to ta l energy curve is similar to the dashed curve in figure 8.20. The steeper shape 
of the convergence index curve of the algorithm with the squared term, means th a t 
the algorithm needs a very small number of iterations to reach a sufficiently good 
solution. It will probably be necessary to incorporate this square in the extended 
SS and FESS algorithms, in order to obtain similar convergence behaviour.

8.4 Conclusions

In this chapter we have presented computer simulations for the FESS algorithm. 
We showed th a t the algorithm forces the cross-inner products to decrease, al­
though not always to the desired value, which is zero. We saw th a t the auto-inner 
products decrease as well, but converge to higher values than  the cross-inner prod­
ucts. The convergence procedure is rather slow and usually takes several thousand 
iterations. The outer products do not increase, as they did with the SS algorithm, 
but because the inner-products decrease, the peak-to-correlation energy measure
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Figure 8.20: Convergence index curves of the SS algorithm with and w ithout the 
squared term.

is in general lower after the training. This means th a t locating the correlation peak 
will be more difficult when using the final filters. The dynamic range required by 
the optical system is greatly reduced when using the final filters. Therefore, a 
system with lower dynamic range can be used to recognise our patterns, or more 
system noise, which reduces the system’s dynamic range, can be tolerated. The 
probability of recognition for patterns in the training set is increased to 1 0 0 % 
after the training. However, for the test set, the probability of recognition al­
though increased, does not reach 1 0 0 %, because this is impossible with only one 
bank of correlators. W ith this chapter we have concluded the presentation of the 
filter design algorithms and their simulations. In the next chapter we present our 
conclusions and make some suggestions for continuing this work.
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Chapter 9

Conclusions and Future Work

9.1 Introduction

In this final chapter of the thesis we present the conclusions and achievements of 
our work. We start with an overview (section 9.2) of the general achievements of 
our work, which underline and provide a framework for understanding the more 
specific achievements presented in the next section, 9.3. Some recommendations 
on how this work should be continued are presented in the last section of the 
chapter.

9.2 General achievements

Based on the structural equivalence between optical correlators and neural net­
works [4], specifically perceptrons, we used the SS and FESS algorithms as in­
term ediate formulations to compare the existing training algorithms for neural 
networks and filter design. These comparisons (chapters 5 and 7) led to  the 
framework shown in figure 9.1.

We have created a bridge between these two domains, neural networks and 
optical filters, in the form of two new algorithms. Some of the new knowledge 
in this project has resulted from transferring well known results from the neural 
network field to the optical filter field, across this bridge (figure 9.1). We have 
shown in this thesis that:

•  The m atrix method for designing LCF filters or SDFs can be w ritten in 
an iterative way. That in itself is not particularly useful. However, the 
algorithm can be stopped after one or two iterations, resulting in a filter
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Activity-product rule =  S S  = Linear combination filters (LCF,MOP)

Widrow-Hoff rule =  FESS E Synthetic discriminant functions (SDF)
V

Neural network 
training algorithms

BRIDGE
V

Optical filter 
design algorithms•*-

Figure 9.1: Relationships between our algorithms, neural network training algo­
rithm s and filter design techniques

with better generalisation behaviour, more tolerance to  additive input noise 
and lower outer products. The improved performance arises from avoiding 
the over-training of the filters, a problem which is very well known in the 
neural network field. The 2  iteration training procedure of the SS algorithm 
has the additional benefit of being as fast to perform as the earlier m atrix 
method. This has been observed in our computer simulations.

•  All of the existing optical filters, which are designed for a single correlator, 
or a single bank of correlators, suffer from the lim itations th a t ham per single 
layer neural networks. In particular, a bank of correlators, like a single layer 
of neurons, cannot always correctly recognise non-linearly separable patterns 
[3]. In neural networks, this problem is sometimes solved by using more than  
one layers of neurons. We extended our algorithms to design filters for two 
cascaded banks of correlators (chapters 5 and 7). To our knowledge, non of 
the existing optical filter design techniques can calculate such filters.

This transfer of knowledge from one field to the other also works the opposite 
way, from optical filters to neural networks:

•  The SDF method of optical filters can be used in preference to the iterative 
supervised Hebbian law to train  neural networks faster, when over-training 
does not pose a problem for the application.

Overall, it is well known th a t transferring existing results from one academic 
field to another can result in new discoveries. It can also help avoid making the 
same mistakes, or following research paths th a t lead to dead ends. Therefore, the 
fundamental framework achievement in this PhD was th a t of devising a bridge, 
in the form of the SS and FESS algorithms, between the two disciplines, neural
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network training algorithms and filter design techniques. In the next section we 
will talk about more detailed results arising from this general framework.

9.3 Specific achievements

In this section we present the conclusions and specific achievements of our work.

1 . We developed the Similarity Suppression (SS) algorithm, which starts from 
a set of training patterns and calculates a set of filters, which are cross-orthogonal, 
otherwise called mutually orthogonal, to these training patterns. The algorithm 
is iterative and is based on the idea th a t the similarities between two patterns can 
be suppressed if the patterns are continually subtracted from each other using 
the m agnitude of their inner product as a weight. The algorithm results in the 
suppression of the cross-inner products between the training patterns and the final 
filters. We kept the inner product between each of the filters and the corresponding 
training pattern  to a constant high value by using a normalisation step after each 
iteration.

•  We presented a theoretical analysis of the changes in the filters’ magnitudes 
during the training and verified it using computer simulations.

•  We compared, using computer simulations, the filters produced with the SS 
algorithm with matched filters. Our filters can tolerate 7 dB more additive 
input white noise for the same probability of discrimination. The dynamic 
range required by the recognition system is reduced by 25 dB.

•  We proved theoretically and verified by simulations th a t the SS algorithm 
is an iterative procedure for calculating the linear combination filters pro­
posed by Caulfield and Maloney [18], which are mutually orthogonal to  the 
patterns used for their creation.

•  We discovered, using computer simulations, th a t the filters produced by the 
SS algorithm after only 2  iterations perform better than  the ones produced 
by Caulfield’s and Maloney’s m atrix method. 2  dB more additive input 
white noise can be tolerated for the same performance, which results in an 
improvement by almost 30% in the probability of discrimination. In addi­
tion, the filters produced with the SS algorithm after 2  iterations produce 
lower outer products than the filters produced after 1500 iterations and the 
filters produced with the m atrix method. This is very im portant because it
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means th a t the filters produced by the SS algorithm after 2  iterations can be 
used for pattern  recognition or discrimination even when the exact location 
of the object in the input is not known. In addition, the correlation peak is 
sharp and allows the detection of other peaks nearby if more than  one ob­
jects are present in the input. All of the previous benefits come at the cost 
of a higher required dynamic range. This conclusion also alleviates the one 
m ajor disadvantage of the SS algorithm compared to the m atrix method, 
which is the computing time it takes to create the filters. The computing 
time needed for two iterations is comparable to the tim e it takes for the 
m atrix inversion in Caulfield’s method.

•  We methodically investigated the reason for the improved performance after 
2  iterations and came to some general conclusions.

•  We theoretically compared the SS algorithm with a simple formulation of 
the Hebbian learning law, the “activity-product rule” [3] and showed th a t 
the two algorithms are mathem atically very similar.

•  We used the insight gained by the comparison of the SS algorithm with 
the Hebbian learning rule, to extend the algorithm to design filters for two 
cascaded banks of inner product correlators.

2 . We also developed the Feature Enhancement and Similarity Suppression 
(FESS) algorithm, which designs filters for multi-class pattern  recognition. In 
multi-class pattern  recognition several patterns, which belong to one of several 
classes, must be recognised and distinguished from patterns belonging to the other 
classes. Each of the filters designed by the FESS algorithm represents one class. 
These have high inner products with the patterns th a t belong to th a t class and 
low inner products with all of the other patterns. The FESS algorithm is based 
on the same principle as the SS algorithm, plus the idea th a t the features of one 
pattern  can be copied onto another if it is continually added to it.

•  We showed th a t the FESS algorithm can be viewed as a supervised version 
of the SS algorithm, where desired target values are defined for the inner 
products between the filters and the training patterns.

•  We proved the equivalence between the FESS algorithm and the m ethod for 
designing synthetic discriminant functions.
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•  We proved the equivalence between the FESS algorithm and the Widrow- 
Hoff rule for training neural networks.

•  We extended the FESS algorithm to design filters for two cascaded banks of 
correlators.

•  We verified most of our theoretical conclusions for the FESS algorithm using 
computer simulations.

3. We also feel obliged to point out some limitations of our algorithms and of 
the filters they design.

•  The established equivalences between a bank of correlators and a single 
layer of neurons [4], and between our algorithms and the unsupervised and 
supervised formulations of the Hebbian learning law, mean th a t the short­
comings of the single layer neural networks apply to our systems as well. 
For example, they can only separate linearly separable sets of patterns. In 
addition although two or more cascaded banks of correlators can overcome 
this problem, they cannot be used for verification purposes because they 
cannot always form closed surfaces around each of the classes, thus elimi­
nating the false positives. Closed surfaces can only be formed if the number 
of correlators in the first hidden bank is equal to or larger than the number 
of inputs, which is equal to the size, in pixels, of the input image. Such an 
optical system is difficult to build for a reasonable image size.

So after completing this project, my personal opinion is th a t our algorithms 
need further development to produce useful filters for optical pattern  recognition. 
If we want to perform pattern  recognition optically and only one bank of correla­
tors can be built, then at this stage the best choice is probably to use a MICE, or 
OTF, or MVSDF, or another filter not reviewed in this thesis according to the spe­
cific application. Our filters, particularly after 2  iterations, perform better than  
the equivalent filters produced with the m atrix methods (LCFs and SDFs). How­
ever, we have not compared them  with the more advanced filters, which probably 
perform even better, because they are designed to tolerate noise, reduce the outer 
products, etc. while our algorithms do not take these into account. However, I 
strongly believe th a t based on the existing framework, we can now improve our 
filters by borrowing the ideas used in the other filter design techniques (MACE, 
O TF, MVSDF etc) and adapting them  to our iterative algorithms. If two or more 
cascaded banks of optical correlators can be built, then my opinion is th a t the
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filters produced with our algorithms for two banks of correlators will produce the 
best results of all. If an electronic system is used for pattern  recognition, then 
other advanced techniques exist, which can take advantage of the abilities of the 
electronic system and perform better than the filters reviewed and developed in 
this thesis.

Finally, we would like to point out th a t although the original intention was to 
design optically implementable algorithms and filters for optical pattern  recogni­
tion, the results attained are in no way restricted to  th a t type of implementation 
and so are more generally useful. Nevertheless, the representation of neural net­
work learning algorithms as image operations in the SS and FESS formulations, 
makes them  more suited to optical implementation where operations like Fourier 
transforms, multiplications and correlations between pairs of images are more eas­
ily performed than  individual weight updates. We finish this section with table 
9.1, which is similar to table 3.1, which summarises the filters’ attributes, but 
with two extra rows, one for the SS algorithm and one for the FESS algorithm.

9.4 Future work

In this section we present some proposals and ideas of how this work should 
continue. Some of these ideas have not been tested yet by us. On some others, we 
have already done some work but we did not have the tim e to investigate them  
further.

i. System noise analysis and simulations

So far we have simulated the filter’s performance with additive input noise. 
We think however, th a t the inherent noise of an optical system will degrade 
the performance of our filters if it is not taken into consideration at the 
design stage. A theoretical analysis of the system noise, backed up by the 
proper computer simulations and then, the modification of the filters during 
the training to compensate for the system noise, are necessary for good 
agreement between simulation and experimental results. Neifeld et. al. [114] 
got a 60% disagreement between simulation and experimental results and 
by including system noise in their analysis, they reduced this gap between 
the simulated and experimental performance to less than  1 0 %.

ii. Investigation of the FESS algorithm for a small number of iterations
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FILTER CHARACTERISTICS
Filter T.D. Discr. Rec. N.T. Corr. plane D.R.R.

M-P M-C M-P M-C P.S. P.V. S.R.

LCF V V
GMF V V V V
ECP V y V V

SDF
F.C. V V V V
POE V V V V V

MVSDF V V V V V
MACE V V V V V V V
MICE V V V V V V V

MINACE V V V V V V y V
OTF V V V V V V V V V

SS V V V V
FESS V V V V V

Table 9.1: Summarised filter characteristics. T.D. : Target detection, Discr. 
: Discrimination, Rec. : Recognition, N.T. : Noise tolerance, Corr. plane : 
Correlation plane, M-P : M ulti-pattern, M-C : Multi-class, P.S. : Peak sharpness, 
P.V. : Peak variance control, S.R. : Side-lobe (outer product) reduction, D.R.R. 
: Dynamic range reduction.
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Figure 9.2: Planar correlator. FZP: Fresnel zone plate, MF: Matched filter, IP: 
Input pattern.

We saw in chapter 6  tha t the filters produced with the SS algorithm after 
2  iterations perform a lot better than the fully converged filters. This im­
plies th a t we may get similarly beneficial results with the FESS algorithm. 
Therefore, we need to investigate, mainly using computer simulations, the 
performance of the filters obtained in the initial iterations of the FESS al­
gorithm.

iii. Comparison of the SS and the FESS algorithms with the more advanced 
filters

We have proved the mathematical equivalence between the SS algorithm 
and the LCFs and the FESS algorithm and the SDFs. These comparisons 
also show us the relationship between our algorithms and the more advanced 
filter design techniques such as MACE, MICE, etc. However, we need to con­
duct computer simulations to quantify the performance differences between 
our filters and the MVSDF, MACE etc. filters.

iv. Optical implementation

The filters were always designed with an optical implementation of the recog­
nition system in mind. We think tha t one of the most im portant directions 
for further work on the subject is to design and implement an optical recog-
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Filter

Figure 9.3: Disk planar correlator. FZP: Fresnel zone plate, IP: Input pattern.

nition system. The algorithms have now been developed to some extent, 
but still require further improvement. Any further theoretical development, 
however, may be wasted if the filters are not tested in a real optical system. 
T hat is the only way to identify all of their weaknesses and strengths. As 
far as the optical system itself is concerned, we strongly believe th a t any 
such system must be compact and versatile, where versatility in this case 
is the ability to update the filters and the input images dynamically and 
also change some of their characteristics such as image size, number of grey- 
levels etc. Although I have no practical experience, I believe th a t the planar 
correlator systems [47, 48, 49] hold a lot of promise. I think th a t the planar 
correlator design shown in figure 9.2 can be combined with a spinning disc 
correlator design [36, 37, 38, 39] in a system such as the one shown in figure 
9.3. In the correlator shown in figure 9.3, the input image is placed a t the 
centre of the disk. The optimum solution would be to be able to dynami­
cally record the input image on th a t location. If th a t is not possible, then
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an SLM has to be attached there, but then problems will arise when trying 
to spin the disc with all of the SLM cables attached. The filters are placed 
around the disc. Again the optimum solution is to be able to  record the 
filters dynamically. The alternative is to etch the filters onto the disc, but 
this solution drastically reduces the versatility and, therefore, usefulness of 
the correlator. As the disk spins, a laser beam will enter it from the filter 
side, bounce in it and exit from the opposite side were a CCD camera can 
obtain the correlation.

V .  Outer product reduction

The increase of the outer products and consequently, the low PC E of the 
correlations when using our filters, is another issue th a t must be addressed. 
Based on an idea similar to th a t of the MACE filter, which is to try  to 
minimise the average correlation energy, we can add a second weighting 
term  to the first algorithm equation (for the SS algorithm). This second 
weight can be the to tal energy of the correlation plane. By using a different 
convergence factor for each weight, we can emphasise inner product or side- 
lobe reduction. The first algorithm equation then would take the form:

M  (  1

-  13" ^  ( g j - '> . s , +  C E ^ s ,  (9.1)

where C E  denotes the energy of the correlation. A different m ethod, but a 
lot more computationally intensive is to use a number of additional weights, 
each of which will be equal to the magnitude of one of the largest side-lobes 
a t each iteration.

vi. Simulations of two layer algorithms

We have developed the theory for the two layer versions of the SS and FESS 
algorithms but we have not done any computer simulations, which will verify 
it and give us new insights on their performance. We have a fairly good 
idea of what level of performance to expect based on the performance of 
similar neural networks, such as better recognition of non-linearly separable 
patterns, but the issues th a t are related with the optical implementation 
of such filters, such as SNR, side-lobe magnitudes, input and system noise 
tolerance, etc., have not been investigated.

vii. Initially random filters for the SS algorithm
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Up to now, we have used the training patterns as the initial versions of the 
filters in the SS algorithm. We suspect, however, th a t these filters do not 
need to contain any of the features of the patterns th a t they represent. A 
few simple computer simulations can verify whether initially random filters, 
which do not contain any of the features of the training patterns, will perform 
equally well.

viii. Use of a different threshold for each of the correlators in the FESS algorithm

In our recognition tests with the FESS algorithm we have used the same 
threshold for all of the correlators. However, the differences in the magni­
tudes of the auto- and cross-inner products of the various filters suggest th a t 
we will get better results if each of the correlators has its own threshold.

ix. Different normalisation methods for the FESS algorithm

We have normalised the magnitudes of the filters in the FESS algorithm  to 
keep them  stable. We have proved th a t the FESS algorithm is m athem ati­
cally equivalent to the Widrow-Hoff algorithm for training neural networks. 
However, the Widrow-Hoff rule does not have a normalisation equation. 
This suggests, th a t the FESS algorithm may be equally successful w ithout 
a normalisation step. The normalisation step was necessary in the SS algo­
rithm  because the filters’ magnitudes were decreasing due to the continuous 
subtractions. However, in the FESS algorithm we add patterns to the filters 
in addition to subtracting some patterns from them. Therefore it may be 
possible to keep the magnitudes of the g filters stable by carefully choosing 
the convergence parameters /3i and /?2 -

Another change th a t we can make to the normalisation in the FESS algo­
rithm , is to normalise the magnitudes of the filters to a value larger than  P , 
for example 2 P , instead of P . Our aim is to increase the auto-inner products 
and to make them converge as close to P  as possible. However, this is not 
possible when the filters are normalised to P  and the auto-inner products 
have to converge to a lower value. If the filters were normalised to  a higher 
value, th a t would allow the auto-inner products to increase further. For ex­
ample, if we multiply all of the pixels of a filter with the number 2 , then its 
m agnitude will be equal to 4 P  and its auto-inner products will all double. 
However, its cross-inner products are going to become two times as large as 
they were before also. In th a t case there is no benefit, it is like normalising 
our correlation outputs to higher values. If we normalise the filters during

176



9.4. FUTURE W ORK

the training however, a t every iteration, we may be able to further decrease 
the, now doubled, cross-inner products. We are not sure th a t this is going 
to happen, but we think th a t it is an idea worth investigating further.

X .  Increase tolerance to additive input noise

The inner product between a filter g and a pattern  with additive noise s + n  
is: g • (s -I- n) =  g • s -1- g • n. The aim is to  eliminate the term  g • n. The 
main question th a t arises here is, how can we train  our filters to recognise 
the statistical characteristics of the noise, and not specific noise samples. 
A solution may be to “copy” the MVSDF m ethod which uses the noise 
covariance m atrix to increase the filter’s SNR. Because we have established 
the equivalence between our algorithms and the basic SDFs, we may be able 
to do a reverse transform ation starting from the MVSDF equation and find 
the terms th a t must be added to the algorithm equations to get the same 
result. In addition, we may be able to increase the tolerance to  non-zero 
mean noise by adding constant background images to  the training set, a 
procedure similar to A rsenault’s method described in chapter 3 .

xi. Selection of optimum number of filters in FESS algorithm

There is a debate on the optimum number of filters for multi-class pattern  
recognition. We have thought of a method, which although com putationally 
intensive, may guarantee th a t the minimum number of filters is used for the 
best possible performance. We can start by creating only one filter and use 
the FESS algorithm to force the cross-inner products between this filter and 
all of the patterns of all of the classes to converge to the desired values (a 
different value for every class). After the algorithm converges, in the case 
th a t the result is not acceptable we divide the classes of the training patterns 
into two groups, create two filters and train  the first filter to recognise all 
of the objects of all of the classes of the first group and the second filter 
to recognise all of the objects of all of the classes of the second group. 
We continue with the same procedure, creating additional filters until our 
requirements (probability of recognition, dynamic range, etc.) are satisfied.

xii. Different encoding method for the training patterns in the FESS algorithm

We used a very simple method to convert the monopolar training patterns 
into bipolar before using the FESS algorithm. We have thought of a different 
conversion method, which is more of an interesting experiment: We can
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multiply each of the monopolar patterns with a different random binary 
bipolar pattern, thus making the training pattern  itself bipolar. Then we 
use these bipolar patterns for the training. We can repeat the experiment 
with different random patterns until we get the best results.

xiii. Addition of new patterns and filters after the training.

Another direction of future work is the update of our database of filters and 
training patterns after the training. Lets assume th a t a t a given time, we 
have a set of training patterns and th a t we use the SS algorithm to create 
the corresponding set of filters. If in the future we want to add an additional 
pattern  and filter pair to our database, it is best if we can do th a t w ithout 
having to train  the whole system from scratch. Let us call our initial training 
patterns S i . . .  Sm and the corresponding filters g i . . .  gM as usual. The new 
pattern  th a t we want to add can be denoted by sm+i- It is straightforward 
to create the corresponding filter g5v̂ +i just by applying the algorithm  to it 
for a number of iterations equal to what was used for the original set

M+l
gAfll =  gMÎÎ* - / )  2 ]  {gM+l^ • Sfcjsit (9.2)

A= 1

The normalisation equation is still necessary although it is not w ritten above. 
The main problem is updating the initial set of filters, g i . . .  gM- If pattern  
Sm+ 1  was in the set from the beginning, then instead of the existing set of 
filters g i . .. gM, we would have a slightly different set, g i . . .  gM- The aim is 
to get this new set of filters without repeating the whole training process. In 
section 5.4.2 we said th a t each of the filters can be expressed as a weighted 
sum of the training patterns:

gj =  CjlSi +  . . . +  C jM ^ M  (9.3)

where

Cjt =  (9.4)
i = l

and D  denotes the to tal number of iterations. If the Sm+i pattern  had been 
part of the initial training set, then a t every iteration it would have been 
subtracted from each of the g' filters, an extra subtraction compared to 
those th a t led to the initial set of g filters

^^*Sm+i ) sm+ i (9.5)
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The effect of this extra subtraction on each of the coefficients Cjk would be 
equal to

D

^ C j k  —  — 13 ^  • S m + i ) s m + i  • Sfc
i=l

L

=  —pSM+1  • Sk ^  • S m + i )
(9.6)

’  ° M + 1  J
i=l

If we can calculate Ac f̂c, Vj, k and then use these coefficients as weights for 
one more subtraction of patterns from the filters gj we should end up with 
the updated filters g ' . The problem with this solution is th a t we do not have 
the filters gj^^ for every iteration i, nor is it easy to store all of the initial 

filters g f \ ^ i ,  so we cannot calculate Acjk from equation 9.6. There are 
several ways however, with which we can approximate the sum in equation 
9.6. We know from the analysis of the algorithm carried out in chapter 6 , 
th a t the cross-inner products gj'{i)»SM+i are rather small for every iteration, 
except for the first couple of iterations. We have the values of the cross-inner 
products at the first iteration because initially gj =  Sj. We may be able to 
get a good enough approximation just by using th a t cross-inner product and 
the one a t the final iteration, which can also be calculated, multiplied by the 
number of iterations, D. An even better approximation can be achieved if we 
use our knowledge of the convergence of the algorithm, which is expressed 
by the to ta l energy index. We can use the initial and final values of the 
cross-inner products and the to tal energy index to extrapolate the values in 
between. Better ways may exist to calculate the correct coefficient correction 
Acjk, maybe by using the initial coefficients Cjk, which can easily be stored. 
Simulations are necessary to see the effectiveness of the methods proposed 
here and the error they introduce.

xiv. Use of g filters for SDF synthesis

This is more an interesting experiment, than  a direction for further work. 
We can use the FESS algorithm to create our filters and then combine them  
into an SDF. The performance of this SDF can then be compared to the 
performance of the SDF created using the original training patterns. The 
filters created by the FESS algorithm contain only the main features of the 
patterns which they represent and have discarded the similarities between 
patterns th a t belong to different classes. Therefore it is conceivable th a t
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the SDF which will be created by them  will perform better since it will 
not contain the unnecessary information th a t is contained in the original 
training patterns.
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A p p en d ix  A  

M ath em atica l d efin ition s

In this appendix we present some m athem atical definitions which are necessary 
for the understanding of the thesis.

A .l  E x p ec ted  value - variance - stand ard  d ev ia tio n

The expected value^ or mean of a random variable is defined by the integral :
/ oo

x f { x )  dx (A.l)
-OO

where f {x)  is the probability density function of the random variable x and 
is defined by

/ W - ®  (A,2)

and F{x)  is the distribution function o /x

F{x)  = P {x < x}  (A.3)

defined for every x  from  —oo to oo. For discrete type random variables, the
expected value is given by a sum:

P{xj- =   ̂1 Pi^ij Pi — P {x  =  (A.4)
i

The variance of a random variable x is by definition the integral

/ oo
{x -  E{x}) f { x )  dx  (A.5)

-oo

The variance is also given by the following equation

= E{x"} -  P2{x} (A.6)

The positive constant a is called the standard deviation o /x .

A .2 C orrelation  and covariance m atrices

The covariance^ C of two random variables x and y is by definition the number

C =  ^ { ( x - £ ; { x } ) ( y - £ { y } ) }

= E{xy} -  E { x } E { y }
^The following definitions are adapted from Papoulis, 1991 [115]
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A. M ATHEMATICAL DEFINITIONS

For complex random variables, the covariance is

C = E { { x - E { x } ) i r - E { y r ) }

=  E{xy*} -  E {x }g {y '}

The correlation m atrix of the random vector X  =  [xi , . . .  ,x„] is by definition

( R \ i  ' ’ ' R \- n \

(A.8)

R r t  =

^ n n j

(A.9)

where R{j = E{x^x*} =  R*^. The covariance m atrix of the random vector 
X  =  [x i, . . .  , Xŷ ] is

C n  = (A.IO)

\C*nl ’ ' ’ CnnJ

where Cij = Rij — E{ x i } E{ x j } *  = The correlation matrix can also be written

Rn =  E { X ^ X '}  (A .ll)

where X^ is the transpose of X. The covariance matrix On is the correlation 
matrix of the “centered” random variables x* —E{x%}. I f  E{ x i }  =  0, Vi, =  Rn.

A .3 Fourier transform

Giver? an arbitrary, complex-valued function f  {x), the integral

/ o o

(A.12)
-OO

is called the Fourier transform of f {x) .  The integral o f equation A .12 exists^ 
for every function f {x)  which accurately describes a real physical quantity [116]. 
f {x )  can be obtained from  F (^) i f  equation A.12 is inverted

/ o o

F ( a y ^ " ° ^  da
-OO

(A. 13)

assuming that F  {a) exists. f {x )  is called the inverse Fourier transform  of 
F{^) and the two functions are known as a Fourier transform  pair.

^The following definitions have been adapted from Gaskill, 1978 [6] 
^See Gaskill, 1978 [6] for a description of the conditions required
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A. M ATHEMATICAL DEFINITIONS

Given the function f { x , y ) ,  its two-dimensional Fourier transform is given by 
the integral

oo

F ( ( ,  n) = I I / ( a ,  da  d/3 (A.14)
— OO

The inverse Fourier transform of F{^,  rj) is

o o

f {x ,  y) = j j  F{a,  da  djd (A.15)
— OO

A .4 C onvolu tion  and correlation

The convolution and the correlation are two mathematical computations between 
two functions. They are described by equations A .16 and A .17 respectively

/ o o

f ( a ) h{ x  -  a) da  (A.16)
-o o

/ o o

f  { a ) h { x a )  da  (A.17)
-o o

For two-dimensional functions f {x ,  y) and h{x, y), the convolution and correlation 
operations are described by equations A. 18 and A. 19 respectively

o o

g{x,y)  = J J  f {a , P) h{x  -  a , y  -  P)dad/3  (A.18)
—oo  

o o

g{x, y) == J J  f {a ,  f l)h{x -\-a ,y-\- fl) da dP (A.19)

The convolution and correlation equations may also be written in a discrete form

[V
M - l  N - 1

g { m , n ) =  (A.2 0 )
i=0 j=0 
Af—1 —1

g (m ,n ) =  ^  ^  f ( i , j )h (m -h  i ,n -h  j )  (A.2 1 )
2=0 j=0

One of  the most important theorems of signal processing is the convolution theo­
rem, which states that the convolution of two functions in the time domain is equal 
to the inverse Fourier transform of the multiplication of these two functions in the 
frequency domain, that is the multiplication of their Fourier transforms [117].

g{x) = f i x ) *  h{x)  =  I F T { F { ^ ) H i O  } (A.2 2 )
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A. M ATHEMATICAL DEFINITIONS

A .5 Inner and ou ter p rod u cts

The correlation of two two-dimensional functions, is itself a two-dimensional func­
tion. The value of that function at the origin p (0 ,0) is called the c e n tra l  p e a k  
of the correlation or in n e r  p ro d u c t  and it is equal to

M - l  N - l

9{0 , 0) = Y ,  Y  f ( L j ) h { i , j )  (A.23)
i= 0  j = 0

in the discrete form. All of the other points of the function g{m,  n) are called the 
o u te r  p ro d u c ts  of the correlation.
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A p p en d ix  B  

M agn itu d es o f th e  un-norm alised  filters

The magnitudes of the filters are equal to the squared Euclidean norm shown 
in the following equation:

/  N  \  1 /2

Euclidean norm: ||s | | 2  =  ( ^  =  (s »
^  (B .l)

In this appendix we are going to investigate whether these magnitudes are going to 
increase, or decrease, or stay constant during the training with the SS algorithm 
(equation 5.19) and the FESS algorithm (equations 7.1 and 7.2), w ithout the 
normalisation step. Equations 7.1 and 7.2 can be combined into the following 
equation:

Lj M—Lj
=  e / " ' '  +  A  É  (-P -  - 0 2 ^ 1

t = l  m = J  ( B . 2 )

We have used a different font to write the third term  on the right hand side of 
equation B.2 . We did th a t because th a t term  describes the SS algorithm. In 
other words, if we used the SS algorithm to design the filters, we would only 
subtract patterns from the filters, using the third term  but w ith slightly different 
summation limits. In the following m athem atical analysis we are going to use 
different fonts for the terms th a t are derived from the FESS algorithm term s and 
for the terms th a t would be there if only the SS algorithm was used. We use two 
different symbols for example, gj and Qj, to denote the jth filter. Both symbols 
refer to the same filter. The only criterion of which symbol to use each time is 
whether the whole term  th a t the symbol is in, would exist if only the SS algorithm 
was used for the training. At the end of our m athem atical analysis we are going 
to  isolate these term s and discuss the effect of the SS algorithm on the filters’ 
magnitudes when more than two training patterns are used. Equation B.2 can 

also be w ritten in the following form:

L  i M —L i

k = l  m = l
L j  /  M —L j  \

g f  =  A  E  -  s l g / " ' )  +  Z  « m a : ) , / " '  ( B - 3 )
\  m = l
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B. MAGNITUDES OF THE UN-NORMALISED FILTERS

The filters’ magnitudes can be calculated in the following manner^ :
(i-i)

"j 6 ; -
M - L j

k = l

k = l

A É  St (-P -  slsj) + 7-/32 E
I \  m —1 /

L j  /  M —L j

A  É  S f  { P  -  s l g j )  +  ( 7 - / 3 2  E  Sm'Sm' ) s j
A:'=l \  m '= l

/  ^ '
A  Ê  s l ( f  -  + 9 f  ( /  -  E

\ m = l  j

L j  /  A f —L j

A  E  S f  { P  -  s l ' g j )  +  (  7  -  ^ 2  E  )  A
k '= l  \  m '= l  J

-  " sjgjjsfc X] (^ “ ^k>Ej)^k’ + A X! (^ “ ^ïëj)^lkSj
k = l  k '= l  A:=l

L j  A f —L j  L j

-  A A  E  (7"- sj'gj)sj E  S m ' S ^ / g j  +  g j A  E  S f  (f  -  sggj)
/c=l m ' = l  k'—l

A f —L j  A f —L j  L j

+  9 f 9 j ~ 9 j ’l3s E  Sm'Sm'Sj -gjA  E  SmŜ A E  Sfc-(p-s ,̂gj)
m ' = l k ' = lm = l

Af—Lj Af—Lj Af—Lj

+  9 j P e  E  ^ m S n 9 j  +  9 ^ I3l  E  S ™ « m  E
m-=l m = l m ' = l

Lj  L j

=  Ê  É  ( T ’ -  s l g j )  ( f  -  s J , g j ) s [ s f c .  +  A  Ê  ( T ’  -  s * g j ) s j g ^
fc= l A :'= l A:=l

L j  M —L j  L j

-  A A  E  E  ( - P  -  slgj)sl,,gjsl8^,  +  A  E  ( T ’  -  S ^ , g j ) g J ’s t '
A:=l 77i'=l fc'=l

A f —i j  A f —L j  L j

+ 9 j 9 j - p 2  E  ( s m ' A ' )  -  A A  E  E  6 j s „ ( P - s [ , g j ) s S ^ s * .
m ' = l  m —1 k ' = l

A f —L j  A f —L j  A f —L j

- Z ) ;  E  ( g f s m )  + / 3 g  E  E  S / ’S ’" S m ' A S m S m '
m=i m = l  m ' = l

So the magnitude of the filter gj is:
M —Lj M —Lj M —Lj

g r g r = a r ' ) v + / ) :  E  E  -  2 / 3 .  e
m = l  m ' —l m = l

Lj Lj
+  A ^  É  É  ( - P  -  s i g j '  {p -  s l s f  +  2 A  Ê  ( - P  -  s ^ g j '  ^ ' ) s ^ g j '

A'—1 k = i  fB 4)
Lj  A f - L j  \  ' J

- 2 A A E  E  ( ■ P - s I ' g j ' " ' ' ) s ^ , g j ’ “ ' ’ s * s „ .
A:=l m '= l

 ̂The gj filters on the right hand side of the following equations are all in the i th  — 1 iteration. 
However, for the sake of clarity, the index will be omitted until the last equation.
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B. M AG NITU D ES OF THE UN-NORM ALISED FILTE RS

B . l  A n a lysis  for th e  SS a lgorithm

The first three terms in the right hand side of equation B.4 are the ones th a t 
would result if we had used the SS algorithm instead of the FESS algorithm  to 
design the filters. We can see th a t they are very similar to the terms in equation 
5.32 in section 5.3. We can isolate them  from the remaining terms in equation 
B.4 and estimate the slope, or rate of change, of the magnitudes of the g filters 
when the SS algorithm is used and more than two training patterns exist

M —L j  M —L j  M —L j

m = l  m=l (g  g)

The first term  on the right hand side of equation B.5 can be expanded to give the 
following terms:

M —L j  M —L j  M —L j

m=i m' =  l  m = l

+  a sum of cross terms of the form:
(B.6 )

for example when m =  1  and m! = 2 

So using equation B.6 , equation B.5 becomes:

M —L j  M —L j

U f f - h ^ r ‘\ \ ^ = 0 l  E  ( a r ' % )  | | 3 m i r - 2 / 3 ,  E
m = l  m = l

+  sum of cross terms

=  / 3 .  E  ( / 3 , | K i r - 2 )  ( B . 7 )
m = l

T sum of cross terms

The investigation of the sign of the right hand side of equation B.7 is very similar 
to  th a t shown in section 5.3. The right hand side of the equation is two sums of 
terms. We can ignore the cross term s for the tim e being and investigate the sign 
of each of the other terms, which depends on the value of /3g.

•  If then the corresponding term  is equal to  zero. Since all of the

training patterns are normalised and ||Sm||^ is constant Vm, if =  p^|]T 
then all of the terms in the sum will be equal to zero and the slope of the 
norm of gj will depend on the cross terms.
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B. MAGNITUDES OF THE UN-NORMALISED FILTERS

•  l î  /32  < ||g |̂|g then the terms in the sum are all negative.

•  1Î f32  > p fp "  then all of the terms in the sum are positive.

In section 5.2.3 we chose to use a convergence param eter which corresponds to
^ 2  — ^ /P M . T hat is, is smaller than  ^ /||g || {P =  ||g||) and according to  the
previous analyses the terms in the sum in the right hand side of equation B.7 will 
be negative. We have to consider the sum of the cross terms to find the sign of 
the slope. If the training patterns are monopolar, then the cross term s will all be 
positive. If the training patterns are bipolar, then the sum will consist of positive 
and negative terms and overall it will be smaller. In either case however, this sum 
of cross terms will probably be lower than the first sum in the right hand side of 
the equation because of the squared in front of it. Therefore, we can conclude 
th a t with our choice of convergence parameter, the slope of the gj norm will be 
negative and the norm decreases. Eventually, as the inner products 
decrease, the right hand side of equation B.7 tends to zero. So after a number of 
iterations the norm of gj will stabilise to a very low value.

B .2  A n a lysis  for th e  F E SS algorithm

The analysis is similar for the FESS algorithm, when all of the terms in equation 
B.4 must be considered. We saw in the SS analysis th a t with our choice of con­
vergence param eter, the second and third term  in the first line of the right hand 
side of equation B.4 are negative and cause the decrease of the filters’ magnitude. 
The next two term s in the second line in the same expression, which we can see 
again below

k = i k ' = i  k ^ \  (B.8)

are the corresponding terms of the FESS algorithm. These terms both have a 
plus sign in front of them, however, we can be sure th a t they are positive only 
in the case when the training patterns are monopolar and all of the cross-inner 
products are positive. For bipolar training patterns, we cannot predict
with certainty whether these two terms are going to be positive or negative. The 
last term  in equation B.4 is usually smaller compared to the other term s due 
to the product in front of it. The overall sign of the slope of the g norm, 
||g |p , depends on the number of patterns in each of the classes compared to  the 
to ta l number of patterns. Assuming th a t the training patterns are monopolar,
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B. MAGNITUDES OF THE UN-NORMALISED FILTERS

the ones th a t belong to other classes and are subtracted from the filter will cause 
i t ’s magnitude to decrease according to the second and third term  in the first line 
in equation B.4. The ones th a t belong to the class th a t the filter represents, will 
cause i t ’s magnitude to increase according to the next two term s in equation B.4. 
Usually, but not always, the to tal number of patterns will be a lot larger than  the 
number of patterns in each class, therefore the negative term s will be larger and 
the magnitudes of the filters will decrease.
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Appendix C
Training set

C . l  T raining set for th e  F E SS a lgorith m
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c . TRAINING SET

Figure C .l: The examples tha t were used in the training set for the first five 

people.
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c .  TRAINING SET

Figure C.2: The examples th a t were used in the training set for the last five 

people.
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A ppendix D
C ross inner p rod uct m atrices
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D. CROSS INNER PRODUCT M ATRICES

6 training patterns in each class 6 trammg patterns in each class

(a) Filt. 1 Mon (b) Filt. 1 bip

6 training patterns in each d a ss 6 training patterns in each class

(c) Filt. 2 Mon (d) Filt. 2 bip

mm
6 trammg patterns m each class6 training patterns in each class

(e) Filt. 3 Mon (f) Filt. 3 bip

Figure D.3: First three rows of the initial cross-inner product matrices for monopo­
lar and bipolar patterns.
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D. CROSS INNER PRODUCT M ATRICES

6  training patterns in each class 6 training patterns In each d a ss

(a) Filt. 4 Mon (b) Filt. 4 bip

6 trairwig patterns in each class 6 training patterns in each class

(c) Filt. 5 Mon (d) Filt. 5 bip

6 training patterns in each class 6 training patterns in each class

(e) Filt. 6 Mon (f) Filt. 6 bip

Figure D.4: Fourth to sixth rows of the initial cross-inner product matrices for 
monopolar and bipolar patterns.
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D. CROSS INNER PRODUCT M ATRICES

6 trammg patterns in each class

(a) Filt. 7 Mon (b) Filt. 7 bip

(c) Filt. 8 Mon (d) Filt. 8 bip

€ training patterns

(e) Filt. 9 Mon (f) Filt. 9 bip

6 training patterns in each d a ss 6 training patterns in each d a ss

(g) Filt. 10 Mon (h) Filt. 10 bip

Figure D.5: Last four rows of the initial8fess-inner product matrices for monopo­
lar and bipolar patterns.



D. CROSS INNER PRODUCT M ATRICES

@ pan*m« k  Mch ctau

(a) Filt. 1 Mon 1 (b) Filt. 1 Mon Mean (c) Filt. 1 Mon Rand

(d) Filt. 1 Bip 1 (e) Filt. 1 Bip Mean (f) Filt. 1 Bip Rand

| o e .
Î.. T ■ - ... (..

1...i....-...
i

hg pstttms in Mch ciaw

(g) Filt. 2 Mon 1 (h) Filt. 2 Mon Mean (i) Filt. 2 Mon Rand

(j) Filt. 2 Bip 1 (k) Filter. 2 Bip Mean (1) Filt. 2 Bip Rand

Figure D.6; First and second rows of the cross-inner product matrices for monopo­
lar and bipolar patterns and all three initial filter values.
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D. CROSS INNER PRODUCT M ATRICES

(a) Filt. 3 Mon 1 (b) Filt. 3 Mon Mean (c) Filt. 3 Mon Rand

I
t
I

(d) Filt. 3 Bip 1 (e) Filt. 3 Bip Mean (f) Filt. 3 Bip Rand

6 training paflam* In aach

(g) Filt. 4 Mon 1 (h) Filt. 4 Mon Mean (i) Filt. 4 Mon Rand

I
t
i

I
I

: i ..

1

(j) Filt. 4 Bip 1 (k) Filter. 4 Bip Mean (1) Filt. 4 Bip Rand

Figure D.7: Third and fourth rows of the cross-inner product matrices for monopo­
lar and bipolar patterns and all three initial filter values.
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D. CROSS INNER PRODUCT MATRICES

(a) Filt. 5 Mon 1 (b) Filt. 5 Mon Mean (c) Filt. 5 Mon Rand

I
i

-V 4 -

(d) Filt. 5 Bip 1 (e) Filt. 5 Bip Mean (f) Filt. 5 Bip Rand

(g) Filt. 6 Mon 1 (h) Filt. 6 Mon Mean (i) Filt. 6 Mon Rand

I
!
I I

m

(j) Filt. 6 Bip 1 (k) Filter. 6 Bip Mean (1) Filt. 6 Bip Rand

Figure D.8: Fifth and sixth rows of the cross-inner product matrices for monopolar
and bipolar patterns and all three initial filter values.
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D. CROSS INNER PRODUCT M ATRICES

i^  I i. .

(a) Filt. 7 Mon 1 (b) Filt. 7 Mon Mean (c) Filt. 7 Mon Rand

I
Î
I

!
I

10

(d) Filt. 7 Bip 1 (e) Filt. 7 Bip Mean (f) Filt. 7 Bip Rand

(g) Filt. 8 Mon 1 (h) Filt. 8 Mon Mean (i) Filt. 8 Mon Rand

6 training paKama in each ctaea

0 0 :

I

(j) Filt. 8 Bip 1 (k) Filter. 8 Bip Mean (1) Filt. 8 Bip Rand

Figure D.9: Seventh and eighth rows of the cross-inner product matrices for
monopolar and bipolar patterns and all three initial filter values.
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D. CROSS INNER PRODUCT M ATRICES

(a) Filt. 9 Mon 1 (b) Filt. 9 Mon Mean (c) Filt. 9 Mon Rand

(d) Filt. 9 Bip 1 (e) Filt. 9 Bip Mean (f) Filt. 9 Bip Rand

|o.
t::|

i..

i.. I :
i  '.....

î
: I

MÉmIiill
2 3 4 5 6 7 S 9  10

6 iraMng palUm* In Mch e

(g) Filt. 10 Mon 1 (h) Filt. 10 Mon Mean (i) Filt. 10 Mon Rand

i .........
iAT -

(j) Filt. 10 Bip 1 (k) Filter. 10 Bip Mean (1) Filt. 10 Bip Rand

Figure D.IO: Ninth and tenth rows of the cross-inner product matrices for monopo­
lar and bipolar patterns and all three initial filter values.
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