Algorithms for designing filters
for optical pattern recognition

Epaminondas Stamos

A thesis submitted for the degree of
Doctor of Philosophy
of the
University of London.

Department of Electronic & Electrical Engineering
University College London

January 17, 2001



ProQuest Number: U642593

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest U642593
Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



Acknowledgments

My PhD was a long engagement which lasted several years. During this period,
many people have helped me in one way or another. I feel very grateful towards
three people in particular, without whose help and support it would have been
impossible for me to do this PhD. My parents, Giannis Stamos and Maria Stamou
and my supervisor David R. Selviah. I feel gratitude towards my parents for
the psychological support they gave me during the project and for their crucial
financial support, since this PhD was not funded in any other way. And I am
very grateful to my supervisor for his continuous support and guidance, for his
relentless effort to teach me as many things as possible and for his very long
patience to explain to me everything that was necessary for my progress and to
endure my mistakes and inefficiencies. I thank them all very much.

During my time here in UCL I have been a member of the Optical Systems
and Devices group. All of the other members of the group have been very helpful.
I particularly wish to thank Dr Lawrence Commander for spending long hours
from his own PhD to be my advisor and my “assistant”. Many thanks to Robin
Kilpatrick, Mark Gardner, Keith Forward and to the newer members of the group,
Sue Blakeney and Hui-Fang Deng, for sharing their computer programs and their
knowledge with me and for the interesting discussions we have had. I would also
like to thank Dr Sally Day and Dr Anibal Fernindez for their valuable contribu-
tions and comments during the group meetings we have held. Laki Panteli for his
help and support in the first years of my stay in England. I am also grateful to
Dr Tim York for his valuable advice during the first years of my PhD.

Last but not least I want to express my appreciation to my sister Vivian who
has kept me company and helped me in so many ways during the last four years.



Abstract

Matched filters for optical correlators detect the presence of objects immersed in
white noise, but are unable to discriminate between similar, noisy input patterns.
Also, the dynamic range of optical systems often limits the size of the images
that can be recognised. We develop two algorithms for designing filters for optical
pattern recognition. The first algorithm suppresses the similarities between the
training images and creates a set of filters, which are mutually orthogonal to them.
Our filters tolerate 7 dB more additive input white noise than matched filters and
the required dynamic range is reduced by 25 dB. In addition, the filters obtained
after only two iterations tolerate 2 dB more additive input white noise than linear
combination filters (LCF), which results in an improvement in the probability of
discrimination of about 30% for the same amount of noise. The correlation outer
products for the 2 iteration Similarity Suppression (SS) algorithm are substantially
lower than those for the LCFs. The second, Feature Enhancement and Similarity
Suppression (FESS), algorithm designs filters for multi-class pattern recognition.
Each of these filters can recognise all the members of a group and distinguish them
from other groups. The probability of recognition for a training set of faces is 100%
without noise, compared to 90% using matched filters and the required dynamic
range is again reduced by 25 dB. We prove the mathematical equivalence between
these algorithms, the back-propagation algorithm for training neural networks
and the method for designing general synthetic discriminant functions (SDF).
Our algorithms also design filters for two or more cascaded banks of correlators
and can train multilayer neural networks. Conversely, matrix inversion methods,
which are generally used for designing SDFs, can train neural networks and give
the same results as obtained with the back-error propagation algorithm.
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Chapter 1

Introduction

In this thesis we develop two algorithms for designing filters for optical pattern
recognition. We investigate their performance using theoretical calculations and
computer simulations. In addition, we compare our algorithms to relevant exist-
ing techniques for designing filters for optical pattern recognition and to neural
network training algorithms.

The original aim of this project was to develop an optically implementable
algorithm for training neural networks. This was based on an initial version of
one of our algorithms for designing filters for optical pattern recognition, which
was based on the Gram-Schmidt orthogonalisation procedure, and on the already
known relationship between neural networks and optical correlators [4]. Our initial
aims were to further demonstrate, develop and improve our algorithm and to assess
its limitations. To investigate whether it could be used to train neural networks
and its relationship to other neural network training algorithms. And to design
and build an optical system which would implement our training algorithm.

Various reasons, most important among which being the interesting results
we obtained from our computer simulations and the theoretical comparisons with
other training algorithms and filter design techniques, led us to emphasise the
theoretical part of the project. In addition, we focused on the optical filter design
side of the project and not on the neural network side, because of the currently
higher interest in optical filters rather than optical neural networks. In the fol-
lowing paragraphs we present some background information on the relevant fields,
namely optical pattern recognition and neural networks, which will help us place
our work in the context of related research.

Optical pattern recognition has been a vibrant field of research over the last
forty years [5]. Correlation [6, 7], a very well known mathematical method for
comparison, is very often used for optical pattern recognition. Optical correlators
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have the advantage that they are very fast compared to computers. This speed
advantage is a consequence of the inherent parallelism of optics and the speed
of light. Moreover, there are optical correlators, which can correlate many im-
ages with one in parallel [8]. The most important component of any recognition
system based on a correlation is the template, or filter, with which the input pat-
tern is compared. This filter depends on the correlator implementation (optical,
electronic, hybrid etc.). Some optical correlators use filters in the space domain
[9, 10] and others in the Fourier domain [5]. Furthermore, the filters depend on
the particular task at hand. Some systems’ primary aim is to detect the pres-
ence of an object in a noisy background. For example, matched filters, which are
the complex conjugates of the spectrum of the original patterns, are optimal for
detecting signals in white, Gaussian noise [11]. The aim of other systems is to
recognize the presence of any one of several patterns in the input, for example,
SDF filters [12, 13, 14, 2] and optimal trade-off filters [15, 16, 17]. Other systems
aim to distinguish between very similar objects, for example, mutually orthogonal
filters [18]. All of these are not completely different tasks, on the contrary, they are
inter-related and many filters are designed with all of these aims in mind. Most
of the previously mentioned filters are linear combinations of training patterns
and their design methods are based on solving a set of simultaneous equations,
to calculate an array of coefficients. These coefficients can then be used to lin-
early combine the training patterns, to create the filters in such a way that their
correlations with the input patterns yield the desired output values.

Neural networks [3] are simplified models of the human brain. They consist of
many simple processing units called neurons. These neurons are interconnected
with connections of different strengths. The strengths of these interconnections
are called weights and determine the behaviour of the network. The methods
for modifying these weights are called training algorithms. Most of them are
iterative and they apply a mathematical rule to modify the network’s weights,
usually based on a number of training examples. Sometimes, these mathematical
rules are rather complicated. In addition, many iterations and a large number of
training examples may be necessary for the network to yield the desired outputs.
Therefore, the training of a neural network is often a time consuming process.
Furthermore, as the desired network behaviour may change with time, the network
may need to be retrained. '

These disadvantages of the neural network training process and the known
structural equivalence between optical correlators and single layer neural net-
works, were what initially motivated us to start this project. An algorithm which
could be implemented optically and could be used to train neural networks would
use the advantage of the speed and the parallelism of optics to speed up the pro-
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cess of training neural networks. During the project, we decided not to work on
the practical optical system to implement our training algorithm, but instead to
concentrate on the algorithm development. Also we shifted the emphasis from
neural networks to optical filters and we investigated the relationship between
neural network training algorithms and optical filter design techniques using our
algorithms as an intermediate step for the comparisons, which led to some very
interesting results. So our revised, final aims are summarised below:

1. To further demonstrate, develop and improve our algorithm.
2. To assess its limitations.

3. To develop, demonstrate, and assess the limitations of a second algorithm
which addresses the problem of multi-class pattern recognition.

4. To investigate the relationship between our algorithms and some neural
network training algorithms.

5. To compare our algorithms to some relevant optical filter design techniques.

The layout of this thesis is as follows: We start with some background theory
and a review of some of the relevant research, in the next three chapters. Then
we present our work and we finish the thesis with our conclusions. Specifically,
the next chapter contains some introductory theory on optical correlators. We
briefly describe the 4-f correlator and the joint transform correlator. This chapter
is useful for the reader who has no prior knowledge of optics, and particularly
correlators. A reader who is already familiar with these can proceed straight
to the next chapter. Chapter 3 presents some of the most relevant methods for
designing filters for optical pattern recognition. In chapter 4 we present some
introductory theory on single layer and multilayer perceptrons. This is a theory
chapter, aimed at the reader who has no neural network knowledge and can be
omitted by a reader who is already familiar with them. The next four chapters
present our work. Chapter 5 contains the derivation and theoretical analysis of
our first algorithm, called the similarity suppression (SS) algorithm. In addition
in chapter 5 we theoretically compare the similarity suppression algorithm with
relevant filter design techniques and the Hebbian learning law for training neural
networks. In chapter 6 we present the computer simulations of the SS algorithm.
Each section of that chapter presents the simulations that prove, or investigate
the accuracy of the theory that was presented in the corresponding section of
chapter 5. Qur second algorithm, called the feature enhancement and similarity
suppression (FESS) algorithm, along with its theoretical analysis and comparisons
with relevant filter design methods, is presented in chapter 7. The layout of
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chapter 7 is very similar to the layout of chapter 5, so that the reader can make
comparisons between the two algorithms. Chapter 8 follows, with the computer
simulations for the FESS algorithm. An overview of our work, along with a list
of our main achievements and new ideas, and some proposals for further work are
presented in chapter 9. Appendix A presents some mathematical preliminaries
that are useful for the reading of the thesis. Appendix B presents the mathematical
analysis of the changes that occur to the filters’ magnitudes during the training
with the SS and the FESS algorithms. Appendix C contains all of the training
images used for the FESS algorithm. Finally, appendix D contains the graphs of
the simulations of the FESS algorithm, which were not included in chapter 8.

23



Chapter 2

Optical inner product correlator

fundamentals

2.1 Introduction

Optical inner product correlation is the tool on which optical pattern recognition
is based. So, in this chapter we present some elementary background theory on
optical correlation, starting with the optical Fourier transform and ending with
some implementation considerations and some performance measures. In the sec-
ond section we present the Fourier transform property of a lens. In section 2.3
we present some of the most common optical correlators. Section 2.4 describes
the optical matched filters which were first used for optical pattern recognition.
Section 2.5 presents some principles and important issues concerning implemen-
tations of optical correlators. Finally, section 2.6 presents some frequently used
performance measures for the evaluation of optical pattern recognition filters. The
theory presented in this chapter is aimed at the reader with no prior knowledge
of correlators and is written with the purpose of familiarising him/her with some
correlator fundamentals, which are necessary for the understanding of the main
work of this thesis. If the reader is already familiar with optical correlators and fil-
ter performance measures, he/she can proceed to the next chapter, which presents
some of the filters that have been designed for use with these optical correlators.
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2.2. OPTICAL FOURIER TRANSFORM

2.2 Optical Fourier transform

According to the Fraunhofer approzimation [19], when an aperture is illuminated
with coherent light the far-field diffraction pattern is the Fourier transform of the
complex aperture distribution, as shown in equation 2.1

ejkz

: 2 y2 +oo -
Ba,y) = e T [[ Blg, ettt ge dy (2.1)

JAz
where, A is the wavelength of the light, z is the distance from the aperture and
k= 2—} is the propagation number, the magnitude of the propagation vector, k.
If a lens is inserted immediately after the diffracting aperture, then it focuses the
far-field pattern onto the focal plane. The amplitude distribution at the focal
plane of the lens is

“+o00
1 ikE?+y? T
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where the constant phase factor e/** is ignored and f denotes the focal length of
the lens. This equation is almost identical to the 2-dimensional Fourier transform
equation shown in equation 2.3. The only difference between the two equations is

. !'k(zz+ 22
the quadratic phase factor term e 2/

F(z,y) = /z /y F(&,m)eikatFRum) ge gy (2.3)

It has been shown [19] that when the diffracting aperture is located at the front
focal plane of the lens, then this quadratic phase factor is removed and an exact
Fourier transform relationship exists between the front and back focal planes. As
far as the inverse Fourier transform is concerned, which is shown in equation 2.4,

f(z) = [ [ Femetom dedn (2.4

this can be obtained by performing a forward Fourier transform optically and then
calculating the mirror image along the z and the y axes of the output.

2.3 Optical Correlators

By making use of the convolution theorem!?, it is possible to compute the con-
volution of two functions much faster by performing two FFTs, one inverse FFT

1Gee appendix A
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Figure 2.1: 4-f correlator after Collings 1987 [1]

and N multiplications instead of 2N* multiplications that would be necessary for
the convolution [20]. Even then, however, the convolution or correlation of two
functions can be a time consuming calculation, and dedicated chips have been
manufactured to perform them [21]. Optical convolution or correlation is very
fast, because an aperture can perform a Fourier transform with a lens bringing it
into the near field and giving it the correct phase. Also the multiplication is very
easily implemented optically [22], by, for example, illuminating a sandwich of the
two images. The speed of the optical implementation of the correlation has led to
the design of several kinds of optical correlators.

2.3.1 4-f Correlator

A very simple optical correlator is shown in figure 2.1. It is called the 4~f corre-
lator or the frequency plane correlator. The first lens is performing the Fourier
transform of the input function, i{x, y), which is displayed on the first spatial light
modulator (SLM) and is illuminated with coherent light. The complex conjugate,
F*{u, u), of the Fourier transform of the filter function, f{x, y), is displayed at the
back focal plane of the lens using the second SLM. The two Fourier transforms are
multiplied, the light leaving the second SLM is the product /(u, v)F*{u, v), and at
the back focal plane of the second lens, which is performing another Fourier trans-
form, the output is equal to the cross-correlation of the two functions in the space
domain [20]. The 4-fcorrelator uses Fourier domain matched filtering because the
Fourier transform of the filter must be displayed on the second SLM. Obviously
the Fourier transform of any filter is a complex function. The photographic film
that was initially used for the implementation of the 4-f correlator was not orig-
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Figure 2.2: Joint transform correlator after Collings 1987 [1]

inally [23] able to accommodate complex transmittances. Vander Lugt® [5] was
the first to propose a method for bypassing the problem by using a holographic
filter. To do that he recorded the intensity of the interference between the filter
F{u,v) and an off-axis reference beam. According to Kumar in [23], "when this
mask is placed in the back focal plane of the first FT lens, the light leaving it
has three distinct components [23]: First is the product klI(u,v)[A" +- \F{u,v)\%,
where k is a normalising constant and A is the amplitude of the reference beam,
and its inverse FT appears centered on the optical axis at the output plane. The
second term is kAI{u, v)F(u, v)e™™, where a is related to the angle of the reference
beam. Its inverse FT is the convolution between the filter and the input functions,
and it is placed along the x-axis on one side of the origin. The third term is
kAl[u,v)F*{u,v)e~"°" whose inverse FT produces the desired correlation along
the x-axis at the opposite side of the origin.' Obviously the reference beam angle,
a, plays an important role to the placement of the correlation at the output plane
and a steep enough angle must be chosen to ensure good separation between the

three terms.

2.3.2 Joint-transform correlator

The joint transform correlator (JTC) [9, 10] is based on a different approach,

where the prior Fourier transformation of the filter is not necessary. In the joint

“Vander Lugt used amplitude masks made of photographic film and not SLMs in his imple-

mentation
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Figure 2.3: Output of the joint transform correlator after Collings 1987 [1]

transform correlator, figure 2 .o, the input image and the filter are presented at
the input plane of the FT lens (L3) at the same time, and are then both Fourier
transformed by the lens. The interference pattern of their Fourier transforms is
recorded in a real-time recording material such as a photorefractive crystal which
is at the back focal plane of the FT lens. The hologram is interrogated with a
collimated beam. The output beam is sent through a second FT lens and the
correlation of the input and the filter patterns is obtained at the output. The
reconstructed beam in the JTC consists of three terms (figure 2.3). The on-axis
term is the sum of the auto-correlations of the object and the scene, 7?(|Fp-f 1/|").
The off-axis terms are the terms of interest because they are the cross-correlations
of the input and the filter, RFI* and RF *I, where i?, denotes the amplitude of
the reference beam. To obtain a convolution, the mirror image of either the filter
or the input function must be placed at the input of the JTC.

The main difference between the JTC and the 4-f correlator is that the JTC
performs spatial-domain instead of Fourier domain filtering. In other words, the
filter that is placed in the 4-f correlator must already be in the Fourier domain,
while in the JTC the filter must be in the space domain. The main advantage of
the JTC is that no great accuracy in the positioning of the input and the filter is
required [1]. However, any change in the positioning of the input relative to the
filter (or visa versa), will result in the change of the angle 2a between them and
hence, the position of the cross-correlation peak at the output, as can be seen in
figure 2.3. Provided that real-time devices are available, search routines can be
performed at the frame rates of the SLMs. In addition, the JTC can be used for
adaptive pattern recognition, where the input signal is continually being compared
to a reference signal which is changing in time [23]. However, the optical quality
of the input devices, and the FT lens used in the JTC must be high.
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2.4. OPTICAL MATCHED FILTERS

2.4 Optical Matched filters

A matched filter is a time-reversed version of the input signal h(z) = s(—z), where
s(z) is the input signal. If the input signal is complex and 2D, then the time
reversed complex conjugate of its frequency spectrum, h(z,y) = s*(—z, —y), is its
matched filter. It has been proved that matched filters are optimal for detecting
the presence of the signal s(z) in a noisy input, when the noise is white with a
constant power spectral density [11, 23]. This optimality of the matched filters in
detecting signals buried in noise is proved because it maximises the output Signal-
to-Noise Ratio (SNR), which leads to a minimum probability of error [24]. An
optical matched filter can be implemented by a hologram containing the complex
conjugate of the frequency spectrum of the pattern [1], or using an amplitude and
a phase SLM.

2.5 Practical correlator implementations

Purely optical correlators have the advantage of being very fast, operating at over
kHz rates [25, 26], but they suffer from several disadvantages such as the lack
of versatility and programmability, and low accuracy due to the analogue nature
of optics and the low dynamic range [27]. On the contrary, all of the previously
mentioned deficiencies of the optical systems, are strong points of electronic com-
puters. It is not strange, therefore, that many hybrid systems have been developed
which combine the advantages of both worlds [16, 28, 29, 30, 31, 32, 33, 34, 35].

In many cases the input image must be correlated with a very large number
of reference images. These reference images can either be stored in a computer
and down-loaded to the correlator sequentially, or they can be stored optically.
In that case the storage device is part of the correlator. Optical disks have been
successfully used in correlators [36, 37, 38, 39]. Another solution is the use of
photorefractive materials, which offer large storage capacity [40], high resolution
and real-time recording and several correlators have been built which utilise them
[41, 42, 43].

One other disadvantage of optical correlators is their bulk and large weight,
as well as the fact that they are very sensitive to vibrations because precise align-
ment of the input and the filter image is necessary in some of them (4-f correlator)
and, therefore, cannot easily be moved. In recent years, several attempts have
been made to built compact correlators that are also able to endure vibrations
[44, 45, 46]. Finally, several planar correlators have been built by integrating all
of the optical components on the surfaces of a single substrate using lithographic
fabrication techniques [47, 48, 49]. Most of these systems use spatial light mod-
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ulators for the data input to the optical part of the system and CCD cameras
for the correlation readout. Then the computer makes the decision based on the
correlation output. In addition, all of the preprocessing of the data before it is
down-loaded to the SLM and the post-processing of the correlation output is done
by the computer.

It is apparent that the SLMs play a very important role in these architectures,
since they depend not only on their speed, but also on their ability to modulate the
amplitude or the phase of the passing light, or both [50, 51]. There is currently
no SLM commercially available, which can simultaneously fully modulate the
amplitude and the phase of the passing light. Therefore, several filters have been
designed, which use only a part of the complex plane [16, 52|. In addition, a
combination of two SLMs can be used for simultaneous amplitude and phase
modulation [52, 53, 54, 55].

2.6 Performance measures

Several different performance measures have been proposed by various authors
for the assessment of the performance of optical filters. The most frequently used
of these performance metrics were summarised in a paper written by Kumar and
Hassebrook [56]. Later in the thesis we are going to use some of these performance
metrics to assess the performance of our filters and to compare it with the per-
formance of other filters. Therefore, following the Kumar and Hassebrook paper,
we present and explain the following performance metrics:

1. Signal-to-Noise Ratio

The Signal-to-Noise Ratio (SNR) is defined as the ratio of the square of
the average magnitude of the correlation peak, over the variance of the
magnitude of the correlation peak:

[E{y(0)})*
var{y(0)}

The SNR gives us a measure of how much the correlation peak fluctuates
when random noise is added to the input signal. Obviously, it is desirable to

SNR = (2.5)

keep these fluctuations as small as possible, or in other words to maximise
the SNR. It is evident from equation 2.5 that to calculate the SNR, one
needs to calculate the average and the variance of the magnitude of the
correlation peak. Therefore, many experiments with different noise samples
have to be conducted for the SNR to be estimated.

2. Peak-to-correlation Energy
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The Peak-to-Correlation Energy (PCE) is defined as the ratio of the square
of the magnitude of the correlation peak, over the correlation plane energy:

_ yOF
PCE = g (2.6)
where
B,= [ W@Pds (27)

The PCE measures the sharpness of the correlation peak. When the cor-
relation has a sharp high peak and low outer products, the energy of the
whole correlation E, will not be much larger than the energy concentrated
on the peak, and the PCE will be large (close to 1). If the correlation peak
is not sharp, or the outer products are large, then the PCE will be closer to
0.

. Horner efficiency

In 1982 Horner [57] introduced the Horner efficiency criterion. The Horner
efficiency is the ratio of total light energy in the output plane to the light
energy at the input plane and is described by the following equation

i =, L@ & B@)P d
[f(z)|?dz

(2.8)

where f(z) is the input function, h(z) another function, 7, the diffraction
efficiency of the recording medium, and the operator ® indicates correlation.
The Horner efliciency measures the amount of light that passes through the
system.

2.7 Conclusions

In this chapter we have presented a theoretical background for optical correlators,
which are the basic tools for optical pattern recognition. We explained the Fourier

transform property of the lens, and described the two most important optical
correlators, the 4-f correlator or frequency plane correlator, and the joint transform
correlator. We introduced the concept of the matched filters, which are optimal in
detecting the presence of a signal buried in white noise. We briefly reviewed the
most important optical and electro-optical correlator implementations. Finally, we

presented some of the most well known performance measures for the assessment

of optical filters. In the next chapter we are going to review some filter design

techniques.
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Chapter 3

Review of spatial filter design

algorithms for optical correlators

3.1 Introduction

Optical pattern recognition is a multi-faceted problem. It includes the detection
of objects buried in noise [58, 59, 60, 61], the discrimination of different objects
[62], the recognition of different views of a 2D [63, 64] or 3D [65, 66, 67] object
and the discrimination of them from other views of a different 2D or 3D object
[68]. Due to the complexity of these different recognition or discrimination prob-
lems, researchers have proposed many different methods and algorithms for the
development of the appropriate filter for each case [69]. In this chapter, we review
some of the algorithms proposed in the literature. Only a few of these algorithms,
which are the most similar to our work and which will be compared to it in later
chapters are presented in detail here. Different authors have used different nota-
tion in their publications. For the sake of clarity, we have changed that notation
where necessary and we have used one set of symbols consistently throughout the
chapter. |

First a few words about notation: Throughout this thesis we denote patterns
as vectors s; = [s;1, Sj2, -, Sjn| " of size N, where s; is the j* pattern of M patterns
and N is the number of pixels in each image. We refer to g; as being the filter
for the j** input vector after the application of the filter design algorithm. The
un-normalised filters are denoted with g;. If the patterns are completely orthog-
onalised by this procedure we refer to the patterns as u;. 1, is used to refer to
the un-normalised orthogonal patterns. The central peak of the cross correlation
of two patterns is their inner product and it will be denoted by g - s and is equal
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3.2. THE GRAM-SCHMIDT ORTHOGONALISATION
PROCEDURE

to SN, gk - S or in vector notation g's.

3.2 The Gram-Schmidt orthogonalisation

procedure

Given a set of vectors sy, S, ..., Syr, in N dimensional space RV, M < N, the Gram-
Schmidt Ortho-normalisation procedure [70] constructs an orthonormal basis set
of vectors spanning the space S=span(sy, S, ...,Spr) (which is the set of all linear
combinations of the vectors sy, ss,...,Spr). The algorithm begins by normalising
the first vector s,

(3.1)

where || - |2 denotes the Euclidean norm

mm=(gﬁfﬂ (3.2

So is made orthogonal to s; and it is normalised by the following two iterative

steps:
k
mH=[Ha—w@ﬂaw (3.3)
7=1
Ugy1
Wy = L 3.4
o Tl (34)

Then s3 is made orthogonal to s; and s; and normalised and so on using the
same iterative and normalising equations. Once k vectors have become orthogonal
spanning a subspace Sy C S, sx41 is projected onto the subspace orthogonal to
Sk. Finally, all of the M vectors will be orthogonal, so Sy, will be equal to S.

3.3 Linear Combination Filters

Matched filters are not very sensitive to geometric distortions and therefore, not
very successful in multi-class pattern discrimination [18]. However, they can dis-
criminate between input patterns, when these are orthogonal or can be made or-
thogonal. This is a result of the lower dynamic range that is required by the optical
recognition system for correct discrimination of the orthogonal input patterns. A
two step procedure for the design of Linear Combination Filters (LCFs) which
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were mutually orthogonal'! (MO) was proposed by Caulfield and Maloney [18] as a
solution to the discrimination problem. Each of the filters had unit output when
correlated with one of the input patterns and zero with all of the others. The
first step of the procedure was to calculate the vector inner-product matrix of the
training patterns

M1 T2 - TiuMm
To1 To2 - Tom

R= ] (3.5)
™1 TMm2 ' TMM

where r;; = s; « 5; or in other words each element r;; of the matrix was equal to
the inner product between the input patterns s; and s;. Caulfield’s and Maloney’s
aim when testing pattern s; for its identity to pattern si, was to obtain an output,
F, eqﬁal to one if 1 = k and equal to zero if ¢ # k, i.e.,

Fi = Frdik (3.6)

They achieved their aim with the second step of the procedure, which was to
form linear combinations of the responses r;;. Using these linear combinations the
final response when testing pattern s; for its identity to s, would be

Fy =ri+ ) Cury (3.7)
I#k

The M — 1 i’s for which ¢ # k led to a set of M — 1 simultaneous equations
with M — 1 unknowns, the coefficients Cj;. A different set of M — 1 simultaneous
equations with M —1 coefficients had to be solved for each of the M input patterns.
After calculating the coefficients Cy,;, Caulfield and Maloney used equation 3.7 to
see whether an input pattern, s; was the same as pattern s;. If the equation
output was equal to one, then pattern ¢ was the same as pattern k, and if it was
equal to zero, then pattern ¢ was different from pattern k. Caulfield’s method does
not actually produce new filters. Rather, it combines the inner products between
the training patterns to obtain an output which will determine whether an input
pattern is the same as another pattern. However, their coefficients can be used
to create the actual filters, which will yield the desired outputs. Caulfield and
Maloney mentioned this in their paper, but at the time that they wrote it, it was

difficult to make these filters.
Later Caulfield and Haimes [71] proposed a more generalised solution to the
multi-class - multi-object recognition problem with the Generalised Matched Filter
(GMF). Their aim was to create filters which would be able to recognise all of the

1We call these cross-orthogonal, but our term has the same meaning.
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patterns within a class and, in addition, discriminate between members of different
classes. They supposed that each input object, s was of size N. For each class of
objects they calculated a Linear Discriminant Function (LDF), which they used
as the generalised matched filter. This filter would have a high correlation output
with any pattern that belonged to the class it represented and a low output for
any pattern which belonged to any of the other classes. The LDF was a real
function of the training pattern s

where V; = (V1, V3, ..., Va)T was a set of real numbers and Q; was a real number.
They chose the LDF which would have a high output with the members of the class
it represented and a low output with all of the other input objects by maximising
the equation

E[LDF;(s € Class;) — LDF;(s ¢ Class;)] (3.9)

where E[] was the expectation operator. In other words LDF; was that linear
function of s that maximised the probability to distinguish s € Class; from s ¢
Class;. If the LDF's were normalised, then

E[LDFi(s € Class;)] = d;;. (3.10)

Equations 3.10 and 3.6 show that the mutually orthogonal filters are a subset of
the generalized matched filters, because if each of the classes only consists of one
pattern, then equation 3.10 expresses the same condition as equation 3.6.

A filter that would have equal correlation outputs with all of the patterns
representing one class in a multi-class recognition problem was proposed by Hester
and Casasent [72]. It was called the Equal Correlation Peak (ECP) filter. Firstly
the Gram-Schmidt procedure was used to orthogonalise the training images s;
and to produce a new set of orthogonal vectors u; that formed an orthonormal
basis of the space of the input and training images. Then the input images, f,
and the training images, s were expanded in this set of orthonormal vectors u;

f=> au; (3.11)
J

s=> bu; (3.12)
i

and the input and training images could be represented by the coefficients a; and
b

="

= (alya'?,"' aak) (313)
5= (by,ba, ... ,bx) (3.14)
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In terms of these expansions the inner product of f and s could be described by
Tfs Zf'g_—‘ Zajbj (315)
J

The objective was to design a filter, g, which would have equal correlation outputs
with all of the inputs, f;, which belong to the same class. Hester and Casasent
argued that this filter had to be a specific linear combination of the input images,
each of which was another linear combination of the basis functions u

g = Ecj‘fj or g-= Z lelj (316)
J J
and the correlation outputs could then be described by

Tsg = ijcj (3.17)
j

So after finding the orthogonal vectors u;, using the Gram-Schmidt orthogonali-
sation procedure, and the coefficients b;, using equation 3.12, the objective was to
find the coefficients c; and finally the filter g for which r in equation 3.17 would
yield the correct correlation performance. If one required r,, (equation 3.17) to
be equal for all training patterns s, he could solve the resulting set of equations
to obtain the coefficients c;.

3.4 Synthetic Discriminant Functions

The work on linear combinations of training images, i.e. LCFs, ECPs and GMFss,
was summarised by Caulfield [73] and Casasent and Kumar et. al. and it was
formulated as a matrix/vector problem [13, 74]. The solution vectors a; to the
LCFs were described by the equation

Rai = d,

3.18
= a; = R—ld,; ( )

where R was the M x M correlation (alternatively called vector-inner product)
matrix of the input images and d was the vector with the desired correlation
outputs. The vector-inner product matrix R was invertible if and only if the
input patterns were linearly independent [69]. Then the filters could be obtained
using these solution vectors

i =) xSk (3.19)
k

36



3.4. SYNTHETIC DISCRIMINANT FUNCTIONS

where a; are the elements of the solution vector a;. Depending on the desired
correlation output vectors, d;, equation 3.18 was equivalent to equation 3.7, if
mutually orthogonal filters were required.

Caulfield’s and Maloney’s approach (mutually orthogonal filters) meant that
one filter had to be designed for each of the M patterns that one wanted to recog-
nise. Each input pattern had to be correlated with all of them. Therefore, M
correlations were necessary for correct recognition. Braunecker et. al. [75] sug-
gested that M filters were redundant and that one only needed to perform at most
L = log, M correlations to correctly recognise M filters. Braunecker’s approach
was based on the fact that L = log, M binary digits can form any number between
0 and M. For example, to recognise 4 patterns one needed only two filters, the
first of which should yield a high correlation peak only with the second and the
fourth input pattern and the second filter should produce a high correlation peak
only with the third and the fourth input pattern. Braunecker’s approach could
also be applied to multi-class pattern recognition. The two previously reviewed
methods, i.e. linear discriminant functions and equal correlation peak filters de-
signed one filter for each class. Therefore K, where K is the number of classes
one wants to recognise, correlations were necessary for correct recognition of an
input pattern. According to Braunecker’s method, only L = log, K correlations
are necessary.

Even faster recognition could be achieved if only one filter was designed, which
gave the same correlation peak value for all of the patterns that belonged to one
class and a different, in intensity, correlation peak value for all of the patterns that
belonged to another class and so on. This particular linear combination filter was
called a Synthetic Discriminant Function (SDF) [13, 74]. The advantage of SDF
was that only one correlation would be necessary to recognise any of the input
patterns. Their disadvantage was that they required that the recognition system
had a high dynamic range, because several different correlation peak values had
to be correctly identified at the output plane. A year later, in 1983, the Modified
Hyperplane Method (MHP) for more efficient design of Linear Combination Filters
(LCF's) was proposed by Kumar [76]. A systematic procedure for determining the
output correlation values for SDF's, instead of arbitrarily setting them to 0 and
1, was proposed by Sudharsanan and Mahalanobis et. al. [77]. The proposed
technique provided an optimal selection of the output correlation values in the
sense that they resulted in a minimization of the probability of error (POE) in
detection.

Several variations of the SDFs were proposed in the following years. Kall-
man [78] showed that standard SDF's were less than optimal due to low output
SNR. In other words, SDF's correlated very well with true targets, but also very
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often they gave high correlations with false targets. He observed that only inten-
sities were detected at the correlation plane, so output correlation values could
have arbitrary phase. He used this additional degree of freedom to reformulate
the equation describing the SDFs (equation 3.18) in the following manner

g°S; = Zi)\i (]. < 1 < M) (320)

where s;,(1 < ¢ < M) were the complex images of objects one wanted to recognise
The )\; were given positive numbers and z; were complex numbers of modulus
1. Equation 3.20 gave M simultaneous equations that g had to satisfy and a
particular solution to this equation would have the form

o =a1851+...+apySyp (321)

where a; ...ap were a set of complex numbers. These numbers could be found
by substituting equation 3.21 into 3.20

(i - 55)(a;) = (2:Mi) (3.22)

Equation 3.22 uniquely determined the complex numbers q; if the images s; ...s),
were linearly independent and is identical to the general SDF solution equation
shown in 3.18. Kallman proposed that one could maximise the SNR of the filters
by varying the z; phase values of the inner products and choosing the appropriate
of many possible solutions to equation 3.20. Using his method, Kallman managed
to construct filters with their SNR properties improved by a factor of seven [78].

3.4.1 Minimum Variance Synthetic Discriminant Function

As we saw in the previous section, SDF's yield one correlation peak with a different
intensity value for each of the classes to be recognised. As the number of classes
increases, the different values of the correlation peak will be closer to each other,
because more of them will be needed in an overall limited range. This means that
the variance? of the correlation peak is critical for the filter’s performance. The
Minimum Variance Synthetic Discriminant Function (MVSDF) which minimised
the variance of the correlation peak, which was caused by noise, was introduced by
Kumar [14]. Kumar addressed the problem where the input was one of the training
images with some additive noise. In that case the output of the correlation at the
origin of the correlation plane would be

y=g'(si+n)=c+g'n (3.23)

2For a definition look at appendix A
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where g denoted the filter which was designed to satisfy equation 3.18, g denoted
the conjugate transpose, s; denoted the input pattern and n was a zero-mean noise
vector with a covariance® matrix ¥. The output in this case was the desired output
¢; plus an undesirable random variable gtn. The MVSDF attempted to design
the filter g in such a way so that the variance in the output caused by the input
noise was minimised while satisfying equation 3.18. The variance of the output
caused by g*n was

o, = E{lg*n|’} = E{g*nn*g} = g*Tg (3.24)
and minimising 05 shown in equation 3.24 led to the following MVSDF
guvspr = L'S(STEIS) " d (3.25)

where d denoted the vector with the desired filter outputs, d* was the complex
conjugate and S was a data matrix with the vector s; as it’s 7y, column. Kumar,
Bahri and Mahalanobis showed [66] that the output noise variance of minimum
variance synthetic discriminant functions (MVSDFs) could be further reduced by
selecting the phase values of the output correlation in an optimal fashion, an
idea similar to that of Kallman [78]. They proposed using the same MVSDF as
described in equation 3.25, but also to properly select the phases of the desired
correlation outputs d; = B;exp(jb;), i = 1,2,..., N in such a way so that the out-
put variance 0%, ¢pr Was minimised. The exact reduction in variance could vary
from being negligible to being significant and depended on the training images,
the noise covariance matrix and on the constraint magnitudes. The synthesis of
the MVSDF was simplified by eliminating the need to invert large noise covari-
ance matrices when the background clutter was modeled as sample realisations of
a Markov noise process by Kumar and Casasent et. al. [79).

SDFs which were not affected by noise with non-zero mean were proposed by
Arsenault and Sheng et. al. [80]. They noted that any noise with a non-zero mean
could be written as the sum of a zero mean noise plus a constant. Therefore, the
correlation between a filter and an input image corrupted by non-zero mean noise

would be
g-(8+n+8)=ry+r;m+08 || g(z,y)dzxdy
( ) =ryaty /o[ 6526)
=Tygs + :BK,
where
K= //g(w,y) dz dy (3.27)

3For a definition look at appendix A
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which meant that the effect of the non-zero mean part of the noise was to add to
the correlation a term which was proportional to the mean § of the noise. They
proposed modifying the composite filters which were linear combinations of the
training images by adding a term which discriminated against a constant back-
ground. For example, for two training images s;, s, the composite filter proposed
by Caulfield and Maloney [18] was

g1 = as; + bs; (3.28)
where a and b were constants which were found by solving the simultaneous equa-
tions

ars,s; + brslsz =1 (329)
aTsys, + brs,s, =0 (3.30)

The composite filter proposed by Arsenault et. al was given by the equation
g2 = as; +bsy +c (3.31)

where the constants a, b, c where found by solving the set of linear equations

g2+ 81 = arslsl + b7'5132 + crslé' =1 (332)
g2 S2 = ATgy, + bTgysy + CTspe =0 (3.33)
go €= aTes, + b’f‘fsz +crge =0 (334)

where £(z,y) was a uniform background with an image size equal to or greater
than the training images s; and s;. The modified filter nullified the effect of the
non-zero mean of the noise and hence the output correlation did not depend on
the mean § of the noise.

A special case of input noise is the nonoverlapping target and scene noise. For
example, in military applications very often one is trying to recognise armored
vehicles which are positioned on a varying terrain, i.e. a noisy background, but
the targets themselves are not obstructed by anything. Javidi, Réfrégier and
Willet designed a filter for pattern recognition with nonoverlapping target and
scene noise [81]. They showed that in this case the filter did not depend on the
noise statistics.

3.4.2 Minimum Average Correlation Energy filters

The MVSDF and the other filters discussed so far only controlled one point at the
origin of the correlation plane. However, in many applications, for example target
detection in the military, we do not know were exactly in the input scene the
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target lies. Therefore, the filter must be able to locate the target and, in addition,
to recognise it. In that case, a sharp correlation peak is preferable to a correlation
plane full of high side-lobes. The Minimum Average Correlation Energy (MACE)
filter which was introduced by Mahalanobis and Kumar et. al. [82] minimised
the average correlation plane energy over all of the training images. The authors
calculated the average correlation plane energy over all of the training images to
be

Eave = g+Dg (335)

where D denoted a NV x N diagonal matrix. The entries along the diagonal were
obtained in the following manner: first one calculated the average of the energies of
the two-dimensional Fourier transforms |S;(u,v)|?,i = 1,2,... , M of the training
images s;(z,y). Then he scanned this average from left to right and from top to
bottom and placed each value on the diagonal of matrix D. N was the size of the
complex column vector s; obtained by sampling S;(u, v). g was the SDF satisfying
the constraint

Stg =d* (3.36)

where S was a NV x M matrix with s; as its i;;, column. Minimising E,,. in equation
3.35 subject to the constraints in equation 3.36 led to the following filter

guace = D7'S(STD!S)"1d* (3.37)

MACE filters produced sharp correlation peaks but had some drawbacks. The
first was that no noise tolerance had been built into these filters. The second
was that MACE filters seemed to be more sensitive to intraclass variations than
other composite filters [83]. Also the MACE filter was calculated in the frequency
domain. However, while the MACE filter minimised the energy of the circular
correlation, most optical and electronic systems generate linear correlations and
ideally one would want to minimise the energy of those. The main difference
between the circular and the linear correlation of two patterns of size NV, is that
the linear correlation has a length equal to 2N — 1, while the circular correlation
has a length equal to N. This length difference between the linear and the circular
correlation results in a difference in their energies. A space-domain MACE filter
termed the SMACE filter was proposed in 1990 by Sudharsanan et. al. [84].
The SMACE filter avoided the problem of circular correlations of MACE filters,
however, this advantage came at the cost of having to invert a matrix which was
not diagonal like the D matrix of the MACE filter.

In 1988 Bahri and Kumar [12] offered a general SDF solution in both spatial
and frequency domains and derived and proved the uniqueness of the MVSDF
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and the MACE filters. This general SDF solution for the spatial domain was

g=go+Fz (3.38)
where
go = S(878)d, (3.39)
E = S(S87s)~!sT (3.40)
and
F=1;-E (3.41)

where z was an arbitrary element of R%. By allowing z to vary throughout R¢ one
could get all of the possible SDF's and by subjecting them to various performance
criteria like minimum noise variance or correlation energy for example one could

get specific SDF filters like the MVSDF, MACE filters, etc.

3.4.3 MICE and MINACE filters

The Minimum Correlation Energy (MICE) filter which provided better intraclass
recognition than the MACE filter and the Minimum Noise And Correlation Energy
(MINACE) filter which minimized the correlation plane energy resulting from the
training images and the noise were proposed by Ravichandran and Casasent [2].
The authors noted that minimising the average correlation plane energy provided
little control over the variance of the correlation plane energies of the training
images. In other words, large side-lobes could occur even though the average
energy E was minimised. The MICE filter was described by the following equation

gurce = T7'S(STT'S)"'d (3.42)

where T was a N x N diagonal matrix whose diagonal elements were obtained in a
similar manner to those of matrix D in the MACE filter. Specifically, the energies
of the two dimensional Fourier spectra of the training images were calculated
again, but in this case the maximum of the |S;(u,v)|?,7 = 1,2,..., M for each
u, v was chosen. This was scanned from left to right and from top to bottom and
the values were placed at the corresponding diagonal elements of matrix T. The
result of this difference was that the MICE filter reduced the biggest side-lobes
instead of the average energy over all of the training images. Also the MICE filter
provided less amplification of the input data at high frequencies and, therefore, it
had reduced sensitivity to finer image details which resulted in improved intraclass
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recognition capability. The MINACE filter in addition minimised the correlation
plane energy which resulted from the input noise. Its construction was very similar
to that of the MICE filter but in this case, the diagonal elements of matrix T were
the maximum of the corresponding elements of the spectra of the training images
and the input noise. In the absence of input noise, the MINACE filter reduced to
the MICE filter.

3.5 Phase-Only Filters

Caulfield commented that an increase in Horner efficiency could result in a de-
crease in the quality of discrimination with many filters [85]. He also noted that
the phase-only filter (POF) is the only one which can provide 100% efficiency
and also lead to good discrimination. In 1984 Horner and Gianino [86] compared
the classical matched filter with the amplitude- and the phase-only matched filter
using the criteria of discrimination, correlation peak and optical efficiency. They
came to the conclusion that the phase-only filter (POF) has higher optical ef-
ficiency and a sharper correlation peak (lower side-lobes) than the others, at a
cost of lower SNR. In 1985 Horner and Leger [87] compared the phase-only filter
with the binary phase-only filter (BPOF) and reported that there were several
advantages in using the BPOF, mainly in their fabrication, at the cost of slightly
lower SNR at the output. Horner and Gianino [88] also compared a phase-only
and a binary phase-only SDF with a classical SDF and reported that the PO SDF
and the BPO SDF produced sharper correlation peaks, higher SNR and increased
correlation intensity.

Filter implementation constraints i.e. discrete SLMs etc. were used directly in
the filter (SDF) calculation equation by Jared and Ennis [89]. One conclusion they
came to, was that when doing that for POFs, one cannot set the correlation peaks
to absolute values, but rather specify the proportionality between the correlation
peaks for a given training set, a conclusion very similar to that of Kallman in [90].
One such filter synthetic discriminant function (fSDF) for a set of space shuttle
training images and a specific magneto-optic SLM (MOSLM) was calculated by
Reid and Ma et. al. [67] by building a correlator and using that to calculate it.

3.6 Optimal Trade-off Filters

The Optimal Trade-off Filters (OTFs) were introduced by Réfrégier in [17], where
he used the Optimal Characteristic Curve (OCC) to design filters that were opti-
mized between two criteria: the correlation peak sharpness and the noise robust-
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ness. Réfrégier and Huignard [91] showed that the optimization of the sharpness
of the correlation peak was more fruitful and of equal complexity with the variance
reduction. In 1991 [92] Réfrégier added the Horner efficiency to the criteria used
for the design of the OTFs presented in [17]. Later Laude and Réfrégier [16] intro-
duced a multi-criteria optimization method based on a geometrical interpretation
of trade-offs between criteria, for any Fourier SLM coding-domain constraint and
applied it to the SNR, peak-to-correlation energy (PCE), and Horner efficiency
(nm) criteria.

3.7 Discussion and summary

There are a variety of pattern recognition problems that the field of optical pattern
recognition addresses, and therefore, several different filters have been designed
to solve them. All of the filters that we have reviewed in this chapter fall under
the general category of linear combination filters. They are all composed using
different linear combinations of the training patterns. The mutually orthogonal
filters are good at recognising the one pattern which they represent. They mainly
address the problem of discriminating between objects, each of which is repre-
sented by one pattern only. Their main disadvantage is that a large number of
them, equal to the number of the input patterns, and consequently a large number
of correlations is needed for correct recognition.

Equal correlation peak filters address the opposite problem of recognising sev-
eral patterns, all of which belong to the same class. When several of these classes
exist, one can design an equal correlation peak filter for each one of the classes,
a method proposed by Caulfield [73]). Using this method one needs a number
of filters, and subsequently correlations, equal to the number of classes. Brau-
necker’s suggestion that only L = log,(number of patterns or classes) correlations
are necessary, applies to both the discrimination problem addressed by the mu-
tually orthogonal filters and to the multi-class recognition problem addressed by
Caulfield in [73]. The advantage of using Braunecker’s method is that the number
of necessary correlations for correct recognition is greatly reduced. In addition,
each of the filters still has to produce only two outputs, one and zero. Therefore,
the dynamic range that is required by the recognition system is not increased
when using Braunecker’s method. However, one must be very careful when choos-
ing the patterns or classes to which each of the filters is going to respond with a
high output.

Synthetic discriminant functions are also linear combinations of the training
patterns. One filter is now used to recognise any number of patterns or classes.
In multi-class pattern recognition, the filter is designed to produce a specific cor-

44



3.7. DISCUSSION AND SUMMARY

FILTER CHARACTERISTICS
Filter T.D. Discr. Rec. N.T. Corr. plane D.R.R.
M-P | M-C | M-P | M-C PS. | P.V. | SR.
LCF v/ VA
GMF ViV VvV
ECP VI V]|V v
sprl 2% v VIV |V
POF vV iV [ V|V v
MVSDF ViV I VIV ]V v
MACE VI IVIVI VIV v v
MICE vV I IVIVIV IV v v
MINACE | v | vV |V |V |V |V |V v
OTF VI IVIVIVIVIVIVIVIY

Table 3.1: Summarised filter characteristics. T.D. : Target detection, Discr.
: Discrimination, Rec. : Recognition, N.T. : Noise tolerance, Corr. plane :
Correlation plane, M-P : Multi-pattern, M-C : Multi-class, P.S. : Peak sharpness,
P.V. : Peak variance control, S.R. : Side-lobe (outer product) reduction, D.R.R.

: Dynamic range reduction.

relation peak magnitude for all of the patterns that belong to one class. This
output correlation peak value has to be different for each of the classes. The ob-
vious advantage is that only one filter and one correlation is required to recognise
any of the input patterns. The disadvantage of SDFs is that a higher dynamic
range is now required by the recognition system because more than two different
output correlation peak values will have to be distinguished. Several variations of
the SDF's were proposed to improve their performance. Minimum variance SDFs
(MVSDF) minimise the variance of the output correlation peak resulting from
input noise. Minimum average correlation energy filters (MACE) minimise the
average correlation plane energy over all of the training images. The motivation
for that is to decrease the correlation side-lobes, so that the correlation peak can
be easily located. Minimum correlation energy (MICE) are similar to the MACE
filters, but instead of minimising the average correlation plane energy, they min-
imise the highest side-lobes. Minimum noise and correlation energy (MINACE)
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Frequency

Figure 3.1: Spectral power distribution of an input pattern

filters also minimise the highest side-lobes, but in addition, they take into account
the input noise.

In multiclass pattern recognition, there is a trade-off between intra-class dis-
tortion tolerance and inter-class discrimination ability. The filter must be tolerant
to intra-class distortions, or in other words, must be able to recognise different
patterns, which belong to the same class. In addition, the filter must be able to
discriminate these patterns from other patterns belonging to other classes. Let
us consider the spectral power distribution of an input pattern. For simplicity we
will consider the simple case of a distribution resembling a Gaussian as shown in
hgure 3.1. The low frequencies in the area around the DC term represent the very
general features ofthe pattern and are usually features which are common to many
patterns of different classes. Therefore, for good inter-class discrimination ability,
these frequencies must be suppressed by the filter. A typical example for such
a task is the inverse filter (figure 3.2), which suppresses the low frequencies and
enhances the low power, high frequencies, which express the finer image details,
and, hence, has a high inter-class discrimination ability. It is however, sensitive
to intra-class pattern variations. On the other hand, the matched filter, which
is the complex conjugate of the pattern’s frequency spectrum and which has a
spectral power distribution, which is the same as that in figure 3.1, suppresses
the low power, high frequencies and, hence, the finer image details. This leads to
high tolerance to intra-class distortion, but low inter-class discrimination ability.
Therefore, for overall high multiclass recognition performance, a bandpass filter
(hgure 3.3) is required, because it suppresses both the high and the low frequencies
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0

Frequency

Figure 3.2: Inverse filter for the gaiissian distribution of figure 3.1

Bp—

(1}
Frequency

Figure 3.3: A bandpass filter for multiclass pattern recognition
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- MACE preprocessor
MINACE preprocessor

0
Frequency

Figure 3.4: Effect of the MACE and MINACE preprocessors on the signal. Graph
adapted from [2]

(including the DC term) of the input pattern’s frequency spectrum.

A bandpass filter is, therefore, the goal and most of the existing filters, in-
cluding the MACE and the MICE filters, are designed with that goal in mind[2].
However, they are not true bandpass filters because they suppress the low frequen-
cies but they do not suppress the high frequencies. In that respect they are closer
to inverse filters. The filter (of the ones reviewed in this chapter), which most
closely approaches the bandpass goal is the MINACE filter, but even this does
not suppress the high frequencies. However, it does not enhance them as much as
the MACE, MICE and inverse filters do. The MINACE filter is described in equa-
tion 3.42. The relationship between the MINACE and a bandpass filter can be
seen more clearly if the MINACE filter is viewed as a general SDF for recognising
input patterns, which are preprocessed by a matrix [2].

Sminace = T-"Y(Y+Y)-'d] (3.43)

where the columns of the matrix Y are the preprocessed training images Y%

The preprocessor matrices for the MACE and the MINACE
filters (look back in section 3.4.2 for a description of matrix T) are shown in figure
3.4. From this figure, the preprocessor for the MACE filter has a form similar to
that of an inverse filter. The preprocessor for the MINACE filter does not enhance
the high frequency components of the spectrum of the input signal as much and
therefore, it resemples a bandpass filter more closely.

The optimal trade-off filters (OTF) are filters which simultaneously optimise
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more than one criteria, for example, the correlation peak sharpness and the noise
robustness. All of the reviewed filters are complex. The phase-only filters (POF)
and the binary phase-only filters (BPOF) are the same as the previously described
filters but with only their phase information retained. Their main advantages are
that it is easier to use them in optical correlators using a phase SLM, they have
higher optical efficiency compared to amplitude or fully complex filters and they
produce a sharper correlation peak. Finally, in table 3.1 we can see a summary of
the characteristics of all of the filters. We have marked a box in table 3.1, when
the corresponding filter is capable of performing that task and not only when it
is the best filter at the corresponding task.
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Chapter 4

Neural networks: Perceptrons

and learning algorithms

4.1 Introduction

In this chapter we present some basic theory on neural networks and in particular
perceptrons. Neural networks are not the main application area for this thesis.
Therefore, the theory presented here does not cover the whole field of neural
networks, but rather a specific type of them: the perceptron. In addition, the
perceptron is not explained in detail, only the information which is necessary for
the understanding of our work is presented.

Artificial neural networks are highly parallel systems consisting of a large num-
ber of simple, interconnected, processing units. They store data in the form of the
strengths of the interconnections between the units [3]. Information processing
in neural networks occurs through the interactions between the processing units.
They interact with each other by sending signals, either excitatory or inhibitory.
The interconnection strengths are usually called weights [3]. Work on artificial
neural networks started when scientists realised that the human brain works in
an entirely different way from the conventional digital computer. The brain is a
highly complex, nonlinear, and parallel computer. It consists of approximately
100 - 10° simple computational units called neurons [93]. The neurons are con-
nected to each other with synapses and there are approximately 60 - 10'? of them
in total in the human brain [94]. Artificial neural networks were first designed
to mimic the structure and function of the human brain. Due to their origin in
human brain research, they have borrowed the biological terminology. Therefore,
their processing units are called neurons and the interconnections between neurons
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are often referred to as synapses.

Rumelhart et al [95] point out that knowledge in neural networks, as in the
brain and not as in conventional computers, is not an actual copy of the data that
is stored. Rather, it is the strengths of the interconnections between neurons that
are modified in such a way, so that the stored data can be recreated when it is
called up. This has great implications in the way that neural networks can be
trained. Learning with this model is not a matter of finding a way to represent
the information to be learned with the weights, but rather tuning them in such a
way so that the right pattern of activation can be created as a result of a specific
input. This is a very important property of this kind of model, because it means
that they can learn the interdependencies between the various activations to which
they are exposed by tuning their weights during the course of processing. The
procedure used to perform the learning process is called a learning algorithm and
it is a simple mechanism which modulates the interconnection strength according
to the information locally available at the connection.

The learning procedure can be supervised or unsupervised. When it is super-
vised, some form of teacher exists. The network is presented with pairs of inputs
and desired outputs. The weights are modified in such a way so that the error,
which is defined as the difference between the network output and the desired
output, is minimised. In the unsupervised or self-organised learning there is no
external teacher. Some measure of the correctness of the representation of the
statistics of the environment is defined and the network modifies it’s weights so
that it’s performance is optimised with respect to this measure [96].

4.2 The Perceptron

The perceptron, which was introduced by Rosenblatt [97], is the simplest form
of a neural network . It only consists of one layer of neurons connected to the
inputs through weighted connections. The simplest form of the perceptron con-
stitutes only one neuron with any number of inputs as seen in figure 4.1. The
perceptrons can only be used for the classification of linearly separable patterns
[98]. Patterns are called linearly separable if they lie on either side of a hyperplane
in N-dimensional space. A single neuron can separate two classes. An example
of two linearly separable classes in two-dimensional space can be seen in figure
4.2. If the perceptron contains more than one neuron it can perform separation of
more than two classes as long as they are linearly separable. The neurons output
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Threshold

Inputs Output

Figure 4.1: A single layer perceptron with only one neuron

Class

+ +

Class 2

Figure 4.2: An example of two linearly separable classes in 2-D space.

52



4.2. THE PERCEPTRON

Figure 4.3: A hard limiter activation function

is given by the following equation

N
V= '% WiXi —6 (4.1)
y = (4.2)
where =1,... ,A are the network inputs, WiO = 1,+*+, N denote the weights

of the network and 9 is the threshold, v is sometimes called the net internal activity
level of the neuron. Usually function (&) is a non linear hard limiter (See figure
4.3) and the neuron output is either 1 or -1. The separating hyperplane is defined
by the equation WiXi —0 = 0. The first learning algorithm for the perceptron
was developed by Rosenblatt [99], [100]. The proof of convergence is known as

the perceptron convergence theorem.

4.2.1 Hebbian learning

Hebhs postulate of learning [101] is the oldest and most famous learning rule. Its
purpose is to discover significant patterns of features in the input data. To do
that, the algorithm is provided with a set of rules of a local nature, which enable
it to learn to compute an input-output mapping with specific desirable properties.
The original Hebb’s rule has been expanded and rephrased by Stent [102], and
Changeux and Danchin [103] and can be described as follows:

1. When two neurons on either side of a synapse are activated simul-

taneously, then the strength of the synapse is selectively increased.

2. If the two neurons on ecither side of a synapse are activated asyn-

chronously, then that synapse is selectively weakened or eliminated.
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The Hebbian learning law has been expressed mathematically in various ways.
One of the simplest is with the following equation

Awgj(n) = nyk(n)z;(n), 0<n<1 (4.3)

where Awy; is the change that will be applied to the weight wy; and 7 is a learning
rate parameter. This particular formulation of Hebb’s law is sometimes called the
activity product rule. Repeated application of z; leads to an ezponential growth
that finally drives wy; to saturation [3]. The activity product rule described in
equation 4.3 is an unsupervised rule. A supervised version of Hebb’s law exists
and is described by the following equation [104]

Awgj(n) = n(te(n) — yr(n))z;(n), 0<n<l1 (4.4)

Where t,(n) denotes the neuron’s target output. It is often called the Widrow-
Hoff rule. Rumelhart et. al. [95], however, called it the delta rule because the
weight change Awyg; was proportional to the difference between the neuron output
and the target output provided by a teacher.

4.3 Multilayer Feed-forward Networks

Perceptrons operate under the constraint that the input patterns are linearly
separable [3, 98]. Whenever the input patterns are not linearly separable, the
network needs to form an internal representation of the input to perform the
necessary input-output mappings. This internal representation can be formed
with one or more hidden layers. Multilayer feed-forward networks consist of a
set of sensory units that constitute the input layer, one or more hidden layers of
neurons, and an output layer of neurons. These networks are commonly referred to
as multilayer perceptrons (MLPs) [3]. A multilayer perceptron has three distinctive
characteristics:

1. The model of each neuron includes a nonlinearity at the output end. The
nonlinearity must be smooth (i.e. differentiable everywhere). A commonly used
form of nonlinearity that satisfies this requirement is a sigmoidal nonlinearity
defined by the function:

1

S Trem (4.5)

Yi

where v; is the net internal activity level of neuron j, and y; is the output of the
neuron.

2. The network contains one or more hidden layers. These enable the network
to form an internal representation of the input.
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Inputs Hidden Output
layer layer

Figure 4.4: A Multilayer Perceptron with 1 hidden layer

3. There is a high degree of connectivity between the neurons of the network.
Usually each neuron is connected to all of the neurons that are in the adjacent
layers of the network.

The input signals propagate layer-by-layer through the network in a feed-
forward direction. MLPs can be trained in a supervised manner with an algorithm

known as the error back-propagation algorithm [95].

4.3.1 The Back-Propagation learning algorithm

The main concept of this algorithm is that the error of the output neurons of the
network is propagated back through the network and there it is used to update all
of the weights. Figure 4.4 is illustrating a MLP with a hidden layer and an output
layer. Full interconnection of the neurons of the network is supposed throughout
this section. The derivation of the back-propagation algorithm follows the one
presented by Haykin (1994) [3] and is shown here because we use it in the next
chapter to help us design some of our own filters. We first present a summary of
the notation used in the presentation of the back-propagation algorithmL

Notation

* The indices j and k refer to different neurons in the network; with signals
propagating through the network from left to right, neuron £ lies in a layer
to the right of neuron j, when neuron j is a hidden unit.

* The iteration n refers to the nth training pattern presented to the network.

UVe wish to thank Simon Haykin for the adaptation of the notation and the derivation of

the Back-propagation algorithm from his book [3]
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Target
value
Neuronj | Neuron k
Error
# #
Inputs Hidden Output
layer layer

Figure 4.5: Signal-flow graph highlighting the details of output neuron k and
hidden neuron j, adapted from Haykin (1994) [3]

* The symbol ej(n) refers to the error signal at the output of neuron j for
iteration n.

* The symbol dj{n) refers to the desired response for neuron j and it is used
to compute ej{n).

* The symbol yjcn) refers to the function signal appearing at the output of

neuron j at iteration n.

* The symbol Wji{n) denotes the synaptic weight connecting the output of
neuron i to the input of neuron j at iteration n. The correction applied to
this weight at iteration » is denoted by Awji{n).

* The net internal activity level of neuron j at iteration » is denoted by Tj(n);
it constitutes the signal applied to the nonlinearity associated with neuron
J-

* The activation function describing the input-output functional relationship
of the nonlinearity associated with neuron j is denoted by

The threshold applied to neuron j is denoted by 9j] its effect is represented
by asynapse of weight Wi = 9/ connected to a fixed input equal to -1.

The zth element of the input vector (pattern)is denoted by xi¢n).

* Thelearning rate parameter is denoted by s

Consider the signal-flow graph shown in figure 4.5, where the details of output

neuron k for pattern n are highlighted. The inputs to neuron k are the outputs
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of all of the neurons in the previous layer y;(n). The internal activity level at the
input of the non-linearity associated with neuron & is

vg(n) = ; wy; (n)y;(n) (4.6)

where M is the total number of inputs excluding the threshold 6;,which is repre-
sented by the synaptic weight wgo. The associated input v, is fixed and equal to
-1. The function signal at the output of neuron k at iteration n is

Ye(n) = éx (Uk (n)) (4.7)

The error signal at the output of neuron k at iteration n when neuron % is in the
output layer is defined by

ex(n) = di(n) — yx(n) (4.8)

The instantaneous sum of squared errors E(n) is obtained by summing the squared
errors of all of the neurons in the output layer

E(n) = %% e2(n) (4.9)

where C contains all of the neurons in the output layer. The average squared error
E,, equals to the sum of E(n) over all n normalized with respect to the set size
N.

1
E, = N Y E(n) (4.10)

The back-propagation algorithm updates each synaptic weight wy;(n) by applying
to it the correction Awyg;j(n) according to the delta rule [95]

O0FE(n)
8wkj (n)

Awkj =-n (411)
where 7 is the learning-rate parameter of the back-propagation algorithm. The use
of the minus sign accounts for gradient descent in weight space. We may express
the instantaneous gradient 0F(n)/0wg;(n) as follows:

O0FE(n) _ OE(n) dex(n) dyx(n) Oug(n)
Owgj(n)  Oex(n) Oyx(n) Ovk(n) dw;(n)

(4.12)

From equation 4.9 we get
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From equation 4.8 we get

From equation 4.7 we get

From equation 4.6 we get

So:

0FE(n)
Owg;(n)

= —ex(n)g(vi(n))yr(n) (4.13)

From equation 4.11 and equation 4.13 the weight update Awy;(n) may be ex-
pressed as

Awys(n) = nex(n) ¢}, (ve(n) ) yi(n)
We define the local gradient 8 (n) by
OE(n) Oeg(n) Ayx(n)

— — '
6k(n) - 36k(n) Byk(n) ka(n) ek(n)¢k (Uk(n)) (414)
Therefore, the weight update Awyg;j(n) may be expressed as
Awg;(n) = ndx(n)yx(n) (4.15)

The derivation of the local gradient dx(n) is rather straightforward in the case
that neuron £ is an output neuron. We will derive the local gradient §;(n) for the
case that neuron j is in a hidden layer, again with the help of figure 4.5, which
depicts the signal-flow diagram for neuron j when this is in a hidden layer. In this
case, the local gradient J;(n) may be redefined by

= - ¢ (vi(n)), where neuron j is hidden
- ( il )) (4.16)

We may calculate the partial derivative 0E(n)/0y;(n) as follows

1
E(n) = 5 > ei(n), neuron k is an output neuron
keC
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Differentiating with respect to the output signal y,(n), we get

O0E(n) e Oer(n) Oug(n)

However
ex(n) = di(n) — yx(n)
= di(n) — (Uk (n)) , neuron k is an output neuron

Hence

ZZEZ; = ~di(ve(n)) (4.18)
Also:

%$=ww (4.19)

because

ve(n) = ;)wkj(n)y n

where M is the total number of inputs (excluding the threshold) applied to neuron
k. From equations 4.17, 4.18 and 4.19 we get

- B
. Z —_— (4.20)

Finally, from equations 4.16 and 4.20 the local gradient ¢;(n) for hidden neuron j
is given by
6i(n) = ¢; ( ) de n)wgi(n) , when neuron j is hidden
(4.21)

So to summarise, the weight update for all of the weights in the network is
given by the generalised delta rule and is

Awyi(n) = nd;(n)yi(n) | (4.22)

where 7 is the learning rate parameter, y;(n) is the input to neuron j and can be
the output of neuron 7 in the previous layer or an input z;, and §;(n) is the local
gradient and is given by the equations

§;(n) = ej(n)¢; (v](n)) when neuron j is an output neuron (4.23)
d;i(n) = ( ) Z Ox(n)wi;(n) , when neuron j is a hidden neuron
(4.24)
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4.4. SUMMARY

The training of the network occurs in two phases: During the first phase, an input
pattern is presented propagated through the network and the output values are
computed. In the second phase, these output values are compared to the target
values and the local gradients are calculated for the output neurons using equation
4.23. Then their weights are updated (equation 4.22) and the local gradients are
computed for the neurons in the previous layer using equation 4.24 and so on until
all of the weights in the network are updated.

4.4 Summary

In this chapter we have introduced the basic principles of artificial neural networks.
We briefly discussed two very widely used classes of neural networks, perceptrons
and multilayer perceptrons. We also presented a learning algorithm for the percep-
tron based on the Hebbian learning law, and the error back-propagation algorithm
for training multilayer perceptrons. In the following chapters we are going to de-
rive and investigate the performance of the similarity suppression algorithm for
designing pattern discrimination filters.
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Chapter 5

Similarity Suppression filter

design algorithm

5.1 Introduction

In the previous chapters we presented some background theory which is necessary
for understanding our work and we reviewed some of the most well known filter
design algorithms. In this chapter we present our similarity suppression (SS)
algorithm for designing filters for optical pattern discrimination. We start with
the derivation of the algorithm in section 5.2. The magnitude of the designed
filters is analysed in section 5.3. In section 5.4 we compare the SS algorithm
with relevant filter design algorithms, like the Gram-Schmidt orthogonalisation
procedure, linear combination filters and synthetic discriminant functions and
with the Hebbian learning law for training neural networks. Finally, in section
5.5 we expand the SS algorithm to design filters for 2 or more cascaded banks
of correlators. In this chapter we examine the SS algorithm from a theoretical
viewpoint. In the next chapter we present the computer simulations for this
algorithm, which verify its performance. Before we start, we must point out that
the algorithm presented here is the final product of several years of continuous
changes and improvements, which were the result of computer simulations and
long discussions.

61



5.2. DERIVATION OF THE SIMILARITY SUPPRESSION
ALGORITHM

5.2 Derivation of the similarity suppression

algorithm

We will start (section 5.2.1) with the derivation of a slightly different algorithm
from the one we use for the design of our filters. We call this, the similarity sup-
pression (SS) orthogonalisation algorithm. It is described as a necessary precursor
to the description of the algorithm which we use for the filter design (section 5.2.2),
because it was the one we developed initially and the algorithm we now use was
developed as an improvement on that. From this point forward, we will refer to
the inner product of a pattern with itself as the auto-inner product and the inner
product of a pattern and another pattern as a cross-inner product.

5.2.1 Development of the similarity suppression orthogo-

nalisation algorithm

Our aim is to distinguish one pattern from another. This becomes difficult if the
patterns are similar. Our aim then is to suppress the similarities, quantified by
the inner product correlations, between all pairs of the known training patterns to
be distinguished. However, if two patterns are similar but different from the other
patterns in a group it is important not to lose the features which are common
between the two patterns. These features allow each of them to be distinguished
from the other members of the group. At the same time we want to make each
of the two similar patterns less similar to each other to allow each of them to be
distinguished from the other. This highlights the trade off that is necessary.

For simplicity just consider two patterns for now. We will generalise this to
more patterns later. For just two patterns we would like to subtract the similar
features of the two patterns from the first pattern, initially. The magnitude of
the similar features is given by the inner product s; - s but this does not specify
what the similar features are. Ideally we would like to subtract from pattern s,
the similar features multiplied by a weighting factor s; - s5, so that the similar
features are removed at once.

g1 = 81 — (81 - o) (normalised similar features) (5.1)
We would also like to do this to the second pattern in a similar way
g2 = 83 — (81 - 82)(normalised similar features) (5.2)

However, we do not know what the similar features are, so the best we can do
is to subtract the whole of the second pattern from the first after weighting the
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second pattern by s; - s,, the amount of similarity.

g1 =51 — (Sl . 82)52

g2 = S2 — (51 - S2)81 likewise

We can expect this subtraction to suppress the similarities between the two images,
as similar regions in the two images will have approximately equal amplitudes and
the result of the subtraction will locally be close to zero. However, this subtraction
may or may not remove the similar features completely, since some features may
be very similar, while others may only be slightly similar. In this case the most
similar features will be suppressed. However, the only slightly similar features
will be over compensated and in the worst case they may even be enhanced in
magnitude although having a negative sign. The distinguishing features of each
pattern which are not present in the other pattern will also be added (with negative
sign) into the other pattern which is highly undesirable as we want to keep the
distinguishing features of each pattern in that pattern’s filter only.

Instead of making such a large change let us introduce a factor 8", less than
one, giving

g1=s8, — fB"(s1-52)82 (5.5)
g2 =82 — ﬂ"(sl - 82)81 likewise

If 5" is small enough we can be sure that all of the similar features are suppressed
by a small amount and that only a small amount of the distinguishing features of
one pattern are added into another pattern. If we now start afresh beginning with
only the patterns g; and g, ignoring any patterns at earlier iterative steps in our
algorithm and apply the same algorithm, we will suppress the similar features of
patterns g; and g,. However, since their similarities are mainly determined by
(or inherited from) the similarities between the preceding set of patterns at the
last iteration, this means that the original similarities are suppressed by a small
amount on each iteration. Let us say that the new patterns are gi, and g}.

g =g —0"(8 - g)e
g'2 =82 — ﬁ"(g1 . gz)g1 likewise

Note that the original distinguishing features of s; and s, which are now partially
present in the other pattern, g, and g, respectively, will give a negative contribu-
tion to g; - g2 since they now represent a similar feature, having some presence in
each g pattern, but with an opposite sign. If the originally similar features had
been completely removed by the first use of the algorithm, then the second use of
the algorithm will just about remove the originally distinguishing features which
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had been added (with a negative sign) to the other pattern. This occurs because
this algorithm suppresses similar features whether they have the same sign or not.

So, by repetitive application of the algorithm similarities are suppressed until
the patterns are effectively orthogonalised, assuming " is chosen small enough to
ensure gentle monotonic convergence and assuming that the iterations are allowed
to continue to convergence. In other words, the correlation between the final pair
of patterns is zero. In order to extend this to deal with more than two patterns at
each iteration step we simply subtract from each pattern all of the other patterns,
each weighted by 3" times its similarity with the pattern itself:

g, =8 — 0" g)g—0"(g 828 —0'(g emem (5.9)

This is repeated in the same way for each of the j =1 to M training patterns
and a set of new patterns, which are denoted by the symbols g7, =1... M, are
obtained. This can be written in a more compact form

. . M . . o
g =g —ﬂ”Z{gﬁ-’ V. gl ”}gi’ g (5.10)
k25

where the superscript, ¢, denotes the iteration number. The tilde symbol over
the g indicates that the pattern has yet to be normalised, as described later. In
equation 5.10 we subtract all of the other patterns in the g~1) set at the (i — 1)t
iteration, except for the pattern being processed itself, from each of the g(—1
patterns.

The danger of subtracting so many patterns from one pattern is that the
pattern will be dominated by the effect of the subtractions and lose its own identity
so we need to ensure that 3" is kept sufficiently small. Even so, the subtraction
of a lot of weak pattern vectors from one pattern vector is likely to diminish
its strength, or magnitude, as similarities are gradually removed. It may not
matter if all of the pattern vectors are diminished by the same amount, but this
is unlikely to be the case, resulting in a variation in the magnitude (in terms of
the vector length or the Euclidean norm) from pattern to pattern. This is highly
undesirable as it would lead to a bias or preference for some patterns if the g
patterns were used as filters in an inner product correlator. That is to say that if
white noise or completely random patterns were input, the system would indicate
that more of the stronger patterns were present than the weaker ones, whereas all
should be equally likely. So all of the patterns need to be normalised to have the
same strength (or length), say unity. It is not sufficient to allow the algorithm
equation, (5.10), to converge and then to normalise the final g patterns because if
the preceding g and even s patterns had not been normalised the algorithm itself
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would not have been even handed towards each pattern so some patterns would
have had an undue effect on their term in the subtractions. Therefore, in order
to treat each pattern equally, throughout the process, we need to normalise the
s patterns at the start and then renormalise the g patterns at the end of each
iteration. Our aim is to produce a set of orthogonal patterns of equal strength,
therefore, we need to normalise the Euclidean norm or length of the g vectors in
the set at each iteration to be a constant:

i—1
G) _ (z)”gg )||
T Pl
) & (5.11)
= ——%J(i) , assuming “gJ@"I)H =1
”gj ||

So to summarise, the SS orthogonalisation algorithm is described by the following
two equations:

ggz _g§2 1) ﬁ”Z{ (Z 1) 1, 1)}gl(ci—1) v] (512)
k#j
o _ o lled
§) .5) i z) (513)
185”1
(5.14)

5.2.2 Development of the similarity suppression cross -

orthogonalisation algorithm

The SS orthogonalisation algorithm described in the last section tends to orthog-
onalise the original patterns and create a set of g patterns which are orthogonal
to each other, without bias to any one pattern. So the final patterns would be
good at recognising and discriminating the presence of any of the final patterns
at the input.

We have assumed that as we were only making a series of small subtractions
and then amplifying the whole by renormalisation, that we have retained all of
the distinctive features of the original corresponding patterns, so that the final
patterns, when used as filters, would be good at recognising the input patterns.
Unfortunately, this is not necessarily the case. In N-dimensional space (N is the
number of pixels in each image), which will be called pattern-space from now on,
each pattern defines one point, which shows the pattern’s position in the pattern-
space. While the patterns are being orthogonalised, as the algorithm changes the
individual pixel values, it is possible for all of the patterns to drift slowly away
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from their original positions, because no knowledge of the original positions is
explicitly used in the algorithm to anchor them or to pull them back. At each
iteration we only use the pattern set available at that iteration. So while the final
patterns may no doubt be good at recognising themselves in the input, they may
not be good at recognising the original patterns in the input. For example, the
final g; pattern may still have cross correlations with the s, s3,s4,... patterns
comparable to g; - s;, which is the opposite of the original aim.

It is better to develop the algorithm further by defining what we want and
designing the algorithm to make it happen. We would like each final filter g
pattern to have as low an inner product correlation as possible with the original s
patterns, except for the original s pattern from which it was derived, with which
it must have a constant high inner product correlation. This can be achieved by
ensuring that these two types of inner product which we call respectively, the cross-
inner product and the auto-inner product between the two sets, are incorporated
into the algorithm itself. The aim will, therefore, be not to orthogonalise the g
patterns as compared to other members of their own set, but to cross-orthogonalise
the set of g patterns with respect to the set of s patterns. In this case the filters,
g, are said to be mutually orthogonal to the training patterns, s.

This can be achieved by replacing some of the g patterns on the right of
equation 5.9 by their corresponding original s patterns to give

— B3"(gj +s1)s1 — B"(g; - s2)82-- - — B"(g; - sm)sm (5.15)

Written in a more compact form it becomes

g =g ﬂ”E{ . }Sk (5.16)

k#j

where the superscript 7 denotes the iteration number. In equation 5.16 we subtract
all of the other patterns in the original training set, except for the pattern being
processed itself, from each of the g(*~1) patterns. Here, as before, we take a
set of patterns and derive from them another set of patterns in a one to one
correspondence. At each iteration a number of terms are subtracted from one
pattern which is then renormalised and this is repeated in the next iteration and
so on. However, the cross-inner product correlations between the two sets quantify
the similarities between the g; pattern and all of the other original s; patterns.
Then we reduce those similarities by subtracting from the g; pattern, the s;
pattern with which it was being compared, weighted by the inner product g; - s
in a similar manner as in our earlier derivation, (section 5.2.1), also including
a small convergence term (”. This ties the new g; patterns back to all of the
original patterns (apart from the one from which it was derived) and forces the
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cross-correlations between the two sets to be reduced. In addition we need to tie

the g; pattern back to the s; pattern from which it was derived and this is carried

out by modifying the normalisation step to keep their inner product constant, i.e.

s; » g; = const which can be brought about by the normalisation equation:
(i-1) , s

() _ 508 S

g =& (5.17)

g s

This can be confirmed by finding the inner product of each side with s;. Assuming
that the original training patterns are normalised to a constant value denoted
henceforth by P the previous equation can be rewritten in the following manner,

since g(-l) = s; and consequently gﬁ-i) -s; = P, Vi

@ _ s6)_ 1
g =8 ~n
g; °S

(5.18)

J

In most cases, P is equal to 1 but this is not necessary for the convergence of the

algorithm.
Returning to the full algorithm we now describe it with the following two
equations:
~(3) (-1)  ar e (i-1)
g;i"=8; - Z {gj . Sk}sk (5.19)
(=
O _ 08 S
8 =8 o (5.20)
8 8

5.2.3 Advanced algorithm with improved convergence

parameters

Computer simulations (section 6.2) have shown us that the algorithm is sensitive
to small changes in the convergence factor §”. Large 8" values resulted in oscil-
lations, while very small §” values ensured convergence but the algorithm needed
many iterations to converge to the desired values. We found that the algorithm
converged faster and to a lower minimum if the value of 3" was changed as the
algorithm was converging. Larger values of 5" at the beginning allowed faster ini-
tial convergence, while smaller values later assured a finer search for the minimum
and avoided oscillations. In addition, it seems to make more sense to force the
larger cross-inner products down more strongly as in MICE filters, rather than
the MACE, where the largest side-lobes are forced to decrease. We can achieve
both of these goals by making the 3" factor of each term depend on the difference
between the inner product in that term and the desired value, in this case zero.
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In order to do that 3" is calculated using the following expression (which has to
be put INSIDE the summation)

B"=pg

=) ‘ (5.21)

where (' is the new convergence constant. Computer simulations have shown, that
setting ' < 1 ensures that 4" does not become too large and that the algorithm
does not become unstable. When (" is substituted into the algorithm (equation
5.19) one obtains the final version of the algorithm shown in equations 5.22 and

5.23
((gﬁ-i"l) : sk)) }Sk (5.22)
=

2 -~ g S
gy =g (5.23)
85 *Sj

;_i——l) 5

M
g](1.) _ ggm 1) ﬂl Z { g
i

Equation 5.22 can also be written in the following form

2
g0 =gl ﬁ'Z{ (g,(’ . ) }s;c (5.24)

k=1
k#j
@ _ ()g( s
g =8 (5.25)
& 5
where in the + sign the plus sign is used when (gy 2 sk) > 0 and the minus

sign is used when (gg-i'l) . sk) < 0. Equation 5.24 is very similar to equation
5.19 with the only differences being that the term in the brackets is now squared
while preserving the sign. This version of the algorithm performed considerably
better in our computer simulations. This can be explained if one considers that
the term that is now squared is the difference between the current value of the
cross-inner product g; - s and the desired value (which is equal to zero). This
difference is then used as the weight for the subtraction of the s, pattern. By
squaring it we emphasise the subtractions of the patterns that are most similar
to the g; pattern, thus forcing the largest cross-inner products, in particular, to
decrease. A cubic power or higher power (while preserving the sign) would make
the strength of convergence depend more strongly on the size of the cross-inner
product. Computer simulations however, showed that higher powers tended to
make the algorithm unstable, forced us to use a smaller convergence parameter,
B’ and overall did not produce a better result.

One final issue that we would like to address, is the size of 3'. The size of the
sum, in equation 5.24, is proportional to the total number of patterns, M and to
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the size of the square of the inner products, P2. Therefore, the convergence factor
has to be of the order of 52:z. So the algorithm (equations 5.24 and 5.25) can

P2M -
also be written in the form
B
’ —
B = 5o (5.26)
@) (i-1) /3 M { (i-1) 2
g"t = -z_ _—— E :t (g.t— . Sk) }Sk 527
¥ ¥ PZM = ¥ ( )
k#j
0 _ 08 s
1 ~(1

g *Sj

where now the new, final § is not related to the size of the inner products, which
for binary, bipolar patterns is directly proportional to the size of the training

patterns. In addition, § is not related to the number of patterns in the training
set any more and it takes small values around unity.

5.3 Analysis of the normalisation step

It is logical to assume that the magnitudes of the g patterns, defined by the
squared Euclidean norm shown in equation 3.2, which we rewrite here,

N 1/2
Euclidean norm:  ||s||s = (Z sf) (5.29)
=1

will change since we are continuously subtracting other patterns from them. In
addition, any change in the g patterns will, as a result, change the magnitudes
of the inner products between them and the corresponding s patterns they repre-
sent. However, we would like to keep these inner products as stable and high as
possible, because that would enable us to correctly recognise a pattern by setting
the appropriate threshold or just by choosing the highest inner product. To see
the effect of equation 5.16 on the magnitudes of the g patterns we can rewrite it
for the simple case of just two patterns s; and s,.

gt = gi ) — (gl - s1)s (5.30)
or in matrix notation
g =iV — g"gli V55,

=g =gtV — B"s1s7gl ) since s”g = g”'s = scalar

| 5 (5.31)
=g = (I-f"sis])es "
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We can calculate the squared Euclidean norm of the g, pattern in the same way
as [70] to see whether it increases or decreases or remains constant when equation
5.30 is used iteratively.

1e$]1? = g8 = g VT (1 — 8"s,8T)T (L - 8"s18T)gl ™

_( GE-1)T ﬂ" (i- 1)Tslsl)(g§z 1) ,8”8 7 ggt 1))

(E-1)T (1, 1) /3” (i— l)TS 187 g(z 1)

ﬂ” (1. l)Ts 187 g(z 1) +,8"2 (i— 1)TSlsl Sls’{’ggz 1)
-1 7— 1 1—
= llg§™"I1” - 2ﬂ”( $7"s1)” + 8”11”85 s1)8 59
1—1 2 i—1
= 1501 = lg5 V)12 = B"%|Is1 [ (eS " s1)? — 26" (g5 's1)?

= 8"(gs )8 ]1” - 2)

=82

Equation 5.32 expresses the slope of the g squared Euclidean norm, ||gz||2. If the
right hand side of equation 5.32 is positive then the magnitude of g, will increase.
If it is negative the norm will decrease and if it is equal to zero the magnitude of g
will remain constant. The sign of the slope depends on the sign of the expression
(8"]|s1]|* — 2), which depends on the value of 8", since ||s||? is constant, and for
binary patterns is equal to N.

o If 3" = Ilsfllz then the slope is zero and the norm of g, is constant.

o If 3" < ”Tf”—z then the slope is negative and the norm of g, decreases. Even-
tually, as the inner product (g "Ts;)? decreases, the right hand side of
equation 5.32 tends to zero. So after a number of iterations the norm of g
will stabilise to a very low value. However, as ||gz||?> decreases, the auto-inner
product g, - sy will decrease as well and this not always the most desirable

result.

PY If ﬂll
HS
because at each iteration large values are subtracted from the g, pixels and
their sign is reversed but their absolute values increase and, therefore, ||gz||?

7oz then the slope is positive and |lg2||* will increase. This happens

increases. This however, results in the increase of the cross-inner product
gs - S1, which again may not be the most desirable result.

In section 5.2.3 we chose to use 8" = 1/PM, which corresponds to ' = 1/P*M
for the improved algorithm, as our convergence parameter. This 3" is smaller than
2/l|s|| (P = ||s]]) and according to the previous analyses the magnitudes of the g
filters will decrease. That is the reason why we chose to normalise the g patterns
in such a way so that all of the auto-inner products g; - s; remained constant and
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equal to the initial value of the auto-inner products of the s patterns. To do that
we used equation 5.17 which we rewrite here
R
g =g = O (5.33)
g "Sj
at each iteration after equation 5.16. By using equation 5.33 at each iteration of
the algorithm we force g; - s; = s; + 5;,Vj. This equation has an effect on the
magnitudes of the g patterns as well. Their magnitudes now increase as long as
the right hand side of equation 5.32 is not equal to zero. This happens because
of equation 5.33 which amplifies them after every iteration. As the algorithm
converges and gy - s; — 0, for two patterns, ||g.| stabilises at a higher level
than what it was before the training. This analysis can be extended to an M > 2
number of patterns with very similar results’. It is logical to predict that amongst
several filters, the one whose corresponding training pattern is most similar to
other training patterns will have at the end of the training the largest magnitude.
This will happen because the algorithm affects filters that are derived from similar
patterns more and it does not induce large changes to the filters that correspond
to patterns that are very different to each other.

One last thing that we would like to point out here is that there is a drawback
in using this normalisation. In section 5.2.1 we said that we would prefer all of the
filters g to be of equal magnitude, so that no bias for some patterns would exist.
Now, however, we have shown that the magnitudes, ||g||, of some of the filters will
increase, and, therefore, a bias will exist. This makes the rejection of unknown
random patterns difficult because they may give a higher correlation peak with a
high magnitude filter. On the other hand this normalisation enables us to correctly
discriminate amongst the known patterns by setting the appropriate threshold, or
just by choosing the highest peak. We could use a different normalisation equation
and normalise the magnitudes ||g|| of the g filters themselves, for example equation
5.11, which we rewrite here

i ~(i Hg(‘i_l)
g —gole | (5.34)

T ER
This normalisation would ensure that all of the filters would be of equal magnitude,
and that an unknown random pattern would give approximately equal correlation
peaks with all of them. The choice of which normalisation to use depends on
the task at hand. If we know that all of the possible input patterns belong in a
specified set and we want to discriminate among them, then the first normalisation
described in equation 5.33 is preferable. If we want to detect the presence of an

1See appendix B for the mathematical analysis
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object in the input, or if there is a chance that a pattern which does not belong to
our set and must be rejected is present in the input, then it is important to have
unbiased filters and the second normalisation described in equation 5.34 may be
preferable.

5.4 Comparison with other filter design

algorithms

In the previous sections we derived the SS orthogonalisation and the SS cross
orthogonalisation algorithms. In this section we are going to compare them from
a theoretical viewpoint with some relevant filter design techniques. We did these
comparisons to find out how our algorithms relate to other filter design techniques,
where they differ and their advantages and disadvantages. This knowledge can
help one decide when to use our algorithms to design filters. In addition it has
helped us improve our algorithms by borrowing ideas from similar techniques and
applying them to our work. We will start by comparing the SS orthogonalisation
algorithm to the Gram-Schmidt orthogonalisation procedure. We will then com-
pare the SS algorithm with the Linear Combination Filters developed by Caulfield
and Maloney [18]. Finally, we present the comparison between the SS algorithm
and the Hebbian learning law for training single layer neural networks.

5.4.1 Comparison of the Gram-Schmidt orthogonalisation
procedure with the similarity suppression orthogo-

nalisation algorithm

The Gram-Schmidt orthogonalisation procedure was described in section 3.2 and
the orthogonalisation equations are rewritten here

S1
u; = 5.35
=Tl (5:35)
k
ﬁk+1 = [ H (I - lljllf)] Sk+1, (536)
i=1
U
el (537)

In order to compare our algorithm with it, we note that the vectors uy, ..., ux, are
already orthonormal in the iterative equations 5.36 so that the cross-terms in the
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product [T;_;(I — ulu;) disappear, therefore, we can write equation 5.36 in the
form [70]

k
T
Ugyy = (I - ) uu; )Xk+1
i=1

k
5.38
= Xpor — 3 (W) (5.38)
j=1

Equations 5.10 and 5.11, which we rewrite here,

ggz) _ggz 1) ﬂ”Z{ (z 1) z 1)}g’(ci—1) (539)
k#j
=(%)
i g;
g = —5 (5.40)
185
(5.41)

are very similar to equations 5.38 and 5.35 defining the Gram-Schmidt ortho-
normalisation which is not surprising as our algorithm also leads to orthogonal-

isation of the original patterns. However, our final set of orthogonal patterns is
different to the one obtained with the Gram-Schmidt procedure. In fact the basic
SS algorithm is a symmetrical and iterative version of the Gram-Schmidt process.
The main differences between the two are that:

1.

il.

In the SS algorithm all of the patterns are changed by a small amount in each
iteration, treating each pattern in the same equal handed way. However, in
the Gram-Schmidt procedure, the first pattern is not changed at all and all
of the others are changed to become orthogonal to it. The final result is,
therefore, highly dependent on the order in which the patterns are chosen as
first, second, and so on. A different presentation order would lead to different
set of orthogonal patterns. The order is unimportant for the SS algorithm
as the iterative equation does not use any patterns already modified earlier
in the current iteration but only patterns from the previous iteration which
are fixed throughout.

The SS algorithm has a convergence factor, 3" while the Gram-Schmidt
procedure has not.

If the orthogonal patterns resulting from the Gram-Schmidt orthogonalisation

procedure are used to recognise and distinguish the presence of themselves in the

input, the system would work well as the patterns are orthogonal. However, in
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many cases it is not possible to choose the patterns to be recognised to be members
of a particular orthogonal set.

If the patterns resulting from the Gram-Schmidt orthogonalisation process
were used as filters to try to distinguish the original input patterns, the later
patterns have had so much removed from them that it is likely that their original
own distinctive features have been obscured to such a degree that they may be
considered to have been lost. With the Gram-Schmidt algorithm, in N dimensional
pattern space, the first pattern remains at the same position, while subsequent
patterns move further and further from their original position despite being finally
resolved onto an orthogonal axis. This means that the inner products between the
final and the corresponding original patterns are likely to be smaller for patterns
which were towards the end of the presentation order during orthogonalisation,
resulting in a bias towards the first patterns in the presentation order.

Moreover, in the Gram-Schmidt procedure the first patterns still retain the
original similarities that they had with most of the other patterns so when used
as filters they will register a large output when any of the other similar original
patterns are input leading to incorrect discrimination.

5.4.2 The relationship between the SS cross orthogonalisa-
tion algorithm and Caulfield’s and Maloney’s Linear

Combination Filters

The SS cross orthogonalisation algorithm is described by equation 5.16 which we
rewrite here:

. 2 M y
g =g V-8 {gy'” . Sk}sk (5.42)
k=1

ki

there is also a normalisation step (equation 5.20) which is not necessary for our
analysis here and it is omitted for the sake of simplicity as is the square in equation
5.27. Equation 5.42 shows that at every iteration all of the training patterns are
subtracted from each of the filters, with different weights. We can consider that
the training patterns that correspond to each of the filters (when k£ = j in equation
5.42) are subtracted from them with their weights set to zero. Lets consider what
happens to an individual filter throughout the training. At each iteration, all of
the training images are subtracted from it, each with a different weight. After all
of the iterations a total amount of each of the training images has been subtracted
from it. This total amount is equal to the sum of all of the individual weights
which were used for the subtraction of each training image during the training.
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The same thing happens to all of the filters. Therefore, they can be given by the
following equations:

Cisi +Ciosa+ -+ Cimsy = &1

Cas1+ Co82 + -+ - + Copspyr = 82
(5.43)

Cumi181 +Cupasa + -+ CymsSy = Bm
where each of the coefficients Cy1,Cia, ... ,Curar is equal to the sum of all of the
individual weights that were used for the subtraction of each of the training images
during the training. These coefficients are all negative, except from Cj;,Vj which
are equal to zero. It is obvious that if the coefficients Ci;, Cia, ... ,Crpap can be
calculated then the final filters can be created without the need for an iterative
procedure. The aim of the cross orthogonalisation algorithm is to design the filters
in such a way so that each of them has an inner product equal to one (or some
other constant) with the corresponding training pattern and equal to zero with
every other pattern. These conditions can be expressed by the following set of

equations:
si-gi=1 ifi=3j
® o (5.44)
s;-g; =0 ifi# 7,Vi,j
The previous set of equations are written in a matrix form as follows:
S1 10 ---0
So 01 .--0
] (gl g2 - gM) = : (5.45)
SMm 00 1
S1°81 S1°82 S1°*8M 1 0 . 0
S2°81 S2°82 S2°8M | _ 0 1 0 (5.46)
SM*81 SMm-*82 SM * 8M 00 1
or,
SGT =1 (5.47)

where S is a Mx1 vector whose elements are the training patterns s, G is a Mx1
vector whose elements are the filters g and I is an MxM identity matrix. Equations
5.43 can be written in a matrix form as follows:

Cu Cip -+ Cim S g1
C C e C S

21 .22 2M . '2 _ g.2 (5.48)
Cmi Cum2 -+ Cum SM gm
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or,
CS=G (5.49)

where C is an MxM matrix each element of which is the coefficient C;;. From
equation 5.49

GT =8TcT (5.50)

and substituting equation 5.50 into equation 5.47

SsTcT =1 (5.51)
= RCT =1 (5.52)
=Cl'=R (5.53)
= C=R"T (5.54)

where R is an MxM matrix each element of which, m;;, is equal to the inner
product between the training patterns s; and s;. So, the coefficients C;; can be
calculated from equation 5.54 as long as matrix R can be inverted. In that case
the final filters can be calculated directly from equation 5.49 by substituting the
coefficients matrix C from equation 5.54

G=R'TS (5.55)

As we saw in chapter 3, Caulfield and Maloney [18] calculated their Linear
Combination Filters in two steps. The first step was to calculate the vector inner
product matrix, R, of the input patterns. This matrix had each of it’s elements
7;; equal to the inner product between the training patterns s; and s;

1 Ti2 ' TiMm
To1 T22 **+ Tom

R= . (5.56)
™1 Tm2 " TMM

where T3 = 8; * 8;.

In the second step they formed linear combinations of the responses r;;s. Using
these linear combinations, the final response when testing pattern s; for its identity
to s would be

Fip=ry+ > Cura (5.57)
I£k
They imposed the constraint that Fj; had to be zero unless ¢ = k£ and nonzero if
1=k, i.e.,

Fiy = Firbix (5.58)
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Equations 5.57 and 5.58 were formulated as matrix equations [74, 13] leading to
the general SDF described by equation 3.18 which we rewrite here

Rai = dz

5.59
= a; = R_ldi ( )

Equation 5.54 is in essence the same as equation 5.59. We have calculated the
coefficients for the M filters, while equation 5.59 calculates the coefficients for a
single filter. In addition, the matrix with the desired values in our case is the iden-
tity matrix, while equation 5.59 is more general. The vector-inner product matrix
R is transposed as well as inverted in our equation (5.54) because we have defined
the coefficient vector for each of the filters as a 1 x M vector while in equation
5.59, a; is a M x 1 vector. So in effect we see that the SS cross orthogonalisation
algorithm should finally converge to the solution which is obtained using general
synthetic discriminant functions or Caulfield’s and Maloney’s method. The main
difference between our algorithm and the two methods, is that our algorithm is
iterative. The first question that automatically arises is whether the SS algorithm
converges to exactly the same solution as the other two methods. We provide
an answer to this question in the next chapter using computer simulations. The
advanced form of the SS cross orthogonalisation algorithm described by equation
5.27 has the subtraction weight squared. This square does not affect the previ-
ous result, as it can be included in the coefficients C;j; without any change in the
subsequent analysis.

5.4.3 Equivalence between a bank of correlators and a

single layer of neurons

In this section we explain the equivalence between a bank of correlators and a
single layer of neurons to pave the way for the comparison between the SS cross
orthogonalisation algorithm and the Hebbian learning rule presented in the next
section. We will follow the analysis presented in [4].

For an input pattern s of size N and a filter g also of size IV the value of the
central peak of the correlation at the output plane of a correlator is equal to their
inner product which can be written

N
Yo = Z 8:Gi (560)
=1

The output of a single neuron using neural network notation, where z; denotes the
input ¢ and w; the weight of the connection between the neuron and that input,
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&(-) is the activation function (usually nonlinear) and  is the threshold, is [3]:

yv = o(vn) = qS(ﬁ: ziw; — 0) (5.61)

Using our notation, equation 5.61 is written

Yn = ¢(’UN) = (]5(; 8i0; — 0) (562)

Equations 5.60 and 5.62 are very similar with the only difference being the thresh-
old and the activation function in equation 5.62. If the threshold 6 is set to zero
and we use the identity function ¢(z) = x as our activation function, then equa-
tion 5.62 becomes identical to 5.60. On the other hand, we can include a threshold
in equation 5.60 by increasing the size (the number of pixels) of the filter g and the
input s and filling the remaining pixels of the filter with a constant background
of the appropriate value. The inner product will then be

M N M N
Yo =D 8igi =Y sigi+ Y, Sigi=p sigi+0 (5.63)
=1 =1 i=N+1 i=1

where M, M > N is the new total number of pixels. By choosing the appropriate
pixel background value for the filter and setting the corresponding pixels at the
input image to 1, we can create any desired threshold, even a negative one. So
to conclude, each correlator in a bank of correlators corresponds to a neuron in
a single layer of neurons. Each individual pixel value of the filter placed in the
correlator corresponds to an individual weight of the neuron. The central peak of
the correlation (the inner product) between the input and the filter corresponds
to the neuron output when its activation function is linear and its threshold is
equal to zero.

5.4.4 Comparison of the similarity suppression algorithm

with the unsupervised Hebbian learning law

Motivated by the equivalence between a single layer of neurons and a bank of cor-
relators, in this section we are going to investigate the relationship between the
similarity suppression algorithm and the unsupervised Hebbian learning law [101},
which is one of the most common algorithms for training single layer neural net-
works. We are going to use both our and the usual neural network notation to
make this comparison clearer. The unsupervised Hebbian learning law is also
called the activity product rule and is expressed by the equation 4.3 which we
rewrite here

AWjm = NY;Tm (5.64)
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1%
X1 Y]

Inputs Neurons

Figure 5.1: A single layer of neurons.

where (see figure 5.1) Wjm is the interconnection weight between the input m and
neuron j. 7) is the convergence parameter. Xm is the value of the input, m and, i/j
is the output of the neuron j and is given by the following equation

N

V= E (5.65)
m=1

where N is the total number of inputs or the number of pixels in our training
patterns. Rewriting the two previous equations in our notation they take the

form
N9jm = mjSm or Agj = TJyS (5.66)

for the weight vector and

N

yj= 9imSm or yj =gj-s or Y =g"s (5.67)
TTH

where as before, we denote our training patterns with s and the filters, whose
pixel values correspond to the weights of the network, with g. If the network is
trained in the batch mode, where the weight update is performed once after all of
the training patterns have been presented to the network, then the weight update
is given by (without summation convention)

M

AWjm — y ~ “ViiNer (5.68)
k=l

where k indicates the training pattern and M is the total number of training

patterns. In our notation this equation can be written

M Mr 1
Nosm=yY.yks™m or Agh =y * S¢ Ufe (5.69)
fcd 'V J
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for the weight vector. The similarity suppression algorithm in its simplest form is
given by equation 5.16 which we rewrite here

o . M
ggz) = gy Vg3 {gj -sk}sk (5.70)
k2
M
= AgJ = —,3 Z {g_.’ . Sk}Sk (571)
=

Notice that we have omitted the square in equation 5.27 to make the comparison
easier. Equations 5.69 and 5.71 are very similar. § and 7 play the same role in
both algorithms i.e. convergence factors. Equation 5.69 shows that the weight
update is equal to the product of the output from the neuron, yx; and the input,
Skm, that is connected through the non-updated weight. This product is summed
over all training examples, if the system is trained in batch mode. Similarly, the
change in one of the stored filters in a bank of correlators, given in equation 5.71,
is equal to the product of the central peak of the output of the correlator and the
corresponding input.
There are two differences between the two algorithms.

i. The first is the different sign in equations 5.71 and 5.69. Mathematically
this means that the magnitude of the weight vector in the Hebbian learning
will increase while in the case of the similarity suppression algorithm the
magnitude of the weight vector may increase or decrease depending on the
value of the convergence factor 5 (as we saw in section 5.3). The plus sign in
the Hebbian learning law can be interpreted as feature or similarity enhance-
ment instead of similarity suppression that our algorithm performs. Thus
the Hebbian Law performs generalisation, which means that the network is
trained to give a high output for all of the training patterns and for other
patterns similar to them. On the other hand, the SS algorithm performs
discrimination, which means that the correlators are “trained” (or one can
say that the filters placed in them are designed in such a way) to give low
outputs with all but one of the training patterns.

ii. The second difference between the two algorithms is that in the Hebbian
learning law the summation is done over the products of the output and
all of the input patterns, while in the SS algorithm one product, that of
the output and the input pattern corresponding to the updated filter, is
excluded from the sum. This would be the biggest term in the summation
provided that the weight vector (or the g pattern in our case) is normalised,
since the normalisation changes the g filter in such a way so that its inner
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product with the corresponding s pattern is held constant. If that term was
included in the SS algorithm, the result would be that the filters would be
trained to discriminate against all of the input patterns and they would not
produce a high output for any of them.

Both algorithms need a normalisation step to become stable and in that case the
Hebbian learning law is called the normalised Hebbian rule [70].

5.5 Extension of the Similarity Suppression al-
gorithm to train two or more consecutive

banks of correlators

In this section, we extend the SS algorithm to calculate the filters for each of
two cascaded banks of inner product correlators. Since one bank of correlators
is mathematically equivalent to a single layer neural network, it cannot classify
patterns that are not linearly separable. T'wo or more consecutive banks of cor-
relators however, correspond to two or more interconnected neural network layers
and can classify patterns that are not linearly separable. It is necessary however,
that each correlator in the first bank is followed by a non-linear activation func-
tion, because from neural network theory we know that hidden units with linear
activation functions provide no benefit in classifying patterns that are not linearly
separable [3]. Based on the similarity between the SS algorithm and the Hebbian
learning rule shown in the previous section, we are going to follow the well known
derivation of the back-propagation learning algorithm using our filter formalism.

In figure 5.2 we can see two cascaded banks of correlators. There are T' cor-
relators in the first bank and M in the second. The same pattern s is input to
all of the correlators in the first bank. The input to the correlators in the second
bank, which is the same for all of them, is formed by the outputs of the correlators
in the first bank. The correlation peak of each one of them, after the activation
function is applied to it, corresponds to one pixel of the pattern which is input
to the correlators in the second bank. Therefore, the filters in the first bank are
of size N, where N is the size of the input patterns and the filters in the second
bank are of size T, where T is the number of correlators in the first bank. The
nonlinear activation functions between the two layers are not shown in figure 5.2

First let us define (following the definition in [95]) the average squared error
to be equal to the mean of the squared errors of the outputs of all of the filters in
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Figure 5.2: Two cascaded banks of correlators.

the output bank of correlators for all of the training patterns

| M M
En, — EE ®% (5.72)
*M pely am

where A indicates the filter number in the output bank, £ indicates the training
pattern number and the number in the parenthesis on the top left of the each
symbol (in this case (2)) indicates the bank number. The output bank is bank 2
and the hidden is bank 1. We have made the assumption that the number of the
hlters in the output bank is equal to the number of the training patterns. The
error of each filter in the output layer is

(5.73)

The change A to each of the pixels of filter will be:

(5.74)

where m denotes pixel number. By applying the chain rule of multi-variable
differential calculus we have

(5.75)

From equation 5.73 we get

- -1 (5.76)
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and from equation 5.62 (yy = ¢(vy) = ¢(TX, s:9; — 0)) we get

0@y
3y = (Do) (5.77)

and from equation 5.62 also

5(2)Ujk o
a(2)gjm B

Yik (5.78)

where My, is the output of filter ¢ in the previous bank of correlators and the
input to the second bank of correlators and corresponds to s; in equation 5.62. So
using equations 5.75-5.78, equation 5.74 becomes

M
A@g,. = % S @ Ot (By) Wy, (5.79)
k=1

so the equation for the update of the filters in the output layer when they are
regarded as whole images is obtained by substituting equations 5.73 and 5.62 into
equation 5.79

M
n i .
ADg. = MZ{(Z)d — @, (@g6 0y, )} @4 (gl . Wy ) Wy,
(5.80)

where as usual all of the bold symbols denote vectors. The local gradient for the
filter ®g; in the output layer is defined to be

@55, = Dejy (2)¢;((2)vjk) (5.81)

and the filter update equation can be rewritten by substituting equation 5.81 into
equation 5.80 in the following form

M
AQg, = Inj 3 @5 Wy, (5.82)
k=1
For the update of filter (1)gj in the hidden layer we cannot use the local gradient
defined in equation 5.81 because the calculation of the error Mejy, is not straight-
forward because we do not know what the desired outputs of the correlators in
the first bank should be. We define the local gradient 4, as follows

aEm, a(l)yjk; _ aEav

Mg, — ———-w =~ Ik _ _

(M) (5.83)

Using equations 5.72 and 5.62, we can calculate the partial derivative 8 Eq, /0 (Dy;y,

as follows
8(1)ka M =53 3(1) M k=1A=1 (2)“Ak 0 Wy;y, (5.84)
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In the output layer
M
@y =" Ogy; Wy (5.85)

or for images
(2)% = (Z)gA : (I)Yk (5.86)

From equations 5.62, 5.73 and 5.76 we get

8 Pex
— _@u (@
9@y, d3(Foae) (5.87)

and from equation 5.85 we get

8Dy _®

Y (5.88)

so substituting equations 5.87 and 5.88 into equation 5.84 we get

aEla’v _
0 (l)yjk B

1 M M
'MZZ 6Ak()¢A U,\k)l(z)g/\j (5.89)
k=1 =1
(2)5Ak

and substituting equation 5.89 into equation 5.83 we get

W50 = Z Z( Yore Pgag )¢ (M) (5.90)

k 1A=1

and from equation 5.82 the filters in the first bank of correlators can be updated
by the following equation

AWgm = M2 Z Z E( Ve Do (Pvae) Pga; Vi (Do) spm
=1k=1A=1 (591)

or the same equation for the whole images can be written

g R -

where

A= { (2)d,\k _ (2)¢>\((2)g)\ . (1)Yk)} (2)¢')‘((2)g/\ . (1)yk) (2)9)‘1. (1)¢9((1)gj “Spr ) S
(5.93)

Equation 5.80, which describes the update of the filters in the second bank
of correlators, is very similar to the basic equation of the SS algorithm with the
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main difference being the presence of the non-linear activation function and it’s
derivative. So in effect it trains the filters in the output bank to distinguish among
the images that are output from the first bank. Equation 5.92 which describes the
correction that must be applied to the filters in the first bank of correlators, is not
as straightforward to explain. It updates the filters in the first bank, based on the
average error of the filters in the second (output) bank, which can be measured.
The algorithm which calculates the filters for more than two cascaded banks of
correlators can be derived in a similar manner using the same chain differential
rule for the other layers.

5.6 Discussion and conclusions

In this chapter we have addressed the problem of designing a set of filters which
are mutually orthogonal to a set of training patterns. We developed a similarity
suppression algorithm which starts from a set of training patterns, and creates a
set of filters. Each of the filters has a high inner product (equal to 1, assuming
that all of the training patterns are normalised) with only one of the training
patterns; the one that it was derived from. In addition, each of the filters has very
low inner products with all of the other training patterns.

We showed that with our choice of convergence parameter the magnitudes
of the filters will decrease, unless a normalisation step is used. We chose to
normalise the filters in such a way that we ensured that their auto-inner products
would remain stable at a desired value. However, by doing that we increased the
magnitudes of the filters themselves and we now suspect that if a random pattern,
or white noise is input to the system, the output will be biased towards the filter
whose magnitude is the largest. There is, however, a way around this if we use a
different normalisation.

In the third section of this chapter we compared the SS algorithm to some other
filter design techniques. The first version of the algorithm which orthogonalises
the filters themselves is a symmetrical, iterative version of the Gram-Schmidt
procedure. '

We also compared the SS algorithm to the Linear Combination filters and to
the general Synthetic Discriminant Function filters. The SS algorithm converges
towards the LCFs and SDFs solution. The two filter design methods are, there-
fore, roughly equivalent. In the next chapter we are going to investigate whether
the algorithm will converge to the exact solution as the LCFs with the help of
computer simulations.

It is well known [4] that a bank of correlators is mathematically similar and, if
the threshold is equal to zero and the activation function is linear, in some cases
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equivalent to a single layer of neurons. Therefore, it can be used to implement
a 1l-layer neural network. There is also an obvious similarity in the equations
describing the SS algorithm and the unsupervised Hebbian learning law. Their
main difference is that in its present form the SS algorithm performs discrimi-
nation, while the Hebbian law performs generalisation. However, a single layer
of neurons and a bank of correlators can only perform correct recognition when
the patterns to be recognised are linearly separable. The back-propagation learn-
ing algorithm is well known for its ability to train neural networks with hidden
layers of neurons. Based on the equivalence between the SS algorithm and the
Hebbian law we have extended the SS algorithm to design filters for two or more
cascaded banks of correlators. In doing that, we have not devised a completely
new training algorithm, but rather expressed the back-propagation algorithm in
terms which refer to whole images and are better suited to the design of filters for
optical correlators.

In the next chapter we are going to present some computer simulations of
the SS algorithm. With these simulations we are going to verify the theoretical
analyses presented in this chapter and investigate the ability of the final filters to
recognise noisy patterns.
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Chapter 6

Computer simulations of the

Similarity Suppression algorithm

6.1 Introduction

In chapter 5 we described the similarity suppression algorithm. In this chapter we
are going to present some of the computer simulations which we conducted while
we were developing the algorithm. Some of these simulations helped us do some
modifications to the algorithm and others verified our theoretical conclusions. In
section 6.2 we use the algorithm to calculate two sets of filters to recognise two
different sets of training patterns in the presence of noise. We investigate the
effect of the convergence parameter on the speed of convergence and on the final
solution. In addition, we observe the magnitudes of the filters to verify the con-
clusions we drew in section 5.3. In section 6.3 we present computer simulations
which test the performance of one of the sets of filters, calculated in section 6.2,
in recognising images buried in additive input white noise. Section 6.4 presents
computer simulations which compare the SS algorithm with linear combination
filters. These simulations verify the theoretical comparison between the SS al-
gorithm and linear combination filters shown in the previous chapter and clarify
the relationship between the two methods even further. Finally, in section 6.5 we
use the results of computer simulations to optimise the number of times that the
algorithm is allowed to iterate, which yields some surprisingly beneficial results.
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6.2 Convergence Simulations

This section presents the performance of the algorithm during the iterative train-

ing phase. The next section presents the performance of the filters, g, so produced,
at discriminating patterns in noise. In order to assess the efficacy of the algorithm

it is necessary to choose and to devise appropriate performance measures. These

are introduced below, followed by a detailed description of the simulation param-

eters and results.

6.2.1 Performance Measures

We define three performance metrics:

i.

ii.

1ii.

Cross-inner product matrix

A matrix R which we call the cross-inner product matrix was calculated at
each iteration. The R;; element of the cross-inner product matrix was equal
to the value of the inner product of the patterns g; and s;. The goal of the
training is to minimise all of the elements of the cross-inner product matrix
except from the ones that are on the diagonal, which remain constant and
equal to the normalised magnitudes of the training patterns, P. In the first
iteration, when the g patterns are identical to the s patterns, matrix R is
the vector (auto) inner product matriz of the input patterns as defined in
[66].

Global Energy
A term which we will call the total energy of the system was defined as
1 MM
TE = W;;mi-sjl (6.1)

In other words the total energy of the system is equal to the normalised sum
of the modulus of all of the elements of the cross-inner product matrix. The
total energy is a measure of the height of all of the cross inner products. As
the algorithm converges, we expect the total energy to decrease.

Largest cross-inner products

In order to monitor the system’s convergence, another figure of merit was
calculated. This figure of merit was the average size of the modulus of
the three largest cross-inner products as a fraction of P, calculated at each
iteration.
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6.2. CONVERGENCE SIMULATIONS

6.2.2 Binary, bipolar patterns

Our aim when conducting these simulations was to see how much the cross-inner
products were reduced, how many iterations it took for these reductions to take
place and how the final cross-inner product values and the convergence speed were
affected by the convergence parameter 8. The first training set of patterns to be
recognised, consisted of 32, 16x16 binary, bipolar patterns denoted by s;,i =
1,...,32. We chose to use binary, bipolar patterns for their simplicity which
helped us to evaluate the results in the early stages of the development of the
algorithm. Eight patterns in the training set were chosen to have random elements.
Those were patterns numbers 1,7,10,11,17,20,21 and 22 as they appeared in the
set. The other patterns were similar to one of patterns 1, 11 or 22, differing by 7,
14, 28, 56 and 112 pixels. Table 6.1 shows the order of the patterns in the training
set, the similar patterns and by how many pixels they differ. The patterns that
are similar to one another were created by copying the initial pattern and then
randomly changing the desired number of pixels. We constructed this specific
training set so that there were some very similar and some very different patterns
in it. If all of the training patterns had been chosen to be different, the algorithm
would not produce much benefit, because if all of the cross-inner products were
already small there would not be any reason for them to change.

Pattern No: | 1 | 2 | 3 | 4 | b 6 718119 |10 11 |12(13|14| 15| 16
Similarto: | - | 1 [ 1 [ 1 |1 1 - 122122 - - 11|11 11 11
Differing by: | - | 7 |14 |28 |56 (112 | - | 7 |14 | - - 7 |14 | 28 | 56 | 112
Pattern No: | 17 | 18 |19 |20 |21 | 22 |23 |24 |25 |26 | 27 |28 (29 |30 31| 32
Similar to: - 1y - | - - (221221222222 |1 [11|1 22| 1
Differing by: | - | 7 |14 | - | - - 7T (1428|156 112 |7 | 7T |7 |14]| 14

Table 6.1: Number of pixels differing in the training set.

The advanced algorithm, described in equations 5.27 and 5.28, was tested with
several different values of the convergence parameter . Here we present some
representative results for 6 different values of f, which are § = 0.01,0.1,0.5,1,4
and 6. For most of the 3 values the algorithm converged to a sufficiently stable
solution within the first 1500 iterations.

In figure 6.1 one can see the three dimensional graph of the initial state of the
cross-inner product matrix. The palest shading shows the highest peaks. The large
values on the diagonal represent the auto-inner products. All of the other peaks,
some of which are large (but no bigger than the auto-inner products) represent
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Onginal filters
15

Training patterns

Figure 6.1: Cross-inner product matrix before the training. The graph is shown

with the Xand y axes reversed for clarity.

the cross-inner products and those are the ones that we want to decrease. The
total energy index is plotted in figure 6.2 as a function of iteration number. For
most of the (7 values,the total energy reduces rapidly, which means that the cross-
inner products decrease. In addition, for most of the  values the total energy
decreases exponentially. The decrease is very fast initially and slows down later.
The average of the absolute value of the three largest cross-inner products as a
fraction of the auto-inner product’s normalised value P, is shown in figure 6.3, as

a function of iteration number. The algorithm converged to the desired solution

E0.01
0.18 EO0.1
5
0.16
1=
0.14
on
0.08
0.06
0.04
500 1000 1500

Iteration Number

Figure 6.2: Total energy index.
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Figure 6.3: Absolute average values of the 3 largest inner products as a function

of iteration number for various values of the convergence factor, /3.

for most of the values of (3 As we expected, convergence is a lot faster when
(3 is large (figures 6.2 and 6.3). In addition, the cross-inner products converged
to lower values as (3 increased. However, (3 values larger than s, destabilised the
algorithm and as a result the inner products oscillated between their initial and
very large values. Figure 6.3 shows that even the largest cross-inner products
converged to a value less than 10% of the auto-inner product value P for most
of the P values (after about 800 iterations). In the best case #3 = ) most of
the convergence has taken place after just 100 iterations. The three dimensional
graph of the cross-inner product matrix after training with f3 = 6 is shown in
figure 6.4. It is very easy to see, by comparing figures 6.4 and ¢.1, that the SS

algorithm has been very successful at suppressing all of the cross-inner products.

6.2.3 Magnitudes of normalised and un-normalised filters

In this section we will focus on the magnitudes of the filters throughout the train-
ing phase. In section 5.3 it was shown that without a normalisation step and
with our choice for the convergence parameter, /?, the magnitudes of the filters
would decrease during the training. In figure 6.5 we can see the magnitudes of
some of the filters (filters 1,2,5,13,20,22 and 23) as the algorithm converges to
the final solution, when the normalisation equation is not used. We have chosen
to show these particular filters because some of them (filters 1,2,5,13,22 and 23)

were derived from patterns that were more or less similar to others and some
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Training patterns

Figure 6.4: Cross-inner product matrix after 1500 iterations for a convergence

factor o/ P = 6. The graph is shown with the x and y axes reversed.

(filter 20) were derived from patterns different to all others. First of all we must
point out that in figure 6.5, the magnitudes of all of the filters have the same
initial value, 256. We can see in the figure that the magnitudes of all of the filters
decrease as was predicted in the theory in section 5.3. However, they do not all
decrease by the same amount. A first observation one can make in this figure is
that the largest drop in the filters’ magnitudes takes place in the first iteration.
In addition, the amount that the filters’ magnitudes decrease, depends on the
similarity between their corresponding initial patterns and other patterns in the
set. A general trend seems to exist: the amount of the decrease of a filter’s mag-
nitude during the training without normalisation depends on the initial pattern
from which it was derived and it is proportional to the similarity between that
pattern and the other patterns in the set, as well as to the number of these similar
patterns. This can be verified in figure s.¢ which shows the magnitudes of all of
the filters, each one depicted with an “x” on the graph, after the training without
normalisation. They are plotted versus the similarity amongst the corresponding
training patterns.

This similarity amongst the training patterns was calculated in the following
manner: for each of the training patterns, we calculated the number of pixels
which had equal value to pixels in other patterns. For example, the first training
pattern has 249 pixels equal to pixels in the second pattern (they differ by 7 pixels,
therefore, 256-7=249), another 242 pixels equal to pixels in the third pattern and

so on and in total it has at least 1803 pixels equal to pixels in all of the other
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Figure 6.5: Unnormalised magnitudes of some of the filters as a function of the

number of iterations.
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Figure ¢ .« : Un-normalised magnitudes of all of the filters after the training versus

similarity amongst the corresponding training patterns.
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Figure 6.7: Cross-inner product matrix after 1500 iterations without normalisation
for a convergence factor of /7 = ¢. The graph is shown with the x and y axes

reversed for clarity.

patterns in the training set. We used the terms “at least”, because the previous
calculation did not take into account the pixels which randomly happen to have
equal values with pixels in other patterns. The second training pattern has 249
pixels equal to pixels in the first pattern, 256-7-14=235 pixels equal to pixels in the
third training pattern and so on and in total it has 1754 pixels equal to pixels in
all of the other patterns. Again, this number is not accurate, but just an estimate,
but it suffices for our purpose here. The graph shown in figure ¢.s verifies our
previous conclusion, that the amount that a filter’s magnitude is going to decrease
during the training depends on the similarity between that filter’s corresponding
training pattern and all of the other patterns in the training set.

So the filter magnitudes do decrease and that has an effect on their auto-inner
products with the corresponding training patterns. Since there is no normalisation
step, these will decrease as well. In figure 6.7 we can see the final state of the
cross-inner product matrix. All ofthe cross-inner products have decreased to very
low values, but some of the auto-inner products have decreased as well and this
is undesirable. To recognise its corresponding training pattern correctly, each of
the filters must have an auto-inner product with it which is higher than the cross-
inner products with the other patterns. Again one can observe that the decreased
auto-inner products are the ones that correspond to initially similar patterns.
We introduced the normalisation step to stabilise the auto-inner products and

solve this problem, but we predicted that this normalisation would increase the
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Figure ¢.s: Normalised magnitudes of some of the filters as a function of the

number of iterations.

magnitudes of the filters unevenly. This can be verified in figure ¢.s which shows
the magnitudes of the same filters but in this case when they were normalised
throughout the training. Due to the normalisation, the strongest filters are the
ones that were the weakest without the normalisation step.

This increase in the magnitudes of some of the filters after using the normali-
sation is undesirable, because, as we said in section 5.3, there will now be a bias
towards them if random patterns are presented into the recognition system. This
bias is quite strong, as from figure .5 we can see that the strongest filters are

roughly 33 times stronger than the weakest.

6.2.4 Peak-to-Correlation Energy of the correlations be-
tween the training patterns and the trained and un-

trained filters

The SS algorithm is very successful at decreasing the cross-inner products between
filters and patterns that do not correspond to them. Each filter starts by being
identical to one of the training patterns and then changes so that it becomes
different to all of the other patterns in the set. These changes, however, must have
an effect not only on the inner product between the filters and the patterns, but on
the whole correlation plane. The algorithm forces the inner products to decrease
but it does not place any constraints on the outer products. In figure 6.9 we can see

the intensity profile in the correlation plane for two correlations. Subfigure 6.9-(a)
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(a) Si ®Si, PCE=0.53 (b) Si 8) gl, PCE=0.027

Figure 6.9: Correlation plane intensity for auto-correlation of pattern 1 and cor-

relation between pattern 1 and filter .

depicts the auto-correlation of pattern 1. Subfigure 6.9-(b) depicts the correlation
between pattern 1 and filter 1, which was obtained after 1500 iterations with
A = 6. We can see that the auto-correlation of pattern 1 has a sharp peak (as
expected) and a PCE (as defined in chapter 2, equation 2.6) equal to 0.53. When
using the filter corresponding to pattern 1, the inner product has remained stable,
but the outer products have increased a lot and the PCE is now only 0.027. For
a correlation between a filter and the pattern it corresponds to, we want a high
correlation peak and low side-lobes, therefore, a high PCE as close to 1 as possible
is desirable. Therefore, the fact the PCE has decreased so much in the correlation
between the first pattern and its corresponding filter is a disadvantage.

Figure 6.10 shows the intensity profile of the correlation plane for the correla-
tions between pattern 1 and pattern » (subfigure ¢.10-(a)) and between pattern
and filter 2 (subfigure 6.10-(b)). The correlation between the two initial patterns
has a high, sharp central peak because the patterns are very similar. With filter 2,
the central peak of the correlation has decreased (to less than 10% of P) but the
outer products have increased to about 65% of the auto-correlation peak value,
P.

Another interesting example can be seen in figure 6.11 which shows the cor-
relations between pattern 7 and pattern 1 (in subfigure ¢.11-(a)) and pattern 7
and filter 1 (in subfigure 6.11-(b)). In the correlation between patterns 7 and 1
there is no correlation peak and the outer products are all low, because the two

patterns are very different. However, when using filter 1, the central point of the
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(@ SigS (b) Si (@ g2

Figure 6.10: Correlation plane intensity for correlations between pattern 1 and

pattern » and between pattern 1 and filter 2.

correlation plane, i.e. the inner product, may still have a very low value, but the
outer products have increased dramatically and one of them is about 80% of the
auto-correlation peak value, P.

To conclude, the algorithm reduces the inner products, but does not put any
constraints on the outer products, so they increase. Not all of the correlations
have their outer products increased by the same amount. The biggest increase
in the outer products occurs in correlations of filters that were derived from pat-

terns which were similar to others at the beginning of the training. The auto-

(@) s76)si (b) S7 ® gl

Figure 6.11: Correlation plane intensity for correlations between pattern 7 and

pattern 1 and between pattern 7 and filter 1.
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correlation’s outer products increase a lot because of the normalisation step. A
filter is changed during the training but that makes it different from the pattern
from which it was derived, as well as from other patterns. When it is normalised
so that it’s auto-inner product reaches the desired level, it’s magnitude increases
as we saw in the previous section and as a result, all of the outer products of the
correlation increase.

This increase in the outer products in the correlations plays no role in electronic
systems, but is a major drawback in optical systems, unless the input images are
always centered. In the case when the location of the object in the input scene is
not known precisely, the increased outer products would make an optical system
a lot less useful, because a high outer product could be mistaken for a correlation

peak.

6.2.5 Real valued patterns

In addition to binary, bipolar patterns, we tested the algorithm with some real
valued patterns. The training set consisted of ten patterns. Each was 112 x 92
pixels. The patterns were monopolar, grey-level and the pixels took integer values
between 1 and 256. Each pattern was a photograph of a person’s face. The pat-
terns were part of the Olivetti Research Laboratory (ORL) faces database. The
photographs that were used can be seen in figure 6.12. We used the algorithm
on this second training set, mainly to demonstrate that it works with real valued
patterns as well. In addition we use this training set to test the Feature Enhance-
ment and Similarity Suppression (FESS) algorithm, which is presented in the next
chapter and these simulations will help us to compare the two algorithms.

The patterns that are shown in figure 6.12 are not normalised. They were
normalised, however, before they were presented to the algorithm. The vector-
inner product matrix for the normalised patterns before the training is shown in
figure 6.13. It is clear from the graph that the initial patterns are all very similar.
All of the cross-inner products are high and their magnitudes are about 80-90%
of the auto-inner products. We used the algorithm with a convergence factor
B = 0.65. We let it run for 2000 iterations until it converged to a stable solution.
The final cross-inner product matrix after the training is shown in figure 6.14.
Again we can see that all of the cross-inner products have decreased to very small
values. The algorithm, therefore, works equally well with real valued patterns.

Finally, figure 6.15 shows the filters that were created. The resulting filters
were bipolar, real valued. A better understanding of the way that the algorithm
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.12: Training set consisting of ten people’s faces.
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: Vector-inner product matrix before the training.
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Figure 6.14: Cross-inner product matrix after 2000 iterations for a convergence
factor of (3 = 0.65.

creates the filters can be gained from these figures because unlike the previous
random patterns, these represent human faces and have a meaning to us. Some
of the filters have features of other patterns in them but with a negative sign,
like for example the glasses on the first filter. Most of the filters have some areas
strengthened (very bright, or very dark) or weakened (grey) and usually bright

areas in one filter correspond to dark areas in the others.

6.3 Probability of discrimination and dynamic
range

Optical inner product correlator pattern recognition systems suffer from the lim-
ited dynamic range inherent in optics. For example, in the extreme case of two
bipolar N pixel patterns, that differ only by one pixel and which need to be
distinguished, the dynamic range of the optical system has to be greater than
20 logio N/2 dB in the inner-product correlator domain, for correct recognition.
Taking into account that the dynamic range of a typical optical system can be
about 30dB, one can see that the pattern’s number of pixels cannot be greater
than 64, meaning that no larger than a s xs pixel image can be recognised optically.

The SS algorithm minimises the cross-inner products and holds the auto-inner
products constant so that they differ by a larger amount. The dynamic range

required by a detector at the output inner-product plane of an optical system is
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Figure 6.15: Final filters for the faces set.

reduced and less sensitive equipment is needed. So the SS algorithm allows us to
increase the size of the images that can be recognised by an optical system.

In most cases the pattern that needs to be recognised will contain an amount
of noise, where we are using the word “noise” in a broad sense indicating additive
or multiplicative noise or distortion, rotation or a proportion of another pattern.
It is important to see how much noise can be tolerated before the pattern becomes
unrecognisable, and how much the required dynamic range is, for each noise level.
We conducted simulations with analogue additive noise. The dynamic range re-
quirements for correct discrimination and the probability of discrimination were
calculated for different levels of noise. The noise added to the patterns was nor-
mally distributed with a zero mean. The input signal to noise ratio (SNR) varied
from 20 to -10dB. The results shown in this section were obtained using the filters
which were calculated with p = 6. The method for calculating the probability
of discrimination, was to calculate all of the inner products between an input
pattern and all of the filters and then to choose the highest of them. For correct
discrimination, the highest inner product had to be the one with the filter which
corresponded to the input pattern. The experiment was repeated for all of the
training patterns for 5000 different samples of noise for each different noise level.
We did not use a threshold because the SS algorithm addresses the problem of
discrimination between patterns and not detection.

The resulting curves for the probability of discrimination before and after

training are shown in figure 6.16. We can see, in that figure, that there is a signif-
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Figure 6.16: Probability of discrimination versus input signal to noise ratio

icant increase in the probability of discrimination after the training. For example,
with an input signal to noise ratio of 3 dB the probability of discrimination is 2%
before the training and it increases to 83% after the training. Also the probability
of discrimination falls to 50% at an input signal to noise ratio of 8.9 dB before
the training and 0.8 dB after the training. The curve after the training is almost
a shifted version of the curve before the training, although it is a bit steeper.
This means that the same pattern discrimination behaviour versus SNR can be
achieved but we can tolerate 7dB more noise.

The dynamic range of the recognition system was defined to be the ratio of the
difference between the auto-inner product and the maximum cross-inner product,

to the corresponding auto-inner product, in decibels. This can be written as:

. .. Si'gi- ma2;Vij(s, ©gj) 1\
dynamic range = maxii ™ —o lo

10
Si'gi

i=1...M,j=1..Mj"i (6.2)

This definition assumes that the system has some form of automatic gain control
which, for example, scales the maximum auto-inner product to a constant near
the top of the dynamic range.

The resulting plot of the dynamic range versus the signal to noise ratio before
and after the training is shown in figure 6.17. The error bars in figure 6.17 indicate
the standard deviation (as defined in appendix A) ofthe calculated dynamic range
values for 5000 measurements. We can see from figure 6.17 that there is a very

large reduction in the dynamic range required for correct discrimination, of the
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Figure 6.17: Dynamic range of the recognition system as a function of the signal

to noise ratio. The error bars show the standard deviation for 5000 measurements.

order of 25 dB, after the training. The amount of reduction lessens for higher
amounts of noise. The error bars increase as the noise is increased due to the
random nature of the noise. The worse case after the training is better than the
best case before the training, for the same amount of additive noise, because the
error bars do not meet. The curve before the training does not extend to higher
noise levels because, from figure 6.16, when the probability of discrimination drops
to zero it is not meaningful to plot the dynamic range. From graph 6.17 we
can also see that if an optical system has a dynamic range of 30dB this means
that, before training, patterns can be recognised having an input SNR of 15dB
upwards whereas, after training, the dynamic range of the system does not limit

discrimination.

6.4 Comparison between the filters produced with
the SS algorithm and the linear combination

filters

In section 5.4.2 we compared the SS algorithm to the method proposed by Caulfield
and Maloney in [18] for designing linear combination filters and we concluded
that the SS algorithm converges to the same solution as the one provided from

Caulfield’s and Maloney’s method. In this section we use that method to create
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Figure 6.18: Cross-inner product matrix between the input patterns and the filters
created using equation 5.55. The graph is shown with the x and y axes reversed

for clarity.

filters which are mutually orthogonal to the binary, bipolar patterns in our first
training set and compare them to the filters that were created with the SS algo-
rithm. We calculated the cross-inner product matrix between the input patterns
and the set of filters created with the matrix method. The three dimensional
graph of this matrix can be seen in figure 6.18. This can be compared to figure
6.4 which shows the cross-inner product matrix between the input patterns and
the filters that were created using the SS algorithm.

We can see from figure 6.18 that the filters created using equation 5.55 are
completely cross-orthogonal to the input patterns as it was expected. The filters
that were created using the SS algorithm are almost (figure 6.4) - but not com-
pletely - orthogonal and the SS algorithm may converge to the same solution if
it is allowed to run for more iterations. To investigate further we looked at the
actual filters. An example is shown in figure 6.19, which shows the two versions
of filter .. Subfigure (a) depicts filter » created by the SS algorithm and subfigure
(b) depicts filter 2 created with the matrix method. The differences between the
two filters are plotted in figure s .20, which shows the filter created with the SS al-
gorithm after we subtracted the filter which was created with the matrix method.
We can see from the three graphs that the filters are very similar and it looks
like the algorithm given time will converge to exactly the same solution that is
obtained with the matrix method.

One might argue at this stage that there is no point in using the SS algorithm
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(a) Filter created with the SS algo- (b) Filter created with the matrix

rithm method

Figure 6.19: Pixel values of the two versions of filter 2

0 10

Figure 6.20: Differences between pixel values of the two versions of filter 2
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Figure 6.21: Probability of discrimination versus input signal to noise ratio

to create the filters since they can be obtained with fewer calculations, and, there-
fore, faster from equation 5.55. However, since the filters obtained with the two
different methods are not identical, we decided to test the tolerance to input noise
and the dynamic range that would be required by an optical system for correct
discrimination, when using the second set of filters (the ones calculated with the
matrix method). We conducted the same simulations as in the previous section.

The resulting curves for the probability of discrimination using the two filter
sets are shown in figure 6.21. Also in the same graph there is a third curve
which shows the probability of discrimination before the training. We can see, in
that figure, that there is a significant increase in the probability of discrimination
after the training whichever of the two sets of filters we use. However, the filters
obtained with the SS algorithm are slightly more tolerant to noise.

The plot of the dynamic range versus the signal to noise ratio, again using
both filter sets, is shown in figure 6.22. As with the probability of discrimination
graph, the dynamic range graph shows us that the filters obtained with the SS
algorithm are a bit more (maximum difference between two sets of filters ~1 dB)
noise tolerant. Obviously for small amounts of noise the filters obtained with the
matrix method (equation 5.55) yield better dynamic range results because they are
completely orthogonal to the input patterns. How can these results be explained?
It may be that completely cross-orthogonalising the filters to the patterns is not
the best solution after all. Maybe the matrix method results in some kind of over-

fitting to the training data which makes the final filters less able to generalise and.
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Figure ¢ .22 : Dynamic range of the recognition system as a function of the signal

to noise ratio.

therefore, less tolerant to input noise.

6.5 Optimisation of number of iterations for the

similarity suppression algorithm

The results shown in the previous section motivated us to investigate the noise
tolerance of the various sets of filters obtained when using the SS algorithm and
allowing it to run for different numbers of iterations. To do that we used the SS
algorithm to train the filters for the binary, bipolar patterns in our first training
set and during the training, after each iteration, we calculated the probability
of discrimination and the dynamic range required for correct discrimination with
the newly produced set of filters. Each time the same amount of random noise
was added to the input. As before the noise was analogue, normally distributed,
with zero mean and with constant variance equal to 1. The probability of
discrimination versus iteration number is shown in figure 6.23. We can see that
there is a sharp increase of the probability of discrimination in the first iterations
and then the probability of discrimination decreases, until it finally converges to
a relatively constant level. The dynamic range required by the optical system
for correct discrimination versus iteration number is shown in figure 6.24. As we
can see the required dynamic range decreases very quickly and after the first few

iterations it converges to a constant level. The first ten points of the two previous
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Figure 6.23: Probability of discrimination versus number of iterations.
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Figure 6.24: Dynamic range of the recognition system versus number of iterations.
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Iteration Number

Figure 6.25: Probability of discrimination versus number of iterations for the first

10 iterations.

graphs can be seen in figures 6.25 and 6.26. In figure 6.25 we can see that the
the probability of discrimination reaches a maximum at the second iteration and
then it decreases. In hgure 6.26 we can see that the dynamic range required by an
optical recognition system decreases sharply in the first two iterations and then
it gradually stabilises.

We then calculated the probability of discrimination and the dynamic range
required by the optical system for correct discrimination using the filters obtained
after the first few iterations. The corresponding graphs for the probability of
discrimination can be seen in figure 6.27. As we can see from the probability of
discrimination curves, the filters produced after only 2 or 4 iterations perform
slightly worse for a higher signal to noise ratio but as the SNR worsens, these
filters perform better than the ones obtained after the algorithm has converged
completely (after around 1500 iterations) and better than the ones which are
calculated using the matrix method of equation 5.55. In figure 6.28 we have
plotted the difference between the probability of discrimination when using the
filters produced after . iterations of the algorithm and when using the filters
produced after 1500 iterations. The other curve in the same graph is the difference
between the probability of discrimination when using the filters produced after »
iterations and the filters produced with the matrix method. We can see in figure
6.28 that the largest benefit, 29%, in using the filters produced after two iterations
is with an SNR of about 0 dB. When the SNR is about s dB it is better to use
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Figure 6.26: Dynamic range of the recognition system versus number of iterations

for the first 10 iterations.
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Figure 6.27: Probability of discrimination as a function of the signal to noise ratio.
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Figure 6.28: Probability of discrimination difference as a function of the signal to

noise ratio.

the hlters produced after 1500 iterations.

How can this improved performance, in terms of probability of discrimination
in the second iteration, be explained? In figure 6.29 we plot the second training
pattern and the corresponding filter in the first four and in the final iteration.
In addition, in figure 6.30 we plot the differences between the individual pixels
of hlter 2 in the first four and in the final iteration. We can see in the two
figures, that there is a big change in filter » in the first iteration (before the
training, filter » is identical to the second training pattern). Some pixels take
large positive or negative values and we can assume that these pixels define the
features of this particular training pattern. In the next three iterations there
is a steady, gradual enhancement of the same features as we can see both in
hgure 6.29 and in hgure 6.30 where the pixel differences from one iteration to the
next are shown. In hgure 6.31 we can see the cross-inner product matrix before
the training, in the hrst four iterations and after 1500 iterations. The matrix is
depicted from the side to enable us to see the negative cross-inner products. We
can see that initially there are cross-inner products with large positive values. In
the hrst iteration the cross-inner products are reduced considerably and some of
them increase, but with a negative sign. In the next three iterations, the main
feature, apart from the reduction of the positive values, is the increase of the
negative cross-inner products. However, all of the cross-inner products, positive

and negative have almost disappeared in the hnal iteration. Although interesting.
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(a) Training pattern 2 (b) Filter 2 after 1 iteration
(c) Filter 2 after 2 iterations (d) Filter 2 after 3 iterations
(e) Filter 2 after 4 iterations (f) Filter 2 after 1500 iterations

Figure 6.29: Pixel values of pattern » and filter 2 in the first 4 and the final

iteration.
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(a) Differences between filter 2 in the (b) Differences between filter 2 in the
2"~ and 1* iterations. and 2~~ iterations.
e 10
(c¢) Differences between filter 2 in the (d) Differences between filter 2 in the
and 3””iterations. 1500*” and 2”“*iterations.

Figure 6.30: Differences between pixel values of the second filter in various itera-

tions.
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the previous observations do not shed light on the question of why the probability
of discrimination is highest in the second iteration and not in the first or the third
for example. There are no sharp changes either in the filters themselves, or in the
cross-inner product matrix between the first and the third iterations. The negative
cross-inner products may play a role but that role is not clear from the data we
have here. However, we can explain why the system performs better in the initial
iterations compared to the final iterations. Subfigure (b) in figure 6.31 shows that
the cross-inner products decrease rapidly from the first iteration. Therefore, we
can expect a higher probability of discrimination in the first iteration compared
to the untrained filters. Then, as the algorithm converges, the filters become
“over-trained” and they are less tolerant to input noise. The data we have here,
however, does not help explain why the probability of discrimination maximum
occurs in the second iteration and not in the third for example. And although we
guess that the same thing will happen with other training sets as well, we have no
method of predicting the exact iteration at which the system’s performance will
be optimised.

The dynamic range curves comparing the performance of the filters after 2, 4
and 1500 iterations with the performance of the filters calculated with the matrix
method, are shown in figure 6.32 and are what one would have predicted based on
the knowledge gained from the probability of discrimination curves. The filters
which are obtained with the matrix method give the lowest required dynamic
range for high SNR since they are orthogonal to the input patterns. However,
as the SNR decreases the curves meet and at very high noise levels the filters
obtained after only 2 or 4 iterations perform slightly better.

Before we discuss the trade-off between probability of discrimination and dy-
namic range, we are going to investigate the height of the outer products of the
correlations when the 2 iteration filters are used. In figures 6.33, 6.34 and 6.35 we
can see the correlation plane intensities for the correlations between some of the
input patterns and the filters produced with the SS algorithm after two iterations.
In the same figures we have also included the corresponding correlations with the
filters that were produced after 1500 iterations of the SS algorithm. We have
shown these 1500 iteration graphs before in section 6.2.4 but we plot them again
here so that the reader can make a comparison. Specifically, in figure 6.33 we can
see the correlations between the first training pattern s; and the corresponding
filter g;,. Subfigure (a) shows the correlation of s; with the filter, g;, obtained
after 1500 iterations and subfigure (b) shows the correlation of s; with the filter,
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(d) C.i.p. matrix after 3 iterations

0.6-

0.2-

i-0.2 -
-0.4
-0.6-

-08 | ==== p===p=== pm== - —
5 10 15 20 25 30 30

() C.i.p. matrix after 1500 iterations

Figure 6.31: Cross-inner product matrix before the training, in the first 4 and

in the final iteration. The matrix is depicted from the side. C.i.p.: Cross-inner

product.
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Figure 6.32: Dynamic range of the recognition system as a function of the signal

to noise ratio.

gi, obtained after » iterations. We can see in figure 6.33 that the outer products
are lower when the filter obtained after 2 iterations is used. In fact, none of the
outer products is now higher than 50% of the correlation peak compared to more
than 70% of the correlation peak with the filter obtained after 1500 iterations.
This is a very important improvement because now we can not only correctly
recognise the pattern, but also locate it in the input scene if its exact location is
not known. In addition, we can see that the correlation peak is sharp. This is
important when more than one target exist in the input scene, in which case the
two or more peaks will be distinguishable even if one is near the other.

Subfigure s .34-(a) shows the intensity of the correlation between the first train-
ing pattern, Si and the second filter, g» obtained after 1500 iterations. Subfigure
6.34-(b) shows the intensity for the same correlation but with the filter g» ob-
tained after 2 iterations only. Again, the outer products are lower when the filter
which was obtained after 2 iterations is used. The reduction of the outer prod-
ucts is even more prominent in figure 6.35, which shows the correlation between
the seventh training pattern, S; and the first filter, gi, obtained after 1500 it-
erations (subfigure 6.35-(a)) and after 2 iterations (subfigure 6.35-(b)). None of
the outer products is higher than 50% of the auto-correlation peak value, when
the 2 iteration filters are used, while with the 1500 iteration filters there where
outer products which were as high as 80% of the auto-correlation peak value. This

reduction of the outer products allows us to use the filters obtained with the SS
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@ Si @ gi, 1500 iterations, (b) Si 0 gi, 2 iterations, PCE=0.1
PCE=0.027

Figure 6.33: Correlation plane intensity for correlation between pattern 1 and

filter 1 after 1500 and after 2 iterations.

(a) Si 0 g2, 1500 iterations (b) Si 0 g:, 2 iterations

Figure 6.34: Correlation plane intensity for correlations between pattern 1 and

filter 2 after 1500 and after 2 iterations.
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(a) S 0 gi, 1500 iterations (b) S 0 gi, 2 iterations

Figure 6.35: Correlation plane intensity for correlations between pattern 7 and

filter 1 after 1500 and after 2 iterations.

algorithm after » iterations to recognise or discriminate input patterns even when
the exact location of the object in the input scene is not known, at least when no
noise is present in the input.

So from the two graphs, the one for the probability of discrimination (figure
6.25) and the one for the dynamic range (figure 6.26), we can see that there is a
trade-off between probability of discrimination and dynamic range. Ifthe dynamic
range of the system is absolutely critical, then one can choose to use the filters
which are completely cross-orthogonal to the input images, thus minimising the
required dynamic range at the expense of probability of discrimination at higher
noise levels. In the opposite case when one wants to maximise the probability
of discrimination, then the filters obtained after only 2 iterations give the best
results of all. Another consideration is the type and amount of noise present. If
the main type of noise present is system noise then dynamic range is critical and
the filters created with the matrix method may be the best choice. If on the other
hand, there is a lot of input noise and not a lot of system noise then one can
sacrifice dynamic range for a higher tolerance to input noise which is provided by
the filters produced after only 2 iterations. In addition, our final decision of which
filter to use must also take account of the height of the outer products. When the
exact location of the object in the input scene is not known, it is better to use
the filters produced with the SS algorithm after » iterations, even if the dynamic
range required by the recognition system is higher. We summarise the previous

conclusions in table s .2
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SS - LCF COMPARISON
Use the || HIN. | LIN. | HD.R. | L.D.R. | Loc. | High Disc. | High Rec.

SS 2. Vv v Y Y ;
LCF Vv Vv v

Table 6.2: Comparison between the filters produced with the SS algorithm after
2 iterations and the LCFs. SS 2 i.: SS algorithm 2 iterations, H.I.N.: High input
noise, L.ILN.: Low input noise, H.D.R.: High required dynamic range, L.D.R.:

Low required dynamic range, Loc.: Location detection, High Disc.: High Dis-
crimination ability, High Rec.: High recognition ability

6.6 Conclusions

In this chapter we presented the computer simulations for the SS algorithm. We
started by showing that the algorithm is actually doing what it is intended to do,
that is, it is reducing the cross-inner products between filters and patterns that
do not correspond to them, while it keeps the auto-inner products stable. We
saw that the convergence parameter has a strong influence on the convergence
speed and on the final result. In general the algorithm converges when G takes
values around 1. However, values a lot smaller than that can make the algorithm
too slow, and values a lot larger than that can lead to oscillations. The first
few hundreds of iterations are usually enough for the algorithm to converge to
a sufficiently good solution. The normalisation step is very important and also
has a strong influence on the final result. If it is not used, then the auto-inner
products do not remain stable and decrease as the filters are weakened from the
continuous subtractions. When the normalisation step is used, the auto-inner
products remain stable at the desired level, but some of the filters are strengthened
unevenly compared to some others, and as a result there is a bias towards them
when random patterns or noise is input into the system. The algorithm also
effects the outer products of the correlations between the filters and the patterns.
The algorithm places no constraint on them, so they increase as the filters are
amplified during normalisation. This has the direct consequence that the PCE
of the correlations with the filters decreases, compared to that of the correlations
with the initial patterns.

The motivation behind the development of the algorithm was to be able to
discriminate amongst similar patterns which were buried in noise. In the second
section of this chapter we tested the filters produced by the SS algorithm in
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discriminating between patterns with additive input noise. The input SNR varied
from 20 to -10 dB and we saw that the filters were tolerant to 7 dB more input
noise compared to the initial patterns. Another important matter is the dynamic
range of the optical system compared to the dynamic range that is required for
correct discrimination. Usually after an optical system is built, it’s dynamic range
is fixed and cannot be increased, as a matter of fact it usually decreases due to
dirt, vibrations, etc. Therefore, it is important to minimise the dynamic range
that is required for correct discrimination. We saw that when using the filters,
the required dynamic range is reduced by as much as 25 dB for that particular
training set.

In section 6.4 we verified the conclusions of the theoretical comparison between
the SS algorithm and the linear combination filters. The algorithm converges
towards the same solution as the one provided with the matrix method. The
filters that were produced by the SS algorithm after 1500 iterations were very
similar to the filters produced using Caulfield’s method. They were not identical,
however, and when the two sets of filters were compared with respect to the
probability of discrimination and dynamic range, the filters which were produced
using the SS algorithm performed slightly better. This led us to think that it may
be better not to allow the algorithm to converge fully because in that case the
filters may be over-fitted to the patterns in the training set and that may make
them less tolerant to noise. In the final section of the chapter we compared the
filters produced only after the first few iterations to all of the other filters produced
so far. The filters which were produced after only 2 iterations performed a lot
better as far as probability of discrimination was concerned, particularly for high
additive noise. Of course the required dynamic range when using these filter
was higher because they were not allowed to become orthogonal to the training
patterns. In addition, the filters produced after 2 iterations produced lower side-
lobes compared to the filters produced after 1500 iterations. That allows us to use
them even when the exact location of the object in the input scene is not known.
One can make a choice of which filters to use, based on the application at hand,
the amount of noise in the input and the amount of system noise. If the optical
system has a low dynamic range then the filters produced with the matrix method
may be the best choice because they are orthogonal to the input patterns and,
therefore, require the minimum dynamic range. If, on the other hand, dynamic
range is not critical and the inputs are buried in a lot of additive noise, or if the

location of the object in the input scene is not known, then the filters produced by
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the SS algorithm after only 2 iterations are the best choice. For any requirements
in between (lower required dynamic range - higher probability of discrimination)
one can produce the appropriate filters by stoping the algorithm after a certain
number of iterations.

The filters produced by the SS algorithm are very good at recognising the
patterns from which they were derived. In many cases, however, two different
patterns may represent the same object, for example two photographs of the same
person, and the filters produced by the SS algorithm are designed to recognise one
of these patterns only and reject all of the others. In the next chapter we present
the Feature Enhancement and Similarity Suppression (FESS) algorithm which

deals with such cases.
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Chapter 7

Feature Enhancement and
Similarity Suppression filter

design algorithm

7.1 Introduction

In chapters 5 and 6 we developed the similarity suppression algorithm and tested
it using computer simulations. Each of the filters designed by the SS algorithm
can recognise one specific pattern. In some cases it is necessary to design a filter,
which can recognise a group of patterns. In this chapter we introduce the Fea-
ture Enhancement and Similarity Suppression (FESS) algorithm which designs
such filters. In the next section (section 7.2) we present the motivation for the
development of the FESS algorithm and we describe how it is derived from the SS
algorithm. Section 7.3 compares the FESS algorithm to other filter design tech-
niques. The final section (section 7.4) of the chapter presents the expansion of the
FESS algorithm to more than 1 layer. This whole chapter is a theoretical analysis
of the FESS algorithm. The next chapter contains the corresponding computer
simulations, which validate the theory.

7.2 Derivation of the Feature Enhancement and

Similarity Suppression Algorithm

We will start by defining some terms which are necessary for the description of
the FESS algorithm.
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o Class: A group of objects, which fall under the same category and have some
common characteristics. For example: doors belong in a class, chairs in
another, people in another, etc. In pattern recognition, a group of patterns,
which represent the same thing. For example: different photographs of the
same person, different views of an airplane, etc.

o (lass representative filter: A filter specially designed to recognise patterns,
which belong to a specific class.

e Auto-inner products: Inner products between the class representative filter
and all of the patterns that belong to the corresponding class.

o (Cross-inner products: Inner products between the class representative filter
and all of the patterns that belong to other classes.

Where possible, we are going to use the same notation as in the previous chapters
but some additional symbols need to be introduced. All of the training patterns
are going to be denoted by s;,7 = 1,... , M, where M is the total number of train-
ing patterns. N denotes the number of pixels in the patterns and the filters. The
filters themselves are denoted by g. K denotes the number of classes. Each class i
contains L; training patterns. Obviously 3%, L; = M. The training patterns will
be denoted with a second index on some occasions s;;,7 = 1,...K,j =1,...L;.
In that case, the first index refers to the class that the pattern belongs to and the
second is the pattern number in that class.

7.2.1 Basic algorithm

The SS algorithm designs filters that have a high inner product with only one
pattern and are orthogonal to all of the other training patterns. This means
that the number of filters is equal to the number of training images. In many
real life situations however, a single object can be represented by many slightly,
or very, different patterns. For example, a recognition system might need to
recognise rotated, scaled or shifted views of an object. There are filters designed
specifically for rotation invariance [63, 67, 105] or scale invariance [106, 107], and
translation invariance is an inherent characteristic of many optical correlators,
but the recognition problem gets a lot more complicated when the three types of
distortion are combined. In addition, there are other kinds of distortions which are
found in three dimensional objects and which are a lot more difficult to describe

and analyse mathematically. A typical example is the human face, which can be
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distorted in an infinite number of ways due to changes of expression, changes of the
physical characteristics, etc. The problem becomes even more complicated when
more than one class needs to be recognised. For example, in face recognition each
person is a class, which contains many different patterns, which are distorted views
of the same face. If we were to design filters for such a recognition problem using
the SS algorithm, we would need to create one filter for each possible distorted
view of the object that we were trying to recognise. This is not only unfeasible
for most real life situations, but also impractical as a very large number of filters
would have to be created and every input pattern would have to be compared to
each and every one of them.

The ideal solution, provided by the SDF approach [74] (section 3.4), is to
create one filter, which correctly recognises all of the input patterns of all classes.
This filter has to produce a different output inner product magnitude value for
each class. In addition, this output value has to be the same for all of the patterns
that belong to a single class. The performance of such a filter depends on several
parameters. First of all on the similarity between the patterns of the various
classes. It is easier to design a filter which has the same inner product value with
several different patterns when these patterns are similar than when these are very
different to each other. Secondly, on the number of classes to be recognised and
on the dynamic range of the optical system. The dynamic range required by the
recognition system increases with the number of classes. The required dynamic
range is equal to —20log(1/K), where K is the number of classes, and is very
small for two classes, goes up to 20 dB for 10 classes, 40 dB for 100 classes and
so on. Therefore, the actual dynamic range of the recognition system limits the
number of classes that can be recognised by one filter. Of course these calculations
were done for a completely noiseless system, which is not really feasible. In reality
such a filter will not work for more than a few classes (less than 10) and most such
filters are designed for two or three classes [77]. Braunecker et. al. [75] (section
3.4) proposed the use of L = log, K filters for the recognition of K classes and
Mui et. al. [108] proposed a technique based on a tree structure where each filter
would have to discriminate between two classes. Caulfield proposed the use of one
filter for each class [73].

We have chosen to use one filter for each class. The filter only has to distinguish
the patterns that belong to the class it represents from all of the other patterns
which are members of the other classes. Therefore, only two output values are
needed. This minimises the required dynamic range of each detector and the only
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problem remaining is to design the filter so that it produces the desired outputs
with all of the patterns. Of course the number of the filters used can become very
large if the number of classes is large but in such cases a single filter would not
work anyway. Our technique can be easily modified to design filters that recognise
more than one class. However, in this and the following chapter we are going to
focus our attention on filters that only recognise one class.

So the filters that we want to design must have the following characteristics:

i. Each class representative filter must have constant, high auto-inner products
with all of the patterns in its class.

ii. Each class representative filter must have very low cross-inner products with

all of the patterns not in its class.

The SS algorithm can be used to reduce the cross-inner products by subtracting
the training patterns, which belong to other classes, from each filter. However, if
all of the training patterns in all of the classes are similar to each other, then these
subtractions are going to reduce the auto-inner products. We need to modify the
algorithm a little so that at the same time it enlarges the auto-inner products.
We saw in chapter 5 that cross-inner products can be reduced using weighted
subtraction. Based on the same logic we can increase the auto-inner products
using weighted addition. The idea is to add at every iteration all of the training
patterns in the class to the class representative filter.

g;") = ‘g-i—l) —+ ,Blelsjl +...+ ,Blw]'LijLj (71)

B’ is a convergence parameter which we are going to analyse in more detail in the
next section. wy; are the weights. The superscript ¢ denotes the iteration number.
Our aim when adding the patterns to the class representative filter is to copy
their features into it. In order for all of the auto-inner products to become almost
equal, the filter must be shifted in pattern-space towards the centre of the area,
which is formed by the patterns it represents. In addition, the filter will have the
smallest auto-inner products with the training patterns that are most different to
it, so their weight in the addition must be the largest. Conversely, if a pattern is
already similar to the class representative filter, their inner product will be large
and doesn’t need to increase any more, so the addition weight needs to be small.

We may rewrite equation 7.1 in the following manner
g =g+ P -gl ™V s)si+...+ (P —gl "V sp,)s1,
(7.2)
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In equation 7.2 the weights of the additions depend on the similarity between the
filter and the pattern. If a pattern is already similar to the filter, the corresponding
auto-inner product will be high and the difference from the normalised auto-inner
product value, P, will be small. If the pattern is different, the difference between
P and the corresponding auto-inner product will be large and the pattern will
be amplified before it is added to the class representative filter. If an auto-inner
product between the filter and one of the training patterns is negative, then its
absolute value will be added to P and, therefore, the pattern will be added to the
filter with a strong weight. That will make the filter more similar to the pattern
until eventually their inner product becomes positive. So the algorithm can be
described by the following equations which are both used at each iteration

o . K LT .
ARC LTS 39l [l e &

T#]

L.
AT I LT e (4)
k=1
where (just a notation reminder) K denotes the total number of classes, L, denotes
the number of training patterns in the 7 class, L; denotes the number of training
patterns in the jy, class and sy, is the ky;, training pattern in the jy, class. The tilde
over the symbol of the new filters shows that the filters are not yet normalised.
Equation 7.3 is the SS algorithm applied to all of the patterns of all of the other
classes, without the normalisation.

We know from the analysis of the SS algorithm that unless we normalise the
filters at every iteration, their magnitudes are going to decrease due to the contin-
uous subtractions. Consequently equation 7.3 will have the same effect on these
filters, i.e. their magnitudes are going to decrease. The FESS algorithm, however,
adds some patterns to the filters and obviously equation 7.4 will have the opposite
effect on the filters, i.e. it increases their magnitudes.

The filter’s magnitudes are going to increase or decrease depending on the
number of patterns and on the similarity between patterns. Usually, but not
always, the patterns that belong to each class will be a subset of the total training
set so in most cases the number of patterns that are subtracted from the filter
will be larger than the number of patterns that are added to it. In addition, if
we assume that at the beginning of the training most of the patterns are similar,
then the subtraction weights are going to be larger than the addition weights.
Hence the effect of the subtractions will be stronger than that of the additions
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and the filter’s magnitudes are going to decrease!. We may be able to alleviate
with a careful choice of the two convergence parameters, 8] and F5. In that case,
a normalisation of the filters’ magnitudes should not be necessary. However, if
the filters’ magnitudes cannot be stabilised that way, then a normalisation step is
necessary after each iteration.

As we said earlier, in the SS algorithm there was a straightforward solution to
that problem, and that was to normalise the auto-inner product between the filter
and the pattern it represented to the desired value using equation 5.17 which we

rewrite here

W) _z08 5 (7.5)

We cannot do the same thing here. If we normalise the auto-inner product of
the class representative filter with one of the patterns in the class, then all of the
other auto-inner products will be different, usually lower, because if g; « s;x = P
then g; - s;; # P, for VI # k. Another solution is to normalise the inner product
between the filter and the mean of all of the patterns in the class:

(-1

1 ~{7 g S
g =g (7.6)
g]- " S;
where
= Z Sjik (7.7)
J k=1

However, if the training patterns are all very similar then by doing that we will
probably increase all of the cross-inner products as well. This may happen because
the mean pattern §; may also be similar to patterns which belong to other classes.
We chose to normalise the filters to themselves to keep their magnitudes stable and
equal to the magnitude of the training patterns, P, using equation 7.8, because
by doing that we avoid any bias towards any specific filter.

(i—1
(6B _ ~(’L)||g] )||

i T 8 2P
1 79
g;’) assuming ||g§.i_1)|| =P

[k

By using equation 7.8 together with equations 7.3 and 7.4, we keep all of the
filters normalised, and with the additions and the subtractions we move them in

1The corresponding mathematical analysis is presented in appendix B
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N-dimensional space, until their position is such that the auto-inner products are
maximised and the cross-inner products are minimised.

One final issue that needs to be addressed at this stage is the initial value of
each of the class representative filters. Each of the filters can initially be one of
the patterns that belong to the corresponding class. Or it can be equal to the
mean of all of the patterns that belong to the corresponding class. Or it can be
random. In the next chapter we are going to compare the results for these initial
filter values. So, to summarise, the FESS algorithm is described by the following

equations:
L
) (i—-1 i—1
gﬁ’ =8; i B {P - g§ ). Sjk}sjk (7.9)
k 1
gy) z 1) 522 Z{ (i-1) 'Srk}srk (7.10)
r=1k=1
T#]
] ~(2 P
g =g’ (7.11)

7 1EP)

We deliberately wrote equations 7.3 and 7.4 in the opposite order (equations 7.9,
7.10) because we want to point out that the order in which these equations are
applied does not matter as long as they are both applied at each iteration before

the normalisation.

7.2.2 Advanced algorithm with improved convergence

parameters

Based on the analysis presented in section 5.2.3, we chose the following values for
the convergence parameter in each equation so that it is inversely proportional to
the total number of training patters used in that equation, times the square of

the power, P, of the normalised patterns.

IB;. L P2 ’P g]” 1) SJICI (7.12)
/ 1 i
By = ﬂzm‘g( s (7.13)
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and after inserting the convergence parameters described in the previous equations
the final algorithm is:

(i i— i— 2
g0 = gf 1)+ 2 {( g™ - s;) }sj,c (7.14)
() _ (1) _ & (1) )2
& =8 '~ M-rL)P L VP2 rzlkzl{ (&5 - 5mt) }Sr’c (7.15)
I
g =50 — (7.16)
lg;” |

In the =+ sign in equation 7.15, the plus sign is used when (g§z 2 sjk) > 0 and
the minus sign is used when (g§ -1 sjk) < 0. The parameters 5, and [, take

small values around 1.

7.3 Comparison of the FESS algorithm with rel-
evant filter design and neural network train-
ing algorithms

In the previous section (section 7.2) we described the FESS algorithm. In this
section we are going to compare the FESS algorithm with some relevant filter
design techniques and neural network training algorithms. These comparisons are
going to help us study the relationship between the FESS and other algorithms
and find its advantages and disadvantages. Our aim is to gain a better insight

and improve our algorithm.

7.3.1 Comparison of the FESS algorithm with the
Similarity Suppression Algorithm

We have already described how the FESS algorithm is an extension of the SS
algorithm. To compare the FESS algorithm with the SS algorithm we are first
going to combine the two equations describing the FESS algorithm (7.3 and 7.4)

into one, equation 7.17. It can be written as follows:

M )
ggz) _ ggz D_g ) {g§z—1) .Sk — djk}sk (7.17)
k_

where 3 is the convergence parameter, and d;; is the desired value for each inner
product. If we substitute d;; = P for the training patterns s; that belong to class

129



7.3. COMPARISON OF THE FESS ALGORITHM WITH RELEVANT
FILTER DESIGN AND NEURAL NETWORK TRAINING ALGORITHMS

J and dj; = 0 for the training patterns s; that don’t belong to class j, equation
7.17 can be split back to equations 7.3 and 7.4.

Equation 7.17 is a supervised version of the SS algorithm (equation 5.19),
which we rewrite here

. . M )
g§z) — g.gz 1) g Z {ggz 1, Sk}sk (7]_8)
3

This can be easily seen if we consider that in the SS algorithm the desired value
for all of the cross inner products (k # j in equation 7.17) is zero. Therefore,
Vk # j equation 7.17 becomes

o . M ,
g =gl -8> {g§z b sk}sk (7.19)

k=1
k#j

which is the same as equation 7.18. When k = j in equation 7.17, the pattern s;
which is subtracted is the one that corresponds to the filter g; and in that case the

desired value for the auto-inner product is equal to P. However, the auto-inner

1)

product g§i_ - Sp=; is already equal to P because the normalisation equation

(in the SS algorithm) set it to that value in the previous iteration. Therefore,
(i-1)
3

subtracted from the filter g;. There are, however, some differences between the

the whole term g * Sg=;j — d;x is equal to zero and the pattern s;—; is not

two algorithms:

e The initial filters for the SS algorithm are the training patterns. For the
FESS algorithm the initial filters can be one of the training patterns of each
class, or the average of the training patterns of each class, or random. In the
first case the choice of which pattern to use as the initial filter for each class,
could be random. The second choice at least ensures that the initial filter is
going to contain the features of all of the patterns in the class. However, if
the training patterns are very similar, there is not much difference between

the two cases.

e Both algorithms move the filters in N-dimensional space until the constraints
that they impose are satisfied. These constraints are different for each al-
gorithm. The FESS algorithm imposes the constraint that the filter must
contain all of the features of the patterns of the class it represents. It is
this constraint that forces the auto-inner products to converge to the de-

sired value and not the normalisation step. The SS algorithm forces each
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of the filters to become orthogonal to all of the other training patterns, the
ones it does not represent. Initially each of the filters is made identical to
the pattern it represents. After that, however, the SS algorithm equations
do not force any of the filters to keep any of the features of the pattern
they represent. The normalisation step ensures that the auto-inner product
between the filter and the pattern it represents has the correct value. This
indicates that the filter that is created by the SS algorithm does not need to
contain any features of the pattern it represents. However, we have not yet

conducted any simulations which prove the previous argument.

e The SS algorithm normalises the inner product between the filter and the
pattern it represents. The FESS algorithm normalises the filter itself to the

mean power of all of the training patterns.

The FESS algorithm, like the SS algorithm, can cross-orthogonalise the filters
to the training patterns that belong to other classes. Since we are normalising
the magnitude of each of the filters to the normalised power of all of the training
patterns, P, that is g; - g; = P, Vj, it is not possible for the algorithm to force all
of the auto-inner products to converge to P. They will converge to a value which
is lower than P, because if g;-g; = P,Vj and si-sy = P, Vk, then g;-s; < P,Vj, k.
This means that a higher dynamic range will be required by the recognition system
compared to the dynamic range that is required when the SS algorithm is used.
The advantage when using the FESS algorithm is the lower number of filters

necessary for recognition.

7.3.2 Comparison of the FESS algorithm with Synthetic

Discriminant Functions

We saw in section 5.4.2 that the SS algorithm converges to the same solution that is
provided by the method proposed by Caulfield and Maloney for designing mutually
orthogonal linear combination filters. In this section we are going to investigate
the relationship between the FESS algorithm and synthetic discriminant functions.
The FESS algorithm can be seen as a more general version of the SS algorithm
and following a similar analysis to the one we followed for the SS algorithm we
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can derive the filters by solving a similar set of linear equations:

Ciusi +Cise+ -+ Ciusy = g1

Ca1s1 + Co82 + -+ + ComSy = 82
(7.20)

Cki181 + Ckasa + -+ + Cxmsy = 8k

where M is the total number of training patterns, K is the number of classes and
consequently filters, and each of the coefficients Cy1, Cio, ... ,Ckas is equal to the
sum of all of the individual weights that were used for the addition or subtraction
of each of the training images during the training. The constraints that the FESS
algorithm imposes on these filters are the following:

gj+si=P if s; € class j,

(7.21)
gj+si=0 if s; ¢ class j
Equations 7.21 can be written in a matrix form as follows:
S1 dyy dyp -+ dig
1 (e & - gx)= B dm e i (7.22)
SMm dv1 dyz -+ duk
(7.23)
or
SG" =D (7.24)

where S is a M x 1 vector whose elements are the training patterns s, Gisa K x 1
vector whose elements are the class representative filters g and D is a M x K
matrix whose elements d;; are equal to the desired values of the inner products
between pattern s; and filter g;. These values are subject to the constraints shown
in equations 7.21. The set of equations 7.20 can also be written in a matrix form

CS=G (7.25)

where C is a K x M matrix whose each element is the corresponding coefficient
Ci;. From equations 7.24 and 7.25 we get

C=D'R'T (7.26)
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Inputs Neurons

Figure 7.1: A single layer of neurons.

where R = SS” isthe M xM vector-inner product matrix of the training patterns.
The final class representative filters can be calculated using equations 7.25 and
7.26

G = pTro-!Ti (7.27)

Ecpiation 7.26 is very similar to equation 3.18 which describes the SDF approach

and we rewrite here:

Ra® = d;
(7.28)
= =R d;

The main difference is that with the SDF method, one filter is synthesised, while
our method creates a number of filters equal to the number of classes. However,
our method reduces to the SDF if one filter is created for all of the classes. In
addition, the FESS algorithm is iterative while the SDF method is not. Equations
7.26 and 7.28 however, show that if the number of filters (=1) and the desired
correlation peak values are the same, the FESS algorithm will finally converge to
the solution given by the SDF method. The squares in equations 7.14 and 7.15

can be included in the coefficients Gij without changing the previous results.

7.3.3 Comparison of the FESS algorithm with the super-

vised Hebbian law

In this section we compare the FESS algorithm with the supervised Hebbian law,
which is also called the Widrow-Hoff rule or the delta rule and is described by

equation 4.4 which we rewrite here
AN

Kwim — niy  yj)’m" 0<7<1 (7.29)
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where (see figure 7.1) Aw;n, is the change applied to the weight w;, between
neuron j and the input m, d; is the target value for the output of neuron j, y;,
and z,, is the value of input m. Using our notation we can rewrite equation 7.29

in the following manner:
Agjm = n(d; — yj)sm (7.30)

and considering that y; = g; - s (equation 5.67), the weight update for the whole
weight vector (or filter) g becomes

Ag; =n(d; —g; - s)s (7.31)

In the batch mode of training, the weight update is described by
M
ij.m =7 Z(dkj - ykj)mkm, 0< n <1 (732)
k=1

In our notation and for the whole weight vector equation 7.32 is written

M
Agi=n) {djlc -g;e Sk}sk (7.33)
k=1

The weight update described in equation 7.33 is identical to that given in equation
7.17 which describes the FESS algorithm:

. . M .
g§’) = gﬁ-"” +8) {djk - gﬁ-"” . Sk}sk
k=t (7.34)

M .
= Ag; =0 {djk —gih. Sk}sk
k=1

since 7 and [ are both convergence parameters. The two algorithms are equivalent
and will create the same filters if the same target values are given. The only
difference between them stems from the manner of presentation. The Hebbian

law refers to individual weights. The FESS algorithm refers to whole images.

7.4 Extension of the FESS algorithm to two or

more consecutive banks of correlators

In section 5.5 we used the insight gained in the previous sections (5.4.3 and 5.4.4
to derive a SS algorithm which created filters for two or more cascaded banks of

correlators. In that derivation we included the desired values so the derivation
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Figure 7.2: Two cascaded banks of correlators.

applies for the FESS algorithm with the following minor changes. In section 5.5
we assumed that the number of filters in the output bank was equal to the number
of training patterns. This is not now the case. We now want to design one filter
for each class so the number of filters in the output bank of correlators will be
equal to the number of classes, K.

In figure 7.2 we can see two cascaded banks of correlators. There are 7 cor-
relators in the first bank and K in the second. The same pattern s is input to
all of the correlators in the first bank. The input to the correlators in the second
bank, which is the same for all of them, is formed by the outputs of the correlators
in the first bank. The correlation peak of each one of them, after the activation
function is applied to it, corresponds to one pixel of the pattern which is input
to the correlators in the second bank. Therefore, the filters in the first bank are
of size TV, where N is the size of the input patterns and the filters in the second
bank are of size T, where T is the number of correlators in the first bank. The
non-linear activation functions are not shown in figure 7.2.

The average squared error is given by the following equation [95]

| MK
Emi —.M E E=1 "Xk (7.35)

where Aindicates the filter number in the output bank and k indicates the training
pattern number. The derivation of the filter update equations is exactly the same

as in section 5.5 from this point forward and will not be repeated here. The final
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filter update equation for the output bank is:

M
n i— i—
APg =23 { Py, — Py (Agf = '(I)Yk)} O (Pgf ™ - Wy, Wy,
k=1

(7.36)
and for the hidden bank the filter update equation is:
. n M M K
A()ngWZZZA (7.37)
k'=1k=1A=1

where

A= { @dxe — D a(Pga (I)Yk)} (2)¢f\((2)g>\ : (I)Yk) (2)9,\j (I)%((l)g]’ Sk )Sk!
(7.38)

Equation 7.36, which describes how the filters in the output bank of correla-
tors must be updated, is very similar to equation 7.17 which describes the FESS
algorithm. The only difference between the two equations is that equation 7.36
is more general and takes into account the non-linear activation functions that
may exist after each of the correlators. It trains the filters in the second bank to
recognise the output produced by the correlators in the hidden bank. Equation
7.37 updates the filters in the first bank of correlators based on the error of the
correlators in the output bank. The two equations (7.36 and 7.37) enable us to
create filters which can be used in two consecutive banks of correlators. These
are mathematically equivalent to a 2-layer perceptron and, therefore, can be used
to recognise patterns which are not linearly separable [3], although they cannot
solve all solvable problems.

7.5 Discussion and conclusions

In this chapter we have designed filters for multi-class pattern recognition. In
multi-class pattern recognition the task is to design one or more filters, which can
discriminate one class from another. We developed an algorithm, which we called
the Feature Enhancement and Similarity Suppression (FESS) algorithm. We used
it to design filters that can discriminate each class from all of the others. This
means that the number of necessary correlations is equal to the number of classes.
However, the algorithm can also design filters, which recognise more than one
class if needed. The FESS algorithm is iterative and is based on the SS algorithm.
It uses weighted additions to combine the features of all of the patterns that
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belong to one class into the class representative filter. As in the SS algorithm,
weighted subtractions are used to orthogonalise each class representative filter
to the patterns that belong to other classes. In addition, at each iteration the
filters are normalised so that their magnitudes remain stable. This normalisation
ensures that no bias towards any of the filters will exist if random patterns are
input.

As we already said, the normalisation keeps the magnitudes of the filters stable
throughout the training. However, it does not set the auto-inner products of the
filter with the patterns it represents to a specific value. These are forced to
converge towards the desired value by the addition equation (7.4). Since we are
normalising each of the filters to the power of the normalised training patterns,
P, it is not possible to set all of it’s auto-inner products equal to the same value,
P, which is the desired one. So we expect them to be lower than P, but higher
than the cross-inner products, which will converge to zero. The difference between
the value that the auto-inner products will converge to, and the value that the
cross-inner products will converge to, will define the dynamic range that will be
required by the optical system for correct recognition.

The third section of the chapter presented the comparisons between the SS
algorithm and relevant filter design techniques. The FESS algorithm can be seen
as a supervised version of the SS algorithm. The SS algorithm forces the cross-
inner products to decrease. It does not copy the features of the training pattern,
that the filter represents, to the filter at every iteration. The normalisation step
ensures that the auto-inner product will take the desired value. The filters that
are created by the SS algorithm, yield exactly the desired value for the auto-inner
product and very close to the desired values for the cross-inner products. They are
very good at discriminating but cannot generalise and that is a necessary attribute
for recognising classes of patterns. The FESS algorithm places the additional
constraint that the class representative filter must contain all of the features of
the patterns that belong to that class. It normalises the filter itself and not an
inner product between the filter and one of the patterns. The filter definitely will
not be able to discriminate between individual patterns within a class, which is
not what we want anyway, but it will be able to generalise and recognise all of the
patterns that belong to the class, even the ones that were not used in the training,
provided that the training patterns span the class space.

We transformed the algorithm equations into a matrix form and saw that
the FESS algorithm is very similar mathematically to the synthetic discriminant
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functions (SDF) approach. The SDF method designs only one filter for all of the
classes, and the FESS algorithm can do that without modifications.

We have also shown that the algorithm is mathematically equivalent to the
supervised Hebbian law, also known as the Widrow-Hoff rule. By doing that we
have clarified the relationship between neural networks and optical correlators.
Each neuron in a layer of a neural network corresponds to a correlator in a bank
of correlators. The inner product between the input and the filter is equal to the
internal activity level of the neuron. Neural network training algorithms like the
Hebbian law or the back-error propagation algorithm change the weights of the
neurons. Each individual weight corresponds to a pixel of the digitised filter. By
using a simple change of notation we can rewrite these neural network training
algorithms in such a way so that they refer to whole images and use them to
create filters for optical correlators. The equivalence between the FESS algorithm
and the supervised Hebbian law and between the FESS algorithm and the SDF
method suggests that the SDF method can be used to calculate the weights of a
single layer neural network without the need for an iterative procedure. Finally,
like the SS algorithm, the FESS algorithm can be extended to design filters for
2 or more cascaded banks of correlators, which compared to a single bank of
correlators, have the advantage that they can be used to recognise patterns that
are not-linearly separable.

This chapter presented the development and the theoretical analysis of the
FESS algorithm. The computer simulations, which verify our theoretical conclu-

sions for the algorithm will be presented in the following chapter.
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Chapter 8

Computer simulations of the
FESS algorithm

8.1 Introduction

In the previous chapter we presented the theoretical analysis of the FESS algo-
rithm. In this chapter we describe computer simulations, which helped us assess
the performance of the FESS algorithm. In the second section (section 8.2) we
use the algorithm to create filters to recognise a set of faces, which is a typical
problem of multi-class pattern recognition. As we saw in the previous chapter,
the initial filters before the training can be random, or equal to the mean of all
of the training patterns within their class, or equal to just one training pattern.
Here we describe the results of the training with all of the different initial values
for the filters. In addition, we show the effect of the algorithm on the auto- and
cross inner products and also on the outer products of the correlations between
the filters and the training patterns. In section 8.3 we calculate the probability
of recognition, false positives and false negatives and the dynamic range required
by the optical system for the training set and for a test set. We finish the chapter

with the conclusions.

8.2 Computer Simulations

In this section we evaluate the performance of the FESS algorithm during the
training phase, to see whether the algorithm converges to the desired solution, how
many iterations it takes to do that, which is the best choice for the convergence

parameter and which initial filter values lead to the best performance after the
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training. We define the following performance metric, which will help evaluate
the convergence of the FESS algorithm:

e Energy ratio

A term which is equal to the ratio of the normalised sum of the auto-inner
products to the normalised sum of the cross-inner products of all of the

filters and is described by the following equation:

normalised sum of all of the auto-inner products

normalised sum of all of the cross-inner products
EiK=1 Zfil |gi - 851/ M (8.1)
i El}cf;% Zfil |g: - sk;]/(M(K — 1))

The energy ratio gives us a measure of how much the auto-inner products in-
crease in comparison to the cross-inner products. We expect it to increase as the

algorithm converges.

8.2.1 Training set description

We used the algorithm to create filters for face recognition. Face recognition is
one of the typical problems the algorithm is designed to tackle, because many
different patterns can all represent the same person, in other words belong to
the same class, and one filter has to be designed to recognise all of them. Each
person’s face can be distorted in many different ways. In addition to in and out
of plane rotations, translation and scale variations, facial distortions also include
changes of expression, elastic distortions and changes in the facial characteristics
due to ageing, fattening etc. All these types of distortions are very difficult to
express mathematically. The training set! we used was part of the Olivetti Re-
search Laboratories faces database and it consisted of faces of ten people. Each
person was represented by six photographs. So there were sixty images in total in
the training set. For some of the subjects, the images (see figure 8.1 for a sample
of the training set) were taken at different times, with a slightly varying light-
ing, different facial expressions (open/closed eyes, smiling/non-smiling) and facial
details (glasses/no-glasses). All of the images were taken against homogeneous
backgrounds and the subjects were in upright, frontal position (with tolerance for
some side movement). The images were grey level and each pixel had an integer
value between 1 and 256. There are, in theory, two ways to represent these images

1See appendix C for the complete training set.
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Figure 8.1; A sample of the training set, which consists of six pictures of each

person. Only three examples of each subject are shown in this figure.
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Filters

patter"g'

Figure s .»: Cross-inner product matrix for the monopolar patterns before the

training. The filters are initially equal to the first pattern of each of the classes.

in an optical system using SLMs. One can use a multi-level amplitude or phase
SLM with 256 levels and represent the images in intensity or phase. Or, two SLMs
can be used, one amplitude and one phase SLM and the pixels can be represented
with values between -127 and 128, using a binary phase SLM to represent the sign
and the grey level amplitude SLM to represent pixel values. Of course the first
way which needs only one SLM is easier to implement, but in this chapter we will
present simulations for both optical representations. We will refer to the patterns
whose individual pixels have values between 1 and 256 as monopolar patterns and
to the patterns whose pixels have values between -127 and 128 as bipolar patterns.

The cross-inner product matrix before the training, for the monopolar pat-
terns, can be seen in figure s ... The first photo of each of the people was used
as the initial, untrained filter for that class in the calculation of this cross-inner
product matrix. The cross-inner product matrix is not square any more, since
there are ten filters and sixty training patterns. Also each of the filters has six
auto-inner products so the final cross-inner product matrix is not diagonal.

The surface graph shown in figure 8.2 does not give us a very clear view of
all of the auto- and cross-inner products. We are going to create one graph for
each of the rows of the cross-inner product matrix. Each row contains the inner
products between the corresponding filter and all of the training patterns. It will
be depicted as a bar chart. Each bar represents the value of an inner product.
The bars are normalised to 1. They are divided into groups of six. Each group
of bars represents the inner products with the six patterns that belong to that
corresponding class.

In figure 8.3, subfigure (a) shows the first row of the cross-inner product matrix
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s, 0.4
4 5 6 7 0 1 2 3 4 5 6 7 8 9 10
6 training patterns in eacti class 6 training patterns in eactr class
(a) Inner products of the I® untrained (b) Inner products of the 6** untrained
filter filter

Figure 8.3: First and sixth row of the initial cross-inner product matrix of the

monopolar patterns.
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(a) Inner products of the I® untrained (b) Inner products of the 6** untrained
filter filter

Figure 8.4: First and sixth row of the initial cross-inner product matrix of the

bipolar patterns.
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for the monopolar patterns. Subfigure (b) shows the sixth row of the same matrix.
Subfigures (a) and (b) in figure 8.4 show the first and sixth row of the cross-inner
product matrix for the bipolar patterns respectively. The similarity between all
of the training patterns is evident in figure 8.3, because all of the auto- and
cross-inner products are of almost equal magnitudes. Since the patterns are all
normalised, and we used the first example of each subject as a filter, only the first
auto-inner product is equal to one in all of the graphs shown in figures 8.3 and
8.4. A second observation we can make is that the bipolar patterns seem to be a
lot less similar to each other than the monopolar patterns. This happens because
due to the shifting and sign change, similar pixels in the monopolar patterns
may have an opposite sign in the bipolar patterns and this reduces some of the
inner products. Another observation one can make, is that the first filter, which
represents the first class, seems to be more similar to all of the training patterns
than the sixth filter which represents the sixth class. This means that we can set
the appropriate threshold and use the sixth filter to successfully recognise all of
the patterns that belong to the sixth class and reject all of the others. However,
the same thing is not possible with the first filter which would give wrong results.
In fact we chose to show these particular rows of the cross-inner product matrices
because they represent the worse (1) and best (6) filters in terms of similarity
to other patterns. Finally, we should note that some of the cross-inner products
for the bipolar patterns are negative. If we set a threshold to distinguish between
the auto- and the cross-inner products, these negative cross-inner products will
be below the threshold and will be correctly rejected only in a system, which
can detect their sign, for example an electronic recognition system. In an optical
recognition system which only detects intensity on the output plane, these negative
inner products would also be considered positive. Therefore, when using such a
system there is no benefit in letting the cross-inner products converge to large
negative values. All of the rows of the cross-inner product matrices before the
training, for both the monopolar and bipolar patterns are shown in appendix D.

8.2.2 Training

For the training we let the FESS algorithm run until it converged to a relatively
stable solution. In most of the simulations this happened within 30000 iterations.
For the training we used equations 7.14, 7.15 and 7.16 with a minor modification.
Instead of using two different convergence parameters 3; and [, the convergence
parameter was the same in equations 7.14 and 7.15, and equation 7.15 was applied

144



8.2. COMPUTER SIMULATIONS

0.9 0.9
0.8 0.8
~0.7 07

n 0.6 w0.6

3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10
6 training patterns in each class 6 training patterns in cach class

(a) Inner products of the I® filter (b) Inner products of the 6*" filter

Figure 8.5: First and sixth row of the final cross-inner product matrix of the
monopolar patterns after the training with the FESS algorithm. The initial filters

were equal to the first example of the corresponding classes.

only once every D iterations. The final results were similar for D values between
15 and 30. The results presented here were obtained with an D value of 25.

We conducted simulations with all three different values for the initial, un-
trained class representative filters: each one of them equal to one of the patterns
belonging to the corresponding class, or the mean of all of the training patterns
belonging to the corresponding class, or a random pattern. Here we present the
results for all three cases®. We have to point out that regardless of whether the
initial filters are monopolar or bipolar, they are going to end up with their pixels
having both positive and negative values.

Figure 8.5 shows the bar charts for the first and sixth rows of the cross-inner
product matrix, which was calculated using the monopolar patterns and the filters,
which initially were equal to the first training pattern of the corresponding class.
The first observation one can make looking at these graphs, is that all of the
auto- and cross-inner products have decreased. The cross-inner products are now
consistently lower than the auto-inner products. They are on average lower for
the filter than for the filter. The first of the auto-inner products for each
filter is slightly larger than the others because the filter was derived from the
corresponding training pattern, but this difference is not large. A threshold can
be set now to correctly recognise all of the training patterns.

“Look in appendix D for the graphs of all of the rows of all of the cross-inner product matrices

after the training.
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s 0.4

4 5 6 7 8 1 2 3 4 5 6 7 8 9 10
6 training patterns in each class 6 training patterns in each class

(a) Inner products of the 1® filter (b) Inner products of the 6" filter

Figure s .c: First and sixth row of the final cross-inner product matrix of the
monopolar patterns after the training with the FESS algorithm. The initial filters

where equal to the mean of all of the examples of the corresponding classes.

The cross-inner product matrix, whose first and sixth rows are shown in figure
s .6, was calculated using the monopolar patterns and the filters, which initially
were equal to the mean of the training patterns of the corresponding class. The
auto-and cross inner products are very similar to the previous case. There seem
to be slightly larger differences between the auto-inner products of each filter but
the magnitudes of the auto- and cross-inner products look the same on average.

Figure 8.7 shows the first and sixth rows of the cross-inner product matrix,
which was calculated using the initially random filters and the monopolar patterns.
The only thing that needs to be pointed out here is that the magnitude variations
among the auto-inner products of each filter are very small. It is clear that the
original filters had no individual features of the training patterns in them. They
gained them during the training by the addition equation 7.14. These additions
are weighted in such a way so that each of the filters finally becomes equally
similar to all of the training patterns it represents. That is a possible explanation
why the auto-inner products are almost equal in figure 8.7.

Figures s .5, 8.9 and 8.10 show the first and sixth rows of the cross-inner product
matrices for the bipolar matrices and the different initial filter values. In figure s.s
we can see that the first auto-inner product is a lot higher than the others for both
filters, obviously because they were derived from the corresponding pattern. Most
of the cross-inner products have become negative or zero. In addition, there is a

considerable difference between the behaviour of filter one (subfigure s .s-(a)) and
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Figure 8.7: First and sixth row of the final cross-inner product matrix of the

monopolar patterns after the training with the FESS algorithm. The initial filters

were random.

6 training patterns in cach class 6 training patterns in each class

(a) Inner products of the filter (b) Inner products of the 6" filter

Figure s .s: First and sixth row of the final cross-inner product matrix of the
bipolar patterns after the training with the FESS algorithm. The initial filters

where equal to the first example of the corresponding classes.
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0 1 2 3 4 5 6 7 3 4 5 6 7 8
6 training patterns in eacti class 6 training patterns in eacti class

(a) Inner products of the filter (b) Inner products of the 6" filter

Figure 8.9: First and sixth row of the final cross-inner product matrix of the
bipolar patterns after the training with the FESS algorithm. The initial filters

where equal to the mean of all of the examples of the corresponding classes.

filter six (subfigure s .s-(b)). Most ofthe auto-inner products for the first filter are
almost double the size of the auto-inner products of the sixth filter. Most of the
cross-inner products of the first filter have negative values, while most of the cross-
inner products of the sixth filter are equal to zero. Consider what would happen
if we used these filters to recognise the second training example of the sixth class.
Its auto-inner product with the sixth filter is smaller (in absolute values) than its
cross-inner product with the first filter. In an optical system which only detects
intensity on the correlation plane, this would result in incorrect recognition.

The filters’ performance is quite different when they are initially equal to the
mean of all of the training patterns they represent (figure 8.9). The auto-inner
products have similar values and they are all higher than all of the cross-inner
products. Another observation we can make is that in this case all of the auto-
inner products have values which are very close to the value of the first auto-inner
product for each class in figure s .« . Finally, the cross-inner products have reduced,
but they have higher absolute values compared to the ones in figure s .s . Again,
a threshold would allow correct recognition. With random initial filters, (figure
s .10) all of the auto-inner products of each filter have the same magnitude and
the cross-inner products are very low or zero.

Essentially the information contained in all of the bar charts (the six in this
chapter and the ones in appendix D) can be summarised in the following tables.

Table 8.1 shows the mean and standard deviation of all of the auto- and cross
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(a) Inner products of the 1** filter (b) Inner products of the 6™ filter

Figure 8.10: First and sixth row of the final cross-inner product matrix of the
bipolar patterns after the training with the FESS algorithm. The initial filters

where random.

inner products between the three different filters and the monopolar patterns.
The same information for the bipolar patterns is displayed in table 8.2.

After studying the bar charts and tables 8.1 and 8.2 we can make the following
statements for the filters after the training using the FESS algorithm:

* Monopolar patterns

- All of the cross-inner products are smaller than all of the auto-inner
products for all of the classes for all three different initial filter values.

Therefore, a threshold can be set to distinguish the training patterns

at least.
Monopolar patterns
Auto-inner products  Cross-inner products é‘r‘j}’s”s
MEAN STD DEV MEAN STD DEV
Initial Filters 0.9706 0.0061 0.9020 0.0347 1.076
Filter 1 0.4612 0.0156 0.2500 0.0387 1.845

Filter Mean 0.4660 0.0244 0.2288 0.0541 2.037
Filter Rand 0.4567 0.0024 0.2702 0.0354 1.690

Table 8.1: Mean value and standard deviation of the auto- and cross-inner prod-
ucts for the monopolar patterns. The last column in the table shows the ratio of

the mean of the auto-inner products over the mean of the cross-inner products.
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Bipolar patterns

Auto-inner products | Cross-inner products %’5
MEAN | STD DEV | MEAN | STD DEV

Initial Filters || 0.8077 0.0384 0.4653 0.0180 1.735
Filter 1 0.1693 0.1325 0.0351 0.0246 4.823
Filter Mean 0.4203 0.0370 0.1009 0.0618 4.165
Filter Rand 0.1498 0.0007 0.0062 0.0058 24.161

Table 8.2: Mean value and standard deviation of the auto- and cross-inner prod-
ucts for the bipolar patterns. The last column in the table shows the ratio of the

mean of the auto-inner products over the mean of the cross-inner products.

— The mean magnitude of the auto- and cross-inner products is very
similar for all three different initial filter values. However, the filters,
which were initially equal to the mean of all of the patterns of the
corresponding classes, produced the highest mean for the auto-inner

products and the lowest mean for the cross-inner products.

— The standard deviation of the auto-inner products is an order of mag-
nitude smaller for the filters that were initially random, than for the
other two. The mean filters produced auto- and cross-inner products
with the highest standard deviation.

e Bipolar patterns

— The filters that were derived from one training pattern only, produced
some cross-inner products higher than auto-inner products. Subse-
quently, 100% correct discrimination could not be achieved by using a
threshold.

— In addition, the filters that were derived from one training pattern only,
produced the auto-inner products with the highest standard deviation,
which was almost equal to the mean of the magnitudes.

— The filters that were derived from the mean of the training patterns of
the corresponding classes, produced auto-inner products significantly
higher than the other two kinds of filters. However, their cross-inner
products were higher as well, although always lower than the auto-inner
products.
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— The filters that were initially random, forced almost all of the cross-
inner products to zero. Their auto-inner products had the lowest mean
but also by far the lowest standard deviation. In addition they were
consistently higher than the cross-inner products.

Figures 8.11 and 8.12 show all of the final filters that were created using the
monopolar and the bipolar patterns and the three different initial filter values.
The first observation one can make, is that areas that are enhanced in some images,
are also enhanced in some others, but with an opposite sign. For example, the area
of the hair in the first subject is very bright and the same area in the sixth subject
is very dark. In the monopolar, initially random filters the features of each subject
are now identifiable. Some features are identifiable in the bipolar, initially random
filters but not as many as in the filters derived from the monopolar patterns. The
bipolar filters, which were initially equal to one training pattern are all blurred in
a very similar fashion and only have some form of edge enhancement. We note
that the final filters are similar to their initial value. Therefore, the choice of
the initial filters is very important when the initial filters are equal to one of the
patterns of the class they represent. Finally, several superimposed images can
be seen in the filters derived from the mean of all of the corresponding training
patterns for both the monopolar and the bipolar filters.

8.2.3 Convergence speed

In this section we discuss the convergence speed of the algorithm for the bipolar
and monopolar patterns and for the different initial filters. In the beginning of
section 8.2 we introduced the energy ratio figure of merit. We have plotted the
energy ratio as a function of iteration for all of our simulations.

In figure 8.13 we can see the energy ratio plotted against iteration number for
the monopolar patterns and the three initial filter values. Notice that the z axis
in subfigures (a) and (b) extends only to 10000 iterations. This is because in those
simulations the algorithm had already converged within the first 10000 iterations.
The energy ratio converges to about the same value for all three different initial
filter values, although a lot slower for the initially random filters. Figure 8.14
shows the same plots for the bipolar patterns. These graphs are more interesting.
First of all we see that the graph for the random filters is thick as if the energy
ratio oscillated. This is actually true, not only for the energy ratio of these filters
but also for the energy ratio of all of the filters, for the bipolar and the monopolar
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«

Figure 8.11: Final filters for the first five subjects, for monopolar and bipolar
patterns and for all three initial filter values. 1** Column : monopolar patterns,
initial filters equal to one pattern. 2"" Column : monopolar patterns, initial filters
equal to the mean of the patterns. 3™ Column : monopolar patterns, random
initial filters. 4™ Column : bipolar patterns, initial filters equal to one pattern.
5 Column : bipolar patterns, initial filters equal to the mean of the patterns.

6™ Column : bipolar patterns, random initial values.
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Figure 8.12: Final filters for the last five subjects, for monopolar and bipolar
patterns and for all three initial filter values. 1 ® Column : monopolar patterns,
initial filters equal to one pattern. »” Column : monopolar patterns, initial filters
equal to the mean of the patterns. 3™ Column : monopolar patterns, random
initial filters. 4** Column : bipolar patterns, initial filters equal to one pattern.
5% Column : bipolar patterns, initial filters equal to the mean of the patterns.

¢ ™ Column : bipolar patterns, random initial values.
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(a) Initial filters equal to
one of the training pat-

terns
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(b) Initial filters equal (c) Initial filters random
to the mean of the train-

ing patterns

Figure 8.13: Energy ratio for the FESS algorithm plotted against number of

training iterations for the monopolar patterns.

(a) Initial filters equal to
one of the training pat-
terns of the correspond-

ing classes

(b) Initial filters equal (c) Initial filters random
to the mean of the train-
ing patterns of the cor-

responding classes

Figure 8.14: Energy ratio for the FESS algorithm plotted against number

training iterations for the bipolar patterns.
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patterns. These oscillations are not visible in the other curves because they were
a lot smaller and all of the curves were plotted on the same scale for comparison.
These oscillations happened because the subtraction equation was used only once
every 25 iterations. The energy ratio actually decreased as the addition equation
was applied and it jumped to a higher value every time the subtraction equation
was applied. The other two graphs in subfigures (a) and (b) show a bump at the
beginning of the training (after 351 iteration in subfigure 8.14-(b)). We found
these hard to explain because the cross-inner product matrices at those particular
iterations were not very different from the matrices at the final iteration. We
believe, however, that they resulted from relatively large inner product value
fluctuations due to sign changes.

8.2.4 Peak to Correlation Energy (PCE) of correlations
between the initial patterns and the final, trained

class filters

Like the SS algorithm, the FESS algorithm does not place any constraints on the
outer products of the correlations between the filters and the training patterns.
In this section we investigate whether the outer products increase or decrease or
remain stable after the training. We use the peak to correlation energy (PCE),
defined in chapter 2, section 2.6, equation 2.6, to measure the sharpness of the
correlation peaks, which are located in the centre of the correlation plane at point
(65,65) in each graph. In all of the following simulations in this section and in
the next one, we have used the first training example of each of the classes as the
representative filter for that class before the training.

Figure 8.15 shows the correlation plane intensity for the correlations between
the monopolar training pattern sg;, which belongs to the sixth class and the
untrained (subfigure a) and trained (subfigure b) filters representing the first class.
The trained filter used for this correlation was the one that was derived from
the mean of all of the training patterns of the first class. The results using the
other methods for the initial values of the trained filters were very similar for the
monopolar patterns. We can see from figure 8.15 that the outer products have
not increased. On the contrary they have decreased. The PCE for this correlation
was 0.018 before and 4.8 - 10~7 after the training. This is good, rather than bad
however, because we do not want this correlation to produce a correlation peak,

because filter g; must reject pattern sg;.

155



8.2. COMPUTER SIMULATIONS

H6J

S 0.4

(a) So1 (2)Su, PCE=0.018 (b) S6i(g)gi, PCE=4.8 *10-"

Figure 8.15: Correlation plane intensity for correlations between a photo of the
sixth subject and the untrained (a) and the trained (b) filter for the first subject

using the monopolar patterns. Filter gi was initially equal to the mean of all of

the training patterns in the class. Correlation peak location: (65,65)
(U]
(a) S <@)S6i, PCE=0.024 (b) sgi (g)g6, PCE=0.006

Figure 8.16: Correlation plane intensity for correlations between a photo of the
sixth subject and the untrained (a) and the trained (b) filter for the sixth subject
using the monopolar patterns. Filter ge was initially equal to the mean of all of

the training patterns in the ¢ *" class. Correlation peak location: (65,65)
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g6 S 0.6.

(a) St ® Su, PCE=0.001 (b) S61 @ gi, PCE=4.6 *10"°

Figure 8.17: Corrélation plane intensity for correlations between the sixth subject
and the untrained (a) and the trained (b) filter for the first subject using the
bipolar patterns. The trained filter was initially equal to the mean of the training

patterns it represents. Correlation peak location: (65,65)

The same cannot be said for the correlations depicted in figure 8.16. In that
figure, subfigure (a) shows the auto-correlation of pattern Sei and subfigure (b)
shows the correlation between pattern Sei and the trained filter for the sixth class.
Again the monopolar pattern was used for these correlations and the trained filter
was initially equal to the mean of the patterns of the sixth class. We observe the
same outer-product behaviour for these correlations as well. They have decreased
in absolute terms, but they have increased relative to the correlation peak. The
PCE for the auto-correlation was 0.024 and for the correlation with the final filter,
0.006. In this case, we do want an existing correlation peak so the reduced PCE
is a disadvantage.

Figures 8.17 and 8.18 show the same correlations for the bipolar patterns. In
both figures the initial values of the trained filters were equal to the mean of
the training patterns in the corresponding classes. First of all we can see that
the outer-products are a lot lower in general when using the bipolar patterns.
Particularly in the auto-correlation of S shown in subfigure (a) of figure 8.18,
the correlation peak is a lot sharper than in the same auto-correlation using the
monopolar version of the pattern. The PCE is 0.071. Using the trained filter for
the sixth class (subfigure 8.18(b)), the PCE falls to 0.004. However, the correlation
peak is clearly higher than all of the outer products. For the correlation between

pattern s*i and the untrained and trained filters representing the first class (figure
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r0.6>

(a) S <886, PCE=0.071 (b) S61 ® g6, PCE=0.004

Figure 8.18: Correlation plane intensity for correlations between a photo of the
sixth subject and the untrained (a) and the trained (b) filter for the sixth subject
using the bipolar patterns. Before the training, gg was equal to the mean of all of

the training patterns it represents. Correlation peak location; (65,65)

8.17), the PCE 1is 0.001 and 4.6 -10“" respectively.

Finally, figure 8.19 shows the correlations between pattern Sgi and the trained
filters representing the first (subfigure a) and the sixth (subfigure b) classes. The
filters used for these correlations were the initially random filters. Both correla-
tions have very low outer products. The correlation with the filter representing
the first class has no correlation peak at all and, therefore, a very low PCE,
5.99 «10'ii and the correlation with the filter representing the sixth class has a
discernible although very low in magnitude correlation peak and a PCE equal to
0.028. The PCE is relatively high, compared to the other correlation in subfigure
(a), although the correlation peak is so low, due to the almost complete absence
of outer products.

To conclude, we have seen through these examples that for monopolar patterns
the training increases the outer products relative to the correlation peak and
reduces the peak-to-correlation energy. For the bipolar patterns, the correlation
peaks are a lot sharper before the training. The outer products do not increase
with the training, but the PCE decreases because the correlation peaks decrease.
However, for all of the cases for the monopolar and the bipolar patterns, after the

training, the auto-correlations have a higher PCE than the cross-correlations.
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(a) Sfii @gi, PCE=5.99 m10" ! (b) sgi (g)g6, PCE=0.078

Figure 8.19; Correlation plane intensity for correlations between a photo of the
sixth subject and the trained filter for the first subject (a), and trained filter for
the sixth subject (b) using the bipolar patterns and the initially random filters.
Correlation peak location: (65,65)

8.3 Probability ofrecognition and dynamic range

In the previous section we described the simulations of the FESS algorithm during
the training. In this section we present the results of the probability of recognition
and the dynamic range tests. These were calculated for both the training set and
for a test set. The test set will be described later in the section after we present
the results for the training set. Equation 6.2, which we rewrite here was used for

the calculation of the dynamic range required by the optical system

dynamic range = max”i ( - 20 log™o | ~ 1),
2=1..M,j=1...M,j™i (s.2)

First in table 8.3 we present the results for the training set.

Table 8.3 shows the probability of recognition and dynamic range for the
monopolar patterns and for the bipolar patterns for the following two cases. The
first is when the optical system used (if an optical system is used) has some kind
of interferometric phase detection at the correlation plane, which allows us to de-
tect the phases (+,-) of the correlation peaks. The second case is for when there
is no phase detection and we can only measure the intensity of the correlation
peaks. The method for calculating the probability of recognition for the tests

with the training set, was to calculate all of the cross-inner products between an
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TRAINING SET
Prob. Rec. (%) | Dyn. Range. (dB)

Initial filters 88.3 30.8
Monopolar|| Filter 1 100.0 9.06
patterns Filter Mean 100.0 8.88

Filter Rand 100.0 9.74
Bipolar Initial filters 95.0 8.59
patterns, || Filter 1 95.0 -
phase Filter Mean 98.3 4.79
detection || Filter Rand 100.0 0.72
Bipolar Initial filters 95.0 8.59
patterns, || Filter 1 55.0 -
no phase | Filter Mean 98.3 4.79
detection || Filter Rand 100.0 0.72

Table 8.3: Probability of recognition and dynamic range using the training set.

input pattern and all of the filters and then to choose the highest of them. For
correct recognition, the highest inner product had to be the one with the filter
which corresponded to the input pattern. No threshold was used, since there is
no need to reject any patterns when using the training set. We can see that when
using the monopolar patterns, the results are very similar for all three initial filter
values. In all cases the probability of recognition has increased to 100% after the
training and the required dynamic range has decreased by about 21 dB and is
now around 9 dB. A

When using the bipolar patterns, the results are different for the three initial
filter values. Only the initially random filters increase the probability of recogni-
tion to 100% after the training. The filters that were initially equal to the mean
of the corresponding training patterns, increase the probability of recognition to
98.3%. The filters that were initially equal to one pattern only, produce the worst
results: when using phase detection the probability of recognition is 95%, equal to
what it was before the training. When not using phase detection, the probability
of recognition falls to 55% with the filters that were initially equal to the first
example of the classes they represent. The required dynamic range is a lot lower
for the bipolar patterns compared to the monopolar, before and after the training.
The initially random filters produce the lowest required dynamic range of all.
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The test set did not include any common patterns with the training set. It
consisted of sixty faces in total. Forty of these patterns belonged to the same
ten people that the system was trained to recognise, but they were different from
the corresponding examples in the training set. The remaining twenty patterns
were faces of five other people. In this case, we used a threshold to calculate
the probability of recognition. Apart from the probability of recognition and
dynamic range, we have also calculated the False Positive and False Negative
percentages for the test set. We get a false positive when the input pattern does
not belong to the memorised set, in other words, it does not belong to any of
the classes our filters were trained to recognise and one of the correlations with
the filters has a central peak higher than the designated threshold. In that case
the system wrongly recognises an unknown pattern. A false negative is registered
when the input pattern represents one of the subjects of the memorised set, but the
correlations with all of the filters have peaks lower than the designated threshold.
In that case the system wrongly rejects a known pattern. We can trade these off
against one another by raising or lowering the threshold. Therefore, to calculate
the probability of recognition, the False Positives and the False Negatives for
the test set, we used the following method: we calculated all of the cross-inner
products between an input pattern and all of the filters and then chose the largest
of them. Then we had the following cases:

e Correct recognition when:

i. The input pattern belongs to one of the memorised classes.

ii. Its largest inner product is with the filter which represents the class in

which the input pattern belongs.

iii. Its largest inner product is larger than the set threshold.
e Wrong recognition when:

i. The input pattern belongs to one of the memorised classes.

ii. Its largest inner product is not with the filter which represents the class
in which the input pattern belongs but with another filter.

iii. That largest inner product is larger than the set threshold.
e False positive when:

i. The input pattern does not belong to one of the memorised classes.
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TEST SET
Thr | PR (%) | FP (%) | FN (%) | DR (dB)

Initial filter | 0.922 | 93.3 0.0 0.0 26.2
Monopolar|| Filter 1 0.391 91.6 3.3 3.3 8.38
patterns Filter Mean | 0.385 85.0 8.3 6.6 7.66

Filter Rand | 0.397 | 96.6 0.0 3.3 9.35
Bipolar Initial filter | 0.717 | 70.0 8.3 18.3 10.1
patterns, || Filter 1 0.053 | 66.6 23.3 3.3 -
sign Filter Mean | 0.358 | 70.0 3.3 26.6 3.25
detection || Filter Rand | 0.089 | 85.0 8.3 3.3 1.96
Bipolar Initial filter | 0.7563 | 71.6 0.0 26.6 10.1
patterns, || Filter 1 0.089 38.3 30.0 5.0 -
no sign Filter Mean | 0.358 | 70.0 3.3 26.6 4.37
detection || Filter Rand | 0.089 | 85.0 8.3 3.3 2.35

Table 8.4: Probability of recognition, false positives, false negatives and dynamic
range using the test set. Thr: Threshold, PR: Probability or recognition, FP:
False Positives, FN: False Negatives, DR: Dynamic Range.

ii. One of its inner products with one of the filters is larger than the set
threshold.

e False negative when:

i. The input pattern belongs to one of the memorised classes.

ii. Its largest inner product is lower than the set threshold.

The probability of recognition was equal to the number of correct recognitions
expressed as a percentage. Obviously, the percentages of correct and wrong recog-
nition, along with the percentages of false positives and false negatives add up to
a hundrend percent. One other thing that we must point out is that we used the
same threshold for all of the filters.

Table 8.4 shows the corresponding results when using the test set. Again
starting with the monopolar patterns, we see that the initially random filters
provide the highest probability of recognition, 96.6%. The filters that were initially
equal to the mean of the corresponding training patterns produce the worse results
mainly because of the high number of false positives and false negatives. All of
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the filters for the monopolar patterns reduce the required dynamic range by about
17 dB.

The probability of recognition is in general lower when using the bipolar filters.
However, the required dynamic range is also lower. The worst results are produced
by the filters that were initially equal to only one training pattern and the best
results are produced by the initially random filters which increase the probability
of recognition to 85% and require very low dynamic range, around 2 dB. The filters
that were originally equal to the mean of the corresponding training patterns, do
not provide any significant performance improvement over the untrained filters.

To summarise, we saw that the dynamic range requirements are greatly low-
ered when using the trained filters for both the training and the test set. The
probability of recognition rises to 100% for the training set, but does not im-
prove greatly when using the trained filters to recognise the patterns in the test
set. This did not happen because the patterns were wrongly recognised, on the
contrary the filters displayed very good generalisation ability and were able to
correctly recognise most of the test set patterns, which represented the subjects
that they were trained on. The low performance resulted from the high number
of false positives and false negatives (table 8.4). We might be able to improve
the performance if we used a different threshold for each of the filters. The high
number of false positives and false negatives was expected. As we have said be-
fore this bank of correlators corresponds to a single layer of neurons. It is known
from neural network theory, that a single layer of neurons cannot solve non-linear
problems. To obtain better results we must use at least two cascaded banks of
correlators and thresholds, which correspond to a multilayer network. Even in
that case, however, it has been proved [109] that the network cannot form closed
separation surfaces around the classes, which would eliminate the false positives,
if the number of neurons in the first hidden layer is lower or equal to the number
of inputs. Even if the number of neurons in the first hidden layer is higher than
the number of inputs, Gori et. al.[109] prove that the network may or may not
form closed surfaces. In other words, the number of correlators in the first hidden
bank must be at least equal to the size of the images (' > N in figure 7.2) and
even that does not ensure that the false positives will be eliminated.

Another issue that we would like to discuss briefly, is the necessary training
time for the convergence of the extended SS and FESS algorithms, which train two
consecutive banks of correlators. We have already shown that these algorithms
are mathematically equivalent to the BEP algorithm for training neural networks.
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The computation of the weights of a multilayer feed-forward neural network, using
the BEP algorithm is NP-complete [110, 111, 112, 113]. This means that the
computing time necessary for the training, scales with O!, where O is the number
of neurons, or in our case correlators, in the total network. Since the number of
correlators in the hidden bank must be greater than or equal to the number of
pixels of an input image, the training period required for complete convergence
is going to be very lengthy for any reasonable input image size, for our extended
SS and FESS algorithms. Our simulations in chapter 6 have clearly shown that
at least for a single layer of correlators, complete convergence leads to over-fitting
of the filters to the training patterns and lower generalisation ability. It is more
fruitful, therefore, to stop the algorithm after a few iterations only. It may be
better to stop the training of the two consecutive banks of correlators after a
few iterations as well. Whether the undertraining of the two consecutive banks
of correlators will also produce better results can only be confirmed with further
computer simulations. In addition, we must point out that the SS algorithm
incorporates a nonlinearity in the form of the squared term, which speeds up the
convergence, particularly in the initial iterations, when the cross-inner products
are large. This results in the convergence index (total energy) curve having a
shape similar to that of the solid curve in figure 8.20. This figure shows two
representative convergence index curves for the SS algorithm with and without
the squared term. When the weighting term in the SS algorithm is not squared the
total energy curve is similar to the dashed curve in figure 8.20. The steeper shape
of the convergence index curve of the algorithm with the squared term, means that
the algorithm needs a very small number of iterations to reach a sufficiently good
solution. It will probably be necessary to incorporate this square in the extended
SS and FESS algorithms, in order to obtain similar convergence behaviour.

8.4 Conclusions

In this chapter we have presented computer simulations for the FESS algorithm.
We showed that the algorithm forces the cross-inner products to decrease, al-
though not always to the desired value, which is zero. We saw that the auto-inner
products decrease as well, but converge to higher values than the cross-inner prod-
ucts. The convergence procedure is rather slow and usually takes several thousand
iterations. The outer products do not increase, as they did with the SS algorithm,

but because the inner-products decrease, the peak-to-correlation energy measure
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Alg. with squared term
- Alg. without squared term

Iterations

Figure 8.20: Convergence index curves of the SS algorithm with and without the

squared term.

is in general lower after the training. This means that locating the correlation peak
will be more difficult when using the final filters. The dynamic range required by
the optical system is greatly reduced when using the final filters. Therefore, a
system with lower dynamic range can be used to recognise our patterns, or more
system noise, which reduces the system’s dynamic range, can be tolerated. The
probability of recognition for patterns in the training set is increased to 100%
after the training. However, for the test set, the probability of recognition al-
though increased, does not reach 100%, because this is impossible with only one
bank of correlators. With this chapter we have concluded the presentation of the
filter design algorithms and their simulations. In the next chapter we present our

conclusions and make some suggestions for continuing this work.
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Chapter 9

Conclusions and Future Work

9.1 Introduction

In this final chapter of the thesis we present the conclusions and achievements of
our work. We start with an overview (section 9.2) of the general achievements of
our work, which underline and provide a framework for understanding the more
specific achievements presented in the next section, 9.3. Some recommendations
on how this work should be continued are presented in the last section of the

chapter.

9.2 General achievements

Based on the structural equivalence between optical correlators and neural net-
works [4], specifically perceptrons, we used the SS and FESS algorithms as in-
termediate formulations to compare the existing training algorithms for neural
networks and filter design. These comparisons (chapters 5 and 7) led to the
framework shown in figure 9.1.

We have created a bridge between these two domains, neural networks and
optical filters, in the form of two new algorithms. Some of the new knowledge
in this project has resulted from transferring well known results from the neural
network field to the optical filter field, across this bridge (figure 9.1). We have

shown in this thesis that:

e The matrix method for designing LCF filters or SDFs can be written in
an iterative way. That in itself is not particularly useful. However, the
algorithm can be stopped after one or two iterations, resulting in a filter
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Activity-productrule | == SS =£ |Linear combination filters (LCF,MOF)
Widrow-Hoff rule | == FESS =E |Synthetic discriminant functions (SDF)
—V v
Neural network BRIDGE Optical filter
training algorithms ~ _ - design algorithms

Figure 9.1: Relationships between our algorithms, neural network training algo-
rithms and filter design techniques

with better generalisation behaviour, more tolerance to additive input noise
and lower outer products. The improved performance arises from avoiding
the over-training of the filters, a problem which is very well known in the
neural network field. The 2 iteration training procedure of the SS algorithm
has the additional benefit of being as fast to perform as the earlier matrix
method. This has been observed in our computer simulations.

e All of the existing optical filters, which are designed for a single correlator,
or a single bank of correlators, suffer from the limitations that hamper single
layer neural networks. In particular, a bank of correlators, like a single layer
of neurons, cannot always correctly recognise non-linearly separable patterns
[3]. In neural networks, this problem is sometimes solved by using more than
one layers of neurons. We extended our algorithms to design filters for two
cascaded banks of correlators (chapters 5 and 7). To our knowledge, non of
the existing optical filter design techniques can calculate such filters.

This transfer of knowledge from one field to the other also works the opposite
way, from optical filters to neural networks:

e The SDF method of optical filters can be used in preference to the iterative
supervised Hebbian law to train neural networks faster, when over-training

does not pose a problem for the application.

Overall, it is well known that transferring existing results from one academic
field to another can result in new discoveries. It can also help avoid making the
same mistakes, or following research paths that lead to dead ends. Therefore, the
fundamental framework achievement in this PhD was that of devising a bridge,
in the form of the SS and FESS algorithms, between the two disciplines, neural
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network training algorithms and filter design techniques. In the next section we
will talk about more detailed results arising from this general framework.

9.3 Specific achievements

In this section we present the conclusions and specific achievements of our work.

1. We developed the Similarity Suppression (SS) algorithm, which starts from
a set of training patterns and calculates a set of filters, which are cross-orthogonal,
otherwise called mutually orthogonal, to these training patterns. The algorithm
is iterative and is based on the idea that the similarities between two patterns can
be suppressed if the patterns are continually subtracted from each other using
the magnitude of their inner product as a weight. The algorithm results in the
suppression of the cross-inner products between the training patterns and the final
filters. We kept the inner product between each of the filters and the corresponding
training pattern to a constant high value by using a normalisation step after each

iteration.

e We presented a theoretical analysis of the changes in the filters’ magnitudes
during the training and verified it using computer simulations.

e We compared, using computer simulations, the filters produced with the SS
algorithm with matched filters. QOur filters can tolerate 7 dB more additive
input white noise for the same probability of discrimination. The dynamic
range required by the recognition system is reduced by 25 dB.

e We proved theoretically and verified by simulations that the SS algorithm
is an iterative procedure for calculating the linear combination filters pro-
posed by Caulfield and Maloney [18], which are mutually orthogonal to the
patterns used for their creation.

e We discovered, using computer simulations, that the filters produced by the
SS algorithm after only 2 iterations perform better than the ones produced
by Caulfield’s and Maloney’s matrix method. 2 dB more additive input
white noise can be tolerated for the same performance, which results in an
improvement by almost 30% in the probability of discrimination. In addi-
tion, the filters produced with the SS algorithm after 2 iterations produce
lower outer products than the filters produced after 1500 iterations and the
filters produced with the matrix method. This is very important because it
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means that the filters produced by the SS algorithm after 2 iterations can be
used for pattern recognition or discrimination even when the exact location
of the object in the input is not known. In addition, the correlation peak is
sharp and allows the detection of other peaks nearby if more than one ob-
jects are present in the input. All of the previous benefits come at the cost
of a higher required dynamic range. This conclusion also alleviates the one
major disadvantage of the SS algorithm compared to the matrix method,
which is the computing time it takes to create the filters. The computing
time needed for two iterations is comparable to the time it takes for the

matrix inversion in Caulfield’s method.

e We methodically investigated the reason for the improved performance after

2 iterations and came to some general conclusions.

e We theoretically compared the SS algorithm with a simple formulation of
the Hebbian learning law, the “activity-product rule” [3] and showed that
the two algorithms are mathematically very similar.

e We used the insight gained by the comparison of the SS algorithm with
the Hebbian learning rule, to extend the algorithm to design filters for two
cascaded banks of inner product correlators.

2. We also developed the Feature Enhancement and Similarity Suppression
(FESS) algorithm, which designs filters for multi-class pattern recognition. In
multi-class pattern recognition several patterns, which belong to one of several
classes, must be recognised and distinguished from patterns belonging to the other
classes. Each of the filters designed by the FESS algorithm represents one class.
These have high inner products with the patterns that belong to that class and
low inner products with all of the other patterns. The FESS algorithm is based
on the same principle as the SS algorithm, plus the idea that the features of one

pattern can be copied onto another if it is continually added to it.

e We showed that the FESS algorithm can be viewed as a supervised version
of the SS algorithm, where desired target values are defined for the inner

products between the filters and the training patterns.

e We proved the equivalence between the FESS algorithm and the method for
designing synthetic discriminant functions.
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e We proved the equivalence between the FESS algorithm and the Widrow-
Hoff rule for training neural networks.

o We extended the FESS algorithm to design filters for two cascaded banks of
correlators.

e We verified most of our theoretical conclusions for the FESS algorithm using

computer simulations.

3. We also feel obliged to point out some limitations of our algorithms and of
the filters they design.

e The established equivalences between a bank of correlators and a single
layer of neurons [4], and between our algorithms and the unsupervised and
supervised formulations of the Hebbian learning law, mean that the short-
comings of the single layer neural networks apply to our systems as well.
For example, they can only separate linearly separable sets of patterns. In
addition although two or more cascaded banks of correlators can overcome
this problem, they cannot be used for verification purposes because they
cannot always form closed surfaces around each of the classes, thus elimi-
nating the false positives. Closed surfaces can only be formed if the number
of correlators in the first hidden bank is equal to or larger than the number
of inputs, which is equal to the size, in pixels, of the input image. Such an
optical system is difficult to build for a reasonable image size.

So after completing this project, my personal opinion is that our algorithms
need further development to produce useful filters for optical pattern recognition.
If we want to perform pattern recognition optically and only one bank of correla-
tors can be built, then at this stage the best choice is probably to use a MICE, or
OTF, or MVSDF, or another filter not reviewed in this thesis according to the spe-
cific application. Qur filters, particularly after 2 iterations, perform better than
the equivalent filters produced with the matrix methods (LCFs and SDFs). How-
ever, we have not compared them with the more advanced filters, which probably
perform even better, because they are designed to tolerate noise, reduce the outer
products, etc. while our algorithms do not take these into account. However, I
strongly believe that based on the existing framework, we can now improve our
filters by borrowing the ideas used in the other filter design techniques (MACE,
OTF, MVSDF etc) and adapting them to our iterative algorithms. If two or more

cascaded banks of optical correlators can be built, then my opinion is that the
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filters produced with our algorithms for two banks of correlators will produce the
best results of all. If an electronic system is used for pattern recognition, then
other advanced techniques exist, which can take advantage of the abilities of the
electronic system and perform better than the filters reviewed and developed in
this thesis.

Finally, we would like to point out that although the original intention was to
design optically implementable algorithms and filters for optical pattern recogni-
tion, the results attained are in no way restricted to that type of implementation
and so are more generally useful. Nevertheless, the representation of neural net-
work learning algorithms as image operations in the SS and FESS formulations,
makes them more suited to optical implementation where operations like Fourier
transforms, multiplications and correlations between pairs of images are more eas-
ily performed than individual weight updates. We finish this section with table
9.1, which is similar to table 3.1, which summarises the filters’ attributes, but

with two extra rows, one for the SS algorithm and one for the FESS algorithm.

9.4 Future work

In this section we present some proposals and ideas of how this work should
continue. Some of these ideas have not been tested yet by us. On some others, we
have already done some work but we did not have the time to investigate them
further.

i. System noise analysis and simulations

So far we have simulated the filter’s performance with additive input noise.
We think however, that the inherent noise of an optical system will degrade
the performance of our filters if it is not taken into consideration at the
design stage. A theoretical analysis of the system noise, backed up by the
proper computer simulations and then, the modification of the filters during
the training to compensate for the system noise, are necessary for good
agreement between simulation and experimental results. Neifeld et. al. [114]
got a 60% disagreement between simulation and experimental results and
by including system noise in their analysis, they reduced this gap between
the simulated and experimental performance to less than 10%.

ii. Investigation of the FESS algorithm for a small number of iterations
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FILTER CHARACTERISTICS
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Table 9.1: Summarised filter characteristics.

. Discrimination, Rec.

T.D. : Target detection, Discr.

: Recognition, N.T. : Noise tolerance, Corr. plane :

Correlation plane, M-P : Multi-pattern, M-C : Multi-class, P.S. : Peak sharpness,
P.V. : Peak variance control, S.R. : Side-lobe (outer product) reduction, D.R.R.

: Dynamic range reduction.
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CCD

FZ/P  MF FZp

1 mm

Figure 9.2: Planar correlator. FZP: Fresnel zone plate, MF: Matched filter, IP:

Input pattern.

ii.

1v.

We saw in chapter s that the filters produced with the SS algorithm after
» iterations perform a lot better than the fully converged filters. This im-
plies that we may get similarly beneficial results with the FESS algorithm.
Therefore, we need to investigate, mainly using computer simulations, the
performance of the filters obtained in the initial iterations of the FESS al-

gorithm.

Comparison of the SS and the FESS algorithms with the more advanced

filters

We have proved the mathematical equivalence between the SS algorithm
and the LCFs and the FESS algorithm and the SDFs. These comparisons
also show us the relationship between our algorithms and the more advanced
filter design techniques such as MACE, MICE, etc. However, we need to con-
duct computer simulations to quantify the performance differences between
our filters and the MVSDF, MACE etc. filters.

Optical implementation

The filters were always designed with an optical implementation ofthe recog-
nition system in mind. We think that one of the most important directions

for further work on the subject is to design and implement an optical recog-
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Filter

Figure 9.3: Disk planar correlator. FZP: Fresnel zone plate, IP: Input pattern.

nition system. The algorithms have now been developed to some extent,
but still require further improvement. Any further theoretical development,
however, may be wasted if the filters are not tested in a real optical system.
That is the only way to identify all of their weaknesses and strengths. As
far as the optical system itself is concerned, we strongly believe that any
such system must be compact and versatile, where versatility in this case
is the ability to update the filters and the input images dynamically and
also change some of their characteristics such as image size, number of grey-
levels etc. Although I have no practical experience, I believe that the planar
correlator systems [47, 48, 49] hold a lot of promise. I think that the planar
correlator design shown in figure 9.2 can be combined with a spinning disc
correlator design [36, 37, 38, 39] in a system such as the one shown in figure
9.3. In the correlator shown in figure 9.3, the input image is placed at the
centre of the disk. The optimum solution would be to be able to dynami-

cally record the input image on that location. If that is not possible, then
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an SLM has to be attached there, but then problems will arise when trying
to spin the disc with all of the SLM cables attached. The filters are placed
around the disc. Again the optimum solution is to be able to record the
filters dynamically. The alternative is to etch the filters onto the disc, but
this solution drastically reduces the versatility and, therefore, usefulness of
the correlator. As the disk spins, a laser beam will enter it from the filter
side, bounce in it and exit from the opposite side were a CCD camera can

obtain the correlation.

v. Outer product reduction

The increase of the outer products and consequently, the low PCE of the
correlations when using our filters, is another issue that must be addressed.
Based on an idea similar to that of the MACE filter, which is to try to
minimise the average correlation energy, we can add a second weighting
term to the first algorithm equation (for the SS algorithm). This second
weight can be the total energy of the correlation plane. By using a different
convergence factor for each weight, we can emphasise inner product or side-

lobe reduction. The first algorithm equation then would take the form:

. . M .
g =gl -p"Y {gjz_l) - S+ C’E}Sk (9.1)
k=1
k]

where C'E denotes the energy of the correlation. A different method, but a
lot more computationally intensive is to use a number of additional weights,
each of which will be equal to the magnitude of one of the largest side-lobes

at each iteration.

vi. Simulations of two layer algorithms

We have developed the theory for the two layer versions of the SS and FESS
algorithms but we have not done any computer simulations, which will verify
it and give us new insights on their performance. We have a fairly good
idea of what level of performance to expect based on the performance of
similar neural networks, such as better recognition of non-linearly separable
patterns, but the issues that are related with the optical implementation
of such filters, such as SNR, side-lobe magnitudes, input and system noise

tolerance, etc., have not been investigated.

vii. Initially random filters for the SS algorithm
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viii.

ix.

Up to now, we have used the training patterns as the initial versions of the
filters in the SS algorithm. We suspect, however, that these filters do not
need to contain any of the features of the patterns that they represent. A
few simple computer simulations can verify whether initially random filters,
which do not contain any of the features of the training patterns, will perform
equally well.

Use of a different threshold for each of the correlators in the FESS algorithm

In our recognition tests with the FESS algorithm we have used the same
threshold for all of the correlators. However, the differences in the magni-
tudes of the auto- and cross-inner products of the various filters suggest that
we will get better results if each of the correlators has its own threshold.

Different normalisation methods for the FESS algorithm

We have normalised the magnitudes of the filters in the FESS algorithm to
keep them stable. We have proved that the FESS algorithm is mathemati-
cally equivalent to the Widrow-Hoff algorithm for training neural networks.
However, the Widrow-Hoff rule does not have a normalisation equation.
This suggests, that the FESS algorithm may be equally successful without
a normalisation step. The normalisation step was necessary in the SS algo-
rithm because the filters’ magnitudes were decreasing due to the continuous
subtractions. However, in the FESS algorithm we add patterns to the filters
in addition to subtracting some patterns from them. Therefore it may be
possible to keep the magnitudes of the g filters stable by carefully choosing

the convergence parameters ; and (.

Another change that we can make to the normalisation in the FESS algo-
rithm, is to normalise the magnitudes of the filters to a value larger than P,
for example 2P, instead of P. Our aim is to increase the auto-inner products
and to make them converge as close to P as possible. However, this is not
possible when the filters are normalised to P and the auto-inner products
have to converge to a lower value. If the filters were normalised to a higher
value, that would allow the auto-inner products to increase further. For ex-
ample, if we multiply all of the pixels of a filter with the number 2, then its
magnitude will be equal to 4P and its auto-inner products will all double.
However, its cross-inner products are going to become two times as large as
they were before also. In that case there is no benefit, it is like normalising
our correlation outputs to higher values. If we normalise the filters during
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Xl.

xii.

the training however, at every iteration, we may be able to further decrease
the, now doubled, cross-inner products. We are not sure that this is going
to happen, but we think that it is an idea worth investigating further.

Increase tolerance to additive input noise

The inner product between a filter g and a pattern with additive noise s+n
is: g+ (s+n)=g-s+g-n. The aim is to eliminate the term g - n. The
main question that arises here is, how can we train our filters to recognise
the statistical characteristics of the noise, and not specific noise samples.
A solution may be to “copy” the MVSDF method which uses the noise
covariance matrix to increase the filter’'s SNR. Because we have established
the equivalence between our algorithms and the basic SDFs, we may be able
to do a reverse transformation starting from the MVSDF equation and find
the terms that must be added to the algorithm equations to get the same
result. In addition, we may be able to increase the tolerance to non-zero
mean noise by adding constant background images to the training set, a
procedure similar to Arsenault’s method described in chapter 3.

Selection of optimum number of filters in FESS algorithm

There is a debate on the optimum number of filters for multi-class pattern
recognition. We have thought of a method, which although computationally
intensive, may guarantee that the minimum number of filters is used for the
best possible performance. We can start by creating only one filter and use
the FESS algorithm to force the cross-inner products between this filter and
all of the patterns of all of the classes to converge to the desired values (a
different value for every class). After the algorithm converges, in the case
that the result is not acceptable we divide the classes of the training patterns
into two groups, create two filters and train the first filter to recognise all
of the objects of all of the classes of the first group and the second filter
to recognise all of the objects of all of the classes of the second group.
We continue with the same procedure, creating additional filters until our
requirements (probability of recognition, dynamic range, etc.) are satisfied.

Different encoding method for the training patterns in the FESS algorithm

We used a very simple method to convert the monopolar training patterns
into bipolar before using the FESS algorithm. We have thought of a different

conversion method, which is more of an interesting experiment: We can
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xiil.

multiply each of the monopolar patterns with a different random binary
bipolar pattern, thus making the training pattern itself bipolar. Then we
use these bipolar patterns for the training. We can repeat the experiment
with different random patterns until we get the best results.

Addition of new patterns and filters after the training.

Another direction of future work is the update of our database of filters and
training patterns after the training. Lets assume that at a given time, we
have a set of training patterns and that we use the SS algorithm to create
the corresponding set of filters. If in the future we want to add an additional
pattern and filter pair to our database, it is best if we can do that without
having to train the whole system from scratch. Let us call our initial training
patterns s; ...sps and the corresponding filters g; ... gy as usual. The new
pattern that we want to add can be denoted by spr41. It is straightforward
to create the corresponding filter g},,, just by applying the algorithm to it
for a number of iterations equal to what was used for the original set

gath = Brpar — B Z {837 - sk )s 9.2)
k;éM+1

The normalisation equation is still necessary although it is not written above.
The main problem is updating the initial set of filters, g; ...gas. If pattern
Spm+1 Was in the set from the beginning, then instead of the existing set of
filters g; . .. gar, we would have a slightly different set, g . ..gh,. The aim is
to get this new set of filters without repeating the whole training process. In
section 5.4.2 we said that each of the filters can be expressed as a weighted

sum of the training patterns:
gi=cjuS1+...+CiMSm (9.3)

where
=0 Z g s (9.4)

and D denotes the total number of iterations. If the sps,; pattern had been
part of the initial training set, then at every iteration it would have been
subtracted from each of the g’ filters, an extra subtraction compared to
those that led to the initial set of g filters

_ﬂ(g;'(i_l) . SM+1)SM+1 (9.5)
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Xiv.

The effect of this extra subtraction on each of the coefficients c;; would be

equal to

D .
Acj = —p (gj(z) . SM+1)SM+1 * Sk

=1

L .
= —[BSm41 Sk Z (gj(z) . SM+1) (9:6)
i=1

If we can calculate Ac;k, V7, k and then use these coefficients as weights for
one more subtraction of patterns s; from the filters g; we should end up with
the updated filters g;. The problem with this solution is that we do not have
the filters g;-(i) for every iteration ¢, nor is it easy to store all of the initial
filters gj(-i),Vz', so we cannot calculate Ac;; from equation 9.6. There are
several ways however, with which we can approximate the sum in equation
9.6. We know from the analysis of the algorithm carried out in chapter 6,
that the cross-inner products g;’()-sp+1 are rather small for every iteration,
except for the first couple of iterations. We have the values of the cross-inner
products at the first iteration because initially g; = s;. We may be able to
get a good enough approximation just by using that cross-inner product and
the one at the final iteration, which can also be calculated, multiplied by the
number of iterations, D. An even better approximation can be achieved if we
use our knowledge of the convergence of the algorithm, which is expressed
by the total energy index. We can use the initial and final values of the
cross-inner products and the total energy index to extrapolate the values in
between. Better ways may exist to calculate the correct coefficient correction
Acj, maybe by using the initial coefficients c;x, which can easily be stored.
Simulations are necessary to see the effectiveness of the methods proposed

here and the error they introduce.

Use of g filters for SDF synthesis

This is more an interesting experiment, than a direction for further work.
We can use the FESS algorithm to create our filters and then combine them
into an SDF. The performance of this SDF can then be compared to the
performance of the SDF created using the original training patterns. The
filters created by the FESS algorithm contain only the main features of the
patterns which they represent and have discarded the similarities between
patterns that belong to different classes. Therefore it is conceivable that
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the SDF which will be created by them will perform better since it will
not contain the unnecessary information that is contained in the original

training patterns.
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Appendix A
Mathematical definitions

In this appendix we present some mathematical definitions which are necessary
for the understanding of the thesis.

A.1 Expected value - variance - standard deviation
The expected value! or mean of a random variable is defined by the integral :
E{x} = / zf(z) dz (A1)

where f(z) is the probability density function of the random variable x and
s defined by

fla) == (A2)

and F(z) is the distribution function of x

F(z) =P{x <z} (A.3)

defined for every x from —oo to oco. For discrete type random variables, the

expected value is given by a sum:
E{x} = Zl)ixi, pi = P{x =z} (A4)
The variance of a random variable x is by definition the integral
o= Z(x _ E{x))*f(2) dz (A.5)
The variance is also given by the following equation
o? = E{x*} — E*{x} (A.6)

The positive constant o is called the standard deviation of x.

A.2 Correlation and covariance matrices

The covariance! C of two random variables x and y is by definition the number
C = B{(x~ E(x})(y - E{y})}
= E{xy} — E{x}E{y}

1The following definitions are adapted from Papoulis, 1991 [115]

(A7)
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For complex random variables, the covariance is

C =EB{(x- B{(x})y" - E{y}")}

, , (A.8)
= E{xy*} - E{x}E{y"}

The correlation matrix of the random vector X = [x3,... ,X,] is by definition
Ry -+ Rin

R,=| : : (A.9)
Ry -+ Ry

where Ri; = E{x;x;} = R}, The covariance matrix of the random vector

X =[x1,...,Xp] s

Cu - Cun

Co=| : : (A.10)
Cnl e Cnn

where Cyj; = Rij — E{x;}E{x;}* = C};. The correlation matriz can also be written
R, = E{XTX*} (A.11)

where XT is the transpose of X. The covariance matriz C, is the correlation
matriz of the “centered” random variables x;— E{x;}. If E{x;} =0, Vi, C,, = R,,.

A.3 Fourier transform

Given? an arbitrary, complez-valued function f(x), the integral
o0 X
F(e) = / f(a)e72e do (A.12)

is called the Fourier transform of f(z). The integral of equation A.12 ezists’
for every function f(x) which accurately describes a real physical quantity [116].
f(z) can be obtained from F(§) if equation A.12 is inverted

f(z) = / ” F(a)e da (A.13)

—00

assuming that F(a) exzists. f(x) is called the inverse Fourier transform of

F (&) and the two functions are known as o Fourier transform pair.

2The following definitions have been adapted from Gaskill, 1978 [6]
3See Gaskill, 1978 [6] for a description of the conditions required
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Given the function f(z,y), its two-dimensional Fourier transform is given by

the integral
F(¢n) = / / f(a, B)e™ 7?7440 da ds (A.14)
—00
The inverse Fourier transform of F(€,n) s

flz,y) = // F(a, B)e?*™(@=+8Y) doy d g (A.15)

A.4 Convolution and correlation

The convolution and the correlation are two mathematical computations between
two functions. They are described by equations A.16 and A.17 respectively

g(z)=f x*h:cz/oofahx—a)da (A.16)
g(z) = f( / f(a@)h(z + ) da (A.17)

For two-dimensional functions f(z,y) and h(z,y), the convolution and correlation
operations are described by equations A.18 and A.19 respectively

9(z,y) = / 1(@, B)h(x - o,y = B) dadp (A-18)

9(z,y) = / fla, B)h(z + o,y + B) dedB (A.19)

The convolution and correlation equations may also be written in a discrete form

[7]

E

N—

p_a

g(m Z £, —i,n—j) (A.20)
=0 j7=0
M-1N-1

g(m,n) = f(i, 5)h(m +i,n + j) (A.21)
i=0 j=0

One of the most important theorems of signal processing is the convolution theo-
rem, which states that the convolution of two functions in the time domain is equal
to the inverse Fourier transform of the multiplication of these two functions in the

frequency domain, that is the multiplication of their Fourier transforms [117].
9(z) = f(z) * h(z) = IFT{F(§)H(£)} (A.22)
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A.5 Inner and outer products

The correlation of two two-dimensional functions, is itself a two-dimensional func-
tion. The value of that function at the origin g(0,0) is called the central peak

of the correlation or inner product and it is equal to
M-1N-1
9(0,0)= > > f(4,5)h(s,5) (A.23)

i=0 j=0

in the discrete form. All of the other points of the function g(m,n) are called the
outer products of the correlation.
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Appendix B
Magnitudes of the un-normalised filters

The magnitudes of the filters are equal to the squared Euclidean norm shown

in the following equation:

N 1/2
Euclidean norm:  [|s||s = (Zsf) = (s -8)/2 = (sT's)!/?
- (B.1)

In this appendix we are going to investigate whether these magnitudes are going to
increase, or decrease, or stay constant during the training with the SS algorithm
(equation 5.19) and the FESS algorithm (equations 7.1 and 7.2), without the
normalisation step. Equations 7.1 and 7.2 can be combined into the following

equation:

M-L;

gJ(z) _gjz 1)+ﬁ Z( (1, DT ) B, Z ( (i- I)Tsm)sm
m=1 (B.2)

We have used a different font to write the third term on the right hand side of
equation B.2. We did that because that term describes the SS algorithm. In
other words, if we used the SS algorithm to design the filters, we would only
subtract patterns from the filters, using the third term but with slightly different
summation limits. In the following mathematical analysis we are going to use
different fonts for the terms that are derived from the FESS algorithm terms and
for the terms that would be there if only the SS algorithm was used. We use two
different symbols for example, g; and g;, to denote the j;;, filter. Both symbols
refer to the same filter. The only criterion of which symbol to use each time is
whether the whole term that the symbol is in, would exist if only the SS algorithm
was used for the training. At the end of our mathematical analysis we are going
to isolate these terms and discuss the effect of the SS algorithm on the filters’
magnitudes when more than two training patterns are used. Equation B.2 can

also be written in the following form:

L M-
g’ =gf M+ 4> s (P-sTgl )-8 Z m(shai ")
k=1 m=1
-L;
= g mZ f(P—stgli ™)+ (I B, z Sm8 ) -0 (B3)
k=1
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The filters’ magnitudes can be calculated in the following manner?:

('__;) L; M—L; T

)T

gg) 5") I: 1 ZSk(P —_ ngj) + (I — ,32 Z 8m8£)gj:|
m=1

k=1

L M-L;
[ﬂl Z Sk’( S{'gj) + (I ~Bs 3 smrs,ﬁ')yj]

k'=1 m/=1

L; M-L;
= [ﬂl > sf(P — sfgj) +9; (I -8 Y smsf,:)}
k=1

m=1

L; M—-L;
DI (P — s;‘f,gj) + (I - By > sm:s,ﬁ,)gj}

k'=1 m/'=1

L; L; L;
oy z (P - sTg,)st z (P—sle)se +5 Y. (P—sTe;)sTe;
=1 /=1

k=1
L; M-L; L;j
- ﬁl/@2 Z (P Sk gj)sk Z Sm'sm’gj + g] /81 Z Sk (P - Sf'gj)
k=1 m'=1 k=1
M-~L; M-L; L;
+979i—9Bs Y swsligi— gl b Z SmSe B Zsk'( —shg;)
m'=1 k'=1
M-L; M—L;
978, Z smslg; + 97 B} Z Sm8h Y. 8w8l.g;
m'=1
L; L; L
=3 Z > (P-slg,)(P-sleg)stsu + 45 (P —sTg;)sTe;
=1k'=1 k=1
Lj M—L, L
— B8y, Y. (P—sfg;)shgisism +5 Y. (P —shg;)els
k=1 m'=1 k'=1
M-L; M-L; L;
+979;— By Y. (,’ﬁ:g]) ~BB X &7sm(P - she;)hse
m=1 m=1 k'=1
M-L; M L M—L;
m=1 m=1 m'=1
So the magnitude of the filter g; is:
nT 1 MoVl T 1 i 1T 2
) =T BT 5 o snsal e 28, % (o o)
m=1 m'=1 m=1
& 1 1 o 1 1
+623 5 (P-sTgli ™) (P—stgl™)stsw +26: > (P —stgl V)sfgl ™"
k=1 ij=1M_Lj k=1 (B4)
_2ﬂ1,82k21 A (P—skg§1 1)) mlg;z US{SmI
— ml_

1The g; filters on the right hand side of the following equations are all in the i;, — 1 iteration.
However, for the sake of clarity, the 1) index will be omitted until the last equation.
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B. MAGNITUDES OF THE UN-NORMALISED FILTERS

B.1 Analysis for the SS algorithm

The first three terms in the right hand side of equation B.4 are the ones that
would result if we had used the SS algorithm instead of the FESS algorithm to
design the filters. We can see that they are very similar to the terms in equation
5.32 in section 5.3. We can isolate them from the remaining terms in equation
B.4 and estimate the slope, or rate of change, of the magnitudes of the g filters
when the SS algorithm is used and more than two training patterns exist

T I)T 1) _ ML, M_L (i-1)T 1 M-L; . T 2
s > ST SRR JIn
m=1 m'=1 m=1 (B_5)

The first term on the right hand side of equation B.5 can be expanded to give the
following terms:

M-L; M—L; M-L;

11— 11— - 2
B > > 0 5T gl s s =85 S (657 8m) l18mll?

m=1 m'=1 m=1

+ a sum of cross terms of the form:

(B.6)
B§g§’ 1) s;nggg’ I)s_,ng for example when m =1 and m' =2
So using equation B.6, equation B.5 becomes:
(0 (i-1) = 07T, \? " GenT, 2
1 1— 1— 11—
s; 1> - llg; Hg:ﬂz > (] ) lsmll* — 28, (gj Sm)
m=1 m=1
4+ sum of cross terms
M-L; br, .
=Bs X (07" am) (Bellenll” - 2) (B.7)

+ sum of cross terms

The investigation of the sign of the right hand side of equation B.7 is very similar
to that shown in section 5.3. The right hand side of the equation is two sums of
terms. We can ignore the cross terms for the time being and investigate the sign
of each of the other terms, which depends on the value of 3,.

o If3, = ”2 then the corresponding term is equal to zero. Since all of the
training patterns are normalised and ||s,||® is constant Vm, if B, = uTmﬂ?
then all of the terms in the sum will be equal to zero and the slope of the

norm of g; will depend on the cross terms.
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o If B3, < W then the terms in the sum are all negative.
o If 3, > ”sﬁ then all of the terms in the sum are positive.

In section 5.2.3 we chose to use a convergence parameter which corresponds to
By, = 1/PM. That is, B, is smaller than 2/||s|| (P = ||s||) and according to the
previous analyses the terms in the sum in the right hand side of equation B.7 will
be negative. We have to consider the sum of the cross terms to find the sign of
the slope. If the training patterns are monopolar, then the cross terms will all be
positive. If the training patterns are bipolar, then the sum will consist of positive
and negative terms and overall it will be smaller. In either case however, this sum
of cross terms will probably be lower than the first sum in the right hand side of
the equation because of the squared 3, in front of it. Therefore, we can conclude
that with our choice of convergence parameter, the slope of the g; norm will be
negative and the norm decreases. Eventually, as the inner products (g(-"“l)Tsm)z
decrease, the right hand side of equation B.7 tends to zero. So after a number of

iterations the norm of g; will stabilise to a very low value.

B.2 Analysis for the FESS algorithm

The analysis is similar for the FESS algorithm, when all of the terms in equation
B.4 must be considered. We saw in the SS analysis that with our choice of con-
vergence parameter, the second and third term in the first line of the right hand
side of equation B.4 are negative and cause the decrease of the filters’ magnitude.
The next two terms in the second line in the same expression, which we can see

again below

L Lj L
Y5 (P - Tl ) (P - sl ™)sToe +2 35 (P - oFgf )T
k=1k'=1 1 (BS)

are the corresponding terms of the FESS algorithm. These terms both have a
plus sign in front of them, however, we can be sure that they are positive only
in the case when the training patterns are monopolar and all of the cross-inner
products s{gg-i_l) are positive. For bipolar training patterns, we cannot predict
with certainty whether these two terms are going to be positive or negative. The
last term in equation B.4 is usually smaller compared to the other terms due
to the product 3;3; in front of it. The overall sign of the slope of the g norm,
|lg||?, depends on the number of patterns in each of the classes compared to the

total number of patterns. Assuming that the training patterns are monopolar,
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the ones that belong to other classes and are subtracted from the filter will cause
it’s magnitude to decrease according to the second and third term in the first line
in equation B.4. The ones that belong to the class that the filter represents, will
cause it’s magnitude to increase according to the next two terms in equation B.4.
Usually, but not always, the total number of patterns will be a lot larger than the
number of patterns in each class, therefore the negative terms will be larger and

the magnitudes of the filters will decrease.

189



Appendix C
Training set

C.1 Training set for the FESS algorithm
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c. TRAINING SET

Figure C.l: The examples that were used in the training set for the first five

people.
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c. TRAINING SET

Figure C.2: The examples that were used in the training set for the last five

people.

192



Appendix D

Cross inner product matrices
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D. CROSS INNER PRODUCT MATRICES

(a) Filt. 1 Mon (b) Filt. 1 bip
(¢) Filt. 2 Mon (d) Filt. 2 bip
(e) Filt. 3 Mon (®) Filt. 3 bip

Figure D.3: First three rows of the initial cross-inner product matrices for monopo-

lar and bipolar patterns.
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D. CROSS INNER PRODUCT MATRICES

6 training patterns in cach class 6 training patterns In each dass

(a) Filt. 4 Mon (b) Filt. 4 bip

6 trairwig patterns in each class 6 training patterns in each class

(¢) Filt. 5 Mon (d) Filt. 5 bip

6 training patterns in each class 6 training patterns in each class

(e) Filt. 6 Mon (f) Filt. 6 bip

Figure D.4: Fourth to sixth rows of the initial cross-inner product matrices for

monopolar and bipolar patterns.
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(a) Filt. 7 Mon

(c) Filt. 8 Mon

€ training patterns

(e) Filt. 9 Mon

6 training patterns in each dass

(g) Filt. 10 Mon

D. CROSS INNER PRODUCT MATRICES

(b) Filt. 7 bip

(d) Filt. 8 bip

(f) Filt. 9 bip

6 training patterns in each dass

(h) Filt. 10 bip

Figure D.5: Last four rows of the initial8fess-inner product matrices for monopo-

lar and bipolar patterns.



D. CROSS INNER PRODUCT MATRICES

@pan*mk Mch ctau

(a) Filt. 1 Mon 1 (b) Filt. 1 Mon Mean (c) Filt. 1 Mon Rand
(d) Filt. 1 Bip 1 (e) Filt. 1 Bip Mean (f) Filt. 1 Bip Rand
i = e (.
oe. i
L.i....-.
(g) Filt. 2 Mon 1 (h) Filt. 2 Mon Mean (i) Filt. 2 Mon Rand
(j) Filt. 2 Bip 1 (k) Filter. 2 Bip Mean () Filt. 2 Bip Rand

Figure D.6; First and second rows of the cross-inner product matrices for monopo-

lar and bipolar patterns and all three initial filter values.
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D. CROSS INNER PRODUCT MATRICES

(a) Filt. 3 Mon 1 (b) Filt. 3 Mon Mean (¢) Filt. 3 Mon Rand
[
t
I

(d) Filt. 3 Bip 1 (e) Filt. 3 Bip Mean (f) Filt. 3 Bip Rand

(g) Filt. 4 Mon 1 (h) Filt. 4 Mon Mean (i) Filt. 4 Mon Rand
[ [
t
1 | 1

..
(j) Filt. 4 Bip 1 (k) Filter. 4 Bip Mean (1) Filt. 4 Bip Rand

Figure D.7: Third and fourth rows of the cross-inner product matrices for monopo-

lar and bipolar patterns and all three initial filter values.
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(a) Filt. 5 Mon 1

[
1
(d) Filt. 5 Bip 1
(g) Filt. 6 Mon 1
[
!
I

() Filt. 6 Bip 1

D. CROSS INNER PRODUCT MATRICES

(b) Filt. 5 Mon Mean

(e) Filt. 5 Bip Mean

(h) Filt. 6 Mon Mean

(k) Filter. 6 Bip Mean

(¢) Filt. 5 Mon Rand

V4.

(f) Filt. S Bip Rand

(i) Filt. 6 Mon Rand

(1) Filt. 6 Bip Rand

Figure D.8: Fifth and sixth rows of the cross-inner product matrices for monopolar

and bipolar patterns and all three initial filter values.
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D. CROSS INNER PRODUCT MATRICES

1

(a) Filt. 7 Mon 1 (b) Filt. 7 Mon Mean (c) Filt. 7 Mon Rand
|
i !
I I

(d) Filt. 7 Bip 1 (e) Filt. 7 Bip Mean (f) Filt. 7 Bip Rand

(g) Filt. 8 Mon 1 (h) Filt. 8 Mon Mean (i) Filt. 8 Mon Rand

1
(j) Filt. 8 Bip 1 (k) Filter. 8 Bip Mean (1) Filt. 8 Bip Rand

Figure D.9: Seventh and eighth rows of the cross-inner product matrices for

monopolar and bipolar patterns and all three initial filter values.
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(a) Filt. 9 Mon 1

(d) Filt. 9 Bip 1

(g) Filt. 10 Mon 1

(j) Filt. 10 Bip 1

D. CROSS INNER PRODUCT MATRICES

(b) Filt. 9 Mon Mean (c) Filt. 9 Mon Rand

(e) Filt. 9 Bip Mean (f) Filt. 9 Bip Rand

>

MEmlull

4 5 6 7
6 iraMng palUm* InMch e

(h) Filt. 10 Mon Mean (i) Filt. 10 Mon Rand

(k) Filter. 10 Bip Mean (1) Filt. 10 Bip Rand

Figure D.IO: Ninth and tenth rows of the cross-inner product matrices for monopo-

lar and bipolar patterns and all three initial filter values.
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