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A FULLY DISCRETE NUMERICAL CONTROL METHOD FOR THE
WAVE EQUATION\ast 

ERIK BURMAN\dagger , ALI FEIZMOHAMMADI\dagger , AND LAURI OKSANEN\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We present a fully discrete finite element method for the interior null controllability
problem subject to the wave equation. For the numerical scheme, piecewise affine continuous elements
in space and finite differences in time are considered. We show that if the sharp geometric control
condition holds, our numerical scheme yields the optimal rate of convergence with respect to the
space-time mesh parameter. The approach is based on the design of stabilization terms for the
discrete scheme with the goal of minimizing the computational error.
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1. Introduction. We consider the now-classical interior null controllability prob-
lem for the wave equation formulated as follows. Let T > 0, \Omega \subset \BbbR n with n \in \{ 2, 3\} 
be a connected bounded open set with smooth boundary. Finally, let \omega \subset \Omega be an
open set. We define \scrM = (0, T )\times \Omega and \scrO = (0, T )\times \omega , and for each

(g0, g1, U) \in H1
0 (\Omega )\times L2(\Omega )\times L2(\scrM ),

consider the unique weak solution

u \in \scrC (0, T ;H1
0 (\Omega )) \cap \scrC 1(0, T ;L2(\Omega ))

of the following initial boundary value problem (IBVP):

(1.1)

\left\{     
\square u = \partial 2t u - \Delta u = \chi \omega U \forall (t, x) \in \scrM ,

u(t, x) = 0 \forall (t, x) \in (0, T )\times \partial \Omega ,

u(0, x) = g0, \partial tu(0, x) = g1 \forall x \in \Omega .

Here \chi \omega is a suitable nonnegative smooth function that is localized in \omega and is inde-
pendent of the time parameter t.

The null controllability problem consists of determining a control function U\ast ,
such that the solution u to (1.1) with U = U\ast satisfies

(1.2) (u(T, x), \partial tu(T, x)) = (0, 0) \forall x \in \Omega .

This paper is concerned with a numerical scheme for solving the null controllability
problem (1.1) - (1.2), based on the finite element method (FEM). In particular, we will
prove optimal rate of convergence of the error in the H1-norm of the state variable u,
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1520 ERIK BURMAN, ALI FEIZMOHAMMADI, AND LAURI OKSANEN

with respect to the space-time mesh parameter, assuming only the geometric control
condition by Bardos, Lebeau, and Rauch [3, 4]. To the best of our knowledge, the
present result is the first one giving optimal convergence rate in general geometries in
dimensions two and three.

1.1. The geometric control condition and observability estimates. We
begin by recalling the geometric control condition by Bardos, Lebeau, and Rauch.

Definition 1.1 (see [4, 16]). We say that \~\scrO = (0, T )\times \~\omega satisfies the geometric
control condition if every compressed generalized bicharacteristic intersects the set \~\scrO .

The above definition roughly states that all geometric optic rays propagating in
\scrM must intersect the region \~\scrO , taking into account possible reflections of the rays at
the boundary. Next, we recall the following observability estimate originating from
[3, 4]. The formulation here is based on [16, Proposition 1.2] and is stated as it appears
in [6, Theorem 2.2].

Theorem 1.2 (interior observability estimate). Let T > 0, \~\omega \subset \Omega . Suppose
that the set \~\scrO = [0, T ]\times \~\omega satisfies the geometric control condition. Let U \in L2(\scrM )
with U | (0,T )\times \partial \Omega \in L2((0, T ) \times \partial \Omega ) and \square U \in H - 1(\scrM ), where H - 1(\scrM ) denotes the
topological dual of H1

0 (\scrM ). Then,

U \in \scrC 1(0, T ;H - 1(\Omega )) \cap \scrC (0, T ;L2(\Omega )).

Moreover, there exists C0 > 0 such that the following estimate holds:

sup
t\in [0,T ]

(\| U(t, \cdot )\| L2(\Omega ) + \| \partial tU(t, \cdot )\| H - 1(\Omega ))

\leqslant C0(\| U\| L2( \~\scrO ) + \| \square U\| H - 1(\scrM ) + \| U\| L2((0,T )\times \partial \Omega )).

Observability estimates are one of the key tools in the study of the null controllability
problem for the wave equation [22]. Although alternative geometric conditions are also
available for obtaining such an estimate (see, for example, [10, 19]), it is important to
note that the geometric control condition is sharp in the sense that it is both necessary
and sufficient for obtaining an observability estimate.

1.2. Continuum null controllability problem. We recall the classical ap-
proach in showing the existence of a control function U that originates from [18]. Al-
though, in general, the problem of determining a control function U solving (1.1) - (1.2)
is nonunique, we may look for controls with additional constraints. The standard ap-
proach is to choose a control that additionally satisfies the (backward) wave equation
as well, that is

(1.3)

\left\{     
\square U = 0 \forall (t, x) \in \scrM ,

U(t, x) = 0 \forall (t, x) \in (0, T )\times \partial \Omega ,

U(T, x) = U0, \partial tU(T, x) = U1 \forall x \in \Omega 

for some (U0, U1) \in L2(\Omega )\times H - 1(\Omega ).
We recall from [17, Theorem 2.3] that (1.3) has a unique solution U in the energy

space

\scrC 1(0, T ;H - 1(\Omega )) \cap \scrC (0, T ;L2(\Omega )).
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A NUMERICAL CONTROL METHOD FOR THE WAVE EQUATION 1521

Observe that given any solution u to (1.1), and any solution V to (1.3), we have

(1.4)

\int T

0

(\chi \omega (\cdot )U(\tau , \cdot ), V (\tau , \cdot ))L2(\Omega ) d\tau = (\partial tu(T, \cdot ), V (T, \cdot ))L2(\Omega )

 - (\partial tu(0, \cdot ), V (0, \cdot ))L2(\Omega )  - \langle u(T, \cdot ), \partial tV (T, \cdot )\rangle H1
0 (\Omega )\times H - 1(\Omega )

+ \langle u(0, \cdot ), \partial tV (0, \cdot )\rangle H1
0 (\Omega )\times H - 1(\Omega ).

We deduce that (1.1) - (1.2) hold if and only if the following identity holds for any
solution V to the wave equation (1.3):
(1.5)\int T

0

(\chi \omega (\cdot )U(\tau , \cdot ), V (\tau , \cdot ))L2(\Omega ) d\tau =  - (g1, V (0, \cdot ))L2(\Omega ) + \langle g0, \partial tV (0, \cdot )\rangle H1
0 (\Omega )\times H - 1(\Omega ).

Under the additional assumption that the control function U satisfies the wave equa-
tion (1.3), equation (1.5) is equivalent to the Euler--Lagrange equation for the La-
grangian functional
(1.6)

\scrJ (U0, U1) =
1

2

\int T

0

\int 
\Omega 

\chi \omega | U | 2 dx dt - (g1, U(0, \cdot ))L2(\Omega ) + \langle g0, \partial tU(0, \cdot )\rangle H1
0 (\Omega )\times H - 1(\Omega ),

where, for each (U0, U1) \in L2(\Omega ) \times H - 1(\Omega ), U denotes the unique solution to (1.3)
with this final datum.

To summarize, let (U\ast ,0, U\ast ,1) be a minimizer (if it exists) for the functional \scrJ .
Then, the solution U\ast to (1.3) with this final datum yields a control function that
drives the solution u\ast of (1.1) with source term \chi \omega U\ast from (g0, g1) to (0, 0). In
fact, one can show that U\ast is the control function solving (1.1)--(1.2) with minimal
\| \surd \chi \omega U\| L2(\scrM ) norm.

We will now briefly recall how the observability estimate in Theorem 1.2 proves
existence of a unique minimizer for \scrJ . Let us first consider the classical context
where \scrO satisfies the geometric control condition and additionally that \chi \omega is simply
the characteristic function of the set \omega . In this case, Theorem 1.2 implies that the
functional \scrJ is coercive and strictly convex (see, for example, [22, Theorem 2.4]).
Together with the continuity of \scrJ it follows that, in this setting, there exists a unique
minimizer (U\ast ,0, U\ast ,1) in the space L2(\Omega )\times H - 1(\Omega ).

It is, in fact, quite common in the literature to let \chi \omega be the characteristic func-
tion of \omega as above. In this case, the control function U\ast suffers from low regularity
that makes the task of numerical approximation and derivation of convergence rates
challenging. Already in the seminal work [4], a theory for smoother boundary con-
trols for the wave equation were studied. In [12, 13], the authors studied interior
controls for the wave equation and, in particular, it was proved that one can con-
struct smoother control functions by simply imposing some smoothness conditions on
the initial datum (g0, g1) and using a sufficiently smooth cut-off function \chi \omega . Let us
recall their approach for the continuum problem. We need the following definition.

Definition 1.3. For each s \in \BbbN , we say that (y0, y1) \in \scrD (( - \Delta )s) if the following
conditions are satisfied:

(i) (y0, y1) \in Hs+1(\Omega )\times Hs(\Omega ),
(ii) (( - \Delta )jy0)| \partial \Omega = 0 for j = 0, 1, . . . , \lfloor s

2 + 1
4\rfloor ,

(iii) (( - \Delta )jy1)| \partial \Omega = 0 for j = 0, 1, . . . , \lfloor s
2  - 1

4\rfloor .
We now recall [12, Theorem 4] and [13, Theorem 1.6] to state some regularity

results for the controls that are obtained when smoother cut-off functions are used.
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1522 ERIK BURMAN, ALI FEIZMOHAMMADI, AND LAURI OKSANEN

Theorem 1.4. Let s \in \BbbN . Suppose that \chi \omega is a nonnegative smooth function
localized in \omega that maps \scrD (( - \Delta )s) to itself. Assume also that the functional \scrJ given
by (1.6) is coercive and strictly convex. Given any initial datum (g0, g1) \in \scrD (( - \Delta )s),
let (U\ast ,0, U\ast ,1) denote the unique minimizer for \scrJ on L2(\Omega )\times H - 1(\Omega ). Then,

(U\ast ,0, U\ast ,1) \in \scrD (( - \Delta )s - 1).

Moreover, the following estimate holds:

(1.7) \| U\ast \| Xs(\scrM ) + \| u\ast \| Xs+1(\scrM ) \leqslant C\| (g0, g1)\| Hs+1(\Omega )\times Hs(\Omega ),

where U\ast is the unique solution to (1.3) with final datum (U\ast ,0, U\ast ,1), and u\ast is the
unique solution to (1.1) with source \chi \omega U\ast . Here, C > 0 is a constant depend-
ing only on \scrM , \omega , \chi \omega , and s, and Xs(\scrM ) denotes the Banach space Xs(\scrM ) =\bigcap s

k=0 \scrC k(0, T ;Hs - k(\Omega )).

Note that this theorem gives a continuum solution (u\ast , U\ast ) to the null controlla-
bility problem (1.1)--(1.3), with smoothness properties given by (1.7). In this paper,
we will need to apply Theorem 1.4 with s = 3. We will therefore begin by defining
an admissibility condition for the set \scrO , based on the geometric control condition,
followed by the admissible choices of the cut-off function \chi \omega so that the assumptions
of Theorem 1.4 are satisfied.

Hypothesis 1.5 (admissibility condition for \scrO ). There exists \delta > 0 sufficiently
small, such that the set (0, T )\times \omega \delta satisfies the geometric control condition, where

\omega \delta = \{ x \in \omega | dist (x, \partial \omega \setminus \partial \Omega ) > \delta \} .

Next, assuming that the set \scrO satisfies the admissibility condition above, we
require that our cut-off function \chi \omega satisfies the following three properties:
(1.8)\left\{     

(i)\chi \omega \in \scrC \infty (\=\Omega ; [0,\infty )) and \chi \omega = 0 on the set \Omega \setminus \omega ,
(ii)\chi \omega = 1 on the set \omega \delta ,

(iii) (\partial k\nu \chi \omega )| \partial \Omega = 0 for k = 1, 2, where \nu denotes the unit normal vector to \partial \Omega .

We will show in Appendix A that one can always construct such cut-off functions.
As an example, we note that in the special case that \partial \omega \cap \partial \Omega = \emptyset , the cut-off function
can be chosen as any function \chi \omega \in \scrC \infty 

c (\omega ; [0, 1]) that satisfies

\chi \omega (x) =

\Biggl\{ 
0 if dist (x, \partial \omega ) < \delta 

2 ,

1 if dist (x, \partial \omega ) > \delta .

In Appendix B we will show that under the Hypothesis 1.5 and given any cut-
off function satisfying (i)--(iii) above, the two main assumptions of Theorem 1.4 are
satisfied for s = 3. Therefore, this theorem applies to solve the null controllability
problem (1.1)--(1.3) with the additional smoothness property that

u\ast \in X4(\scrM ) and U\ast \in X3(\scrM )

if the initial datum (g0, g1) belongs to the space \scrD (( - \Delta )3). This smoothness class for
the continuum solution to (1.1)--(1.3) will be important in our numerical analysis.

Before closing the section, let us emphasize that the results in this paper can
also be applied to the problem of (interior) exact controllability, where the final state
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(u(T, x), \partial tu(T, x)) can be any pair of functions (h0, h1) \in \scrD (( - \Delta )3). This is a
consequence of the equivalence of the null and exact controllability problems for the
wave equation. To illustrate this equivalence, let u1 denote the unique solution to
(1.1) with a homogeneous source term U = 0, but with the difference that the initial
conditions are imposed at the final time t = T that is to say u1(T, \cdot ) = h0 and
\partial tu1(T, \cdot ) = h1. This is possible due to the time-reversibility of the wave equation.
Subsequently, let (u1| t=0, \partial tu1| t=0) = (\~g0, \~g1). Finally, let \chi \omega U be a null control that
drives the system from initial data (g0  - \~g0, g1  - \~g1) to (0, 0). It is clear that \chi \omega U is
a control that drives the solution u to (1.1) from (g0, g1) to (h0, h1).

1.3. Previous literature. It is well known that methods based on minimizing
discrete analogues of the Lagrangian (1.6) may fail to converge. This is the case, for
example, when second-order central finite differences in both time and space are used
to discretize (1.3), and the so-obtained discretization of (1.6) is minimized by using
the conjugate gradient algorithm. This was first observed by Glowinski et al. in a
series of works in the early 1990s. An excellent summary of these works is provided
by Glowinski and Lions in sections 6.8--9 of [14]. It was observed that trouble lies
with the high-frequency components of the discrete solution (see, e.g., section 6.8.6 of
[14]) and different regularization techniques were proposed. For example, a Tikhonov
type regularization procedure based on use of the biharmonic operator is discussed
in detail in [14], and the efficiency of the regularization is demonstrated by numerical
experiments.

The spurious modes arising at high frequencies from a finite-difference semi-
discretization of the one dimensional wave equation were first rigorously analyzed
in [15]. In particular, it was shown that the analogue of the estimate in Theorem
1.2 fails on the discrete level. Several numerical methods based on filtering of the
spurious high frequency modes were subsequently proposed. As an early example of
a result in this tradition, we mention [21] where weak convergence of a subsequence
of semi-discrete approximations of a control function for the one dimensional wave
equation was proven. For a thorough review of the filtering approach, we refer to the
monograph [12]. There it is also shown that a semi-discrete variant of the approach
has optimal convergence under the assumption that the analogue of the estimate in
Theorem 1.2 is recovered on the discrete level after suitable filtering. However, it is
not known if such filtered estimates hold, in general, when only the geometric control
condition is assumed; see the discussion in section 5.3 of [12].

Instead of considering the control function satisfying (1.3), it is also possible to
follow Russell's stabilization implies control principle [23]. On the continuum level,
this involves an alternating iteration solving forward and backward wave equations. A
suitably semi-discretized version of this scheme leads to a solution method to the null
control problem with a rate of convergence exhibiting only a logarithmic loss when
compared to the optimal rate [8]. However, the scheme requires that the alternating
iteration is stopped after a specific number of steps, depending, for example, on the
constant C in Theorem 1.2, and this stopping criterion may not be easy to implement
in practice. As demonstrated in section 1.7.1.2 of [12], the iteration, in fact, diverges
as the number of steps grows too large.

In a recent work [9], C\^{\i}ndea and M\"unch formulate the controllability problem so
that the wave equation (1.3) enters into the Lagrangian functional (1.6) via a Lagrange
multiplier. The Lagrangian functional is further augmented with the L2-norm of \square U .
In a subsequent work [20], a Lagrange multiplier is used to impose the wave equation
as a first order system. The efficiency of the resulting methods is demonstrated by
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numerical experiments. However, their convergence analysis is not complete as it is
not known if the discrete inf-sup constants for the methods; see (39) in [9] and (6.9)
in [20], respectively, are uniformly bounded from below.

Our approach is based on a Lagrangian functional where the initial conditions
in (1.1) together with the final conditions in (1.2) are imposed via penalty terms,
and similarly to [9], (1.1) and (1.3) are imposed via Lagrange multipliers. Instead of
augmentation, we add Tikhonov type regularization terms that vanish at the correct
rate as the mesh size tends to zero. This allows us to prove a discrete inf-sup property
(Proposition 3.1), and subsequently an optimal convergence rate (Theorem 2.1). The
present method can be seen as the continuation of our previous work in [6], where we
studied numerical approximation of the dual problem to the controllability problem
discussed here, that is, the data assimilation problem subject to the wave equation.
A detailed comparison between these two works is given in section 6.

1.4. Outline of the paper. We start section 2 by presenting the first order
finite element spaces that are used for the numerical approximation of the null con-
trollability problem. A Lagrangian functional is then formulated in the discrete level,
and the main theorem is stated (Theorem 2.1) that gives a numerical method for solv-
ing the null controllability problem. Section 3 is concerned with proving a suitable
inf-sup stability estimate (Proposition 3.1) for the discrete Lagrangian. We also show
the existence of a unique critical point for the discrete Lagrangian. In section 4, the
inf-sup stability estimate is used together with a continuity estimate for the residual
error (Lemma 4.3) to obtain a weak a priori control on the error function (Propo-
sition 4.2). This proposition is then used to obtain an approximate version of the
observability estimate in Theorem 1.2 at the discrete level (Proposition 4.6). Sec-
tion 5 is concerned with the proof of Theorem 2.1. There, the key ingredients are the
coercivity (Lemma 5.4), together with the approximate discrete observability estimate
(Proposition 4.6). Finally, in section 6 we give a detailed comparison with our earlier
work for the data assimilation problem together with some concluding remarks.

2. Discretization. Let us now present the discretization approach for (1.1)--
(1.3). We will use finite differences in time and first order finite elements in space.
Let N \in \BbbN and define \tau = T

N to denote the uniform length of the time-steps in
our numerical method. Also, let \{ tk\} Nk=0 be defined through tk = k\tau . We begin
by discretizing the boundary \partial \Omega and denote the resultant polyhedral domain by \Omega h.
This polyhedral approximation is assumed to be sufficiently close to \Omega in the sense
that

(2.1) dist (x, \partial \Omega ) \leqslant C h2 \forall x \in \partial \Omega h

for some constant C > 0 that is independent of h. This is always possible since \Omega has
a smooth boundary (see [2], for example). Subsequently, we consider a spatial mesh
\scrT h which is a conforming quasi-uniform triangulation of the polyhedral domain \Omega h

and define hK to be the local space mesh size. We set h = maxK\in \scrT h
hK to be the

global mesh parameter in space and make the standing assumption that the discrete
time steps \tau and the spatial mesh parameter h are comparable in size, that is to say
\tau = \scrO (h).

We now define the spatial finite element space \BbbV h to be the space of piecewise
affine continuous finite elements satisfying zero boundary condition,

\BbbV h = \{ v \in H1
0 (\Omega h) : v| K \in \BbbP 1(K)\forall K \in \scrT h\} .
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For each u, v \in \BbbV h, let

(u, v)h =

\int 
\Omega h

u(x)v(x) dx and ah(u, v) =

\int 
\Omega h

\nabla u(x) \cdot \nabla v(x) dx,

and
\| u\| h =

\sqrt{} 
(u, u)h.

Next, we define the space-time mesh

\BbbV N+1
h = \BbbV h \times \BbbV h \times \cdot \cdot \cdot \times \BbbV h\underbrace{}  \underbrace{}  

N + 1 times

and, subsequently, for each

u = (u0, u1, . . . , uN ) \in \BbbV N+1
h ,

we define the backward and forward discrete time differences \partial \tau , \~\partial \tau as follows:

\partial \tau u
n =

un  - un - 1

\tau 
for n = 1, . . . , N,

\~\partial \tau u
n =

un  - un+1

\tau 
for n = 0, . . . , N  - 1.

We note in passing that the forward discrete time difference \~\partial \tau acting on (un)Nn=0 can
be thought of as the backward time difference for the discrete function (uN - n)Nn=0.
Note also that second order time differences can be written through

\partial 2\tau u
n =

un  - 2un - 1 + un - 2

\tau 2
for n = 2, . . . , N,

\~\partial 2\tau u
n =

un  - 2un+1 + un+2

\tau 2
for n = 0, . . . , N  - 2.

Finally, consider any smooth extension of \chi \omega to \Omega \cup \Omega h and define a nonnegative
discrete approximate \chi h of the smooth function \chi \omega such that \chi h \in \BbbV h and

(2.2) \| \chi \omega  - \chi h\| L\infty (\Omega h) + h\| \chi \omega  - \chi h\| W 1,\infty (\Omega h) \leqslant C h2,

where C > 0 is independent of h. Note that this is possible due to the smoothness
assumption on \chi \omega along with smoothness of \partial \Omega and (2.1).

We now return to the null controllability problem (1.1)--(1.3). Given any u =
(u0, . . . , uN ), U = (U0, . . . , UN ) in \BbbV N+1

h , and z = (z2, . . . , zN ), Z = (Z0, . . . , ZN - 2)

in \BbbV N - 1
h , we define the discrete Lagrangian functional

\scrJ : \BbbV N+1
h \times \BbbV N+1

h \times \BbbV N - 1
h \times \BbbV N - 1

h \rightarrow \BbbR 

through the expression

(2.3)
\scrJ (u, U, z, Z) =\scrJ 0(u, U, z, Z) + \scrJ 1(U),

\scrJ 0(u, U, z, Z) =\scrG (u, z) - \tau 

N\sum 
n=2

(\chi hU, z)h + \scrG \ast (Z,U) +\scrR (u),

\scrJ 1(U) =
h2

2
\| \nabla UN\| 2h +

h2

2
\| \partial \tau \nabla UN\| 2h +

h2

2
\| \partial \tau \nabla U1\| 2h +

\tau h2

2

N\sum 
n=1

\| \partial \tau \nabla Un\| 2h,
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1526 ERIK BURMAN, ALI FEIZMOHAMMADI, AND LAURI OKSANEN

\scrG (u, z) = \tau 

N\sum 
n=2

\bigl( 
(\partial 2\tau u

n, zn)h + ah(u
n, zn)

\bigr) 
,

\scrG \ast (Z,U) = \tau 

N - 2\sum 
n=0

\Bigl( 
(Zn, \~\partial 2\tau U

n)h + ah(Z
n, Un)

\Bigr) 
,

\scrR (u) =
1

2

\bigl[ 
\| \nabla uN\| 2h + \| \partial \tau uN\| 2h + \| \nabla (u0  - g0)\| 2h + \| \partial \tau u1  - g1\| 2h

\bigr] 
.

Let us make some remarks about the discrete Lagrangian \scrJ . Here, the variables u
and U should be interpreted as discrete analogoues of the state variable and the control
function, while z and Z are discrete variables. The terms \scrG (u, z) - \tau 

\sum N
n=2(\chi \omega U, z)h

and \scrG \ast (Z,U) are weak formulations of the first equations in (1.1) and (1.3), respec-
tively. Although in continuum, the forward and backward wave equations are com-
pletely equivalent, we use a backward discrete wave equation for the discrete control
variable U . This will be important in the proof of convergence rates for our numerical
analysis (see Lemma 5.3). The functional \scrR imposes the initial conditions in (1.1) as
well as the final conditions (1.2). Note that the initial states z0, z1 for z and final
states ZN - 1, ZN for Z do not appear in the formulation and can be taken to be zero.
Intuitively, the Lagrange multipliers are solving inhomogeneous wave equations with
zero initial or final data. To summarize, \scrJ 0 corresponds to (1.1)--(1.3).

We have incorporated the numerical stabilizers (also called regularizers) in the
discrete level through the functional \scrJ 1(U). The design of these terms is driven
with the goal of minimizing the errors in the numerical approximation of the null
controllability problem. The first two terms in \scrJ 1 correspond to the energy for the
wave equation (1.3) at time t = T and seem a natural inclusion, while the remaining
two terms are in part motivated by our previous works for data assimilation problems
for heat and wave equations [6, 7]. The regularization term in mixed derivatives also
appears in [1].

Heuristically, we expect to have a critical (saddle) point in the sense that the
Lagrangian attains the value

inf
(u,U)\in \BbbV 2N+2

h

sup
(z,Z)\in \BbbV 2N - 2

h

\scrJ (u, U, z, Z).

Moreover, we expect this critical point to converge to the continuum solution of the
control problem (1.1)--(1.3) with the Lagrange multipliers (z, Z) converging to zero as
h\rightarrow 0.

The Euler--Lagrange equations for the functional \scrJ can be written in the form

\langle Du\scrJ , v\rangle + \langle DU\scrJ , V \rangle + \langle Dz\scrJ , w\rangle + \langle DZ\scrJ ,W \rangle = 0 \forall (v, V, w,W ) \in \BbbV 4N
h ,

where Ds denotes the Fr\'echet derivative with respect to s \in \{ u, U, z, Z\} . Letting

x = (u, U, z, Z) \in \BbbV 4N
h and y = (v, V, w,W ) \in \BbbV 4N

h ,

we see that the Euler--Lagrange equations can be recast in the form

(2.4) \scrA (x; y) = ah(v
0, g0) + (\partial \tau v

1, g1)h \forall y \in \BbbV 4N
h ,

where \scrA : \BbbV 4N
h \times \BbbV 4N

h \rightarrow \BbbR is a bilinear form defined through

\scrA (x; y) = \scrA 0(u, z; v) +\scrA 1(U, z, Z;V ) +\scrA 2(u, U ;w) +\scrA 3(U ;W ),
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with

\scrA 0(u, z; v) =\scrG (v, z) + ah(u
0, v0) + ah(u

N , vN ) + (\partial \tau u
1, \partial \tau v

1)h + (\partial \tau u
N , \partial \tau v

N )h,

\scrA 1(U, z, Z;V ) =\scrG \ast (Z, V ) - \tau 

N\sum 
n=2

(\chi hV, z)h + h2(\nabla UN ,\nabla V N )h

+ h2(\partial \tau \nabla UN , \partial \tau \nabla V N )h

+ h2(\partial \tau \nabla U1, \partial \tau \nabla V 1)h + \tau 

N\sum 
n=1

(h \partial \tau \nabla Un, h \partial \tau \nabla V n)h,

\scrA 2(u, U ;w) =\scrG (u,w) - \tau 

N\sum 
n=2

(\chi hU,w)h,

\scrA 3(U ;W ) =\scrG \ast (W,U).

Observe, in particular, that the expressions for \scrA 2 and \scrA 3 imply that the Euler--
Lagrange equations for u and U enforce discrete versions of (1.1) and (1.3). Indeed,
the state variable u must solve the discrete forward wave equation with source term
\chi hU , while the control variable U must solve the discrete backward wave equation.
We are now ready to state the main theorem in the paper as follows.

Theorem 2.1. Suppose that Hypothesis 1.5 holds for the set \scrO = (0, T )\times \omega . Let
\chi \omega be any function that satisfies properties (i)--(iii) in (1.8). Let (g0, g1) \in \scrD (( - \Delta )3)
and denote by (u\ast , U\ast ), the unique continuum solution to the interior null controlla-
bility problem (1.1)--(1.3). Then, there exists h0 > 0, such that for all 0 < h < h0, the
Euler--Lagrange equation (2.4) admits a unique solution denoted by (uh, Uh, zh, Zh).
Moreover, for n = 1, . . . , N :

(i) \| Un
\ast  - Un

h \| L2(\Omega ) + \| \partial tUn
\ast  - \partial \tau U

n
h \| H - 1(\Omega ) \leqslant C h\| (g0, g1)\| H4(\Omega )\times H3(\Omega ),

(ii) \| un\ast  - unh\| H1(\Omega ) + \| \partial tun\ast  - \partial \tau u
n
h\| L2(\Omega ) \leqslant C h\| (g0, g1)\| H4(\Omega )\times H3(\Omega ),

where Un
\ast (\cdot ) = U\ast (n\tau , \cdot ), un\ast (\cdot ) = u\ast (n\tau , \cdot ) and C > 0 is a constant independent of the

mesh parameter1 h that only depends on T , \scrM , \omega , \delta .

See Proposition 4.2 for the estimates of zh and Zh.

3. Inf-sup stability estimate. This section is concerned with the study of the
Euler--Lagrange equation (2.4). First, we define \kappa , \~\kappa > 0 to be constants such that
for all u \in \BbbV h

(3.1) max \{ h, \tau \} \| \nabla u\| h \leqslant \kappa \| u\| h and \~\kappa \| u\| h \leqslant \| \nabla u\| h,

where we recall that h, \tau are the mesh parameters. The existence of these constants
is guaranteed by the discrete inverse inequality that follows from the fact that the
space-mesh is quasi-uniform (see, for instance, [5, Lemma 4.5.3]) together with the
Poincar\'e inequality and the standing assumption that \tau = \scrO (h).

1 Recall that h and \tau are assumed to be comparable, that is, \tau = \scrO (h).
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1528 ERIK BURMAN, ALI FEIZMOHAMMADI, AND LAURI OKSANEN

We introduce the following discrete norms and semi-norms:

| \| (u, U)| \| 2R = \| \nabla uN\| 2h + \| \partial \tau uN\| 2h + \| \nabla u0\| 2h + \| \partial \tau u1\| 2h + \tau 

N\sum 
n=1

\| h \partial \tau \nabla Un\| 2h

+ h2\| \nabla \partial \tau UN\| 2h + h2\| \partial \tau \nabla U1\| 2h + h2\| \nabla UN\| 2h,

| \| u| \| 2F = \tau 

N\sum 
n=1

(\| \partial \tau un\| 2h + \| \nabla un\| 2h),

| \| U | \| 2F \prime = \tau 

N\sum 
n=2

(\| \partial 2\tau Un\| 2h + \| \partial \tau \nabla Un\| 2h + \| \partial \tau Un\| 2h + \| \nabla Un\| 2h)

+ \| \partial \tau U1\| 2h + \| \nabla U1\| 2h,

| \| z| \| 2D = \tau 
N\sum 

n=2

\| zn\| 2h + \tau 

N\sum 
n=2

\| \nabla \scrI zn\| 2h + \| \nabla \scrI zN\| 2h + \| zN\| 2h

| \| Z| \| 2D\prime = \tau 

N - 2\sum 
n=0

\| Zn\| 2h + \tau 

N - 2\sum 
n=0

\| \nabla \~\scrI Zn\| 2h + \| \nabla \~\scrI Z0\| 2h + \| Z0\| 2h

| \| (u, U, z, Z)| \| 2C = | \| (u, U)| \| 2R + \tau 

N\sum 
n=2

\| zn\| 2h + \tau 

N - 2\sum 
n=0

\| Zn\| 2h.

(3.2)

Here,

\scrI zn = \tau 

n\sum 
m=0

(1 +m\tau )zm and \~\scrI Zn = \tau 

N\sum 
m=n

(1 + (N  - m)\tau )Zm,

where we have defined z0 = z1 = 0 and ZN - 1 = ZN = 0. Note that using the
Poincar\'e inequality we have the following:

\| \nabla \scrI zn\| h \geqslant C \| \scrI zn\| h n = 2, . . . , N,

for some C > 0 independent of h, with an analogous estimate holding for \~\scrI Z as well.
The above norms and semi-norms have the following interpretations. The | \| (\cdot , \cdot )| \| R

semi-norm captures the stability properties of the bilinear form \scrA due to the regu-
larization terms in \scrJ 1 and the data fitting terms in \scrR . The norms | \| \cdot | \| F , | \| \cdot | \| F \prime ,
| \| \cdot | \| D, and | \| \cdot | \| D\prime quantify stability properties of the discrete wave equations for u,
U , z, and Z given by \scrG (u, z) and \scrG \ast (Z,U). There is a delicate counterbalance in the
strength of the norms | \| \cdot | \| F , | \| \cdot | \| F \prime (in terms of the Sobolev scales) for the functions
u, U compared to that of | \| \cdot | \| D, | \| \cdot | \| D\prime for the Lagrange multipliers z, Z. For in-
stance, in the continuum limit \tau , h\rightarrow 0, the | \| \cdot | \| F norm is reminiscent to \| \cdot \| H1(\scrM ),
while the | \| \cdot | \| D norm is analogous to \| \cdot \| H - 1(0,T ;H1(\Omega )) + \| \cdot \| L2(\scrM ). The | \| (\cdot , \cdot )| \| C
semi-norm quantifies continuity of \scrA in the dual variables from above and below; see
Proposition 3.1 below and Lemma 4.3.

The rest of this section is concerned with the following proposition.

Proposition 3.1. There exists h0, C > 0 such that for all h \in (0, h0) and all
x = (u, U, z, Z) \in \BbbV 4N

h there exists y = (v, V, w,W ) \in \BbbV 4N
h satisfying

\scrA (x; y) \gtrsim | \| (u, U)| \| 2R + h2| \| u| \| 2F + h2| \| U | \| 2F \prime + | \| z| \| 2D + | \| Z| \| 2D\prime \gtrsim | \| y| \| 2C .
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Remark 1. Throughout the remainder of this paper we use the notation A \gtrsim B,
to imply the existence of a positive constant C > 0 independent of the mesh parameter
h, such that A \geqslant CB.

We can use Proposition 3.1 to show that the Euler--Lagrange equation (2.4) admits
a unique solution xh = (uh, Uh, zh, Zh) \in \BbbV 4N

h . Indeed, let Nh denote the dimension of
\BbbV h. Equation (2.4) is a linear system governed by a 4NhN\times 4NhN matrix. Existence
and uniqueness of a discrete solution xh will follow, if we can show that the kernel of
this matrix is trivial. But this follows immediately from Proposition 3.1.

Before presenting the proof of Proposition 3.1, we state a few lemmas, the first
of which is trivial.

Lemma 3.2. Let x = (u, U, z, Z) \in \BbbV 4N
h . If y = (u, U, - z, - Z), then

\scrA (x; y) = | \| (u, U)| \| 2R.

The estimates in the next lemma are discrete analogues of energy estimates for the
wave equation corresponding to various Sobolev norms. The energy estimates for u
and U will be stronger in the Sobolev scale but eventually rescaled by h2 and this will
be balanced by weaker Sobolev spaces with no scaling on the dual variables z, Z. For
the proof, we refer the reader to [6, Remark 1 and Lemmas 3.4 and 3.5].

Lemma 3.3. Let (u, U, z, Z) \in \BbbV 4N
h . We define z0 = z1 = ZN - 1 = ZN = 0.

Define the test function y = (v, V, w,W ) through

vn = \scrI zn for n = 0, . . . , N,

V n = \~\scrI Zn for n = 0, . . . , N,

wn = (2T  - n\tau )\partial \tau u
n for n = 2, . . . , N,

Wn = \~\partial 2\tau U
n + (2T  - (N  - n)\tau )\~\partial \tau U

n for n = 0, . . . , N  - 2.

The following estimates hold:

(3.3)
\scrG (u,w) \gtrsim | \| u| \| 2F  - | \| (u, 0)| \| 2R, \scrG (v, z) \gtrsim | \| z| \| 2D,
\scrG \ast (h2W,U) \gtrsim h2| \| U | \| 2F \prime  - | \| (0, U)| \| 2R, \scrG \ast (Z, V ) \gtrsim | \| Z| \| 2D\prime ,

where the constants in the inequalities only depend on T,\Omega .

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. Let x = (u, U, z, Z) and define y = (\^v, \^V , \^w, \^W ) \in \BbbV 4N

through

(3.4)
\^vn = un + \gamma vn, \^V n = Un + \alpha V n,

\^wn =  - zn + \alpha h2wn, \^Wn =  - Zn + \gamma h2Wn,

where \gamma > \alpha > 0 and v, V, w,W are chosen as in Lemma 3.3. Recalling the definition
of the linear form \scrA (x; y) together with Lemma 3.2, we write

\scrA (x; y) = | \| (u, U)| \| 2R+\gamma \scrA 0(u, z; v)+\alpha \scrA 1(U, z, Z;V )+\alpha h2\scrA 2(u, U ;w)+\gamma h2\scrA 3(U ;W ).

By Lemma 3.3, there exists C1, C2 > 0 only depending on T,\Omega such that

(3.5)
\alpha h2\scrG (u,w) + \gamma \scrG (v, z) + \alpha \scrG (Z, V ) + \gamma h2\scrG (W,U)

\geqslant C1(h
2\gamma | \| U | \| 2F \prime + \alpha h2| \| u| \| 2F + \gamma | \| z| \| 2D + \alpha | \| Z| \| 2D\prime ) - C2\gamma | \| (u, U)| \| 2R.
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We now set \alpha = \alpha 0\gamma for a fixed 0 < \alpha 0 < min \{ 1, 34 \~\kappa 
2C2

1 ,
C2

1

4T 2 \} and show that the
proposition holds for this choice of y \in \BbbV 4N

h when \gamma is sufficiently small independent
of h. First, note that

ah(u
0, v0) = ah(\partial \tau u

1, \partial \tau v
1) = ah(U

N , V N ) = ah(\partial \tau U
N , \partial \tau V

N ) = 0.

We use the Cauchy--Schwarz inequality to obtain the following bounds for the remain-
ing (possibly) negative terms in \scrA (x; y):

| ah(uN , vN )| \leqslant 1

C1
\| \nabla uN\| 2h +

C1

4
\| \nabla \scrI zN\| 2h,

| (\partial \tau uN , \partial \tau vN )h| \leqslant 
(1 + T )2

C1
\| \partial \tau uN\| 2h +

C1

4
\| zN\| 2h,

h2| (\partial \tau \nabla U1, \partial \tau \nabla V 1)h| \leqslant h2
\kappa 2(1 + T )2

C1
\| \partial \tau \nabla U1\| 2h +

C1

4
\| Z0\| 2h,

\tau 

N\sum 
n=1

| (\tau \partial \tau \nabla Un, \tau \partial \tau \nabla V n)h| \leqslant 
\kappa 2(1 + T )2

C1
\tau 

N\sum 
n=1

\| \tau \partial \tau \nabla Un\| 2h +
C1

4
\tau 

N - 2\sum 
n=0

\| Zn\| 2h,

h2
\bigm| \bigm| \bigm| \bigm| \tau N\sum 

n=2

(\chi hU
n, wn)h

\bigm| \bigm| \bigm| \bigm| \leqslant 4T 2

C1
\tau 

N\sum 
n=2

h2\| Un\| 2h +
C1

4
\tau 

N\sum 
n=2

h2\| \partial \tau un\| 2h,\bigm| \bigm| \bigm| \bigm| \tau N\sum 
n=2

(\chi hV, z)h

\bigm| \bigm| \bigm| \bigm| \leqslant 1

\~\kappa 2C1
\tau 

N\sum 
n=2

\| zn\| 2h +
C1

4
\tau 

N - 2\sum 
n=0

\| \nabla \~\scrI Zn\| 2h.

Combining these bounds we deduce that

\scrA (x; y) \geqslant | \| (u, U)| \| 2R  - C3\gamma | \| (u, U)| \| 2R + \alpha 
3C1

4
| \| Z| \| 2D\prime + \alpha 

3C1

4
h2| \| u| \| 2F

+
\Bigl( 3C1\gamma 

4
 - \alpha 

\~\kappa 2C1

\Bigr) 
| \| z| \| 2D +

\Bigl( 
C1\gamma  - 4T 2\alpha 

C1

\Bigr) 
h2| \| U | \| 2F \prime ,

where C3 = C2 + 2(1 + \kappa 2)(1 + T )2 1
C1

. The first claimed inequality then follows for
\gamma sufficiently small. To prove the second inequality in the proposition, we use the
Cauchy--Schwarz inequality to obtain the following bounds for y \in \BbbV 4N

h :
(3.6)

| \| (\^v, 0)| \| 2R \lesssim | \| (u, 0)| \| 2R + | \| z| \| 2D, | \| (0, \^V )| \| 2R \lesssim | \| (0, U)| \| 2R + | \| Z| \| 2D\prime ,

\tau 
N\sum 

n=2

\| \^wn\| 2h \lesssim \tau 

N\sum 
n=2

\| zn\| 2h + h2| \| u| \| 2F , \tau 

N - 2\sum 
n=0

\| \^Wn\| 2h \lesssim \tau 

N\sum 
n=2

\| Zn\| 2h + h2| \| U | \| 2F \prime .

This completes the proof.

4. A weak a priori error estimate and an approximate discrete observ-
ability estimate for the error. Throughout this section, we will let (uh, Uh, zh, Zh)
denote the unique solution to (2.4). The main goal here is to prove an approximate
discrete analogue of the continuum observability estimate.2 This will be done in sev-
eral steps. We start by proving a weak preliminary error estimate (Proposition 4.2),
and then use this estimate to prove Proposition 4.6 that we call an approximate dis-
crete observability estimate for the error function. This proposition will subsequently
be used as a key ingredient to prove the main theorem.

2 Not to be confused with discrete observability estimates in the literature.
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In what follows, we will let (u\ast , U\ast ) denote the continuum solution to (1.1) - (1.3).
Let us observe that since (g0, g1) \in \scrD (( - \Delta )3), it follows from Theorem 1.4 that

\| u\ast \| X4(\scrM ) + \| U\ast \| X3(\scrM ) \leqslant C\| (g0, g1)\| H4(\Omega )\times H3(\Omega ),

where C > 0 only depends on \scrM , \omega , \delta and X3(\scrM ) =
\bigcap 3

k=0 \scrC k(0, T ;H3 - k(\Omega )).
Due to the mismatch between \Omega and \Omega h, we extend the functions in \BbbV h to all of

\Omega h \cup \Omega by setting them to zero on the set \Omega \setminus \Omega h. We will also utilize the extension
operator (see [24]) E : Hs(\Omega ) \rightarrow Hs(\Omega \cup \Omega h), s \geqslant 0 to define the extended functions
ue\ast and Ue

\ast on the set (0, T )\times (\Omega \cup \Omega h) through

ue\ast (t, \cdot ) = Eu\ast (t, \cdot ) and Ue
\ast (t, \cdot ) = EU\ast (t, \cdot ) t \in [0, T ].

We will slightly abuse the notation by dropping the superscript e when there is no
confusion.

Let us recall the definition of the H1 projection interpolator \pi h : H1
0 (\Omega ) \rightarrow \BbbV h

defined through

(4.1) ah(\pi hu, v) = ah(u, v) \forall v \in \BbbV h.

We have the following lemma. For the proof, we refer the reader to [6, Lemma 4.2].

Lemma 4.1. Let u \in H1
0 (\Omega ). Then

\| Eu - \pi hu\| L2(\Omega h) \lesssim h\| u\| H1
0 (\Omega ),

and if, additionally ,u \in H2(\Omega ), then

\| Eu - \pi hu\| H1(\Omega h) \lesssim h\| u\| H2(\Omega ).

We define

(4.2) \~uh = uh  - \pi hu\ast , \~Uh = Uh  - \pi hU\ast , and xh = (\~uh, \~Uh, zh, Zh).

We have the following proposition.

Proposition 4.2. There exists h0 > 0 such that for all 0 < h < h0, the following
estimate holds:

| \| zh| \| D + | \| Zh| \| D\prime + h| \| \~uh| \| F + h| \| \~Uh| \| F \prime + | \| (\~uh, \~Uh)| \| R \lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega ).

Let us remark that as an immediate consequence of this proposition, the Lagrange
multipliers (zh, Zh) converge to zero with a rate that is proportional to the space-time
mesh parameter h. Moreover, we have

\scrR (uh) \lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega ),

implying that the initial and final states of the discrete solution uh converge to the
desired values at the optimal rate. In order to prove this proposition, we need the
following lemma.

Lemma 4.3. Let xh \in \BbbV 4N
h be as in (4.2). Then

\scrA (xh; y) \lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega )| \| y| \| C \forall y \in \BbbV 4N
h .
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1532 ERIK BURMAN, ALI FEIZMOHAMMADI, AND LAURI OKSANEN

Proof. Let y = (v, V, w,W ). We can use the Euler--Lagrange equation (2.4) to
write

\scrA (xh; y) = ah(v
0, g0)+(\partial \tau v

1, g1)h - \scrA ((\pi hu\ast , \pi hU\ast , 0, 0); y) = S1+S2+S3+S4+S5,

where

S1 =  - \scrG (\pi hu\ast , w) + \tau 

N\sum 
n=2

(\chi \omega U
n
\ast , w

n)h,

S2 =  - \scrG \ast (W,\pi hU\ast ),

S3 = \tau 

N\sum 
n=2

(\chi h\pi hU
n
\ast  - \chi \omega U

n
\ast , w

n)h,

S4 =  - ah(\pi huN\ast , vN ) + ah(g0  - \pi hu
0
\ast , v

0) - (\partial \tau \pi hu
N
\ast , \partial \tau v

N )h + (g1  - \partial \tau \pi hu
1
\ast , \partial \tau v

1)h,

S5 =  - \scrA 1((\pi hU\ast , 0, 0);V ).

For the term S1, we first observe that u\ast satisfies

\tau 

N\sum 
n=2

\int 
\Omega 

\bigl( 
\partial 2t u

n
\ast \cdot wn +\nabla un\ast \cdot \nabla wn

\bigr) 
dx = \tau 

N\sum 
n=2

\int 
\Omega 

\chi \omega U
n
\ast \cdot wn dx,

where un\ast = u\ast (n\tau , \cdot ) and Un
\ast = U\ast (n\tau , \cdot ) and we are identifying u\ast , U\ast with their

extensions ue\ast , U
e
\ast . The test function wn is extended to \Omega \cup \Omega h by setting it equal to

zero outside \Omega h. Note that since w \in H1
0 (\Omega h) the extended function wn belongs to

H1
0 (\Omega h \cup \Omega ). Together with the definition of the interpolator \pi h, we can write

S1 = \tau 

N\sum 
n=2

((1 - \pi h)\partial 
2
\tau u

n
\ast , w

n)h\underbrace{}  \underbrace{}  
I1

+ \tau 

N\sum 
n=2

(\partial 2t u
n
\ast  - \partial 2\tau u

n
\ast , w

n)h\underbrace{}  \underbrace{}  
I2

+\tau 

N\sum 
n=2

(\varsigma nE , w
n)\Omega h\setminus \Omega ,

where \varsigma Eu
n
\ast = E (\chi \omega U

n
\ast ) - \square E un\ast . We utilize [6, Lemma 3.1] to write

| (\varsigma nE , wn)| \leqslant \| \varsigma nE\| \Omega h\setminus \Omega \| w
n\| \Omega h\setminus \Omega \lesssim (\| \chi \omega U

n
\ast \| L2(\Omega )+\| \partial 2t un\ast \| L2(\Omega )+\| un\ast \| H2(\Omega ))h

2\| \nabla wn\| h.

Thus using Theorem 1.4 for u\ast , U\ast and the inverse discrete inequality in (3.1) for wn,
we can write\bigm| \bigm| \bigm| \bigm| \tau N\sum 

n=2

(\varsigma nE , w
n)\Omega h\setminus \Omega 

\bigm| \bigm| \bigm| \bigm| 2 \lesssim h2(\| U\ast \| 2\scrC (0,T ;L2(\Omega )) + \| u\ast \| 2\scrC 2(0,T ;L2(\Omega ))

+ \| u\ast \| 2\scrC (0,T ;H2(\Omega )))

\biggl( 
\tau 

N\sum 
n=2

\| wn\| 2h
\biggr) 

\lesssim h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega )| \| (0, 0, w, 0)| \| 
2
C .

Using the same analysis as that of the terms I1, I2 in [6, Proposition 4.3] we obtain

| I1| 2 \lesssim h2
\biggl( \int T

0

\| \nabla \partial 2t u\ast \| 2L2(\Omega ) dt

\biggr) \biggl( 
\tau 

N\sum 
n=2

\| wn\| 2h
\biggr) 
,

| I2| 2 \lesssim \tau 2
\biggl( \int T

0

\| \partial 3\tau u\ast \| 2L2(\Omega ) dt

\biggr) \biggl( 
\tau 

N\sum 
n=2

\| wn\| 2h
\biggr) 
.
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We can therefore use Theorem 1.4 to conclude that

| S1| \lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega )| \| (0, 0, w, 0)| \| C .

For the term S2, we first note that

\tau 

N - 2\sum 
n=0

\int 
\Omega 

\bigl( 
Wn \cdot \partial 2tUn

\ast +\nabla Wn \cdot \nabla Un
\ast 
\bigr) 
dx = 0,

where we recall the notation Un
\ast (\cdot ) = U\ast (n\tau , \cdot ). Therefore, using the definition of the

interpolator \pi h we can write

S2 = \tau 

N - 2\sum 
n=0

(Wn, (1 - \pi h)\~\partial 
2
\tau U

n
\ast )h + \tau 

N - 2\sum 
n=0

(Wn, \partial 2tU
n
\ast  - \~\partial 2\tau U

n
\ast )h + \tau 

N - 2\sum 
n=0

(\~\varsigma nE ,W
n),

where \~\varsigma nE =  - \square E Un
\ast . Analogous to the term S1 we obtain the bound

| S2| \lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega )| \| (0, 0, 0,W )| \| C ,

where we have used Theorem 1.4 again. For the term S3, we write

| S3| = | \tau 
N\sum 

n=2

((\chi h  - \chi \omega )\pi hU
n
\ast , w

n)h + \tau 

N\sum 
n=2

(\chi \omega (\pi hU
n
\ast  - Un

\ast ), w
n)h| 

\lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega )| \| (0, 0, w, 0)| \| C ,

where we have used the bound (2.2) together with Lemma 4.1 for the first term and
Lemma 4.1 for the second term. For S4, we use the the fact that u\ast (0, \cdot ) = g0,
\partial tu(0, \cdot ) = g1, and (1.2) with the approximation properties of \pi h to deduce that

| S4| \leqslant 2
\sqrt{} 
\scrR (\pi hu\ast )\scrR (v) \lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega )| \| (v, 0)| \| R,

where we have used the fact that \pi hu
N
\ast = 0 and Theorem 1.4 to obtain the following

bounds:

\| \partial \tau \pi huN\ast \| h = \| (\pi h  - 1)\partial \tau u
N
\ast + \partial \tau u

N
\ast  - \partial tu

N
\ast \| h \lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega ),

\| \partial \tau \pi hu1\ast  - g1\| h = \| (\pi h  - 1)\partial \tau u
1
\ast + \partial \tau u

1
\ast  - g1\| h \lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega ),

\| \nabla (\pi hu
0
\ast  - g0)\| h = \| \nabla (\pi h  - 1)u0\ast \| h \lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega ).

Finally, for the term S5, we write

| S5| \leqslant 2
\sqrt{} 
\scrJ 1(\pi hU\ast )\scrJ 1(V ) \lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega )| \| (0, V )| \| R,

where we have used the following bounds for \scrJ 1(\pi hU\ast ):

\tau 

N\sum 
n=1

\| \tau \nabla \partial \tau \pi hU\ast \| 2h \lesssim \tau 2\| U\ast \| 2H1(0,T ;H1(\Omega )) \lesssim h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega ),

\| h\nabla \partial \tau \pi hUN
\ast \| 2h \lesssim h2\| U\ast \| 2H2(0,T ;H1(\Omega )) \lesssim h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega ),

\| h\nabla \partial \tau \pi hU1
\ast \| 2h \lesssim h2\| U\ast \| 2H2(0,T ;H1(\Omega )) \lesssim h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega ),

\| h\nabla \pi hUN
\ast \| 2h \lesssim h2\| U\ast \| H1(0,T ;H1(\Omega )) \lesssim h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega ).

Combining the estimates yields the claim.

D
ow

nl
oa

de
d 

06
/1

1/
20

 to
 1

93
.6

0.
23

8.
99

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1534 ERIK BURMAN, ALI FEIZMOHAMMADI, AND LAURI OKSANEN

Proof of Proposition 4.2. Let xh be as in (4.2). Using Proposition 3.1, there exists
y \in \BbbV 4N

h such that

\scrA (xh; y) \gtrsim (| \| (\~uh, \~Uh)| \| R + h| \| \~uh| \| F + h| \| \~Uh| \| F \prime + | \| zh| \| D + | \| Zh| \| D\prime )| \| y| \| C .

Combining this estimate with Lemma 4.3 yields the claim.

Lemma 4.1 can be used together with Theorem 1.4 to obtain the following corol-
lary.

Corollary 4.4.

| \| uh| \| F + | \| Uh| \| F \prime \lesssim \| (g0, g1)\| H4(\Omega )\times H3(\Omega ).

We are now ready to state two key ingredients of the proof of Theorem 2.1. The
first estimate is regarding the error function \~uh. We recall that for each n, \~unh is
extended to \Omega \cup \Omega h by setting it to be zero outside \Omega h.

Lemma 4.5. Let \~uh be as defined in (4.2). For n = 1, . . . , N , the following esti-
mate holds:

\| \~unh\| 2H1(\Omega ) + \| \partial \tau \~unh\| 2L2(\Omega ) \lesssim h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega ) + \tau 

N\sum 
n=2

\| \surd \chi h
\~Un
h \| 2h.

Proof. Note that Proposition 4.2 implies that

\| \~u0h\| H1(\Omega ) + \| \partial \tau \~u1h\| L2(\Omega ) \lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega ).

Recall that uh satisfies the discrete wave equation

\tau 

N\sum 
n=2

\bigl( 
(\partial 2\tau u

n
h, w

n)h + ah(u
n
h, w

n)
\bigr) 
= \tau 

N\sum 
n=2

(\chi hU
n
h , w

n)h,

and that u\ast solves the wave equation (1.1). Thus standard discrete energy estimates
for the wave equation apply to derive the claimed inequality (see, for example, [11,
Lemma 6]).

Next, we state the following approximate observability estimate for the error
function \~Uh defined in (4.2). We remind the reader that for each n, Un

h is extended
to \Omega \cup \Omega h by setting it to zero outside \Omega h.

Proposition 4.6. Let \~Uh be as defined in (4.2). For n = 1, . . . , N , the following
estimate holds:

\| \~Un
h \| 2L2(\Omega ) + \| \partial \tau \~Un

h \| 2H - 1(\Omega ) \lesssim h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega ) + \tau 

N\sum 
n=2

\| \surd \chi h
\~Un
h \| 2h.

Proof. We begin by defining the continuous piecewise affine function

\^Uh(t, \cdot ) = Un - 1
h (\cdot ) + (t - tn - 1)\partial \tau U

n
h (\cdot ) for t \in [tn - 1, tn],

for n = 1, . . . , N . Let \scrE = \^Uh - U\ast and define the bounded linear functional R through

(4.3) \langle R,W \rangle =
\int T

0

\int 
\Omega 

( - \partial t\scrE \cdot \partial tW +\nabla \scrE \cdot \nabla W ) dx dt \forall W \in H1
0 (\scrM ).
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For the remainder of this proof, we will identify U\ast with its E-extension to (0, T ) \times 
(\Omega \cup \Omega h). Applying Theorem 1.2 with \~\scrO = (0, T )\times \omega \delta and using the fact that \chi \omega = 1
on \omega \delta , we obtain

sup
t\in [0,T ]

(\| \scrE (t, \cdot )\| 2L2(\Omega ) + \| \partial t\scrE (t, \cdot )\| 2H - 1(\Omega )) \lesssim \| \surd \chi \omega \scrE \| 2L2(\scrM )(4.4)

+ \| R\| 2H - 1(\scrM ) + \| \scrE \| 2L2((0,T )\times \partial \Omega ).

We proceed to prove the following bounds:

(4.5) \| \scrE \| L2((0,T )\times \partial \Omega ) \lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega ),

(4.6) | \langle R,W \rangle | \lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega )\| W\| H1(\scrM ) \forall W \in H1
0 (\scrM ),

(4.7) \| \surd \chi \omega \scrE \| 2L2(\scrM ) \lesssim h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega ) + \tau 

N\sum 
n=2

\| \surd \chi h
\~Un
h \| 2h.

The proposition then follows by writing \~Un
h (\cdot ) = \scrE (n\tau , \cdot ) + \scrE \ast (n\tau , \cdot ) with \scrE \ast (n\tau , \cdot ) =

U\ast (n\tau , \cdot ) - \pi hUn
\ast (\cdot ). The term \scrE \ast (n\tau , \cdot ) may then be bounded by h\| (g0, g1)\| H4(\Omega )\times H3(\Omega )

using Lemma 4.1 and Taylor development in time followed by Theorem 1.4.
First, we prove the estimate (4.5). Recalling that U\ast | (0,T )\times \partial \Omega = 0, we write

\| \scrE \| 2L2((0,T )\times \partial \Omega ) = \| \^Uh\| 2L2((0,T )\times \partial \Omega ) \lesssim \tau 

N\sum 
n=0

\| Un
h \| 2L2((0,T )\times \partial \Omega ).

Applying [6, Lemma 4.1] and Corollary 4.4, we deduce that

\tau 

N\sum 
n=0

\| Un
h \| 2L2((0,T )\times \partial \Omega ) \lesssim \tau 

N\sum 
n=0

h2\| \nabla Un
h \| 2h \lesssim h2| \| Uh| \| 2F \prime \lesssim h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega ).

Let us now consider the estimate (4.6). We introduce the notation \=Wn through

(4.8) \=Wn(\cdot ) = 1

\tau 

\int tn

tn - 1

W (t, \cdot ) dt for n = 1, . . . , N.

Note that using the Poincar\'e and Cauchy--Schwarz inequalities, we have

(4.9)

\tau 

N - 1\sum 
n=1

\| Wn  - \=Wn\| 2L2(\Omega ) \lesssim \tau 2\| W\| 2H1(0,T ;L2(\Omega )),

\| \nabla \=Wn\| 2L2(\Omega ) \lesssim \tau  - 1\| W\| 2L2(0,T ;H1(\Omega )) for n = 1, . . . , N,

\| \=WN\| 2L2(\Omega ) \lesssim \tau \| W\| 2H1(0,T ;L2(\Omega )).
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Since \square U\ast = 0 on \scrM and Uh = 0 on (0, T )\times (\Omega \setminus \Omega h), we have

\langle R,W \rangle =
\int T

0

( - \partial t \^Uh, \partial tW )h + ah( \^Uh,W )

=

N\sum 
n=1

\int tn

tn - 1

\bigl[ 
 - (\partial \tau U

n
h , \partial tW )h + ah(U

n - 1
h ,W ) + (t - tn - 1)ah(\partial \tau U

n
h ,W )

\bigr] 
dt

= \tau 

N - 1\sum 
n=1

(\partial 2\tau U
n+1
h ,Wn)h + \tau 

N\sum 
n=1

ah(U
n - 1
h , \=Wn)

+

N\sum 
n=1

\int tn

tn - 1

(t - tn - 1)ah(\partial \tau U
n
h ,W ) dt

= \tau 

N - 1\sum 
n=1

(\partial 2\tau U
n+1
h ,Wn  - \=Wn)h\underbrace{}  \underbrace{}  

I

+ \tau ah(U
N - 1
h , \=WN )\underbrace{}  \underbrace{}  
II

+ \tau 

N - 2\sum 
n=0

\Bigl( 
(\~\partial 2\tau U

n
h , \=W

n+1)h + ah(U
n
h , \=W

n+1)
\Bigr) 

\underbrace{}  \underbrace{}  
III

+

N\sum 
n=1

\int tn

tn - 1

(t - tn - 1)ah(\partial \tau U
n
h ,W ) dt\underbrace{}  \underbrace{}  

IV

.

We will first proceed to bound each of the terms I, III, and IV and then treat the
term II. For the term I, we use the Cauchy--Schwarz inequality to write

| I| 2 \leqslant 

\biggl( 
\tau 

N\sum 
n=2

\| \partial 2\tau Un
h \| 2h

\biggr) \biggl( 
\tau 

N - 1\sum 
n=1

\| Wn  - \=Wn\| 2L2(\Omega )

\biggr) 
\lesssim \tau 2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega )\| W\| 2H1(\scrM ),

where we have used the first bound in (4.9) followed by Corollary 4.4. For the term
III, we first note that Uh satisfies

\tau 

N - 2\sum 
n=0

\Bigl( 
(\~\partial 2\tau U

n
h , \pi h \=Wn+1)h + ah(U

n
h , \pi h \=Wn+1)

\Bigr) 
= 0,

which, together with the definition of the interpolator \pi h and Corollary 4.4, implies
that

| III| 2 = | \tau 
N - 2\sum 
n=0

(\~\partial 2\tau U
n
h , (\pi h  - 1) \=Wn+1)h| 2

\leqslant 

\biggl( 
\tau 

N\sum 
n=2

\| \partial 2\tau Un
h \| 2h

\biggr) \biggl( 
\tau 

N - 2\sum 
n=0

\| (\pi h  - 1) \=Wn+1\| 2
\biggr) 

\lesssim \tau 2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega )\| W\| 2H1(\scrM ).

For the term IV, we use the Cauchy--Schwarz inequality to write

| IV| 2 \lesssim \tau 2

\Biggl( 
\tau 

N\sum 
n=1

\| \partial \tau \nabla Un
h \| 2h

\Biggr) 
\| W\| 2H1(\scrM ) \lesssim \tau 2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega )\| W\| 2H1(\scrM ),
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where we have used Corollary 4.4 again. It remains to bound the term II. Here, we
use the fact that Uh solves the Euler--Lagrange equation (2.4) again to write

\tau ah(U
N - 1
h , \=WN ) = \tau ah(U

N - 2
h , \=WN ) + \tau 2ah(\partial \tau U

N - 1
h , \=WN ).

But using Corollary 4.4 we have the bound \| \nabla \partial \tau UN - 1\| h \lesssim \tau  - 
1
2 \| (g0, g1)\| H4(\Omega )\times H3(\Omega ),

which together with the bound (4.9) implies that

\tau ah(\tau \partial \tau U
N - 1
h , \=WN ) \lesssim \tau \| (g0, g1)\| H4(\Omega )\times H3(\Omega )\| W\| H1(\scrM ).

For the remaining term, we observe that

\tau ah(U
N - 2
h , \=WN ) = \tau ah(U

N - 2
h , \pi h \=WN )

=  - \tau (\~\partial 2\tau UN - 2
h , (\pi h  - 1) \=WN )h\underbrace{}  \underbrace{}  

S1

 - \tau (\~\partial 2\tau UN - 2
h , \=WN )h\underbrace{}  \underbrace{}  
S2

.

To bound the term S1, we use Lemma 4.1 and the second bound in (4.9) to obtain

| S1| \lesssim \tau \| \partial 2\tau UN
h \| h\tau 

1
2 \| W\| H1(\scrM ) \lesssim \tau \| (g0, g1)\| H4(\Omega )\times H3(\Omega )\| W\| H1(\scrM ),

where we have used Corollary 4.4 to write the bound

\| \partial 2\tau UN
h \| h \lesssim \tau  - 

1
2 \| (g0, g1)\| H4(\Omega )\times H3(\Omega ).

Finally, for the term S2, we write

| S2| \lesssim \tau \| \partial 2\tau UN
h \| h\| \=WN\| h \lesssim \tau \| (g0, g1)\| H4(\Omega )\times H3(\Omega )\| W\| H1(\scrM ),

where we have used the third bound in (4.9) together with Corollary 4.4 in the last
step. This completes the proof of bound (4.6).

To prove (4.7), we first define the piecewise constant time interpolant \pi 0 as follows:

\pi 0v
n = v(tn) for t \in (tn - 1, tn] and n = 1, . . . , N.

This interpolant satisfies the bound

\| \pi 0v  - v\| L2(0,T ) \lesssim \tau \| v\| H1(0,T ).

Note that by adding and subtracting \chi h and using (2.2) we have

\| \surd \chi \omega \scrE \| 2L2(\scrM ) \leqslant \| \chi \omega  - \chi h\| 2L\infty (\Omega )\| \scrE \| 
2
L2(\scrM ) + \| \surd \chi h\scrE \| 2L2(\scrM )

\lesssim h2
\int T

0

(\| U\ast \| 2L2(\Omega ) + \| \^Uh\| 2L2(\Omega )) dt+ \| \surd \chi h\scrE \| 2L2(\scrM ).

Observe that

h2
\int T

0

\| \^Uh\| 2L2(\Omega ) dt \lesssim h2| \| \~Uh| \| 2F \prime .

Using Corollary 4.4 and Theorem 1.4 it follows that

\| \surd \chi \omega \scrE \| 2L2(\scrM ) \lesssim h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega ) + \| \surd \chi h\scrE \| 2L2(\scrM ).
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Furthermore,

\| \surd \chi h\scrE \| 2L2(\scrM ) \leqslant C(h2 + \tau 2)\| U\ast \| 2H1(\scrM ) +

\int T

0

\| \surd \chi h\pi 0\pi hU\ast  - 
\surd 
\chi h

\^Uh\| 2h dt.

To bound the second term we write\int T

0

\| \surd \chi h\pi 0\pi hU\ast  - 
\surd 
\chi h

\^Uh\| 2h dt \lesssim 
\int T

0

\| \surd \chi h\pi 0\pi hU\ast 

 - \pi 0
\surd 
\chi h

\^Uh\| 2h dt+
\int T

0

\| \pi 0 \^Uh  - \^Uh\| 2h dt

= \tau 

N\sum 
n=1

\| \surd \chi h
\~Un
h \| 2h +

N\sum 
n=1

\int tn

tn - 1

\| \pi 0 \^Uh  - \^Uh\| 2h dt.

It suffices to bound the second term of the right-hand side. Using the piecewise
linearity of \^Uh we observe that

N\sum 
n=1

\int tn

tn - 1

\| \pi 0 \^Uh  - \^Uh\| 2h dt =
N\sum 

n=1

\int tn

tn - 1

\| (t - tn)\partial \tau U
n
h \| 2h dt \leqslant \tau 

N\sum 
n=1

\| \tau \partial \tau Un
h \| 2h

\lesssim h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega ),

where we have used Corollary 4.4 in the last step. This completes the proof of the
bound (4.7).

5. A strong a priori error estimate and proof of the main theorem.
This section is concerned with the proof of the main theorem. The idea is to use
the approximate discrete observability estimate together with an improved coercivity
estimate to produce a stronger error estimate, stated as follows.

Proposition 5.1. Let \~Uh be as defined in (4.2). The following residual estimate
holds:

\tau 

N\sum 
n=2

\| \surd \chi h
\~Un
h \| 2h \lesssim h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega ).

The proof of the main theorem follows from Proposition 5.1. Indeed, note that
the first claimed inequality in Theorem 2.1 follows from combining Propositions 4.6
and 5.1, while the second claimed inequality follows from combining Lemma 4.5 and
Proposition 5.1. We proceed to prove Proposition 5.1. This will be divided into parts.
We define the refined test function

(5.1) \^y = (\^v, \^V , \^w, \^W )

through the expressions

\^v = \~uh + \gamma v, \^V = \~Uh + \alpha V,

\^w =  - zh  - \gamma \~Uh + \alpha h2w, \^W =  - Zh + \gamma h2W,

where \gamma > \alpha > 0 and v, V, w,W are chosen as in Lemma 3.3 in terms of the discrete
functions zh, Zh, \~uh and \~Uh, respectively. Let us also define a norm on \BbbV 4N

h through
the expression

(5.2)
| \| (u, U, z, Z)| \| 2S = \tau 

N\sum 
n=2

\| \surd \chi hU
n\| 2h + | \| (u, U)| \| 2R + h2| \| u| \| 2F

+ h2| \| U | \| 2F \prime + | \| z| \| 2D + | \| Z| \| 2D\prime 
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We have the following three lemmas. These will be subsequently used to prove
Proposition 5.1.

Lemma 5.2. Let xh, \^y be defined as in (4.2) and (5.1) respectively. The following
estimate holds:

| \| \^y| \| C \lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega ) + | \| xh| \| S .

Proof. Recall that

| \| \^y| \| 2C = | \| (\^v, 0)| \| 2R + | \| (0, \^V )| \| 2R + \tau 

N\sum 
n=2

\| \^wn\| 2h + \tau 

N - 2\sum 
n=0

\| \^Wn\| 2h.

We proceed to bound each of the four terms appearing on the right-hand side. Indeed,
using (5.1) and the Cauchy--Schwarz inequality we have the bounds

| \| (\^v, 0)| \| 2R \lesssim | \| (\~uh, 0)| \| 2R + \| \nabla vN\| 2h + \| \partial \tau vN\| 2h + \| \nabla v1\| 2h + \| \partial \tau v1\| 2h
\lesssim | \| (\~uh, 0)| \| 2R + \| \nabla vN\| 2h + \| \partial \tau vN\| 2h \lesssim | \| (\~uh, 0)| \| 2R + | \| zh| \| 2D,

| \| (0, \^V )| \| 2R \lesssim | \| (0, \~Uh)| \| 2R + h2\tau 

N\sum 
n=1

\| \partial \tau \nabla V n\| 2h + h2\| \partial \tau \nabla V 1\| 2h

\lesssim | \| (0, \~Uh)| \| 2R + \tau 

N - 2\sum 
n=0

\| Zh\| 2h + \| Z0
h\| 2h \lesssim | \| (0, \~Uh)| \| 2R + | \| Zh| \| 2D\prime ,

\tau 

N - 2\sum 
n=0

\| \^Wn\| 2h \lesssim \tau 

N - 2\sum 
n=0

\| Zn
h\| 2h + h2| \| \~Uh| \| 2F \prime ,

\tau 

N\sum 
n=2

\| \^wn\| 2h \lesssim \tau 

N\sum 
n=2

\| znh\| 2h + h2| \| \~uh| \| 2F + \tau 

N\sum 
n=2

\| \~Uh\| 2h,

Applying Proposition 4.6 in the last bound and using the definition of the | \| \cdot | \| S norm
yields the claim.

Lemma 5.3. The following estimate holds:

| \scrG (\~uh, \~Uh)| \lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega )

\bigl( 
h\| (g0, g1)\| H4(\Omega )\times H3(\Omega ) + | \| xh| \| S

\bigr) 
.

Proof. We begin by using the discrete version of Leibniz rule to write

\scrG (\~uh, \~Uh) = \scrG \ast (\~uh, \~Uh) - (\~uN - 1
h , \partial \tau \~U

N
h )h + (\partial \tau \~u

N
h , \~U

N
h )h + (\~u0h, \partial \tau \~U

1
h)h  - (\partial \tau \~u

1
h, \~U

1
h)h\underbrace{}  \underbrace{}  

I

 - \tau ah(\~u0h, \~U0
h) - \tau ah(\~u

1
h, \~U

1
h) + \tau ah(\~u

N - 1
h , \~UN - 1

h ) + \tau ah(\~u
N
h , \~U

N
h )\underbrace{}  \underbrace{}  

II

.

Now using the fact that \scrG \ast (W,Uh) = 0 for all W (see (2.4)), we obtain

\scrG \ast (\~uh, \~Uh) =  - \scrG \ast (\~uh, \pi hU\ast ),
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which is identical to the term S2 in Lemma 4.3. Therefore, we have the bound

(5.3)

| \scrG \ast (\~uh, \pi hU\ast )| 2 \lesssim h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega )

\biggl( 
\tau 

N\sum 
n=0

\| \~unh\| 2h
\biggr) 

\lesssim h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega )

\biggl( 
h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega )

+ \tau 

N\sum 
n=2

\| \surd \chi h
\~Un
h \| 2h

\biggr) 
,

where we have used Lemma 4.5 in the last step. To analyze the terms I and II, we
first observe that

\| \nabla \~u1h\| h = \| \nabla \~u0h + \tau \nabla \partial \tau \~u1h\| \leqslant \| \nabla \~u0h\| h + \kappa \| \partial \tau \~u1h\| h.

\| \nabla \~uN - 1
h \| h = \| \nabla \~uNh  - \tau \nabla \partial \tau \~uNh \| \leqslant \| \nabla \~uNh \| h + \kappa \| \partial \tau \~uNh \| h.

Now, for the term I, we can use Proposition 4.2 with Proposition 4.6 to deduce that

(5.4) | I| 2 \lesssim h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega )

\biggl( 
h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega ) + \tau 

N\sum 
n=2

\| \surd \chi h
\~Un
h \| 2h

\biggr) 
.

For the term II, we use the bounds

\tau \| \nabla \~Uk
h\| h \leqslant \kappa \| \~Uk

h\| h for k = 0, 1, . . . , N,

and write

| II| 2 \lesssim | \| (\~uh, 0)| \| 2R(\| \~U0
h\| 2h + \| \~U1

h\| 2h + \| \~UN - 1
h \| 2h + \| \~UN

h \| 2h).

We can apply Proposition 4.2 with Proposition 4.6 again to obtain

| II| 2 \lesssim h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega )

\biggl( 
h2\| (g0, g1)\| 2H4(\Omega )\times H3(\Omega ) + \tau 

N\sum 
n=2

\| \surd \chi h
\~Un
h \| 2h

\biggr) 
.

Combining this with inequalities (5.3) and (5.4) completes the proof.

Lemma 5.4. Let xh, \^y be defined as in (4.2), (5.1), respectively. The following
estimate holds:

\scrA (xh; \^y) \geqslant C| \| xh| \| 2S  - C \prime h\| (g0, g1)\| H4(\Omega )\times H3(\Omega )

\bigl( 
h\| (g0, g1)\| H4(\Omega )\times H3(\Omega ) + | \| xh| \| S

\bigr) 
,

where C,C \prime > 0 are constants independent of the parameter h.

Proof. This proof mirrors the proof of Proposition 3.1. We start by writing

(5.5) \scrA (xh; \^y) = | \| (\~uh, \~Uh)| \| 2R + \tau \gamma 

N\sum 
n=2

\| \surd \chi h
\~Uh\| 2h  - \gamma \scrG (\~uh, \~Uh) +\scrA (xh; \~y),

where \~y = (\gamma v, \alpha V, \alpha h2w, \gamma h2W ) with v, V , w, andW defined as in (5.1). The analysis
of the last term on the right-hand side is exactly as in the proof of Proposition 3.1.
Therefore, using the same bounds as in that proof, we deduce that
(5.6)
\scrA (xh; \~y) \geqslant  - C1\gamma | \| (\~uh, \~Uh)| \| 2R + C2\alpha (h

2| \| \~uh| \| 2F + h2| \| \~Uh| \| 2F \prime + | \| zh| \| 2D + | \| Zh| \| 2D\prime )

for some C1, C2 > 0. Finally, combining (5.5)--(5.6) and applying Lemma 5.3 yields
the claim.
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Proof of Proposition 5.1. We choose \^y as in (5.1). Lemma 5.4 applies and we
have

\scrA (xh; \^y) \geqslant C| \| xh| \| 2S  - C \prime h\| (g0, g1)\| H4(\Omega )\times H3(\Omega )(h\| (g0, g1)\| H4(\Omega )\times H3(\Omega ) + | \| xh| \| S).

On the other hand, Lemma 4.3 applies, and together with Lemma 5.2, we write

\scrA (xh, \^y) \lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega )| \| \^y| \| C
\lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega )

\bigl( 
| \| xh| \| S + h\| (g0, g1)\| H4(\Omega )\times H3(\Omega )

\bigr) 
.

Combining these bounds, we note that the following inequality holds:

| \| xh| \| 2S \lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega )

\bigl( 
h\| (g0, g1)\| H4(\Omega )\times H3(\Omega ) + | \| xh| \| S

\bigr) 
.

This implies that
| \| xh| \| S \lesssim h\| (g0, g1)\| H4(\Omega )\times H3(\Omega ).

6. Further remarks.

6.1. A comparison with the data assimilation problem. We start this
section with a comparison with our earlier work for the dual problem to null control-
lability for the wave equation, that is the data assimilation (DA) problem.

Let us briefly recall the DA problem as follows. Let \omega \subset \Omega and consider a solution
u to the wave equation (1.1) without the a priori knowledge of the initial data (g0, g1).
The DA problem reads as follows: determine the solution u, given the additional piece
of data q = u| (0,T )\times \omega .

To solve DA, one can study the critical points for the Lagrangian

\scrL (u, z) = 1

2
\| u - q\| 2L2(\scrO ) +

\int T

0

\int 
\Omega 

(\partial 2t u \cdot z +\nabla u \cdot \nabla z) dx dt,

where the wave equation is imposed on u through the Lagrange multiplier z. Similar
to the theory of controllability, existence of a unique minimizer for this functional is
guaranteed by an observability estimate on the set \scrO = (0, T )\times \omega .

In [6], we considered an approach based on finite element method for numerically
solving the DA problem, using first order finite elements in space and finite differences
in time. Analogous to the current work, this method was based on defining a discrete
analogue for the Lagrangian \scrL that additionally incorporates numerical stabilizers in
u. Optimal convergence rates were proven under the assumption that the geometric
control condition is satisfied on the set \scrO (see [6, Theorem 4.6]).

Although our approach to solving the null controllability problem here draws
similarities to that in [6], in the sense that similar numerical stabilization terms are
used, we outline three of the key differences that makes the control problem more
challenging.

First, for the DA problem, the data fitting term \| u  - q\| L2(\scrO ), incorporated in
the Lagrangian functional on the discrete level, gives optimal error bounds on the
set \scrO . Then the error bound on \scrO , combined with the stability properties for the
wave equation (obtained through discrete energy estimates) and the continuum ob-
servability estimate (Theorem 1.2), gives optimal error bounds for the DA problem.
Notice, however, that for the null controllability problem, proving error bounds in the
set \scrO is much harder as the control function U is a priori unknown. In fact, error
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bounds for the control function U in the set \scrO are obtained in the final section of
the paper (see Proposition 5.1). In the case of the null controllability problem, it is
not a priori clear how the observability estimate appears in the convergence rates. To
retrace the steps of the proof, we recall that we first derived a weak a priori error
estimate (Proposition 4.2). We then used this estimate combined with the observ-
ability estimate to obtain an approximate version of the observability estimate at the
discrete level (Proposition 4.6). Finally, using a key hidden coercivity estimate in the
Lagrangian \scrJ (see Lemma 5.4) combined with Proposition 4.6, we were able to obtain
the optimal error estimates.

The second key difference is the fact that both the state variable u and the
control function U are unknowns in the controllability problem whereas in the data
assimilation problem the only unknown is the state variable. A closer inspection of
our work in [6], together with the previous literature on the Lagrangian formulations
of the control problem, suggests that a discrete version of the more commonly studied
continuum Lagrangian

\scrL (u, U) =
1

2

\int T

0

\int 
\Omega 

\chi \omega | U | 2 dt dx - (g1, U(0, \cdot ))L2(\Omega ) + \langle g0, \partial tU(0, \cdot )\rangle H1
0 (\Omega )\times H - 1(\Omega )

 - 
\int T

0

\int 
\Omega 

\partial 2t u \cdot U dt dx - 
\int T

0

\int 
\Omega 

\nabla u \cdot \nabla U dt dx

may yield a numerical method, as long as the correct stabilization terms are incorpo-
rated. However, we were unable to derive optimal error estimates for this formulation,
mainly due to the inconvenient feature that the critical point for the Lagrange multi-
plier U in this formulation represents the control function and will not be zero. The
Lagrangian formulation employed in this paper introduces two Lagrange multipliers
(z, Z), which makes the analysis complete.

Finally, let us emphasize that the data assimilation problem has nice features on
the continuum level that the controllability problem is lacking. The former problem
has a unique solution whereas for the latter the solution is unique only under addi-
tional constraints such as (1.3). The question of existence and smoothness for the
latter problem are quite trivial. Indeed, existence is guaranteed as long as the data
q comes from an actual solution to the wave equation, while smoothness follows by
requiring that the data q comes from a smooth solution. However, for the control
problem, existence is a consequence of the deep result by Bardos, Lebeau, and Rauch
[4] while smoothness also requires additional assumptions (see Theorem 1.4)

6.2. Concluding remarks. We have designed a fully discrete finite element
method for the numerical approximation of the interior null controllability problem
subject to the wave equation. The first order case was considered, using piecewise
affine finite element approximation in space and a first order finite difference formula in
time. A Tikhonov type regularization was applied to the control function at initial and
final times, but the regularization parameter was chosen to scale with h in such a way
that the perturbation due to regularization vanishes at a suitable rate. This allowed
us to prove error estimates that are optimal compared to interpolation error, for the
state variable and suboptimal with one order in h for the control variable. Observe,
however, that the convergence rate of the latter is determined by the norms in the
left-hand side of the observability estimate of Theorem 1.2 and the convergence rate
of the residual quantities of the scheme evaluated in the norms of the right-hand side
(4.5)--(4.7). The former cannot be improved. Since also the bound (4.6) is optimal
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for piecewise affine approximation it appears that the error in the control variable
is optimal if the continuum stability properties and the numerical approximation
properties are both taken into account.

Let us also remark that no regularization was applied to the Lagrange multi-
plier variables z and Z, leading to a system where (u, U) and (z, Z) are only weakly
coupled allowing for solution algorithms using the classical forward-backward solving
approach. Finally, it bears pointing out that the approach using weakly consistent
regularization, discrete inf-sup stability, and the observability estimate is not limited
to the first order case, but can be extended to high order methods, using the modus
operandi designed herein. This requires the introduction of suitable residual based
regularization terms that are weakly consistent to the right order, which appears to
be most feasible in the space-time framework. This is a topic for future work.

Appendix A. In this section, we proceed to construct an example of a smooth
nonnegative cut-off function that satisfies properties (i)--(iii) in (1.8).

Let us first recall the boundary normal coordinates near \partial \Omega in \Omega , that are given
by the locally smooth diffeomorphism F : \BbbR \times \partial \Omega \rightarrow \Omega defined through

F (x\prime , xn) = \gamma x\prime (xn).

Here, x\prime is a point on \partial \Omega given in local coordinates by (x1, . . . , xn - 1), and \gamma x\prime (\cdot )
denotes the normal line to the boundary \partial \Omega with \gamma x\prime (0) = x\prime , parametrized in terms
of its arc-length. This map gives a local coordinate system such that the points
(x1, . . . , xn - 1, 0) are on the boundary.

Let \omega \delta be defined as in Hypothesis 1.5 and define \Gamma = \partial \omega \cap \partial \Omega and \Gamma \delta = \partial \omega \delta \cap \partial \Omega .
Let \Gamma \prime 

\delta be a small open neighborhood of \Gamma \delta , and let \Gamma \prime \prime 
\delta be a small open neighborhood

of \Gamma \prime 
\delta such that \Gamma \prime \prime 

\delta \subset \Gamma . Let \varepsilon > 0 and choose a smooth \psi (x\prime ) on \partial \Omega such that \psi = 1
on \Gamma \prime 

\delta and such that supp\psi \subset \Gamma \prime \prime 
\delta . Subsequently, define a smooth function \Psi in the

boundary normal coordinates by \Psi (x\prime , xn) = \psi (x\prime ). Next, choose \eta \in \scrC \infty (\Omega ; [0, 1])
such that

(A.1) \eta (x) =

\Biggl\{ 
1 if dist (x, \partial \Omega ) < \varepsilon 

2 ,

0 if dist (x, \partial \Omega ) > \varepsilon .

Finally, let \Phi \in \scrC \infty (\Omega ; [0, 1]) be such that \Phi = 1 on \omega \delta and \Phi = 0 on \Omega \setminus \omega . We now
define

\chi \omega = \eta \Psi + (1 - \eta ) \Phi .

Note that the above function is a globally well defined smooth nonnegative function
on \Omega . Indeed, the first term in this expression is supported in an \varepsilon neighborhood of
the boundary \partial \Omega where the boundary normal coordinates are well defined (if \varepsilon > 0 is
sufficiently small). Let us now prove that (i)--(iii) hold. Given that \Gamma \prime \prime 

\delta is contained in
\Gamma , it follows that for \varepsilon small, the first term in the definition of \chi \omega vanishes on \Omega \setminus \omega .
The second term also vanishes on \Omega \setminus \omega , since \Phi vanishes there. Hence, (i) is satisfied.
To show (ii), we note that for \varepsilon sufficiently small, \eta \Psi = \eta on the set \omega \delta and that
\Phi = 1 on \omega \delta . It follows that \chi \omega = \eta + (1  - \eta ) = 1 on \omega \delta . Finally, to show (iii), we
note that in an \varepsilon 

2 neighborhood of the boundary, only the first term in the definition
of \chi \omega is nonzero. Since \eta = 1 there, we have \chi \omega = \Psi and it follows that \partial k\nu \chi \omega | \partial \Omega = 0
since \partial kxn

\Psi (x\prime , xn) = 0 for all k = 1, . . . .

Appendix B. This section is concerned with verifying the main assumptions in
Theorem 1.4 for s = 3, given that Hypothesis 1.5 holds and that \chi \omega satisfies properties
(i)--(iii) in (1.8).
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We start by proving that the mapping property \chi \omega : \scrD (( - \Delta )3) \rightarrow \scrD (( - \Delta )3)
holds. To this end, we recall that the Laplace operator \Delta has the following (well-
known) expression in boundary normal coordinates near \partial \Omega :

(B.1) \Delta = \partial 2xn
 - a(x\prime , xn)\partial xn

+ b(x\prime , xn)

n - 1\sum 
i,j=1

\partial xi
(cij(x\prime , xn)\partial xj

)

for some smooth functions a(x\prime , xn), b(x
\prime , xn), and c

ij(x\prime , xn) near \partial \Omega .
Let (y0, y1) \in \scrD (( - \Delta )3). We need to show that (\chi \omega y0, \chi \omega y1) \in \scrD (( - \Delta )3). Since

\chi \omega \in \scrC \infty (\Omega ), it follows that (\chi \omega y0, \chi \omega y1) \in H4(\Omega ) \times H3(\Omega ) and the first property
in Definition 1.3 is satisfied. Let us now show that \chi \omega y0 satisfies (ii). First, observe
that since y0 = 0 on \partial \Omega , we have \chi \omega y0 = 0 on \partial \Omega . Next, using (B.1), together with
the fact that y0(x

\prime , 0) = 0, we obtain

\Delta (\chi \omega y0)(x
\prime , 0) = (\partial 2xn

(\chi \omega y0))(x
\prime , 0) - a(x\prime , 0)(\partial xn

(\chi \omega y0))(xn, 0).

Since \partial kxn
\chi \omega (x

\prime , 0) = 0 for k = 1, 2, this reduces to

\Delta (\chi \omega y0)(x
\prime , 0) = \chi \omega (x

\prime , 0)((\partial 2xn
y0)(x

\prime , 0) - a(x\prime , 0)(\partial xn
y0)(x

\prime , 0)).

Using again the fact that y0(x
\prime , 0) = 0, this can be recast as

\Delta (\chi \omega y0)(x
\prime , 0) = \chi \omega (x

\prime , 0)(\Delta y0)(x
\prime , 0) = 0,

where the last step uses the fact that \Delta y0| \partial \Omega = 0. This shows that property (ii) in
Definition 1.3 also holds for \chi \omega y0. Analogously, we can show that property (iii) in
Definition 1.3 holds for \chi \omega y1. Thus \chi \omega maps \scrD (( - \Delta )3), and subsequently, the first
assumption in Theorem 1.4 is verified.

Let us now show that \scrJ is coercive and strictly convex (following [22, Theorem
2.4]). Indeed, since (0, T )\times \omega \delta satisfies the geometric control condition, Theorem 1.2
applies to obtain the bound

(B.2) \| U\| \scrC ([0,T ];L2(\Omega )) + \| \partial tU\| \scrC ([0,T ];H - 1(\Omega )) \leqslant C0\| U\| (0,T )\times \omega \delta 
\leqslant C0\| 

\surd 
\chi \omega U\| L2(\scrM )

for all U that solve the wave equation (1.3), where C0 > 0 is a constant depending on
T,\Omega , \omega , \delta . In the last inequality above, we have used the facts that \chi \omega is nonnegative
and that \chi \omega = 1 on \omega \delta .

Applying the Cauchy--Schwarz inequality we write

\scrJ (U0, U1) \geqslant 
1

2
\| \surd \chi \omega U\| 2L2(\scrM )  - \| (g0, g1)\| H1

0 (\Omega )\times L2(\Omega )\| (U0, U1)\| L2(\Omega )\times H - 1(\Omega ).

Now applying the estimate (B.2), it follows that

\scrJ (U0, U1) \rightarrow \infty as \| (U0, U1)\| L2(\Omega )\times H - 1(\Omega ) \rightarrow \infty ,

and therefore, by definition, \scrJ is coercive.
To show strict convexity, note that given any pair (U0, U1) and (V0, V1) in L

2(\Omega )
\times H - 1(\Omega ) and any \lambda \in [0, 1] we have

\scrJ (\lambda (U0, U1) + (1 - \lambda )(V0, V1)) =\lambda \scrJ (U0, U1) + (1 - \lambda )\scrJ (V0, V1)

 - 1

2
\lambda (1 - \lambda )

\int T

0

\int 
\Omega 

\chi \omega | U  - V | 2 dt dx,
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where U, V solve (1.3) with final data (U0, U1) and (V0, V1), respectively. Now, using
(B.2) again, we deduce that for (U0, U1) \not = (V0, V1), there holds

\scrJ (\lambda (U0, U1) + (1 - \lambda )(V0, V1)) < \lambda \scrJ (U0, U1) + (1 - \lambda )\scrJ (V0, V1).

Therefore, the functional \scrJ is strictly convex on L2(\Omega )\times H - 1(\Omega ).
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