
Algorithm s for designing filters
for optical pattern recognition

Epaminondas Stamos

A thesis subm itted for the degree of
D octor of Philosophy

of the
U niversity of London.

Departm ent of Electronic & Electrical Engineering
University College London

January 17, 2001

ProQuest Number: U 642593

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U 642593

Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Acknowledgments
My PhD was a long engagement which lasted several years. During this period,
many people have helped me in one way or another. I feel very grateful towards
three people in particular, without whose help and support it would have been
impossible for me to do this PhD. My parents, Giannis Stamos and Maria Stamou
and my supervisor David R. Selviah. I feel gratitude towards my parents for
the psychological support they gave me during the project and for their crucial
financial support, since this PhD was not funded in any other way. And I am
very grateful to my supervisor for his continuous support and guidance, for his
relentless effort to teach me as many things as possible and for his very long
patience to explain to me everything tha t was necessary for my progress and to
endure my mistakes and inefficiencies. I thank them all very much.

During my time here in UCL I have been a member of the Optical Systems
and Devices group. All of the other members of the group have been very helpful.
I particularly wish to thank Dr Lawrence Commander for spending long hours
from his own PhD to be my advisor and my “assistant” . Many thanks to Robin
Kilpatrick, Mark Gardner, Keith Forward and to the newer members of the group.
Sue Blakeney and Hui-Fang Deng, for sharing their computer programs and their
knowledge with me and for the interesting discussions we have had. I would also
like to thank Dr Sally Day and Dr Anibal Fernandez for their valuable contribu­
tions and comments during the group meetings we have held. Laki Panteli for his
help and support in the first years of my stay in England. I am also grateful to
Dr Tim York for his valuable advice during the first years of my PhD.

Last but not least I want to express my appreciation to my sister Vivian who
has kept me company and helped me in so many ways during the last four years.

Abstract
Matched filters for optical correlators detect the presence of objects immersed in
white noise, but are unable to discriminate between similar, noisy input patterns.
Also, the dynamic range of optical systems often limits the size of the images
th a t can be recognised. We develop two algorithms for designing filters for optical
pattern recognition. The first algorithm suppresses the similarities between the
training images and creates a set of filters, which are m utually orthogonal to them.
Our filters tolerate 7 dB more additive input white noise than matched filters and
the required dynamic range is reduced by 25 dB. In addition, the filters obtained
after only two iterations tolerate 2 dB more additive input white noise than linear
combination filters (LCF), which results in an improvement in the probability of
discrimination of about 30% for the same amount of noise. The correlation outer
products for the 2 iteration Similarity Suppression (SS) algorithm are substantially
lower than those for the LCFs. The second, Feature Enhancement and Similarity
Suppression (FESS), algorithm designs filters for multi-class pattern recognition.
Each of these filters can recognise all the members of a group and distinguish them
from other groups. The probability of recognition for a training set of faces is 100%
w ithout noise, compared to 90% using matched filters and the required dynamic
range is again reduced by 25 dB. We prove the m athem atical equivalence between
these algorithms, the back-propagation algorithm for training neural networks
and the method for designing general synthetic discriminant functions (SDF).
Our algorithms also design filters for two or more cascaded banks of correlators
and can train multilayer neural networks. Conversely, m atrix inversion methods,
which are generally used for designing SDFs, can train neural networks and give
the same results as obtained with the back-error propagation algorithm.

Contents

1 Introduction 21

2 O ptical inner product correlator fundam entals 25
2.1 In tro d u c tio n .. 25
2.2 Optical Fourier transform ... 26
2.3 Optical C o rre la to rs .. 26

2.3.1 4-f C o rre la to r ... 27
2.3.2 Joint-transform c o r r e la to r .. 28

2.4 Optical Matched f i l te r s .. 30
2.5 Practical correlator implementations ... 30
2.6 Performance m e a s u r e s .. 31
2.7 C o n c lu s io n s .. 32

3 R eview o f spatial filter design algorithm s for optical correlators 33
3.1 In tro d u c tio n ... 33
3.2 The Gram-Schmidt orthogonalisation

p r o c e d u r e .. 34
3.3 Linear Combination F ilte rs ... 34
3.4 Synthetic Discriminant F u n c tio n s .. 37

3.4.1 Minimum Variance Synthetic Discriminant Function 39
3.4.2 Minimum Average Correlation Energy f i l te r s 41
3.4.3 MICE and MINACE filte rs .. 43

3.5 Phase-Only F i l t e r s .. 44
3.6 O ptim al Trade-off F i l te r s ... 44
3.7 Discussion and s u m m a ry .. 45

4 Neural networks: Perceptrons and learning algorithm s 51
4.1 In tro d u c tio n .. 51
4.2 The P e rc e p tro n ... 52

4.2.1 Hebbian le a r n in g ... 54

CONTENTS

4.3 Multilayer Feed-forward N etw orks... 55
4.3.1 The Back-Propagation learning algorithm 56

4.4 S u m m a r y .. 61

5 Sim ilarity Suppression filter design algorithm 62
5.1 In tro d u c tio n .. 62
5.2 Derivation of the similarity suppression

a lg o r i th m ... 63
5.2.1 Development of the similarity suppression orthogonalisation

a lg o r i th m ... 63
5.2.2 Development of the similarity suppression cross -

orthogonalisation a lg o r i th m .. 66
5.2.3 Advanced algorithm with improved convergence

parameters .. 68
5.3 Analysis of the normalisation s t e p .. 70
5.4 Comparison with other filter design

a lg o rith m s ... 73
5.4.1 Comparison of the Gram-Schmidt orthogonalisation proce­

dure with the similarity suppression orthogonalisation algo­
rithm ... 73

5.4.2 The relationship between the SS cross orthogonalisation al­
gorithm and Caulfield’s and Maloney’s Linear Combination
F i l t e r s .. 75

5.4.3 Equivalence between a bank of correlators and a
single layer of n e u r o n s .. 78

5.4.4 Comparison of the similarity suppression algorithm with the
unsupervised Hebbian learning l a w .. 79

5.5 Extension of the Similarity Suppression algorithm to train two or
more consecutive banks of c o rre la to rs ... 82

5.6 Discussion and conclusions.. 86

6 Com puter sim ulations of the Sim ilarity Suppression algorithm 88
6.1 In tro d u c tio n .. 88
6.2 Convergence S im u la tio n s ... 89

6.2.1 Performance M e a s u re s ... 89
6.2.2 Binary, bipolar p a t t e r n s ... 90
6.2.3 Magnitudes of normalised and un-normalised filters 92
6.2.4 Peak-to-Correlation Energy of the correlations between the

training patterns and the trained and untrained filters . . 96
6.2.5 Real valued p a t t e r n s .. 99

CONTENTS

6.3 Probability of discrimination and dynamic ra n g e 101
6.4 Comparison between the filters produced with the SS algorithm

and the linear combination f i l t e r s ... 104
6.5 Optimisation of number of iterations for the similarity suppression

a lg o r i th m .. 108
6.6 C o n c lu s io n s ... 120

7 Feature Enhancem ent and Sim ilarity Suppression filter design
algorithm 123
7.1 In tro d u c tio n ... 123
7.2 Derivation of the Feature Enhancement and Similarity Suppression

A lg o r ith m .. 123
7.2.1 Basic a lg o r ith m ... 124
7.2.2 Advanced algorithm with improved convergence

parameters .. 129
7.3 Comparison of the FESS algorithm with relevant filter design and

neural network training a lg o r i th m s .. 130
7.3.1 Comparison of the FESS algorithm with the

Similarity Suppression A lg o r ith m .. 130
7.3.2 Comparison of the FESS algorithm with Synthetic Discrim­

inant F u n c tio n s ... 132
7.3.3 Comparison of the FESS algorithm with the supervised Heb­

bian l a w .. 134
7.4 Extension of the FESS algorithm to two or more consecutive banks

of correlators .. 135
7.5 Discussion and conclusions... 137

8 Com puter sim ulations of the FESS algorithm 140
8.1 In tro d u c tio n .. 140
8.2 Computer S im u la tio n s .. 140

8.2.1 Training set description ... 141
8.2.2 T ra in in g ... 145
8.2.3 Convergence s p e e d ... 152
8.2.4 Peak to Correlation Energy (PCE) of correlations between

the initial patterns and the final, trained class filters . . . 156
8.3 Probability of recognition and dynamic range 160
8.4 C o n c lu sio n s .. 165

9 Conclusions and Future Work 167
9.1 In tro d u c tio n .. 167

CONTENTS

9.2 General achievem ents.. 167
9.3 Specific achievem ents... 169
9.4 Future w o r k .. 172

A ppendix A
M athematical definitions 182

A .l Expected value - variance - standard d ev ia tio n 182
A.2 Correlation and covariance m a tric e s .. 182
A.3 Fourier tra n s fo rm .. 183
A.4 Convolution and c o rre la tio n .. 184
A.5 Inner and outer p ro d u c ts .. 185

A ppendix B
Magnitudes of the un-normalised filters 186

B .l Analysis for the SS a lg o r i th m ... 188
B.2 Analysis for the FESS a lgorithm .. 189

A ppendix C
Training set 191

C .l Training set for the FESS algorithm ... 191
A ppendix D

Cross inner product matrices 194

List of Figures

2.1 4-f correlator after Collings 1987 [1] ... 27
2.2 Joint transform correlator after Collings 1987 [1] 28
2.3 O utput of the joint transform correlator after Collings 1987 [1] . . 29

3.1 Spectral power distribution of an input pattern 47
3.2 Inverse filter for the gaussian distribution of figure 3 .1 48
3.3 A bandpass filter for multiclass pattern r e c o g n it io n 48
3.4 Effect of the MACE and MINACE preprocessors on the signal.

Graph adapted from [2]... 49

4.1 A single layer perceptron with only one n e u ro n 53
4.2 An example of two linearly separable classes in 2-D space.................. 53
4.3 A hard limiter activation fu n c tio n .. 54
4.4 A Multilayer Perceptron with 1 hidden l a y e r 56
4.5 Signal-flow graph highlighting the details of output neuron k and

hidden neuron j, adapted from Haykin (1994) [3].............................. 57

5.1 A single layer of neurons.. 80
5.2 Two cascaded banks of correlators.. 83

6.1 Cross-inner product m atrix before the training. The graph is shown
with the X and y axes reversed for clarity.. 91

6.2 Total energy index.. 91
6.3 Absolute average values of the 3 largest inner products as a function

of iteration number for various values of the convergence factor, /?. 92
6.4 Cross-inner product m atrix after 1500 iterations for a convergence

factor of ^ = 6. The graph is shown with the x and y axes reversed. 93
6.5 Unnormalised magnitudes of some of the filters as a function of the

number of iterations... 94
6.6 Un-normalised magnitudes of all of the filters after the training

versus similarity amongst the corresponding training patterns. . . 94

LIST OF FIGURES

6.7 Cross-inner product m atrix after 1500 iterations without norm ali­
sation for a convergence factor of /? = 6. The graph is shown with
the X and y axes reversed for clarity.. 95

6.8 Normalised magnitudes of some of the filters as a function of the
number of iterations... 96

6.9 Correlation plane intensity for auto-correlation of pattern 1 and
correlation between pattern 1 and filter 1 .. 97

6.10 Correlation plane intensity for correlations between pattern 1 and
pa tte rn 2 and between pattern 1 and filter 2.. 98

6.11 Correlation plane intensity for correlations between pattern 7 and
pa ttern 1 and between pattern 7 and filter 1.................................. 98

6.12 Training set consisting of ten people’s faces................................... 100
6.13 Vector-inner product m atrix before the training........................... 100
6.14 Cross-inner product m atrix after 2000 iterations for a convergence

factor of ^ = 0.65.. 101
6.15 Final filters for the faces set.. 102
6.16 Probability of discrimination versus input signal to noise ratio . . 103
6.17 Dynamic range of the recognition system as a function of the signal

to noise ratio. The error bars show the standard deviation for 5000
measurem ents... 104

6.18 Cross-inner product m atrix between the input patterns and the
filters created using equation 5.55. The graph is shown with the x
and y axes reversed for clarity... 105

6.19 Pixel values of the two versions of filter 2 106
6.20 Differences between pixel values of the two versions of filter 2 . . . 106
6.21 Probability of discrimination versus input signal to noise ratio . . 107
6.22 Dynamic range of the recognition system as a function of the signal

to noise ra tio .. 108
6.23 Probability of discrimination versus number of iterations.......... 109
6.24 Dynamic range of the recognition system versus number of iterations. 109
6.25 Probability of discrimination versus number of iterations for the

first 10 iterations... 110
6.26 Dynamic range of the recognition system versus number of itera­

tions for the first 10 iterations... I l l
6.27 Probability of discrimination as a function of the signal to noise ratio. I l l
6.28 Probability of discrimination difference as a function of the signal

to noise ra tio .. 112
6.29 Pixel values of pattern 2 and filter 2 in the first 4 and the final

itera tion ... 113

LIST OF FIGURES

6.30 Differences between pixel values of the second filter in various iter­
ations.. 114

6.31 Cross-inner product m atrix before the training, in the first 4 and
in the final iteration. The m atrix is depicted from the side. C.i.p.:
Cross-inner product.. 116

6.32 Dynamic range of the recognition system as a function of the signal
to noise ra tio .. 117

6.33 Correlation plane intensity for correlation between pattern 1 and
filter 1 after 1500 and after 2 iterations.. 118

6.34 Correlation plane intensity for correlations between pattern 1 and
filter 2 after 1500 and after 2 iterations.. 118

6.35 Correlation plane intensity for correlations between pattern 7 and
filter 1 after 1500 and after 2 iterations.. 119

7.1 A single layer of neurons.. 134
7.2 Two cascaded banks of correlators.. 136

8.1 A sample of the training set, which consists of six pictures of each
person. Only three examples of each subject are shown in this figure. 142

8.2 Cross-inner product m atrix for the monopolar patterns before the
training. The filters are initially equal to the first pattern of each
of the classes... 143

8.3 First and sixth row of the initial cross-inner product m atrix of the
monopolar patterns.. 144

8.4 First and sixth row of the initial cross-inner product m atrix of the
bipolar pa tterns ... 144

8.5 First and sixth row of the final cross-inner product m atrix of the
monopolar patterns after the training with the FESS algorithm.
The initial filters were equal to the first example of the correspond­
ing classes.. 146

8.6 First and sixth row of the final cross-inner product m atrix of the
monopolar patterns after the training with the FESS algorithm.
The initial filters where equal to the mean of all of the examples of
the corresponding classes.. 147

8.7 First and sixth row of the final cross-inner product m atrix of the
monopolar patterns after the training with the FESS algorithm.
The initial filters were random .. 148

10

LIST OF FIGURES

.8 First and sixth row of the final cross-inner product m atrix of the
bipolar patterns after the training with the FESS algorithm. The
initial filters where equal to the first example of the corresponding
classes.. 148

.9 First and sixth row of the final cross-inner product m atrix of the
bipolar patterns after the training with the FESS algorithm. The
initial filters where equal to the mean of all of the examples of the
corresponding classes... 149

.10 First and sixth row of the final cross-inner product m atrix of the
bipolar patterns after the training with the FESS algorithm. The
initial filters where random .. 150

.11 Final filters for the first five subjects, for monopolar and bipo­
lar patterns and for all three initial filter values. Column :
monopolar patterns, initial filters equal to one pattern. 2"^ Col­
umn : monopolar patterns, initial filters equal to the mean of the
patterns. 3’’̂ Column : monopolar patterns, random initial filters.
4*̂ Column : bipolar patterns, initial filters equal to one pattern.
5*̂ Column : bipolar patterns, initial filters equal to the mean of
the patterns. 6*̂ Column : bipolar patterns, random initial values. 153

.12 Final filters for the last five subjects, for monopolar and bipolar pa t­
terns and for all three initial filter values. 1®̂ Column : monopolar
patterns, initial filters equal to one pattern. 2^^ Column : monopo­
lar patterns, initial filters equal to the mean of the patterns. 3’’'̂
Column : monopolar patterns, random initial filters. 4*̂ Column
: bipolar patterns, initial filters equal to one pattern . 5*̂ Column
: bipolar patterns, initial filters equal to the mean of the patterns.
6^ ̂ Column : bipolar patterns, random initial values......................... 154

.13 Energy ratio for the FESS algorithm plotted against number of
training iterations for the monopolar patterns..................................... 155

.14 Energy ratio for the FESS algorithm plotted against number of
training iterations for the bipolar patterns.. 155

.15 Correlation plane intensity for correlations between a photo of the
sixth subject and the untrained (a) and the trained (b) filter for the
first subject using the monopolar patterns. F ilter gi was initially
equal to the mean of all of the training patterns in the 1*̂ class.
Correlation peak location: (6 5 ,6 5)... 157

11

LIST OF FIGURES

8.16 Correlation plane intensity for correlations between a photo of the
sixth subject and the untrained (a) and the trained (b) filter for the
sixth subject using the monopolar patterns. F ilter gg was initially
equal to the mean of all of the training patterns in the 6*̂ class.
Correlation peak location: (6 5 ,6 5)... 157

8.17 Correlation plane intensity for correlations between the sixth sub­
ject and the untrained (a) and the trained (b) filter for the first
subject using the bipolar patterns. The trained filter was initially
equal to the mean of the training patterns it represents. Correlation
peak location: (65,65) 158

8.18 Correlation plane intensity for correlations between a photo of the
sixth subject and the untrained (a) and the trained (b) filter for
the sixth subject using the bipolar patterns. Before the training, gg
was equal to the mean of all of the training patterns it represents.
Correlation peak location: (6 5 ,6 5)... 159

8.19 Correlation plane intensity for correlations between a photo of the
sixth subject and the trained filter for the first subject (a), and
trained filter for the sixth subject (b) using the bipolar patterns
and the initially random filters. Correlation peak location: (65,65) 160

8.20 Convergence index curves of the SS algorithm with and w ithout
the squared term .. 166

9.1 Relationships between our algorithms, neural network training al­
gorithms and filter design te c h n iq u e s ... 168

9.2 Planar correlator. FZP: Fresnel zone plate, MF: Matched filter, IP:
Input pa tte rn ... 174

9.3 Disk planar correlator. FZP: Fresnel zone plate, IP: Input pattern . 175
C .l The examples th a t were used in the training set for the first five

people.. 192
C.2 The examples th a t were used in the training set for the last five

people.. 193
D.3 First three rows of the initial cross-inner product matrices for monopo­

lar and bipolar patterns.. 195
D.4 Fourth to sixth rows of the initial cross-inner product matrices for

monopolar and bipolar patterns... 196
D.5 Last four rows of the initial cross-inner product matrices for monopo­

lar and bipolar patterns.. 197
D.6 First and second rows of the cross-inner product matrices for monopo­

lar and bipolar patterns and all three initial filter values.................. 198

12

LIST OF FIGURES

D.7 Third and fourth rows of the cross-inner product matrices for monopo­
lar and bipolar patterns and all three initial filter values.................. 199

D.8 Fifth and sixth rows of the cross-inner product matrices for monopo­
lar and bipolar patterns and all three initial filter values................... 200

D.9 Seventh and eighth rows of the cross-inner product matrices for
monopolar and bipolar patterns and all three initial filter values. . 201

D.IO Ninth and tenth rows of the cross-inner product matrices for monopo­
lar and bipolar patterns and all three initial filter values.................. 202

13

List o f Tables

3.1 Summarised filter characteristics. T.D. : Target detection, Discr. :
Discrimination, Rec. : Recognition, N.T. : Noise tolerance, Corr.
plane : Correlation plane, M-P : M ulti-pattern, M-C : Multi-class,
P.S. : Peak sharpness, P.V. : Peak variance control, S.R. : Side-lobe
(outer product) reduction, D.R.R. : Dynamic range reduction. . . 46

6.1 Number of pixels differing in the training set................ 90
6.2 Comparison between the filters produced with the SS algorithm af­

ter 2 iterations and the LCFs. SS 2 i.: SS algorithm 2 iterations,
H.I.N.: High input noise, L.I.N.: Low input noise, H.D.R.: High re­
quired dynamic range, L.D.R.: Low required dynamic range, Loc.:
Location detection. High Disc.: High Discrimination ability. High
Rec.: High recognition a b i l i t y .. 120

8.1 Mean value and standard deviation of the auto- and cross-inner
products for the monopolar patterns. The last column in the table
shows the ratio of the mean of the auto-inner products over the
mean of the cross-inner products...................................... 150

8.2 Mean value and standard deviation of the auto- and cross-inner
products for the bipolar patterns. The last column in the table
shows the ratio of the mean of the auto-inner products over the
mean of the cross-inner products...................................... 151

8.3 Probability of recognition and dynamic range using the training set. 161
8.4 Probability of recognition, false positives, false negatives and dy­

namic range using the test set. Thr: Threshold, PR: Probability or
recognition, FP: False Positives, FN: False Negatives, DR: Dynamic
Range... 163

14

L IST OF TABLES

.1 Summarised filter characteristics. T.D. : Target detection, Discr. :
Discrimination, Rec. : Recognition, N.T. : Noise tolerance, Corr.
plane : Correlation plane, M-P : M ulti-pattern, M-C : Multi-class,
P.S. ; Peak sharpness, P.V. : Peak variance control, S.R. : Side-lobe
(outer product) reduction, D.R.R. : Dynamic range reduction. . . 173

15

N otation

j3 : Convergence param eter

r] : Convergence param eter

r)H : Horner efficiency

Q : Neuron threshold

A : Positive real number

^ : Uniform background image

E : Noise covariance m atrix

cr̂ : Variance

<f)[') : Neuron activation function

a : Solution vector for synthetic discriminant functions

a : Coefficient for calculating equal correlation peak filters

b : Coefficient for calculating equal correlation peak filters

C : M X M m atrix whose elements are the coefficients C

C : Coefficient for calculating linear combination filters

c : Coefficient for calculating equal correlation peak filters

d : Desired neuron or correlator output value

D : How often (iterations) the addition equation of the FESS algorithm is applied

D : N X N diagonal m atrix

d : Vector with desired correlation outputs

E{-}: Expected value

Eave : Average correlation plane energy

e : Neuron output error

F : Correlation response

f : Input image

G : M X 1 vector whose elements are the filters g

g : Correlation filter

16

g : Unnormalised correlation filter

0)g ; g filter in the jth bank of cascaded banks of correlators

g()̂ : g filter at the ith application of the SS or FESS algorithm

K : Number of classes

Lj : Number of training patterns in the jth class

M : Total number of patterns in the training set

N : Size (in pixels) of training patterns and filters

n : Noise vector

O : Total number of neurons in the network

P : Power of normalised training patterns

R : Vector inner product m atrix

r : Value of inner product of two patterns

S : M atrix whose lines are the training vectors s

s : Training pattern

s : Mean of training patterns s

T : N X N diagonal m atrix

t : Neuron output target value

u : Pattern orthogonal to the other patterns in its set

Û : Unnormalised orthogonal pattern

V : Set of N real numbers

V : Neuron net internal activity level

w : Neuron weight

X : Neuron input

y ; Neuron output

z : Complex number of modulus 1

z : Vector of real numbers

★ : Symbol denoting convolution

(g) : Symbol denoting correlation

: Symbol denoting inner product

17

Abbreviations

B PO F : Binary Phase Only Filter

BPO SDF : Binary Phase Only Synthetic Discriminant Function

CCD : Charge Coupled Device

ECP : Equal Correlation Peak

FESS : Feature Enhancement and Similarity Suppression

fSDF : filter Synthetic Discriminant Function

FT : Fourier Transform

GMF : Generalised Matched Filter

JTC : Joint Transform Correlator

LCF : Linear Combination Filter

LDF : Linear Discriminant Function

MACE : Minimum Average Correlation Energy

MHP : Modified Hyper Plane

MICE : Minimum Correlation Energy

MINACE : Minimum Noise And Correlation Energy

MLP : Multi Layer Perceptron

MOF : Mutually Orthogonal Filter

MOSLM : Magneto Optic Spatial Light M odulator

MVSDF : Minimum Variance Synthetic Discriminant Function

occ : Optimal Characteristic Curve

OTF : Optimal Trade-off Filter

PCE : Peak to Correlation Energy

POE ; Probability Of Error

POE : Phase Only Filter

PC SDF : Phase Only Synthetic Discriminant Function

SDF : Synthetic Discriminant Function

SLM : Spatial Light Modulator

SMACE : Space domain MACE

18

SNR : Signal to Noise Ratio

SS : Similarity Suppression

19

Chapter 1

Introduction

In this thesis we develop two algorithms for designing filters for optical pattern
recognition. We investigate their performance using theoretical calculations and
computer simulations. In addition, we compare our algorithms to relevant exist­
ing techniques for designing filters for optical pattern recognition and to neural
network training algorithms.

The original aim of this project was to develop an optically implementable
algorithm for training neural networks. This was based on an initial version of
one of our algorithms for designing filters for optical pattern recognition, which
was based on the Gram-Schmidt orthogonalisation procedure, and on the already
known relationship between neural networks and optical correlators [4]. Our initial
aims were to further demonstrate, develop and improve our algorithm and to assess
its limitations. To investigate whether it could be used to tra in neural networks
and its relationship to other neural network training algorithms. And to design
and build an optical system which would implement our training algorithm.

Various reasons, most im portant among which being the interesting results
we obtained from our computer simulations and the theoretical comparisons with
other training algorithms and filter design techniques, led us to emphasise the
theoretical part of the project. In addition, we focused on the optical filter design
side of the project and not on the neural network side, because of the currently
higher interest in optical filters rather than optical neural networks. In the fol­
lowing paragraphs we present some background information on the relevant fields,
namely optical pattern recognition and neural networks, which will help us place
our work in the context of related research.

Optical pattern recognition has been a vibrant field of research over the last
forty years [5]. Correlation [6, 7], a very well known m athem atical m ethod for
comparison, is very often used for optical pattern recognition. Optical correlators

20

Chapterl. Introduction

have the advantage th a t they are very fast compared to computers. This speed
advantage is a consequence of the inherent parallelism of optics and the speed
of light. Moreover, there are optical correlators, which can correlate many im­
ages with one in parallel [8]. The most im portant component of any recognition
system based on a correlation is the tem plate, or filter, with which the input p a t­
tern is compared. This filter depends on the correlator implementation (optical,
electronic, hybrid etc.). Some optical correlators use filters in the space domain
[9, 10] and others in the Fourier domain [5]. Furthermore, the filters depend on
the particular task at hand. Some systems’ prim ary aim is to detect the pres­
ence of an object in a noisy background. For example, matched filters, which are
the complex conjugates of the spectrum of the original patterns, are optim al for
detecting signals in white, Gaussian noise [11]. The aim of other systems is to
recognize the presence of any one of several patterns in the input, for example,
SDF filters [12, 13, 14, 2] and optimal trade-off filters [15, 16, 17]. O ther systems
aim to distinguish between very similar objects, for example, mutually orthogonal
filters [18]. All of these are not completely different tasks, on the contrary, they are
inter-related and many filters are designed with all of these aims in mind. Most
of the previously mentioned filters are linear combinations of training patterns
and their design methods are based on solving a set of simultaneous equations,
to calculate an array of coefficients. These coefficients can then be used to lin­
early combine the training patterns, to create the filters in such a way th a t their
correlations with the input patterns yield the desired output values.

Neural networks [3] are simplified models of the human brain. They consist of
many simple processing units called neurons. These neurons are interconnected
with connections of different strengths. The strengths of these interconnections
are called weights and determine the behaviour of the network. The methods
for modifying these weights are called training algorithms. Most of them are
iterative and they apply a m athem atical rule to modify the network’s weights,
usually based on a number of training examples. Sometimes, these m athem atical
rules are rather complicated. In addition, many iterations and a large number of
training examples may be necessary for the network to yield the desired outputs.
Therefore, the training of a neural network is often a time consuming process.
Furthermore, as the desired network behaviour may change with time, the network
may need to be retrained.

These disadvantages of the neural network training process and the known
structural equivalence between optical correlators and single layer neural net­
works, were what initially motivated us to s tart this project. An algorithm which
could be implemented optically and could be used to train neural networks would
use the advantage of the speed and the parallelism of optics to speed up the pro­

21

Chapterl. Introduction

cess of training neural networks. During the project, we decided not to work on
the practical optical system to implement our training algorithm, but instead to
concentrate on the algorithm development. Also we shifted the emphasis from
neural networks to optical filters and we investigated the relationship between
neural network training algorithms and optical filter design techniques using our
algorithms as an intermediate step for the comparisons, which led to some very
interesting results. So our revised, final aims are summarised below:

1. To further demonstrate, develop and improve our algorithm.

2. To assess its limitations.

3. To develop, demonstrate, and assess the lim itations of a second algorithm
which addresses the problem of multi-class pattern recognition.

4. To investigate the relationship between our algorithms and some neural
network training algorithms.

5. To compare our algorithms to some relevant optical filter design techniques.

The layout of this thesis is as follows: We start with some background theory
and a review of some of the relevant research, in the next three chapters. Then
we present our work and we finish the thesis with our conclusions. Specifically,
the next chapter contains some introductory theory on optical correlators. We
briefly describe the 4-f correlator and the joint transform correlator. This chapter
is useful for the reader who has no prior knowledge of optics, and particularly
correlators. A reader who is already familiar with these can proceed straight
to the next chapter. Chapter 3 presents some of the most relevant methods for
designing filters for optical pattern recognition. In chapter 4 we present some
introductory theory on single layer and multilayer perceptrons. This is a theory
chapter, aimed at the reader who has no neural network knowledge and can be
om itted by a reader who is already familiar with them. The next four chapters
present our work. Chapter 5 contains the derivation and theoretical analysis of
our first algorithm, called the similarity suppression (SS) algorithm. In addition
in chapter 5 we theoretically compare the similarity suppression algorithm with
relevant filter design techniques and the Hebbian learning law for training neural
networks. In chapter 6 we present the computer simulations of the SS algorithm.
Each section of th a t chapter presents the simulations th a t prove, or investigate
the accuracy of the theory tha t was presented in the corresponding section of
chapter 5. Our second algorithm, called the feature enhancement and similarity
suppression (FESS) algorithm, along with its theoretical analysis and comparisons
with relevant filter design methods, is presented in chapter 7. The layout of

22

Chapterl. Introduction

chapter 7 is very similar to the layout of chapter 5, so th a t the reader can make
comparisons between the two algorithms. Chapter 8 follows, with the computer
simulations for the FESS algorithm. An overview of our work, along with a list
of our main achievements and new ideas, and some proposals for further work are
presented in chapter 9. Appendix A presents some m athem atical preliminaries
th a t are useful for the reading of the thesis. Appendix B presents the m athem atical
analysis of the changes th a t occur to the filters’ magnitudes during the training
with the SS and the FESS algorithms. Appendix C contains all of the training
images used for the FESS algorithm. Finally, appendix D contains the graphs of
the simulations of the FESS algorithm, which were not included in chapter 8.

23

Chapter 2

Optical inner product correlator

fundamentals

2.1 Introduction
Optical inner product correlation is the tool on which optical pattern recognition
is based. So, in this chapter we present some elementary background theory on
optical correlation, starting with the optical Fourier transform and ending with
some implementation considerations and some performance measures. In the sec­
ond section we present the Fourier transform property of a lens. In section 2.3
we present some of the most common optical correlators. Section 2.4 describes
the optical matched filters which were first used for optical pa ttern recognition.
Section 2.5 presents some principles and im portant issues concerning implemen­
tations of optical correlators. Finally, section 2.6 presents some frequently used
performance measures for the evaluation of optical pattern recognition filters. The
theory presented in this chapter is aimed at the reader with no prior knowledge
of correlators and is written with the purpose of familiarising h im /her w ith some
correlator fundamentals, which are necessary for the understanding of the main
work of this thesis. If the reader is already familiar with optical correlators and fil­
ter performance measures, he/she can proceed to the next chapter, which presents
some of the filters th a t have been designed for use with these optical correlators.

24

2 .2 . OPTICAL FOURIER TRANSFORM

2.2 Optical Fourier transform
According to the Fraunhofer approximation [19], when an aperture is illuminated
with coherent light the far-held diffraction pattern is the Fourier transform of the
complex aperture distribution, as shown in equation 2.1

J l dÇdr, (2.1)
— OO

where, A is the wavelength of the light, z is the distance from the aperture and
k = ^ is the propagation number, the magnitude of the propagation vector, k.
If a lens is inserted immediately after the diffracting aperture, then it focuses the
far-held pattern onto the focal plane. The amplitude distribution at the focal
plane of the lens is

E {x, y) = ̂ JJ d^drj (2.2)
— OO

where the constant phase factor is ignored and / denotes the focal length of
the lens. This equation is almost identical to the 2-dimensional Fourier transform
equation shown in equation 2.3. The only difference between the two equations is

j k (x ^ + y ^)
the quadratic phase factor term e 2/

F { x , y) = [(2.3)
J x J y

It has been shown [19] th a t when the diffracting aperture is located at the front
focal plane of the lens, then this quadratic phase factor is removed and an exact
Fourier transform relationship exists between the front and back focal planes. As
far as the inverse Fourier transform is concerned, which is shown in equation 2.4,

J { x , y) = [f F(Ç,77)e'('=*f+*=»’')dÇd)? (2.4)
J x J y

this can be obtained by performing a forward Fourier transform optically and then
calculating the mirror image along the x and the y axes of the output.

2.3 Optical Correlators
By making use of the convolution theorem^, it is possible to compute the con­
volution of two functions much faster by performing two FFTs, one inverse FFT

^See appendix A

25

2.3. OPTICAL CORRELATORS

Input plane

SLM

Coherent

input light

Fourier plane

SLM PL

Output/correlation
plane

Figure 2.1: 4-f correlator after Collings 1987 [1]

and N multiplications instead of 2N ‘̂ multiplications th a t would be necessary for
the convolution [20]. Even then, however, the convolution or correlation of two
functions can be a time consuming calculation, and dedicated chips have been
manufactured to perform them [21]. Optical convolution or correlation is very
fast, because an aperture can perform a Fourier transform with a lens bringing it
into the near field and giving it the correct phase. Also the multiplication is very
easily implemented optically [22], by, for example, illuminating a sandwich of the
two images. The speed of the optical implementation of the correlation has led to
the design of several kinds of optical correlators.

2.3 .1 4 -f C orrelator

A very simple optical correlator is shown in figure 2.1. It is called the 4~f corre­
lator or the frequency plane correlator. The first lens is performing the Fourier
transform of the input function, i{x, y), which is displayed on the first spatial light
m odulator (SLM) and is illuminated with coherent light. The complex conjugate,
F*{u, u), of the Fourier transform of the filter function, f {x , y), is displayed at the
back focal plane of the lens using the second SLM. The two Fourier transforms are
multiplied, the light leaving the second SLM is the product I(u, v)F*{u, v), and at
the back focal plane of the second lens, which is performing another Fourier trans­
form, the output is equal to the cross-correlation of the two functions in the space
domain [20]. The 4-f correlator uses Fourier domain matched filtering because the
Fourier transform of the filter must be displayed on the second SLM. Obviously
the Fourier transform of any filter is a complex function. The photographic film
th a t was initially used for the implementation of the 4-f correlator was not orig-

26

2.3. OPTICAL CORRELATORS

Dynamic
holographic
recording deviceBS

Spatial
Filter

Input

cp p LI

Photodetector
array

D D
Hologram construction Hologram interogation

laser laser

Figure 2.2: Joint transform correlator after Collings 1987 [1]

inally [23] able to accommodate complex transm ittances. Vander Lugt^ [5] was
the first to propose a method for bypassing the problem by using a holographic
filter. To do that he recorded the intensity of the interference between the filter
F{u,v) and an off-axis reference beam. According to Kumar in [23], ''when this
mask is placed in the back focal plane of the first F T lens, the light leaving it
has three distinct components [23]: First is the product kI(u ,v)[A^ 4 - \F {u ,v)\ ‘̂],
where k is a normalising constant and A is the amplitude of the reference beam,
and its inverse F T appears centered on the optical axis at the output plane. The
second term is kAI{u, v)F(u, v)e^‘̂ ,̂ where a is related to the angle of the reference
beam. Its inverse F T is the convolution between the filter and the input functions,
a,nd it is placed along the x-axis on one side of the origin. The third term is
kAI[u,v)F*{u,v)e~^°‘''̂ , whose inverse F T produces the desired correlation along
the x-axis at the opposite side of the origin.^' Obviously the reference beam angle,
a, plays an im portant role to the placement of the correlation at the output plane
and a steep enough angle must be chosen to ensure good separation between the
three terms.

2.3 .2 Join t-transform correlator

The joint transform correlator (JTC) [9, 10] is based on a different approach,
where the prior Fourier transformation of the filter is not necessary. In the joint

^Vander Lugt used amplitude masks made of photographic film and not SLMs in his imple­

mentation

27

2.3. OPTICAL CORRELATORS

Filter

Input Write

(a) (b)

RF*I

R(IFI+II|)

RFIRead

Figure 2.3: O utput of the joint transform correlator after Collings 1987 [1]

transform correlator, figure 2 .2 , the input image and the filter are presented at
the input plane of the FT lens (L3) a t the same time, and are then both Fourier
transformed by the lens. The interference pattern of their Fourier transforms is
recorded in a real-time recording material such as a photorefractive crystal which
is a t the back focal plane of the FT lens. The hologram is interrogated with a
collimated beam. The output beam is sent through a second FT lens and the
correlation of the input and the filter patterns is obtained at the output. The
reconstructed beam in the JTC consists of three terms (figure 2.3). The on-axis
term is the sum of the auto-correlations of the object and the scene, 7?(|Fp-f 1/|^).
The off-axis terms are the terms of interest because they are the cross-correlations
of the input and the filter, RFI* and RF*I, where i?, denotes the am plitude of
the reference beam. To obtain a convolution, the mirror image of either the filter
or the input function must be placed at the input of the JTC.

The main difference between the JTC and the 4-f correlator is th a t the JTC
performs spatial-domain instead of Fourier domain filtering. In other words, the
filter th a t is placed in the 4-f correlator must already be in the Fourier domain,
while in the JTC the filter must be in the space domain. The main advantage of
the JTC is tha t no great accuracy in the positioning of the input and the filter is
required [1]. However, any change in the positioning of the input relative to the
filter (or visa versa), will result in the change of the angle 2a between them and
hence, the position of the cross-correlation peak at the output, as can be seen in
figure 2.3. Provided tha t real-time devices are available, search routines can be
performed at the frame rates of the SLMs. In addition, the JTC can be used for
adaptive pattern recognition, where the input signal is continually being compared
to a reference signal which is changing in time [23]. However, the optical quality
of the input devices, and the FT lens used in the JTC must be high.

28

2.4. OPTICAL MATCHED FILTERS

2.4 Optical Matched filters
A matched filter is a time-reversed version of the input signal h{x) = s{—x), where
s{x) is the input signal. If the input signal is complex and 2D, then the time
reversed complex conjugate of its frequency spectrum, h{x, y) = s*{—x, —y), is its
matched filter. It has been proved th a t matched filters are optimal for detecting
the presence of the signal s(a;) in a noisy input, when the noise is white with a
constant power spectral density [11, 23]. This optim ality of the matched filters in
detecting signals buried in noise is proved because it maximises the output Signal-
to-Noise Ratio (SNR), which leads to a minimum probability of error [24]. An
optical m atched filter can be implemented by a hologram containing the complex
conjugate of the frequency spectrum of the pattern [1], or using an am plitude and
a phase SLM.

2.5 Practical correlator implementations
Purely optical correlators have the advantage of being very fast, operating a t over
kHz rates [25, 26], but they suffer from several disadvantages such as the lack
of versatility and programmability, and low accuracy due to the analogue nature
of optics and the low dynamic range [27]. On the contrary, all of the previously
mentioned deficiencies of the optical systems, are strong points of electronic com­
puters. It is not strange, therefore, th a t many hybrid systems have been developed
which combine the advantages of both worlds [16, 28, 29, 30, 31, 32, 33, 34, 35].

In many cases the input image must be correlated with a very large number
of reference images. These reference images can either be stored in a computer
and down-loaded to the correlator sequentially, or they can be stored optically.
In th a t case the storage device is part of the correlator. Optical disks have been
successfully used in correlators [36, 37, 38, 39]. Another solution is the use of
photorefractive materials, which offer large storage capacity [40], high resolution
and real-time recording and several correlators have been built which utilise them
[41, 42, 43].

One other disadvantage of optical correlators is their bulk and large weight,
as well as the fact th a t they are very sensitive to vibrations because precise align­
ment of the input and the filter image is necessary in some of them (4-f correlator)
and, therefore, cannot easily be moved. In recent years, several attem pts have
been made to built compact correlators th a t are also able to endure vibrations
[44, 45, 46]. Finally, several planar correlators have been built by integrating all
of the optical components on the surfaces of a single substrate using lithographic
fabrication techniques [47, 48, 49]. Most of these systems use spatial light mod-

29

2.6. PERFORMANCE M EASURES

ulators for the data input to the optical part of the system and CCD cameras
for the correlation readout. Then the computer makes the decision based on the
correlation output. In addition, all of the preprocessing of the data before it is
down-loaded to the SLM and the post-processing of the correlation output is done
by the computer.

It is apparent tha t the SLMs play a very im portant role in these architectures,
since they depend not only on their speed, but also on their ability to m odulate the
am plitude or the phase of the passing light, or both [50, 51]. There is currently
no SLM commercially available, which can simultaneously fully m odulate the
am plitude and the phase of the passing light. Therefore, several filters have been
designed, which use only a part of the complex plane [16, 52]. In addition, a
combination of two SLMs can be used for simultaneous am plitude and phase
m odulation [52, 53, 54, 55].

2.6 Performance measures
Several different performance measures have been proposed by various authors
for the assessment of the performance of optical filters. The most frequently used
of these performance metrics were summarised in a paper w ritten by Kum ar and
Hassebrook [56]. Later in the thesis we are going to use some of these performance
metrics to assess the performance of our filters and to compare it with the per­
formance of other filters. Therefore, following the Kum ar and Hassebrook paper,
we present and explain the following performance metrics:

1 . Signal-to-Noise Ratio

The Signal-to-Noise Ratio (SNR) is defined as the ratio of the square of
the average magnitude of the correlation peak, over the variance of the
magnitude of the correlation peak:

The SNR gives us a measure of how much the correlation peak fluctuates
when random noise is added to the input signal. Obviously, it is desirable to
keep these fluctuations as small as possible, or in other words to maximise
the SNR. It is evident from equation 2.5 th a t to calculate the SNR, one
needs to calculate the average and the variance of the magnitude of the
correlation peak. Therefore, many experiments with different noise samples
have to be conducted for the SNR to be estimated.

2. Peak-to-correlation Energy

30

2.7. CONCLUSIONS

The Peak-to-Correlation Energy (PCE) is defined as the ratio of the square
of the magnitude of the correlation peak, over the correlation plane energy:

P C E = (2 .6)
t /y

where

/ OO

\y{x)\ dx (2.7)
-OO

The PCE measures the sharpness of the correlation peak. When the cor­
relation has a sharp high peak and low outer products, the energy of the
whole correlation Ey will not be much larger than the energy concentrated
on the peak, and the PCE will be large (close to 1). If the correlation peak
is not sharp, or the outer products are large, then the PCE will be closer to
0 .

3. Horner efficiency

In 1982 Horner [57] introduced the Horner efficiency criterion. The Horner
efficiency is the ratio of total light energy in the output plane to the light
energy at the input plane and is described by the following equation

where f { x) is the input function, h{x) another function, r}M the diffraction
efficiency of the recording medium, and the operator 0 indicates correlation.
The Horner efficiency measures the amount of light th a t passes through the
system.

2.7 Conclusions
In this chapter we have presented a theoretical background for optical correlators,
which are the basic tools for optical pattern recognition. We explained the Fourier
transform property of the lens, and described the two most im portant optical
correlators, the 4-f correlator or frequency plane correlator, and the joint transform
correlator. We introduced the concept of the matched filters, which are optim al in
detecting the presence of a signal buried in white noise. We briefly reviewed the
most im portant optical and electro-optical correlator implementations. Finally, we
presented some of the most well known performance measures for the assessment
of optical filters. In the next chapter we are going to review some filter design
techniques.

31

Chapter 3

R eview of spatial filter design

algorithms for optical correlators

3.1 Introduction
Optical pattern recognition is a multi-faceted problem. It includes the detection
of objects buried in noise [58, 59, 60, 61], the discrimination of different objects
[62], the recognition of different views of a 2D [63, 64] or 3D [65, 6 6 , 67] object
and the discrimination of them from other views of a different 2D or 3D object
[6 8]. Due to the complexity of these different recognition or discrimination prob­
lems, researchers have proposed many different methods and algorithms for the
development of the appropriate filter for each case [69]. In this chapter, we review
some of the algorithms proposed in the literature. Only a few of these algorithms,
which are the most similar to our work and which will be compared to it in later
chapters are presented in detail here. Different authors have used different nota­
tion in their publications. For the sake of clarity, we have changed th a t notation
where necessary and we have used one set of symbols consistently throughout the
chapter.

First a few words about notation: Throughout this thesis we denote patterns
as vectors Sj = [sji, Sj2 , ..., of size N, where Sj is the pattern of M patterns
and N is the number of pixels in each image. We refer to g ̂ as being the filter
for the input vector after the application of the filter design algorithm. The
un-normalised filters are denoted with g j . If the patterns are completely orthog-
onalised by this procedure we refer to the patterns as u^ . is used to refer to
the un-normalised orthogonal patterns. The central peak of the cross correlation
of two patterns is their inner product and it will be denoted by g • s and is equal

32

3.2. THE GRAM -SCHM IDT ORTHO G O NALISATIO N
 PRO CED U RE

to gfc ' Sjfc or in vector notation g^s.

3.2 The Gram-Schmidt orthogonalisation

procedure

Given a set of vectors Si, 8 2 , Sm, in TV dimensional space R ^ , M < N , the Gram-
Schmidt Ortho-normalisation procedure [70] constructs an orthonormal basis set
of vectors spanning the space 5'=span(si, 8 2 , (which is the set of all linear
combinations of the vectors 8 1 , 8 2 , 8 m)- The algorithm begins by normalising
the first vector 8 1 ,

where || • H2 denotes the Euclidean norm

N \ 1/2
(3.2)

8 2 is made orthogonal to 8 1 and it is normalised by the following two iterative
steps;

Ufc+l = S/c+i) (3.3)

Then 8 3 is made orthogonal to 8 1 and 8 2 and normalised and so on using the
same iterative and normalising equations. Once k vectors have become orthogonal
spanning a subspace Sk C 5, s^+i is projected onto the subspace orthogonal to
Sk- Finally, all of the M vectors will be orthogonal, so S m will be equal to S.

3 .3 Linear Combination Filters
Matched filters are not very sensitive to geometric distortions and therefore, not
very successful in multi-class pattern discrimination [18]. However, they can dis­
crim inate between input patterns, when these are orthogonal or can be made or­
thogonal. This is a result of the lower dynamic range th a t is required by the optical
recognition system for correct discrimination of the orthogonal input patterns. A
two step procedure for the design of Linear Combination Filters (LCFs) which

33

3.3. LINEAR COMBINATION FILTERS

were mutually orthogonal^ (MO) was proposed by Caulfield and Maloney [18] as a
solution to the discrimination problem. Each of the filters had unit ou tput when
correlated with one of the input patterns and zero with all of the others. The
first step of the procedure was to calculate the vector inner-product m atrix of the
training patterns

f 'I'll y 12 • ’ ' Î 1m \
^21 'f'22 • • ' T 2 M

\ f ' M l 'f'M2 • • • 'Tm m J

(3.5)

where Vij = Sj • Sj or in other words each element of the m atrix was equal to
the inner product between the input patterns s% and Sj. Caulfield’s and Maloney’s
aim when testing pattern for its identity to pattern S)t, was to obtain an output,
Fife, equal to one i ï i = k and equal to zero l i i ^ k, i.e.,

Fik = Fkk^ik (3.6)

They achieved their aim with the second step of the procedure, which was to
form linear combinations of the responses r^ . Using these linear combinations the
final response when testing pattern s% for its identity to would be

Elk — Tik T ^ 1 OklTii (3.7)
l^k

The M — 1 %’s for which % ^ A: led to a set of M — 1 simultaneous equations
w ith M — 1 unknowns, the coefficients Cki- A different set of M — 1 simultaneous
equations with M —1 coefficients had to be solved for each of the M input patterns.
After calculating the coefficients Cki, Caulfield and Maloney used equation 3.7 to
see whether an input pattern, s% was the same as pattern s^. If the equation
output was equal to one, then pattern i was the same as pattern k, and if it was
equal to zero, then pattern i was different from pattern k. Caulfield’s method does
not actually produce new filters. Rather, it combines the inner products between
the training patterns to obtain an output which will determine whether an input
pattern is the same as another pattern. However, their coefficients can be used
to create the actual filters, which will yield the desired outputs. Caulfield and
Maloney mentioned this in their paper, but a t the time th a t they wrote it, it was
difficult to make these filters.

Later Caulfield and Haimes [71] proposed a more generalised solution to the
multi-class - multi-object recognition problem with the Generalised Matched Filter
(GMF). Their aim was to create filters which would be able to recognise all of the

^We call these cross-orthogonal, but our term has the same meaning.

34

3.3. LINEAR COMBINATION FILTERS

patterns within a class and, in addition, discriminate between members of different
classes. They supposed th a t each input object, s was of size N . For each class of
objects they calculated a Linear Discriminant Function (LDF), which they used
as the generalised matched filter. This filter would have a high correlation output
with any pattern th a t belonged to the class it represented and a low output for
any pattern which belonged to any of the other classes. The LDF was a real
function of the training pattern s

LDFi{s) = Vj • s + Qoi = Fi{s) (3.8)

where V% = (Vi,V 2 , . . . , was a set of real numbers and Qoi was a real number.
They chose the LDF which would have a high output with the members of the class
it represented and a low output with all of the other input objects by maximising
the equation

E[LDFi{s € Classi) — LDFi{s ^ Classi)] (3.9)

where E[-] was the expectation operator. In other words LDFi was th a t linear
function of s th a t maximised the probability to distinguish s € ClasSi from s ^
ClasSi. If the LDFs were normalised, then

E \LD F i{s G (7/assj)] = 6ij. (3.10)

Equations 3.10 and 3.6 show th a t the mutually orthogonal filters are a subset of
the generalized matched filters, because if each of the classes only consists of one
pattern , then equation 3.10 expresses the same condition as equation 3.6.

A filter th a t would have equal correlation outputs with all of the patterns
representing one class in a multi-class recognition problem was proposed by Hester
and Casasent [72]. It was called the Equal Correlation Peak (ECP) filter. Firstly
the Gram-Schmidt procedure was used to orthogonalise the training images Sj
and to produce a new set of orthogonal vectors th a t formed an orthonormal
basis of the space of the input and training images. Then the input images, f,
and the training images, s were expanded in this set of orthonorm al vectors Uj

f = ^ ^j'^j (3 11)
j

S = 12 (3-12)
3

and the input and training images could be represented by the coefficients Uj and

bj

f = ((%1, <22) • • •) ®/c) (3.13)

s = (6i, &2) • • • (3.14)

35

3.4. SYNTH ETIC DISCRIM INANT FUNCTIONS

In terms of these expansions the inner product of f and s could be described by

Tfs = f 'S = ' ^ üjbj (3.15)
j

The objective was to design a filter, g, which would have equal correlation outputs
with all of the inputs, fj, which belong to the same class. Hester and Casasent
argued th a t this filter had to be a specific linear combination of the input images,
each of which was another linear combination of the basis functions u

g = e = T CjU, (3.16)
j j

and the correlation outputs could then be described by

j

So after finding the orthogonal vectors Uj, using the Gram-Schmidt orthogonali­
sation procedure, and the coefficients bj, using equation 3.12, the objective was to
find the coefficients Cj and finally the filter g for which r in equation 3.17 would
yield the correct correlation performance. If one required rgg (equation 3.17) to
be equal for all training patterns s, he could solve the resulting set of equations
to obtain the coefficients Cj.

3.4 Synthetic Discriminant Functions
The work on linear combinations of training images, i.e. LCFs, ECPs and GMFs,
was summarised by Caulfield [73] and Casasent and Kum ar et. al. and it was
formulated as a m atrix/vector problem [13, 74]. The solution vectors to the
LCFs were described by the equation

^ = ^ (3.18)
ai = R di

where R was the M x M correlation (alternatively called vector-inner product)
m atrix of the input images and d was the vector with the desired correlation
outputs. The vector-inner product m atrix R was invertible if and only if the
input patterns were linearly independent [69]. Then the filters could be obtained
using these solution vectors

Si ~ ^ V Q'fcSfc (3.19)
k

36

3.4. SYNTH ETIC DISCRIM INANT FUNCTIONS

where ak are the elements of the solution vector a%. Depending on the desired
correlation output vectors, d%, equation 3.18 was equivalent to equation 3.7, if
m utually orthogonal filters were required.

Caulfield’s and Maloney’s approach (mutually orthogonal filters) meant th a t
one filter had to be designed for each of the M patterns th a t one wanted to recog­
nise. Each input pattern had to be correlated with all of them. Therefore, M
correlations were necessary for correct recognition. Braunecker et. al. [75] sug­
gested th a t M filters were redundant and tha t one only needed to perform at most
L = logg M correlations to correctly recognise M filters. Braunecker’s approach
was based on the fact th a t L = logg M binary digits can form any number between
0 and M . For example, to recognise 4 patterns one needed only two filters, the
first of which should yield a high correlation peak only with the second and the
fourth input pattern and the second filter should produce a high correlation peak
only with the third and the fourth input pattern. Braunecker’s approach could
also be applied to multi-class pattern recognition. The two previously reviewed
methods, i.e. linear discriminant functions and equal correlation peak filters de­
signed one filter for each class. Therefore K , where K is the number of classes
one wants to recognise, correlations were necessary for correct recognition of an
input pattern. According to Braunecker’s method, only L — logg K correlations
are necessary.

Even faster recognition could be achieved if only one filter was designed, which
gave the same correlation peak value for all of the patterns th a t belonged to one
class and a different, in intensity, correlation peak value for all of the patterns th a t
belonged to another class and so on. This particular linear combination filter was
called a Synthetic Discriminant Function (SDF) [13, 74]. The advantage of SDF
was th a t only one correlation would be necessary to recognise any of the input
patterns. Their disadvantage was th a t they required th a t the recognition system
had a high dynamic range, because several different correlation peak values had
to be correctly identified a t the output plane. A year later, in 1983, the Modified
Hyperplane Method (MHP) for more efficient design of Linear Combination Filters
(LCFs) was proposed by Kumar [76]. A systematic procedure for determining the
output correlation values for SDFs, instead of arbitrarily setting them to 0 and
1, was proposed by Sudharsanan and Mahalanobis et. al. [77]. The proposed
technique provided an optimal selection of the output correlation values in the
sense th a t they resulted in a minimization of the probability of error (PC F) in
detection.

Several variations of the SDFs were proposed in the following years. Kall-
man [78] showed th a t standard SDFs were less than optim al due to low output
SNR. In other words, SDFs correlated very well with true targets, but also very

37

3.4. SYNTH ETIC DISCRIM INANT FUNCTIONS

often they gave high correlations with false targets. He observed th a t only inten­
sities were detected at the correlation plane, so output correlation values could
have arb itrary phase. He used this additional degree of freedom to reformulate
the equation describing the SDFs (equation 3.18) in the following m anner

g • Si = ZiXi { l < i < M) (3.20)

where Si,(l < i < M) were the complex images of objects one wanted to recognise
The Ai were given positive numbers and Zi were complex numbers of modulus
1. Equation 3.20 gave M simultaneous equations th a t g had to satisfy and a
particular solution to this equation would have the form

go = ttiSi - |-. . . -f clm̂ m (3.21)

where Gi . . . a u were a set of complex numbers. These numbers could be found
by substituting equation 3.21 into 3.20

(S i-S j)(aj) = {ziXi) (3.22)

Equation 3.22 uniquely determined the complex numbers Oi if the images S i . . . Sm
were linearly independent and is identical to the general SDF solution equation
shown in 3.18. Kallman proposed th a t one could maximise the SNR of the filters
by varying the z* phase values of the inner products and choosing the appropriate
of many possible solutions to equation 3.20. Using his m ethod, Kallman managed
to construct filters with their SNR properties improved by a factor of seven [78].

3.4 .1 M in im u m V ariance S y n th etic D iscrim in an t F u n ction

As we saw in the previous section, SDFs yield one correlation peak with a different
intensity value for each of the classes to be recognised. As the number of classes
increases, the different values of the correlation peak will be closer to each other,
because more of them will be needed in an overall lim ited range. This means th a t
the variance^ of the correlation peak is critical for the filter’s performance. The
Minimum Variance Synthetic Discriminant Function (MVSDF) which minimised
the variance of the correlation peak, which was caused by noise, was introduced by
Kumar [14]. Kum ar addressed the problem where the input was one of the training
images w ith some additive noise. In th a t case the output of the correlation a t the
origin of the correlation plane would be

y = g+(si -f n) = Ci -f g+ n (3.23)

^For a definition look at appendix A

38

3.4. SYNTH ETIC DISCRIM INANT FUNCTIONS

where g denoted the filter which was designed to satisfy equation 3.18, g+ denoted
the conjugate transpose, s% denoted the input pattern and n was a zero-mean noise
vector with a covariance^ m atrix E. The output in this case was the desired output
Ci plus an undesirable random variable g^n . The MVSDF attem pted to design
the filter g in such a way so th a t the variance in the output caused by the input
noise was minimised while satisfying equation 3.18. The variance of the output
caused by g ^ n was

= ^ { |g ^ n p } = E{g+nn+g} = g+E g (3.24)

and minimising shown in equation 3.24 led to the following MVSDF

gMVSDF = E -1S (S + E -iS)-M * (3.25)

where d denoted the vector with the desired filter outputs, d* was the complex
conjugate and S was a data m atrix with the vector s% as i t ’s ith column. Kumar,
Bahri and Mahalanobis showed [66] th a t the output noise variance of minimum
variance synthetic discriminant functions (MVSDFs) could be further reduced by
selecting the phase values of the output correlation in an optimal fashion, an
idea similar to th a t of Kallman [78]. They proposed using the same MVSDF as
described in equation 3.25, but also to properly select the phases of the desired
correlation outputs di = (3iexp{j9i), z = l , 2 , . . . , V in such a way so th a t the out­
put variance (Xm vsd f was minimised. The exact reduction in variance could vary
from being negligible to being significant and depended on the training images,
the noise covariance m atrix and on the constraint magnitudes. The synthesis of
the MVSDF was simplified by eliminating the need to invert large noise covari­
ance matrices when the background clutter was modeled as sample realisations of
a Markov noise process by Kumar and Casasent et. al. [79].

SDFs which were not affected by noise with non-zero mean were proposed by
Arsenault and Sheng et. al. [80]. They noted th a t any noise with a non-zero mean
could be w ritten as the sum of a zero mean noise plus a constant. Therefore, the
correlation between a filter and an input image corrupted by non-zero mean noise
would be

OO

g • {s n P) = rgs rgn + P g{x, y) dx dy
(3.26)

— T P K ,

where
OO

K = J J g{ x , y) dx dy (3.27)

Tor a definition look at appendix A

39

3.4. SYNTH ETIC DISCRIM INANT FUNCTIONS

which meant th a t the effect of the non-zero mean part of the noise was to add to
the correlation a term which was proportional to the mean (I of the noise. They
proposed modifying the composite filters which were linear combinations of the
training images by adding a term which discriminated against a constant back­
ground. For example, for two training images si, « 2 the composite filter proposed
by Caulfield and Maloney [18] was

gi = asi -h hs2 (3.28)

where a and b were constants which were found by solving the simultaneous equa­
tions

h v ~ 1 (3.29)

®̂ S2Sl T '̂̂ S2S2 ~ (3.30)

The composite filter proposed by Arsenault et. al was given by the equation

Q2 = asi -f bs2 + c((3.31)

where the constants a, b, c where found by solving the set of linear equations

92- S i = ars.si + = 1 (3.32)

92- S2 = + brs^s2 + = 0 (3.33)

92 ' ^ ~ -f- bv ŝ2 T = 0 (3.34)

where ^{x,y) was a uniform background with an image size equal to or greater
than the training images Si and S2 - The modified filter nullified the effect of the
non-zero mean of the noise and hence the output correlation did not depend on
the mean /? of the noise.

A special case of input noise is the nonoverlapping target and scene noise. For
example, in military applications very often one is trying to recognise armored
vehicles which are positioned on a varying terrain, i.e. a noisy background, but
the targets themselves are not obstructed by anything. Javidi, Réfrégier and
W illet designed a filter for pattern recognition with nonoverlapping target and
scene noise [81]. They showed that in this case the filter did not depend on the
noise statistics.

3 .4 .2 M inim um A verage C orrelation E n ergy filters

The MVSDF and the other filters discussed so far only controlled one point a t the
origin of the correlation plane. However, in many applications, for example target
detection in the military, we do not know were exactly in the input scene the

40

3.4. SYNTH ETIC DISCRIM INANT FUNCTIONS

target lies. Therefore, the filter must be able to locate the target and, in addition,
to recognise it. In th a t case, a sharp correlation peak is preferable to a correlation
plane full of high side-lobes. The Minimum Average Correlation Energy (MACE)
filter which was introduced by Mahalanobis and Kumar et. al. [82] minimised
the average correlation plane energy over all of the training images. The authors
calculated the average correlation plane energy over all of the training images to
be

E a v e = g+Dg (3.35)

where D denoted a N x N diagonal matrix. The entries along the diagonal were
obtained in the following manner: first one calculated the average of the energies of
the two-dimensional Fourier transforms v)\'^,i = 1 ,2 , . . . , M of the training
images S i (x , y) . Then he scanned this average from left to right and from top to
bottom and placed each value on the diagonal of m atrix D. N was the size of the
complex column vector s% obtained by sampling Si{u, v). g was the SDF satisfying
the constraint

S+g = d* (3.36)

where S was a N x M m atrix with s* as its ith column. Minimising Eave in equation
3.35 subject to the constraints in equation 3.36 led to the following filter

g M A C B = D - i S (S + D - i S) - ' d * (3 .3 7)

MACE filters produced sharp correlation peaks but had some drawbacks. The
first was th a t no noise tolerance had been built into these filters. The second
was th a t MACE filters seemed to be more sensitive to intraclass variations than
other composite filters [83]. Also the MACE filter was calculated in the frequency
domain. However, while the MACE filter minimised the energy of the circular
correlation, most optical and electronic systems generate linear correlations and
ideally one would want to minimise the energy of those. The main difference
between the circular and the linear correlation of two patterns of size N , is th a t
the linear correlation has a length equal to 2 N — 1, while the circular correlation
has a length equal to N . This length difference between the linear and the circular
correlation results in a difference in their energies. A space-domain MACE filter
termed the SM ACE filter was proposed in 1990 by Sudharsanan et. al. [84].
The SMACE filter avoided the problem of circular correlations of MACE filters,
however, this advantage came at the cost of having to invert a m atrix which was
not diagonal like the D matrix of the MACE filter.

In 1988 Bahri and Kumar [12] offered a general SDF solution in both spatial
and frequency domains and derived and proved the uniqueness of the MVSDF

41

3.4. SYNTHETIC DISCRIM INANT FUNCTIONS

and the MACE filters. This general SDF solution for the spatial domain was

g = go + F z (3.38)

where

go = S (S ^ S)- 'd , (3.39)

E = S (S ^ S)- 'S ^ (3.40)

and

F = Id - E (3.41)

where z was an arbitrary element of R^. By allowing z to vary throughout one
could get all of the possible SDFs and by subjecting them to various performance
criteria like minimum noise variance or correlation energy for example one could
get specific SDF filters like the MVSDF, MACE filters, etc.

з .4 .3 M IC E and M IN A G E filters

The Minimum Correlation Energy (MICE) filter which provided better intraclass
recognition than the MACE filter and the Minimum Noise And Correlation Energy
(MINACE) filter which minimized the correlation plane energy resulting from the
training images and the noise were proposed by Ravichandran and Casasent [2].
The authors noted tha t minimising the average correlation plane energy provided
little control over the variance of the correlation plane energies of the training
images. In other words, large side-lobes could occur even though the average
energy E was minimised. The MICE filter was described by the following equation

% M I C B = T - i S (S + T - 'S) -M (3.42)

where T was a N x N diagonal matrix whose diagonal elements were obtained in a
similar manner to those of matrix D in the MACE filter. Specifically, the energies
of the two dimensional Fourier spectra of the training images were calculated
again, but in this case the maximum of the \Si{u,v)\‘̂ ,i = 1 , 2 , . . . , M for each
и, V was chosen. This was scanned from left to right and from top to bottom and
the values were placed at the corresponding diagonal elements of m atrix T . The
result of this difference was that the MICE filter reduced the biggest side-lobes
instead of the average energy over all of the training images. Also the MICE filter
provided less amplification of the input data a t high frequencies and, therefore, it
had reduced sensitivity to finer image details which resulted in improved intraclass

42

3.5. PHASE-ONLY FILTERS

recognition capability. The MINACE filter in addition minimised the correlation
plane energy which resulted from the input noise. Its construction was very similar
to th a t of the MICE filter but in this case, the diagonal elements of m atrix T were
the maximum of the corresponding elements of the spectra of the training images
and the input noise. In the absence of input noise, the MINACE filter reduced to
the MICE filter.

3.5 Phase-Only Filters
Caulfield commented tha t an increase in Horner efficiency could result in a de­
crease in the quality of discrimination with many filters [85]. He also noted th a t
the phase-only filter (POE) is the only one which can provide 100% efficiency
and also lead to good discrimination. In 1984 Horner and Gianino [86] compared
the classical matched filter with the amplitude- and the phase-only matched filter
using the criteria of discrimination, correlation peak and optical efficiency. They
came to the conclusion tha t the phase-only filter (FOE) has higher optical ef­
ficiency and a sharper correlation peak (lower side-lobes) than the others, a t a
cost of lower SNR. In 1985 Horner and Leger [87] compared the phase-only filter
with the binary phase-only filter (BPOE) and reported th a t there were several
advantages in using the BPOE, mainly in their fabrication, a t the cost of slightly
lower SNR at the output. Horner and Gianino [88] also compared a phase-only
and a binary phase-only SDE with a classical SDE and reported th a t the PC SDE
and the BPO SDE produced sharper correlation peaks, higher SNR and increased
correlation intensity.

Eilter implementation constraints i.e. discrete SLMs etc. were used directly in
the filter (SDE) calculation equation by Jared and Ennis [89]. One conclusion they
came to, was th a t when doing tha t for POEs, one cannot set the correlation peaks
to absolute values, but rather specify the proportionality between the correlation
peaks for a given training set, a conclusion very similar to th a t of Kallman in [90].
One such filter synthetic discriminant function (fSDE) for a set of space shuttle
training images and a specific magneto-optic SLM (MOSLM) was calculated by
Reid and Ma et. al. [67] by building a correlator and using th a t to calculate it.

3.6 Optimal Trade-ofF Filters
The Optimal Trade-off Filters (OTFs) were introduced by Réfrégier in [17], where
he used the Optim al Gharacteristic Curve (OCC) to design filters th a t were opti­
mized between two criteria: the correlation peak sharpness and the noise robust­

43

3. 7. DISCUSSION AND SU M M ARY

ness. Réfrégier and Huignard [91] showed th a t the optim ization of the sharpness
of the correlation peak was more fruitful and of equal complexity with the variance
reduction. In 1991 [92] Réfrégier added the Horner efficiency to the criteria used
for the design of the OTFs presented in [17]. Later Laude and Réfrégier [16] intro­
duced a m ulti-criteria optimization method based on a geometrical interpretation
of trade-offs between criteria, for any Fourier SLM coding-domain constraint and
applied it to the SNR, peak-to-correlation energy (PCE), and Horner efficiency
(tjh) criteria.

3.7 Discussion and summary
There are a variety of pattern recognition problems th a t the held of optical pattern
recognition addresses, and therefore, several different hlters have been designed
to solve them. All of the hlters th a t we have reviewed in this chapter fall under
the general category of linear combination hlters. They are all composed using
different linear combinations of the training patterns. The mutually orthogonal
hlters are good at recognising the one pattern which they represent. They mainly
address the problem of discriminating between objects, each of which is repre­
sented by one pattern only. Their main disadvantage is th a t a large number of
them, equal to the number of the input patterns, and consequently a large number
of correlations is needed for correct recognition.

Equal correlation peak hlters address the opposite problem of recognising sev­
eral patterns, all of which belong to the same class. W hen several of these classes
exist, one can design an equal correlation peak hlter for each one of the classes,
a method proposed by Caulheld [73]. Using this m ethod one needs a number
of hlters, and subsequently correlations, equal to the number of classes. Brau­
necker’s suggestion th a t only L = logg (number of patterns or classes) correlations
are necessary, applies to both the discrimination problem addressed by the mu­
tually orthogonal hlters and to the multi-class recognition problem addressed by
Caulheld in [73]. The advantage of using Braunecker’s m ethod is th a t the number
of necessary correlations for correct recognition is greatly reduced. In addition,
each of the hlters still has to produce only two outputs, one and zero. Therefore,
the dynamic range th a t is required by the recognition system is not increased
when using Braunecker’s method. However, one must be very careful when choos­
ing the patterns or classes to which each of the hlters is going to respond with a
high output.

Synthetic discriminant functions are also linear combinations of the training
patterns. One hlter is now used to recognise any number of patterns or classes.
In multi-class pattern recognition, the hlter is designed to produce a specihc cor-

44

3.7. DISCUSSION AND SU M M ARY

FILTER CHARACTERISTICS

Filter T.D. Discr. Rec. N.T. Corr. plane D.R.R.

M-P M-C M-P M-C P.S. P.V. S.R.

LCF V V

GMF V V V V

ECP V V V V

SDF
F.C. V V V V
PO F V V V V V

MVSDF V V y V V V

MACE y V V V V V V

MICE V V V V V y y

MINACE V V V V V V V V

GTE V V V V V V V V V

Table 3.1: Summarised filter characteristics. T.D. : Target detection, Discr.

: Discrimination, Rec. : Recognition, N.T. : Noise tolerance, Corr. plane :

Correlation plane, M-P : M ulti-pattern, M-C : Multi-class, P.S. : Peak sharpness,

P.V. : Peak variance control, S.R. : Side-lobe (outer product) reduction, D.R.R.

: Dynamic range reduction.

relation peak magnitude for all of the patterns th a t belong to one class. This
output correlation peak value has to be different for each of the classes. The ob­
vious advantage is tha t only one filter and one correlation is required to recognise
any of the input patterns. The disadvantage of SDFs is th a t a higher dynamic
range is now required by the recognition system because more than two different
output correlation peak values will have to be distinguished. Several variations of
the SDFs were proposed to improve their performance. Minimum variance SDFs
(MVSDF) minimise the variance of the output correlation peak resulting from
input noise. Minimum average correlation energy filters (MACE) minimise the
average correlation plane energy over all of the training images. The motivation
for th a t is to decrease the correlation side-lobes, so th a t the correlation peak can
be easily located. Minimum correlation energy (MICE) are similar to the MACE
filters, but instead of minimising the average correlation plane energy, they min­
imise the highest side-lobes. Minimum noise and correlation energy (MINACE)

45

3 . 7. DISCUSSION AND SUM M ARY

IQ.

0

Frequency

Figure 3.1: Spectral power distribution of an input pattern

filters also minimise the highest side-lobes, but in addition, they take into account
the input noise.

In multiclass pattern recognition, there is a trade-off between intra-class dis­
tortion tolerance and inter-class discrimination ability. The filter must be tolerant
to intra-class distortions, or in other words, must be able to recognise different
patterns, which belong to the same class. In addition, the filter must be able to
discriminate these patterns from other patterns belonging to other classes. Let
us consider the spectral power distribution of an input pattern. For simplicity we
will consider the simple case of a distribution resembling a Gaussian as shown in
hgure 3.1. The low frequencies in the area around the DC term represent the very
general features of the pattern and are usually features which are common to many
patterns of different classes. Therefore, for good inter-class discrimination ability,
these frequencies must be suppressed by the filter. A typical example for such
a task is the inverse filter (figure 3.2), which suppresses the low frequencies and
enhances the low power, high frequencies, which express the finer image details,
and, hence, has a high inter-class discrimination ability. It is however, sensitive
to intra-class pattern variations. On the other hand, the matched filter, which
is the complex conjugate of the pa tte rn ’s frequency spectrum and which has a
spectral power distribution, which is the same as th a t in figure 3.1, suppresses
the low power, high frequencies and, hence, the finer image details. This leads to
high tolerance to intra-class distortion, but low inter-class discrimination ability.
Therefore, for overall high multiclass recognition performance, a bandpass filter
(hgure 3.3) is required, because it suppresses both the high and the low frequencies

46

3.7. DISCUSSION AND SUM M ARY

I0.

0
Frequency

Figure 3.2: Inverse filter for the gaiissian distribution of figure 3.1

I
CL

0
0

Frequency

Figure 3.3: A bandpass filter for multiclass pattern recognition

47

3.7. DISCUSSION AND SUM M ARY

- - MACE preprocessor
 MINACE preprocessor

0
Frequency

Figure 3.4: Effect of the MACE and MINACE preprocessors on the signal. Graph

adapted from [2]

(including the DC term) of the input p a tte rn ’s frequency spectrum.
A bandpass filter is, therefore, the goal and most of the existing filters, in­

cluding the MACE and the MICE filters, are designed with th a t goal in mind[2].
However, they are not true bandpass filters because they suppress the low frequen­
cies but they do not suppress the high frequencies. In th a t respect they are closer
to inverse filters. The filter (of the ones reviewed in this chapter), which most
closely approaches the bandpass goal is the MINACE filter, but even this does
not suppress the high frequencies. However, it does not enhance them as much as
the MACE, MICE and inverse filters do. The MINACE filter is described in equa­
tion 3.42. The relationship between the MINACE and a bandpass filter can be
seen more clearly if the MINACE filter is viewed as a general SDF for recognising
input patterns, which are preprocessed by a m atrix [2].

S m i n a c e = T - ‘/^ [Y (Y + Y)-'d] (3.43)

where the columns of the matrix Y are the preprocessed training images Y%,
The preprocessor matrices for the MACE and the MINACE

filters (look back in section 3.4.2 for a description of m atrix T) are shown in figure
3.4. From this figure, the preprocessor for the MACE filter has a form similar to
tha t of an inverse filter. The preprocessor for the MINACE filter does not enhance
the high frequency components of the spectrum of the input signal as much and
therefore, it resemples a bandpass filter more closely.

The optimal trade-off filters (OTF) are filters which simultaneously optimise

48

3,7. DISCUSSION A N D SU M M A R Y

more than one criteria, for example, the correlation peak sharpness and the noise
robustness. All of the reviewed filters are complex. The phase-only filters (POF)
and the binary phase-only filters (BPOF) are the same as the previously described
filters but with only their phase information retained. Their main advantages are
th a t it is easier to use them in optical correlators using a phase SLM, they have
higher optical efficiency compared to amplitude or fully complex filters and they
produce a sharper correlation peak. Finally, in table 3.1 we can see a summary of
the characteristics of all of the filters. We have marked a box in table 3.1, when
the corresponding filter is capable of performing th a t task and not only when it
is the best filter a t the corresponding task.

49

Chapter 4

Neural networks: Perceptrons

and learning algorithms

4.1 Introduction
In this chapter we present some basic theory on neural networks and in particular
perceptrons. Neural networks are not the main application area for this thesis.
Therefore, the theory presented here does not cover the whole field of neural
networks, but rather a specific type of them: the perceptron. In addition, the
perceptron is not explained in detail, only the information which is necessary for
the understanding of our work is presented.

Artificial neural networks are highly parallel systems consisting of a large num­
ber of simple, interconnected, processing units. They store da ta in the form of the
strengths of the interconnections between the units [3]. Information processing
in neural networks occurs through the interactions between the processing units.
They interact with each other by sending signals, either excitatory or inhibitory.
The interconnection strengths are usually called weights [3]. Work on artificial
neural networks started when scientists realised th a t the human brain works in
an entirely different way from the conventional digital computer. The brain is a
highly complex, nonlinear, and parallel computer. It consists of approximately
100 • 10® simple computational units called neurons [93]. The neurons are con­
nected to each other with synapses and there are approximately 60 • 10^ ̂ of them
in to tal in the human brain [94]. Artificial neural networks were first designed
to mimic the structure and function of the human brain. Due to their origin in
human brain research, they have borrowed the biological terminology. Therefore,
their processing units are called neurons and the interconnections between neurons

50

4.2. THE PERCEPTRON

are often referred to as synapses.
Rum elhart et al [95] point out th a t knowledge in neural networks, as in the

brain and not as in conventional computers, is not an actual copy of the data th a t
is stored. Rather, it is the strengths of the interconnections between neurons th a t
are modified in such a way, so tha t the stored data can be recreated when it is
called up. This has great implications in the way th a t neural networks can be
trained. Learning with this model is not a m atter of finding a way to represent
the information to be learned with the weights, bu t rather tuning them in such a
way so th a t the right pattern of activation can be created as a result of a specific
input. This is a very im portant property of this kind of model, because it means
th a t they can learn the interdependencies between the various activations to which
they are exposed by tuning their weights during the course of processing. The
procedure used to perform the learning process is called a learning algorithm and
it is a simple mechanism which modulates the interconnection strength according
to the information locally available a t the connection.

The learning procedure can be supervised or unsupervised. When it is super­
vised, some form of teacher exists. The network is presented with pairs of inputs
and desired outputs. The weights are modified in such a way so th a t the error,
which is defined as the difference between the network output and the desired
output, is minimised. In the unsupervised or self-organised learning there is no
external teacher. Some measure of the correctness of the representation of the
statistics of the environment is defined and the network modifies i t ’s weights so
th a t i t ’s performance is optimised with respect to this measure [96].

4.2 The Perceptron
The perceptron, which was introduced by Rosenblatt [97], is the simplest form
of a neural network . It only consists of one layer of neurons connected to the
inputs through weighted connections. The simplest form of the perceptron con­
stitu tes only one neuron with any number of inputs as seen in figure 4.1. The
perceptrons can only be used for the classification of linearly separable patterns
[98]. Patterns are called linearly separable if they lie on either side of a hyperplane
in N-dimensional space. A single neuron can separate two classes. An example
of two linearly separable classes in two-dimensional space can be seen in figure
4.2. If the perceptron contains more than one neuron it can perform separation of
more than two classes as long as they are linearly separable. The neurons output

51

4.2. THE PERCEPTRON

Threshold

Inputs Output

Figure 4.1: A single layer perceptron with only one neuron

C lass

O o o

O O
O 0

+ +
C lass 2

Figure 4.2: An example of two linearly separable classes in 2-D space.

52

4.2. THE PERCEPTRON

+1

Figure 4.3: A hard limiter activation function

is given by the following equation

N
V = ' ^ W iXi — 6

y =

(4.1)

(4.2)

where == 1, . . . , A are the network inputs, WiO = 1, • • • , N denote the weights
of the network and 9 is the threshold, v is sometimes called the net internal activity
level of the neuron. Usually function (/>(•) is a non linear hard limiter (See figure
4.3) and the neuron output is either 1 or -1. The separating hyperplane is defined
by the equation WiXi — 0 = 0. The first learning algorithm for the perceptron
was developed by Rosenblatt [99], [100]. The proof of convergence is known as
the perceptron convergence theorem.

4.2 .1 H ebbian learning

Hebh’s postulate of learning [101] is the oldest and most famous learning rule. Its
purpose is to discover significant patterns of features in the input data. To do
tha t, the algorithm is provided with a set of rules of a local nature, which enable
it to learn to compute an input-output mapping with specific desirable properties.
The original Hebb’s rule has been expanded and rephrased by Stent [102], and
Changeux and Danchin [103] and can be described as follows:

1 . When two neurons on either side of a synapse are activated simul­
taneously, then the strength of the synapse is selectively increased.

2. If the two neurons on either side of a synapse are activated asyn-
chronously, then th a t synapse is selectively weakened or eliminated.

53

_________________________________ 4.3. MULTILAYER FEED-FORWARD NETW O RKS

The Hebbian learning law has been expressed m athem atically in various ways.
One of the simplest is with the following equation

Awkj{n) =r)yk{n)xj{n), 0 < rj < 1 (4.3)

where Awkj is the change th a t will be applied to the weight Wkj and ry is a learning
rate param eter. This particular formulation of Hebb’s law is sometimes called the
activity product rule. Repeated application of Xj leads to an exponential growth
th a t finally drives Wkj to saturation [3]. The activity product rule described in
equation 4.3 is an unsupervised rule. A supervised version of Hebb’s law exists
and is described by the following equation [104]

Awkj{n) = T]{tk{n) - yk{n))xj{n), 0 < 77 < 1 (4.4)

Where tk{n) denotes the neuron’s target output. It is often called the Widrow-
Hoff rule. Rum elhart et. al. [95], however, called it the delta rule because the
weight change Awkj was proportional to the difference between the neuron output
and the target output provided by a teacher.

4.3 Multilayer Feed-forward Networks
Perceptrons operate under the constraint th a t the input patterns are linearly
separable [3, 98]. Whenever the input patterns are not linearly separable, the
network needs to form an internal representation of the input to perform the
necessary input-output mappings. This internal representation can be formed
with one or more hidden layers. Multilayer feed-forward networks consist of a
set of sensory units th a t constitute the input layer, one or more hidden layers of
neurons, and an output layer of neurons. These networks are commonly referred to
as multilayer perceptrons (MLPs) [3]. A multilayer perceptron has three distinctive
characteristics:

1 . The model of each neuron includes a nonlinearity a t the output end. The
nonlinearity must be smooth (i.e. differentiable everywhere). A commonly used
form of nonlinearity th a t satisfies this requirement is a sigmoidal nonlinearity
defined by the function:

% = 1 + e-% (4.5)

where vj is the net internal activity level of neuron j, and yj is the output of the
neuron.

2 . The network contains one or more hidden layers. These enable the network
to form an internal representation of the input.

54

4.3. MULTILAYER FEED-FORWARD NETW O RKS

Output
layer

Hidden
layer

Inputs

Figure 4.4: A Multilayer Perceptron with 1 hidden layer

3. There is a high degree of connectivity between the neurons of the network.
Usually each neuron is connected to all of the neurons th a t are in the adjacent
layers of the network.

The input signals propagate layer-by-layer through the network in a feed­
forward direction. MLPs can be trained in a supervised manner with an algorithm
known as the error back-propagation algorithm [95].

4.3 .1 T h e B ack-P ropagation learn ing a lgorith m

The main concept of this algorithm is tha t the error of the output neurons of the
network is propagated back through the network and there it is used to update all
of the weights. Figure 4.4 is illustrating a MLP with a hidden layer and an output
layer. Full interconnection of the neurons of the network is supposed throughout
this section. The derivation of the back-propagation algorithm follows the one
presented by Haykin (1994) [3] and is shown here because we use it in the next
chapter to help us design some of our own filters. We first present a summary of
the notation used in the presentation of the back-propagation algorithmL

N o ta tio n

• The indices j and k refer to different neurons in the network; with signals
propagating through the network from left to right, neuron k lies in a layer
to the right of neuron j, when neuron j is a hidden unit.

• The iteration n refers to the nth training pattern presented to the network.

UVe wish to thank Simon Haykin for the adaptation of the notation and the derivation of

the Back-propagation algorithm from his book [3]

55

4.3. MULTILAYER FEED-FORWARD N ETW O RKS

Target
value

Neuron j | Neuron k
Error

#

Inputs Hidden
layer

Output
layer

Figure 4.5: Signal-flow graph highlighting the details of output neuron k and

hidden neuron j, adapted from Haykin (1994) [3]

• The symbol ej(n) refers to the error signal at the output of neuron j for
iteration n.

• The symbol dj{n) refers to the desired response for neuron j and it is used
to compute ej{n).

• The symbol y j (n) refers to the function signal appearing at the output of
neuron j at iteration n.

• The symbol Wji{n) denotes the synaptic weight connecting the output of
neuron i to the input of neuron j at iteration n. The correction applied to
this weight at iteration n is denoted by Awji{n).

• The net internal activity level of neuron j at iteration n is denoted by 'L’j(n);
it constitutes the signal applied to the nonlinearity associated with neuron

j-

• The activation function describing the input-output functional relationship
of the nonlinearity associated with neuron j is denoted by

• The threshold applied to neuron j is denoted by 9j] its effect is represented
by a synapse of weight Wjq = 9j connected to a fixed input equal to -1.

• The zth element of the input vector (pattern) is denoted by X i { n) .

• The learning rate parameter is denoted by rj.

Consider the signal-flow graph shown in figure 4.5, where the details of output
neuron k for pattern n are highlighted. The inputs to neuron k are the outputs

56

_________________________________4.3. MULTILAYER FEED-FORWARD N ETW O RKS

of all of the neurons in the previous layer yj{n). The internal activity level a t the
input of the non-linearity associated with neuron k is

M
M n) = Y . Wkj{n)yj{n) (4.6)

where M is the to tal number of inputs excluding the threshold which is repre­
sented by the synaptic weight WkQ. The associated input yo is fixed and equal to
-1. The function signal a t the output of neuron k a t iteration n is

yk{n) = (l)k{vk{n)) (4.7)

The error signal at the output of neuron k a t iteration n when neuron k is in the
output layer is defined by

ek{n) = dk{n) - yk{n) (4.8)

The instantaneous sum of squared errors E{n) is obtained by summing the squared
errors of all of the neurons in the output layer

= (4.9)
^ keC

where C contains all of the neurons in the output layer. The average squared error
Eav equals to the sum of E{n) over all n normalized w ith respect to the set size
N.

è (4.10)
n=l

The back-propagation algorithm updates each synaptic weight Wkj {n) by applying
to it the correction Awkj{n) according to the delta rule [95]

where rj is the learning-rate parameter of the back-propagation algorithm. The use
of the minus sign accounts for gradient descent in weight space. We may express
the instantaneous gradient dE[n)/ dwkj{n) as follows:

dE[n) _ dE{n) dek[n) dyk{n) dvkin)
dwkj (n) dek (n) dyk (n) dvk (n) dwkj (n)

From equation 4.9 we get

S - (-)
57

4.3. M ULTILAYER FEED-FORWARD N ETW O RKS

From equation 4.8 we get

From equation 4.7 we get

From equation 4.6 we get

dekjn) ^
dyk{n)

dvk{n)
dwkj{n)

So:

dE{n)
dwkj{n)

= -ek{n)(l)'k{vk{n))yk{n) (4.13)

From equation 4.11 and equation 4.13 the weight update Awkj{n) may be ex­
pressed as

Awkj{n) = r]ek{n)(l)'k(vk{n))yk{n)

We define the local gradient ôk{n) by

Therefore, the weight update Awkj{n) may be expressed as

Awkj{n) = r]6k{n)yk{n) (4.15)

The derivation of the local gradient ôk{n) is rather straightforward in the case
th a t neuron k is an output neuron. We will derive the local gradient 5j{n) for the
case th a t neuron j is in a hidden layer, again with the help of figure 4.5, which
depicts the signal-fiow diagram for neuron j when this is in a hidden layer. In this
case, the local gradient 5j{n) may be redefined by

dE{n) dyj{n)
dyj(n) dvj{n)

— 6', (vi (n)] , where neuron j is hidden
()%,(m) \ ̂ / / (4T6)

We may calculate the partial derivative dE{n) /dyj{n) as follows

E{n) = i ^ e^(n) , neuron k is an output neuron
^ keC

58

_________________________________ 4.3. MULTILAYER FEED-FORWARD NETW O RKS

Differentiating with respect to the output signal yj{n), we get

dE{n) _ ^ dekjn) dvk{n)
dyj{n) Y '‘9vk{n) dvj(n)

However

efc(n) = dk{n) - yk{n)

= dk[n) — (})k{yk{'^Ÿ} 5 neuron k is an output neuron

Hence

(4.18)

Also:

because

dvk{n)

dvkjn)
dyj{n)

= Wkj{n) (4.19)

M

'^k{n) = Y^Wkj{n)yj{n)
j=0

where M is the to tal number of inputs (excluding the threshold) applied to neuron
k. From equations 4.17, 4.18 and 4.19 we get

= {i^)'Wkj (n) (" '̂20)
k

Finally, from equations 4.16 and 4.20 the local gradient Sj(n) for hidden neuron j
is given by

Sj(n) = (f>'j(vj{nŸj ' ^ h { n) w k j { n) , when neuron j is hidden
 ̂ (4.21)

So to summarise, the weight update for all of the weights in the network is
given by the generalised delta rule and is

Awji{n) - r)Sj{n)yi{n) (4.22)

where r) is the learning rate parameter, yi{n) is the input to neuron j and can be
the output of neuron i in the previous layer or an input Xi, and ôj{n) is the local
gradient and is given by the equations

ôj{n) = ej{n)^' j(vj{n)^, when neuron j is an output neuron (4.23)

0j{n) = (j)'j(vj{n)'^ ' ^ h { n) w k j { n) , when neuron j is a hidden neuron
 ̂ (4.24)

59

4.4. SU M M ARY

The training of the network occurs in two phases: During the first phase, an input
pa ttern is presented propagated through the network and the output values are
computed. In the second phase, these output values are compared to the target
values and the local gradients are calculated for the output neurons using equation
4.23. Then their weights are updated (equation 4.22) and the local gradients are
computed for the neurons in the previous layer using equation 4.24 and so on until
all of the weights in the network are updated.

4.4 Summary
In this chapter we have introduced the basic principles of artificial neural networks.
We briefly discussed two very widely used classes of neural networks, perceptrons
and multilayer perceptrons. We also presented a learning algorithm for the percep­
tron based on the Hebbian learning law, and the error back-propagation algorithm
for training multilayer perceptrons. In the following chapters we are going to de­
rive and investigate the performance of the similarity suppression algorithm for
designing pattern discrimination filters.

60

Chapter 5

Sim ilarity Suppression filter

design algorithm

5.1 Introduction
In the previous chapters we presented some background theory which is necessary
for understanding our work and we reviewed some of the most well known filter
design algorithms. In this chapter we present our similarity suppression (SS)
algorithm for designing filters for optical pattern discrimination. We s ta rt with
the derivation of the algorithm in section 5.2. The magnitude of the designed
filters is analysed in section 5.3. In section 5.4 we compare the SS algorithm
with relevant filter design algorithms, like the Gram-Schmidt orthogonalisation
procedure, linear combination filters and synthetic discriminant functions and
with the Hebbian learning law for training neural networks. Finally, in section
5.5 we expand the SS algorithm to design filters for 2 or more cascaded banks
of correlators. In this chapter we examine the SS algorithm from a theoretical
viewpoint. In the next chapter we present the computer simulations for this
algorithm, which verify its performance. Before we start, we must point out th a t
the algorithm presented here is the final product of several years of continuous
changes and improvements, which were the result of computer simulations and
long discussions.

61

5 .2 . DERIVATION OF THE SIM ILAR ITY SUPPRESSION
__ ALG ORITHM

5.2 Derivation of the similarity suppression

algorithm
We will s ta rt (section 5.2.1) with the derivation of a slightly different algorithm
from the one we use for the design of our filters. We call this, the similarity sup­
pression (SS) orthogonalisation algorithm. It is described as a necessary precursor
to the description of the algorithm which we use for the filter design (section 5.2.2),
because it was the one we developed initially and the algorithm we now use was
developed as an improvement on that. From this point forward, we will refer to
the inner product of a pattern with itself as the auto-inner product and the inner
product of a pattern and another pattern as a cross-inner product.

5.2 .1 D eve lop m en t o f th e sim ilarity su pp ression orth ogo­

n a lisa tion algorithm

Our aim is to distinguish one pattern from another. This becomes difficult if the
patterns are similar. Our aim then is to suppress the similarities, quantified by
the inner product correlations, between all pairs of the known training patterns to
be distinguished. However, if two patterns are similar but different from the other
patterns in a group it is im portant not to lose the features which are common
between the two patterns. These features allow each of them to be distinguished
from the other members of the group. At the same time we want to make each
of the two similar patterns less similar to each other to allow each of them to be
distinguished from the other. This highlights the trade off th a t is necessary.

For simplicity just consider two patterns for now. We will generalise this to
more patterns later. For just two patterns we would like to subtract the similar
features of the two patterns from the first pattern, initially. The magnitude of
the similar features is given by the inner product Si • S2 but this does not specify
what the similar features are. Ideally we would like to subtract from pattern Si,
the similar features multiplied by a weighting factor Si • S2 , so th a t the similar
features are removed at once.

gi Si — (si • S2) {normalised similar fea tures) (5.1)

We would also like to do this to the second pattern in a similar way

g2 = S2 — (si • S2)[normalised similar fea tures) (5.2)

However, we do not know what the similar features are, so the best we can do
is to subtract the whole of the second pattern from the first after weighting the

62

5.2. DERIVATION OF THE SIM ILAR ITY SUPPRESSION
__ ALG ORITHM

second pattern by Si • S2 , the amount of similarity.

gi = Si - (si • 8 2) 8 2 (5.3)

g 2 = 8 2 - (si • 8 2) 8 1 likewise (5.4)

We can expect this subtraction to suppress the similarities between the two images,
as similar regions in the two images will have approximately equal am plitudes and
the result of the subtraction will locally be close to zero. However, this subtraction
may or may not remove the similar features completely, since some features may
be very similar, while others may only be slightly similar. In this case the most
similar features will be suppressed. However, the only slightly similar features
will be over compensated and in the worst case they may even be enhanced in
m agnitude although having a negative sign. The distinguishing features of each
pattern which are not present in the other pattern will also be added (with negative
sign) into the other pattern which is highly undesirable as we want to keep the
distinguishing features of each pattern in th a t p a tte rn ’s filter only.

Instead of making such a large change let us introduce a factor /3", less than
one, giving

gi = Si - ^ " (8 1 • 8 2) 8 2 (5.5)

g 2 = 8 2 - l3”(si • 8 2) 8 1 likewise (5.6)

If /?" is small enough we can be sure tha t all of the similar features are suppressed
by a small amount and th a t only a small amount of the distinguishing features of
one pattern are added into another pattern. If we now start afresh beginning with
only the patterns gi and g 2 , ignoring any patterns at earlier iterative steps in our
algorithm and apply the same algorithm, we will suppress the similar features of
patterns gi and g 2 - However, since their similarities are mainly determined by
(or inherited from) the similarities between the preceding set of patterns a t the
last iteration, this means th a t the original similarities are suppressed by a small
amount on each iteration. Let us say th a t the new patterns are g'j, and gg.

gi = gi - /^"(gi • g 2)g 2 (5.7)

g 2 = g 2 - /^"(gi • g 2)gi likewise (5.8)

Note th a t the original distinguishing features of 8 1 and 8 2 which are now partially
present in the other pattern, g 2 and gi respectively, will give a negative contribu­
tion to gi • g 2 since they now represent a similar feature, having some presence in
each g pattern, but with an opposite sign. If the originally similar features had
been completely removed by the first use of the algorithm, then the second use of
the algorithm will just about remove the originally distinguishing features which

63

5.2. DERIVATION OF THE SIM ILARITY SUPPRESSION
__ ALG O RITH M

had been added (with a negative sign) to the other pattern. This occurs because
this algorithm suppresses similar features whether they have the same sign or not.

So, by repetitive application of the algorithm similarities are suppressed until
the patterns are effectively orthogonalised, assuming (I" is chosen small enough to
ensure gentle monotonie convergence and assuming tha t the iterations are allowed
to continue to convergence. In other words, the correlation between the final pair
of patterns is zero. In order to extend this to deal with more than two patterns a t
each iteration step we simply subtract from each pattern all of the other patterns,
each weighted by P” times its similarity with the pattern itself:

g; — gj “ P"{^j • g i)g i ~ P”iëj * g2)g2------ * S m)Em (5.9)

This is repeated in the same way for each of the j = 1 to M training patterns
and a set of new patterns, which are denoted by the symbols g ' , j = 1 . . . M , are
obtained. This can be w ritten in a more compact form

i f = {gf"" • gt"''}gi'"'' (5.10)

where the superscript, i, denotes the iteration number. The tilde symbol over
the g indicates th a t the pattern has yet to be normalised, as described later. In
equation 5.10 we subtract all of the other patterns in the set a t the {i — 1)* ̂
iteration, except for the pattern being processed itself, from each of the
patterns.

The danger of subtracting so many patterns from one pattern is th a t the
pattern will be dominated by the effect of the subtractions and lose its own identity
so we need to ensure th a t P" is kept sufficiently small. Even so, the subtraction
of a lot of weak pattern vectors from one pattern vector is likely to diminish
its strength, or magnitude, as similarities are gradually removed. It may not
m atter if all of the pattern vectors are diminished by the same amount, bu t this
is unlikely to be the case, resulting in a variation in the m agnitude (in term s of
the vector length or the Euclidean norm) from pattern to pattern. This is highly
undesirable as it would lead to a bias or preference for some patterns if the g
patterns were used as filters in an inner product correlator. T hat is to say th a t if
white noise or completely random patterns were input, the system would indicate
th a t more of the stronger patterns were present than the weaker ones, whereas all
should be equally likely. So all of the patterns need to be normalised to have the
same strength (or length), say unity. It is not sufficient to allow the algorithm
equation, (5.10), to converge and then to normalise the final g patterns because if
the preceding g and even s patterns had not been normalised the algorithm itself

64

5.2. DERIVATION OF THE SIM ILARITY SUPPRESSION
__ ALG O RITH M

would not have been even handed towards each pattern so some patterns would
have had an undue effect on their term in the subtractions. Therefore, in order
to trea t each pattern equally, throughout the process, we need to normalise the
s patterns at the s tart and then renormalise the g patterns a t the end of each
iteration. Our aim is to produce a set of orthogonal patterns of equal strength,
therefore, we need to normalise the Euclidean norm or length of the g vectors in
the set at each iteration to be a constant:

ilSj 11

assuming ||g'*"'*|| = 1
I s) II

(5.11)

So to summarise, the SS orthogonalisation algorithm is described by the following
two equations:

g f = g f ') - 0" E jgf-'> . gi‘- ‘> j g f ' ’ Vj (5.12)

= (5.13)
|g

(5.14)

5.2 .2 D evelop m en t o f th e sim ilarity su p p ression cross -

orthogonalisa tion algorithm

The SS orthogonalisation algorithm described in the last section tends to orthog-
onalise the original patterns and create a set of g patterns which are orthogonal
to each other, without bias to any one pattern. So the final patterns would be
good at recognising and discriminating the presence of any of the final patterns
a t the input.

We have assumed th a t as we were only making a series of small subtractions
and then amplifying the whole by renormalisation, th a t we have retained all of
the distinctive features of the original corresponding patterns, so th a t the final
patterns, when used as filters, would be good at recognising the input patterns.
Unfortunately, this is not necessarily the case. In N-dimensional space (N is the
number of pixels in each image), which will be called pattern-space from now on,
each pattern defines one point, which shows the pa tte rn ’s position in the pattern-
space. While the patterns are being orthogonalised, as the algorithm changes the
individual pixel values, it is possible for all of the patterns to drift slowly away

65

5.2. DERIVATION OF THE SIM ILAR ITY SUPPRESSION
__ ALG O RITH M

from their original positions, because no knowledge of the original positions is
explicitly used in the algorithm to anchor them or to pull them back. A t each
iteration we only use the pattern set available a t th a t iteration. So while the final
patterns may no doubt be good at recognising themselves in the input, they may
not be good at recognising the original patterns in the input. For example, the
final gi pattern may still have cross correlations with the 8 2 , 8 3 , 8 4 , . . . patterns
comparable to gi • 8 1 , which is the opposite of the original aim.

It is better to develop the algorithm further by defining what we want and
designing the algorithm to make it happen. We would like each final filter g
pattern to have as low an inner product correlation as possible with the original 8
patterns, except for the original s pattern from which it was derived, with which
it must have a constant high inner product correlation. This can be achieved by
ensuring th a t these two types of inner product which we call respectively, the cross-
inner product and the auto-inner product between the two sets, are incorporated
into the algorithm itself. The aim will, therefore, be not to orthogonalise the g
patterns as compared to other members of their own set, but to cross-orthogonalise
the set of g patterns with respect to the set of 8 patterns. In this case the filters,
g, are said to be mutually orthogonal to the training patterns, 8 .

This can be achieved by replacing some of the g patterns on the right of
equation 5.9 by their corresponding original 8 patterns to give

gj- = gj — * Si)si — • 82)82 • • • — • Sm)s m (5.15)

W ritten in a more compact form it becomes

Sk^Sk (5.16)

where the superscript i denotes the iteration number. In equation 5.16 we subtract
all of the other patterns in the original training set, except for the pa ttern being
processed itself, from each of the patterns. Here, as before, we take a
set of patterns and derive from them another set of patterns in a one to one
correspondence. At each iteration a number of term s are subtracted from one
pattern which is then renormalised and this is repeated in the next iteration and
so on. However, the cross-inner product correlations between the two sets quantify
the similarities between the gj pattern and all of the other original Sk patterns.
Then we reduce those similarities by subtracting from the gj pattern , the Sk
pa ttern with which it was being compared, weighted by the inner product gj • Sk
in a similar manner as in our earlier derivation, (section 5.2.1), also including
a small convergence term fi”. This ties the new gj patterns back to all of the
original patterns (apart from the one from which it was derived) and forces the

66

5.2. DERIVATION OF THE SIM ILAR ITY SUPPRESSION
__ ALG O RITH M

cross-correlations between the two sets to be reduced. In addition we need to tie
the gj pattern back to the Sj pattern from which it was derived and this is carried
out by modifying the normalisation step to keep their inner product constant, i.e.
Sj • gj = const which can be brought about by the normalisation equation:

g f = g f 4 (r (5.17)
g} • Sj

This can be confirmed by finding the inner product of each side with Sj. Assuming
th a t the original training patterns are normalised to a constant value denoted
henceforth by P the previous equation can be rewritten in the following manner,
since = Sj and consequently • Sj = P, Vz:

gj"' = (5.18)
gj • Sj

In most cases, P is equal to 1 but this is not necessary for the convergence of the
algorithm.

Returning to the full algorithm we now describe it with the following two
equations:

i f = g r > - ^ " E { g r > - s . } s . (5.19)

5 .2 .3 A d van ced a lgorithm w ith im proved con vergen ce

param eters

Computer simulations (section 6.2) have shown us th a t the algorithm is sensitive
to small changes in the convergence factor /3". Large (5” values resulted in oscil­
lations, while very small p" values ensured convergence but the algorithm needed
many iterations to converge to the desired values. We found th a t the algorithm
converged faster and to a lower minimum if the value of j3" was changed as the
algorithm was converging. Larger values of /3" a t the beginning allowed faster ini­
tia l convergence, while smaller values later assured a finer search for the minimum
and avoided oscillations. In addition, it seems to make more sense to force the
larger cross-inner products down more strongly as in MICE filters, ra ther than
the MACE, where the largest side-lobes are forced to decrease. We can achieve
both of these goals by making the /3" factor of each term depend on the difference
between the inner product in tha t term and the desired value, in this case zero.

67

5.2. DERIVATION OF THE SIM ILAR ITY SUPPRESSION
__ ALG ORITHM

In order to do th a t (5" is calculated using the following expression (which has to
be put INSIDE the summation)

g(z - l)
St (5.21)

where (3' is the new convergence constant. Computer simulations have shown, th a t
setting (3' < 1 ensures th a t (3" does not become too large and th a t the algorithm
does not become unstable. When j3" is substituted into the algorithm (equation
5.19) one obtains the final version of the algorithm shown in equations 5.22 and
5.23

g f = g r >

.(•) _ =(') 6;
>3 - S] -(i)

(gj' ' St) I >Sfc (5.22)

(5.23)

Equation 5.22 can also be written in the following form

g f = g ^ "

g f = i f ̂
(i- l)

i f

(5.24)

(5.25)

where in the ± sign the plus sign is used when > 0 and the minus

sign is used when < 0. Equation 5.24 is very similar to equation
5.19 with the only differences being th a t the term in the brackets is now squared
while preserving the sign. This version of the algorithm performed considerably
better in our computer simulations. This can be explained if one considers th a t
the term th a t is now squared is the difference between the current value of the
cross-inner product gj • and the desired value (which is equal to zero). This
difference is then used as the weight for the subtraction of the Sk pattern . By
squaring it we emphasise the subtractions of the patterns th a t are most similar
to the gj pattern, thus forcing the largest cross-inner products, in particular, to
decrease. A cubic power or higher power (while preserving the sign) would make
the strength of convergence depend more strongly on the size of the cross-inner
product. Computer simulations however, showed th a t higher powers tended to
make the algorithm unstable, forced us to use a smaller convergence param eter,
j3' and overall did not produce a better result.

One final issue tha t we would like to address, is the size of . The size of the
sum, in equation 5.24, is proportional to the to ta l number of patterns, M and to

68

__________________________________ 5.3. ANALYSIS OF THE NO RM ALISATION STEP

the size of the square of the inner products, Therefore, the convergence factor
has to be of the order of - p ^ . So the algorithm (equations 5.24 and 5.25) can
also be w ritten in the form

i f = (5.27)

(5.28)

where now the new, final (3 is not related to the size of the inner products, which
for binary, bipolar patterns is directly proportional to the size of the training
patterns. In addition, (3 is not related to the number of patterns in the training
set any more and it takes small values around unity.

5.3 Analysis of the normalisation step
It is logical to assume tha t the magnitudes of the g patterns, defined by the
squared Euclidean norm shown in equation 3.2, which we rewrite here,

/AT \ 1/2
Euclidean norm: ||s | | 2 = I ^ (5.29)

will change since we are continuously subtracting other patterns from them . In
addition, any change in the g patterns will, as a result, change the magnitudes
of the inner products between them and the corresponding s patterns they repre­
sent. However, we would like to keep these inner products as stable and high as
possible, because th a t would enable us to correctly recognise a pattern by setting
the appropriate threshold or just by choosing the highest inner product. To see
the effect of equation 5.16 on the magnitudes of the g patterns we can rewrite it
for the simple case of just two patterns Si and S2 .

g 2 ̂ = g 2 - /^"(g2 * S l) S i (5.30)

or in m atrix notation

g f = - /3"gr^>^s,s,

=> g 2 ̂ = g 2 - /5"sis^g^'"^^ since s^g = g^s = scalar

69

__________________________________ 5.3. ANALYSIS OF THE NO RM ALISATION STEP

We can calculate the squared Euclidean norm of the g 2 pattern in the same way
as [70] to see whether it increases or decreases or remains constant when equation
5.30 is used iteratively.

iiŝ îr=g W =gi'-"ii - 0'%sjni -
= - / } " g t ' V) (g t ' > - /3 " s is T g r")

= IlgMir - 2/}"(gt'^\f + /3"̂ ||siir(gi*-‘>"’si |̂ 32)
^ l|g^''ll' - l |g ^ " |p = /) '" l |s i l l '(g ^ ' '" 's i) ' - 2^"(g<’-'>^S i)'

= /3 " (g r '> V) ^ (/3 " |k i i r - 2)

Equation 5.32 expresses the slope of the g 2 squared Euclidean norm, ||g 2 |p. If the
right hand side of equation 5.32 is positive then the magnitude of g 2 will increase.
If it is negative the norm will decrease and if it is equal to zero the m agnitude of g 2

will remain constant. The sign of the slope depends on the sign of the expression
(^ " ||s i |p — 2), which depends on the value of /?", since is constant, and for
binary patterns is equal to N.

• If 13” = then the slope is zero and the norm of g 2 is constant.

• If j3" < then the slope is negative and the norm of g 2 decreases. Even­

tually, as the inner product (g2^~^^^Si)^ decreases, the right hand side of
equation 5.32 tends to zero. So after a number of iterations the norm of g 2

will stabilise to a very low value. However, as l|g2 |P decreases, the auto-inner
product g 2 • S2 will decrease as well and this not always the most desirable
result.

• If then the slope is positive and ||g 2 |P will increase. This happens
because a t each iteration large values are subtracted from the g 2 pixels and
their sign is reversed but their absolute values increase and, therefore, ||g 2 |P
increases. This however, results in the increase of the cross-inner product
g 2 • Si, which again may not be the most desirable result.

In section 5.2.3 we chose to use P” = 1 /P M , which corresponds to p' = 1 / P ‘̂ M
for the improved algorithm, as our convergence parameter. This P ” is smaller than
2 / ||s || {P — ||s||) and according to the previous analyses the magnitudes of the g
filters will decrease. T hat is the reason why we chose to normalise the g patterns
in such a way so th a t all of the auto-inner products gj • Sj remained constant and

70

__________________________________5.3. ANALYSIS OF THE NO RM ALISATION STEP

equal to the initial value of the auto-inner products of the s patterns. To do th a t
we used equation 5.17 which we rewrite here

= (5.33)
S j ’ -Sj

at each iteration after equation 5.16. By using equation 5.33 at each iteration of
the algorithm we force gj • Sj = Sj • Sj, Vj. This equation has an effect on the
magnitudes of the g patterns as well. Their magnitudes now increase as long as
the right hand side of equation 5.32 is not equal to zero. This happens because
of equation 5.33 which amplifies them after every iteration. As the algorithm
converges and g 2 • Si -> 0 , for two patterns, ||g2 || stabilises a t a higher level
than what it was before the training. This analysis can be extended to an M > 2
number of patterns with very similar results^. It is logical to predict th a t amongst
several filters, the one whose corresponding training pattern is most similar to
other training patterns will have at the end of the training the largest magnitude.
This will happen because the algorithm affects filters tha t are derived from similar
patterns more and it does not induce large changes to the filters th a t correspond
to patterns th a t are very different to each other.

One last thing th a t we would like to point out here is th a t there is a drawback
in using this normalisation. In section 5.2.1 we said tha t we would prefer all of the
filters g to be of equal magnitude, so tha t no bias for some patterns would exist.
Now, however, we have shown th a t the magnitudes, ||g ||, of some of the filters will
increase, and, therefore, a bias will exist. This makes the rejection of unknown
random patterns difficult because they may give a higher correlation peak with a
high magnitude filter. On the other hand this normalisation enables us to correctly
discriminate amongst the known patterns by setting the appropriate threshold, or
ju st by choosing the highest peak. We could use a different normalisation equation
and normalise the magnitudes ||g|| of the g filters themselves, for example equation
5.11, which we rewrite here

g f = g f & 3 (534)
l | g } II

This normalisation would ensure tha t all of the filters would be of equal magnitude,
and th a t an unknown random pattern would give approximately equal correlation
peaks with all of them. The choice of which normalisation to use depends on
the task at hand. If we know th a t all of the possible input patterns belong in a
specified set and we want to discriminate among them, then the first normalisation
described in equation 5.33 is preferable. If we want to detect the presence of an

^See appendix B for the mathematical analysis

71

5.4. COMPARISON W ITH OTHER FILTER DESIGN
___ALG ORITHM S

object in the input, or if there is a chance th a t a pattern which does not belong to
our set and must be rejected is present in the input, then it is im portant to have
unbiased filters and the second normalisation described in equation 5.34 may be
preferable.

5.4 Comparison with other filter design

algorithms

In the previous sections we derived the SS orthogonalisation and the SS cross
orthogonalisation algorithms. In this section we are going to compare them from
a theoretical viewpoint with some relevant filter design techniques. We did these
comparisons to find out how our algorithms relate to other filter design techniques,
where they differ and their advantages and disadvantages. This knowledge can
help one decide when to use our algorithms to design filters. In addition it has
helped us improve our algorithms by borrowing ideas from similar techniques and
applying them to our work. We will s tart by comparing the SS orthogonalisation
algorithm to the Gram-Schmidt orthogonalisation procedure. We will then com­
pare the SS algorithm with the Linear Combination Filters developed by Caulfield
and Maloney [18]. Finally, we present the comparison between the SS algorithm
and the Hebbian learning law for training single layer neural networks.

5.4 .1 C om parison o f th e G ram -Schm idt orth o g o n a lisa tio n

procedure w ith th e sim ilarity su p p ression o rth o g o ­

n a lisa tion a lgorithm

The Cram-Schmidt orthogonalisation procedure was described in section 3.2 and
the orthogonalisation equations are rewritten here

f k
ûfc+i = SA+i, (5.36)

 ̂j=i

In order to compare our algorithm with it, we note th a t the vectors U i,..., u^, are
already orthonormal in the iterative equations 5.36 so th a t the cross-terms in the

72

5.4. COMPARISON W ITH OTHER FILTER DESIGN
__ ALG ORITHM S

product r ij= i(I — “ J tij) disappear, therefore, we can write equation 5.36 in the
form [70]

Ufc+l =
3 = i

X . T X (5.38)
= Xfc+l - 2^(Uj X*+i)Uj

Equations 5.10 and 5.11, which we rewrite here,

g f = g ^ '' - P" E { e r ' ' • (5.39)

,(0 _ i f
" IlifI

(5.40)

(5.41)

are very similar to equations 5.38 and 5.35 defining the Gram-Schmidt ortho­
normalisation which is not surprising as our algorithm also leads to orthogonal­
isation of the original patterns. However, our final set of orthogonal patterns is
different to the one obtained with the Gram-Schmidt procedure. In fact the basic
SS algorithm is a symmetrical and iterative version of the Gram-Schmidt process.
The main differences between the two are that:

i. In the SS algorithm all of the patterns are changed by a small am ount in each
iteration, treating each pattern in the same equal handed way. However, in
the Gram-Schmidt procedure, the first pattern is not changed at all and all
of the others are changed to become orthogonal to it. The final result is,
therefore, highly dependent on the order in which the patterns are chosen as
first, second, and so on. A different presentation order would lead to different
set of orthogonal patterns. The order is unim portant for the SS algorithm
as the iterative equation does not use any patterns already modified earlier
in the current iteration but only patterns from the previous iteration which
are fixed throughout.

ii. The SS algorithm has a convergence factor, (3" while the Gram-Schmidt
procedure has not.

If the orthogonal patterns resulting from the Gram-Schmidt orthogonalisation
procedure are used to recognise and distinguish the presence of themselves in the
input, the system would work well as the patterns are orthogonal. However, in

73

5.4. COMPARISON W ITH OTHER FILTER DESIGN
__ ALG ORITHM S

many cases it is not possible to choose the patterns to be recognised to be members
of a particular orthogonal set.

If the patterns resulting from the Gram-Schmidt orthogonalisation process
were used as filters to try to distinguish the original input patterns, the later
patterns have had so much removed from them th a t it is likely th a t their original
own distinctive features have been obscured to such a degree th a t they may be
considered to have been lost. W ith the Gram-Schmidt algorithm, in Ædimensional
pattern space, the first pattern remains at the same position, while subsequent
patterns move further and further from their original position despite being finally
resolved onto an orthogonal axis. This means th a t the inner products between the
final and the corresponding original patterns are likely to be smaller for patterns
which were towards the end of the presentation order during orthogonalisation,
resulting in a bias towards the first patterns in the presentation order.

Moreover, in the Gram-Schmidt procedure the first patterns still retain the
original similarities th a t they had with most of the other patterns so when used
as filters they will register a large output when any of the other similar original
patterns are input leading to incorrect discrimination.

5.4 .2 T h e relationsh ip b etw een th e SS cross orth o g o n a lisa ­

tio n a lgorithm and C aulfield ’s and M a lo n ey ’s L inear

C om bination F ilters

The SS cross orthogonalisation algorithm is described by equation 5.16 which we
rewrite here:

gj’’ = g j'‘ ’̂ - ^ T • Sfcjsfc (5.42)

there is also a normalisation step (equation 5.20) which is not necessary for our
analysis here and it is omitted for the sake of simplicity as is the square in equation
5.27. Equation 5.42 shows tha t at every iteration all of the training patterns are
subtracted from each of the filters, with different weights. We can consider th a t
the training patterns th a t correspond to each of the filters (when A: = j in equation
5.42) are subtracted from them with their weights set to zero. Lets consider what
happens to an individual filter throughout the training. At each iteration, all of
the training images are subtracted from it, each with a different weight. After all
of the iterations a to tal amount of each of the training images has been subtracted
from it. This to tal amount is equal to the sum of all of the individual weights
which were used for the subtraction of each training image during the training.

74

5.4. COMPARISON W ITH OTHER FILTER DESIGN
___ALG ORITHM S

The same thing happens to all of the filters. Therefore, they can be given by the
following equations:

C i i S i + C 12S 2 + • • • + G i m S m = g i

C '2 l S i + C 2 2 S 2 + • • • + G 2 M ^ M = g 2

(5.43)

C'miSi + G m 2 ^ 2 + • • • + G m M ^ M = gM

where each of the coefficients C n , C 1 2 , . . . , G mm is equal to the sum of all of the
individual weights th a t were used for the subtraction of each of the training images
during the training. These coefficients are all negative, except from Vj which
are equal to zero. It is obvious th a t if the coefficients C u , C 1 2 , . . . , Cmm can be
calculated then the final filters can be created w ithout the need for an iterative
procedure. The aim of the cross orthogonalisation algorithm is to design the filters
in such a way so tha t each of them has an inner product equal to one (or some
other constant) with the corresponding training pattern and equal to zero with
every other pattern. These conditions can be expressed by the following set of
equations:

Si • gj = 1 if i = j

Si - gj = 0 if 2 7^

The previous set of equations are w ritten in a m atrix form as follows:

/ s i \

S2

(5.44)

, g l g 2) =

\Sm J

/ S i • g i

S 2 • g i

51
52

g 2

g 2

g M

51 • g M

5 2 • g M

/ I 0 • • • 0̂
0 1 . . . Q

Vo 0 . . . \j
\ / I 0 •• • 0\

= 0 1 ••' 0

/ 0̂ 0 • y

(5.45)

or.
\ S m • g l S M ' g 2 ' • ' S m * g M / \ 0 0

SG ^ = I

(5.46)

(5 . 4 7)

where S is a M xl vector whose elements are the training patterns s, G is a M xl
vector whose elements are the filters g and I is an MxM identity m atrix. Equations
5.43 can be written in a m atrix form as follows:

f G n
G21

G\2
C2 2

Gim \
G2M

\G m I Gm 2

f S i \

S2
f g l ^

g 2
(5 .48)

C m m) \ S m / \ g M /

75

5.4. COMPARISON W ITH OTHER FILTER DESIGN
ALG ORITHM S

or,

CS = G (5.49)

where C is an MxM m atrix each element of which is the coefficient Cij. From
equation 5.49

Tr^T

and substituting equation 5.50 into equation 5.47

SS^C F = I

=> RC^ = I

= » C ^ = R -^ I

=4- C = R -^^

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

where R is an MxM m atrix each element of which, rriij, is equal to the inner
product between the training patterns s% and Sj. So, the coefficients Cij can be
calculated from equation 5.54 as long as m atrix R can be inverted. In th a t case
the final filters can be calculated directly from equation 5.49 by substitu ting the
coefficients m atrix C from equation 5.54

G = R -IT, (5.55)

As we saw in chapter 3, Caulfield and Maloney [18] calculated their Linear
Combination Filters in two steps. The first step was to calculate the vector inner
product matrix, R , of the input patterns. This m atrix had each of i t ’s elements
Tij equal to the inner product between the training patterns s* and Sj

/ 1̂1 T12 • • • TiM \
2̂1 T’22 ' ’ • f'2M

R = (5.56)

V Ml f'M2 Tm m J

where Tij = Sj • Sj.
In the second step they formed linear combinations of the responses rijS. Using

these linear combinations, the final response when testing pattern s% for its identity
to Sjfc would be

^ik — Tjfc + ^] Ckl' îl
l^k

(5.57)

They imposed the constraint tha t Fik had to be zero unless i = k and nonzero if
i = k, i.e..

(5.58)

76

5.4. COMPARISON W ITH OTHER FILTER DESIGN
__ ALG ORITHM S

Equations 5.57 and 5.58 were formulated as m atrix equations [74, 13] leading to
the general SDF described by equation 3.18 which we rewrite here

(5.59)

Equation 5.54 is in essence the same as equation 5.59. We have calculated the
coefficients for the M filters, while equation 5.59 calculates the coefficients for a
single filter. In addition, the m atrix with the desired values in our case is the iden­
tity m atrix, while equation 5.59 is more general. The vector-inner product m atrix
R is transposed as well as inverted in our equation (5.54) because we have defined
the coefficient vector for each of the filters as a 1 x M vector while in equation
5.59, a j is a M X 1 vector. So in effect we see th a t the SS cross orthogonalisation
algorithm should finally converge to the solution which is obtained using general
synthetic discriminant functions or Caulfield’s and Maloney’s method. The main
difference between our algorithm and the two methods, is th a t our algorithm is
iterative. The first question th a t automatically arises is whether the SS algorithm
converges to exactly the same solution as the other two methods. We provide
an answer to this question in the next chapter using computer simulations. The
advanced form of the SS cross orthogonalisation algorithm described by equation
5.27 has the subtraction weight squared. This square does not affect the previ­
ous result, as it can be included in the coefficients Cij w ithout any change in the
subsequent analysis.

5 .4 .3 E quivalence b etw een a bank o f correlators and a

sin gle layer o f neurons

In this section we explain the equivalence between a bank of correlators and a
single layer of neurons to pave the way for the comparison between the SS cross
orthogonalisation algorithm and the Hebbian learning rule presented in the next
section. We will follow the analysis presented in [4].

For an input pattern s of size N and a filter g also of size N the value of the
central peak of the correlation at the output plane of a correlator is equal to their
inner product which can be written

N

yc = Yl^ ig i (5.60)
i=l

The output of a single neuron using neural network notation, where Xi denotes the
input i and wi the weight of the connection between the neuron and th a t input.

77

5.4. COMPARISON W ITH OTHER FILTER DESIGN
ALGORITHM S

</>(•) is the activation function (usually nonlinear) and 9 is the threshold, is [3]:
N

Vn = (f>{vN) = (pÇ^XiWi - 9) (5.61)
i=l

Using our notation, equation 5.61 is written
N

tjn = (I>{v n) = ^i9i - ^) (5.62)

Equations 5.60 and 5.62 are very similar with the only difference being the thresh­
old and the activation function in equation 5.62. If the threshold 9 is set to zero
and we use the identity function ^(z) = % as our activation function, then equa­
tion 5.62 becomes identical to 5.60. On the other hand, we can include a threshold
in equation 5.60 by increasing the size (the number of pixels) of the filter g and the
input s and filling the remaining pixels of the filter with a constant background
of the appropriate value. The inner product will then be

M N M N
He — ^2 ~ 53 T 53 ^i9i ~ 53 ^i9i T 9 (5.63)

i=l i=l i=N+l i=l

where M , M > TV is the new total number of pixels. By choosing the appropriate
pixel background value for the filter and setting the corresponding pixels a t the
input image to 1 , we can create any desired threshold, even a negative one. So
to conclude, each correlator in a bank of correlators corresponds to a neuron in
a single layer of neurons. Each individual pixel value of the filter placed in the
correlator corresponds to an individual weight of the neuron. The central peak of
the correlation (the inner product) between the input and the filter corresponds
to the neuron output when its activation function is linear and its threshold is
equal to zero.

5.4 .4 C om parison o f th e sim ilarity su p p ression a lgorith m

w ith th e u nsu p erv ised H ebb ian learn ing law

Motivated by the equivalence between a single layer of neurons and a bank of cor­
relators, in this section we are going to investigate the relationship between the
similarity suppression algorithm and the unsupervised Hebbian learning law [101],
which is one of the most common algorithms for training single layer neural net­
works. We are going to use both our and the usual neural network notation to
make this comparison clearer. The unsupervised Hebbian learning law is also
called the activity product rule and is expressed by the equation 4.3 which we
rewrite here

AWjm = VVjXm (5.64)

78

5.4. COMPARISON W ITH OTHER FILTER DESIGN
ALGORITHM S

x i*

Inputs Neurons

Y]

Figure 5.1: A single layer of neurons.

where (see figure 5.1) Wjm is the interconnection weight between the input m and
neuron j. t) is the convergence parameter. Xm is the value of the input, m and, i/j
is the output of the neuron j and is given by the following equation

N

V] = E (5.65)
m=l

where N is the total number of inputs or the number of pixels in our training
patterns. Rewriting the two previous equations in our notation they take the
form

^9jm = mjSm or Agj = T]yjS

for the weight vector and

N

y j = 9jmSm or yj = g j - s or y^ = g^ s
771=1

(5.66)

(5.67)

where as before, we denote our training patterns with s and the filters, whose
pixel values correspond to the weights of the network, with g. If the network is
trained in the batch mode, where the weight update is performed once after all of
the training patterns have been presented to the network, then the weight update
is given by (without summation convention)

M
AWjm y ^ ̂Vkj^kr

k=l
(5.68)

where k indicates the training pattern and M is the total number of training
patterns. In our notation this equation can be written

M M r 1
^ 9 3 m = y Y . y k 3 ^km or Ag^ = 7y ^ • S)fc Ufc (5.69)

fc=l k—l V J

79

5.4. COMPARISON W ITH OTHER FILTER DESIGN
__ ALG O RITH M S

for the weight vector. The similarity suppression algorithm in its simplest form is
given by equation 5.16 which we rewrite here

ë f = E jg j • |s * (5.70)

=> Agj = jg j • Sfcjsfc (5.71)

Notice th a t we have om itted the square in equation 5.27 to make the comparison
easier. Equations 5.69 and 5.71 are very similar. /? and 77 play the same role in
both algorithms i.e. convergence factors. Equation 5.69 shows th a t the weight
update is equal to the product of the output from the neuron, ykj and the input,
Sfcyn, th a t is connected through the non-updated weight. This product is summed
over all training examples, if the system is trained in batch mode. Similarly, the
change in one of the stored filters in a bank of correlators, given in equation 5.71,
is equal to the product of the central peak of the output of the correlator and the
corresponding input.

There are two differences between the two algorithms.

i. The first is the different sign in equations 5.71 and 5.69. M athem atically
this means th a t the magnitude of the weight vector in the Hebbian learning
will increase while in the case of the similarity suppression algorithm the
magnitude of the weight vector may increase or decrease depending on the
value of the convergence factor (as we saw in section 5.3). The plus sign in
the Hebbian learning law can be interpreted as feature or similarity enhance­
ment instead of similarity suppression th a t our algorithm performs. Thus
the Hebbian Law performs generalisation, which means th a t the network is
trained to give a high output for all of the training patterns and for other
patterns similar to them. On the other hand, the SS algorithm performs
discrimination, which means th a t the correlators are “trained” (or one can
say th a t the filters placed in them are designed in such a way) to give low
outputs with all but one of the training patterns.

ii. The second difference between the two algorithms is th a t in the Hebbian
learning law the summation is done over the products of the output and
all of the input patterns, while in the SS algorithm one product, th a t of
the output and the input pattern corresponding to the updated filter, is
excluded from the sum. This would be the biggest term in the sum m ation
provided th a t the weight vector (or the g pattern in our case) is normalised,
since the normalisation changes the g filter in such a way so th a t its inner

80

5 .5 . EXTENSION OF THE SIM ILARITY SUPPRESSION ALGORITHM TO
TRA IN TWO OR MORE CONSECUTIVE BANKS OF CORRELATORS

product with the corresponding s pattern is held constant. If th a t term was
included in the SS algorithm, the result would be tha t the filters would be
trained to discriminate against all of the input patterns and they would not
produce a high output for any of them.

Both algorithms need a normalisation step to become stable and in th a t case the
Hebbian learning law is called the normalised Hebbian rule [70].

5.5 Extension of the Similarity Suppression al­

gorithm to train two or more consecutive

banks of correlators
In this section, we extend the SS algorithm to calculate the filters for each of
two cascaded banks of inner product correlators. Since one bank of correlators
is m athem atically equivalent to a single layer neural network, it cannot classify
patterns th a t are not linearly separable. Two or more consecutive banks of cor­
relators however, correspond to two or more interconnected neural network layers
and can classify patterns th a t are not linearly separable. It is necessary however,
th a t each correlator in the first bank is followed by a non-linear activation func­
tion, because from neural network theory we know th a t hidden units w ith linear
activation functions provide no benefit in classifying patterns th a t are not linearly
separable [3]. Based on the similarity between the SS algorithm and the Hebbian
learning rule shown in the previous section, we are going to follow the well known
derivation of the back-propagation learning algorithm using our filter formalism.

In figure 5.2 we can see two cascaded banks of correlators. There are T cor­
relators in the first bank and M in the second. The same pattern s is input to
all of the correlators in the first bank. The input to the correlators in the second
bank, which is the same for all of them, is formed by the outputs of the correlators
in the first bank. The correlation peak of each one of them, after the activation
function is applied to it, corresponds to one pixel of the pattern which is input
to the correlators in the second bank. Therefore, the filters in the first bank are
of size N , where N is the size of the input patterns and the filters in the second
bank are of size T, where T is the number of correlators in the first bank. The
nonlinear activation functions between the two layers are not shown in figure 5.2

First let us define (following the definition in [95]) the average squared error
to be equal to the mean of the squared errors of the outputs of all of the filters in

81

5.5. EXTENSION OF THE SIM ILARITY SUPPRESSION ALGORITHM TO
TRAIN TWO OR MORE CONSECUTIVE BANKS OF CORRELATORS

Input

(D*
-,(1)Yl

(I),
-̂ (1)Y2

.(1)
(l) c

.(1)
(1), Yt

1 bank of
correlators

(2)g,

C)g2

(2) a 1

® y M ,
j

2 bank o f
correlators

Figure 5.2: Two cascaded banks of correlators.

the output bank of correlators for all of the training patterns

M M

En,, —
1

2 M E E
fc=l A=1

(2) . 2
'Xk (5.72)

where A indicates the filter number in the output bank, k indicates the training
pattern number and the number in the parenthesis on the top left of the each
symbol (in this case (2)) indicates the bank number. The output bank is bank 2
and the hidden is bank 1 . We have made the assumption th a t the number of the
hlters in the output bank is equal to the number of the training patterns. The
error of each filter in the output layer is

The change A to each of the pixels of filter will be:

(5.73)

(5.74)

where m denotes pixel number. By applying the chain rule of multi-variable
differential calculus we have

From equation 5.73 we get

(5.75)

= - 1 (5 .76)

82

5.5. EXTENSION OF THE SIMILARITY SUPPRESSION ALGORITHM TO
TRAIN TWO OR MORE CONSECUTIVE BANKS OF CORRELATORS

and from equation 5.62 {y^f = <I>{v n) = s«Si — S)) we get

(5.77)- (2)^'
d^'^hjk

and from equation 5.62 also

where is the output of filter i in the previous bank of correlators and the
input to the second bank of correlators and corresponds to s% in equation 5.62. So
using equations 5.75-5.78, equation 5.74 becomes

rj ^

A ^ E (5.79)
k=l

SO the equation for the update of the filters in the output layer when they are
regarded as whole images is obtained by substituting equations 5.73 and 5.62 into
equation 5.79

 ̂ > (5.80)

where as usual all of the bold symbols denote vectors. The local gradient for the
filter in the output layer is defined to be

(5.81)

and the filter update equation can be rewritten by substituting equation 5.81 into
equation 5.80 in the following form

= (5.82)
k=l

For the update of filter in the hidden layer we cannot use the local gradient
defined in equation 5.81 because the calculation of the error is not straight­
forward because we do not know what the desired outputs of the correlators in
the first bank should be. We define the local gradient as follows

M 3)

Using equations 5.72 and 5.62, we can calculate the partial derivative dEav/d^^^yjk
as follows

dEgy _ 1 A ^ (2) _ J l V V (2) d^'^'^exkd^’̂'^vxk

83

5.5 . EXTENSION OF THE SIM ILARITY SUPPRESSION ALGORITHM TO
TRA IN TWO OR MORE CONSECUTIVE BA N K S OF CORRELATORS

In the output layer

M

è (5.85)

or for images

"̂̂ V̂xk = (5.86)

Prom equations 5.62, 5.73 and 5.76 we get

d^'^hxk
d^^hxk

and from equation 5.85 we get

= - (5.87)

(5.88)
d^^^Vjk

so substituting equations 5.87 and 5.88 into equation 5.84 we get

dE, -i M M1 M M
= E E (5.89)

and substituting equation 5.89 into equation 5.83 we get

■t M M
V = i & E E (5.90)

^ A:=l A=1

and from equation 5.82 the filters in the first bank of correlators can be updated
by the following equation

A ^ E E E (' ' « A ,
k'=ik=ix=i (5 .9 1)

or the same equation for the whole images can be w ritten

M M M
A«g, = j ^ E E E ^ (5.92)

k ' = l k = l X=1

where

. 4 = 1 - *^VA(®gA • *'Vt)b^*0Â(*^’gA • -s&')s&'
'■ ’ (5.93)

Equation 5.80, which describes the update of the filters in the second bank
of correlators, is very similar to the basic equation of the SS algorithm with the

84

M M M

5.6. DISCUSSION AND CONCLUSIONS

main difference being the presence of the non-linear activation function and i t ’s
derivative. So in effect it trains the filters in the output bank to distinguish among
the images th a t are output from the first bank. Equation 5.92 which describes the
correction th a t must be applied to the filters in the first bank of correlators, is not
as straightforward to explain. It updates the filters in the first bank, based on the
average error of the filters in the second (output) bank, which can be measured.
The algorithm which calculates the filters for more than two cascaded banks of
correlators can be derived in a similar manner using the same chain differential
rule for the other layers.

5.6 Discussion and conclusions
In this chapter we have addressed the problem of designing a set of filters which
are mutually orthogonal to a set of training patterns. We developed a similarity
suppression algorithm which starts from a set of training patterns, and creates a
set of filters. Each of the filters has a high inner product (equal to 1, assuming
th a t all of the training patterns are normalised) with only one of the training
patterns; the one th a t it was derived from. In addition, each of the filters has very
low inner products with all of the other training patterns.

We showed tha t with our choice of convergence param eter the magnitudes
of the filters will decrease, unless a normalisation step is used. We chose to
normalise the filters in such a way th a t we ensured th a t their auto-inner products
would remain stable at a desired value. However, by doing th a t we increased the
magnitudes of the filters themselves and we now suspect th a t if a random pattern ,
or white noise is input to the system, the output will be biased towards the filter
whose magnitude is the largest. There is, however, a way around this if we use a
diflFerent normalisation.

In the third section of this chapter we compared the SS algorithm to some other
filter design techniques. The first version of the algorithm which orthogonalises
the filters themselves is a symmetrical, iterative version of the Gram-Schmidt
procedure.

We also compared the SS algorithm to the Linear Combination filters and to
the general Synthetic Discriminant Function filters. The SS algorithm converges
towards the LCFs and SDFs solution. The two filter design methods are, there­
fore, roughly equivalent. In the next chapter we are going to investigate whether
the algorithm will converge to the exact solution as the LCFs with the help of
computer simulations.

It is well known [4] that a bank of correlators is m athem atically similar and, if
the threshold is equal to zero and the activation function is linear, in some cases

85

5.6. DISCUSSION AND CONCLUSIONS

equivalent to a single layer of neurons. Therefore, it can be used to implement
a 1-layer neural network. There is also an obvious similarity in the equations
describing the SS algorithm and the unsupervised Hebbian learning law. Their
main difference is th a t in its present form the SS algorithm performs discrimi­
nation, while the Hebbian law performs generalisation. However, a single layer
of neurons and a bank of correlators can only perform correct recognition when
the patterns to be recognised are linearly separable. The back-propagation learn­
ing algorithm is well known for its ability to train neural networks w ith hidden
layers of neurons. Based on the equivalence between the SS algorithm and the
Hebbian law we have extended the SS algorithm to design filters for two or more
cascaded banks of correlators. In doing tha t, we have not devised a completely
new training algorithm, but rather expressed the back-propagation algorithm in
term s which refer to whole images and are better suited to the design of filters for
optical correlators.

In the next chapter we are going to present some computer simulations of
the SS algorithm. W ith these simulations we are going to verify the theoretical
analyses presented in this chapter and investigate the ability of the final filters to
recognise noisy patterns.

86

Chapter 6

Com puter simulations of the

Sim ilarity Suppression algorithm

6.1 Introduction
In chapter 5 we described the similarity suppression algorithm. In this chapter we
are going to present some of the computer simulations which we conducted while
we were developing the algorithm. Some of these simulations helped us do some
modifications to the algorithm and others verified our theoretical conclusions. In
section 6 . 2 we use the algorithm to calculate two sets of filters to recognise two
different sets of training patterns in the presence of noise. We investigate the
effect of the convergence param eter on the speed of convergence and on the final
solution. In addition, we observe the magnitudes of the filters to verify the con­
clusions we drew in section 5.3. In section 6.3 we present computer simulations
which test the performance of one of the sets of filters, calculated in section 6 .2 ,
in recognising images buried in additive input white noise. Section 6.4 presents
com puter simulations which compare the SS algorithm with linear combination
filters. These simulations verify the theoretical comparison between the SS al­
gorithm and linear combination filters shown in the previous chapter and clarify
the relationship between the two methods even further. Finally, in section 6.5 we
use the results of computer simulations to optimise the number of times th a t the
algorithm is allowed to iterate, which yields some surprisingly beneficial results.

87

6.2. CONVERGENCE SIMULATIONS

6 . 2 Convergence Simulations
This section presents the performance of the algorithm during the iterative tra in ­
ing phase. The next section presents the performance of the filters, g, so produced,
a t discriminating patterns in noise. In order to assess the efficacy of the algorithm
it is necessary to choose and to devise appropriate performance measures. These
are introduced below, followed by a detailed description of the simulation param ­
eters and results.

6.2 .1 P erform ance M easures

We define three performance metrics:

i. Cross-inner product m atrix

A m atrix R which we call the cross-inner product m atrix was calculated at
each iteration. The Rij element of the cross-inner product m atrix was equal
to the value of the inner product of the patterns gi and Sj. The goal of the
training is to minimise all of the elements of the cross-inner product m atrix
except from the ones th a t are on the diagonal, which remain constant and
equal to the normalised magnitudes of the training patterns, P. In the first
iteration, when the g patterns are identical to the s patterns, m atrix R is
the vector (auto) inner product matrix of the input patterns as defined in
[66].

ii. Global Energy

A term which we will call the to tal energy of the system was defined as

1 M M
(6 .1)

^ i=l j=l

In other words the to tal energy of the system is equal to the normalised sum
of the modulus of all of the elements of the cross-inner product m atrix. The
to tal energy is a measure of the height of all of the cross inner products. As
the algorithm converges, we expect the to tal energy to decrease.

iii. Largest cross-inner products

In order to monitor the system’s convergence, another figure of m erit was
calculated. This figure of merit was the average size of the modulus of
the three largest cross-inner products as a fraction of P , calculated a t each
iteration.

6.2. CONVERGENCE SIMULATIONS

6.2 .2 B inary, b ipolar p a ttern s

Our aim when conducting these simulations was to see how much the cross-inner
products were reduced, how many iterations it took for these reductions to take
place and how the final cross-inner product values and the convergence speed were
affected by the convergence param eter p. The first training set of patterns to be
recognised, consisted of 32, 16x16 binary, bipolar patterns denoted by s*,% =
1 , . . . ,32. We chose to use binary, bipolar patterns for their simplicity which
helped us to evaluate the results in the early stages of the development of the
algorithm. Eight patterns in the training set were chosen to have random elements.
Those were patterns numbers 1,7,10,11,17,20,21 and 2 2 as they appeared in the
set. The other patterns were similar to one of patterns 1, 11 or 22, differing by 7,
14, 28, 56 and 1 1 2 pixels. Table 6.1 shows the order of the patterns in the training
set, the similar patterns and by how many pixels they differ. The patterns th a t
are similar to one another were created by copying the initial pattern and then
randomly changing the desired number of pixels. We constructed this specific
training set so th a t there were some very similar and some very different patterns
in it. If all of the training patterns had been chosen to be different, the algorithm
would not produce much benefit, because if all of the cross-inner products were
already small there would not be any reason for them to change.

Pattern No: 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 13 14 15 16

Similar to : - 1 1 1 1 1 - 2 2 2 2 - - 1 1 1 1 1 1 1 1 1 1

Differing by: - 7 14 28 56 1 1 2 - 7 14 - - 7 14 28 56 1 1 2

Pattern No: 17 18 19 2 0 2 1 2 2 23 24 25 26 27 28 29 30 31 32

Similar to: - 1 1 1 1 - - - 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 1

Differing by: - 7 14 - - - 7 14 28 56 1 1 2 7 7 7 14 14

Table 6.1: Number of pixels differing in the training set.

The advanced algorithm, described in equations 5.27 and 5.28, was tested with
several different values of the convergence param eter p. Here we present some
representative results for 6 different values of p, which are p = 0 .01,0 .1 ,0 .5 ,1 ,4
and 6 . For most of the P values the algorithm converged to a sufficiently stable

solution within the first 1500 iterations.
In figure 6.1 one can see the three dimensional graph of the initial state of the

cross-inner product matrix. The palest shading shows the highest peaks. The large
values on the diagonal represent the auto-inner products. All of the other peaks,
some of which are large (but no bigger than the auto-inner products) represent

89

6.2. CONVERGENCE SIMULATIONS

Onginal filters
15

Training patterns

Figure 6.1: Cross-inner product m atrix before the training. The graph is shown
with the X and y axes reversed for clarity.

the cross-inner products and those are the ones th a t we want to decrease. The
total energy index is plotted in figure 6.2 as a function of iteration number. For
most of the (I values,the to tal energy reduces rapidly, which means th a t the cross-
inner products decrease. In addition, for most of the values the to tal energy
decreases exponentially. The decrease is very fast initially and slows down later.
The average of the absolute value of the three largest cross-inner products as a
fraction of the auto-inner product’s normalised value P , is shown in figure 6.3, as
a function of iteration number. The algorithm converged to the desired solution

1= 0.01
1= 0 .1
1=0.5

0.18

0.16
1=4

0.14

IUO.12

0.08

0.06

0.04
500 1000 1500

Iteration Number

Figure 6.2: Total energy index.

90

6.2. CONVERGENCE SIMULATIONS

5 0.1

S 0.7

0.6

ai 0.5

« 0 .4

0.3

coO.2 -

500 1000 1500
Iteration Number

Figure 6.3: Absolute average values of the 3 largest inner products as a function
of iteration number for various values of the convergence factor, /3.

for most of the values of (3. As we expected, convergence is a lot faster when
(3 is large (figures 6.2 and 6.3). In addition, the cross-inner products converged
to lower values as (3 increased. However, (3 values larger than 6 , destabilised the
algorithm and as a result the inner products oscillated between their initial and
very large values. Figure 6.3 shows tha t even the largest cross-inner products
converged to a value less than 10% of the auto-inner product value P for most
of the P values (after about 800 iterations). In the best case {/3 = 6) most of
the convergence has taken place after just 100 iterations. The three dimensional
graph of the cross-inner product m atrix after training with f3 = 6 is shown in
figure 6.4. It is very easy to see, by comparing figures 6.4 and 6 .1 , th a t the SS
algorithm has been very successful at suppressing all of the cross-inner products.

6.2 .3 M agn itu d es o f norm alised and un-norm alised filters

In this section we will focus on the magnitudes of the filters throughout the train­
ing phase. In section 5.3 it was shown tha t without a normalisation step and
with our choice for the convergence parameter, /?, the magnitudes of the filters
would decrease during the training. In figure 6.5 we can see the magnitudes of
some of the filters (filters 1,2,5,13,20,22 and 23) as the algorithm converges to
the final solution, when the normalisation equation is not used. We have chosen
to show these particular filters because some of them (filters 1,2,5,13,22 and 23)
were derived from patterns tha t were more or less similar to others and some

91

6.2. CONVERGENCE SIMULATIONS

Training patterns

Figure 6.4: Cross-inner product m atrix after 1500 iterations for a convergence
factor 0 Î P = 6. The graph is shown with the x and y axes reversed.

(filter 20) were derived from patterns different to all others. First of all we must
point out th a t in figure 6.5, the magnitudes of all of the filters have the same
initial value, 256. We can see in the figure tha t the magnitudes of all of the filters
decrease as was predicted in the theory in section 5.3. However, they do not all
decrease by the same amount. A first observation one can make in this figure is
tha t the largest drop in the filters’ magnitudes takes place in the first iteration.
In addition, the amount tha t the filters’ magnitudes decrease, depends on the
similarity between their corresponding initial patterns and other patterns in the
set. A general trend seems to exist: the amount of the decrease of a filter’s mag­
nitude during the training without normalisation depends on the initial pattern
from which it was derived and it is proportional to the similarity between tha t
pattern and the other patterns in the set, as well as to the number of these similar
patterns. This can be verified in figure 6 . 6 which shows the magnitudes of all of
the filters, each one depicted with an “x” on the graph, after the training without
normalisation. They are plotted versus the similarity amongst the corresponding
training patterns.

This similarity amongst the training patterns was calculated in the following
manner: for each of the training patterns, we calculated the number of pixels
which had equal value to pixels in other patterns. For example, the first training
pattern has 249 pixels equal to pixels in the second pattern (they differ by 7 pixels,
therefore, 256-7=249), another 242 pixels equal to pixels in the third pattern and
so on and in total it has at least 1803 pixels equal to pixels in all of the other

92

6.2. CONVERGENCE SIMULATIONS

250 o filter 1
X filter 2
0 filter 5
* filter 13
D filter 20
V filter 22
> filter 23

200

£ 1 0 0

50

500 1000 1500
Iteration num ber

Figure 6.5: Unnormalised magnitudes of some of the filters as a function of the
number of iterations.

250

- 2 0 0

ii 150

0 500 1000 1500 2000
N umber of com m on pixels in corresponding training patterns (estim ate)

Figure 6 .6 : Un-normalised magnitudes of all of the filters after the training versus
similarity amongst the corresponding training patterns.

93

6.2. CONVERGENCE SIMULATIONS

> 0 .6 -

Final filters

"7 r
15 20

Training patterns

Figure 6.7: Cross-inner product m atrix after 1500 iterations without normalisation
for a convergence factor of /? = 6 . The graph is shown with the x and y axes
reversed for clarity.

patterns in the training set. We used the terms “at least” , because the previous
calculation did not take into account the pixels which randomly happen to have
equal values with pixels in other patterns. The second training pattern has 249
pixels equal to pixels in the first pattern, 256-7-14=235 pixels equal to pixels in the
th ird training pattern and so on and in to tal it has 1754 pixels equal to pixels in
all of the other patterns. Again, this number is not accurate, but just an estimate,
but it suffices for our purpose here. The graph shown in figure 6 . 6 verifies our
previous conclusion, th a t the amount th a t a filter’s magnitude is going to decrease
during the training depends on the similarity between th a t filter’s corresponding
training pattern and all of the other patterns in the training set.

So the filter magnitudes do decrease and tha t has an effect on their auto-inner
products with the corresponding training patterns. Since there is no normalisation
step, these will decrease as well. In figure 6.7 we can see the final state of the
cross-inner product matrix. All of the cross-inner products have decreased to very
low values, but some of the auto-inner products have decreased as well and this
is undesirable. To recognise its corresponding training pattern correctly, each of
the filters must have an auto-inner product with it which is higher than the cross-
inner products with the other patterns. Again one can observe tha t the decreased
auto-inner products are the ones th a t correspond to initially similar patterns.
We introduced the normalisation step to stabilise the auto-inner products and
solve this problem, but we predicted th a t this normalisation would increase the

94

6.2. CONVERGENCE SIMULATIONS

9000

8000 o filter 1
« filter 2
0 filter 5
<r filter 13
° filter 20
V filter 22
> filter 23

7000

6000

E 5000

4000

3000

2000

1000

500 1000 1500
Iteration number

Figure 6 .8 : Normalised magnitudes of some of the filters as a function of the
number of iterations.

magnitudes of the filters unevenly. This can be verified in figure 6 . 8 which shows
the magnitudes of the same filters but in this case when they were normalised
throughout the training. Due to the normalisation, the strongest filters are the
ones tha t were the weakest without the normalisation step.

This increase in the magnitudes of some of the filters after using the normali­
sation is undesirable, because, as we said in section 5.3, there will now be a bias
towards them if random patterns are presented into the recognition system. This
bias is quite strong, as from figure 6 . 8 we can see tha t the strongest filters are
roughly 33 times stronger than the weakest.

6.2 .4 P eak-to-C orrelation E nergy o f th e correlations b e­

tw een th e train ing p attern s and th e tra ined and un­

tra ined filters

The SS algorithm is very successful at decreasing the cross-inner products between
filters and patterns tha t do not correspond to them. Each filter starts by being
identical to one of the training patterns and then changes so tha t it becomes
different to all of the other patterns in the set. These changes, however, must have
an effect not only on the inner product between the filters and the patterns, but on
the whole correlation plane. The algorithm forces the inner products to decrease

but it does not place any constraints on the outer products. In figure 6.9 we can see
the intensity profile in the correlation plane for two correlations. Subfigure 6.9-(a)

95

6.2. CONVERGENCE SIMULATIONS

f 0.6

S 0.4 = 0.4

0 0

(a) Si (8) Si, PCE=0.53 (b) Si 8) g l, PCE=0.027

Figure 6.9: Correlation plane intensity for auto-correlation of pattern 1 and cor­
relation between pattern 1 and filter 1

depicts the auto-correlation of pattern 1 . Subfigure 6.9-(b) depicts the correlation
between pattern 1 and filter 1 , which was obtained after 1500 iterations with
^ = 6. We can see tha t the auto-correlation of pattern 1 has a sharp peak (as
expected) and a PCE (as defined in chapter 2, equation 2.6) equal to 0.53. When
using the filter corresponding to pattern 1 , the inner product has remained stable,
but the outer products have increased a lot and the PCE is now only 0.027. For
a correlation between a filter and the pattern it corresponds to, we want a high
correlation peak and low side-lobes, therefore, a high PCE as close to 1 as possible
is desirable. Therefore, the fact the PCE has decreased so much in the correlation
between the first pattern and its corresponding filter is a disadvantage.

Figure 6.10 shows the intensity profile of the correlation plane for the correla­
tions between pattern 1 and pattern 2 (subfigure 6 .1 0 - (a)) and between pattern 1

and filter 2 (subfigure 6.10-(b)). The correlation between the two initial patterns
has a high, sharp central peak because the patterns are very similar. W ith filter 2,

the central peak of the correlation has decreased (to less than 10% of P) but the
outer products have increased to about 65% of the auto-correlation peak value,
P.

Another interesting example can be seen in figure 6.11 which shows the cor­
relations between pattern 7 and pattern 1 (in subfigure 6 .11-(a)) and pattern 7
and filter 1 (in subfigure 6.11-(b)). In the correlation between patterns 7 and 1
there is no correlation peak and the outer products are all low, because the two
patterns are very different. However, when using filter 1, the central point of the

96

6.2. CONVERGENCE SIMULATIONS

0 0

(a) Si g) S2 (b) S i (g) g2

Figure 6.10: Correlation plane intensity for correlations between pattern 1 and
pattern 2 and between pattern 1 and filter 2 .

correlation plane, i.e. the inner product, may still have a very low value, but the
outer products have increased dramatically and one of them is about 80% of the
auto-correlation peak value, P.

To conclude, the algorithm reduces the inner products, but does not put any
constraints on the outer products, so they increase. Not all of the correlations
have their outer products increased by the same amount. The biggest increase
in the outer products occurs in correlations of filters tha t were derived from pat­
terns which were similar to others a t the beginning of the training. The auto-

0 0 0 0

(a) S 7 (8) S i (b) S7 (8) g l

Figure 6.11: Correlation plane intensity for correlations between pattern 7 and
pattern 1 and between pattern 7 and filter 1.

97

6.2. CONVERGENCE SIMULATIONS

correlation’s outer products increase a lot because of the normalisation step. A
filter is changed during the training but th a t makes it different from the pattern
from which it was derived, as well as from other patterns. W hen it is normalised
so th a t i t ’s auto-inner product reaches the desired level, i t ’s magnitude increases
as we saw in the previous section and as a result, all of the outer products of the
correlation increase.

This increase in the outer products in the correlations plays no role in electronic
systems, but is a m ajor drawback in optical systems, unless the input images are
always centered. In the case when the location of the object in the input scene is
not known precisely, the increased outer products would make an optical system
a lot less useful, because a high outer product could be mistaken for a correlation

peak.

6.2 .5 R eal valued patterns

In addition to binary, bipolar patterns, we tested the algorithm with some real
valued patterns. The training set consisted of ten patterns. Each was 112 x 92
pixels. The patterns were monopolar, grey-level and the pixels took integer values
between 1 and 256. Each pattern was a photograph of a person’s face. The p a t­
terns were part of the Olivetti Research Laboratory (ORL) faces database. The
photographs th a t were used can be seen in figure 6.12. We used the algorithm
on this second training set, mainly to demonstrate th a t it works with real valued
patterns as well. In addition we use this training set to test the Feature Enhance­
ment and Similarity Suppression (FESS) algorithm, which is presented in the next
chapter and these simulations will help us to compare the two algorithms.

The patterns th a t are shown in figure 6.12 are not normalised. They were
normalised, however, before they were presented to the algorithm. The vector-
inner product m atrix for the normalised patterns before the training is shown in
figure 6.13. It is clear from the graph th a t the initial patterns are all very similar.
All of the cross-inner products are high and their magnitudes are about 80-90%
of the auto-inner products. We used the algorithm with a convergence factor
/? = 0.65. We let it run for 2000 iterations until it converged to a stable solution.
The final cross-inner product m atrix after the training is shown in figure 6.14.
Again we can see th a t all of the cross-inner products have decreased to very small
values. The algorithm, therefore, works equally well with real valued patterns.

Finally, figure 6.15 shows the filters th a t were created. The resulting filters
were bipolar, real valued. A better understanding of the way th a t the algorithm

98

6.2. CONVERGENCE SIMULATIONS

Figure 6 .1 2 : Training set consisting of ten people’s faces.

1 n
. 0 .8 -

> 0 .6 -

pO .4-

ç O . 2 -

Training patterns
g Original filters

10 10

Figure 6.13: Vector-inner product m atrix before the training.

99

6.3. PRO BABILITY OF DISCRIMINATION AND DYNAMIC RANGE

> 0 .6 -

0 0 .4 -

^inal filters

Training patterns
10 10

Figure 6.14: Cross-inner product m atrix after 2000 iterations for a convergence
factor of (3 = 0.65.

creates the filters can be gained from these figures because unlike the previous
random patterns, these represent human faces and have a meaning to us. Some
of the filters have features of other patterns in them but with a negative sign,
like for example the glasses on the first filter. Most of the filters have some areas
strengthened (very bright, or very dark) or weakened (grey) and usually bright
areas in one filter correspond to dark areas in the others.

6.3 Probability of discrimination and dynamic
range

Optical inner product correlator pattern recognition systems suffer from the lim­
ited dynamic range inherent in optics. For example, in the extreme case of two
bipolar N pixel patterns, tha t differ only by one pixel and which need to be
distinguished, the dynamic range of the optical system has to be greater than
20 logio N /2 dB in the inner-product correlator domain, for correct recognition.
Taking into account tha t the dynamic range of a typical optical system can be
about 30dB, one can see tha t the pa tte rn ’s number of pixels cannot be greater
than 64, meaning tha t no larger than a 8 x8 pixel image can be recognised optically.

The SS algorithm minimises the cross-inner products and holds the auto-inner
products constant so tha t they differ by a larger amount. The dynamic range
required by a detector at the output inner-product plane of an optical system is

100

6.3. PRO BABILITY OF DISCRIMINATION AND DYNAMIC RANGE

Figure 6.15: Final filters for the faces set.

reduced and less sensitive equipment is needed. So the SS algorithm allows us to
increase the size of the images tha t can be recognised by an optical system.

In most cases the pattern tha t needs to be recognised will contain an amount
of noise, where we are using the word “noise” in a broad sense indicating additive
or multiplicative noise or distortion, rotation or a proportion of another pattern.
It is im portant to see how much noise can be tolerated before the pattern becomes
unrecognisable, and how much the required dynamic range is, for each noise level.
We conducted simulations with analogue additive noise. The dynamic range re­
quirements for correct discrimination and the probability of discrimination were
calculated for different levels of noise. The noise added to the patterns was nor­
mally distributed with a zero mean. The input signal to noise ratio (SNR) varied
from 20 to -lOdB. The results shown in this section were obtained using the filters
which were calculated with p = 6. The method for calculating the probability
of discrimination, was to calculate all of the inner products between an input
pattern and all of the filters and then to choose the highest of them. For correct
discrimination, the highest inner product had to be the one with the filter which
corresponded to the input pattern. The experiment was repeated for all of the
training patterns for 5000 different samples of noise for each different noise level.
We did not use a threshold because the SS algorithm addresses the problem of
discrimination between patterns and not detection.

The resulting curves for the probability of discrimination before and after
training are shown in figure 6.16. We can see, in th a t figure, th a t there is a signif-

101

6.3. PRO BABILITY OF DISCRIMINATION AND DYNAMIC RANGE

100

Before training
After training

.1 70

I
E 60

I
40

IQ.

20 - 5 - 1(
Input signal to noise ratio (dB)

Figure 6.16: Probability of discrimination versus input signal to noise ratio

icant increase in the probability of discrimination after the training. For example,
with an input signal to noise ratio of 3 dB the probability of discrimination is 2%
before the training and it increases to 83% after the training. Also the probability
of discrimination falls to 50% at an input signal to noise ratio of 8.9 dB before
the training and 0.8 dB after the training. The curve after the training is almost
a shifted version of the curve before the training, although it is a bit steeper.
This means tha t the same pattern discrimination behaviour versus SNR can be
achieved but we can tolerate 7dB more noise.

The dynamic range of the recognition system was defined to be the ratio of the
difference between the auto-inner product and the maximum cross-inner product,
to the corresponding auto-inner product, in decibels. This can be written as:

S i ' g i - m a 2 ; V j (s , • g j) 1 \
dynamic range = m a x i i ^ — 2 0 log

i = 1. . . M , j = 1. . . M, j ^ i

10
S i ' g i

(6 .2)

This definition assumes tha t the system has some form of autom atic gain control
which, for example, scales the maximum auto-inner product to a constant near

the top of the dynamic range.
The resulting plot of the dynamic range versus the signal to noise ratio before

and after the training is shown in figure 6.17. The error bars in figure 6.17 indicate
the standard deviation (as defined in appendix A) of the calculated dynamic range
values for 5000 measurements. We can see from figure 6.17 tha t there is a very
large reduction in the dynamic range required for correct discrimination, of the

102

6.4. COMPARISON BETW EEN THE FILTERS PRODUCED WITH THE SS
ALGORITHM AND THE LINEAR COMBINATION FILTERS

70

m60

« 5 0

c 40

•5 30

120

Q 10

30 25

After training
Before training

20 15 10 5
Input signal to noise ratio (dB)

- 5 - 1 (

Figure 6.17: Dynamic range of the recognition system as a function of the signal
to noise ratio. The error bars show the standard deviation for 5000 measurements.

order of 25 dB, after the training. The amount of reduction lessens for higher
amounts of noise. The error bars increase as the noise is increased due to the
random nature of the noise. The worse case after the training is better than the
best case before the training, for the same amount of additive noise, because the
error bars do not meet. The curve before the training does not extend to higher
noise levels because, from figure 6.16, when the probability of discrimination drops
to zero it is not meaningful to plot the dynamic range. From graph 6.17 we
can also see th a t if an optical system has a dynamic range of 30dB this means
tha t, before training, patterns can be recognised having an input SNR of 15dB
upwards whereas, after training, the dynamic range of the system does not limit
discrimination.

6.4 Comparison between the filters produced with
the SS algorithm and the linear combination
filters

In section 5.4.2 we compared the SS algorithm to the method proposed by Caulfield
and Maloney in [18] for designing linear combination filters and we concluded
tha t the SS algorithm converges to the same solution as the one provided from
Caulfield’s and Maloney’s method. In this section we use th a t method to create

103

6.4. COMPARISON BETW EEN THE EILTERS PRODUCED WITH THE S3
ALGORITHM AND THE LINEAR COMBINATION FILTERS

, 0 .8 -

t3 0.6

q.0.4

- 0 2 -

Training patterns

20
Matrix mettiod filters

Figure 6.18: Cross-inner product m atrix between the input patterns and the filters
created using equation 5.55. The graph is shown with the x and y axes reversed
for clarity.

filters which are mutually orthogonal to the binary, bipolar patterns in our first
training set and compare them to the filters th a t were created with the SS algo­
rithm. We calculated the cross-inner product m atrix between the input patterns
and the set of filters created with the m atrix method. The three dimensional
graph of this m atrix can be seen in figure 6.18. This can be compared to figure
6.4 which shows the cross-inner product m atrix between the input patterns and
the filters th a t were created using the SS algorithm.

We can see from figure 6.18 th a t the filters created using equation 5.55 are
completely cross-orthogonal to the input patterns as it was expected. The filters
th a t were created using the SS algorithm are almost (figure 6.4) - but not com­
pletely - orthogonal and the SS algorithm may converge to the same solution if
it is allowed to run for more iterations. To investigate further we looked at the
actual filters. An example is shown in figure 6.19, which shows the two versions
of filter 2 . Subfigure (a) depicts filter 2 created by the SS algorithm and subfigure
(b) depicts filter 2 created with the m atrix method. The differences between the
two filters are plotted in figure 6 .2 0 , which shows the filter created with the SS al­
gorithm after we subtracted the filter which was created with the m atrix method.
We can see from the three graphs tha t the filters are very similar and it looks
like the algorithm given time will converge to exactly the same solution th a t is
obtained with the m atrix method.

One might argue at this stage th a t there is no point in using the SS algorithm

104

6.4. COMPARISON BETW EEN THE FILTERS PRODUCED WITH THE SS
ALGORITHM AND THE LINEAR COMBINATION FILTERS

(a) Filter created with the SS algo­
rithm

(b) Filter created with the matrix
method

Figure 6.19: Pixel values of the two versions of filter 2

0) 10

y -10

Figure 6.20: Differences between pixel values of the two versions of filter 2

105

6.4. COMPARISON BETW EEN THE FILTERS PRODUCED WITH THE SS
ALGORITHM AND THE LINEAR COMBINATION FILTERS

100

60

IE
o

40

Before training
- - After training (matrix)
— After training (alg)

Q.

20

-5 - 1 (
Input signal to noise ratio (dB)

Figure 6.21: Probability of discrimination versus input signal to noise ratio

to create the filters since they can be obtained with fewer calculations, and, there­
fore, faster from equation 5.55. However, since the filters obtained with the two
different methods are not identical, we decided to test the tolerance to input noise
and the dynamic range tha t would be required by an optical system for correct
discrimination, when using the second set of filters (the ones calculated with the
m atrix method). We conducted the same simulations as in the previous section.

The resulting curves for the probability of discrimination using the two filter
sets are shown in figure 6.21. Also in the same graph there is a third curve
which shows the probability of discrimination before the training. We can see, in
th a t figure, th a t there is a significant increase in the probability of discrimination
after the training whichever of the two sets of filters we use. However, the filters
obtained with the SS algorithm are slightly more tolerant to noise.

The plot of the dynamic range versus the signal to noise ratio, again using
both filter sets, is shown in figure 6.22. As with the probability of discrimination
graph, the dynamic range graph shows us tha t the filters obtained with the SS
algorithm are a bit more (maximum difference between two sets of filters ~1 dB)
noise tolerant. Obviously for small amounts of noise the filters obtained with the
m atrix method (equation 5.55) yield better dynamic range results because they are
completely orthogonal to the input patterns. How can these results be explained?
It may be th a t completely cross-orthogonalising the filters to the patterns is not
the best solution after all. Maybe the m atrix method results in some kind of over­
fitting to the training data which makes the final filters less able to generalise and.

106

6.5. OPTIMISATION OF NUMBER OF ITERATIONS FOR THE
SIM ILARITY SUPPRESSION ALGORITHM

Before training
- - After training (matrix)
 After training (alg)

« 5 0

c 40

o 3 0

20

o 10

- 1 (
Input signal to noise ratio (dB)

Figure 6 .2 2 : Dynamic range of the recognition system as a function of the signal
to noise ratio.

therefore, less tolerant to input noise.

6.5 Optimisation of number of iterations for the
similarity suppression algorithm

The results shown in the previous section motivated us to investigate the noise
tolerance of the various sets of filters obtained when using the SS algorithm and
allowing it to run for different numbers of iterations. To do tha t we used the SS
algorithm to train the filters for the binary, bipolar patterns in our first training
set and during the training, after each iteration, we calculated the probability
of discrimination and the dynamic range required for correct discrimination with
the newly produced set of filters. Each time the same amount of random noise
was added to the input. As before the noise was analogue, normally distributed,
with zero mean and with constant variance equal to 1. The probability of
discrimination versus iteration number is shown in figure 6.23. We can see th a t
there is a sharp increase of the probability of discrimination in the first iterations
and then the probability of discrimination decreases, until it finally converges to
a relatively constant level. The dynamic range required by the optical system
for correct discrimination versus iteration number is shown in figure 6.24. As we
can see the required dynamic range decreases very quickly and after the first few
iterations it converges to a constant level. The first ten points of the two previous

107

6. 5. OPTIMISATION OF NUMBER OF ITERATIONS FOR THE
SIM ILARITY SUPPRESSION ALGORITHM

500 1000
Iteration num ber

1500

Figure 6.23: Probability of discrimination versus number of iterations.

500 1000
Iteration num ber

1500

Figure 6.24: Dynamic range of the recognition system versus number of iterations.

108

6.5. OPTIMISATION OF NUMBER OF ITERATIONS FOR THE
SIM ILARITY SUPPRESSION ALGORITHM

Iteration N um ber

Figure 6.25: Probability of discrimination versus number of iterations for the first
1 0 iterations.

graphs can be seen in figures 6.25 and 6.26. In figure 6.25 we can see th a t the
the probability of discrimination reaches a maximum at the second iteration and
then it decreases. In hgure 6.26 we can see tha t the dynamic range required by an
optical recognition system decreases sharply in the first two iterations and then
it gradually stabilises.

We then calculated the probability of discrimination and the dynamic range
required by the optical system for correct discrimination using the filters obtained
after the first few iterations. The corresponding graphs for the probability of
discrimination can be seen in figure 6.27. As we can see from the probability of
discrimination curves, the filters produced after only 2 or 4 iterations perform
slightly worse for a higher signal to noise ratio but as the SNR worsens, these

filters perform better than the ones obtained after the algorithm has converged
completely (after around 1500 iterations) and better than the ones which are
calculated using the m atrix method of equation 5.55. In figure 6.28 we have
plotted the difference between the probability of discrimination when using the
filters produced after 2 iterations of the algorithm and when using the filters
produced after 1500 iterations. The other curve in the same graph is the difference
between the probability of discrimination when using the filters produced after 2

iterations and the filters produced with the m atrix method. We can see in figure
6.28 th a t the largest benefit, 29%, in using the filters produced after two iterations
is with an SNR of about 0 dB. When the SNR is about 6 dB it is better to use

109

6.5. OPTIMISATION OF NUMBER OF ITERATIONS FOR THE
SIM ILARITY SUPPRESSION ALGORITHM

^30

§>20

® 10

Iteration N um ber

Figure 6.26: Dynamic range of the recognition system versus number of iterations
for the first 1 0 iterations.

100
- - 2 iterations

4 iterations
 1500 iterations
 matrix m ettiod

90

I
I
1
o

qI

- 1 (

Input signal to noise ratio (dB)

Figure 6.27: Probability of discrimination as a function of the signal to noise ratio.

110

6.5. OPTIMISATION OF NUMBER OF ITERATIONS FOR THE
SIM ILARITY SUPPRESSION ALGORITHM

CO 15

^ 1 0

-5 -K
Input signal to noise ratio (dB)

Figure 6.28: Probability of discrimination difference as a function of the signal to
noise ratio.

the hlters produced after 1500 iterations.
How can this improved performance, in terms of probability of discrimination

in the second iteration, be explained? In figure 6.29 we plot the second training
pattern and the corresponding filter in the first four and in the final iteration.
In addition, in figure 6.30 we plot the differences between the individual pixels
of hlter 2 in the first four and in the final iteration. We can see in the two
figures, tha t there is a big change in filter 2 in the first iteration (before the
training, filter 2 is identical to the second training pattern). Some pixels take
large positive or negative values and we can assume th a t these pixels define the
features of this particular training pattern. In the next three iterations there
is a steady, gradual enhancement of the same features as we can see both in
hgure 6.29 and in hgure 6.30 where the pixel differences from one iteration to the

next are shown. In hgure 6.31 we can see the cross-inner product m atrix before
the training, in the hrst four iterations and after 1500 iterations. The m atrix is
depicted from the side to enable us to see the negative cross-inner products. We
can see tha t initially there are cross-inner products with large positive values. In
the hrst iteration the cross-inner products are reduced considerably and some of
them increase, but with a negative sign. In the next three iterations, the main
feature, apart from the reduction of the positive values, is the increase of the
negative cross-inner products. However, all of the cross-inner products, positive
and negative have almost disappeared in the hnal iteration. Although interesting.

111

6.5. OPTIMISATION OF NUMBER OF ITERATIONS FOR THE
SIM ILARITY SUPPRESSION ALGORITHM

2 0 -,

1 0 -

0 -

-1 0

-20

(a) Training pattern 2 (b) Filter 2 after 1 iteration

(c) Filter 2 after 2 iterations (d) Filter 2 after 3 iterations

(e) Filter 2 after 4 iterations (f) Filter 2 after 1500 iterations

Figure 6.29: Pixel values of pattern 2 and filter 2 in the first 4 and the final

iteration.

112

6.5. OPTIMISATION OF NUMBER OF ITERATIONS FOR THE
SIM ILARITY SUPPRESSION ALGORITHM

- 10 -

(a) Differences between filter 2 in the
2" ̂ and 1*̂ iterations.

(b) Differences between filter 2 in the
and 2^ ^ iterations.

œ 10

(c) Differences between filter 2 in the
and 3’’̂ ̂ iterations.

(d) Differences between filter 2 in the
1500* ̂ and 2”^̂ iterations.

Figure 6.30: Differences between pixel values of the second filter in various itera­
tions.

113

6.5. OPTIMISATION OF NUMBER OF ITERATIONS FOR THE
__SIM ILARITY SUPPRESSION ALGORITHM

the previous observations do not shed light on the question of why the probability
of discrimination is highest in the second iteration and not in the first or the th ird
for example. There are no sharp changes either in the filters themselves, or in the
cross-inner product m atrix between the first and the third iterations. The negative
cross-inner products may play a role but th a t role is not clear from the d a ta we

have here. However, we can explain why the system performs better in the initial
iterations compared to the final iterations. Subfigure (b) in figure 6.31 shows th a t
the cross-inner products decrease rapidly from the first iteration. Therefore, we
can expect a higher probability of discrimination in the first iteration compared
to the untrained filters. Then, as the algorithm converges, the filters become
“over-trained” and they are less tolerant to input noise. The data we have here,
however, does not help explain why the probability of discrimination maximum
occurs in the second iteration and not in the th ird for example. And although we
guess th a t the same thing will happen with other training sets as well, we have no
m ethod of predicting the exact iteration at which the system ’s performance will
be optimised.

The dynamic range curves comparing the performance of the filters after 2, 4
and 1500 iterations with the performance of the filters calculated with the m atrix
method, are shown in figure 6.32 and are what one would have predicted based on
the knowledge gained from the probability of discrimination curves. The filters
which are obtained with the m atrix method give the lowest required dynamic
range for high SNR since they are orthogonal to the input patterns. However,
as the SNR decreases the curves meet and a t very high noise levels the filters
obtained after only 2 or 4 iterations perform slightly better.

Before we discuss the trade-off between probability of discrimination and dy­
namic range, we are going to investigate the height of the outer products of the
correlations when the 2 iteration filters are used. In figures 6.33, 6.34 and 6.35 we
can see the correlation plane intensities for the correlations between some of the
input patterns and the filters produced with the SS algorithm after two iterations.
In the same figures we have also included the corresponding correlations with the
filters th a t were produced after 1500 iterations of the SS algorithm. We have
shown these 1500 iteration graphs before in section 6.2.4 but we plot them again
here so th a t the reader can make a comparison. Specifically, in figure 6.33 we can
see the correlations between the first training pattern Si and the corresponding
filter gi. Subfigure (a) shows the correlation of Si with the filter, gi, obtained
after 1500 iterations and subfigure (b) shows the correlation of Si with the filter.

114

6.5. OPTIMISATION OF NUMBER OF ITERATIONS FOR THE
SIM ILARITY SUPPRESSION ALGORITHM

1-
0 .8 -

0 .6 -

0 .4 -

0 .2 -

0 -

- 0 .2 -

- 0 .4 -

- 0.6

—I—r~
30 30

(a) C.i.p. matrix before the training (b) C.i.p. matrix after 1 iteration

1̂
0 .8 -

0 .6 -

I 0 .4 -

I
0 .2 -

0 -

- 0 .2 -

- 0 .4 -

- 0 .6 ^

- 0.8 — I----------- 1----------- 1----------- 1----------- 1------- 1—
10 15 20 25 30 30

1 - |

0.8 -

0 .6 -

i :
1 0 -

i-0.2-
-0 .4 -

- 0 .6 -

- 0.8
10 15 20 25 30 30

(c) C.i.p. matrix after 2 iterations (d) C.i.p. matrix after 3 iterations

In
0.8

0 .6 -

0 .4 -

0.2

0-J

- 0 .4 -

- 0.6 -

- 0.8

0 .6 -

0 .4 -

0.2-

0 -

i -0.2 -

-0 .4

- 0 .6 -

10 15 20 25
—I—r~

30 30
- 0.8 1 ----1----1----1----1----1—r—

5 10 15 20 25 30 30

(e) C.i.p. matrix after 4 iterations (f) C.i.p. matrix after 1500 iterations

Figure 6.31: Cross-inner product m atrix before the training, in the first 4 and
in the final iteration. The m atrix is depicted from the side. C.i.p.: Cross-inner
product.

115

6. 5. OPTIMISATION OF NUMBER OF ITERATIONS FOR THE
SIM ILARITY SUPPRESSION ALGORITHM

- - 2 iterations
4 iterations

 1500 iterations
 matrix m ethod

geo

&30

1 20

- 5 -1C
Input signal to noise ratio (dB)

Figure 6.32: Dynamic range of the recognition system as a function of the signal
to noise ratio.

g i, obtained after 2 iterations. We can see in figure 6.33 th a t the outer products
are lower when the filter obtained after 2 iterations is used. In fact, none of the
outer products is now higher than 50% of the correlation peak compared to more
than 70% of the correlation peak with the filter obtained after 1500 iterations.
This is a very im portant improvement because now we can not only correctly
recognise the pattern, but also locate it in the input scene if its exact location is
not known. In addition, we can see tha t the correlation peak is sharp. This is
im portant when more than one target exist in the input scene, in which case the
two or more peaks will be distinguishable even if one is near the other.

Subfigure 6 .34-(a) shows the intensity of the correlation between the first tra in­
ing pattern, Si and the second filter, g 2 obtained after 1500 iterations. Subfigure
6.34-(b) shows the intensity for the same correlation but with the filter g 2 ob­
tained after 2 iterations only. Again, the outer products are lower when the filter
which was obtained after 2 iterations is used. The reduction of the outer prod­
ucts is even more prominent in figure 6.35, which shows the correlation between
the seventh training pattern, S7 and the first filter, g i, obtained after 1500 it­
erations (subfigure 6.35-(a)) and after 2 iterations (subfigure 6.35-(b)). None of
the outer products is higher than 50% of the auto-correlation peak value, when
the 2 iteration filters are used, while with the 1500 iteration filters there where
outer products which were as high as 80% of the auto-correlation peak value. This
reduction of the outer products allows us to use the filters obtained with the SS

116

6.5. OPTIMISATION OF NUMBER OF ITERATIONS FOR THE
SIM ILARITY SUPPRESSION ALGORITHM

= 0.4

0 0

(a) Si (8) g i, 1500 iterations,
PCE=0.027

(b) Si 0 g i, 2 iterations, PCE=0.1

Figure 6.33: Correlation plane intensity for correlation between pattern 1 and

filter 1 after 1500 and after 2 iterations.

0 0

(a) Si 0 g 2 , 1500 iterations (b) Si 0 g 2 , 2 iterations

Figure 6.34: Correlation plane intensity for correlations between pattern 1 and
filter 2 after 1500 and after 2 iterations.

117

6.5. OPTIMISATION OF NUMBER OF ITERATIONS FOR THE
SIM ILARITY SUPPRESSION ALGORITHM

0 0

(a) S7 0 g i, 1500 iterations (b) S7 0 g i , 2 iterations

Figure 6.35: Correlation plane intensity for correlations between pattern 7 and
filter 1 after 1500 and after 2 iterations.

algorithm after 2 iterations to recognise or discriminate input patterns even when
the exact location of the object in the input scene is not known, a t least when no
noise is present in the input.

So from the two graphs, the one for the probability of discrimination (figure
6.25) and the one for the dynamic range (figure 6.26), we can see tha t there is a
trade-off between probability of discrimination and dynamic range. If the dynamic
range of the system is absolutely critical, then one can choose to use the filters
which are completely cross-orthogonal to the input images, thus minimising the
required dynamic range at the expense of probability of discrimination at higher
noise levels. In the opposite case when one wants to maximise the probability
of discrimination, then the filters obtained after only 2 iterations give the best
results of all. Another consideration is the type and amount of noise present. If
the main type of noise present is system noise then dynamic range is critical and
the filters created with the m atrix method may be the best choice. If on the other
hand, there is a lot of input noise and not a lot of system noise then one can
sacrifice dynamic range for a higher tolerance to input noise which is provided by
the filters produced after only 2 iterations. In addition, our final decision of which
filter to use must also take account of the height of the outer products. When the
exact location of the object in the input scene is not known, it is better to use
the filters produced with the SS algorithm after 2 iterations, even if the dynamic
range required by the recognition system is higher. We summarise the previous
conclusions in table 6 . 2

118

6.6. CONCLUSIONS

SS - LCF COMPARISON

Use the H.I.N. L.I.N. H.D.R. L.D.R. Loc. High Disc. High Rec.
SS 2 i. V V V
LCF V V V

Table 6 .2 : Comparison between the filters produced with the SS algorithm after
2 iterations and the LCFs. SS 2 i.: SS algorithm 2 iterations, H.I.N.: High input
noise, L.I.N.: Low input noise, H.D.R.: High required dynamic range, L.D.R.:
Low required dynamic range, Loc.: Location detection. High Disc.: High Dis­
crimination ability. High Rec.: High recognition ability

6.6 Conclusions

In this chapter we presented the computer simulations for the SS algorithm. We
started by showing th a t the algorithm is actually doing what it is intended to do,
th a t is, it is reducing the cross-inner products between filters and patterns th a t
do not correspond to them, while it keeps the auto-inner products stable. We
saw th a t the convergence param eter has a strong infiuence on the convergence
speed and on the final result. In general the algorithm converges when ^ takes
values around 1. However, values a lot smaller than th a t can make the algorithm
too slow, and values a lot larger than th a t can lead to oscillations. The first
few hundreds of iterations are usually enough for the algorithm to converge to
a sufficiently good solution. The normalisation step is very im portant and also
has a strong influence on the final result. If it is not used, then the auto-inner
products do not remain stable and decrease as the filters are weakened from the
continuous subtractions. W hen the normalisation step is used, the auto-inner
products remain stable at the desired level, but some of the filters are strengthened
unevenly compared to some others, and as a result there is a bias towards them
when random patterns or noise is input into the system. The algorithm also
effects the outer products of the correlations between the filters and the patterns.
The algorithm places no constraint on them, so they increase as the filters are
amplified during normalisation. This has the direct consequence th a t the PCE
of the correlations with the filters decreases, compared to th a t of the correlations

with the initial patterns.
The motivation behind the development of the algorithm was to be able to

discriminate amongst similar patterns which were buried in noise. In the second
section of this chapter we tested the filters produced by the SS algorithm in

119

6.6. CONCLUSIONS

discriminating between patterns with additive input noise. The input SNR varied
from 20 to -10 dB and we saw th a t the filters were tolerant to 7 dB more input
noise compared to the initial patterns. Another im portant m atter is the dynamic
range of the optical system compared to the dynamic range th a t is required for
correct discrimination. Usually after an optical system is built, i t ’s dynamic range
is fixed and cannot be increased, as a m atter of fact it usually decreases due to
dirt, vibrations, etc. Therefore, it is im portant to minimise the dynamic range
th a t is required for correct discrimination. We saw th a t when using the filters,
the required dynamic range is reduced by as much as 25 dB for th a t particular
training set.

In section 6.4 we verified the conclusions of the theoretical comparison between
the SS algorithm and the linear combination filters. The algorithm converges
towards the same solution as the one provided with the m atrix method. The
filters th a t were produced by the SS algorithm after 1500 iterations were very
similar to the filters produced using Caulfield’s method. They were not identical,
however, and when the two sets of filters were compared with respect to the
probability of discrimination and dynamic range, the filters which were produced
using the SS algorithm performed slightly better. This led us to think th a t it may
be better not to allow the algorithm to converge fully because in th a t case the
filters may be over-fitted to the patterns in the training set and th a t may make
them less tolerant to noise. In the final section of the chapter we compared the
filters produced only after the first few iterations to all of the other filters produced
so far. The filters which were produced after only 2 iterations performed a lot
better as far as probability of discrimination was concerned, particularly for high
additive noise. Of course the required dynamic range when using these filter
was higher because they were not allowed to become orthogonal to the training
patterns. In addition, the filters produced after 2 iterations produced lower side-
lobes compared to the filters produced after 1500 iterations. T hat allows us to use
them even when the exact location of the object in the input scene is not known.
One can make a choice of which filters to use, based on the application a t hand,
the amount of noise in the input and the amount of system noise. If the optical
system has a low dynamic range then the filters produced with the m atrix m ethod
may be the best choice because they are orthogonal to the input patterns and,
therefore, require the minimum dynamic range. If, on the other hand, dynamic
range is not critical and the inputs are buried in a lot of additive noise, or if the
location of the object in the input scene is not known, then the filters produced by

120

6.6. CONCLUSIONS

the SS algorithm after only 2 iterations are the best choice. For any requirements
in between (lower required dynamic range - higher probability of discrimination)
one can produce the appropriate filters by stoping the algorithm after a certain
number of iterations.

The filters produced by the SS algorithm are very good at recognising the
patterns from which they were derived. In many cases, however, two different
patterns may represent the same object, for example two photographs of the same
person, and the filters produced by the SS algorithm are designed to recognise one
of these patterns only and reject all of the others. In the next chapter we present
the Feature Enhancement and Similarity Suppression (FESS) algorithm which
deals with such cases.

121

Chapter 7

Feature Enhancement and
Similarity Suppression filter
design algorithm

7.1 Introduction

In chapters 5 and 6 we developed the similarity suppression algorithm and tested
it using computer simulations. Each of the filters designed by the SS algorithm
can recognise one specific pattern. In some cases it is necessary to design a filter,
which can recognise a group of patterns. In this chapter we introduce the Fea­
ture Enhancement and Similarity Suppression (FESS) algorithm which designs
such filters. In the next section (section 7.2) we present the motivation for the
development of the FESS algorithm and we describe how it is derived from the SS
algorithm. Section 7.3 compares the FESS algorithm to other filter design tech­
niques. The final section (section 7.4) of the chapter presents the expansion of the
FESS algorithm to more than 1 layer. This whole chapter is a theoretical analysis
of the FESS algorithm. The next chapter contains the corresponding computer
simulations, which validate the theory.

7.2 Derivation of the Feature Enhancement and
Similarity Suppression Algorithm

We will s tart by defining some terms which are necessary for the description of
the FESS algorithm.

122

7.2. DERIVATION OF THE FEATURE ENHANCEMENT AND
__SIM ILARITY SUPPRESSION ALGORITHM

• Class: A group of objects, which fall under the same category and have some
common characteristics. For example: doors belong in a class, chairs in
another, people in another, etc. In pattern recognition, a group of patterns,
which represent the same thing. For example: different photographs of the
same person, different views of an airplane, etc.

• Class representative filter: A filter specially designed to recognise patterns,
which belong to a specific class.

• Auto-inner products: Inner products between the class representative filter
and all of the patterns th a t belong to the corresponding class.

• Cross-inner products: Inner products between the class representative filter
and all of the patterns th a t belong to other classes.

Where possible, we are going to use the same notation as in the previous chapters
but some additional symbols need to be introduced. All of the training patterns
are going to be denoted by Sj, i = 1 , . . . , M , where M is the to ta l number of tra in ­
ing patterns. N denotes the number of pixels in the patterns and the filters. The
filters themselves are denoted by g. K denotes the number of classes. Each class i
contains Li training patterns. Obviously Li = M. The training patterns will
be denoted with a second index on some occasions i = 1, . . . K , j = 1 , . . . Lj.
In th a t case, the first index refers to the class th a t the pattern belongs to and the
second is the pattern number in th a t class.

7.2 .1 B asic a lgorithm

The SS algorithm designs filters th a t have a high inner product with only one
pattern and are orthogonal to all of the other training patterns. This means
th a t the number of filters is equal to the number of training images. In many
real life situations however, a single object can be represented by many slightly,
or very, different patterns. For example, a recognition system might need to
recognise rotated, scaled or shifted views of an object. There are filters designed
specifically for rotation invariance [63, 67, 105] or scale invariance [106, 107], and
translation invariance is an inherent characteristic of many optical correlators,
but the recognition problem gets a lot more complicated when the three types of
distortion are combined. In addition, there are other kinds of distortions which are
found in three dimensional objects and which are a lot more difficult to describe
and analyse mathematically. A typical example is the human face, which can be

123

7.2. DERIVATION OF THE FEATURE ENHANCEMENT AND
__SIM ILARITY SUPPRESSION ALGORITHM

distorted in an infinite number of ways due to changes of expression, changes of the
physical characteristics, etc. The problem becomes even more complicated when
more than one class needs to be recognised. For example, in face recognition each
person is a class, which contains many different patterns, which are distorted views
of the same face. If we were to design filters for such a recognition problem using
the SS algorithm, we would need to create one filter for each possible distorted
view of the object th a t we were trying to recognise. This is not only unfeasible
for most real life situations, but also impractical as a very large number of filters
would have to be created and every input pattern would have to be compared to
each and every one of them.

The ideal solution, provided by the SDF approach [74] (section 3.4), is to
create one filter, which correctly recognises all of the input patterns of all classes.
This filter has to produce a different output inner product magnitude value for
each class. In addition, this output value has to be the same for all of the patterns
th a t belong to a single class. The performance of such a filter depends on several
parameters. First of all on the similarity between the patterns of the various
classes. It is easier to design a filter which has the same inner product value with
several different patterns when these patterns are similar than when these are very
different to each other. Secondly, on the number of classes to be recognised and
on the dynamic range of the optical system. The dynamic range required by the
recognition system increases with the number of classes. The required dynamic
range is equal to —20 lo g (l/i^), where K is the number of classes, and is very
small for two classes, goes up to 20 dB for 10 classes, 40 dB for 100 classes and
so on. Therefore, the actual dynamic range of the recognition system limits the
number of classes th a t can be recognised by one filter. Of course these calculations
were done for a completely noiseless system, which is not really feasible. In reality
such a filter will not work for more than a few classes (less than 1 0) and most such
filters are designed for two or three classes [77]. Braunecker et. al. [75] (section
3.4) proposed the use of L = logg 7T filters for the recognition of K classes and
Mui et. al. [108] proposed a technique based on a tree structure where each filter
would have to discriminate between two classes. Caulfield proposed the use of one

filter for each class [73].
We have chosen to use one filter for each class. The filter only has to distinguish

the patterns th a t belong to the class it represents from all of the other patterns
which are members of the other classes. Therefore, only two output values are
needed. This minimises the required dynamic range of each detector and the only

124

7.2. DERIVATION OF THE FEATURE ENHANCEMENT AND
___ SIM ILARITY SUPPRESSION ALGORITHM

problem remaining is to design the filter so th a t it produces the desired outputs
with all of the patterns. Of course the number of the filters used can become very
large if the number of classes is large but in such cases a single filter would not
work anyway. Our technique can be easily modified to design filters th a t recognise
more than one class. However, in this and the following chapter we are going to
focus our attention on filters th a t only recognise one class.

So the filters th a t we want to design must have the following characteristics:

i. Each class representative filter must have constant, high auto-inner products
with all of the patterns in its class.

ii. Each class representative filter must have very low cross-inner products with
all of the patterns not in its class.

The SS algorithm can be used to reduce the cross-inner products by subtracting
the training patterns, which belong to other classes, from each filter. However, if
all of the training patterns in all of the classes are similar to each other, then these
subtractions are going to reduce the auto-inner products. We need to modify the
algorithm a little so th a t a t the same time it enlarges the auto-inner products.
We saw in chapter 5 th a t cross-inner products can be reduced using weighted
subtraction. Based on the same logic we can increase the auto-inner products
using weighted addition. The idea is to add at every iteration all of the training
patterns in the class to the class representative filter.

= gj* + ^''WjiSji + . . . + ^'WjLjSjLj (7.1)

/3' is a convergence param eter which we are going to analyse in more detail in the
next section. Wji are the weights. The superscript i denotes the iteration number.
Our aim when adding the patterns to the class representative filter is to copy
their features into it. In order for all of the auto-inner products to become almost
equal, the filter must be shifted in pattern-space towards the centre of the area,
which is formed by the patterns it represents. In addition, the filter will have the
smallest auto-inner products with the training patterns th a t are most different to
it, so their weight in the addition must be the largest. Conversely, if a pattern is
already similar to the class representative filter, their inner product will be large
and doesn’t need to increase any more, so the addition weight needs to be small.
We may rewrite equation 7.1 in the following manner

g f = g^" + P ' (P - gr '> • s,)s, + . . . + 13'{ P - gf-') •
(7 .2)

125

7.2. DERIVATION OF THE FEATURE ENHANCEMENT AND
__SIM ILARITY SUPPRESSION ALGORITHM

In equation 7.2 the weights of the additions depend on the similarity between the
filter and the pattern. If a pattern is already similar to the filter, the corresponding
auto-inner product will be high and the difference from the normalised auto-inner
product value, P , will be small. If the pattern is different, the difference between
P and the corresponding auto-inner product will be large and the pattern will
be amplified before it is added to the class representative filter. If an auto-inner
product between the filter and one of the training patterns is negative, then its
absolute value will be added to P and, therefore, the pattern will be added to the
filter with a strong weight. T hat will make the filter more similar to the pattern
until eventually their inner product becomes positive. So the algorithm can be
described by the following equations which are both used a t each iteration

i ?’ = T ((7 . 3)
r = l k = l L)

sf = E { f - (7.4)

where (just a notation reminder) K denotes the to ta l number of classes, denotes
the number of training patterns in the r class, Lj denotes the number of training
patterns in the jth class and Sjk is the kth training pattern in the jth class. The tilde
over the symbol of the new filters shows th a t the filters are not yet normalised.
Equation 7.3 is the SS algorithm applied to all of the patterns of all of the other
classes, w ithout the normalisation.

We know from the analysis of the SS algorithm th a t unless we normalise the
filters at every iteration, their magnitudes are going to decrease due to the contin­
uous subtractions. Consequently equation 7.3 will have the same effect on these
filters, i.e. their magnitudes are going to decrease. The FESS algorithm, however,
adds some patterns to the filters and obviously equation 7.4 will have the opposite
effect on the filters, i.e. it increases their magnitudes.

The filter’s magnitudes are going to increase or decrease depending on the
number of patterns and on the similarity between patterns. Usually, but not
always, the patterns th a t belong to each class will be a subset of the to ta l training
set so in most cases the number of patterns th a t are subtracted from the filter
will be larger than the number of patterns th a t are added to it. In addition, if
we assume th a t a t the beginning of the training most of the patterns are similar,
then the subtraction weights are going to be larger than the addition weights.
Hence the effect of the subtractions will be stronger than th a t of the additions

126

7.2. DERIVATION OF THE FEATURE ENHANCEMENT AND
__SIM ILARITY SUPPRESSION ALGORITHM

and the filter’s magnitudes are going to decreased We may be able to alleviate
with a careful choice of the two convergence parameters, jd[and /?2 - In th a t case,
a normalisation of the filters’ magnitudes should not be necessary. However, if
the filters’ magnitudes cannot be stabilised th a t way, then a normalisation step is
necessary after each iteration.

As we said earlier, in the SS algorithm there was a straightforward solution to
th a t problem, and th a t was to normalise the auto-inner product between the filter
and the pattern it represented to the desired value using equation 5.17 which we
rewrite here

(7.5)
g) -Sj

We cannot do the same thing here. If we normalise the auto-inner product of
the class representative filter with one of the patterns in the class, then all of the
other auto-inner products will be different, usually lower, because if gj • Sjk = P
then gj • Sji / P , for V/ / k. Another solution is to normalise the inner product
between the filter and the mean of all of the patterns in the class:

gf = g f 4 A ^ (7 6)
g) -Sj

where

1
= (7.7)

k=l

However, if the training patterns are all very similar then by doing th a t we will
probably increase all of the cross-inner products as well. This may happen because
the mean pattern Sj may also be similar to patterns which belong to other classes.
We chose to normalise the filters to themselves to keep their magnitudes stable and
equal to the m agnitude of the training patterns, P , using equation 7.8, because
by doing th a t we avoid any bias towards any specific filter.

40 _ %(:, i i g p ' i i
V - G;

l l i f l l
— (i) P

= g) '
i i i f i r

assuming
(7.8)

= P

By using equation 7.8 together with equations 7.3 and 7.4, we keep all of the
filters normalised, and with the additions and the subtractions we move them in

^The corresponding mathematical analysis is presented in appendix B

127

7.2. DERIVATION OF THE FEATURE ENHANCEMENT AND
__SIM ILARITY SUPPRESSION ALGORITHM

N-dimensional space, until their position is such th a t the auto-inner products are
maximised and the cross-inner products are minimised.

One final issue th a t needs to be addressed a t this stage is the initial value of
each of the class representative filters. Each of the filters can initially be one of

the patterns th a t belong to the corresponding class. Or it can be equal to the
mean of all of the patterns th a t belong to the corresponding class. Or it can be
random. In the next chapter we are going to compare the results for these initial
filter values. So, to summarise, the FESS algorithm is described by the following
equations:

i f =

i f = gj

A= 1 V
, , K Lr ((*-1) J

j • Sjü \sjk

s f = s f a

(7.9)

(7.10)

(7.11)

We deliberately wrote equations 7.3 and 7.4 in the opposite order (equations 7.9,
7.10) because we want to point out th a t the order in which these equations are
applied does not m atter as long as they are both applied a t each iteration before
the normalisation.

7.2 .2 A dvanced a lgorithm w ith im proved con vergen ce

param eters

Based on the analysis presented in section 5.2.3, we chose the following values for
the convergence param eter in each equation so th a t it is inversely proportional to
the to ta l number of training patters used in th a t equation, times the square of
the power, P, of the normalised patterns.

1

A = f t

LjP^ P - • Sj.

(M - Lj)P^

(7.12)

(7.13)

128

7.3. COMPARISON OF THE FESS ALGORITHM W ITH RELEVANT
FILTER DESIGN AND NEURAL NETW O RK TRAINING ALGORITHMS

and after inserting the convergence parameters described in the previous equations
the final algorithm is:

Li
+ (7,14)

^ - (M - %) P 2 1 1 { ^ (^15)

® a I '

s (i) (i - 1) _________A ^ ^

r^j

In the ± sign in equation 7.15, the plus sign is used when > 0 and

the minus sign is used when < 0. The param eters A and f t take
small values around 1 .

7.3 Comparison of the FESS algorithm w ith rel­
evant filter design and neural network train­
ing algorithms

In the previous section (section 7.2) we described the FESS algorithm. In this
section we are going to compare the FESS algorithm with some relevant filter
design techniques and neural network training algorithms. These comparisons are
going to help us study the relationship between the FESS and other algorithms
and find its advantages and disadvantages. Our aim is to gain a better insight
and improve our algorithm.

7.3.1 C om parison o f th e FE SS a lgorith m w ith th e

Sim ilarity S uppression A lgorith m

We have already described how the FESS algorithm is an extension of the SS
algorithm. To compare the FESS algorithm with the SS algorithm we are first
going to combine the two equations describing the FESS algorithm (7.3 and 7.4)
into one, equation 7.17. It can be written as follows:

M (\

- /Î è (7.17)

where /? is the convergence parameter, and djk is the desired value for each inner
product. If we substitute djk — P for the training patterns th a t belong to class

129

7.3 . COMPARISON OF THE FESS ALGORITHM W ITH RELEVANT
FILTER DESIGN AND NEURAL N ETW O RK TRAINING ALGORITHMS

j and djk = 0 for the training patterns Sk th a t don’t belong to class j , equation
7.17 can be split back to equations 7.3 and 7.4.

Equation 7.17 is a supervised version of the SS algorithm (equation 5.19),
which we rewrite here

i f = g f ' ’ - /5" E { s f '* • S t j s t (7.18)

This can be easily seen if we consider th a t in the SS algorithm the desired value
for all of the cross inner products {k ^ j in equation 7.17) is zero. Therefore,
\fk / j equation 7.17 becomes

g f = gj‘“ ' ̂ - /5 E • s t j s t (7.19)

which is the same as equation 7.18. W hen k = j in equation 7.17, the pattern Sk
which is subtracted is the one tha t corresponds to the filter gj and in th a t case the
desired value for the auto-inner product is equal to P. However, the auto-inner
product • Sk=j is already equal to P because the normalisation equation
(in the SS algorithm) set it to th a t value in the previous iteration. Therefore,
the whole term • Sk=j — djk is equal to zero and the pattern Sk=j is not
subtracted from the filter gj. There are, however, some differences between the
two algorithms:

• The initial filters for the SS algorithm are the training patterns. For the
FESS algorithm the initial filters can be one of the training patterns of each
class, or the average of the training patterns of each class, or random. In the
first case the choice of which pattern to use as the initial filter for each class,
could be random. The second choice at least ensures th a t the initial filter is
going to contain the features of all of the patterns in the class. However, if

the training patterns are very similar, there is not much difference between
the two cases.

• Both algorithms move the filters in N-dimensional space until the constraints
th a t they impose are satisfied. These constraints are different for each al­
gorithm. The FESS algorithm imposes the constraint th a t the filter must
contain all of the features of the patterns of the class it represents. It is
this constraint th a t forces the auto-inner products to converge to the de­

sired value and not the normalisation step. The SS algorithm forces each

130

7.3. COMPARISON OF THE FESS ALGORITHM W ITH RELEVANT
FILTER DESIGN AND NEURAL NETW O RK TRAINING ALGORITHMS

of the filters to become orthogonal to all of the other training patterns, the
ones it does not represent. Initially each of the filters is made identical to
the pattern it represents. After tha t, however, the SS algorithm equations
do not force any of the filters to keep any of the features of the pattern

they represent. The normalisation step ensures th a t the auto-inner product
between the filter and the pattern it represents has the correct value. This
indicates th a t the filter th a t is created by the SS algorithm does not need to
contain any features of the pattern it represents. However, we have not yet
conducted any simulations which prove the previous argument.

• The SS algorithm normalises the inner product between the filter and the
pattern it represents. The FESS algorithm normalises the filter itself to the
mean power of all of the training patterns.

The FESS algorithm, like the SS algorithm, can cross-orthogonalise the filters
to the training patterns th a t belong to other classes. Since we are normalising
the magnitude of each of the filters to the normalised power of all of the training
patterns, P, th a t is gj • gj = P, Vj, it is not possible for the algorithm to force all
of the auto-inner products to converge to P. They will converge to a value which
is lower than P, because if gj *gj = P, Vj and s&'S& = P, V/c, then gj *Sfc < P, Vj, k.
This means th a t a higher dynamic range will be required by the recognition system
compared to the dynamic range th a t is required when the SS algorithm is used.
The advantage when using the FESS algorithm is the lower number of filters
necessary for recognition.

7.3 .2 C om parison o f th e FE SS a lgorith m w ith S y n th e tic

D iscrim in ant F unctions

We saw in section 5.4.2 th a t the SS algorithm converges to the same solution th a t is
provided by the m ethod proposed by Caulfield and Maloney for designing mutually
orthogonal linear combination filters. In this section we are going to investigate
the relationship between the FESS algorithm and synthetic discriminant functions.
The FESS algorithm can be seen as a more general version of the SS algorithm
and following a similar analysis to the one we followed for the SS algorithm we

131

7.3. COMPARISON OF THE FESS ALGORITHM W ITH RELEVANT
FILTER DESIGN AND NEURAL NETW O RK TRAINING ALGORITHMS

can derive the filters by solving a similar set of linear equations:

C ' l i S i + C 1 2 S 2 + • • • + G i m ^ m — g i

C 2 1 S 1 + C 2 2 S 2 + • • • + G 2 M S M = g 2

C'iClSi + G k 2 2̂ + • • • + G k m Sm = giC

(7.20)

where M is the to ta l number of training patterns, K is the number of classes and
consequently filters, and each of the coefficients C n , C 1 2 , .. , Ck m is equal to the
sum of all of the individual weights th a t were used for the addition or subtraction
of each of the training images during the training. The constraints th a t the FESS
algorithm imposes on these filters are the following:

g j • Si = P

g i • Si = 0

if Sj 6 class j ,

if Si ^ class j
(7 .2 1)

Equations 7.21 can be written in a m atrix form as follows:

f d n du • diK ^

S2
• (gl g 2 • • Bk) =

^ 2 1 ^ 2 2 ' d2K
(7.22)

\ smj [d u i du2 ' ’ dMKJ

(7.23)

or

S G ^ = D (7 .2 4)

where S is a M x 1 vector whose elements are the training patterns s, G is a x 1

vector whose elements are the class representative filters g and D is a M x ÜT
m atrix whose elements dij are equal to the desired values of the inner products
between pattern s% and filter gj. These values are subject to the constraints shown
in equations 7.21. The set of equations 7.20 can also be w ritten in a m atrix form

C S = G (7 .2 5)

where C is a Æ x M m atrix whose each element is the corresponding coefficient
Gij. From equations 7.24 and 7.25 we get

T-d - I T (7.26)

132

7.3. COMPARISON OF THE FESS ALGORITHM WITH RELEVANT
FILTER DESIGN AND NEURAL NETW O RK TRAINING ALGORITHMS

NeuronsInputs

Yi

YK

Figure 7.1: A single layer of neurons.

where R = SS^ is the M x M vector-inner product m atrix of the training patterns.
The final class representative filters can be calculated using equations 7.25 and
7.26

G = D 'RT-o-lTi (7.27)

(7.28)

Ecpiation 7.26 is very similar to equation 3.18 which describes the SDF approach
and we rewrite here:

Ra^ = d;

=> = R d;

The main difference is th a t with the SDF method, one filter is synthesised, while
our method creates a number of filters equal to the number of classes. However,
our method reduces to the SDF if one filter is created for all of the classes. In
addition, the FESS algorithm is iterative while the SDF method is not. Equations
7.26 and 7.28 however, show tha t if the number of filters (=1) and the desired
correlation peak values are the same, the FESS algorithm will finally converge to
the solution given by the SDF method. The squares in equations 7.14 and 7.15
can be included in the coefficients Gij without changing the previous results.

7.3 .3 C om parison o f th e FE SS a lgorithm w ith th e su p er­

v ised H ebbian law

In this section we compare the FESS algorithm with the supervised Hebbian law,
which is also called the Widrow-Hoff rule or the delta rule and is described by
equation 4.4 which we rewrite here

Kwjm ni^j yj)^m^

133

0 < ?7 < 1 (7.29)

7.4. EXTENSION OF THE FESS ALGORITHM TO TW O OR MORE
___ CONSECUTIVE BANKS OF CORRELATORS

where (see figure 7.1) Awjm is the change applied to the weight Wjm between
neuron j and the input m, dj is the target value for the output of neuron j , yj,
and Xm is the value of input m. Using our notation we can rewrite equation 7.29
in the following manner:

AÇjm yj)^m (7.30)

and considering th a t yj = gj • s (equation 5.67), the weight update for the whole
weight vector (or filter) g becomes

Ag; = T]{dj - gj • s)s (7.31)

In the batch mode of training, the weight update is described by

M

AWj.jrn Tf ^] jdki Vkj^^km^ 0 <C ?7 ^ 1 (7.32)

In our notation and for the whole weight vector equation 7.32 is written

Ag; = 7 ? ^ I^djk - gj • Sfcjsfc (7.33)

The weight update described in equation 7.33 is identical to th a t given in equation
7.17 which describes the FESS algorithm:

s f = + PY^ldjk- gj'"'' • St W
(7.34)M r N 1

- gj'" • s* jst

since 77 and j3 are both convergence parameters. The two algorithms are equivalent
and will create the same filters if the same target values are given. The only
difference between them stems from the manner of presentation. The Hebbian

law refers to individual weights. The FESS algorithm refers to whole images.

7 .4 Extension of the FESS algorithm to two or
more consecutive banks of correlators

In section 5.5 we used the insight gained in the previous sections (5.4.3 and 5.4.4
to derive a SS algorithm which created filters for two or more cascaded banks of
correlators. In th a t derivation we included the desired values so the derivation

134

7.4. EXTENSION DE THE FESS ALGORITHM TO TWO OR MORE
CONSECUTIVE BANKS OF CORRELATORS

Input

(1),
- ,(1)yi

ji)
(1), Y2

-̂ (1)
())i

ji)
(I), y-r

1 bank of
correlators

(2);
= 1

(2)j
=2

1

(2) g

(2) yi

(2)y2

(2)y^

(2)yK

2 "̂ bank of
correlators

Figure 7.2: Two cascaded banks of correlators.

applies for the FESS algorithm with the following minor changes. In section 5.5
we assumed th a t the number of filters in the output bank was equal to the number
of training patterns. This is not now the case. We now want to design one filter
for each class so the number of filters in the output bank of correlators will be
equal to the number of classes, K .

In figure 7.2 we can see two cascaded banks of correlators. There are T cor­
relators in the first bank and K in the second. The same pattern s is input to
all of the correlators in the first bank. The input to the correlators in the second
bank, which is the same for all of them, is formed by the outputs of the correlators
in the first bank. The correlation peak of each one of them, after the activation
function is applied to it, corresponds to one pixel of the pattern which is input
to the correlators in the second bank. Therefore, the filters in the first bank are
of size TV, where N is the size of the input patterns and the filters in the second
bank are of size T, where T is the number of correlators in the first bank. The
non-linear activation functions are not shown in figure 7.2.

The average squared error is given by the following equation [95]

Emi —
1

2 M

M K
E E

A=1
'Xk (7.35)

where A indicates the filter number in the output bank and k indicates the training
pattern number. The derivation of the filter update equations is exactly the same
as in section 5.5 from this point forward and will not be repeated here. The final

135

7.5 . DISCUSSION AND CONCLUSIONS

filter update equation for the output bank is:

A ^ E (• (')y*) '^>y.
 ̂ ̂ (7.36)

and for the hidden bank the filter update equation is:

^ M M K

A « g ,. = ^ E E E A (7.37)M 2 k'=l jfc=l A=1

where

A = < • ‘‘Vt) I '^VK' '̂gA • *̂’y/t} ®SAi 'St')s&/
(7.38)

Equation 7.36, which describes how the filters in the output bank of correla­
tors must be updated, is very similar to equation 7.17 which describes the FESS
algorithm. The only difference between the two equations is th a t equation 7.36
is more general and takes into account the non-linear activation functions th a t
may exist after each of the correlators. It trains the filters in the second bank to
recognise the output produced by the correlators in the hidden bank. Equation
7.37 updates the filters in the first bank of correlators based on the error of the
correlators in the output bank. The two equations (7.36 and 7.37) enable us to
create filters which can be used in two consecutive banks of correlators. These
are m athem atically equivalent to a 2 -layer perceptron and, therefore, can be used
to recognise patterns which are not linearly separable [3], although they cannot
solve all solvable problems.

7.5 Discussion and conclusions

In this chapter we have designed filters for multi-class pattern recognition. In
multi-class pattern recognition the task is to design one or more filters, which can
discriminate one class from another. We developed an algorithm, which we called
the Feature Enhancement and Similarity Suppression (FESS) algorithm. We used
it to design filters tha t can discriminate each class from all of the others. This
means th a t the number of necessary correlations is equal to the number of classes.
However, the algorithm can also design filters, which recognise more than one
class if needed. The FESS algorithm is iterative and is based on the SS algorithm.
It uses weighted additions to combine the features of all of the patterns th a t

136

7.5. DISCUSSION AND CONCLUSIONS

belong to one class into the class representative filter. As in the SS algorithm,
weighted subtractions are used to orthogonalise each class representative filter
to the patterns th a t belong to other classes. In addition, a t each iteration the
filters are normalised so th a t their magnitudes remain stable. This normalisation
ensures th a t no bias towards any of the filters will exist if random patterns are
input.

As we already said, the normalisation keeps the magnitudes of the filters stable
throughout the training. However, it does not set the auto-inner products of the
filter with the patterns it represents to a specific value. These are forced to
converge towards the desired value by the addition equation (7.4). Since we are
normalising each of the filters to the power of the normalised training patterns,
P , it is not possible to set all of i t ’s auto-inner products equal to the same value,
P , which is the desired one. So we expect them to be lower than P , but higher
than the cross-inner products, which will converge to zero. The difference between
the value th a t the auto-inner products will converge to, and the value th a t the
cross-inner products will converge to, will define the dynamic range th a t will be
required by the optical system for correct recognition.

The third section of the chapter presented the comparisons between the SS
algorithm and relevant filter design techniques. The FESS algorithm can be seen
as a supervised version of the SS algorithm. The SS algorithm forces the cross-
inner products to decrease. It does not copy the features of the training pattern ,
th a t the filter represents, to the filter a t every iteration. The normalisation step
ensures th a t the auto-inner product will take the desired value. The filters th a t
are created by the SS algorithm, yield exactly the desired value for the auto-inner
product and very close to the desired values for the cross-inner products. They are
very good at discriminating but cannot generalise and th a t is a necessary a ttribu te
for recognising classes of patterns. The FESS algorithm places the additional
constraint th a t the class representative filter must contain all of the features of
the patterns th a t belong to th a t class. It normalises the filter itself and not an
inner product between the filter and one of the patterns. The filter definitely will
not be able to discriminate between individual patterns within a class, which is
not what we want anyway, but it will be able to generalise and recognise all of the
patterns th a t belong to the class, even the ones th a t were not used in the training,
provided th a t the training patterns span the class space.

We transformed the algorithm equations into a m atrix form and saw th a t
the FESS algorithm is very similar mathem atically to the synthetic discriminant

137

7.5 . DISCUSSION AND CONCLUSIONS

functions (SDF) approach. The SDF method designs only one filter for all of the
classes, and the FESS algorithm can do th a t without modifications.

We have also shown th a t the algorithm is m athem atically equivalent to the
supervised Hebbian law, also known as the Widrow-Hoff rule. By doing th a t we

have clarified the relationship between neural networks and optical correlators.
Each neuron in a layer of a neural network corresponds to a correlator in a bank
of correlators. The inner product between the input and the filter is equal to the
internal activity level of the neuron. Neural network training algorithms like the
Hebbian law or the back-error propagation algorithm change the weights of the
neurons. Each individual weight corresponds to a pixel of the digitised filter. By
using a simple change of notation we can rewrite these neural network training
algorithms in such a way so th a t they refer to whole images and use them to
create filters for optical correlators. The equivalence between the FESS algorithm
and the supervised Hebbian law and between the FESS algorithm and the SDF
method suggests th a t the SDF method can be used to calculate the weights of a
single layer neural network without the need for an iterative procedure. Finally,
like the SS algorithm, the FESS algorithm can be extended to design filters for
2 or more cascaded banks of correlators, which compared to a single bank of
correlators, have the advantage th a t they can be used to recognise patterns th a t
are not-linearly separable.

This chapter presented the development and the theoretical analysis of the
FESS algorithm. The computer simulations, which verify our theoretical conclu­
sions for the algorithm will be presented in the following chapter.

138

Chapter 8

Computer sim ulations of the
FESS algorithm

8.1 Introduction

In the previous chapter we presented the theoretical analysis of the FESS algo­
rithm . In this chapter we describe computer simulations, which helped us assess
the performance of the FESS algorithm. In the second section (section 8 .2) we
use the algorithm to create filters to recognise a set of faces, which is a typical
problem of multi-class pattern recognition. As we saw in the previous chapter,
the initial filters before the training can be random, or equal to the mean of all
of the training patterns within their class, or equal to just one training pattern.
Here we describe the results of the training with all of the different initial values
for the filters. In addition, we show the effect of the algorithm on the auto- and
cross inner products and also on the outer products of the correlations between
the filters and the training patterns. In section 8.3 we calculate the probability
of recognition, false positives and false negatives and the dynamic range required
by the optical system for the training set and for a test set. We finish the chapter
with the conclusions.

8.2 Computer Simulations

In this section we evaluate the performance of the FESS algorithm during the
training phase, to see whether the algorithm converges to the desired solution, how
many iterations it takes to do tha t, which is the best choice for the convergence
param eter and which initial filter values lead to the best performance after the

139

8.2. COMPUTER SIMULATIONS

training. We define the following performance metric, which will help evaluate
the convergence of the FESS algorithm:

• Energy ratio

A term which is equal to the ratio of the normalised sum of the auto-inner
products to the normalised sum of the cross-inner products of all of the
filters and is described by the following equation:

normalised sum of all of the auto-inner products
r =

normalised sum of all of the cross-inner products
Y.f=iEti\Si-Sii\/M (8-1)

Ef=i Ef=i Ej-ii |& • s,j\/{M{K - 1))
k^i

The energy ratio gives us a measure of how much the auto-inner products in­
crease in comparison to the cross-inner products. We expect it to increase as the
algorithm converges.

8.2 .1 Training set d escrip tion

We used the algorithm to create filters for face recognition. Face recognition is
one of the typical problems the algorithm is designed to tackle, because many
different patterns can all represent the same person, in other words belong to
the same class, and one filter has to be designed to recognise all of them. Each
person’s face can be distorted in many different ways. In addition to in and out
of plane rotations, translation and scale variations, facial distortions also include
changes of expression, elastic distortions and changes in the facial characteristics
due to ageing, fattening etc. All these types of distortions are very difficult to
express mathematically. The training set^ we used was part of the Olivetti Re­
search Laboratories faces database and it consisted of faces of ten people. Each
person was represented by six photographs. So there were sixty images in to ta l in

the training set. For some of the subjects, the images (see figure 8.1 for a sample
of the training set) were taken at different times, with a slightly varying light­
ing, different facial expressions (open/closed eyes, smiling/non-smiling) and facial
details (glasses/no-glasses). All of the images were taken against homogeneous
backgrounds and the subjects were in upright, frontal position (with tolerance for
some side movement). The images were grey level and each pixel had an integer
value between 1 and 256. There are, in theory, two ways to represent these images

^See appendix C for the complete training set.

140

8.2. COMPUTER SIMULATIONS

Figure 8.1; A sample of the training set, which consists of six pictures of each
person. Only three examples of each subject are shown in this figure.

141

8.2. COMPUTER SIMULATIONS

1 —

0.8 —

0 6 —

- 0.4

0.2

O patter^g'

Filters

Figure 8 .2 : Cross-inner product m atrix for the monopolar patterns before the
training. The filters are initially equal to the first pattern of each of the classes.

in an optical system using SLMs. One can use a multi-level amplitude or phase
SLM with 256 levels and represent the images in intensity or phase. Or, two SLMs
can be used, one amplitude and one phase SLM and the pixels can be represented
with values between -127 and 128, using a binary phase SLM to represent the sign
and the grey level amplitude SLM to represent pixel values. Of course the first
way which needs only one SLM is easier to implement, but in this chapter we will
present simulations for both optical representations. We will refer to the patterns
whose individual pixels have values between 1 and 256 as monopolar patterns and
to the patterns whose pixels have values between -127 and 128 as bipolar patterns.

The cross-inner product m atrix before the training, for the monopolar pa t­
terns, can be seen in figure 8 .2 . The first photo of each of the people was used
as the initial, untrained filter for tha t class in the calculation of this cross-inner
product matrix. The cross-inner product m atrix is not square any more, since
there are ten filters and sixty training patterns. Also each of the filters has six
auto-inner products so the final cross-inner product m atrix is not diagonal.

The surface graph shown in figure 8.2 does not give us a very clear view of
all of the auto- and cross-inner products. We are going to create one graph for
each of the rows of the cross-inner product matrix. Each row contains the inner
products between the corresponding filter and all of the training patterns. It will
be depicted as a bar chart. Each bar represents the value of an inner product.
The bars are normalised to 1. They are divided into groups of six. Each group
of bars represents the inner products with the six patterns tha t belong to th a t
corresponding class.

In figure 8.3, subfigure (a) shows the first row of the cross-inner product m atrix

142

8.2. COMPUTER SIMULATIONS

s-, 0.4

4 5 6 7
6 training p a tte rn s in e a c ti c la s s

0 1 2 3 4 5 6 7 8 9 10
6 tra in ing p a tte rn s in eactr c la s s

(a) Inner products of the 1®̂ untrained
filter

(b) Inner products of the 6̂ ̂ untrained
filter

Figure 8.3: First and sixth row of the initial cross-inner product m atrix of the
monopolar patterns.

0. 8

0. 6

« O '*

1 0. 2

L r i M É M l l l IH K K H L H J H H i ■ JH JH t “
S -0 .2

-0.4

-0 .6

-0.8

-1
4 5 6 7

6 training p a tte rn s in e a c h c la s s
5 6 7 B 9 10

6 training p a tte rn s in e a c h c la s s

(a) Inner products of the 1®̂ untrained (b) Inner products of the 6̂ ̂ untrained
filter filter

Figure 8.4: First and sixth row of the initial cross-inner product m atrix of the

bipolar patterns.

143

8.2. COMPUTER SIMULATIONS

for the monopolar patterns. Subfigure (b) shows the sixth row of the same matrix.
Subfigures (a) and (b) in figure 8.4 show the first and sixth row of the cross-inner
product m atrix for the bipolar patterns respectively. The similarity between all
of the training patterns is evident in figure 8.3, because all of the auto- and
cross-inner products are of almost equal magnitudes. Since the patterns are all
normalised, and we used the first example of each subject as a filter, only the first
auto-inner product is equal to one in all of the graphs shown in figures 8.3 and
8.4. A second observation we can make is th a t the bipolar patterns seem to be a
lot less similar to each other than the monopolar patterns. This happens because
due to the shifting and sign change, similar pixels in the monopolar patterns
may have an opposite sign in the bipolar patterns and this reduces some of the
inner products. Another observation one can make, is th a t the first filter, which
represents the first class, seems to be more similar to all of the training patterns
than the sixth filter which represents the sixth class. This means th a t we can set
the appropriate threshold and use the sixth filter to successfully recognise all of
the patterns th a t belong to the sixth class and reject all of the others. However,
the same thing is not possible with the first filter which would give wrong results.
In fact we chose to show these particular rows of the cross-inner product matrices
because they represent the worse (H*) and best (6 *̂) filters in terms of similarity
to other patterns. Finally, we should note th a t some of the cross-inner products
for the bipolar patterns are negative. If we set a threshold to distinguish between
the auto- and the cross-inner products, these negative cross-inner products will
be below the threshold and will be correctly rejected only in a system, which
can detect their sign, for example an electronic recognition system. In an optical
recognition system which only detects intensity on the output plane, these negative
inner products would also be considered positive. Therefore, when using such a

system there is no benefit in letting the cross-inner products converge to large
negative values. All of the rows of the cross-inner product matrices before the
training, for both the monopolar and bipolar patterns are shown in appendix D.

8.2 .2 Training

For the training we let the FESS algorithm run until it converged to a relatively
stable solution. In most of the simulations this happened within 30000 iterations.
For the training we used equations 7.14, 7.15 and 7.16 with a minor modification.
Instead of using two different convergence parameters and ^ 2 , the convergence
param eter was the same in equations 7.14 and 7.15, and equation 7.15 was applied

144

8.2. COMPUTER SIMULATIONS

1

0.9

0.8

^0.7

n 0.6

|o .5

5 0.4
1

0.3

0.2

0.1

3 4 5 6 7 8
6 training p a tte rn s in e a c h c la s s

(a) Inner products of the 1®̂ filter

1

0.9

0.8

_̂ 0.7

w 0.6

I 0.5

5 0.4
I

0.3

0.2

0.1

0
iliiillltli

1 2 3 4 5 6 7 8 9 10
6 tra in ing p a tte rn s in e a c h c la s s

(b) Inner products of the 6*̂ filter

Figure 8.5: First and sixth row of the final cross-inner product m atrix of the
monopolar patterns after the training with the FESS algorithm. The initial filters
were equal to the first example of the corresponding classes.

only once every D iterations. The final results were similar for D values between
15 and 30. The results presented here were obtained with an D value of 25.

We conducted simulations with all three different values for the initial, un­
trained class representative filters: each one of them equal to one of the patterns
belonging to the corresponding class, or the mean of all of the training patterns
belonging to the corresponding class, or a random pattern. Here we present the
results for all three cases^. We have to point out tha t regardless of whether the
initial filters are monopolar or bipolar, they are going to end up with their pixels
having both positive and negative values.

Figure 8.5 shows the bar charts for the first and sixth rows of the cross-inner
product m atrix, which was calculated using the monopolar patterns and the filters,
which initially were equal to the first training pattern of the corresponding class.
The first observation one can make looking at these graphs, is tha t all of the
auto- and cross-inner products have decreased. The cross-inner products are now
consistently lower than the auto-inner products. They are on average lower for
the filter than for the filter. The first of the auto-inner products for each
filter is slightly larger than the others because the filter was derived from the
corresponding training pattern, but this difference is not large. A threshold can
be set now to correctly recognise all of the training patterns.

^Look in appendix D for the graphs of all of the rows of all of the cross-inner product matrices
after the training.

145

8.2. COMPUTER SIMULATIONS

s 0. 4

4 5 6 7 8
6 training p a tte rn s in e a c h c la s s

1 2 3 4 5 6 7 8 9 10
6 tra in ing p a tte rn s in e a c h c la s s

(a) Inner products of the 1® filter (b) Inner products of the 6̂ ̂ filter

Figure 8 .6 : First and sixth row of the final cross-inner product m atrix of the
monopolar patterns after the training with the FESS algorithm. The initial filters
where equal to the mean of all of the examples of the corresponding classes.

The cross-inner product matrix, whose first and sixth rows are shown in figure
8 .6 , was calculated using the monopolar patterns and the filters, which initially
were equal to the mean of the training patterns of the corresponding class. The
auto-and cross inner products are very similar to the previous case. There seem
to be slightly larger differences between the auto-inner products of each filter but
the magnitudes of the auto- and cross-inner products look the same on average.

Figure 8.7 shows the first and sixth rows of the cross-inner product matrix,
which was calculated using the initially random filters and the monopolar patterns.
The only thing tha t needs to be pointed out here is tha t the magnitude variations
among the auto-inner products of each filter are very small. It is clear th a t the
original filters had no individual features of the training patterns in them. They
gained them during the training by the addition equation 7.14. These additions
are weighted in such a way so tha t each of the filters finally becomes equally
similar to all of the training patterns it represents. T hat is a possible explanation
why the auto-inner products are almost equal in figure 8.7.

Figures 8 .8 , 8.9 and 8.10 show the first and sixth rows of the cross-inner product
matrices for the bipolar matrices and the different initial filter values. In figure 8 . 8

we can see th a t the first auto-inner product is a lot higher than the others for both
filters, obviously because they were derived from the corresponding pattern. Most
of the cross-inner products have become negative or zero. In addition, there is a
considerable difference between the behaviour of filter one (subfigure 8 .8 - (a)) and

146

8.2. COMPUTER SIMULATIONS

1

0. 9

0.8

^0.7
n 0.6

lo.s
I
Si 0. 4

0̂.3
0.2

0.1mmiiii
1 2 3 4 5 6 7 8 9 10

6 tra ining p a tte rn s in e a c h c la s s

(a) Inner products of the 1® filter

0.8

0. 7

In 0.6

I 0. 5
K
I 0. 4

“o.s
0.2

0.1iiiiilmi
1 2 3 4 5 6 7 8 9 10

6 tra ining p a tte rn s in e a c h c la s s

(b) Inner products of the 6*̂ filter

Figure 8.7: First and sixth row of the final cross-inner product m atrix of the
monopolar patterns after the training with the FESS algorithm. The initial filters
were random.

1

I

10
6 training p a tte rn s in e a c h c la ss6 training p a tte rn s in e a c h c la ss

(a) Inner products of the filter (b) Inner products of the 6̂ ̂ filter

Figure 8 .8 : First and sixth row of the final cross-inner product m atrix of the
bipolar patterns after the training with the FESS algorithm. The initial filters
where equal to the first example of the corresponding classes.

147

8.2. COMPUTER SIMULATIONS

0 1 2 3 4 5 6 7
6 training p a tte rn s in eac ti c la s s

3 4 5 6 7 8
6 training p a tte rn s in eac ti c la ss

(a) Inner products of the filter (b) Inner products of the 6̂ ̂ filter

Figure 8.9: First and sixth row of the final cross-inner product m atrix of the
bipolar patterns after the training with the FESS algorithm. The initial filters
where equal to the mean of all of the examples of the corresponding classes.

filter six (subfigure 8 .8 - (b)). Most of the auto-inner products for the first filter are
almost double the size of the auto-inner products of the sixth filter. Most of the
cross-inner products of the first filter have negative values, while most of the cross-
inner products of the sixth filter are equal to zero. Consider what would happen
if we used these filters to recognise the second training example of the sixth class.
Its auto-inner product with the sixth filter is smaller (in absolute values) than its
cross-inner product with the first filter. In an optical system which only detects
intensity on the correlation plane, this would result in incorrect recognition.

The filters’ performance is quite different when they are initially equal to the
mean of all of the training patterns they represent (figure 8.9). The auto-inner
products have similar values and they are all higher than all of the cross-inner
products. Another observation we can make is tha t in this case all of the auto-
inner products have values which are very close to the value of the first auto-inner
product for each class in figure 8 .8 . Finally, the cross-inner products have reduced,
but they have higher absolute values compared to the ones in figure 8 .8 . Again,
a threshold would allow correct recognition. W ith random initial filters, (figure
8 .1 0) all of the auto-inner products of each filter have the same m agnitude and
the cross-inner products are very low or zero.

Essentially the information contained in all of the bar charts (the six in this
chapter and the ones in appendix D) can be summarised in the following tables.
Table 8.1 shows the mean and standard deviation of all of the auto- and cross

148

8.2. COMPUTER SIMULATIONS

0. 4

-rr1
- 0.2

I
-0 .4

- 0.1

6 training p a tte rn s in e a c h c la ss

0.4

1
1

- 0.2

- 0 .'

- 0.6

- 0.1

6 training p a tte rn s in e a c h c la s s

(a) Inner products of the 1*̂ filter (b) Inner products of the 6̂ ̂ filter

Figure 8.10: First and sixth row of the final cross-inner product m atrix of the
bipolar patterns after the training with the FESS algorithm. The initial filters
where random.

inner products between the three different filters and the monopolar patterns.
The same information for the bipolar patterns is displayed in table 8.2.

After studying the bar charts and tables 8.1 and 8.2 we can make the following
statem ents for the filters after the training using the FESS algorithm:

• Monopolar patterns

- All of the cross-inner products are smaller than all of the auto-inner
products for all of the classes for all three different initial filter values.
Therefore, a threshold can be set to distinguish the training patterns
at least.

Monopolar patterns

Auto-inner products Cross-inner products Auto
C ross

MEAN STD DEV MEAN STD DEV

Initial Filters 0.9706 0.0061 0.9020 0.0347 1.076

Filter 1 0.4612 0.0156 0.2500 0.0387 1.845

Filter Mean 0.4660 0.0244 0.2288 0.0541 2.037

Filter Rand 0.4567 0.0024 0.2702 0.0354 1.690

Table 8.1: Mean value and standard deviation of the auto- and cross-inner prod­
ucts for the monopolar patterns. The last column in the table shows the ratio of
the mean of the auto-inner products over the mean of the cross-inner products.

149

8.2. COMPUTER SIMULATIONS

Bipolar patterns

Auto-inner products Cross-inner products Auto
C ross

MEAN STD DEV MEAN STD DEV

Initial Filters 0.8077 0.0384 0.4653 0.0180 1.735
Filter 1 0.1693 0.1325 0.0351 0.0246 4.823
Filter Mean 0.4203 0.0370 0.1009 0.0618 4.165
Filter Rand 0.1498 0.0007 0.0062 0.0058 24.161

Table 8.2: Mean value and standard deviation of the auto- and cross-inner prod­
ucts for the bipolar patterns. The last column in the table shows the ratio of the
mean of the auto-inner products over the mean of the cross-inner products.

- The mean magnitude of the auto- and cross-inner products is very
similar for all three different initial filter values. However, the filters,
which were initially equal to the mean of all of the patterns of the
corresponding classes, produced the highest mean for the auto-inner
products and the lowest mean for the cross-inner products.

- The standard deviation of the auto-inner products is an order of mag­
nitude smaller for the filters th a t were initially random, than for the
other two. The mean filters produced auto- and cross-inner products
with the highest standard deviation.

• Bipolar patterns

- The filters th a t were derived from one training pattern only, produced
some cross-inner products higher than auto-inner products. Subse­
quently, 1 0 0 % correct discrimination could not be achieved by using a

threshold.

- In addition, the filters th a t were derived from one training pattern only,
produced the auto-inner products with the highest standard deviation,
which was almost equal to the mean of the magnitudes.

- The filters tha t were derived from the mean of the training patterns of
the corresponding classes, produced auto-inner products significantly
higher than the other two kinds of filters. However, their cross-inner
products were higher as well, although always lower than the auto-inner
products.

150

8.2. COMPUTER SIMULATIONS

- The filters th a t were initially random, forced almost all of the cross-
inner products to zero. Their auto-inner products had the lowest mean
but also by far the lowest standard deviation. In addition they were
consistently higher than the cross-inner products.

Figures 8.11 and 8 . 1 2 show all of the final filters th a t were created using the
monopolar and the bipolar patterns and the three different initial filter values.
The first observation one can make, is th a t areas th a t are enhanced in some images,
are also enhanced in some others, but with an opposite sign. For example, the area
of the hair in the first subject is very bright and the same area in the sixth subject
is very dark. In the monopolar, initially random filters the features of each subject
are now identifiable. Some features are identifiable in the bipolar, initially random
filters but not as many as in the filters derived from the monopolar patterns. The
bipolar filters, which were initially equal to one training pattern are all blurred in
a very similar fashion and only have some form of edge enhancement. We note
th a t the final filters are similar to their initial value. Therefore, the choice of
the initial filters is very im portant when the initial filters are equal to one of the
patterns of the class they represent. Finally, several superimposed images can
be seen in the filters derived from the mean of all of the corresponding training
patterns for both the monopolar and the bipolar filters.

8 .2 .3 C onvergence sp eed

In this section we discuss the convergence speed of the algorithm for the bipolar
and monopolar patterns and for the different initial filters. In the beginning of
section 8.2 we introduced the energy ratio figure of merit. We have plotted the
energy ratio as a function of iteration for all of our simulations.

In figure 8.13 we can see the energy ratio plotted against iteration number for
the monopolar patterns and the three initial filter values. Notice th a t the x axis
in subfigures (a) and (b) extends only to 10000 iterations. This is because in those
simulations the algorithm had already converged within the first 1 0 0 0 0 iterations.
The energy ratio converges to about the same value for all three different initial
filter values, although a lot slower for the initially random filters. Figure 8.14

shows the same plots for the bipolar patterns. These graphs are more interesting.
First of all we see tha t the graph for the random filters is thick as if the energy
ratio oscillated. This is actually true, not only for the energy ratio of these filters
but also for the energy ratio of all of the filters, for the bipolar and the monopolar

151

8.2. COMPUTER SIMULATIONS

h

«

Figure 8.11: Final filters for the first five subjects, for monopolar and bipolar
patterns and for all three initial filter values. 1*̂ Column : monopolar patterns,
initial filters equal to one pattern. 2"^ Column : monopolar patterns, initial filters
equal to the mean of the patterns. 3^ ̂ Column : monopolar patterns, random
initial filters. 4̂ ̂ Column : bipolar patterns, initial filters equal to one pattern.
5̂ ̂ Column : bipolar patterns, initial filters equal to the mean of the patterns.

6^ ̂ Column : bipolar patterns, random initial values.

152

8.:?. C7C)Afjpf;:rj5j%

Figure 8.12: Final filters for the last five subjects, for monopolar and bipolar
patterns and for all three initial filter values. 1 ®̂ Column : monopolar patterns,
initial filters equal to one pattern. 2 ^ ̂Column : monopolar patterns, initial filters
equal to the mean of the patterns. 3^ ̂ Column : monopolar patterns, random
initial filters. 4*̂ Column : bipolar patterns, initial filters equal to one pattern.
5*̂ Column : bipolar patterns, initial filters equal to the mean of the patterns.
6 ^̂ Column : bipolar patterns, random initial values.

153

8.2. COMPUTER SIMULATIONS

(a) Initial filters equal to
one of the training pat­
terns

(b) Initial filters equal
to the mean of the train­
ing patterns

(c) Initial filters random

Figure 8.13: Energy ratio for the FESS algorithm plotted against number of
training iterations for the monopolar patterns.

Neration numberX 10* X 10* X 10*

(a) Initial filters equal to
one of the training pat­
terns of the correspond­
ing classes

(b) Initial filters equal
to the mean of the train­
ing patterns of the cor­
responding classes

(c) Initial filters random

Figure 8.14: Energy ratio for the FESS algorithm plotted against number of
training iterations for the bipolar patterns.

154

8.2. COMPUTER SIMULATIONS

patterns. These oscillations are not visible in the other curves because they were
a lot smaller and all of the curves were plotted on the same scale for comparison.
These oscillations happened because the subtraction equation was used only once
every 25 iterations. The energy ratio actually decreased as the addition equation
was applied and it jum ped to a higher value every time the subtraction equation
was applied. The other two graphs in subfigures (a) and (b) show a bump at the
beginning of the training (after 351 iteration in subfigure 8.14-(b)). We found
these hard to explain because the cross-inner product matrices a t those particular
iterations were not very different from the matrices a t the final iteration. We
believe, however, th a t they resulted from relatively large inner product value
fluctuations due to sign changes.

8 .2 .4 P eak to C orrelation E nergy (P C E) o f correla tions

b etw een th e in itia l p a ttern s and th e final, tra in ed

class filters

Like the SS algorithm, the FESS algorithm does not place any constraints on the
outer products of the correlations between the filters and the training patterns.
In this section we investigate whether the outer products increase or decrease or
remain stable after the training. We use the peak to correlation energy (PCE),
defined in chapter 2 , section 2 .6 , equation 2 .6 , to measure the sharpness of the
correlation peaks, which are located in the centre of the correlation plane at point
(65,65) in each graph. In all of the following simulations in this section and in
the next one, we have used the first training example of each of the classes as the
representative filter for th a t class before the training.

Figure 8.15 shows the correlation plane intensity for the correlations between
the monopolar training pattern Sgi, which belongs to the sixth class and the
untrained (subfigure a) and trained (subfigure b) filters representing the first class.
The trained filter used for this correlation was the one th a t was derived from
the mean of all of the training patterns of the first class. The results using the
other methods for the initial values of the trained filters were very similar for the
monopolar patterns. We can see from figure 8.15 th a t the outer products have
not increased. On the contrary they have decreased. The PC E for this correlation
was 0.018 before and 4.8 • 10“ ̂ after the training. This is good, rather than bad
however, because we do not want this correlation to produce a correlation peak,
because filter gi must reject pattern Sei.

155

8.2. COMPUTER SIMULATIONS

H0.6J
S 0.4

(a) S6 1 (g)Su, PCE=0.018 (b) S6i(g)gi, PCE=4.8 • lO-"̂

Figure 8.15: Correlation plane intensity for correlations between a photo of the
sixth subject and the untrained (a) and the trained (b) filter for the first subject
using the monopolar patterns. Filter gi was initially equal to the mean of all of
the training patterns in the class. Correlation peak location: (65,65)

0 0

(a) S6 1 <g)S6i, PCE=0.024 (b) sgi (g)g6, PCE=0.006

Figure 8.16: Correlation plane intensity for correlations between a photo of the
sixth subject and the untrained (a) and the trained (b) filter for the sixth subject
using the monopolar patterns. Filter ge was initially equal to the mean of all of
the training patterns in the 6 *̂ class. Correlation peak location: (65,65)

156

8.2. COMPUTER SIMULATIONS

g 0.6. S 0 .6.

(a) S6 1 ® Su, PCE=0.001 (b) S61 (g) g i, PCE=4.6 • 10 - 9

Figure 8.17: Corrélation plane intensity for correlations between the sixth subject
and the untrained (a) and the trained (b) filter for the first subject using the
bipolar patterns. The trained filter was initially equal to the mean of the training
patterns it represents. Correlation peak location: (65,65)

The same cannot be said for the correlations depicted in figure 8.16. In th a t
figure, subfigure (a) shows the auto-correlation of pattern Sei and subfigure (b)
shows the correlation between pattern Sei and the trained filter for the sixth class.
Again the monopolar pattern was used for these correlations and the trained filter
was initially equal to the mean of the patterns of the sixth class. We observe the
same outer-product behaviour for these correlations as well. They have decreased
in absolute terms, but they have increased relative to the correlation peak. The
PCE for the auto-correlation was 0.024 and for the correlation with the final filter,
0.006. In this case, we do want an existing correlation peak so the reduced PCE
is a disadvantage.

Figures 8.17 and 8.18 show the same correlations for the bipolar patterns. In
both figures the initial values of the trained filters were equal to the mean of
the training patterns in the corresponding classes. First of all we can see th a t
the outer-products are a lot lower in general when using the bipolar patterns.
Particularly in the auto-correlation of Sqi shown in subfigure (a) of figure 8.18,
the correlation peak is a lot sharper than in the same auto-correlation using the
monopolar version of the pattern. The PCE is 0.071. Using the trained filter for
the sixth class (subfigure 8.18(b)), the PCE falls to 0.004. However, the correlation
peak is clearly higher than all of the outer products. For the correlation between
pattern s^i and the untrained and trained filters representing the first class (figure

157

8.2 . COMPUTER SIMULATIONS

r0.6>

0 0 0 0

(a) S6 1 <8>S6i, PCE=0.071 (b) S61 ® g6, PCE=0.004

Figure 8.18: Correlation plane intensity for correlations between a photo of the
sixth subject and the untrained (a) and the trained (b) filter for the sixth subject
using the bipolar patterns. Before the training, gg was equal to the mean of all of
the training patterns it represents. Correlation peak location; (65,65)

8.17), the PCE is 0.001 and 4.6 -10“ ̂ respectively.
Finally, figure 8.19 shows the correlations between pattern Sgi and the trained

filters representing the first (subfigure a) and the sixth (subfigure b) classes. The
filters used for these correlations were the initially random filters. Both correla­
tions have very low outer products. The correlation with the filter representing
the first class has no correlation peak at all and, therefore, a very low PCE,
5.99 • lO 'ii and the correlation with the filter representing the sixth class has a
discernible although very low in magnitude correlation peak and a PCE equal to
0.028. The PCE is relatively high, compared to the other correlation in subfigure
(a), although the correlation peak is so low, due to the almost complete absence
of outer products.

To conclude, we have seen through these examples th a t for monopolar patterns
the training increases the outer products relative to the correlation peak and
reduces the peak-to-correlation energy. For the bipolar patterns, the correlation
peaks are a lot sharper before the training. The outer products do not increase
with the training, but the PCE decreases because the correlation peaks decrease.
However, for all of the cases for the monopolar and the bipolar patterns, after the
training, the auto-correlations have a higher PCE than the cross-correlations.

158

8.3. PRO BABILITY OF RECOGNITION AND DYNAMIC RANGE

t=0.6> F 0.6

0 0

(a) Sfii (g> g i, PCE=5.99 ■ 10 - 1 1 (b) sgi (g)g6, PCE=0.078

Figure 8.19; Correlation plane intensity for correlations between a photo of the
sixth subject and the trained filter for the first subject (a), and trained filter for
the sixth subject (b) using the bipolar patterns and the initially random filters.
Correlation peak location: (65,65)

8.3 Probability of recognition and dynamic range

In the previous section we described the simulations of the FESS algorithm during
the training. In this section we present the results of the probability of recognition
and the dynamic range tests. These were calculated for both the training set and
for a test set. The test set will be described later in the section after we present
the results for the training set. Equation 6.2, which we rewrite here was used for
the calculation of the dynamic range required by the optical system

dynam ic range = m a x^i (- 2 0 log^o | ~ |) ,

2 = 1 . . . M , j = 1. . . M , j ^ i (8 .2)

First in table 8.3 we present the results for the training set.
Table 8.3 shows the probability of recognition and dynamic range for the

monopolar patterns and for the bipolar patterns for the following two cases. The
first is when the optical system used (if an optical system is used) has some kind

of interferometric phase detection at the correlation plane, which allows us to de­
tect the phases (+,-) of the correlation peaks. The second case is for when there
is no phase detection and we can only measure the intensity of the correlation
peaks. The method for calculating the probability of recognition for the tests
with the training set, was to calculate all of the cross-inner products between an

159

8.3. PRO BABILITY OF RECOGNITION AND DYNAM IC RANGE

TRAINING SET

Prob. Rec. (%) Dyn. Range. (dB)

Monopolar
patterns

Initial filters 8 8 ^ 30.8
Filter 1 1 0 0 . 0 9.06
Filter Mean 1 0 0 . 0 8 . 8 8

Filter Rand 1 0 0 . 0 9.74

Bipolar
patterns,
phase
detection

Initial filters 95.0 8.59
Filter 1 95.0 -
Filter Mean 98.3 4.79
Filter Rand 1 0 0 . 0 0.72

Bipolar
patterns,
no phase
detection

Initial filters 95.0 8.59
Filter 1 55.0 -
Filter Mean 98^ 4.79
Filter Rand 1 0 0 . 0 0.72

Table 8.3: Probability of recognition and dynamic range using the training set.

input pattern and all of the filters and then to choose the highest of them. For
correct recognition, the highest inner product had to be the one with the filter
which corresponded to the input pattern. No threshold was used, since there is
no need to reject any patterns when using the training set. We can see th a t when
using the monopolar patterns, the results are very similar for all three initial filter
values. In all cases the probability of recognition has increased to 100% after the
training and the required dynamic range has decreased by about 21 dB and is
now around 9 dB.

When using the bipolar patterns, the results are different for the three initial
filter values. Only the initially random filters increase the probability of recogni­
tion to 100% after the training. The filters th a t were initially equal to the mean
of the corresponding training patterns, increase the probability of recognition to
98.3%. The filters th a t were initially equal to one pattern only, produce the worst
results: when using phase detection the probability of recognition is 95%, equal to
what it was before the training. W hen not using phase detection, the probability
of recognition falls to 55% with the filters th a t were initially equal to the first
example of the classes they represent. The required dynamic range is a lot lower
for the bipolar patterns compared to the monopolar, before and after the training.
The initially random filters produce the lowest required dynamic range of all.

160

_____________8.3. PRO BABILITY OF RECOGNITION AND DYNAM IC RANG E

The test set did not include any common patterns with the training set. It
consisted of sixty faces in total. Forty of these patterns belonged to the same
ten people th a t the system was trained to recognise, but they were different from
the corresponding examples in the training set. The remaining twenty patterns
were faces of five other people. In this case, we used a threshold to calculate
the probability of recognition. A part from the probability of recognition and
dynamic range, we have also calculated the False Positive and False Negative
percentages for the test set. We get a false positive when the input pa ttern does
not belong to the memorised set, in other words, it does not belong to any of
the classes our filters were trained to recognise and one of the correlations with
the filters has a central peak higher than the designated threshold. In th a t case
the system wrongly recognises an unknown pattern. A false negative is registered
when the input pattern represents one of the subjects of the memorised set, bu t the
correlations with all of the filters have peaks lower than the designated threshold.
In th a t case the system wrongly rejects a known pattern. We can trade these off
against one another by raising or lowering the threshold. Therefore, to calculate
the probability of recognition, the False Positives and the False Negatives for
the test set, we used the following method: we calculated all of the cross-inner
products between an input pattern and all of the filters and then chose the largest
of them. Then we had the following cases:

• Correct recognition when:

i. The input pattern belongs to one of the memorised classes.

ii. Its largest inner product is with the filter which represents the class in
which the input pattern belongs.

iii. Its largest inner product is larger than the set threshold.

• Wrong recognition when:

i. The input pattern belongs to one of the memorised classes.

ii. Its largest inner product is not with the filter which represents the class
in which the input pattern belongs but with another filter.

iii. T hat largest inner product is larger than the set threshold.

• False positive when:

i. The input pattern does not belong to one of the memorised classes.

161

8.3. PRO BABILITY OF RECOGNITION AND D YNAM IC RANGE

TEST SET

Thr PR (%) FP (%) FN (%) DR (dB)

Monopolar
patterns

Initial filter 0.922 93.3 0 . 0 0 . 0 26.2
Filter 1 0.391 91.6 3.3 3.3 8.38
Filter Mean 0.385 85.0 8.3 6 . 6 7.66
Filter Rand 0.397 96.6 0 . 0 3.3 9.35

Bipolar
patterns,
sign
detection

Initial filter 0.717 70.0 8.3 18.3 1 0 . 1

Filter 1 0.053 6 6 . 6 23.3 3.3 -
Filter Mean 0.358 70.0 3.3 26.6 3.25
Filter Rand 0.089 85.0 8.3 3.3 1.96

Bipolar
patterns,
no sign
detection

Initial filter 0.753 71.6 0 . 0 26.6 1 0 . 1

Filter 1 0.089 38.3 30.0 5.0 -

Filter Mean 0.358 70.0 3.3 26.6 4.37
Filter Rand 0.089 85.0 8.3 3.3 2.35

Table 8.4: Probability of recognition, false positives, false negatives and dynamic
range using the test set. Thr: Threshold, PR: Probability or recognition, FP:
False Positives, FN: False Negatives, DR: Dynamic Range.

ii. One of its inner products with one of the filters is larger than the set
threshold.

• False negative when:

i. The input pattern belongs to one of the memorised classes.

ii. Its largest inner product is lower than the set threshold.

The probability of recognition was equal to the number of correct recognitions
expressed as a percentage. Obviously, the percentages of correct and wrong recog­
nition, along with the percentages of false positives and false negatives add up to
a hundrend percent. One other thing th a t we must point out is th a t we used the
same threshold for all of the filters.

Table 8.4 shows the corresponding results when using the test set. Again
starting with the monopolar patterns, we see th a t the initially random filters
provide the highest probability of recognition, 96.6%. The filters th a t were initially
equal to the mean of the corresponding training patterns produce the worse results
mainly because of the high number of false positives and false negatives. All of

162

_________8.3. PRO BABILITY OF RECOGNITION AND DYNAM IC RANG E

the filters for the monopolar patterns reduce the required dynamic range by about
17 dB.

The probability of recognition is in general lower when using the bipolar filters.

However, the required dynamic range is also lower. The worst results are produced
by the filters th a t were initially equal to only one training pattern and the best
results are produced by the initially random filters which increase the probability
of recognition to 85% and require very low dynamic range, around 2 dB. The filters
th a t were originally equal to the mean of the corresponding training patterns, do
not provide any significant performance improvement over the untrained filters.

To summarise, we saw tha t the dynamic range requirements are greatly low­
ered when using the trained filters for both the training and the test set. The
probability of recognition rises to 1 0 0 % for the training set, but does not im­
prove greatly when using the trained filters to recognise the patterns in the test
set. This did not happen because the patterns were wrongly recognised, on the
contrary the filters displayed very good generalisation ability and were able to
correctly recognise most of the test set patterns, which represented the subjects
th a t they were trained on. The low performance resulted from the high number
of false positives and false negatives (table 8.4). We might be able to improve
the performance if we used a different threshold for each of the filters. The high
number of false positives and false negatives was expected. As we have said be­
fore this bank of correlators corresponds to a single layer of neurons. It is known
from neural network theory, th a t a single layer of neurons cannot solve non-linear
problems. To obtain better results we must use at least two cascaded banks of
correlators and thresholds, which correspond to a multilayer network. Even in
th a t case, however, it has been proved [109] th a t the network cannot form closed
separation surfaces around the classes, which would eliminate the false positives,
if the number of neurons in the first hidden layer is lower or equal to the number
of inputs. Even if the number of neurons in the first hidden layer is higher than
the number of inputs, Gori et. a/. [109] prove th a t the network may or may not
form closed surfaces. In other words, the number of correlators in the first hidden
bank must be at least equal to the size of the images {T > N in figure 7.2) and
even th a t does not ensure th a t the false positives will be eliminated.

Another issue th a t we would like to discuss briefly, is the necessary training
time for the convergence of the extended SS and FESS algorithms, which tra in two
consecutive banks of correlators. We have already shown th a t these algorithms
are mathem atically equivalent to the BEP algorithm for training neural networks.

163

8.4. CONCLUSIONS

The com putation of the weights of a multilayer feed-forward neural network, using
the BEP algorithm is NP-complete [110, 111, 112, 113]. This means th a t the
computing time necessary for the training, scales with 01, where O is the number
of neurons, or in our case correlators, in the to ta l network. Since the number of
correlators in the hidden bank must be greater than or equal to the number of
pixels of an input image, the training period required for complete convergence
is going to be very lengthy for any reasonable input image size, for our extended

SS and FESS algorithms. Our simulations in chapter 6 have clearly shown th a t
a t least for a single layer of correlators, complete convergence leads to over-fitting
of the filters to the training patterns and lower generalisation ability. It is more
fruitful, therefore, to stop the algorithm after a few iterations only. It may be
better to stop the training of the two consecutive banks of correlators after a
few iterations as well. W hether the undertraining of the two consecutive banks
of correlators will also produce better results can only be confirmed with further
computer simulations. In addition, we must point out th a t the SS algorithm
incorporates a nonlinearity in the form of the squared term , which speeds up the
convergence, particularly in the initial iterations, when the cross-inner products
are large. This results in the convergence index (total energy) curve having a
shape similar to th a t of the solid curve in figure 8.20. This figure shows two
representative convergence index curves for the SS algorithm with and w ithout
the squared term. When the weighting term in the SS algorithm is not squared the
to ta l energy curve is similar to the dashed curve in figure 8.20. The steeper shape
of the convergence index curve of the algorithm with the squared term, means th a t
the algorithm needs a very small number of iterations to reach a sufficiently good
solution. It will probably be necessary to incorporate this square in the extended
SS and FESS algorithms, in order to obtain similar convergence behaviour.

8.4 Conclusions

In this chapter we have presented computer simulations for the FESS algorithm.
We showed th a t the algorithm forces the cross-inner products to decrease, al­
though not always to the desired value, which is zero. We saw th a t the auto-inner
products decrease as well, but converge to higher values than the cross-inner prod­
ucts. The convergence procedure is rather slow and usually takes several thousand
iterations. The outer products do not increase, as they did with the SS algorithm,
but because the inner-products decrease, the peak-to-correlation energy measure

164

8.4. CONCLLTSIONS

 Alg. with s q u a re d te rm
- - Alg. w ithou t s q u a re d te rm

Ite ra tions

Figure 8.20: Convergence index curves of the SS algorithm with and w ithout the
squared term.

is in general lower after the training. This means th a t locating the correlation peak
will be more difficult when using the final filters. The dynamic range required by
the optical system is greatly reduced when using the final filters. Therefore, a
system with lower dynamic range can be used to recognise our patterns, or more
system noise, which reduces the system’s dynamic range, can be tolerated. The
probability of recognition for patterns in the training set is increased to 1 0 0 %
after the training. However, for the test set, the probability of recognition al­
though increased, does not reach 1 0 0 %, because this is impossible with only one
bank of correlators. W ith this chapter we have concluded the presentation of the
filter design algorithms and their simulations. In the next chapter we present our
conclusions and make some suggestions for continuing this work.

165

Chapter 9

Conclusions and Future Work

9.1 Introduction

In this final chapter of the thesis we present the conclusions and achievements of
our work. We start with an overview (section 9.2) of the general achievements of
our work, which underline and provide a framework for understanding the more
specific achievements presented in the next section, 9.3. Some recommendations
on how this work should be continued are presented in the last section of the
chapter.

9.2 General achievements

Based on the structural equivalence between optical correlators and neural net­
works [4], specifically perceptrons, we used the SS and FESS algorithms as in­
term ediate formulations to compare the existing training algorithms for neural
networks and filter design. These comparisons (chapters 5 and 7) led to the
framework shown in figure 9.1.

We have created a bridge between these two domains, neural networks and
optical filters, in the form of two new algorithms. Some of the new knowledge
in this project has resulted from transferring well known results from the neural
network field to the optical filter field, across this bridge (figure 9.1). We have
shown in this thesis that:

• The m atrix method for designing LCF filters or SDFs can be w ritten in
an iterative way. That in itself is not particularly useful. However, the
algorithm can be stopped after one or two iterations, resulting in a filter

166

9.2. GENERAL ACHIEVEM ENTS

Activity-product rule = S S = Linear combination filters (LCF,MOP)

Widrow-Hoff rule = FESS E Synthetic discriminant functions (SDF)
V

Neural network
training algorithms

BRIDGE
V

Optical filter
design algorithms•*-

Figure 9.1: Relationships between our algorithms, neural network training algo­
rithm s and filter design techniques

with better generalisation behaviour, more tolerance to additive input noise
and lower outer products. The improved performance arises from avoiding
the over-training of the filters, a problem which is very well known in the
neural network field. The 2 iteration training procedure of the SS algorithm
has the additional benefit of being as fast to perform as the earlier m atrix
method. This has been observed in our computer simulations.

• All of the existing optical filters, which are designed for a single correlator,
or a single bank of correlators, suffer from the lim itations th a t ham per single
layer neural networks. In particular, a bank of correlators, like a single layer
of neurons, cannot always correctly recognise non-linearly separable patterns
[3]. In neural networks, this problem is sometimes solved by using more than
one layers of neurons. We extended our algorithms to design filters for two
cascaded banks of correlators (chapters 5 and 7). To our knowledge, non of
the existing optical filter design techniques can calculate such filters.

This transfer of knowledge from one field to the other also works the opposite
way, from optical filters to neural networks:

• The SDF method of optical filters can be used in preference to the iterative
supervised Hebbian law to train neural networks faster, when over-training
does not pose a problem for the application.

Overall, it is well known th a t transferring existing results from one academic
field to another can result in new discoveries. It can also help avoid making the
same mistakes, or following research paths th a t lead to dead ends. Therefore, the
fundamental framework achievement in this PhD was th a t of devising a bridge,
in the form of the SS and FESS algorithms, between the two disciplines, neural

167

9.3. SPECIFIC ACHIEVEM ENTS

network training algorithms and filter design techniques. In the next section we
will talk about more detailed results arising from this general framework.

9.3 Specific achievements

In this section we present the conclusions and specific achievements of our work.

1 . We developed the Similarity Suppression (SS) algorithm, which starts from
a set of training patterns and calculates a set of filters, which are cross-orthogonal,
otherwise called mutually orthogonal, to these training patterns. The algorithm
is iterative and is based on the idea th a t the similarities between two patterns can
be suppressed if the patterns are continually subtracted from each other using
the m agnitude of their inner product as a weight. The algorithm results in the
suppression of the cross-inner products between the training patterns and the final
filters. We kept the inner product between each of the filters and the corresponding
training pattern to a constant high value by using a normalisation step after each
iteration.

• We presented a theoretical analysis of the changes in the filters’ magnitudes
during the training and verified it using computer simulations.

• We compared, using computer simulations, the filters produced with the SS
algorithm with matched filters. Our filters can tolerate 7 dB more additive
input white noise for the same probability of discrimination. The dynamic
range required by the recognition system is reduced by 25 dB.

• We proved theoretically and verified by simulations th a t the SS algorithm
is an iterative procedure for calculating the linear combination filters pro­
posed by Caulfield and Maloney [18], which are mutually orthogonal to the
patterns used for their creation.

• We discovered, using computer simulations, th a t the filters produced by the
SS algorithm after only 2 iterations perform better than the ones produced
by Caulfield’s and Maloney’s m atrix method. 2 dB more additive input
white noise can be tolerated for the same performance, which results in an
improvement by almost 30% in the probability of discrimination. In addi­
tion, the filters produced with the SS algorithm after 2 iterations produce
lower outer products than the filters produced after 1500 iterations and the
filters produced with the m atrix method. This is very im portant because it

168

9.3. SPECIFIC ACHIEVEM ENTS

means th a t the filters produced by the SS algorithm after 2 iterations can be
used for pattern recognition or discrimination even when the exact location
of the object in the input is not known. In addition, the correlation peak is
sharp and allows the detection of other peaks nearby if more than one ob­
jects are present in the input. All of the previous benefits come at the cost
of a higher required dynamic range. This conclusion also alleviates the one
m ajor disadvantage of the SS algorithm compared to the m atrix method,
which is the computing time it takes to create the filters. The computing
time needed for two iterations is comparable to the tim e it takes for the
m atrix inversion in Caulfield’s method.

• We methodically investigated the reason for the improved performance after
2 iterations and came to some general conclusions.

• We theoretically compared the SS algorithm with a simple formulation of
the Hebbian learning law, the “activity-product rule” [3] and showed th a t
the two algorithms are mathem atically very similar.

• We used the insight gained by the comparison of the SS algorithm with
the Hebbian learning rule, to extend the algorithm to design filters for two
cascaded banks of inner product correlators.

2 . We also developed the Feature Enhancement and Similarity Suppression
(FESS) algorithm, which designs filters for multi-class pattern recognition. In
multi-class pattern recognition several patterns, which belong to one of several
classes, must be recognised and distinguished from patterns belonging to the other
classes. Each of the filters designed by the FESS algorithm represents one class.
These have high inner products with the patterns th a t belong to th a t class and
low inner products with all of the other patterns. The FESS algorithm is based
on the same principle as the SS algorithm, plus the idea th a t the features of one
pattern can be copied onto another if it is continually added to it.

• We showed th a t the FESS algorithm can be viewed as a supervised version
of the SS algorithm, where desired target values are defined for the inner
products between the filters and the training patterns.

• We proved the equivalence between the FESS algorithm and the m ethod for
designing synthetic discriminant functions.

169

9.3. SPECIFIC ACHIEVEM ENTS

• We proved the equivalence between the FESS algorithm and the Widrow-
Hoff rule for training neural networks.

• We extended the FESS algorithm to design filters for two cascaded banks of
correlators.

• We verified most of our theoretical conclusions for the FESS algorithm using
computer simulations.

3. We also feel obliged to point out some limitations of our algorithms and of
the filters they design.

• The established equivalences between a bank of correlators and a single
layer of neurons [4], and between our algorithms and the unsupervised and
supervised formulations of the Hebbian learning law, mean th a t the short­
comings of the single layer neural networks apply to our systems as well.
For example, they can only separate linearly separable sets of patterns. In
addition although two or more cascaded banks of correlators can overcome
this problem, they cannot be used for verification purposes because they
cannot always form closed surfaces around each of the classes, thus elimi­
nating the false positives. Closed surfaces can only be formed if the number
of correlators in the first hidden bank is equal to or larger than the number
of inputs, which is equal to the size, in pixels, of the input image. Such an
optical system is difficult to build for a reasonable image size.

So after completing this project, my personal opinion is th a t our algorithms
need further development to produce useful filters for optical pattern recognition.
If we want to perform pattern recognition optically and only one bank of correla­
tors can be built, then at this stage the best choice is probably to use a MICE, or
OTF, or MVSDF, or another filter not reviewed in this thesis according to the spe­
cific application. Our filters, particularly after 2 iterations, perform better than
the equivalent filters produced with the m atrix methods (LCFs and SDFs). How­
ever, we have not compared them with the more advanced filters, which probably
perform even better, because they are designed to tolerate noise, reduce the outer
products, etc. while our algorithms do not take these into account. However, I
strongly believe th a t based on the existing framework, we can now improve our
filters by borrowing the ideas used in the other filter design techniques (MACE,
O TF, MVSDF etc) and adapting them to our iterative algorithms. If two or more
cascaded banks of optical correlators can be built, then my opinion is th a t the

170

9.4. FUTURE W O RK

filters produced with our algorithms for two banks of correlators will produce the
best results of all. If an electronic system is used for pattern recognition, then
other advanced techniques exist, which can take advantage of the abilities of the
electronic system and perform better than the filters reviewed and developed in
this thesis.

Finally, we would like to point out th a t although the original intention was to
design optically implementable algorithms and filters for optical pattern recogni­
tion, the results attained are in no way restricted to th a t type of implementation
and so are more generally useful. Nevertheless, the representation of neural net­
work learning algorithms as image operations in the SS and FESS formulations,
makes them more suited to optical implementation where operations like Fourier
transforms, multiplications and correlations between pairs of images are more eas­
ily performed than individual weight updates. We finish this section with table
9.1, which is similar to table 3.1, which summarises the filters’ attributes, but
with two extra rows, one for the SS algorithm and one for the FESS algorithm.

9.4 Future work

In this section we present some proposals and ideas of how this work should
continue. Some of these ideas have not been tested yet by us. On some others, we
have already done some work but we did not have the tim e to investigate them
further.

i. System noise analysis and simulations

So far we have simulated the filter’s performance with additive input noise.
We think however, th a t the inherent noise of an optical system will degrade
the performance of our filters if it is not taken into consideration at the
design stage. A theoretical analysis of the system noise, backed up by the
proper computer simulations and then, the modification of the filters during
the training to compensate for the system noise, are necessary for good
agreement between simulation and experimental results. Neifeld et. al. [114]
got a 60% disagreement between simulation and experimental results and
by including system noise in their analysis, they reduced this gap between
the simulated and experimental performance to less than 1 0 %.

ii. Investigation of the FESS algorithm for a small number of iterations

171

9.4. FUTURE W ORK

FILTER CHARACTERISTICS
Filter T.D. Discr. Rec. N.T. Corr. plane D.R.R.

M-P M-C M-P M-C P.S. P.V. S.R.

LCF V V
GMF V V V V
ECP V y V V

SDF
F.C. V V V V
POE V V V V V

MVSDF V V V V V
MACE V V V V V V V
MICE V V V V V V V

MINACE V V V V V V y V
OTF V V V V V V V V V

SS V V V V
FESS V V V V V

Table 9.1: Summarised filter characteristics. T.D. : Target detection, Discr.
: Discrimination, Rec. : Recognition, N.T. : Noise tolerance, Corr. plane :
Correlation plane, M-P : M ulti-pattern, M-C : Multi-class, P.S. : Peak sharpness,
P.V. : Peak variance control, S.R. : Side-lobe (outer product) reduction, D.R.R.
: Dynamic range reduction.

172

9.4. FUTURE W ORK

1 mm

FZP MF FZP

CCD

Figure 9.2: Planar correlator. FZP: Fresnel zone plate, MF: Matched filter, IP:
Input pattern.

We saw in chapter 6 tha t the filters produced with the SS algorithm after
2 iterations perform a lot better than the fully converged filters. This im­
plies th a t we may get similarly beneficial results with the FESS algorithm.
Therefore, we need to investigate, mainly using computer simulations, the
performance of the filters obtained in the initial iterations of the FESS al­
gorithm.

iii. Comparison of the SS and the FESS algorithms with the more advanced
filters

We have proved the mathematical equivalence between the SS algorithm
and the LCFs and the FESS algorithm and the SDFs. These comparisons
also show us the relationship between our algorithms and the more advanced
filter design techniques such as MACE, MICE, etc. However, we need to con­
duct computer simulations to quantify the performance differences between
our filters and the MVSDF, MACE etc. filters.

iv. Optical implementation

The filters were always designed with an optical implementation of the recog­
nition system in mind. We think tha t one of the most im portant directions
for further work on the subject is to design and implement an optical recog-

173

9.4. FUTURE W ORK

Filter

Figure 9.3: Disk planar correlator. FZP: Fresnel zone plate, IP: Input pattern.

nition system. The algorithms have now been developed to some extent,
but still require further improvement. Any further theoretical development,
however, may be wasted if the filters are not tested in a real optical system.
T hat is the only way to identify all of their weaknesses and strengths. As
far as the optical system itself is concerned, we strongly believe th a t any
such system must be compact and versatile, where versatility in this case
is the ability to update the filters and the input images dynamically and
also change some of their characteristics such as image size, number of grey-
levels etc. Although I have no practical experience, I believe th a t the planar
correlator systems [47, 48, 49] hold a lot of promise. I think th a t the planar
correlator design shown in figure 9.2 can be combined with a spinning disc
correlator design [36, 37, 38, 39] in a system such as the one shown in figure
9.3. In the correlator shown in figure 9.3, the input image is placed a t the
centre of the disk. The optimum solution would be to be able to dynami­
cally record the input image on th a t location. If th a t is not possible, then

174

9.4. FUTURE W ORK

an SLM has to be attached there, but then problems will arise when trying
to spin the disc with all of the SLM cables attached. The filters are placed
around the disc. Again the optimum solution is to be able to record the
filters dynamically. The alternative is to etch the filters onto the disc, but
this solution drastically reduces the versatility and, therefore, usefulness of
the correlator. As the disk spins, a laser beam will enter it from the filter
side, bounce in it and exit from the opposite side were a CCD camera can
obtain the correlation.

V . Outer product reduction

The increase of the outer products and consequently, the low PC E of the
correlations when using our filters, is another issue th a t must be addressed.
Based on an idea similar to th a t of the MACE filter, which is to try to
minimise the average correlation energy, we can add a second weighting
term to the first algorithm equation (for the SS algorithm). This second
weight can be the to tal energy of the correlation plane. By using a different
convergence factor for each weight, we can emphasise inner product or side-
lobe reduction. The first algorithm equation then would take the form:

M (1

- 13" ^ (g j - '> . s , + C E ^ s , (9.1)

where C E denotes the energy of the correlation. A different m ethod, but a
lot more computationally intensive is to use a number of additional weights,
each of which will be equal to the magnitude of one of the largest side-lobes
a t each iteration.

vi. Simulations of two layer algorithms

We have developed the theory for the two layer versions of the SS and FESS
algorithms but we have not done any computer simulations, which will verify
it and give us new insights on their performance. We have a fairly good
idea of what level of performance to expect based on the performance of
similar neural networks, such as better recognition of non-linearly separable
patterns, but the issues th a t are related with the optical implementation
of such filters, such as SNR, side-lobe magnitudes, input and system noise
tolerance, etc., have not been investigated.

vii. Initially random filters for the SS algorithm

175

9.4. FUTURE W ORK

Up to now, we have used the training patterns as the initial versions of the
filters in the SS algorithm. We suspect, however, th a t these filters do not
need to contain any of the features of the patterns th a t they represent. A
few simple computer simulations can verify whether initially random filters,
which do not contain any of the features of the training patterns, will perform
equally well.

viii. Use of a different threshold for each of the correlators in the FESS algorithm

In our recognition tests with the FESS algorithm we have used the same
threshold for all of the correlators. However, the differences in the magni­
tudes of the auto- and cross-inner products of the various filters suggest th a t
we will get better results if each of the correlators has its own threshold.

ix. Different normalisation methods for the FESS algorithm

We have normalised the magnitudes of the filters in the FESS algorithm to
keep them stable. We have proved th a t the FESS algorithm is m athem ati­
cally equivalent to the Widrow-Hoff algorithm for training neural networks.
However, the Widrow-Hoff rule does not have a normalisation equation.
This suggests, th a t the FESS algorithm may be equally successful w ithout
a normalisation step. The normalisation step was necessary in the SS algo­
rithm because the filters’ magnitudes were decreasing due to the continuous
subtractions. However, in the FESS algorithm we add patterns to the filters
in addition to subtracting some patterns from them. Therefore it may be
possible to keep the magnitudes of the g filters stable by carefully choosing
the convergence parameters /3i and /?2 -

Another change th a t we can make to the normalisation in the FESS algo­
rithm , is to normalise the magnitudes of the filters to a value larger than P ,
for example 2 P , instead of P . Our aim is to increase the auto-inner products
and to make them converge as close to P as possible. However, this is not
possible when the filters are normalised to P and the auto-inner products
have to converge to a lower value. If the filters were normalised to a higher
value, th a t would allow the auto-inner products to increase further. For ex­
ample, if we multiply all of the pixels of a filter with the number 2 , then its
m agnitude will be equal to 4 P and its auto-inner products will all double.
However, its cross-inner products are going to become two times as large as
they were before also. In th a t case there is no benefit, it is like normalising
our correlation outputs to higher values. If we normalise the filters during

176

9.4. FUTURE W ORK

the training however, a t every iteration, we may be able to further decrease
the, now doubled, cross-inner products. We are not sure th a t this is going
to happen, but we think th a t it is an idea worth investigating further.

X . Increase tolerance to additive input noise

The inner product between a filter g and a pattern with additive noise s + n
is: g • (s -I- n) = g • s -1- g • n. The aim is to eliminate the term g • n. The
main question th a t arises here is, how can we train our filters to recognise
the statistical characteristics of the noise, and not specific noise samples.
A solution may be to “copy” the MVSDF m ethod which uses the noise
covariance m atrix to increase the filter’s SNR. Because we have established
the equivalence between our algorithms and the basic SDFs, we may be able
to do a reverse transform ation starting from the MVSDF equation and find
the terms th a t must be added to the algorithm equations to get the same
result. In addition, we may be able to increase the tolerance to non-zero
mean noise by adding constant background images to the training set, a
procedure similar to A rsenault’s method described in chapter 3 .

xi. Selection of optimum number of filters in FESS algorithm

There is a debate on the optimum number of filters for multi-class pattern
recognition. We have thought of a method, which although com putationally
intensive, may guarantee th a t the minimum number of filters is used for the
best possible performance. We can start by creating only one filter and use
the FESS algorithm to force the cross-inner products between this filter and
all of the patterns of all of the classes to converge to the desired values (a
different value for every class). After the algorithm converges, in the case
th a t the result is not acceptable we divide the classes of the training patterns
into two groups, create two filters and train the first filter to recognise all
of the objects of all of the classes of the first group and the second filter
to recognise all of the objects of all of the classes of the second group.
We continue with the same procedure, creating additional filters until our
requirements (probability of recognition, dynamic range, etc.) are satisfied.

xii. Different encoding method for the training patterns in the FESS algorithm

We used a very simple method to convert the monopolar training patterns
into bipolar before using the FESS algorithm. We have thought of a different
conversion method, which is more of an interesting experiment: We can

177

9.4. FUTURE W ORK

multiply each of the monopolar patterns with a different random binary
bipolar pattern, thus making the training pattern itself bipolar. Then we
use these bipolar patterns for the training. We can repeat the experiment
with different random patterns until we get the best results.

xiii. Addition of new patterns and filters after the training.

Another direction of future work is the update of our database of filters and
training patterns after the training. Lets assume th a t a t a given time, we
have a set of training patterns and th a t we use the SS algorithm to create
the corresponding set of filters. If in the future we want to add an additional
pattern and filter pair to our database, it is best if we can do th a t w ithout
having to train the whole system from scratch. Let us call our initial training
patterns S i . . . Sm and the corresponding filters g i . . . gM as usual. The new
pattern th a t we want to add can be denoted by sm+i- It is straightforward
to create the corresponding filter g5v̂ +i just by applying the algorithm to it
for a number of iterations equal to what was used for the original set

M+l
gAfll = gMÎÎ* - /) 2] {gM+l^ • Sfcjsit (9.2)

A= 1

The normalisation equation is still necessary although it is not w ritten above.
The main problem is updating the initial set of filters, g i . . . gM- If pattern
Sm+ 1 was in the set from the beginning, then instead of the existing set of
filters g i . .. gM, we would have a slightly different set, g i . . . gM- The aim is
to get this new set of filters without repeating the whole training process. In
section 5.4.2 we said th a t each of the filters can be expressed as a weighted
sum of the training patterns:

gj = CjlSi + . . . + C jM ^ M (9.3)

where

Cjt = (9.4)
i = l

and D denotes the to tal number of iterations. If the Sm+i pattern had been
part of the initial training set, then a t every iteration it would have been
subtracted from each of the g' filters, an extra subtraction compared to
those th a t led to the initial set of g filters

^^*Sm+i) sm+ i (9.5)

178

9.4. FUTURE W O RK

The effect of this extra subtraction on each of the coefficients Cjk would be
equal to

D

^ C j k — — 13 ^ • S m + i) s m + i • Sfc
i=l

L

= —pSM+1 • Sk ^ • S m + i)
(9.6)

’ ° M + 1 J
i=l

If we can calculate Ac f̂c, Vj, k and then use these coefficients as weights for
one more subtraction of patterns from the filters gj we should end up with
the updated filters g ' . The problem with this solution is th a t we do not have
the filters gj^^ for every iteration i, nor is it easy to store all of the initial

filters g f \ ^ i , so we cannot calculate Acjk from equation 9.6. There are
several ways however, with which we can approximate the sum in equation
9.6. We know from the analysis of the algorithm carried out in chapter 6 ,
th a t the cross-inner products gj'{i)»SM+i are rather small for every iteration,
except for the first couple of iterations. We have the values of the cross-inner
products at the first iteration because initially gj = Sj. We may be able to
get a good enough approximation just by using th a t cross-inner product and
the one a t the final iteration, which can also be calculated, multiplied by the
number of iterations, D. An even better approximation can be achieved if we
use our knowledge of the convergence of the algorithm, which is expressed
by the to ta l energy index. We can use the initial and final values of the
cross-inner products and the to tal energy index to extrapolate the values in
between. Better ways may exist to calculate the correct coefficient correction
Acjk, maybe by using the initial coefficients Cjk, which can easily be stored.
Simulations are necessary to see the effectiveness of the methods proposed
here and the error they introduce.

xiv. Use of g filters for SDF synthesis

This is more an interesting experiment, than a direction for further work.
We can use the FESS algorithm to create our filters and then combine them
into an SDF. The performance of this SDF can then be compared to the
performance of the SDF created using the original training patterns. The
filters created by the FESS algorithm contain only the main features of the
patterns which they represent and have discarded the similarities between
patterns th a t belong to different classes. Therefore it is conceivable th a t

179

9.4. FUTURE W O RK

the SDF which will be created by them will perform better since it will
not contain the unnecessary information th a t is contained in the original
training patterns.

180

A p p en d ix A

M ath em atica l d efin ition s

In this appendix we present some m athem atical definitions which are necessary
for the understanding of the thesis.

A .l E x p ec ted value - variance - stand ard d ev ia tio n

The expected value^ or mean of a random variable is defined by the integral :
/ oo

x f { x) dx (A.l)
-OO

where f {x) is the probability density function of the random variable x and
is defined by

/ W - ® (A,2)

and F{x) is the distribution function o /x

F{x) = P {x < x} (A.3)

defined for every x from —oo to oo. For discrete type random variables, the
expected value is given by a sum:

P{xj- = ̂1 Pi^ij Pi — P {x = (A.4)
i

The variance of a random variable x is by definition the integral

/ oo
{x - E{x}) f { x) dx (A.5)

-oo

The variance is also given by the following equation

= E{x"} - P2{x} (A.6)

The positive constant a is called the standard deviation o /x .

A .2 C orrelation and covariance m atrices

The covariance^ C of two random variables x and y is by definition the number

C = ^ { (x - £ ; { x }) (y - £ { y }) }

= E{xy} - E { x } E { y }
^The following definitions are adapted from Papoulis, 1991 [115]

181

A. M ATHEMATICAL DEFINITIONS

For complex random variables, the covariance is

C = E { { x - E { x }) i r - E { y r) }

= E{xy*} - E {x }g {y '}

The correlation m atrix of the random vector X = [xi , . . . ,x„] is by definition

(R \ i ' ’ ' R \- n \

(A.8)

R r t =

^ n n j

(A.9)

where R{j = E{x^x*} = R*^. The covariance m atrix of the random vector
X = [x i, . . . , Xŷ] is

C n = (A.IO)

\C*nl ’ ' ’ CnnJ

where Cij = Rij — E{ x i } E{ x j } * = The correlation matrix can also be written

Rn = E { X ^ X '} (A .ll)

where X^ is the transpose of X. The covariance matrix On is the correlation
matrix of the “centered” random variables x* —E{x%}. I f E{ x i } = 0, Vi, = Rn.

A .3 Fourier transform

Giver? an arbitrary, complex-valued function f {x), the integral

/ o o

(A.12)
-OO

is called the Fourier transform of f {x) . The integral o f equation A .12 exists^
for every function f {x) which accurately describes a real physical quantity [116].
f {x) can be obtained from F (^) i f equation A.12 is inverted

/ o o

F (a y ^ " ° ^ da
-OO

(A. 13)

assuming that F {a) exists. f {x) is called the inverse Fourier transform of
F{^) and the two functions are known as a Fourier transform pair.

^The following definitions have been adapted from Gaskill, 1978 [6]
^See Gaskill, 1978 [6] for a description of the conditions required

182

A. M ATHEMATICAL DEFINITIONS

Given the function f { x , y) , its two-dimensional Fourier transform is given by
the integral

oo

F ((, n) = I I / (a , da d/3 (A.14)
— OO

The inverse Fourier transform of F{^, rj) is

o o

f {x , y) = j j F{a, da djd (A.15)
— OO

A .4 C onvolu tion and correlation

The convolution and the correlation are two mathematical computations between
two functions. They are described by equations A .16 and A .17 respectively

/ o o

f (a) h{ x - a) da (A.16)
-o o

/ o o

f { a) h { x a) da (A.17)
-o o

For two-dimensional functions f {x , y) and h{x, y), the convolution and correlation
operations are described by equations A. 18 and A. 19 respectively

o o

g{x,y) = J J f {a , P) h{x - a , y - P)dad/3 (A.18)
—oo

o o

g{x, y) == J J f {a , f l)h{x -\-a ,y-\- fl) da dP (A.19)

The convolution and correlation equations may also be written in a discrete form

[V
M - l N - 1

g { m , n) = (A.2 0)
i=0 j=0
Af—1 —1

g (m ,n) = ^ ^ f (i , j)h (m -h i ,n -h j) (A.2 1)
2=0 j=0

One of the most important theorems of signal processing is the convolution theo­
rem, which states that the convolution of two functions in the time domain is equal
to the inverse Fourier transform of the multiplication of these two functions in the
frequency domain, that is the multiplication of their Fourier transforms [117].

g{x) = f i x) * h{x) = I F T { F { ^) H i O } (A.2 2)

183

A. M ATHEMATICAL DEFINITIONS

A .5 Inner and ou ter p rod u cts

The correlation of two two-dimensional functions, is itself a two-dimensional func­
tion. The value of that function at the origin p (0 ,0) is called the c e n tra l p e a k
of the correlation or in n e r p ro d u c t and it is equal to

M - l N - l

9{0 , 0) = Y , Y f (L j) h { i , j) (A.23)
i= 0 j = 0

in the discrete form. All of the other points of the function g{m, n) are called the
o u te r p ro d u c ts of the correlation.

184

A p p en d ix B

M agn itu d es o f th e un-norm alised filters

The magnitudes of the filters are equal to the squared Euclidean norm shown
in the following equation:

/ N \ 1 /2

Euclidean norm: ||s | | 2 = (^ = (s »
^ (B .l)

In this appendix we are going to investigate whether these magnitudes are going to
increase, or decrease, or stay constant during the training with the SS algorithm
(equation 5.19) and the FESS algorithm (equations 7.1 and 7.2), w ithout the
normalisation step. Equations 7.1 and 7.2 can be combined into the following
equation:

Lj M—Lj
= e / " ' ' + A É (-P - - 0 2 ^ 1

t = l m = J (B . 2)

We have used a different font to write the third term on the right hand side of
equation B.2 . We did th a t because th a t term describes the SS algorithm. In
other words, if we used the SS algorithm to design the filters, we would only
subtract patterns from the filters, using the third term but w ith slightly different
summation limits. In the following m athem atical analysis we are going to use
different fonts for the terms th a t are derived from the FESS algorithm term s and
for the terms th a t would be there if only the SS algorithm was used. We use two
different symbols for example, gj and Qj, to denote the jth filter. Both symbols
refer to the same filter. The only criterion of which symbol to use each time is
whether the whole term th a t the symbol is in, would exist if only the SS algorithm
was used for the training. At the end of our m athem atical analysis we are going
to isolate these term s and discuss the effect of the SS algorithm on the filters’
magnitudes when more than two training patterns are used. Equation B.2 can

also be w ritten in the following form:

L i M —L i

k = l m = l
L j / M —L j \

g f = A E - s l g / " ') + Z « m a :) , / " ' (B - 3)
\ m = l

185

B. MAGNITUDES OF THE UN-NORMALISED FILTERS

The filters’ magnitudes can be calculated in the following manner^ :
(i-i)

"j 6 ; -
M - L j

k = l

k = l

A É St (-P - slsj) + 7-/32 E
I \ m —1 /

L j / M —L j

A É S f { P - s l g j) + (7 - / 3 2 E Sm'Sm') s j
A:'=l \ m '= l

/ ^ '
A Ê s l (f - + 9 f (/ - E

\ m = l j

L j / A f —L j

A E S f { P - s l ' g j) + (7 - ^ 2 E) A
k '= l \ m '= l J

- " sjgjjsfc X] (^ “ ^k>Ej)^k’ + A X! (^ “ ^ïëj)^lkSj
k = l k '= l A:=l

L j A f —L j L j

- A A E (7"- sj'gj)sj E S m ' S ^ / g j + g j A E S f (f - sggj)
/c=l m ' = l k'—l

A f —L j A f —L j L j

+ 9 f 9 j ~ 9 j ’l3s E Sm'Sm'Sj -gjA E SmŜ A E Sfc-(p-s ,̂gj)
m ' = l k ' = lm = l

Af—Lj Af—Lj Af—Lj

+ 9 j P e E ^ m S n 9 j + 9 ^ I3l E S ™ « m E
m-=l m = l m ' = l

Lj L j

= Ê É (T ’ - s l g j) (f - s J , g j) s [s f c . + A Ê (T ’ - s * g j) s j g ^
fc= l A :'= l A:=l

L j M —L j L j

- A A E E (- P - slgj)sl,,gjsl8^, + A E (T ’ - S ^ , g j) g J ’s t '
A:=l 77i'=l fc'=l

A f —i j A f —L j L j

+ 9 j 9 j - p 2 E (s m ' A ') - A A E E 6 j s „ (P - s [, g j) s S ^ s * .
m ' = l m —1 k ' = l

A f —L j A f —L j A f —L j

- Z) ; E (g f s m) + / 3 g E E S / ’S ’" S m ' A S m S m '
m=i m = l m ' = l

So the magnitude of the filter gj is:
M —Lj M —Lj M —Lj

g r g r = a r ') v + /) : E E - 2 / 3 . e
m = l m ' —l m = l

Lj Lj
+ A ^ É É (- P - s i g j ' {p - s l s f + 2 A Ê (- P - s ^ g j ' ^ ') s ^ g j '

A'—1 k = i fB 4)
Lj A f - L j \ ' J

- 2 A A E E (■ P - s I ' g j ' " ' ') s ^ , g j ’ “ ' ’ s * s „ .
A:=l m '= l

 ̂The gj filters on the right hand side of the following equations are all in the i th — 1 iteration.
However, for the sake of clarity, the index will be omitted until the last equation.

186

B. M AG NITU D ES OF THE UN-NORM ALISED FILTE RS

B . l A n a lysis for th e SS a lgorithm

The first three terms in the right hand side of equation B.4 are the ones th a t
would result if we had used the SS algorithm instead of the FESS algorithm to
design the filters. We can see th a t they are very similar to the terms in equation
5.32 in section 5.3. We can isolate them from the remaining terms in equation
B.4 and estimate the slope, or rate of change, of the magnitudes of the g filters
when the SS algorithm is used and more than two training patterns exist

M —L j M —L j M —L j

m = l m=l (g g)

The first term on the right hand side of equation B.5 can be expanded to give the
following terms:

M —L j M —L j M —L j

m=i m' = l m = l

+ a sum of cross terms of the form:
(B.6)

for example when m = 1 and m! = 2

So using equation B.6 , equation B.5 becomes:

M —L j M —L j

U f f - h ^ r ‘\ \ ^ = 0 l E (a r ' %) | | 3 m i r - 2 / 3 , E
m = l m = l

+ sum of cross terms

= / 3 . E (/ 3 , | K i r - 2) (B . 7)
m = l

T sum of cross terms

The investigation of the sign of the right hand side of equation B.7 is very similar
to th a t shown in section 5.3. The right hand side of the equation is two sums of
terms. We can ignore the cross term s for the tim e being and investigate the sign
of each of the other terms, which depends on the value of /3g.

• If then the corresponding term is equal to zero. Since all of the

training patterns are normalised and ||Sm||^ is constant Vm, if = p^|]T
then all of the terms in the sum will be equal to zero and the slope of the
norm of gj will depend on the cross terms.

187

B. MAGNITUDES OF THE UN-NORMALISED FILTERS

• l î /32 < ||g |̂|g then the terms in the sum are all negative.

• 1Î f32 > p fp " then all of the terms in the sum are positive.

In section 5.2.3 we chose to use a convergence param eter which corresponds to
^ 2 — ^ /P M . T hat is, is smaller than ^ /||g || {P = ||g||) and according to the
previous analyses the terms in the sum in the right hand side of equation B.7 will
be negative. We have to consider the sum of the cross terms to find the sign of
the slope. If the training patterns are monopolar, then the cross term s will all be
positive. If the training patterns are bipolar, then the sum will consist of positive
and negative terms and overall it will be smaller. In either case however, this sum
of cross terms will probably be lower than the first sum in the right hand side of
the equation because of the squared in front of it. Therefore, we can conclude
th a t with our choice of convergence parameter, the slope of the gj norm will be
negative and the norm decreases. Eventually, as the inner products
decrease, the right hand side of equation B.7 tends to zero. So after a number of
iterations the norm of gj will stabilise to a very low value.

B .2 A n a lysis for th e F E SS algorithm

The analysis is similar for the FESS algorithm, when all of the terms in equation
B.4 must be considered. We saw in the SS analysis th a t with our choice of con­
vergence param eter, the second and third term in the first line of the right hand
side of equation B.4 are negative and cause the decrease of the filters’ magnitude.
The next two term s in the second line in the same expression, which we can see
again below

k = i k ' = i k ^ \ (B.8)

are the corresponding terms of the FESS algorithm. These terms both have a
plus sign in front of them, however, we can be sure th a t they are positive only
in the case when the training patterns are monopolar and all of the cross-inner
products are positive. For bipolar training patterns, we cannot predict
with certainty whether these two terms are going to be positive or negative. The
last term in equation B.4 is usually smaller compared to the other term s due
to the product in front of it. The overall sign of the slope of the g norm,
||g |p , depends on the number of patterns in each of the classes compared to the
to ta l number of patterns. Assuming th a t the training patterns are monopolar,

188

B. MAGNITUDES OF THE UN-NORMALISED FILTERS

the ones th a t belong to other classes and are subtracted from the filter will cause
i t ’s magnitude to decrease according to the second and third term in the first line
in equation B.4. The ones th a t belong to the class th a t the filter represents, will
cause i t ’s magnitude to increase according to the next two term s in equation B.4.
Usually, but not always, the to tal number of patterns will be a lot larger than the
number of patterns in each class, therefore the negative term s will be larger and
the magnitudes of the filters will decrease.

189

Appendix C
Training set

C . l T raining set for th e F E SS a lgorith m

190

c . TRAINING SET

Figure C .l: The examples tha t were used in the training set for the first five

people.

191

c . TRAINING SET

Figure C.2: The examples th a t were used in the training set for the last five

people.

192

A ppendix D
C ross inner p rod uct m atrices

193

D. CROSS INNER PRODUCT M ATRICES

6 training patterns in each class 6 trammg patterns in each class

(a) Filt. 1 Mon (b) Filt. 1 bip

6 training patterns in each d a ss 6 training patterns in each class

(c) Filt. 2 Mon (d) Filt. 2 bip

mm
6 trammg patterns m each class6 training patterns in each class

(e) Filt. 3 Mon (f) Filt. 3 bip

Figure D.3: First three rows of the initial cross-inner product matrices for monopo­
lar and bipolar patterns.

194

D. CROSS INNER PRODUCT M ATRICES

6 training patterns in each class 6 training patterns In each d a ss

(a) Filt. 4 Mon (b) Filt. 4 bip

6 trairwig patterns in each class 6 training patterns in each class

(c) Filt. 5 Mon (d) Filt. 5 bip

6 training patterns in each class 6 training patterns in each class

(e) Filt. 6 Mon (f) Filt. 6 bip

Figure D.4: Fourth to sixth rows of the initial cross-inner product matrices for
monopolar and bipolar patterns.

195

D. CROSS INNER PRODUCT M ATRICES

6 trammg patterns in each class

(a) Filt. 7 Mon (b) Filt. 7 bip

(c) Filt. 8 Mon (d) Filt. 8 bip

€ training patterns

(e) Filt. 9 Mon (f) Filt. 9 bip

6 training patterns in each d a ss 6 training patterns in each d a ss

(g) Filt. 10 Mon (h) Filt. 10 bip

Figure D.5: Last four rows of the initial8fess-inner product matrices for monopo­
lar and bipolar patterns.

D. CROSS INNER PRODUCT M ATRICES

@ pan*m« k Mch ctau

(a) Filt. 1 Mon 1 (b) Filt. 1 Mon Mean (c) Filt. 1 Mon Rand

(d) Filt. 1 Bip 1 (e) Filt. 1 Bip Mean (f) Filt. 1 Bip Rand

| o e .
Î.. T ■ - ... (..

1...i....-...
i

hg pstttms in Mch ciaw

(g) Filt. 2 Mon 1 (h) Filt. 2 Mon Mean (i) Filt. 2 Mon Rand

(j) Filt. 2 Bip 1 (k) Filter. 2 Bip Mean (1) Filt. 2 Bip Rand

Figure D.6; First and second rows of the cross-inner product matrices for monopo­
lar and bipolar patterns and all three initial filter values.

197

D. CROSS INNER PRODUCT M ATRICES

(a) Filt. 3 Mon 1 (b) Filt. 3 Mon Mean (c) Filt. 3 Mon Rand

I
t
I

(d) Filt. 3 Bip 1 (e) Filt. 3 Bip Mean (f) Filt. 3 Bip Rand

6 training paflam* In aach

(g) Filt. 4 Mon 1 (h) Filt. 4 Mon Mean (i) Filt. 4 Mon Rand

I
t
i

I
I

: i ..

1

(j) Filt. 4 Bip 1 (k) Filter. 4 Bip Mean (1) Filt. 4 Bip Rand

Figure D.7: Third and fourth rows of the cross-inner product matrices for monopo­
lar and bipolar patterns and all three initial filter values.

198

D. CROSS INNER PRODUCT MATRICES

(a) Filt. 5 Mon 1 (b) Filt. 5 Mon Mean (c) Filt. 5 Mon Rand

I
i

-V 4 -

(d) Filt. 5 Bip 1 (e) Filt. 5 Bip Mean (f) Filt. 5 Bip Rand

(g) Filt. 6 Mon 1 (h) Filt. 6 Mon Mean (i) Filt. 6 Mon Rand

I
!
I I

m

(j) Filt. 6 Bip 1 (k) Filter. 6 Bip Mean (1) Filt. 6 Bip Rand

Figure D.8: Fifth and sixth rows of the cross-inner product matrices for monopolar
and bipolar patterns and all three initial filter values.

199

D. CROSS INNER PRODUCT M ATRICES

i^ I i. .

(a) Filt. 7 Mon 1 (b) Filt. 7 Mon Mean (c) Filt. 7 Mon Rand

I
Î
I

!
I

10

(d) Filt. 7 Bip 1 (e) Filt. 7 Bip Mean (f) Filt. 7 Bip Rand

(g) Filt. 8 Mon 1 (h) Filt. 8 Mon Mean (i) Filt. 8 Mon Rand

6 training paKama in each ctaea

0 0 :

I

(j) Filt. 8 Bip 1 (k) Filter. 8 Bip Mean (1) Filt. 8 Bip Rand

Figure D.9: Seventh and eighth rows of the cross-inner product matrices for
monopolar and bipolar patterns and all three initial filter values.

200

D. CROSS INNER PRODUCT M ATRICES

(a) Filt. 9 Mon 1 (b) Filt. 9 Mon Mean (c) Filt. 9 Mon Rand

(d) Filt. 9 Bip 1 (e) Filt. 9 Bip Mean (f) Filt. 9 Bip Rand

|o.
t::|

i..

i.. I :
i '.....

î
: I

MÉmIiill
2 3 4 5 6 7 S 9 10

6 iraMng palUm* In Mch e

(g) Filt. 10 Mon 1 (h) Filt. 10 Mon Mean (i) Filt. 10 Mon Rand

i
iAT -

(j) Filt. 10 Bip 1 (k) Filter. 10 Bip Mean (1) Filt. 10 Bip Rand

Figure D.IO: Ninth and tenth rows of the cross-inner product matrices for monopo­
lar and bipolar patterns and all three initial filter values.

201

Bibliography

[1] Neil Collings. Optical pattern recognition using holographic techniques.
Addison-Wesley, Reading, Massachusetts, 1987.

[2] Gopalan Ravichandran and David Casasent. Minimum noise and correlation
energy optical correlation filter. Applied Optics^ 31(11):1823-1833, April
1992.

[3] Simon Haykin. Neural networks A Comprehensive Foundation. Macmillan
College Publishing Company, Inc., 866 Third Avenue, New York, New York
10022, 1994.

[4] David R. Selviah, John E. Midwinter, Antony W. Rivers, and K.W. Lung.
Correlating matched filter model for analysis and optim isation of neural
networks. lE E Proceedings, 136, No. 3:143-148, 1989.

[5] A. Vander Lugt. Signal detection by complex spatial filtering. IE E E Trans.
Inf. Theory., ITIO: 139-145, April 1964.

[6] Jack D. Caskill. Linear Systems, Fourier Transforms and Optics. John
Willey & Sons, New York, 1978.

[7] Robert J. Schalkoff. Digital image processing and computer vision. John
Wiley & Sons, New York, 1989.

[8] David R. Selviah and Chi-Ching Chang. Self-pumped phase conjugate res­
onators and mirrors for use in optical associative memories. Optics and
Lasers in Engineering, 23:145-166, 1995.

[9] C. Weaver and J. Coodman. A technique for optically convolving two func­

tions. Applied Optics, 5(7): 1248-1249, July 1966.

[10] J.E. Rau. Detection of differences in real distributions. J. Opt. Soc. Am.,
56:1490-1494, 1966.

202

BIBLIOG RAPH Y

11

12

13

14

15

16

17

18

19

20

21

22

H. L. Van Trees. Detection, Estimation, and Modulation Theory: Part I.
Wiley, New York, 1968.

Z. Bahri and B. V. K. Vijaya Kumar. Generalized synthetic discriminant
functions. J.Opt.Soc.Am., A 5(4):562-571, April 1988.

D. Casasent. Unified synthetic discriminant function com putational formu­
lation. Applied Optics, 23:1620-1627, 1984.

B.V.K. Vijaya Kumar. Minimum variance synthetic discriminant functions.
J.Opt.Soc.Am., A 3:1579-1584, 1986.

J. Figue and Ph. Réfrégier. Optim ality of trade-off filters. Applied Optics,
32(11):1933-1935, April 1993.

V. Laude and Ph. Réfrégier. M ulticriteria characterization of coding do­
mains with optimal Fourier spatial light m odulator filters. Applied Optics,
33(20):4465-4471, July 1994.

Ph. Réfrégier. Filter design for optical pattern recognition: m ulticriteria
optimization approach. Optics Letters, 15(15^854-856, August 1990.

H. J. Caulfield and W. T. Maloney. Improved discrimination in optical
character recognition. Applied Optics, 8(ll):2354-2356, November 1969.

J. W. Coodman. Introduction to Fourier Optics. McCraw-Hill, second

edition, 1996.

Alastair D. McAulay. Optical computer architectures. John Wiley & Sons,

Inc., 1991.

D.M. Budgett, P.C. Tang, J.H. Sharp, R.K. Wang, and B.F. Scott. Par­
allel pixel processing using programmable gate arrays. Electronics Letters,
32(17):1557-1559, 1996.

Dror C. Feitelson. Optical Computing. MIT Press, Cambridge, Mas­

sachusetts, first edition, 1988.

[23] B.V.K. Vijaya Kumar. Optical pattern recognition. In Bahram Javidi and
Joseph L. Horner, editors, Real-time optical information processing, chap­
ter 2, pages 39-88. Academic Press, Inc., San Diego, CA., 1994.

203

BIBLIO G RAPH Y

[24] B.V.K. Vijaya Kumar and J. Brasher. Relationship between maximizing
the signal-to-noise ratio and minimizing the classification error probability
for correlation filters. Optics Letters, 17:940-942, 1992.

[25] Jehad Khoury, Jonathan S. Kane, George Asimellis, Mark Cronin-Golomb,
and Gharles Woods. All-optical nonlinear joint fourier transform correlator.
Applied Optics, 33(35):8216-8225, December 1994.

[26] Jerome Golin, Nicolas Landru, Vincent Laude, Sebastien Breugnot, Henri
Rajbenbach, and Jean-Pierre Huignard. High-speed photorefractive joint
transform correlator using nonlinear filters. J. Opt. A: Pure A pp l Opt.,
1:283-285, 1999.

[27] Demetri Psaltis and Ravindra A. Athale. High accuracy com putation with
linear analog optical systems: a critical study. Applied Optics, 25, No.
18:3071-3077, 1986.

[28] A. Partovi, A.M. Glass, T.H. Ghiu, and D.T.H. Liu. High-speed joint-
transform optical image correlator using GaAs/AlGaAs semi-insulating mul­
tiple quantum wells and diode lasers. Optics Letters, 18(ll):906-908, June
1993.

[29] Peter S. Erback, Don A. Gregory, and Jeffery B. Hammock. Phase-only
joint-transform correlator: analysis and experimental results. Applied Op­
tics, 35(17):3091-3096, June 1996.

[30] Chi-Ching Chang, Yuh-Ping Tong, and Hon-Fai Yau. Rotational invariant
pattern recognition using photorefractive correlator. Jpn. J. Appl. Phys.,
3LL43-L45, January 1992.

[31] Laurent Bigué, Michel Fraces, and Pierre Ambs. Experim ental implementa­
tion of a joint transform correlator using synthetic discriminant functions.

Optics and Lasers in Engineering, 23:93-111, 1995.

[32] Michael F. Lhamon and Laurence G. Hassebrook. Translation-invariant
optical pattern recognition without correlation. Optical Engineering,
35(9):2700-2709, September 1996.

[33] Bahram Javidi. Generalization of the linear matched filter concept to non­
linear matched filters. Applied Optics, 29(8):1215-1224, March 1990.

204

BIBLIO G RAPH Y

[34] C. Halvorson, T.W. Hagler, D. Moses, Y. Cao, and A.J. Heeger. 160 fem­
tosecond optical correlator. Chem. Phys. Lett., 200:132-133, 1992.

[35] David Casasent. General-purpose optical pattern recognition image proces­
sors. Proceedings of the IEEE, 82(11):1724-1734, November 1994.

[36] D. Psaltis, M.A. Neifeld, and A. Yamamura. Image correlators using optical
memory disks. Optics Letters, 14:429-431, 1989.

[37] T. Lu. Optical disk based neural network. Applied Optics, 28:4722-4724,
1989.

[38] F.T.S. Yu. Optical disk based joint transform correlator. Applied Optics,
30:915-916, 1991.

[39] Mark A. Neifeld and Demetri Psaltis. Programmable image associative
memory using an optical disk and a photorefractive crystal. Applied Op­
tics, 32:4398-4409, 1993.

[40] S. Tao, Z.H. Song, D.R. Selviah, and J.E. Midwinter. Spatioangular-
multiplexing scheme for dense holographic storage. Applied Optics, 34, 1995.

[41] F.T.S. Yu, S. Wu, S. Raj an, and D.A. Gregory. Compact joint transform
correlator using a thick photorefractive crystal. Applied Optics, 31:2416-
2418, 1992.

[42] Q. He et. al. Shift invariant photorefractive joint transform correlator using
fe:linbo3 crystal plates. Applied Optics, 32:3113-3115, 1993.

[43] F.T.S. Yu, S. Wu A Mayers, and S. Raj an. Wavelength-multiplexed
reflection-type matched spatial flltering using LiNbOg. Optics Communi­
cations, 81:343-346, 1991.

[44] David T. Carrott, Gary Mallaley, R. Barry Dydyk, and S tuart A. Mills.
Third generation M iniature Ruggedized Optical Correlator (M RO C^^)
module. In David P. Casasent and Tien-Hsin Chao, editors. Optical Pattern
Recognition IX, volume 3386, pages 38-44. SPIE, 1998.

[45] Kipp A. Bauchert and Steven A. Serati. D ata flow architecture for high­
speed optical processors. In David P. Casasent and Tien-Hsin Chao, editors.
Optical Pattern Recognition IX , volume 3386, pages 50-58. SPIE, 1998.

205

BIBLIOG RAPH Y

[46] Tien-Hsin Chao, Gerge Reyes, and Youngchul Park. Grayscale optical cor­
relator. In David P. Casasent and Tien-Hsin Chao, editors. Optical Pattern
Recognition IX, volume 3386, pages 60-64. SPIE, 1998.

[47] A.K. Ghosh, M.B. Lapis, and D. Aossey. Planar integration of joint trans­
form correlators. Electronic Letters, 27:871, 1991.

[48] Seok Ho Song, Suntak Park, El-Hang Lee, Pill Soo Kim, and Cha Hwan
Oh. Planar optical implementation of multichannel fractional Fourier trans­
forms. Optics Communications, 137:219-222, May 1997.

[49] Seok Ho Song, Jong-Sool Jeong, Suntak Park, and El-Hang Lee. P lanar
optical implementation of fractional correlation. Optics Communications,
143:287-293, October 1997.

[50] V. Laude, S. Maze P. Chavel, and Ph. Réfrégier. Amplitude and phase
coding measurements of a liquid crystal television. Optics Communications,
103:33-38, 1993.

[51] Bjorn Lofving. Measurement of the spatial phase m odulation of a ferro­
electric liquid-crystal modulator. Applied Optics, 35(17):3097-3103, June
1996.

[52] Robin E. Kilpatrick, John H. Gilby, Sally E. Day, and David R. Selviah.
Liquid crystal televisions for use as spatial light m odulators in a complex
optical correlator. In Optical Pattern Recognition IX, volume 3386, pages
70-77. SPIE, April 1998.

[53] D. A. Gregory, J. A. Kirsch, and E. C. Tam. Full complex modulation using
liguid-crystal televisions. Applied Optics, 31:163-165, 1992.

[54] R. D. Juday. Correlation with a spatial light m odulator having phase and
amplitude cross coupling. Applied Optics, 28:4865-4869, 1989.

[55] Mark C. Gardner, Robin E. Kilpatrick, Sally E. Day, Robert E. Renton,
and David R. Selviah. Experimental verification of a computer model for
optimizing a liquid crystal display for spatial phase modulation. J. O pt A:

Pure Appl. Opt., 1:299-303, 1999.

[56] B.V.K. Vijaya Kumar and L. Hassebrook. Performance measures for corre­
lation filters. Applied Optics, 29(20):2997-3006, July 1990.

206

BIBLIO G RAPH Y

[57] Joseph L. Horner. Light utilization in optical correlators. Applied Optics^
21(24):4511-4514, December 1982.

[58] Philippe Réfrégier, Vincent Laude, and Bahram Javidi. Nonlinear joint-
transform correlation: an optimal solution for adaptive image discrimination
and input noise robustness. Optics Letters, 19(6):405-407, March 1994.

[59] Philippe Réfrégier. Bayesian theory for target location in noise w ith un­
known spectral density. J. Opt. Soc. Am A, 16(2):276-283, February 1999.

[60] Paul C. Miller. Comparison of autom atic target recognition system per­
formance with full- and reduced-resolution correlators. Applied Optics,
38(23):5014-5018, August 1999.

[61] Henrik Sjoberg, Francios Goudail, and Philippe Réfrégier. Comparison of
the maximum likelihood ratio test algorithm and linear filters for target
location in binary images. Optics Communications, 163:252-258, May 1999.

[62] Zu-Han Gu and Sing H. Lee. Classification of multiclassed stochastic images
buried in additive noise. J. Opt. Soc. Am. A, 4(4):712-719, April 1987.

[63] Y. N. Hsu and H. H. Arsenault. Optical pattern recognition using circular
harmonic expansion. Applied Optics, 21:4016-4019, 1982.

[64] Abhijit Mahalanobis, B. V. K. Vijaya Kumar, and David Casasent. Spatial-
tem poral correlation filter for in-plane distortion invariance. Applied Optics,
25(23):4466-4472, December 1986.

[65] R. Wu and H. Stark. Three-dimensional object recognition from multiple
views. J. Opt. Soc. Am. A, 3(9):1543-1557, September 1986.

[66] B.V.K. Vijaya Kumar, Zouhir Bahri, and Abhijit Mahalanobis. Constraint
phase optimization in minimum variance synthetic discriminant functions.
Applied Optics, 27(2):409-413, January 1988.

[67] Max B. Reid, Paul W. Ma, John D. Downie, and Ellen Ochoa. Experim ental
verification of modified synthetic discriminant function filters for rotation
invariance. Applied Optics, 29(8):1209-1215, March 1990.

[68] A. Vargas, J. Campos, C. lemmi, S. Ledesma, and M .J. Yzuel. Optical
codification for multiclass pattern recognition using a parallel correlator.
Optics Communications, 162:121-129, April 1999.

207

BIBLIO G RAPH Y

[69] B. V. K. Vijaya Kumar. Tutorial survey of composite filter designs for
optical correlators. Applied Optics, 31(23):4773-4801, August 1992.

[70] K. I. D iam antaras and S. Y. Kung. Principal component neural networks:
theory and applications. Wiley, New York, 1996.

[71] H. J. Caulfield and Robert Haimes. Generalized matched filtering. Applied
Optics, 19(2): 181-183, January 1980.

[72] Charles F. Hester and David Casasent. M ultivariant technique for multiclass
pa ttern recognition. Applied Optics, 19(11): 1758-1761, June 1980.

[73] H. J. Caulfield. Linear combinations of filters for character recognition: a
unified treatm ent. Applied Optics, 19(23):3877-3878, December 1980.

[74] D. Casasent, B. V. K. Vijaya Kumar, and V. Sharma. Synthetic discriminant
functions for 3 dimensional object recognition. In Proc. Soc. Photo-Opt.
Instrum. Eng., volume 360, 1982.

[75] B. Braunecker, R. Hauck, and A. W. Lohmann. Optical character recog­
nition based on nonredundant correlation measurements. Applied Optics,
18(16):2746-2753, August 1979.

[76] B.V.K Vijaya Kumar. Efficient approach to designing linear combination
filters. Applied Optics, 22(10): 1445-1448, May 1983.

[77] S. I. Sudharsanan, A. Mahalanobis, and M. K. Sundareshan. Selection of
optimum output correlation values in synthetic discriminant function design.
J. Opt. Soc. Am., 7(4):611-616, April 1990.

[78] Robert R. Kallman. Construction of low noise optical correlation filters.
Applied Optics, 25(7):1032-1033, April 1986.

[79] B. V. K. Vijaya Kumar, David P. Casasent, and Abhijit Mahalanobis. Cor­
relation filters for target detection in a Markov model background clutter.

Applied Optics, 28(15):3112-3119, August 1989.

[80] Henri H. Arsenault, Yunlong Sheng, and Jean Bulabois. Modified composite
filter for pattern recognition in the presence of noise w ith a non-zero mean.

Optics Communications, 63(l):15-20, July 1987.

208

BIBLIOG RAPH Y

[81] Bahram Javidi, Philippe Réfrégier, and Peter W illett. Optimum receiver
design for pattern recognition with nonoverlapping target and scene noise.
Optics Letters, 18(19): 1660-1662, October 1993.

[82] A. Mahalanobis, B. V. K. Vijaya Kumar, and D. Casasent. Minimum aver­
age correlation energy filters. Applied Optics, 26:3633-3640, 1987.

[83] D. Casasent and G. Ravichandran. Advanced distortion invariant mace
filters. Applied Optics, 31:1109-1116, 1992.

[84] S. I. Sudharsanan, A. Mahalanobis, and M. K. Sundareshan. Unified frame­
work for the synthesis of synthetic discriminant functions with reduced noise
variance and sharp correlation structure. Optical Enginnering, 29(9):1021-
1028, September 1990.

[85] H. J. Caulfield. Role of the horner efficiency in the optim ization of spatial
filters for optical pattern recognition. Applied Optics, 21(24):4391-4393,
December 1982.

[86] Joseph L. Horner and Peter D. Gianino. Phase-only matched filtering. A p­
plied Optics, 23(6)'.812-816, March 1984.

[87] Joseph L. Horner and James R. Leger. Pattern recognition with binary
phase-only filters. Applied Optics, 24(5):609-611, March 1985.

[88] Joseph L. Horner and Peter D. Gianino. Applying the phase-only filter
concept to the synthetic discriminant function correlation filter. Applied
Optics, 24(6):851-854, March 1985.

[89] David A. Jared and David J. Ennis. Inclusion of filter m odulation in
synthetic-discriminant-function construction. Applied Optics, 28(2) :232-
239, January 1989.

[90] Robert R. Kallman. Direct construction of phase-only filters. Applied Optics,
26(24):5200-5201, December 1987.

[91] Philippe Réfrégier and Jean-Pierre Huignard. Phase selection off synthetic
discriminant function filters. Applied Optics, 29(32):4772-4778, November

1990.

209

BIBLIO G RAPH Y

[92] Ph. Réfrégier. Optimal trade-off filters for noise robustness, sharpness of
the correlation peak, and Horner efficiency. Optics Letters^ 16(11):829-831,
June 1991.

[93] R. F. Thompson. The Brain: A n Introduction to Neuroscience. W. H.
Freeman &: Company, New York, 1985.

[94] G.M. Shepherd and C. Koch. The Synaptic Organization of the Brain.
Oxford University Press, New York, 1990.

[95] James L. McClelland, David E. Rumelhart, and the PD P Research Group.
Parallel distributed processing Explorations in the Microstructure o f Cogni­
tion Volume 1: Foundations. The MIT Press, Cambridge, Massachusetts,
1986.

[96] Gustavo Deco and Dragan Obradovic. A n Information-Theoretic Approach
to Neural Computing. Springer-Verlag, New York, 1996.

[97] F. Rosenblatt. The perceptron: A probabilistic model for information stor­
age and organization in the brain. Psychological Review^ 65:386-408, 1958.

[98] M. L. Minsky and S. A. Papert. Perceptrons. MIT Press, Cambridge, MA,
1969.

[99] F. Rosenblatt. On the convergence of reinforcement procedures in simple
perceptrons. Technical Report VG-1196-G-4, Cornell Aeronautical Labora­
tory, Buffalo, NY, 1960.

[100] F. Rosenblatt. Principles of Neurodynamics. Spartan Books, Washington,
DC, 1962.

[101] D.O. Hebb. The Organization of Behavior: A Neuropsychological Theory.
Wiley, New York, 1949.

[102] G.S. Stent. A physiological mechanism for Hebb’s postulate of learning. In
Proceedings of the National Academy of Sciences of the U.S.A, volume 70,

pages 997-1001, 1973.

[103] J. P. Changeux and A. Danchin. Selective stabilization of developing
synapses as a mechanism for the specification of neural networks. Nature^
264:705-712, 1976.

210

BIBLIOG RAPH Y

[104] R. S. Sutton and A. G. Barto. Toward a modern theory of adaptive networks:
Expectation and prediction. Psychological Review, 88:135-170, 1981.

[105] H. H. Arsenault. Rotation invariant composite filters. In P. A. Yeh, editor,
Nonlinear Optics and Applications, volume 613, pages 239-244. Soc. Photo-
Opt. Instrum. Eng., 1986.

[106] D. Casasent and D. Psaltis. Scale invariant optical correlation using mullin
transforms. Optics Communications, 17:59-63, 1976.

[107] Y. Sheng and H. H. Arsenault. Experiments on pattern recognition using
invariant Fourier-Mullin descriptors. J. Opt. Soc. Amer., 3:771-776, 1986.

[108] Jack K. Mui and King-Sun Pu. Automated classification of nucleated blood
cells using a binary tree classifier. IE EE Transactions on pattern analysis
and machine intelligence, PAMI-2(5) :429-443, September 1980.

[109] Marco Gori and Franco Scarselli. Are multilayer perceptrons adequate for
pattern recognition and verification? IE EE Transactions on pattern analysis
and machine intelligence, 20(11) :1121-1132, November 1998.

[110] Ghuanyi Ji and Sheng Ma. Performance and efficiency: Recent advances in
supervised learning. Proceedings of the IEEE, 87(9):1519-1536, September
1999.

[111] A.L. Blum and R.L. Rivest. Training a 3-node neural network is np-
complete. Neural Networks, 5:117-127, 1992.

[112] S. Judd. Neural Network Design and The Complexity of Learning. MIT

Press, 1990.

[113] D. Haussier, M. Kearns, and R. Shapire. Bounds on the sample complexity
of bayesian learning using information theory and vc-dimension. In The
Fourth Workshop on Computational Learning Theory, 1991.

[114] Wesley E. Poor and Mark A. Neifeld. Adaptive optical, radial basis function
neural network for handwritten digit recognition. Applied Optics, 34, 1995.

[115] Athanasios Papoulis. Probability, random variables, and stochastic pro­
cesses. McGraw-Hill, New York, third edition, 1991.

211

BIBLIO G RAPH Y

[116] R. Bracewell. The Fourier Transform and Its Applications. McGraw-Hill,
New York, 1965.

[117] Alan V. Oppenheim and Ronald W. Schafer. Discrete - Time Signal Pro­
cessing. Prentice-Hall International, Inc., 1980.

212

