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A B ST R A C T

This thesis studies a population of agents facing repeatedly the same decision prob

lem. Each agent knows the set of strategies available, but not the payoff distribution 

associated with each strategy. Agents follow simple behaviour rules which have no 

memory beyond what is encoded in the current “state” of the decision maker.

We consider two different frameworks: (i) Individual learning and (ii) imitation 

learning. We also distinguish rules where the “state space” of the decision maker is the 

set of pure strategies, and behavior rules where it is the set of mixed strategies. The 

results for these two cases differ dramatically.

In the case of individual learning, we say that a behaviour rule is maximising (ap

proximately maximising) if asymptotically, for all underlying payoff distributions, the 

decision maker will play with probability one (close to one) the expected payoff max

imising strategy. We show that no behaviour rule with pure strategy state space is 

(approximately) maximising. For the class of mixed strategy behaviour rules, we iden

tify a property called monotonicity which implies approximate maximisation, provided 

learning proceeds in small steps. We characterise monotone learning rules, showing 

that they are closely related to the “replicator dynamics” of evolutionary game theory.

When considering imitation learning, we postulate that at each iteration agents 

have the opportunity of randomly sampling another agent, observing the strategy which 

this agent played and his payoff. We consider two different settings. In the first, the 

behaviour of the observed population is exogenously given and constant. We show that 

no pure strategy imitation rule is (approximately) maximising. For mixed strategy 

behaviour rules, we characterise the set of all monotone rules, showing that monotone 

rules involve imitation probabilities which are proportional to payoff differences. In 

the second setup all agents in the population are allowed to adjust their behaviour 

according to some imitation rule. We show that no pure strategy imitation rule is 

maximising i.e. there does not exist a rule such that, if every member of the population 

adopts it, asymptotically every agent plays the expected payoff maximising strategy 

with probability one, regardless of the true payoff distribution. We then define and 

analyse a weaker requirement, “equilibrium” imitation rules.
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0.1 A ck now ledgm en t

This thesis has been the most challenging intellectual adventure I have ever tried, and, 

like in all important adventures, there are some persons who has played an important 

role in its completion.

Ana Lozano, a former teacher of mine and currently a faculty mate in the Depart

ment of Economics at the University of Malaga, was responsible for having pushed me 

inside the academic career. Ana showed me the way towards the mountain.

After completing my Economics Degree at Malaga University, I spent two years in 

Madrid taking an Economics Postgraduate Course at Centro de Estudios Monetarios 

y Financieros. I met there Jorge Padilla. His lectures and above all my conversations 

with him, raised my interest in microeconomic and game theory. He suggested me the 

possibility of taking a PhD abroad. Jorge put me in the position to initiate the climbing 

of the mountain.

The mountain is placed in the Department of Economics of the University College of 

London. I arrived there in June 1994 to meet Tilman Borgers. After an English coffee 

in Cracks and a 3 hours meeting, he accepted to supervise my thesis. He introduced 

me into the field of learning theory, his own field of study, and was patient enough 

to forgive all my limitations. Despite of my persistent errors, he always provided me 

with more trials. In February 1997, I decided to go back to Malaga, where I became a 

teaching assistant at the Department of Economics. I really thank Tilman for letting 

me go. I believe Tilman has given to me much more than what an average supervisor 

usually offers. My most sincere gratitude goes to him. He has always been waiting for 

me at the top of the mountain.

Now the thesis is completed. After this five years, I am proud of saying that above 

all, the three mentioned persons have become very good friends of mine. I believe it to 

be my most important achievement.

There is still a fourth person who has been a necessary condition for me to reach 

the top of the mountain. Ana Moniche came with me to England in 1994 and I went 

with her to Malaga in February 1997. After these years, she has become more than a 

friend. I married her in April 1997. Ana, te quiero mucho.



C hapter 1

M otivation

1.1 In tro d u ctio n

The assumption that economic agents’ behaviour is rational is central to much of eco

nomic theory. In decisions under certainty, this assumption is usually interpreted to 

mean that agents maximize some preference ordering or some utility function. In deci

sions under uncertainty, the assumption means that agents maximize expected utility. 

Finally, in games rational behaviour is interpreted by economic theory as Nash equi

librium behaviour.

Recently, economic theorists have started to enquire into the foundations of the 

rationality hypothesis. In particular, it has been asked how agents might come to make 

rational choices. There are two reasons for this recent interest. One is that experimental 

data, and also some real world data, suggest that the rationality hypothesis has only a 

limited domain of validity, i.e. agents’ choices are sometimes, but not always, rational. 

If one wants to understand when agents can be expected to be rational, and when 

rational behaviour should not be expected, one needs to have some understanding of 

the mechanisms which bring about rationality.

The second reason for the recent interest in the foundations of rationality is related 

to the fact that strategically interactive situations, i.e. games, often have many out

comes all of which are compatible with the rationality of all agents’ decisions. Such 

outcomes are known as Nash equilibria. If games have many Nash equilibria, the ques

tion arises whether one can make statements about which equilibria are more likely 

to occur. This is known as the equilibrium refinement, or, if the goal is to single out
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a unique equilibrium, as the equilibrium selection question. Progress on this question 

requires that one understands how agents find their way to an equilibrium.

The hterature has considered two basic ways in which agents might find their way 

to equilibrium. One is through introspection , the other is through trial and error 

learning in real time. Both have some plausibility. If agents play important games 

in the real world, it can be expected that decision makers are willing to undertake a 

lot of strategic reasoning, and, in some cases, this might take them towards rational 

decision. In other cases, decisions might be relatively unimportant, but they have to be 

made very frequently. In such cases, initial decisions might well be fiawed, but it can 

be hypothesized that later decisions will be rational or close to rational. In this thesis 

we shall only consider trial and error learning as a mechanism to steer agents towards 

rationality.

The hypothesis of trial and error learning has been formalized in a variety of ways. 

Different formalizations differ with respect to the information which agents are assumed 

to hold at the beginning of the learning process, with respect to the feedback infor

mation which agents are provided during the learning process, and with respect to the 

behaviour hypotheses concerning how agents respond to  the information available to 

them, both in terms of their behaviour, and in terms of updating their beliefs.

It has become common to distinguish two broad classes of learning models. The 

first class are so-called belief-based learning models. In  such models agents are aware 

of the basic structure of the situation which they are facing, i.e. they know their own 

and, possibly, others’ strategy sets and they know their own payoff matrix. During 

the learning process agents observe other players’ strategy choices, and, possibly, the 

state of nature. Agents form behefs about their environment on this basis, and then 

maximize their expected payoff.

The second class of learning models are reinforcement learning models. Reinforce

ment learning models differ from belief-based learning models in aU dimensions. Firstly, 

agents are assumed to hold less information at the outset. In particular, it is not as

sumed that agents know other players’ strategy sets, or their own payoff matrix at 

the outset of the game. Secondly, during the learning process the only feedback which 

agents are assumed to receive is their own payoff. They don’t necessarily observe other 

players’ strategy choices, or the state of nature. Finally, agents’ choices are assumed



to be instinctive responses to payoff experiences rather than the result of explicit max

imisation of expected payoffs.

In the current thesis we shall only be concerned with models of reinforcement learn

ing, not with belief-based learning processes, in single person decision problems, rather 

than in games. The reason for this is rather pragmatic. We restrict the scope of our 

investigation so as to make the investigation tractable and feasible.

We interpret the notion of reinforcement learning broadly. In particular, we allow 

for the possibility that the agent observes not only his/her own strategy choice and 

payoff, but also the strategy and payoflF of some other agents who finds him/herself in 

the same situation. Note, however, that this other agent is not the agent with whom the 

game has been played. We thus include among reinforcement learning simple models 

of imitation. The reason for considering single agent learning models and imitation 

models together is that they share many features.

Much of previous work in the area of reinforcement learning has considered specific 

learning algorithms, and has investigated the predictions which can be derived from a 

given learning algorithm in single person decision problems and games. In this thesis, 

we take a different approach. We impose no particular functional forms, but allow for 

a large variety of learning algorithms. We then ask which algorithms in this class have 

the property that agents will learn rational choices in a variety of environments. We 

provide characterizations of learning algorithms with this property.

Our characterizations focus on two properties of a learning algorithm. The first 

such property is what we shall call the “state space” of the learning algorithm. The 

second is the functional form. The “state space” of a learning algorithm is simply the 

set of states in which the decision maker finds him/herself at any particular point in 

time. Our results will indicate that this set has to be, in a sense to be made precise 

below, “sufficiently big” . Otherwise, the learning algorithm will not have sufficient 

memory to be able to deal with many different situations. As far as functional forms 

are concerned, we shall show that in our setting only learning algorithms which are 

hnear in payoffs will achieve optimality in the long run. An intuitive reason for this is 

that expected payoffs themselves are linear functions of payoffs.

In a sense, this thesis presents an axiomatic approach to learning algorithms. How
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ever, our work should not be interpreted as aiming to single out “desirable” learning 

algorithms. Whether agents use learning algorithms which lead to rationality in a large 

variety of situations is an empirical question. Our results help to interpret empirical 

results regarding this question.

The remainder of this Chapter is organized as follows. In the next Section we 

elaborate in some more detail why economists have become interested in the foundations 

of the rationality hypothesis. In the third Section of the chapter, we briefly review some 

experimental findings on learning in decisions and games. Finally, in the fourth and 

last Section we review some of the theoretical literature on learning. A more detailed 

overview and discussion of our findings in this thesis is postponed to Chapter 2. The 

detailed discussion of the relations between our research and other authors’ work is 

postponed until the main formal part of the thesis which begins with Chapter 3.

1.2  O n E v id en ce  R egard in g  th e  R a tio n a lity  H y p o th es is  in  

E con om ics

One reason why economists have started to enquire into the foundations of the rational

ity hypothesis is that in some situations there is a mismatch between predictions based 

on the hypothesis and experimental and field data. The simplest such cases arise not 

in games, but in single person decision problems. In this section, we provide a partial 

review of some of the relevant evidence, first for single person decision problems, and 

then for games. The purpose of this Section is to support our earlier claim that the 

experimental evidence indicates the validity of the rationality hypothesis in some, but 

not in all circumstances. We therefore only quote a few selected experiments, and don’t 

aim for completeness.

In decision problems under risk, experiments during the last 40 years have uncovered 

a number of anomalies all of which are deviations from the predictions of the theory 

of expected utility maximisation. In most of these studies, subjects are asked, possibly 

repeatedly, to choose one lottery from a pair of such lotteries. The idea of using pairs 

of lottery choices to elicit subject’s preferences goes back to Maurice Allais [l].

Maurice Allais also found the most famous paradox in this area. Assume that there 

are three monetary prices: 2.5, 0.5 and 0 millions Euros. The subjects are confronted



with the following lottery choices. First, they have to choose either lottery L\ =  (0,1,0) 

or lottery L\ = (.10, .89, .01) where the numbers indicate the probability of the three 

prizes in the order in which they were listed above. Next, subjects have to choose either 

lottery L 2  = (0, .11, .89) or lottery L '2  =  (.10,0, .90).

It is commonly observed that individuals strictly prefer L\ over Lj, but that they 

also strictly prefer L '2  over L2 . But these choices are incompatible with expected utility 

theory. The choice of L\ over Lj implies that L 2  must be preferred over L '2  or the 

axioms of expected utility theory are violated.^

The dissatisfaction with the empirical accuracy of expected utility theory led to 

the formulation of a number of new theories of decision making under risk. Most of 

these theories have a larger number of free parameters than expected utility theory 

does, and therefore it is not surprising that they “explain” observed behaviour better 

than expected utility theory. How should one evaluate the status of expected utility 

theory in comparison to the new theories of decision making under risk? Two different 

responses are represented by recent articles by Hey and Orme [28] and Harless and 

Camerer [24].

Hey and Orme generate their own choice data, and then investigate whether ex

pected utility, or alternative theories, are better explanations of the experimental data, 

once it is taken into account that the alternative theories have larger numbers of free 

parameters. They find that for 39% of their subjects, expected utility theory fits no 

worse than the other contenders. For the other 61% of the subjects, they conclude 

that the superiority of the alternative theories is not established. Therefore they argue 

that “... our study indicates that behaviour can be reasonably well modelled (...) as 

expected utility plus noise. Perhaps we should now spend some time on thinking about 

the noise, rather than about even more alternatives...” .([28], p .1322).

A different viewpoint is argued by Harless and Camerer [24]. They develop a sta

tistical test which can be use to aggregate results across studies. This aggregation is 

used to test the predictive utility (fit and parsimony) of the various theories of decision 

making. Furthermore, it can be used to test whether deviations from the expected 

utility theory are robust across studies. Although they find that there is no a single

Denote by U2 5 , Uo5 and uo the utility values of the three monetary outcomes. Then the choice 
L \ >- L'l implies M05 >  .10u25 +  .89uo5 +  -luo- Adding .89(uo—wos) to both sides we get .lltto5 +  -89uo >  
.10u25 +  .9uo and therefore L2 >-1 /2 .
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winner among theories (everyone involves a trade-off between parsimony and fit), they 

argue that "... violations of expected utility theory are robust enough that modelling 

of aggregate economic behaviour based on alternatives to expected utility is well worth 

exploring.” ([24], p. 1286). Despite this negative view with respect to the performance 

of the expected utility theory in comparison to other theories of decision making, they 

recognize that their study dramatically confirms a conclusion previously observed in 

other experiments, i.e. that the expected utility theory predicts well when subjects 

choose between gambles which involve outcomes with positive probabiUty, and predicts 

poorly when some outcomes have probability zero (see also Conslik [12] and Camerer 

[10]).

It is this second viewpoint which reinforces our argument in this thesis, that ex

pected utility theory has not got an universal domain of validity, i.e. there are situations 

in which predictions based on that theory does not confirm with observed behaviour.

Within the realm of strategically interactive situations, rational behaviour is inter

preted as Nash equilibrium behaviour. The question whether observed behaviour in 

games can always be rationahzed has again a negative answer.

As an example, we shall consider experimentally observed behavior in auctions. 

More specifically, we shall focus on auctions with independent private values. In the 

auction literature, the independent private value model corresponds to the case in 

which the valuation of each bidder is privately known and bidders’ valuations are drawn 

independently from each other.

We shall consider behaviour in two different auction formats: the Vickrey auction 

and the English auction. In the latter, the price is increased until one bidder remains. 

This bidder gets the object and pays his bid. The Vickrey auction is a second-price 

sealed bid auction. The highest bidder gets the object and pays the second-highest bid.

In the independent private value setup, bidders have a dominant strategy in both 

auctions. In the Enghsh auction, the dominant strategy is to bid up to one’s true value. 

In the Vickrey auction, the dominant strategy is to bid one’s true value. Moreover, 

in the independent private value setup, the two auctions are strategically equivalent, 

provided that bidders in the English auction follow threshold strategies of the form: 

stay in the auction until the bid reaches some particular boundary. If bidders in the 

English auction only consider strategies of this form, there is an isomorphism between
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the strategy sets in the two auctions, and the payoff functions are identical with respect 

to this isomorphism.

The main conclusion from experiments with these auctions is that subjects do not 

behave in strategically equivalent ways. Kagel et al. [30] reports bidding above the 

dominant strategy price in second-price auctions, while in the English auction bidding 

follows the dominant strategy. This result has been replicated in numerous experiments 

so as to become an accepted fact.^

The second reason for the recent interest in the foundations of rationality is related 

to the fact that games often have many Nash equilibria. If games have many Nash 

equilibria, the question arises whether one can make statements about which equihbria 

are more likely to occur. This is known as the equilibrium refinement problem^ or, if 

the goal is to single out exactly one equilibrium, as the equilibrium selection problem.

Subgame perfection is one of the most widely used refinements. However, predic

tions based on this concept often fail to capture observed behaviour. As an example, we 

shall consider experiments with sequential bargaining games. In the simplest sequential 

bargaining game, the ultimatum game, a pie has to be shared by two players. Player 

1, the proposer, has the first move. Player 2 receives the offer and decide whether to 

accept it, in which case each player receives the proposed share, or to reject it, in which 

case each player receives nothing. The subgame perfect equilibrium prediction is that 

player 1 should ask for the whole pie and that player 2 should accept any proposal.

Experiments regarding this game have initially yielded contradictory results. Work 

by Ochs and Roth [43] settled the dispute by using a larger experimental design. Their 

results suggest that the subgame perfect equilibrium prediction fails as a predictor of 

observed behaviour: the mean offer was positive and a substantial proportion of positive 

offers were rejected.

On the other hand, Ochs and Roth’s experiments indicate that the observed mean 

offers deviate from the perfect equilibrium prediction in a particular direction, the di

rection of equal division. This fact has since then been replicated so as to become an 

accepted fact: in the ultimatum game, there is a high concentration of equals divi-

^The breakdown of the strategic equivalence of the Vickrey and English auctions can be considered 
as an analogous to the preference reversal phenomenon (equivalent ways of eliciting preferences yield 
different revealed preferences). This phenomenon is described by psychologists as one of the most 
robust violations of EU in decision problems.
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sion offers. This suggests that there exists an underlying behaviour mechanism which 

prompts the equal division offer in the ultimatum game and that subgame perfection 

is not able to capture it.

However, there are games which do not seem to be too different from the ultimatum 

game for which the subgame perfection prediction does match observed behaviour. An 

example is the best-shot game. In this game player 1 selects the quantity q\ of a public 

good that he is wilhng to supply. Player 2 observes q\ and selects another quantity 

The quantity of public good supplied is the maximum of q\ and %. Payoffs are 

proportional to the quantity of the public good that is supplied minus costs of the 

quantity %.

Experimenters typically fix payoffs so that the unique subgame-perfect equilibrium 

involves the choice of =  0 for player 1, so that player 1 free rides on player 2. This 

equilibrium is similar to the subgame-perfect equilibrium of the ultimatum game in that 

the payoff distribution in equilibrium is very extreme, and in that the player who moves 

first exploits in some sense the player who moves second. Nonetheless, experiments have 

shown that in this case the subgame perfect prediction captures quite well the observed 

behaviour (see Prasnikar and Roth [45]).^

So far we have reviewed some selected work which evidences the inability of the 

rationality hypothesis to explain observed behaviour in experiments. We shall now 

review some real data analysis which also suggest that in real life situations people do 

not always behave as the rationality hypothesis predicts. The first concerns the decision 

on how to allocate today’s money between consumption and saving, i.e. how much to 

consume today and how much to save it to finance future consumption. The theoretical 

foundations on intertemporal choice theory go back to the fifties, when the Permanent 

Income Theory [20] and the Life-Cycle Theory [37] were stated. These theories state 

that consumption is determined by the value of life-time resources, typically involving 

current financial and human wealth.

We shall focus on the Permanent Income Theory and specifically on one prediction 

whose consistency can be tested on real data, i.e. changes in consumption are related 

to unpredictable changes in income. This implies that changes in consumption are un-

^Other games for which the predictions based on subgame perfection match observed behaviour are 
the market game and the impunity game.
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predictable, this statement being know as the Permanent Income Hypothesis. However, 

the seminal works by Flavin [21] using aggregate data and by Hall and Masking [23] 

using microeconomic data showed the failure of this hypothesis, i.e. consumption also 

responds to  predictable changes in income. This excess sensitivity of consumption has 

since then being replicated in other studies so as to become an accepted fact.

The second real life situation we shall consider concerns field studies in common 

value auctions. In common value auctions, the value of the auctioned item is the same 

to all bidders. Although the bidders do not know the value of the item at the time 

they are bidding, they receive signal values. Note that although aU bidders obtain 

unbiased estimates of the value of the item, they win in cases where they have the 

highest signal value, yielding below normal or even negative profits. The systematic 

failure to account for this adverse selection problem is known as the winner’s curse. 

Note that this systematic failure violates the notion of economic rationality.

An example of real world common value auction is the oil lease auction. A number 

of field studies in these auctions have focused on the rate of returns for these leases. 

The seminal paper is [11] which claims that oil leases won by competitive bidding 

yield unexpectedly low rates of return, even less than the market rate of return on 

their investments, interpreting these results on a winner’s curse basis. Evidence of the 

same phenomena in other kinds of auctions has since then been collected to support 

that the winner’s curse is responsible for these low returns to  winners. However the 

debate continues as these low rates of return might have alternative interpretations. 

The debate has now moved to laboratory experiments, where the winner’s curse has 

been shown to be present.

In summary, we wish to argue that experimental economics and the analysis of 

field data have shown that there are situations in which observed behaviour is easy 

to rationalize, and that there are situations in which the observed behaviour is almost 

impossible to rationalize. If one wants to understand when rational behaviour should be 

expected and when agents cannot be expected to behave rationally, then it is necessary 

to have some understanding of the mechanisms which bring about rationality.

Experimental evidence also suggests that in games with multiple equilibria there 

some equilibria that are more likely to occur than others. However, existing refinements 

of Nash equilibrium do not seem to capture well what determines which equilibria will
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occur. Again, a better understanding of this issue seems to require more insight into 

how equilibria come about.

1.3 L earn ing and  R a tio n a lity

The literature has considered two basic mechanisms that bring about rationality: (i) 

rationality can emerge after a j careful reasoning by the economic agent, and (ii) ratio

nality can arise from trial and error learning, provided that the situation is encountered 

sufficiently often.

Rational reasoning can be expected to be a sensible mechanism if the agent is 

engaged in a situation in which actions can yield important consequences. In these 

circumstances, it might be expected that the agent devotes a great deal of reasoning to 

fully understand the strategic situation in which he is involved. In some cases, it might 

be that this strategic reasoning leads the agent to behave rationally.

But it can also be the case that the agent is facing a situation which is relatively 

unimportant but which calls for a decision very frequently. In this case, it may be that 

initial decisions are not rational but it can be hypothesized that through a trial and 

error process the agent can ultimately behave rationally or close to  rational. Although 

both mechanisms have some plausibility, this thesis will be only concerned with the 

latter one.

The plausibility of the learning mechanism as generator of rationality can be as

sessed by turning our attention to experimental work and seeing how well “experienced” 

agents behave when the experiment involves repetitions of the same situation. In this 

section, we provide a partial review of some experimental evidence involving experi

enced agents in différent setups. The purpose of this section is to support the claim that 

there are situations in which experienced agents find their way to rationality, but that 

there are also situations in which even experienced agents systematically deviate from 

rational behaviour. Furthermore, we wish to argue that the way in which experience 

affects agents’ behaviour is different in different strategic environments.

The theory of learning has a long tradition in psychology. It was developed in the 

psychological literature as a way to explain both animal and human behaviour in simple 

decision problems and games. One of its main finding is an “irrational” behaviour so-
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called probability matching behaviour (Estes and Straughan [19]).

This term refers to a decision maker facing a two-action decision problem, where 

each action yields binary payoffs. Suppose that strategy s yields one monetary unit 

with probability /i, and yields nothing with probability 1 — p,. Suppose that strategy 

s' yields one monetary unit with probability 1 — /x and yields nothing with probability 

p,. It is said that the decision maker’s behavior exhibits “probability matching” if the 

long run frequency with which strategy s is chosen is p, and the long run frequency of 

strategy s' is 1—p. This behaviour is “irrational” as long &s p ^  because rationality 

would imply playing the unique highest expected payoff strategy with probability one.

In experiments involving repetitions of strategic situations, it is not always the case 

that agents find their way to rational behaviour as agents gain experience. Kagel et al. 

[30] reported failures of strategic equivalence in second-price and English auctions with 

private values. For the second-price auction, bids were above the dominant strategy. 

These results have since then been replicated in independent private values both with 

experienced and unexperienced agents (Harstad [25], Kagel and Levin [31]), so that 

these results are now widely accepted not to be attributed to bidders’ inexperience.

In bargaining experiments, Binmore, Morgan, Shaked and Sutton [4] conducted a 

series of experiments with a version of the ultimatum game with optional breakdown. 

They report that in the case of experienced agents, the perfect equilibrium prediction 

fits worse than in the case of unexperienced agents. This can be interpreted as a case 

of “unZeamm^”.

So far we have presented evidence on the failure of experienced agents to achieve 

rationality. We shall now review some experimental evidence to support the claim that 

experienced agents achieve rationality in some situations. The first example comes 

again from the literature of experimental bargaining games, more specifically from 

experiments using versions of the ultimatum game. Experimental work by Harrison 

and McCabe ([26] and [27]) shows that experience promotes convergence to the perfect 

equilibrium prediction.

The last set of examples refer to experiments involving repetitions of a strategic 

situation with more than one Nash equilibria. In this setting it is possible to study 

whether experience leads players to eventually coordinate on some equilibrium, and if 

equilibrium is observed, which are the properties of the selected equilibrium.
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Van Huyck, Battalio and Beil [56] report experiments with pure coordination 15- 

player games. All these games have a number of Pareto ranked Nash Equilibria. By 

allowing a given group of subjects to play the same game repeatedly, they were able 

to observe whether individuals immediately coordinate or whether they eventually co

ordinate on one of them. Their results show that in all the sequences, there was no 

equilibria in the first period, but there was convergence towards an equilibrium as 

players gained experience.

Cooper, De Jong, Forsythe and Ross [13] report experiments considering two-person 

3x3 symmetric games with two strict Pareto-ranked Nash equilibria, where the third 

strategy was strictly dominated. Although at early stages no equilibrium was reached, 

after players have accumulated experience, the play quickly converges to one of the 

pure strategy equilibria of the game.

In summary, we wish to argue that experimental economics have shown that there 

are situations in which experienced agents achieve rationality and that there are situ

ations in which they do not. In order to understand when rational behaviour should 

be expected it is necessary to have some understanding of the mechanisms which bring 

about rationality.

1 .4  T h eo retica l L iteratu re on  L earning

The hypothesis of trial and error learning has been formalized in different ways. Differ

ent formalizations differ with respect to the information the agents hold at the beginning 

of the learning process, with respect to the information they receive during the learning 

process and with respect to how the information available affects the agents’ behaviour.

It has become common to distinguish two broad classes of learning models: belief- 

based learning models and reinforcement learning models. In belief-based learning 

models, agents are aware of the basic structure of the situation in which they are inter

acting, i.e. they know their own set of strategies and possibly their opponents’ sets of 

strategies. They also know their own payoff matrix and possibly their opponents’ payoff 

matrix. They form beliefs about this environment. During the learning process, they 

receive information about their opponents’ strategy choices and possibly the realized 

state of nature. With the information available, they update their beliefs and choose
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their strategies to maximize expected payoffs.

Reinforcement learning models differ from belief-based models in several ways. 

Firstly, it is not assumed that agents know their opponents’ strategy sets or their own 

payoff matrix. Secondly, during the learning process agents only receive information 

about their own realized payoffs. They do not necessarily observed their opponents’ 

choices, or the state of nature. Finally, agents’ choices are assumed to be instinctive 

responses to payoff experiences rather than the result of any explicit maximization 

process.

To illustrate the distinction between these two different types of learning models, we 

shall give first some examples of belief-based learning models, and then some examples 

of reinforcement learning models. The Coumot adjustment model is an early example 

of a learning model of belief-based learning models. In this model, n  firms repeatedly 

play a stage-game in discrete time. It is assumed that at the end of every stage, each 

firm observes the strategies used by its opponents in that stage. In the next period, each 

firm then chooses its strategy to be a best-response to the previous period’s strategy 

profile.

Another example of a belief-based learning model which is widely used in game 

theory is the fictitious play model. In this model, players choose their actions in each 

period to maximize that period’s expected payoff, where players’ subjective beliefs 

about their opponents’ behaviour in the next period equals the empirical distribution 

of actions which has been observed in the past periods.

A first example of reinforcement learning model is the linear stochastic learning 

model [8]. At every stage a subject is permitted to take n  responses. The subject is 

described by a probability distribution over responses which indicates how likely she is 

to take any of the responses. After choosing a response, the subject receives a stimulus, 

which can be either a reward or a punishment. When rewarded, the probabihty of 

choosing the same response is increased in a linear fashion. If the response is not 

rewarded, then the new probability is decreased in a hnear way.

The second example is the Cross’ model [15]. It is a generalization of the previous 

one by allowing a variety of stimuli. A subject is facing a decision problem under risk. 

Suppose payoffs are normalized between zero and one. Then Cross’ rule states that 

in each iteration the updated probability distribution is simply a weighted average of
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the previous probability distribution and the unit vector placing all probability on the 

action just taken. The weight of the unit vector equals the payoff. Note that this rule 

has the feature that all payoffs have a reinforcing, and hence positive, effect on the 

probability of the action which the decision maker chose.

Regardless of the particular learning model considered, the trial and error learning 

theory considers dynamic systems for describing how the behaviour of the agents evolves 

over time. It usually assumes that there is a population of agents playing the same 

game repeatedly and makes assumptions about the size of the population, the matching 

procedure and the information gathered at the end of each round for each agent. Each 

agent is endowed with a learning model to adapt her behaviour. Different learning 

models give rise to different dynamic systems.

Given that the evolution of the behaviour of the population is described by a dy

namic system, the central issue in the theory of learning is the convergence of the 

dynamic system. It can be the case that the dynamic system converges to some con

cept of equilibrium of the stage game, then it is said that the learning model succeeds 

in learning that equilibrium concept, i.e. players leam to play rationally. But it is not 

always the case that the dynamic system converges to some equilibrium of the stage 

game.

In the fictitious play model, for example, the key concept for studying the con

vergence of fictitious play is the empirical distribution of the opponents’ play. If the 

empirical distribution converges, then the system converges to a Nash equilibrium. For 

some classes of games, fictitious play is known to converge to a Nash equilibrium. These 

include two player zero sum games, two player games in which each player has only two 

strategies, and potential games. However, convergence is not always ensured. The first 

example of a game for which empirical distributions do not converge is a game with two 

players in which each player has three strategies. The example is due to Shapley [52], 

who showed that fictitious play may lead to cycles in this example. Another example 

is due to Jordan [29]. Jordan showed that fictitious play leads to a cycle in a simple 

three-player matching pennies.

Thus, theoretical analysis of fictitious play has lead to predictions concerning the 

question in which games we should expect players to learn Nash equilibria, and which 

games this cannot be expected. Analysis of behef-based learning processes has, however.
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also helped to make predictions about equilibrium refinement/selection. The most 

prominent examples of such an analysis are Young [57] and Kandori, Mailath and Rob 

[32]. Young [57] uses a belief-based learning model with random errors to derive the 

prediction that in two player coordination games in the long run the risk-dominant Nash 

equilibrium will prevail. Kandori, Mailath and Rob [32] obtain a similar conclusion 

using a belief-based learning model with stochastic adjustment in 2x2 symmetric games 

with two strict equilibria.

Belief-based learning models are typically not of great interest in single person 

decision problems, as the prediction will always be that agents will learn to make 

rational decisions. The situation is different when we consider reinforcement learning 

models. Consider, as an example. Cross’s model. Contrary to initial conjectures by 

Cross, it has been shown that a decision maker who adopts Cross’ learning rule will 

sometimes, but not always leam expected payoff maximising choices. Cross’ model 

makes predictions, however, about the frequency with which this happens, which can be 

subjected to experimental tests. Similarly, Bush and Mosteller’s linear model sometimes 

predicts “probability matching” behaviour in single person decisions under risk, but, 

in other decision problems, leads to optimization.

Much of the learning literature so far has focused on the investigation of very specific 

learning rules. The work reported in this thesis will deviate from this pattern, and 

attempt to consider very large classes of learning rules. There are, however, already 

instances in the learning literature where, at least at first sight, more general models 

are pursued. In particular, some might regard the replicator dynamics of evolutionary 

game theory as a more general dynamic system.

The replicator dynamics was first motivated in the field of biology [54], although 

it has received very much attention by economists in recent y e a r s . I t  simply states 

that the population share of a strategy performing better than average grows in the 

population, the growth rate being proportional to the payoff difference with the mean. 

The standard motivation for replicator dynamics has a biological flavour, appealing 

to asexual reproductions, programmed strategies, inheritance of strategies, etc. When 

applied to economic contexts, it is implicitly assumed that there are some learning

 ̂See special numbers in the Journal of Economic Theory (1992) and Games and Economic Behaviour 
(1993)
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and/or imitation models at individual level which lead to this particular dynamics. In 

this sense, replicator dynamics is a reduced form of learning and imitation models.

However, replicator dynamics is a very specific model, as the learning and imitation 

models which has been shown to lead to this particular dynamics have a very specific 

functional form, i.e. they are quite “ad hoc” models (Bôrgers and Sarin [5] for individual 

learning and Schlag [51] for imitation). This specificity prompted several papers which 

develop more general dynamics of which replicator dynamics is a special case. The more 

relevant generalizations are the monotonicity concept (Samuelson and Zhang [48]) and 

the myopic adjustment (Swinkels [53]). A dynamic is monotonie if for pure strategy s 

getting higher payoff than strategy s' then it is true that the growth rate of the share 

of the population playing s is higher than the growth rate associated to s'. A process is 

myopic if holding the opponents’ play fixed, the player’s utility is not decreasing along

Our work in this thesis differs from these generalizations in one essential aspect. 

These papers investigate properties defined over population dynamics, without tracing 

back their results to learning rules for individual players. On the contrary, the current 

thesis focuses on learning rules and, without imposing any functional form, characterises 

classes of learning rules which lead the agent to behave rationally in the long run for 

every decision problem.

1.5 L earn ing  and B o u n d ed  R a tio n a lity

Before we turn to a survey of our results, we wish to take up one further point regarding 

the interpretation of learning models in economic theory. Learning models of the type 

described above are often accused of being “ad hoc”. This objection will be less forceful 

in the context of our own analysis, since we impose fewer restrictions on functional 

forms, but in a weakened form it will still apply, since there will be significant exogenous 

restrictions on the class of functions that we allow. We wish to argue in the following 

that one way of justifying these restrictions is to argue that they reflect the limits of the 

decision maker’s abilities to conceptualize his environment, and to give full attention to 

the learning problem at hand. In this section, we elaborate this point, first for belief- 

based learning models and then for reinforcement learning models. It is important to 

discuss this point in some detail since it implicitly underlies much of the work reported
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in this thesis.

Belief-based learning models admit an interpretation in terms of Bayesian learning. 

For example, fictitious play learning model can be interpreted as a Bayesian learning 

model when roughly speaking, agents believe that their opponents’ play corresponds 

to a sequence of i.i.d. random variables with a fixed but unknown distribution. If the 

Bayesian agent perceives the environment as relatively complex in comparison to her 

ability to conceptualize it, she can prefer to use a simplification of the environment. If 

the simplification is that other agents’ choices are i.i.d. multinomial random variables 

and that her prior beliefs over the unknown distribution take the form of a Dirichlet 

distribution®, then Bayesian learning would reduce to fictitious play.

Reinforcement learning is harder to justify. In the classical multi-armed bandit 

problem, a fully rational player has infinite memory, holds a subjective prior over payofiF 

distributions and choose her actions so as to maximise the expected discounted value 

of her return over an infinite period. By using reinforcement rules, we restrict attention 

to simpler behaviour rules; specifically we assume that the decision-maker forgets all 

information she acquired in any previous period. We could think of it in terms of a 

decision-maker who decides that the problem at hand is not important enough so as 

to pay full attention to it. She then could find easy to use the behavioural habit that 

is implicit in reinforcement learning models. An alternative explanation is that there 

is an exogenous limitation that directly affects the agent’s memory capacity. In this 

situation, reinforcement learning could be a suitable learning model.

A decision-maker using some reinforcement learning rule can be therefore viewed as 

a boundedly rational agent, as he departs from the fully rational paradigm in having 

limited memory. Note that the current (possible stochastic) behavioural ’’habit” is the 

only variable that can provide the decision-maker with information about the past. This 

■ arises the question whether the memory constraint implicitly assumed in reinforcement 

, models prevents the decision-maker to achieve optimality. In this thesis, we investigate 

I  the existence of reinforcement rules (bounded rational strategies) which lead the agent 

to behave optimally in the long run.

 ̂A random vector p  has a Dirichlet distribution with parameter vector a  if its density is given by 
/(P) = r(al) -̂-rtai^ P r all p >  0 such that ELiP« =  1
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C hapter 2

O ptim ality o f Learning and  

Im itation Rules: A n Overview

2 .1  In tro d u ctio n

As has been explained in the first Chapter, the purpose of the current thesis is to 

investigate the ability of trial and error learning to lead agents to achieve rationality. 

Within the class of trial an error learning models proposed in the literature, we shall 

only be concerned with models of reinforcement learning. Furthermore, we shall only 

investigate the properties of reinforcement learning models in decision problems under 

risk, not in games. The reason for these restrictions is rather pragmatic: We restrict the 

theoretical framework in order to make it feasible to answer the first question addressed 

in the introduction: “When can rational behaviour be expected?”

Reinforcement models have been useful in explaining learning in a variety of exper

iments. Erev and Roth have used reinforcement learning theory to explain behaviour 

in experiments in which subjects played extensive form games [46] as well as simultane

ous move games [17]. Mookherjee and Sopher have presented experimental support for 

reinforcement learning in Matching Pennies [38] and in other constant sum games [39]. 

These papers are related to an earlier tradition in psychology based on the mathemati

cal learning theory initiated by Bush and Mosteller [7] and Estes [18]. Authors working 

in this tradition typically used reinforcement learning theory to interpret experimental 

data about behaviour in single person decision problems rather than games. The de

cision problems considered were versions of the multi-armed bandit problem in which
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individuals repeatedly choose between strategies with unknown payoff distributions, ob

serving at each iteration only the payoff realization. Some relevant experimental work 

is surveyed in the second half of Bush and Mosteller’s 1955 book [8], An important 

paper in this literature is Estes and Straughan [19],

The experimental references which we have listed above differ from each other in one 

very important respect: Some papers, such as Roth and Erev [46], use reinforcement 

learning models to explain experiments in which agents’ behaviour, roughly speaking, 

approaches equilibrium.^ By contrast, other papers, such as Estes and Straughan 

[19], use reinforcement learning models to explain experiments in which agents’ long 

run behaviour is persistently non-rational. In fact, Estes and Straughan [19] use a 

reinforcement learning model to explain “probability matching”.

In the current thesis, we are not concerned with evaluating this experimental ev

idence. Rather, we want to investigate how it can be that the same class of learning 

models explains such very diverse findings. One answer to this question is implied by 

Bôrgers and Sarin [5], There, they show that a model of reinforcement learning due 

to Cross [15] is, in the continuous time limit, identical to the replicator dynamics of 

evolutionary game theory, and thus leads to long run expected payoff maximisation. A 

seemingly innocuous variation of the same model was shown in Bôrgers and Sarin [6] to 

predict probability matching. The model in Erev and Roth [46] is similar to the model 

in [5], whereas the model in Estes and Straughan [19] is similar to the model in [6].

The most obvious difference between the model in [5] and the model in [6] is that in 

[5] it is assumed that all payoffs have a positive, reinforcing effect on the agent, whereas 

in [6] it is allowed that some payoffs have a negative effect on the agent, making her 

less likely to  choose the same action again. However, it turns out that it is not always 

the case that it is the sign of payoff effects that determines whether a model predicts 

optimization. In fact, in the current thesis we shall give an example of a learning 

process in which some payoffs do have a negative effect on the agent, and nevertheless 

the agent does learn to make expected payoff maximising choices in the long run.

Therefore, in the current thesis we address the question of which reinforcement

^Here, we are referring to Roth and Erev’s [46] discussion of the market game and the best shot game. 
In these two games observed behaviour actually approached a subgame-perfect equilibrium. Roth and 
Erev also discuss experiments involving the ultimatum bargaining game. In these experiments observed 
behaviour did not approach a subgame-perfect equilibrium. In fact it isn’t clear whether it approached 
any Nash equilibrium.
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learning rules will lead the decision maker to play in the long run the expected payoff 

maximising strategy in every decision problem? In answering this question, we shall 

not impose any functional form on the reinforcement learning models considered. In 

this sense, our work takes a different approach from much of the existing work on 

reinforcement learning, where the usual practice is to study the performance of very 

specific learning models.

Furthermore, we shall also take a different approach by interpreting reinforcement 

learning broadly. The usual practice is to consider that the decision maker only receives 

information about her own strategy choice and payoff. We shall allow for the possibility 

th a t the decision maker also observes the strategy choice and payoff of some other 

agents who are facing the same decision problem. We impose a certain restriction 

on the updating rule in order to capture the essence of imitation. This will allow 

us to  study the properties of simple imitation rules. We study learning and imitation 

models together because they share many features. We then investigate which rules lead 

the decision-maker to play the expected payoff maximising choice in the long run for 

every decision problem and every initial state. Although we do not provide a complete 

characterisation, we find a property that is shown to imply long run maximisation. We 

furthermore characterise rules which have this property.

2.2  In d iv id u a l L earn in g

Individual learning refers to the case of a single decision maker facing a decision problem 

under risk. An agent chooses repeatedly among different actions. In each iteration, she 

receives some random payoff the distribution of which depends on her action, but not 

on time. Payoffs are stochastically independent between periods. The agent has no 

knowledge of the payoff distributions.

The literature has modelled reinforcement learning in two different fashions. It can 

be modelled using the set of pure strategies as the state space of the decision maker. 

The individual enters each period with a pure strategy which is the strategy she is 

currently inclined to play. She plays that strategy, receives a payoff, and then revises
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her strategy. It is possible that this strategy revision is stochastic, but all information 

she is carried into the next period is the new pure strategy. These learning rules are 

called pure strategy learning rules.

A different model uses the set of all mixed strategies as the state space of the decision 

maker. The decision maker enters each period with a probability distribution over 

strategies which indicates how likely she is to take any of her actions. She then plays 

some pure strategy, receives a payoff, and then updates the probability distribution. 

The new distribution only depends on the previous distribution, on the action taken, 

and on the payoff received. It does not depend on any other aspect of history. The 

new distribution forms the state with which she enters the next period. These learning 

rules are called mixed strategy learning rules.

For these two classes of learning rules we first investigate which learning rules imply 

that the long run probability of the expected payoff maximising actions is one, indepen

dent of what the true distribution of payoffs is. We call such learning rules maximising. 

We show that no pure strategy learning rule is maximising. Unfortunately, we have not 

been able to settle the question of existence of maximising learning rules for the case 

that the state space is the set of all mixed strategies.

We then relax the maximisation property and consider a related property called ap

proximate maximisation. It means that the long run probability of the expected payoff 

maximising actions can be made arbitrarily close to one, independent of what the true 

distribution of payoffs is. It is for this property that the distinction between pure and 

mixed strategy rules becomes crucial. We show that no pure strategy rule is approxi

mately maximising. We then go on to partially characterize the set of approximately 

maximising mixed strategy learning rules.

The property of approximate maximisation was suggested by Bôrgers and Sarin [5]. 

They show that Cross’ learning rule tracks in finite time the trajectory of the replicator 

equation provided that it moves very slowly. This is true because Cross’ rule implies 

that at any point in time the expected change in the state variable of the agent is 

given by the replicator equation of evolutionary game theory; as replicator dynamics 

maximises expected fitness, an agent who adopts Cross’ rule and adjusts her probability 

distribution only slowly, will choose in the long run with very high probability an action
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which maximises expected payoffs. This is true for all true distributions of payoffs.^

In this thesis we define a property called monotonicity and show that monotone rules 

are approximately maximising provided that they move very slowly. Furthermore, we 

provide a complete characterization of monotone rules. Monotonicity means that the 

expected change in the probability of the expected payoff maximising action is positive. 

Cross’ rule has this property because the replicator equation, which characterizes the 

expected movement in Cross’ rule, has this feature. We show tha t a rule is monotone 

if and only if it is Cross’ rule, whereby payoffs may be subjected to certain linear 

transformations. As a consequence, all monotone learning rules are linear in payoff 

-note that the Cross’ rule is linear in payoff- and have the feature that their expected 

movement is given by some transformation of the replicator dynamics.

As we have seen, it makes a big difference for our results whether one takes the state 

space of the decision maker to be the set of pure strategies or the set of mixed strategies. 

The intuition is that the state space of the learning rule provides, in our framework, the 

only possibility for the decision maker to store - implicitly - information about her past 

experiences. The set of all pure strategies is too small to store the relevant information. 

By contrast, the set of all mixed strategies is sufficiently rich.

2.3 In d iv id u a l Im ita tio n

In the following, we shall interpret reinforcement learning in a broader sense than before. 

We shall allow the decision maker to adjust her state using additional information. At 

each stage she will have the opportunity to observe the strategy choice and the payoff 

of some other agents who face the same decision problem. This different setup will 

allow us to study the properties of simple imitation rules.

We shall introduce a population of agents who find themselves in the same situation,

i.e. they all are facing an identical decision problem. (Note that these are not the agents 

with whom a game will be played.) When studying which imitation rules lead the 

decision maker to play rationally, it is obvious that the evolution of the population will 

play a crucial role. Therefore, whether or not the decision maker behaves rationally

^In [5], which was written in a game setting, continuous time approximations are only constructed 
for finite time horizons. We shall show in this thesis that the result can be extended to an infinite time 
horizon for single person decision setting.
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will depend on two factors: (1) her own imitation rule and (ii) the evolution of the 

population.

There are therefore many ways in which one can try  to assess whether a given 

imitation rule is “good”. One might be to ask whether this imitation rule will lead to 

good decisions in an arbitrary environment, i.e. in an environment in which the other 

agents use arbitrary behaviour or imitation rules. Another might be to ask whether this 

imitation rule wiU lead to good decisions if it is used by everybody in the population.

Here, we shall deal with two cases. Initially, we shall focus on the case that the 

decision maker interacts with a population of other individuals whose behaviour is 

exogenously given and fixed. This case is our attempt at considering an environment 

in which the decision maker does not rely on the evolution of all other agents towards 

optimal actions, but in which also the task which the imitation rule has to solve is not 

too demanding. Later, we shall then move to an environment in which all population 

members use the same imitation rule.

Considering hence first the case in which the behaviour of the surrounding pop

ulation is given and fixed, we shall impose a certain restriction on the updating rule 

in order to capture the essence of imitation. Imitation is the act of copying others’ 

strategies. In the case of pure strategy reinforcement rules, this concept has a direct 

translation: the decision maker’s next period pure strategy will be restricted to  be 

either the own action or the sampled one. In the case of mixed strategy reinforcement 

rules, as the state of the decision maker is a probability distribution over the set of 

strategies, imitation can not be defined in such a direct way. We shall assume that 

the decision maker only updates the probabilities attached to the actions taken and 

sampled.

Having set these restrictions, we develop a similar exercise as in the case of individ

ual learning, by investigating which imitation rules wiU lead the decision maker to play 

in the long run the expected payoff maximising strategy with probabihty arbitrarily 

close to  one, independent of what the true payoff distribution is and regardless of the 

given and fixed population behaviour. We show that there are no approximately max

imising pure strategy imitation rules. For the case of mixed strategy imitation rules, we 

characterise the set of monotone imitation rules, showing that its basic feature is the 

proportional imitation, i.e. the change of the relevant probabilities is proportional to
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the payoff difference. This implies that the probability of the currently played strategy 

is increased if it gets a payoff greater than the sampled strategy’s payoff. This can be 

interpreted as a reinforcement effect in which the decision maker considers the sampled 

strategy’s payoff as an aspiration level. If the own strategy’s payoff is above this aspi

ration level, the currently played strategy is reinforced. This feature of the monotone 

imitation rules makes it possible to converge to the expected payoff maximising strategy 

even in the case that the optimal strategy is absent in the population.

The intuition behind these results parallels the individual learning case. Even 

though in this framework the decision maker can observe different strategies’ payoff 

in the same round, the pure strategy set is too small to carry enough information from 

round to round. However, the mixed strategy state space is sufficiently rich,

2 .4  Im ita tio n  in  P o p u la tio n s

The last chapter of the thesis takes a different approach to assess how “good” an 

imitation rule is. We shall consider a finite population of agents all of whom are 

facing the same two-strategy decision problem. Each agent is endowed with a pure 

strategy imitation rule to adapt her behaviour. Furthermore, each agent is endowed 

with a sampling rule, i.e. a probability distribution over the members of the population 

which indicates how likely it is that she meets any other member. In each iteration, 

after choosing a strategy and receiving a payoff, each agent samples, according to her 

sampling rule, other member of the population and observes her strategy and payoff. 

With this information, she adapts her behaviour according to her imitation rule.

We shall assess how “good” an imitation rule is by studying the evolution of the 

population when all members use this imitation rule. An imitation rule is called max

imising if the population will converge in the long run to the expected payoff maximising 

strategy for every decision problem and regardless of the initial population distribution. 

We show that there are no maximising imitation rules.

The non-existence of maximising imitation rules means that for any fixed imitation 

rule, there are decision problems for which the probability of the population ending 

up playing the best strategy is strictly less than one. This feature might lead to an 

individual dissatisfaction with the performance of that imitation rule. Each individual
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might wonder whether there is room for individual improvement, i.e. whether there is 

an alternative imitation rule she could use and which could make her “better off” given 

that all other members of the population are using the fixed imitation rule.

To formalize this issue, we shall define an appropriate payoff function. For given 

population and fixed imitation rule, the payoff function for any agent using any imita

tion rule is defined as the time average payoff that the agent receives along the path. 

This payoff function will be called the asymptotic payoff. Note tha t in the definition 

of the payoff function it is implicit the assumption that the agent does not discount 

the future, i.e. an infinitely patient agent. Although it is a very restrictive assumption, 

this will simplify the subsequent analysis. For given population and fixed imitation 

rule, we can therefore define the set of imitation rules which are best responses to the 

fixed imitation rule. An imitation rule will be called an equilibrium imitation rule if it 

belongs to the set of best responses to itself. This means there is no other imitation rule 

that an agent might use such that for every decision problem and initial distribution 

her asymptotic payoff is at least as good, and for at least one decision problem and one 

initial distribution, her asymptotic payoff is greater using the alternative rule.

Unfortunately, in the general framework the characterization of equilibrium rules 

has proven to be a major problem. We show that the rule “never imitate” is an 

equilibrium rule, though we have not made further progress. We shall then consider 

a restricted framework in order to gain further insight. In this new framework there 

are two agents and two strategies which yield binary payoffs. We identify a property 

which is of relevance to the problem at hand. An imitation rule is unbiased if the 

asymptotic payoff to all members of a population when all members use this imitation 

rule is closer to the expected payoff of the optimal strategy than to the expected payoff 

of the suboptimal strategy. We characterize the set of unbiased rules and show that 

biased imitation rules are not equihbrium ones. However we have not been able to prove 

that this property is a sufficient condition for the equilibrium property. We finally show 

three examples of unbiased rules which are equilibrium rules; the rules “never imitate” , 

“always imitate” and “imitate if better”.

The rest of the thesis is as follows: in the third chapter we introduce the general 

framework. In Chapters 4 and 5, we investigate pure and mixed strategy learning 

rules respectively. Chapters 6  and 7 consider pure and mixed strategy imitation rules
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respectively. The analysis of equilibrium imitation rules is undertaken in Chapter 8 . 

Finally, Chapter 9 concludes.
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C hapter 3

Formal Framework

This Chapter lists those ingredients of our model which will be common to all subse

quent Chapters.

Let M /bea  finite population (or set) of # W  decision makers, with > 2. Every 

decision maker repeatedly faces the same decision problem. Every decision maker has 

to choose from the same finite set of strategies S  which has at least two elements. 

We assume that every decision maker knows S. We denote by A (5) the set of all 

probability distributions over S', and we denote by A(S) the relative interior of A(S). 

Each strategy in S  has a payoff distribution attached to it. We normalize payoffs to be 

between zero and one. This motivates the following definition:

D efinition 1 An environment E  is a collection {fjLg)s£s of probability measures each 

having finite support in the interval (0 ,1 ). For given environment E  we define for every 

s G S; TTa =  Jq xdfXg, i.e. is the expected payoff associated with strategy s. We denote 

by S* the set of expected payoff maximising stmtegies, i.e.: S* =  {s G S [ tTs > for 

all y  G S}.

As every member of the population is facing the same decision problem, a crucial 

issue is how payoffs across iterations and across different decision makers are correlated. 

Let E  be the set of states of Nature. The payoff to decision maker w at a given iteration 

is then a function tTu, : iS x F  —> (0 ,1). We shall assume that realizations of the state 

of Nature are independent across iterations. This motivates the following definitions:

D efinition 2 Common Events Condition: For each iteration n G No, the state of 

Nature is realized. This state of Nature is common to every decision maker.
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D efinition 3 Independent Events Condition; For each n  € No, the state of Nature is 

independently realized across decision makers.

Let denote the set of individuals belonging to the population who are allowed 

to adjust their behaviour. Let denote the set W \ W ^. Every member of is 

programmed to play some pure strategy s £ S. Formally speaking, there is a function 

C  : —)> S  which assigns a strategy to every member of . Thus, individual

w' G is programmed to play pure strategy C{w').

When available, between stages, every w Ç. W  samples another agent from the 

population W  and observes both the strategy used and the payoff received by the 

sampled agent in that stage. For each individual w ÇlW  the sampling occurs following 

some sampling rule, i.e. some exogenously given probability distribution G A(W \  

{w}) where e^(w') is the probability that individual w samples individual w'.
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C hapter 4

Pure Strategy R ules for 

Individual Learning

4 .1  In tro d u ctio n

Individual learning refers to a situation in which there is a single decision maker facing 

repeatedly a decision problem. In this Chapter, we investigate, without postulating 

any specific functional form, which properties characterise reinforcement learning rules 

which predict that in the long run the decision maker makes expected payoff maximising 

choices,

A decision maker chooses repeatedly among different actions. In each iteration, she 

receives some random payoff the distribution of which depends on her action, but not 

on time. Payoffs are stochastically independent between periods. The decision-maker 

has no knowledge of the underlying payoff distributions.

The reinforcement learning rules to be considered in this Chapter are modeled 

as follows: the decision maker enters each period with a pure strategy which is the 

strategy which she is currently inclined to play. She plays that strategy, receives some 

stochastic payoff and then revises her strategy. It is possible that the strategy revision 

is stochastic, but all the information which is carried into the next period is the new 

pure strategy. Note that the state space of these learning rules is the set of all pure 

strategies. They are therefore named as pure strategy learning rules. Karandikar et al.
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[33] for example, propose a reinforcement learning model of this type.^

A learning rule which makes the decision maker play in the long run the expected 

payoff maximising strategy independent of what the underlying true payoff distribution 

is, is called maximising. A learning rule such that the asymptotic probability of choosing 

the expected payoff maximising choice is arbitrarily close to 1 is named approximately 

maximising. We show that no pure strategy learning rule is approximately maximising.

The intuition behind this result is that the state space of the learning rule provides 

the only possibility for the decision maker to implicitly store information about his past 

experiences. The set of all pure strategies is too small to store all relevant information.

The rest of the Chapter is organised as follows. Section 2 contains the formal 

framework and Section 3 states the main definitions. Section 4 shows tha t approximate 

payoff maximisation is impossible to achieve. Finally, Section 5 concludes.

4 .2  Form al Fram ew ork

This Chapter refers to the case in which the set is a singleton, i.e. =  {w} and 

in which sampling is not allowed. Individual w is referred to as the decision maker.

4 .3  D efin ition s

We begin formally defining learning rules which have the set of aU pure strategies as 

its state space. In the following definition, and in subsequent definitions, we prefer, in 

fact, the neutral expression behaviour rule over the expression learning rule.

D efin ition  4 A pure strategy behaviour rule B is a function: B : iSx(0 ,1) x 5  —> [0,1] 

such that for all s £ S ,x  £ (0 ,1 ): Xls'es B(s, x, s') =  1 .

The intuitive interpretation of a pure strategy behaviour rule B  is this: B{s,Xy s') 

is the probability with which strategy s' is chosen in iteration n  +  1 if strategy s was 

chosen in iteration n, and the payoff received was x.

^Karandikar et al. model [33] has, however, in addition an endogenous aspiration level which can 
take values in a continuum as a state variable.
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D efinition  5 The transition matrix T  corresponding to an environment E  and a pure 

strategy behaviour rule B  is a x matrix whereby the entry in the row corre

sponding to strategy s, and the column corresponding to strategy s ', is:

D efin ition  6  The behaviour process corresponding to an environment E , a behaviour 

rule B , and an initial probability distribution 6q G A (5) is the Markov chain {sn}neNo 

with the initial distribution 6q and with the transition matrix T  defined in Definition 5. 

For every n  G No iwe denote by 6n € A(5) the marginal distribution of Sn-

We can now introduce the first property which we analyze in this Chapter:

D efin ition 7 A pure strategy behaviour rule B  is maximising if  for every environment 

E  and every initial distribution 6q G A(5');

lim 6r,{S*) = 1 .
n—+ 00

P ro p o sitio n  1 No pure strategy behaviour rule is maximising.

This result is almost obvious. Therefore, we do not provide a formal proof. Instead 

we briefiy sketch the argument. Note first that any rule with B {s ,x ,s) < 1 for some 

s G S' and x  G (0,1) cannot be maximising. This is because for every s G S  and every 

x  G (0,1) there are environments E  in which s is the only expected payoff maximising 

action, and s yields payoff In such environments, if B {s ,x ,s)  were less than one, 

the agent would switch away from the expected payoff maximising action with positive 

probability, and therefore the asymptotic probability of playing that action could not 

be one. But now suppose that B{s^x,s) — 1 for all s G S' and x  G (0,1). Then the 

decision maker sticks forever with the strategy which she chose initially. Clearly, this 

is not maximising.

^Recall that the set of possible payoffs is (0,1). Note that 0 is not included in this set.
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4 .4  A p p ro x im a te  P a y o ff M a x im isa tio n

Proposition 1 leads us to seek behaviour rules which are approximately maximising. 

Roughly speaking, we mean by this behaviour rules for which lim^-^oo is close to

1 in all environments E  and for all interior initial distributions ô- More specifically, we 

shall ask whether there is a family of behaviour rules, parametrized by some parameter 

f/, such that in all environments E  the asymptotic probability of choosing an optimal 

action converges to 1 as i/ tends to infinity. Thus, by choosing a sufficiently large i/ the 

probability of choosing an optimal action can be made arbitrarily close to 1 .

D efin ition  8  A sequence of pure strategy behaviour rules is approximately

maximising i f  for every environment E, every initial distribution 6o 6  A(iS') and every 

z/ € N the limit limn-»oo 6^(5'*) (where for every n G Ng 6^ is the marginal distribution 

of Sn i f  the initial distribution is So and i f  the behaviour rule is B ^) exists, and we have:

lim lim =  1 .
v—*oo n—>oo

The following proposition states that no pure strategy behaviour rule is approxi

mately maximising.

P ro p o sitio n  2 No sequence of pure strategy behaviour rules is approximately max

imising.

P ro o f  of P ro p o sitio n  2. The proof is indirect. Suppose is a sequence of

pure strategy behaviour rules which is approximately maximising.

Step 1: For all s G S' and a; G (0,1) there is some i> G N such that for all v > û\

0 < B ^(s ,x ,s) < 1

Proof: (i) We first show that there is some G N such that v > û implies 

B ''{s ,x ,s) > 0. The proof is indirect. Suppose for every G N there were some 

V > If such that B'^{s,x, s) =  0. Consider an environment such that fig{x) =  1 and, for 

some y < X,  p>si{y) — 1 for all s' ^  s. For every z/ such that B'^{s,x,s) =  0 we have: 

^n(s) < 1 — ^n-i(s) for all n  G N. Therefore, if converges for n  —> oo, its limit
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cannot be more than 0.5. We have thus obtained a contradiction to the approximate 

maximisation property of

(ii) Next, we show that there is some G N such that v > V  implies B^{s,x, s) <  

1 . The proof is indirect. Suppose for every ü there were some u > v  such that 

B ^{s,x ,s)  =  1 . Consider an environment E  such that =  1 and, for some y > x, 

f^a'iy) — 1 for all s' ^  s. If the decision maker begins with an initial distribution

which attaches positive probability to the strategy s, and adopts a behaviour rule 

B'^ such that B''{s,x^s) =  1 , then for all n  G N: {^}) ^  1 — 6 o(s). Hence, if

6n{S \  {a}) converges for n  —» oo, its limit must be less than 1 — 5o(a) < 1 . We have 

thus obtained a contradiction to the approximate maximisation property

(iii) The result now holds if we take P to be the maximum of the two Ps referred to 

in parts (i) and (ii) of the proof.

Step 2: For any environment E  and any initial distribution € A(5) there exists 

some P such that for i/ > P the behaviour process {an}n€N Is an irreducible and aperiodic 

Markov chain.

Proof: Consider a given and fixed environment E  and initial distribution 5o- It 

follows immediately from Step 1 that the behaviour process {sn}neN is aperiodic for 

sufficiently large u. It therefore only remains to show that it is for sufficiently large u 

also irreducible.

We hence have to show there is some P such that for v > v  the transition matrix 

T*' has the property that all states communicate, i.e. for every pair of strategies s, s' 

there is some N(s, s') such that the probability of moving from s to s' in N(s, s') steps 

is positive.

The proof is indirect. Suppose there is some pair s,s' E S  such that for every P there 

is some v > v  such that the probability of moving from s to s' in any finite number of 

steps is zero. Step 1 shows that it must be that s' ^  s. Now, for all relevant u and for 

all n  G N: % ( /)  < 1 — 6 o(s). Hence, if % ( /)  converges for n  —> oo, its limit will not be 

more than 1 — 6 o(&). Observe that this is true independent of the payoff distribution 

attached to s'. In particular, it is true if s' is the unique expected utility maximising 

strategy. Thus, we have obtained a contradiction to the approximate maximisation 

property

38



Remark: By standard results in the theory of Markov chains^, Step 2 implies that for 

any given environment E  there is some i/ G N such that v > ü  implies that the sequence 

{^n}neN converges, and that its limit is a stationary distribution of the transition matrix 

T" and is independent of the initial value Sq. In the foDowing, we will denote this limit

b y C "
Step 3: For all s, s' G 5  with s' and for all x, y G (0,1) with y > x:

v>û,u-*oo 1 — B^{s'^ X, s')

where z> is such that for all i/ > we have: B'^{s',x, s') < 1 .'̂

Proof: Consider an environment E  such that fig{y) = 1 and (z) =  1 for all s' G -S', 

s' 7̂  s. Choose i/ G N such that Step 1 applies to payoff x  and all strategies s' ^  s, and 

such that Step 2 applies to the environment E. Because 6^  is a stationary distribution 

of T*', I have for all s' ^  s and v > v\

C (^ ')  =  s') +  «So(s)B‘'(s, y, s') +  Y .  C (s")B "(s" , X, s')
s"^s,s'

^  C ( s ')  >  C ( s ') B ‘'(s ',x ,s ')  + C ( s ) B ‘'( s ,2/,s ')

.. C(s') ^
d%o(s) 1 - B ‘'(s ',x ,s ')

The approximate maximisation property of the sequence implies that the

left hand side of the above inequality tends to zero as i/ —> oo. Then also the right 

hand side of the above inequality must tend to zero as z/ —» oo.

Step 4: Suppose x ,y ,z  G (0,1) and x  < z < y. Consider an environment E  such 

that y-gix) > 0 and iig{y) > 0 for some s £ S, and /J>si{z) = 1 for aU s' G 5  with s' ^  s. 

Then

lim 6 ^ (s) =  0
v> î/,u—*oo

where u is such that ïor v > v  Step 2 applies, and hence the distribution 6 ^  is well- 

defined.

®See, for example, p.214 of Grimmett and Stirzaker [22]. 
^Recall that by Step 1 such a exists.
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Proof: Choose i/ G N such that Step 1 applies to payoff x  and strategy 5 , and such 

that Step 2 applies to the environment E, For any u > ü the distribution 6 ^  is a 

stationary distribution of the transition matrix T^. This implies:

a'^s

MsW(1 -  3/, s)) +  Ms(y)(l -  X, s))

6^{s)
1 -<5^W  -  B ''(s,y ,s)) fig{y)(l -  B ^{s,x ,s))

_  S'Lis) < _ L _  V  C W  B -(s ',z ,s )
1 -  “  P'ai.y) 1 -  ( s )  1 -  a;, i

^  1 B ^{s\z^s)

~  y's^y)

By Step 3 for every s' ^  s:

This implies:

Thus we can deduce:

This implies:

limi/>l/,l/->oo 1 — B*^(s,x, s)

lim V - 5 ! t e i L  =  ov>v,v-*oo 1 — B^{s, X, s)

lim =  0t/>v,v-^oo 1 — Ooo(s)

lim <5^(s) =  0v>v,v—yoo

Step 5: The sequence {J5''},xeN is not approximately maximising.

Proof: Consider an environment E  as described in Step 4 with the additional prop

erty that s maximises expected payoff. The result in Step 4 applies in this case. Hence 

limi,>p,y_>oo =  0. This contradicts the approximate maximisation property of the

sequence ■

Proposition 2 shows that no pure strategy behaviour rule can achieve approximate 

payoff maximisation. The intuition behind this result is that the memory store provided
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by a pure strategy state space is too small to deal with a large variety of environments.

4 .5  C on clu sion

The main result of this Chapter is the non-existence of approximately boundedly ratio

nal strategies for multi-armed bandit problems within the framework of pure strategy 

reinforcement rules. These behaviour rules have no memory beyond what is encoded in 

the state of the decision maker. In fact, the decision maker’s state space provides the 

only possibility for the decision-maker to store information about her past experiences. 

But the memory store provided by a pure strategy state space is too small to deal with 

a large variety of environments, even if we ask only for approximate maximisation.

A number of papers in the economics literature have investigated pure strategy 

reinforcement rules, although mainly using aspiration-based models. Once the agent has 

played an action and received a payoff, she switches with positive probability from the 

action played if the achieved payoff falls below the aspiration level. Bendor, Mookherjee 

and Ray [3] and Karandikar, Mookherjee, Ray and Vega^Redondo [33] use aspiration- 

based models to study the behaviour in two-players games. In [3], the aspiration level 

is kept fixed whereas in [33] it evolves on the basis of the agent’s own experienced 

payoffs. Other papers like Palomino and Vega-Redondo [44] apply these models to 

a large-population context with the common aspiration level evolving on the basis of 

social experience.
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C hapter 5

M ixed Strategy Rules for 

Individual Learning

5.1 In tro d u ctio n

Individual learning refers to a situation in which there is a single decision maker facing 

repeatedly a decision problem. We investigate, without postulating any specific func

tional form, which properties characterise reinforcement learning rules which predict 

that in the long run the decision maker makes expected payoff maximising choices.

A decision maker chooses repeatedly among different actions. In each iteration, she 

receives some random payoff the distribution of which depends on her action, but not 

on time. Payoffs are stochastically independent between periods. The decision maker 

has no knowledge of the payoff distributions.

In this Chapter we model reinforcement learning in a different fashion from the 

previous Chapter, i.e. at any point in time the decision maker is described by a prob

ability distribution over actions which indicates how likely she is to take any of her 

actions. The decision maker then takes a randomly determined action, receives a pay

off, and then updates the probability distribution. The new distribution only depends 

on the previous distribution, on the action taken, and on the payoff received. It does 

not depend on any other aspect of history. Reinforcement learning rules are therefore 

formulated using the set of all mixed strategies as the state space.

An example of a simple rule of this kind is the one considered by Cross [15] to 

which we referred in Chapter 1 . Suppose payoffs are normalized between zero and one.
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Then Cross’ rule states that in each iteration the updated probability distribution is 

simply a weighted average of the previous probability distribution and the unit vector 

placing all probability on the action just taken. The weight of the unit vector equals 

the payoff. Note that this rule has the feature that all payoffs have a reinforcing, and 

hence positive, effect on the probability of the action which the decision maker chose.

A simple calculation shows that Cross’ rule implies that at any point in time the 

expected change in the state variable of the decision maker is given by the replicator 

equation of evolutionary game theory if this equation is specialized to the case of a 

single person decision problem. In Bôrgers and Sarin [5] it was shown that this im

plies that Cross’ learning rule tracks the trajectory of the replicator equation provided 

that it moves very slowly. Because evolution, as modelled by the replicator equation, 

maximises expected fitness, an agent who adopts Cross’ learning rule and adjusts her 

probability distribution only slowly, will choose in the long run with very high proba

bility an action which maximises expected payoffs. This is true for all true distributions 

of payoffs.^

In this Chapter we investigate which other reinforcement learning rules share with 

the slow moving Cross rule the feature that the long run probability of expected payoff 

maximising actions is close to one independent of what the true distribution of payoffs 

is. We call such rules approximately maximising. We do not obtain a complete charac

terization of such rules, but we define a property of learning rules called monotonicity 

which is of immediate relevance to our problem, and we obtain a complete characteri

zation of monotone learning rules.

Monotonicity means that the expected change in the probability of the expected 

payoff maximising action is positive. Cross’ rule has this property because the replicator 

equation, which characterizes the expected movement in Cross’ rule, has this feature. 

Monotonicity matters because, as we show in this Chapter, all monotone learning rules 

are approximately maximising, provided that they move slowly.

We will show that a rule is monotone if and only if it is Cross’ rule, whereby 

payoffs may be subjected to certain linear transformations. As a consequence, all 

monotone learning rules have the feature that their expected movement is given by

^In [5], which was written in a game setting, continuous time approximations are only constructed 
for finite time horizons. We shall show in this Chapter for the single person decision setting that the 
result can be extended to an inhnite time horizon.
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some transformation of the replicator dynamics.

The rest of the Chapter is organized as follows. Section 2 contains the formal 

framework. Section 3 sets up the framework for mixed strategy learning rules. Section 

4 introduces the monotonicity property and its implications. Section 5 provides a 

characterization of monotone learning rules. Section 6  contains the proof of the main 

proposition of the Chapter: the monotonicity characterization.. And finally, Section 7 

concludes.

5.2 Form al Fram ew ork

This chapter refers to the case in which the set W-^ is a singleton, i.e. — {w} and 

in which sampling is not allowed. Individual w is referred to as the decision maker.

5.3 D efin itio n s

We begin formally defining learning rules which have the set of all mixed strategies as 

its state space. In the following definition, and in subsequent definitions, we prefer, in 

fact, the neutral expression behaviour rule over the expression learning rule.

D efinition 9 A mixed strategy behaviour rule B is a function: B  : A(5') x j9x (0 ,1 ) —♦> 

A(5).2

The intuitive interpretation of a mixed strategy behaviour rule B  is this: At each 

iteration n  the decision maker’s behaviour is described by a probability distribution 

<Tn € A(5) which specifies for each pure strategy s how likely it is that the decision 

maker chooses s at iteration n. We shall also refer to an as the state of the decision 

maker at iteration n. The distribution B (an ,s,x )  is then the state of the decision 

maker at iteration n +  1 if her state at iteration n  was a„, the pure strategy which she 

chose at iteration n  was s, and the payoff which she received was x. For every s' G S  

we denote by B{an,s,x){s') the probability which B (a n ,s ,x )  assigns to s'.

Throughout this Chapter we shall focus on behaviour rules which satisfy the fol

lowing assumption:

^Note that we use, for simplicity, the same symbol B  as in the previous Chapter to denote mixed 
strategy behaviour rules.
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A ssum ption  1 . For any s £ S  the mixed strategy behaviour rule B  is œntinuously 

differentiable in {(Tn,x) and the derivative of B  with respect to (cr„,x) is bounded from 

above and from below.

This assumption allows us in Section 4 to appeal to well-known theorems regarding 

the approximation of slow moving stochastic processes by the solution of deterministic 

differential equations.

We denote by B{A{S)) the set of all Borel subsets of A(5').

D efinition 10 The stochastic kernel K  corresponding to an environment E  and a 

mixed strategy behaviour rule B  is a function K  : A (S) x B (A (S)) —> [0,1] such that

K(cr,Q)= (t(s) - / x̂ (x )
(s,x)e{3€S,xe(o,i)lB((T,s,x)en}

fo r every a G A(jS') and f2 € B{A{S)).

Intuitively, the stochastic kernel is the analog of a transition matrix for a Markov 

process with continuum size state space.

D efin ition  11 The behaviour process corresponding to an environment E, a mixed 

strategy behaviour rule B, and an initial state ctq G A (5) is the Markov process 

{<^n}neWo the initial distribution which assigns probability 1 to ctq, and with the 

stochastic kernel K  described in Definition 10.

D efin ition  12 A mixed strategy behaviour rule B  is maximising i f  for every environ

ment E  and every initial state cq G A(S') the probability of the event **CTn{S*) —► 1” is 

1.

We have not been able to settle the following, intriguing question:

O pen  Q uestion  Do mixed strategy behaviour rules which are maximising exist?

Although we have to leave this question unanswered, we do have interesting results 

concerning a class of approximately maximising behaviour rules. Here, the concept of 

approximate maximisation is defined in the same way as in Chapter 4.

D efin ition  13 A sequence of mixed strategy behaviour rules is approxi

mately maximising if for every environment E and every initial state ctq G A (5) the

45



probability of the event —>1'' converges to 1 as u ^  oo. Here, {<rĴ }neWo

notes the behaviour process corresponding to the behaviour rule and the initial state 

(T q .

5 .4  M o n o to n e  B eh av iou r  R u les

For any mixed strategy behaviour rule B  and environment E, we define a function /  

which assigns to every possible state of the decision maker <r, and every pure strategy s, 

the expected change in the probability attached to s if the current state is cr. Formally, 

/  : A(5) X i9 —+ R is defined by:

«) =  X I -  f̂ {s)dfJ>s>
s'es

for all cr G A(5') and s S S. For S  C S, v/e define 

Finally, we denote by /(cr) the vector:

/ H  =  { /K s ) h e s .

D efinition  14 A mixed strategy behaviour rule B  is called monotone if

(1 ) cr G A(.S), s £ S  and x  G (0 , 1 ) imply B{a, s ,x) G A(S')

(2 ) for all environments E  with 5* ^  S' and all states a G A(S'): /(cr, S*) > 0 .

Condition (1) guarantees that the behaviour process stays in the interior of the 

mixed strategy simplex provided that it starts in the interior. This makes it easier for 

us to appeal to continuous time approximations later in this Section. The main point is 

condition (2). It is this condition which motivates the label monotonicity. It says that, 

in expected terms, the decision maker will approach the expected payoff maximising 

choice in a monotonically increasing way.

In the following, we shah simplify terminology, and we shall call monotone mixed 

strategy behaviour rules simply “monotone behaviour rules” . In the remainder of this
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Section we present some propositions which motivate our interest in monotone behav

iour rules.

P roposition  3 Suppose that B  is a monotone behaviour rule, and that E  is an envi

ronment. Then for any initial state uq € A(S') the event

V „(5 * )-> 0  o r (T n (S * )-^ r

has probability 1.

P ro o f o f P ro p o sitio n  3. By the definition of monotone behaviour rules the stochas

tic process {cr„(5*)}neNo is a submartingale which is bounded from below by 0  and 

from above by 1 . Therefore, by the Martingale Convergence Theorem (Grimmett and 

Stirzaker [22], p. 454), converges almost surely to  a limit random variable

ĈX)'

It remains to show that (Joo{S*) =  0 or 1 with probability 1 . This follows if we can 

show that for every pair a , E (0,1) with ot <  (3 the probability of (Too(S*) E [a,/?] 

is zero. Let a, h satisfy: 0 < a < a < / 9 < 6 < l .  For every n  E N and rj > 0 let 

denote the event “cr„(<S'*) E [a, b] and | cr„(5*) — an-i(S*) |<  77 for aU n  > n” . Clearly, 

for every 77 > 0  the event <Joo € [a, 0\ is contained in the event and therefore

it suffices to show that for some 77 > 0 the probability of is zero. This follows

if we show that for some 77 > 0 the probability of is zero for every n  E N.

Fix n. For every n > n  we denote by the event “(Tn(<S'*) E [a, 6] and j (Tn(S*) — 

cr„_i(S'*) |<  77”. Write Pr(^%) for the probability of and write Pr(^%^^ | for 

the probability of conditional on Then the probability of 0 ^  can be written 

as: Pr(^%) ■ | ^ l )  • P r (^% +2 I  ^n+i) '  I  ’̂ n+2) ' • • •• Suppose we

can show that there is some C with 0 < C < 1 such that for all n E N the conditional 

probability P r(^^^ j | ^%) is bounded from above by Ç Then the above infinite product 

converges to zero, and therefore the proof is complete.

Consider the expected value of cr„^i(5'*) — t7n(S'*) conditional on This is

bounded from below by ^ =  min^^g^^g) and «r(5 *)G[o,6] 6"*). Because B is monotone,

(̂  > 0. Now consider the probability that <7^+1 (B*) — (7n{S*) < conditional on 

Intuitively, for the expected change to be at least the probability that the actual
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change is less than |  must not be too large. In fact, a trivial calculation shows that it 

cannot be more than .

Now set 7/ =  | .  Then the preceding paragraph imphes that | is

bounded from above by Thus we have found a uniform upper bound for |

^n) which is less than one, and the proof is complete. ■

This result is similar to Proposition 2 in Bôrgers and Sarin [5]. Bôrgers and Sarin’s 

result refers, however, only to one special example of a monotone behaviour rule, namely 

Cross’ rule which is Example 1 in the next Section. Bôrgers and Sarin prove their result 

using Theorem 2.3 in Norman [41] which applies to a larger class of learning models. 

However, Norman’s result does not seem to apply in our context, and the proof of 

Proposition 3 does not rely on Norman’s result, and is different from his proof.

For given behaviour rule B  and given environment E  we define a function g which 

assigns to every state (Tq G A(S') the probability p(fro) of the event (Tn{S*) —»• 1 if the 

initial state is ctq.

P roposition  4 Suppose that B  is a monotone behaviour rule, and that E  is an envi

ronment such that S  ^  S*. Then, for any ctq G A(5), g{cTo) > ao{S*).

P ro o f o f P roposition  4. Because B  is monotone, the unconditional expected values 

satisfy: E{an{S*)) <  E{an+i{S*)) for all n  G Nq. Hence: Wirin-̂ oo E ( a n{S*)) >  (To(S*). 

Proposition 3 implies: limn-»oo E((Tn(S*)) = g{<Jo)- Thus, we can conclude: g((To) > 

(To{S*). ■

This proposition describes a very weak, but certainly desirable property of monotone 

behaviour rules: in all non-trivial environments the probability with which the deci

sion maker ends up playing an expected payoff maximising strategy is larger than  the 

probabihty with which the decision maker played some such strategy initially.

Stronger results can be proved for monotone behaviour rules which move in small 

steps. We shall present two propositions which apply to this case. For any given 

monotone behaviour rule B  we define for every e G (0,1) a new behaviour rule B^ by 

setting

B^{cr, s ,x ) — cr = e{B{(r, s, x) — cr).

Intuitively, B^ describes a behaviour process which moves into the same direction as 

B, but at speed e. We are interested in limit properties of the behaviour process
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corresponding to for fixed environment, and fixed initial state, where the limit 

which we wish to take is: e —̂ 0 .

For our first result we introduce a continuous time variable  ̂ > 0, and we adapt the 

behaviour process introduced in Definition 11  so that it is a continuous time behaviour 

process. If the behaviour rule is B®, we assume that the amount of “real time” which 

passes between two iterations of the decision problem equals e. In the time interval 

which passes between two iterations of the decision problem the state of the decision 

maker remains constant. This motivates the following definition:

D efinition 15 The continuous time behaviour process corresponding to an environ

ment E, a mixed strategy behaviour rule , and an initial state ctq 6  A(*S') is the 

stochastic process {5^t}t>0 vjhose initial distribution assigns probability 1 to (Tq, and 

which satisfies for any t > 0 ;^

à? =

where {(TmineNo (/te (discrete time) behaviour process corresponding to B^.

This definition of the continuous time behaviour process has the following desirable 

feature. If one investigates the behaviour process in the case that e is close to zero, but 

fix some time interval [0 ,t], then, as € is reduced, the number of iterations over which 

we keep track of the decision maker’s behaviour is correspondingly increased. If one 

didn’t increase the number of iterations, but instead kept it fixed, then, if e were close 

to zero, almost no change in the decision maker’s behaviour would be observed.

To characterise the limit as e 0 we introduce a deterministic dynamic process 

which starts in (Tq, and which moves into the direction of the expected movement of B^. 

Formally, we define for the behaviour process introduced in Definition 15 a correspond

ing deterministic continuous time process by setting do — ctq, and, for every

t > 0, df =  o-̂ tj if I is not an integer, and o-f =  -f otherwise. Here,

is the function that describes the expected movement of the behaviour rule B^.

P ro p o sitio n  5 Suppose that B  is a monotone behaviour rule, that E  is an environ

ment, and that ao £ Â(5'). Then for any ( > 0, 6 > 0 and p £ [0,1) there is anë  > 0

For a: G R we denote by [x] the largest integer smaller or equal to x.
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such that £ <  € implies that the probability of the event

is at least p.

This proposition shows that over any finite time horizon the stochastic behaviour 

process {crf}t>o stays with high probabihty close to the deterministic process {ô{}t>o» 

provided that e is close to zero. Standard results in numerical mathematics show 

moreover that over any finite time horizon the deterministic process {ô'f }t>o stays close 

to the solution of the differential equation

provided that e is close to zero.'  ̂ Thus we can conclude that over finite time intervals 

and for small e the solution of the differential equation constitutes a good approximation 

to the behaviour process.

We omit the proof of Proposition 5. The result is very closely related to Proposition 

1 in Bürgers and Sarin [5]. Bôrgers and Sarin’s result applies only to the special case 

of Cross’ rule. However, the general case is not different. In Bôrgers and Sarin, but 

also in general, the result can be proved using Theorem 1 .1  in Chapter 8  of Norman 

[42]. A technical point is that Norman’s result apphes only to particular points in time, 

t, whereas in Proposition 5 we refer to a time interval [0, <]. The extension to time 

intervals can be derived along the lines indicated in Corradi and Sarin [14].

Notice that the deterministic process to which Proposition 5 refers has the property:

hm = 1
t-^oo '

provided that the initial state is interior. Thus, Proposition 5 comes very close to 

asserting that for small e the behaviour rule is approximately maximising. However, 

Proposition 5 considers only finite time intervals [0,^]. Therefore, we provide a further 

result which concerns the asymptotics for t ^  oo of the decision maker’s behaviour.

^See, for example, Theorem 203A in Butcher [9].

50



P roposition  6 Suppose that B  is a monotone behaviour rule, and that E  is an envi

ronment. Then for all ao G Â (5);

limp^((To) =  1 .

Here, the function assigns to every initial state ctq the probability o f the event 

“(7^{S*) —> 1 " i f  the behaviour rule is B^.

P ro o f o f P ro position  6 . Consider a given and fixed initial state ctq G A(iS'). Recall 

that this implies: limt_»oo — 1- Therefore for every 6  > 0 there will be a t > 0

such that > 1  — 6. By Proposition 5 there will then be for every 6  > 0 and

p G [0,1) a t >  0 and an ë > 0 such that e < e implies that the probability of the 

event “5-^(5*) > 1 —5” is at least p. Now recall from Proposition 4 that, conditional on 

“erf (5*) > 1  — 5” the probability of —>• 1” is at least 1 — 5. Thus we can conclude 

that for every 5 > 0 and p G [0,1) there will be an ë > 0 such that e <  ë implies that 

the probability of the event “crf —► 1” is at least p (l — 5), This implies the claim. ■

5.5 C h aracterisa tion  o f  M o n o to n e  B eh a v io u r  R u les

In this Section we characterise all monotone behaviour rules. First, we provide an 

example. Then we show that all monotone behaviour rules share certain features of 

this example.

E xam ple 1 (Cross [15].) For all a G A (5), s ,s ' £ S  with s ^  s', and x  G (0,1);

R(cr, s, a:)(s) =  (i{s) 4 - (1  -  cr(s))a;

B{a, s', x)(s) =  ( t { s )  — a{s)x

Notice that this behaviour rule has the somewhat counterintuitive feature that the 

decision maker always increases the probability of the action which he actually played, 

even if the payoff was very low.
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It is obvious that Cross’ rule satisfies condition (1) in Definition 14. The expected 

movement for Cross’ behaviour rule is given by:

f ( ( T , s )  =  <r(s)[7r5 -  Y^(c r{ s ' ) 7r s>) ]  
a 'e s

for all (T G A(5) and all s G 5. Notice that the expression on the right hand side 

appears also on the right hand side of the replicator equation of evolutionary game 

theory. It is clear from this expression that Cross’ rule has the property required by 

part (2) of Definitijyi 14.

The next result shows that a behaviour rule is monotone if and only if the decision 

maker first submits her payoff to a linear and increasing transformation (where the 

coefficients may depend on the current state of the decision maker, on the strategy 

which she has played, and on the strategy the probability of which she is adjusting), 

and then applies Cross’ rule:

P ro p o sitio n  7 A mixed strategy behaviour rule B  is monotone if  and only if  there are 

functions A  : A(5') x S' x 5  —>■ R and B : A(S) x S  x S  —* R>o such that for every 

(or, s, x) G A(S) X S X (0,1);

(1) B{a, s ,  x ) { s )  =  <t{s) 4- (1 -  cr{s ))  s ,  s )  + B(cr, s, s ) x ^

(2) B(a, s', x)(s) = o-(s) — a(s) s ',s) + B(a, s', s)x^ for all s' ^  s

and, for every <r G A(S) and s G S:

(3) A ( ( t , s , s ) =  Y l s ' e s  ^ ( s ' ) A ( ( t , s ' ,  s )

(4) B((T, s ,  s )  = '£^,^3  «)

Conditions (1) and (2) in Proposition 7 show that all monotone rules are like Cross’ 

rule with linearly transformed payoffs. Conditions (3) and (4) place an unbiasedness

condition on the coefficients of the linear payoff transformation. They say that the

coefficients have to be such that expected motion is zero whenever all strategies yield 

the same expected payoff. The proof of Proposition 7 shows why this condition is a 

necessary condition for monotonicity, and why (3) and (4) ensure that it is met.
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The following remark shows that the formula for the expected movement of monotone 

behaviour rules has the same structure as the formula for the expected movement of 

Cross’ rule. Of course, allowance must be made for the fact that payoffs may be sub

mitted to linear increasing transformations. But, once this is taken care of, expected 

movement of any monotone behaviour rule is the same as the movement of evolution

ary rephcator dynamics. By Proposition 6 this implies in particular that slow moving 

monotone behaviour rules will stay with high probability close to the deterministic 

trajectory of replicator dynamics.

R em ark  1 Let B  be a monotone behaviour rule, and let E  be an environment. Then 

for every a G A(5) and every s £ S  the expected movement of the probability of s is 

given by:

f{(T, s) =  (t{s)[J3{(t, s , s)7Ts -  ^(a-(s')B (o-, s', s)7ry)]
s ' e S

We conclude this Section with two further examples of monotone behaviour rules. 

The proofs of monotonicity for these two behaviour rules are straightforward and there

fore omitted.

Exam ple 2 Let any a  with 0 < a  < 1 be given. Using the notation of Proposition 7 

we can then define a monotone behaviour rule by setting for all cr £ A{S), s ,s ' £ S  with 

s s':

s'^8

6{(t, s , s) =  +<t(s) -  (f(a'))]
a'^a

A{(T, s ', s) =  - ( 1  — cr(s'))(l -  (r{s))a-{s')(T(s)a 

B(a, s', s) = 4-(l -  o-(s'))(l -  o-(s))cr(s')t7(s)

According to this behaviour rule, if strategy s was played in iteration n, the decision 

maker increases (resp, decreases) in period n 4- 1 the probability assigned to  s if the 

payoff X which the decision maker received in iteration n was above (resp. below) a. 

Intuitively, a  thus plays the role of an “aspiration level.” If the probability assigned
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to s is increased (resp. decreased), the probability of all other strategies is decreased 

(resp. increased).

R em ark 2 An alternative model of reinforcement learning with an aspiration level was 

investigated in Bôrgers and Sarin [6]. The model of that paper postidates that a payoff 

which is an amount of x  below the aspiration level leads to the probability of the action 

just played to be multiplied by x  and all other probabilities to be increased proportionally. 

I f  the payoff is above the aspiration level, then the Cross rule is applied.

This model appears plausible, however, it fails to satisfy conditions (3) and (4) of 

Proposition 7. These conditions ensure that expected movement in probabilities is zero 

when all actions have identical expected payoffs. I f  the above rule is applied, and some 

particular action has probability close to one, and has a positive probability of receiving 

negative payoff, the expected change in this actions probability is negative, independent 

of the expected payoff of all other actions.

E xam ple 3 Suppose that S  =  { 1 , 2 , # 5 " } .  For any given strategy s Ç: S  we define 

two strategies s 0  1 and s 0  1 both of which are also contained in S . In general, 

s 0  1 =  s +  1 and s 0  1 =  s — 1. But there are two cases in which this is not well- 

defined, and in these cases we set.'j^S 0 1  =  1, and 1 0 1  =  Using the notation of 

Proposition 7 we can then define a monotone behaviour rule by setting for all a  € A(5') 

and s E S:

^ (c r ,s ,s0 l)=  J][ cr(s')

B{a, s, s 0  1) =  1 — A{cr, s, s 0  1)

^(o-, s, s 0  1) =  -  P j  a(s')
S':̂ S,SQ1

B{a, s, s 0  1) =  1 +  A{(t, s, s 0  1 ) 

and, for  s' ^  s 0  1 , s 0  1 ;

A {( t , s ,  s') =  0 

B(o', s, s') = 1 
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Hence, if strategy s is played in iteration n, the probability of this action is increased 

in the same way as it is increased in Cross’ behaviour rule. The probability of strategy 

5 0 1 ,  however, is reduced by more than it would be the case in Cross’ rule, and the 

probability of strategy s 0 1  is reduced by less than in Cross’ rule. In fact, if the payoff 

X was very low, the probability of s 0  1 may be increased rather than decreased. The 

probability of actions s' ^ {s 0 1 , s, s 0 1 }  is reduced in the same way as in Cross’ rule. 

A behaviour rule of this type might capture the intuitive idea that strategy s 0 1  is “the 

opposite” of s, whereas strategy s 0  1 is “similar” to s. Notice, however, that these 

relations are not transitive in the example.

5.6  P r o o f  o f  P ro p o sitio n  7

To see that every behaviour rule which has the properties listed in Proposition 7 is 

monotone note first that condition (1) in the definition of monotonicity is trivially 

satisfied. Moreover, as noted in Remark 1, for every cr E A(S') and every s £ S  the 

expected movement of the probability of s is given by:

/(cr, s) =  (r{s)[B{a, s, s', s)7r,,)]
s'eS

Using condition (4) in Proposition 7 we can re-write this as:

f{(T, s) = cr(s) ^ ((r (s ')B (a r , s', s)(7Ts -  7r,,))
s'^s

If TTg > 'Kg' for all s' ^  s, this is non-negative, and if the inequality is strict for some s' 

then this expression is positive. This implies that B  is monotone.

In the remainder of the proof we consider some given monotone behaviour rule B, 

and we show that B  has to have the properties listed in Proposition 7. We proceed in 

five steps.

Step 1: Consider an environment in which S* =  S. Then for every cr E A(iS') and 

every s £ S: f{cr, s) =  0.

Proof: Suppose there were an environment with S* = S, & a £ A(iS'), and an 

s £ S  such that /(cr, s) ^  0. Then there has to be some s £ S  such that /(cr, s) < 0. 

Now suppose that we change payoffs slightly, so that s becomes the unique expected
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payoff maximising action. Because of the continuity of the behaviour rule, the expected 

movement in the probability of s will remain negative, contradicting monotonicity.

Step 2: There are functions À  : A(S') x 5  x S' —>■ R and B : A(S) x S x 5  —► R such 

that for every {cr, s, x) G A(S) x 5  x (0,1)

(1) B((T, s, x){s) =  A(cr, s, s) 4- B{(T,  s ,  s ) x

(2) JB(cr, s, x){s') =  A{(7, s ,  s ' )  — B{(t, s ,  s ' ) x

Proof: Let a,b,c € (0,1), and suppose a < h < c. Let & G S', and consider two 

environments, E  and E, both of which have the property that all strategies have the 

same expected payoff, i.e. in both environments S'* =  S'. Suppose also that the payoff 

distributions of any strategy s G S' with 5 ^  s' is the same in E  and in E. Finally, 

suppose that in environment E  strategy s yields payoff a with probability p and payoff 

c with probabihty 1 — p, whereas in environment E  strategy s' yields payoff b with 

certainty. Here, p is given by: p =  ^5^. This ensures that the expected payoff of s is 

the same in the two environments.

Denote by /(<j, s) (resp, /(cr, s)) the expected change in the probabihty of any 

strategy s G S in the environment E  (resp. E). Step 1 implies for ah s G S':

/(cr,s) = /(<7,s) =  0  =»

/(cr, s) -  /(or, s) =  0  ^  

pB((T,s,a)(s) +  (1 -p )B (cr,s,c)(s) =  J3(cr, s, 6 )(s)

Replacing p by ^  and re-arranging yields:

(c -  a){B((T, s, 6)(s) -  B{a, s, a)(s)) =  (6 -  a){B{a, s, c)(s) -  B{cr, s, a)(s))

This imphes that either

B((T,s,a){s) = B{cr,s,b)(s) = B(cr,s,c)(s)

or
B((T, s, b){s) — B(cr, s, a)(s) _  b — a 
B(cr, s, c)(s) — B(cr,s, a)(s) c — a
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As this must be true for all a, 6, c with a <  6 < c, it follows that B(cr, s', x)(s) must be 

linear in x, as asserted.

Step 3: For every cr £ A (S) and all s, s' £ S\

B { ( t  ̂s ,  s ' )  >  0

Proof: Consider any a £ A(5). We prove the claim first for the case s ^  sf. The 

proof is indirect. Suppose there were s, s' £ S  with s ^  s' such tha t 5(<r, s, s') < 0. 

Consider an environment E  such that = 1, fi^{x — 6) = 1 and fjLgii{x — e) =  1 for

all s" ^  s, s'. Suppose 6, c > 0. Then:

f{(T,s') =  ( t { s ' ) { A { ( T , s ' , s ' ) -\-B(a,s',s')x)

+£r(s)(Â(<T, s, s') -  B{cr, s, s')(x -  6))

+ cT{s")(À{a,s",s') -  B (cr ,s" ,s '){x -e ))
s"^s,s'

-a{3')

=  a{s'){À{(T,s',s')-\-B{cr,s',s')x)

+ ^  0-(s)(Â(<7, S, s') -  S ((7 , S, s')x)
3 ^ 3

-a{s ')

+t7(s)B(cr, s, s')5 +  Y2, f^{s")B{(j^s",s')e
3 " ^ 3 , 3 '

By Step 1 ; the first three lines of this sum add up to zero. Therefore:

/(<7, s') =  a(s)B(<j, s, s')5 +  Y2, <̂(.s")B{(t^s"^s')e
S " ^ 3 , 3 '

If J3(cr, s, s') <  0, then this term becomes negative for sufficiently small e, contradicting 

monotonicity.

It remains to prove the claim for the case s =  s'. Since for every {cr, s, x) £ A(S') x 

S  X (0,1) B{(t, s , x )  is a probability vector, we must have:

B(cr, s, x)(s') =  1
3 ' e s
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A(cr, s, s) +  è(cr, s, s)x  +  ^  À{(t, 5 , / )  — ^  B{a, s, s ')x  =  1
a'^s s'eS

This can be true for every x G (0,1) only if:

B(a, s, s) -  ^  B{(t, s, s ' )  =  0
a'̂ 3̂

B{(t, s , s) =  ^ B { a , s , s ' )
a'^s

We have already shown that all the terms on the right hand side are positive. Therefore, 

the left hand side has to be positive as well.

Step 4: For every (t G A(S') and s G S:

(1 ) E y e s  s', s) =  a{s)

(2 )  E y ^ s  <r(s')^(or, s', s) =  (t (s ) S ( o-, s , s )

Proof: Consider an environment E  such that all actions give the same, deterministic 

payoff, i.e. for some x\ /2g(z) =  1 for all s G S. By Step 1, for every s G S  and or G A(iS), 

/(<T, s) =  0. By Step 2:

/(o-, s) =  ^  (t{s’)À{(J, s ', s ) -  a{s) 4- x[(t{s)B{(t, s , s ) -  ^  <t{s')B{<t, s ', s )] =  0
s'eS a'^a

This can be true for all x  only if Step 4 is true.

Step 5: To complete the proof we define the functions A  and B  by setting for all 

<7 G A(S') and s, s' E 5  with s ^  s':

A{cr,s'  , s )  =

1 -  (t{s) 

cr(s) -  A{cr  ̂s', s)

B{(t, s , s ) =  

B((T,s\ s) =

cr(s)

B{<j,s,s) 
1 -  <t( s )

B{(J, s', s)
tj(s)

By Step 3 5(cr, g, s) > 0 and B{cr,s,s') > 0. Step 2 implies that with these definitions
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A  and B  satisfy conditions (1) and (2) of Proposition 7. Finally, Step 4 implies that A  

and B also satisfy conditions (3) and (4) of Proposition 7. ■

5.7 C on clu sion

This Chapter has investigated the existence of mixed strategy reinforcement learning 

rules which are approximately rational strategies for multi-armed bandit problems. 

Although the goal was the characterisation of all learning rules tha t are approximately 

maximising, i.e. rules tha t lead the decision-maker to play in the long run the expected 

payoflF maximising choice with probability arbitrarily close to one, the complexity of the 

problem has prevented us from fulfilling it. However, we have defined a property called 

monotonicity and shown that monotone behaviour rules are approximately maximising. 

Monotonicity means tha t the expected change in the probability of the expected payoff 

maximising action is always positive for every state of the decision-maker and every 

decision problem. We have characterised all monotone behaviour rules, showing that 

a rule is monotone if and only if it is Cross’ rule, whereby payoffs may be subjected 

to certain linear transformation. Furthermore we have shown tha t there is a close link 

between monotonicity and replicator dynamics, as monotone rules keep track of the 

replicator equation as long as the learning is slow.

The continuous diflFerentiability assumption has played an important role as it has 

allowed us to approximate slow moving stochastic processes by the solution of deter

ministic differential equations. Beside this technical use, it has restricted the extent to 

which the decision maker can use her state space as a device for encoding information 

about her past payoff experiences. The decision maker could achieve approximate max

imisation by keeping a record of her payoff experiences by manipulating appropriately 

those digits in the decimal expansion of her strategy which are far behind the deci

mal point. The earlier digits, which are more relevant to the actual behaviour, could 

then be used to induce initially an appropriate amount of experimentation, and later 

a choice which maximises the observed average payoff. But this sort of rules would 

not been continuous and therefore have been rule out. A formal analysis of this sort 

of construction seems interesting but would have taken us far from the main purpose 

of this thesis, i.e. the use of simple learning rules as bounded rationality strategies for
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multi-armed bandit problems.

Another important issue to be investigated in future research is the relationship 

between monotonicity and absolute expediency. The latter property seems more ap

pealing as it is concerned with expected payoffs. However the results in the literature 

about absolutely expedient rules are less general than our results on monotone rules. 

Moreover, the examples of monotone rules provided in Section 5 happen to be ab

solutely expedient rules. We have been unable to draw the exact relationship between 

these two properties.

There is a large and diverse set of references which address issues related to those 

covered in this Chapter. There are several related results in the economics literature. 

The first of these is in Samuelson and Zhang [48], who show that a selection dynamic 

satisfies a condition called aggregate monotonicity if and only if it is a multiple of 

the replicator dynamics. Selection dynamics describe the evolution of a population of 

players. Samuelson and Zhang do not trace back their result to behaviour rules for indi

vidual players. Unlike monotonicity as defined in this Chapter, aggregate monotonicity 

concerns not just the frequency of the best action, but also of other actions. Samuelson 

and Zhang obtain their result considering just one single environment. By contrast, it 

is essential for our result that a behaviour rule must operate in multiple environments.

More closely related to our work are two recent papers by Rustichini [47] and Easley 

and Rustichini [16]. Both papers, like this Chapter, consider a repeated individual 

decision under risk, and then axiomatize behaviour rules which move like replicator 

dynamics. Easley and Rustichini's [16] work differs, however, in two important ways 

from our study. Firstly, they take only the decision maker’s ordinal ranking of outcomes, 

but not his von Neumann Morgenstern payoff as exogenously given. Moreover, they 

have a different informational assumption: In each period, the decision maker observes 

the outcome not only for the action which she took, but for aU actions. Easley and 

Rustichini then axiomatize behaviour rules which move as if the decision maker had 

a given and fixed von Neumann Morgenstern utility function, and adjusted her choice 

probabilities in the style of replicator dynamics.

Our analysis differs from that of Easley and Rustichini in that it operates with only 

one axiom, monotonicity, and correspondingly obtains a more general functional form 

for the learning process.

60



Rustichini [47] covers both the informational assumption which we made in this 

Chapter, and the informational assumption which is made in Easley and Rustichini 

[16]. Rustichini introduces axioms concerning the expected motion of a learning process 

which then yield a rephcator type process. He shows how stochastic approximation 

results might lead to a long run identity of expected and actual motion. However, 

he does not translate his results concerning expected motion into results concerning 

the individual's behaviour rule. Moreover, he invokes a number of axioms such as 

symmetry, and linearity in payoffs, which have no analog in this Chapter.

The literature which is most closely related to the analysis in Sections 4 and 5 

is a branch of the machine learning literature which is concerned with the learning 

behaviour of stochastic automata. The concept of a stochastic automaton is similar to 

our concept of a mixed strategy behaviour rule. A useful overview of the literature on 

stochastic automata and learning has been provided by Narendra and Thathachar [40].

Particularly closely related to our work is Toyama and Kimura [55]. They, too, 

investigate monotone behaviour rules. They show that monotonicity implies approxi

mate maximisation if the process moves in small increments (their Corollary 1), and 

they provide a characterization of monotone behaviour rules (their Theorem 1). They 

allow a larger class of environments than we do, by allowing payoffs which are not 

i.i.d., but they restrict attention to a smaller class of algorithms, by assuming linearity 

in payoffs. They do not consider pure strategy rules. They pay less attention than 

we do to technical assumptions some of which, like differentiability, we think to  be of 

conceptual importance as well.

Other papers in this literature have investigated a property which has some sim

ilarity to monotonicity, and which is called absolute expediency. This property was 

originally defined by Lakshmivarahan and Thathachar [34]. Absolute expediency re

quires that in all environments, conditional on all possible states of the automaton, 

the expected payoff in the next period is larger than it is in the current period. This 

property thus differs from the monotonicity property investigated in this Chapter in 

that it refers to payoffs rather than the probability of the expected payoff maximising 

actions.

The machine learning literature has found a number of characterizations of absolute 

expediency if additional restrictions are imposed on either the set of possible environ
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ments or the set of possible behaviour rules. Under these restrictions it has also found 

that absolute expediency implies approximate maximisation® if the process moves in 

small increments. A selection of relevant papers is: Aso and Kimura [2], Meybodi 

and Lakshmivarahan [36], and Lakshmivarahan and Thathachar [35]. However, to our 

knowledge, no result has been proved in this literature that would hold at the same 

level of generality as our result in this Chapter,

Absolute expediency has also been investigated by Sarin [49] and Schlag [50]. Sarin 

combines absolute expediency with other axioms and obtains a learning process which 

moves like replicator dynamics. Schlag obtains a similar result assuming linearity of 

the learning rule in probabilities.

’In this literature, the approximate maximisation property is referred to as £-optimality.

62



Chapter 6

Pure Strategy Im itation Rules

6 .1  In tro d u ctio n

Imitation is one of the mechanisms by which patterns of behaviour spread throughout a 

population. Imitation processes are similar to evolutionary processes, and the analysis 

of imitation helps to link evolutionary theory to economic contexts. In this Chapter 

we develop a model of reinforcement learning by imitation. To this end, besides the 

individual decision maker, we introduce a population of agents who find themselves 

in the same situation, i.e. they all are facing an identical decision problem. In each 

iteration, the decision maker has to choose from a finite set of strategies, each of which 

yields an uncertain payoff. After playing a strategy and receiving a payoff, the decision 

maker has the opportunity to observe the action and the payoff of a member of a 

population. Then she revises her strategy.

In this Chapter we shall focus on the case that the decision maker is endowed with a 

pure strategy learning rule. The strategy revision is allowed to be stochastic, but all the 

information which is carried into the next period is the new pure strategy. Furthermore, 

to capture the essence of imitation, the decision maker’s next period new pure strategy 

is restricted to be either the own action or the sampled one. Pure strategy learning 

rules which satisfy this condition will be called pure strategy imitation rules.

We shall investigate whether pure strategy imitation rules are able to generate 

optimality in the long run. Quite obviously, the ability of imitation rules to lead the 

decision maker towards optimal actions will depend on the evolution of the population 

behaviour. Therefore, there are many ways in which we can try to assess whether a
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given imitation rule is “good”. One possibility is to investigate the performance of this 

imitation in an arbitrary environment, i.e. in an environment in which the population 

behaviour is given and fixed. Another possibility is to investigate the performance 

of this imitation rule when all other agents use this rule. In this Chapter we shall 

investigate the first possibility. The second possibility will be investigated in Chapter 

8. The case considered in this Chapter is our attempt at studying an environment in 

which the decision maker does not rely on the evolution of all other agents towards 

optimal actions.

Similarly as in Chapter 4, we are lead to investigate which pure strategy imitation 

rules are approximately maximising^ i.e. lead the decision maker to play in the long 

run the expected payoff maximising strategy with probability arbitrarily close to one, 

independent of what the true payoff distribution is and regardless of the given and 

fixed population behaviour. We show that no approximately maximising imitation 

rule exists. This negative result parallels that of Chapter 4. Note that in comparison 

to that situation, in this framework the decision maker has more knowledge of the 

environment - because she observes other agents - but is constrained in the way she 

can adjust his behaviour - because she is restricted to either stick to her own action 

or to imitate the other agent’s action. The intuition for our result in this Chapter is 

similar to the intuition for the analogous result in Chapter 4: a pure strategy state 

space is not rich enough to store all the relevant information to achieve approximate 

payoff maximisation.

The rest of the chapter is as follows. Section 2 states the formal framework and 

Section 3 contains the definitions. Section 4 studies approximate payoff maximisation 

and section 5 concludes.

6.2  Form al Fram ew ork

This Chapter refers to the case in which the set is a singleton, i.e. =  {w} and 

in which sampling is allowed. Individual w is referred to as the decision maker.

Each member of the population is programmed to play a pure strategy s G S. 

Formally speaking, there is a function C  : —>■ S  which assigns a strategy to every

member of W ^ .  Thus, individual w' G is programmed to play pure strategy C{w').
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A sampling rule for the decision maker is a probability distribution e € A (W ^), 

where e{w') is the probability that the decision maker samples individual v / }

6.3  P ayoff M a x im isa tio n

A pure strategy learning rule is formally defined as follows:

D efinition 16 A pure strategy learning rule B  is a function"^ B  : S' x (0,1) x 5  X (0,1) X 

S  —> [0, l], such that for all s, s' € S, and x ,y  e  (0,1) : ^  (̂ » 2/, =  1

The interpretation of a pure strategy learning rule is as follows: B  {s, rc, s', y, s") 

is the probability of choosing strategy s" at iteration n  +  1 after choosing strategy s 

at iteration n, getting a payoff x  and sampling an individual choosing strategy s' and 

receiving a payoff y.

Throughout this Chapter we focus on learning rules which satisfy the following 

assumption.

A ssum ption  2: B  (s, x, s', y, s") =  0 for all s" s, s' and all x ,y  £ (0,1).

Assumption 2 is intended to capture the essence of imitation learning. The learning 

rules which satisfy this assumption are therefore called imitation rules.

The function C  and the decision maker’s sampling rule e induce a probability dis

tribution y( ) over 5, where y(s) is the probability that the decision-maker samples 

strategy s £ S. It is formally given by

2/W =  e(u>')7(C(u;'),s)
w'ew^

where 7(C(w'), s) is an indicator function which takes the value 1 if C{w') =  s.

D efinition 17 The transition matrix T  corresponding to an environment E, a June- 

tion C , a sampling rule e and a pure strategy imitation rule B  is a X matrix 

whereby the entry in the row corresponding to strategy s, and the column corresponding

^We do not specify the sampling rules for w' £  because they are not allowed to revise their 
behaviour and therefore their sampling rules are irrelevant.

^Note that we use, for simplicity, the same symbol B  as in previous Chapters to denote pure strategy 
imitation rules.
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to strategy s ', is:^

ta,3'= [  [  y{s')B{s,x,s\y,s')dF{fig,^^>).
Jo Jo

D efin ition  18 The imitation process corresponding to an environment E, a func

tion C, a sampling rule e, an imitation rule B, and an initial probability distribution 

6q € A(5) is the Markov chain {sn}neNo initial distribution ancf vrith the

transition matrix T  defined in previous definition. For every n  G Nq denote by 

6n £ A(âS') the margined distribution of Sn-

We now formally define a first property of pure strategy imitation rules. It refers to 

a rule which leads the decision maker to learn the expected payoff maximising strategy.

D efin ition  19 A pure strategy imitation rule B  is maximising i f  for every environment 

Ef every function C, every sampling rule e and every initial distribution € A(iS') 

such that S q(s* )  > 0 for at least one s* £ S* and y{s*) > 0 for at least one s* £ S* the 

following is true:

lim 6n(S*) = 1.n—+00

Note the difference between this definition and definition 7. This definition is weaker 

that definition 7, in the sense that it only requires long run optimality when the prob

ability of sampling an expected payoff maximising strategy is strictly positive.

Despite this qualification, the next proposition shows the non existence of maximis

ing pure strategy imitation rules.

P rop osition  8 No pure strategy imitation rule is maximising.

This result is almost obvious. The sketch of the proof is as follows. Note that an 

imitation rule with B {s ,x ,s ',y ,s ')  > 0 for some s ,s ' £ S  and x ,y  £ (0,1) cannot be 

maximising. Take some function C, some sampling rule e, and some environment E  

such that /2g(z) > 0 and Ps>(y) > 0, 5* =  {s} and y{s') > 0. Then B {s ,x ,s ',y ,s ')  > 0 

implies that the decision maker would switch away from the expected payoff maximis

ing action with strictly positive probability. Therefore, the asymptotic probability of

®This is a slight abuse of notation. It is writen in this way to encompass common as well as 
independent events condition.

66



playing the expected payoff maximising strategy would be less than one. Thus max

imisation requires B{s, x, s', y, s') =  0 for all s,s' € 5  and x, y G (0,1). But clearly that 

is not maximising either.

Proposition 8 leads us to seek imitation rules which are approximately maximising. 

Roughly speaking, we mean by this imitation rules for which limn->c» is close to

1 for all environments E, all functions C, all sampling rules e and all initial distributions 

which satisfy the conditions of Proposition 8. More specifically, we shall ask whether 

there is a family of imitation rules, parametrized by some parameter i/, such that in all 

environments the asymptotic probability of choosing an optimal action converges to 1 

as 1/ tends to infinity, provided that the conditions of Proposition 8 hold. If this is true, 

then, by choosing a sufficiently large i/, the probability of choosing an optimal action 

can be made arbitrarily close to 1.

6 .4  A p p ro x im a te  P ayoff M a x im isa tio n

In this Section, we look for imitation rules which generate approximately rational behav

iour in the long run. It is shown that no pure strategy imitation rule is approximately 

maximising.

D efinition 20 A sequence of pure strategy imitation rules is approximately

maximising i f  for every environment E, every function C and every sampling rule e(-) 

such that y{s*) > 0 for at least one s* £ S*, every initial distribution 6q G A(S') such 

that 60(6*) >  0 for at least one s* G S*, and every 1/ G N  the limit lim„_,oo 

(where for every n  G No 6^ is the marginal distribution of Sn i f  the initial distribution 

is 6q and if  the imitation nde is B '') exists, and we have:

lim lim =  1.
I/—» 0 0  n—»oo

P ro p o sitio n  9 No sequence of pure strategy imitation rules is approximately maximis

ing.

P ro o f o f P ro p o sitio n  9. The proof is indirect. Suppose that ^ sequence

of pure strategy imitation rules which is approximately maximising.
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Step 1: For all s ,s ' £ S  and x ,y  G (0,1) with x  < y , there is some v  ^  N  such that 

for all 1» > Ü:

[ s ,x ,s ',y ,s ')  > 0 .

Remark: Step 1 says that for v  large enough, the imitation rule has to imitate 

better payoff strategies.

Proof: The proof is indirect. Suppose for every v  £ N  there were some v  > v  

such that (s,x , y , 2/, s') =  0. Consider an environment E  such that — 1

and, for some y > x, fJ-s'iv) =  1 for all s' ^  s. Consider some function C  and some 

sampling rule e such that y{s") = 0 for all s" s, s'. If the decision maker begins 

with an initial distribution Sq which attaches positive probability to the strategy s, 

and adopts an imitation rule such that B'^ (s, x, s', y, s') =  0, then for all n  G iV: 

^  1 — ^0 . Hence if 5JJ(S'\{s}) converges for n  —+ 0 0 , its limit must be 

less than 1 — 5o < 1- We have thus obtained a contradiction to the approximate 

maximisation property of {B^}^^j^.

Step 2: For all s, s' G S' and x^y G (0,1) with x > y, there is some v  £ N  such that 

for all V > ÏJ:

B^ (s,x, s ',y ,s ')  <  1.

Remark: Step 2 says that for v  large enough, the imitation rule can not imitate a 

lower payoff strategy with probability one.

Proof: The proof is indirect. Suppose for every v  £ N  there were some v  > v  such 

that B^ {s,x, s ',y , s') =  1. Consider an environment E  such that fi^ix) =  1 and, for 

some y < X, ^a'iv) ~  1 for all s' ^  s. Consider some function C  and some sampling 

rule e such that y{s) =  y(s') =  \  and y(s") =  0 for all s" ^  s, s'. For every v such 

that H*' (s,x, s ',y , s') =  1 we have: %(s) < ^<^n_i(s) +   ̂ ( l — %_i(&)) for all n  G iV. 

Here, the first term on the right hand side corresponds to the case that the decision 

maker played s in period n  — 1, and sampled strategy s. The second term corresponds 

to the case that the decision maker played any s' s in period n  — 1, and sampled 

strategy s. Obviously, the right hand simplifies to Therefore, if 6%(s) converges for 

n  —► 0 0 , its limit can not be more than We have thus obtained a contradiction to 

the approximate maximisation property of
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Step 3: Suppose a;, e G (0,1) with 1 — e > a ; > 2 e > 0 .  Consider an environment E  

such that 1 > 4-e) > 0 and 1 > — e) > 0 for some s £ S, — 1 for some

s' £ S  with s' ^  8 and iigii{x — 2e) =  1 for s" ^  s,s'. Consider some function C  and 

some sampling rule e such that y{s)^y{s') > 0 and y{s") =  0 for s" ^  s, s'. Then there 

is some v  £ N  such that for > ü  the imitation process {sn}neN ^ Markov chain 

with the unique irreducible class {s, s'}. Moreover, this class is aperiodic.

Proof: Choose v  such that the result of Step 1 is true for all strategies in S. We 

first show that {s, s'} is an irreducible and aperiodic class and then we show that is the 

unique irreducible class.

(i) By step 1, states s and s' interœmmunicate; moreover, the probability of moving 

away from the set {s, s'} is zero because y{s") = 0 for s" ^  s, s'. This implies that 

{s,s'} is an irreducible class. It is aperiodic because 0 < y{s)^y{s') < 1.

(ii) Note that by step 1, state s is accessible from any state s" ^  s, s', because 

y(s') > 0, i.e. the probability of moving from s" to s in one step is positive. But state 

s" is not accessible from {s, s'}. This implies that states s" ^  s, s' are transient.

Remark: By standard results in the theory of Markov chains. Step 3 implies that for 

environment E  and u > U, the investigation of the properties of the imitation process 

{sn}„g7vr reduces to the investigation of the Markov chain whose states are {s, s'}. Let 

T" denote the transition matrix of the latter chain. As this chain is irreducible and 

aperiodic, the sequence {<5̂ }̂ ;̂̂  ̂ converges and its limit is a stationary distribution 

of the transition matrix and is independent of the initial distribution 5q. In the 

following, we shall denote this limit by 6^.

Step 4: Suppose x, j/ £ (0,1) with x < y. Consider an environment E  such that 

lig{y) =  1, fJ'giix) =  1 iigiW) =  1 for s" ^  s, s '. Cousidcr some function C  and some 

sampling rule e such that i/(s), y{s') = |  and y{s") =  0 for s" ^  s, s'. Then there exists 

some V £ N  such that:

^  (a%a;,s,y, s)

Proof: The proof is indirect. Suppose it is not true. Choose v such that the result 

of Step 1 is true for all strategies in S. Then it follows that for finite u

(s, y, s ',x , s') > 0. This implies, as in step 3, that the imitation process {sn}„e7v̂ 

is a Markov chain with the unique irreducible class {s, s'}. Moreover, this class is
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aperiodic. Then it follows that the sequence converges and its limit is a

stationary distribution of the transition matrix T*' and is independent of the initial 

distribution Sq. Let 6 ^  denote this limit. Then it is true that

lim lim > 0
(s', X, s, y, s)

and we have found a contradiction to the approximate maximisation property of

Step 5: Consider an environment E  as described in Step 3. Let y,g{x 4- e) =  /i. Let 

y(s) =  y{s') =  Then it is true that

l i m  ^  l i m  s , r +  e, s)
1 -  M B^ (s, x - e ,  s', X ,  s')

Take v  to be the maximum of the two vs referred to in Steps 2 and 3. Because 6 ^  

is a stationary distribution of T^, we have that 6^(s) equals

^ IP'B’'  (s , X +  e, s ', X, s ) +  (1 -  y )B '' (s, x  -  e, s', x, s)]
4-

4-i [fJ.B*' (s', z ,s ,z  4- e, s) 4- (1 -  fi)B^  (s', x ,s ,x  — e, s)]

<^^(g) ^  (s', x ,s ,x  + e, s) 4- (1 -  fJ>)B̂  (s', x , s , x -  e, s)
f^B'' (s, a: 4- e, s', X, s) 4- (1 -  fi)B^ (s, a: -  e, s', x, s')

To simplify the exposition, we change notation

A  =  (s ',a;,s ,x  4-e, s)

J5 =  (s',a:, s,a: — e,s)

C — (s, a: 4-e, s',a:, s)

D =  B*̂  (s, a; — e, s^a;, s')

Then the above expression is re-written

C ( 4  _  M 4 - ( i - / i ) B  
/iC  4-(1 —/i) L)
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+

By rearranging we get:

 L

Then it follows that

V _ __ 1___________  .
lim*/_̂ oo % 4- lim^^oo %

-  v > v  ^  ^  V > t7  ^

i—u hiTii/—»oo g 4" linii/—»oo D
 ̂ ^  v > 1 7  ^  v> v  ^

By step 4, we know that limj/_»gp % =  0 and lim%/_̂ oo ^  =  0. Thentl>V Xj'>v

y ^ M ^  ^  M y {s ' ,X,S,X + €, s)
1 -  ^  1 -  M (s, X -  e, s', a;, s')

as asserted.

Step 6: The sequence is not approximately maximising.

Proof; The proof is divided in two parts.

(i) Consider the environment of step 5 with 0 < /x < ^. For this environment, 

S* =  {s'}. Therefore it has to be that

which implies
B ’'{ s ' ,x ,s ,x  + e,s) 
B"' ( s , x - e ,  s',x,s')

(ii) Consider the environment of step 5 with 1 > /x > ^. For this environment, 

S* =  {s}. But part (i) implies

Hence limi,>p,i,_oo <̂%o(&) =  0. This contradicts the approximate maximisation property 

of the sequence ■
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Note that although proposition 2 and proposition 9 yield qualitatively similar re

sults, the frameworks are quite different. In this Chapter, the decision maker is provided 

with more information about the environment -because she observes others agents- al

though she is constrained in the way she can adjust her behaviour -because she is 

assume to either stick or to switch to the observed action-. However, the intuition is 

similar to that of Proposition 2: the memory store provided by a pure strategy state 

space is too small to deal with a large variety of environments.

6 .5  C onclu sion

In this Chapter we have investigated the ability of pure strategy reinforcement imitation 

rules for leading the decision maker towards optimality without relying on the evolution 

of the population behaviour. It is shown that no pure strategy imitation rule can 

achieve approximately payoff maximisation. The intuition behind this result is that a 

pure strategy state space is too small to store all the relevant information about the 

environment.

This result helps to interpret the relationship between our analysis in this Chap

ter and a paper by Schlag [51]. In this article, Schlag considers social learning in a 

framework in which individuals can observe others’ actions and payoffs, and thus their 

learning rules can contain an element of imitation. Schlag introduces a desirable prop

erty of learning rules which, roughly speaking, says that in all environments and all 

current states of the population the expected average payoff in the popvlation is in

creasing from round to round. Schlag shows that the dynamics of a large, randomly 

matched population in which all individuals adopt a rule with this property can be ap

proximated by the replicator dynamics. This means that this rule will lead the entire 

population to achieve rationality in the long because, as replicator dynamics maximises 

expected fitness, the population will choose in the long run with very high probability 

the action which maximises expected payoffs.

Thus the key for Schlag’s result is the fact that the population behaviour is evolv

ing over time. Whereas according to our Propositions 8 and 9 an isolated individual 

adopting a pure strategy imitation rule cannot achieve long run payoff maximisation 

for given and fixed population behaviour, a large group of individuals adjusting their
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behaviour can. The intuition is that the group composition provides an additional state 

space in which information about the environment can be accumulated.

Recall that Chapter 4 showed that a pure strategy state space is too small to achieve 

(approximately) payoff maximisation when the decision maker adjusts her behaviour 

according to her own experience. In this Chapter, a similar analysis to Chapter 4 

has been done although in a different framework as we have provided the decision 

maker with additional information about the environment by allowing her to observe 

other agents who find themselves in the same situation. As in Chapter 4, we have 

shown the non-existence of (approximately) maximising pure strategy imitation rules 

(as defined in Assumption 2). One might then conclude that a pure strategy state space 

is too small to deal with a variety of environments even if the decision maker can use 

others’ experience to adjust her behaviour. We do not wish to draw this conclusion. 

It might be the case that the non-existence of maximising rules is due to the presence 

of Assumption 2. Further research should investigate the existence of (approximately) 

maximising behaviour rules in this framework but without imposing Assumption 2.
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Chapter 7

M ixed Strategy Im itation R ules

7.1 In tro d u ctio n

In this Chapter we continue exploring the approach we took in Chapter 6 to assess 

“how good” an imitation rule is, although now we shall assume that the decision maker 

adjusts her behaviour using a mixed strategy imitation rule instead of a pure strategy 

rule. In this approach, the decision maker has the opportunity to observe a member of 

a population of agents all of whom are facing the same decision problem. We evaluate 

the performance of an imitation rule by assuming that the behaviour of this population 

is exogenously given and fixed. We hence look for mixed strategy imitation rules 

which lead the decision malœr to play optimally without relying on the evolution of the 

behaviour of a population .

The decision maker is characterized by a probability distribution which shows how 

likely it is that she chooses any of her actions. After choosing an action and receiving a 

stochastic payoff, she samples a member of a population who is facing a similar decision 

problem. After observing the action and the payoff received by the sampled member, 

the decision maker updates her probability distribution. The new distribution only 

depends on the previous distribution, on the actions taken and sampled and on the 

payoffs received and sampled. It does not depend on any other aspect of the history. 

Note that this sort of learning rules is a generalization of the mixed strategy behaviour 

rules considered in Chapter 5.

In the framework of mixed strategy rules, we shall use the following formalization 

of what it means to imitate: We shall assume that the decision maker only updates
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the probabilities associated to the actions taken and sampled, all others probabilities 

are left unchanged. Learning rules which satisfy this condition will be called mixed 

strategy imitation rules. As in the previous Chapter, our goal is not to compare the 

performance of mixed strategy imitation rules versus mixed strategy behaviour rules, 

but to investigate if imitative learning is able to generate optimality in the long run. 

We shall follow a similar structure as in Chapter 5.

To this end, we define a property called maocimisation. An imitation rule is max

imising if the long run probability of the expected payoff maximising action is one 

independent of what the true distribution of payoffs is. We have not been able to settle 

the question of the existence of maximising imitation rules.

As in Chapter 5, we do not provide a complete characterisation of approximately 

maximising rules. We define a property called monotonicity and we show this property 

implies approximate maximisation. Monotonicity means tha t the expected change in 

the probability of the expected payoff maximising action is positive. We obtain a 

complete characterization of monotone rules for the common events condition and for 

the independent events condition. We show that both characterisations are the same.

The basic feature of monotone imitation rules is proportional imitation, meaning 

that the change in the probability attached to the taken action is proportional to the 

payoff difference. Note that this implies that the probability associated to the taken 

action is increased if its payoff is greater than the sampled one. This can be interpreted 

as a reinforcement effect in which the decision maker considers the sampled strategy’s 

payoff as an aspiration level, i.e. if the own strategy’s payoff is above this aspiration 

level, the currently played strategy is reinforced. This feature of the monotone imitation 

rules makes it possible to converge to the expected payoff maximising strategy even in 

the case that the optimal strategy is absent in the population.

The rest of the Chapter is as follows. Section 2 introduces the formal framework 

and Section 3 states the main definitions. Section 4 characterizes monotone imitation 

rules. Finally Section 5 concludes.
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7.2  F orm al Fram ew ork

This Chapter refers to the case in which the set is a singleton, i.e. =  {it;} and 

in which sampling is allowed. Individual w is referred to as the decision maker.

Each agent of the population is programmed to play a pure strategy s S.

Formally speaking, there is a function C : ► S  which assigns a strategy to every

member of W ^ .  Thus, individual u/ 6 is programmed to play pure strategy C(w').

A sampling rule for the decision maker is a probability distribution e 6 

where e(it;') is the probability that the decision maker samples agent v/.^

7.3 D efin itio n s

We next define reinforcement rules with mixed strategy state space.

D efinition 21 A mixed strategy learning rule B  is a function

B  : A(5) X 5  X (0,1) X 5  X (0,1) A(5')

The interpretation of a mixed strategy learning rule is as follows: At each iteration 

n  the decision maker behaviour is described by a probability distribution (T„ E A(iS') 

which specifies for each pure strategy s how likely it is that she chooses strategy s at 

iteration n. We shall refer to On as the state of the decision maker at iteration n. The 

distribution B(crn, s, x, s', y) is then the state of the decision maker at iteration n  +  1 if 

her state at iteration n  was cr„, the pure strategy which she chose at iteration n  was s, 

the payoff received was x, the sampled member’s pure strategy was s' and the sampled 

member’s payoff received was y. For every s" G «S, we denote by B (a n ,s ,x ,s ',y )(s" )  

the probability which B{cTn,s,x,s',y) assigns to s".

Throughout this Chapter, we focus on mixed strategy learning rules which satisfy 

the following assumption.

A ssum ption  3. B(cr„, s,x, s',y)(s") =  <r„(s") for all s" ^  s ,s ' and all x, i/ G (0,1).

This assumption is intended to capture the essence of imitative learning. It states 

that the probabilities attached to non-observed strategies are not updated. The learning

'̂ We do not specify the sampling rules for vJ €  because they are not allowed to revise their 
behaviour and therefore their sampling rules are irrelevant.
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rules satisfying assumption 3 are called imitation rules.

Throughout this Chapter we focus on imitation rules which satisfy the following 

assumption:

A ssum ption  4. For any s £ S  the mixed strategy imitation rule B  is continuously 

differentiable in {(Tn,x,y) and the derivative of B  with respect to {(Tn,x,y) is bounded 

from above and from below.

This is a technical assumption which will allow us to appeal to well-known theorems 

regarding the approximation of slow moving stochastic processes by the solution of 

deterministic differential equations.

The function C  and the decision maker’s sampling rule e induce a probability dis

tribution y{') over S, where y{s) is the probabihty that the decision maker samples 

strategy s G S. This probability distribution will be called strategy sampling rule. It is 

formally given by

3/(4 =  X ] e(u/)H C(w '),s)
w'€W^

where I{C{w')^ s) is an indicator function which takes the value 1 if C(w') =  s.

We denote by B(A(5')) the set of all Borel subsets of A (S).

D efin ition  22 The stochastic kernel K  corresponding to an environment E, a function 

C, a sampling rule e and a mixed strategy imitation rule B  is a function K  : A{S) X 

B{A{S)) —)■ [0,1] such that

K ( ( j ,  O ) =  X i  ^ ( 4  ■ 3 /(^0  " ■ i ^ A v )

(a,x,a',y)G{s,s'eS,x,y6(0,l)|B(tr,s,x,s',3/)en}

for every a G A{S) and U G B{A(S)).

Intuitively, the stochastic kernel is the analog of a transition matrix for a Markov 

process with continuum size state space.

D efinition 23 The imitation process corresponding to an environment E, a function 

Cf a sampling rule e, a mixed strategy imitation rule B  and an initial state ctq G A(S) 

is the Markov process {o’n}„ejv initial distribution which assigns probability 1

to (To and with the stochastic kernel K  described in previous definition.
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D efinition  24 A mixed strategy imitation rule B  is maximising i f  for every environ

ment E, every function C, every sampling rule e and every initial state (Tq E  A (iS )  the 

probability of the event “(Tn(S*) —> 1” is I,

We have not been able to settle the following question:

O pen  Q uestion  Do mixed strategy imitation rules which are maximising exist?

However, we do have interesting results concerning a class of approximately max

imising imitation rules. Here, the concept of approximate maximisation is defined in 

the same way as in Chapter 5.

D efin ition  25 A sequence of mixed strategy imitation rules is approximately

maximising i f  for every environment E, every function C, every sampling rule e and 

every initial state (Tq E A(5') the probability of the event —+ 1” converges to 1

os z/—+ oo. Here, {<^n}n€N denotes the imitation process corresponding to the imitation 

rule and the initial state ctq.

The next section will explore a particular class of approximately maximising mixed 

strategy imitation rules.

7 .4  M o n o to n e  Im ita tio n  R u les

For any mixed strategy imitation rule B, environment B, function C  and sampling rule 

e, we define a function /  which assigns to every possible state of the decision maker tr, 

and every pure strategy s, the expected change in the probability attached to s if the 

current state is a. Formally, /  : A(B) x S  —* R is  defined by:

f { cr ,s )  =  ^  (%(/) ^  y ( s ” ) [  f  [ B { < r , s \ x , s ' \ y ) ( s )  ~ ( t{s )] 
s'es 3"es

for all cr E A(s) and s E B. For B Ç 5 , we define 

Finally, we denote by /(tj) the vector
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D efinition 26 A mixed strategy imitation rule B  is monotone if

1. a £ A {S ),s  £ S^s' e  S  and x ,y  £ (0 , 1) imply B {a ,s ,x^s ',y ) £ A(S')

2. for all environments E  with 5* ^  all functions C, aU sampling rules e and all

states cr £ A{S): f{(T,S*) > 0

The second condition of the above definition is what motivates the label monotonic

ity. It says that the probability attached to the expected payoff maximising strategy 

increases in expected terms from round to round.

The following proposition fully characterizes monotone imitation rules under com

mon events condition as well as independent events condition.

P ro p o sitio n  10 A mixed strategy imitation rule is monotone i f  and only i f  there exists 

a function B : A(5) x S  x S  -R>o such that for every {ar,s,x^s\y) £ A(iS') x S  x  

(0,1) X 5  X (0,1) vjith s' 7  ̂s:

1. B  {a, s, X, s', y) (s) = a{s) +  B (cr, s, s') (x -  y)

P ro o f  of P roposition  10. We divide the proof in two parts. Part (i) deals with the 

common events condition and part (ii) deals with the independent events condition.

(i) For the Common Events Condition: To see that every imitation rule which has 

property (1 ) in proposition 1 0  is monotone note that condition (1) in the definition of 

monotonicity is trivially satisfied. Moreover, for every a £ A(S') and every s £ S , the 

expected movement of the probability of s is given by:

/  (tr, s) =  <r(s) y{s') Jo[B ((T ,s,x ,s',y){s) ~(T{s)]dfj,g-]-
S'^3

+2/W E  3:, s, 3/) (s) -  o-(s)]
S'^3

By using property (1 ) we can rewrite this as

/  -  tt"' )  [y{s)(r{s')B {a, s', s) +  y{s')(r{s)B [a, s, s') j
3 '^3

If 7T̂ > for all s' 7  ̂ s, this expression is non-negative, and if the inequality is 

strict for some s', then it is positive. This implies that the imitation rule is monotone.
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In the remainder of the proof, we consider some given monotone imitation rule and 

we show that the imitation rule has to have property (1) of proposition 10. We proceed 

in five steps.

Step 1: Consider an environment E  in which S* =  S. Then, for every function C, 

every sampling rule e, every a 6 A(S') and every s £ S: /{a , s) =  0.

Proof: Suppose there were an environment E  in which S* = S, a. function C, a 

sampling rule e, a <7 G A(S') and a. s £ S  such that /(cr, s) ^  0. Then there has to be 

some s G 5  such that /(cr, s) < 0. Now suppose that we change payoffs slightly, so that 

S* — {s}. Because of the continuity of the imitation rule, the expected movement in 

the probability of s will remain negative, contradicting monotonicity.

Step 2: B  (tr, 5, rr, s', x) (s) =  <r(s) for all a; G (0,1), o’ G A(5).

Proof: Consider environment E  such that strategies s and s' yield payoff h with 

certainty. Consider some function C  and sampling rule e. For this environment S* =  S. 

The expected movement of strategy s is given by:

/(< 7 , s) =  y{s) [o-(s) s, 6, s, 6)(s) -  o-(s)) +  cr(s') [B(cr, s', 6, s, h){s) -  tr(s)]] +  

y{s') [a-(s) [B((T, s, 6, s', 6)(s) -  cr(s)] +  cr(s') [B{(t, s', 6, s', 6)(s) -  o-(s)]]

Step 1 implies /(cr, s) =  0 for every function C  and every sampling rule e, i.e. for every 

strategy sampling rule y{-). Then it follows that:

cr(s) [B(cr, s, 6, s', 6)(s) -  <t(s)] +  cr(s') [fî(<r, s', 6, s', 6)(s) — cr(s)] =  0

Recall that Assumption 3 states that B(o", s', 6, s', 6)(s) =  <r(s). Then it follows that 

R(cr, s, 6, s', 6)(s) =  <t(s) as asserted.

Step 3: There is function B : A(S^) x S  x S  R  such that for aU s' ^  s:

B  (cr, s, X, s', y) (s) =  cr(s) +  B  (<r, s, s') (x -  y)

Proof: Let a, 6, c G (0,1), and suppose a < b < c. Consider environment E  such 

that strategy s yields payoff a with probability p and payoff c with probability 1 — p, 

whereas strategy s' ^  s yields payoff b with certainty. Let p denote the value of p such 

that S* =  S, i.e. p is given by Let E  denote the environment E  such that p  = p .
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The expected movement of the probability of s  is given by:

f{(T,s) = a{s) g  - tr ( s )
s ' ^ a

+Î/W  E  (^') 3:, a, 3/) (a) -  <r(s)|
a ' ^ 3

Step 1 implies [B (o', s,x, s ',2/) (s) — cr(s)] =  0 for every environment such 

that S  = S*. In particular, for environment E  this condition reduces to:

p [B (o', s, a, s', b) (s) -  o'(s)] +  (1 -  ^  [B (cr, s, c, s', b) (s) -  o'(s)] =  0

Replacing p by ^5^ and rearranging terms yields:

B (o', s, c, s', b) (s) — o'(s) _  c — b
B (cr,s,a,s',b){s) — a{s) a — b

At this must be true for all a, b, c with a < 6 < c it follows that B (o', s, c, s', b) (s) — 

o'(s) must be proportional to payoff difference, as asserted.

Step 4: For every o' G A(S'), B(o', s, s') > 0.

Proof: Consider any cr € A (S'), The proof is indirect. Suppose there were s, s' G S 

with s' ^  s such that B (o', s, s') < 0. Consider environment E  defined by Pgia) =  1, 

P s > { b )  =  1 for all s' ^  s and a strategy sampling rule such that 2/ (s') =  1, where 

a, 6 € (0,1) with a > b.  Note that S* =  {s} . Then

/  (o', s) =  o'(s)B (o', s, s') (a -  b)

But B (cr, s, s') < 0 implies /  (cr, s) < 0 contradicting monotonicity.

(ii) For the Independent Events Condition: To see that every imitation rule which has 

property (1) in proposition 10 is monotone, note that condition (1) in the definition of 

monotonicity is trivially satisfied. Moreover, for every <j E A(S) and every s E S, the 

expected movement of the probability of s is given by:

f ( f ^ ^ s ) = Y ] ( T { s ') '^ y ( s " )  (  f  [B((T,s',x,s",y){s)-(T(s)]dp^,dp,^„
s'es s"es
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We can decompose this expression in four terms:

/(<T, s) =  CT (s) V  3/ (s') f  [  [B {(T, s, X, s', y)  (s) -  <t(s)] +
a'^s

4-3/ {s) V  (T (s') I [B {(T, s', rc, s, y) (s) -  (t(s)] d/i^d/^^, -f 
do do

4 - ^ 3 /  ( / )  (T (s') /  /  [B (or,s',X ,s',2/) (s) -  (T(s)] 4-
s'€S do do

4 -V  /  /  [5(<T,s',x,s",y)(s)-<7(s)]d/Xyd//^,/
do do

Note than assumption 3 implies that both the third and the fourth line equal zero. 

Therefore, the above expression reduces to:

f{<T, s) =  (T (s) 5 1 3/ («0 [  f  B {a, s, X, s', y) (s) -  (r{s)dfi^d^^, + 
a'^s do do

4-3/(«) 5 1 5  («^,s',x,s,2/) ( s ) -c^(s)d/x^d/xy4- 
„/^_ do dor

l

s'^s

Using property (1) the above expression can be rewritten

/(£7,s) =  c r ( s ) y ] y { s ') B  { ( 7 , s , s ' ) \  f  xd^^ -  [  yd/^ J  -
Ldo do J

- y  («) 51  ̂(̂ 0  ̂ -  [  ydfj^a
al-f-a Ldo doa'^s

Rearranging terms:

/  (<̂ 14  = 5 2  )  [î/(«)<^(«')^ ((7-, s', s) +  y(s')o-(s)B (a, s, s') j
s'^s

If TT* > TT®' for all s' s, this expression is non-negative, and if the inequality is 

strict for some s', then it is positive. This implies that the imitation rule is monotone.

In the remainder of the proof, we consider some given monotone imitation rule and 

we show that the imitation rule has to have property (1) of proposition 10. We proceed 

in 4 steps.

Step 1: Consider an environment E  in which S* =  S. Then, for every a  6 A (S')
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and every s £ S  : f{cT  ̂s) =  0.

Proof: As step 1 of part (i).

Step 2: B  (cr, s, rr, s \ x )  (s) =  0 for all a; G (0,1), cr G A(S') and s' ^  s.

Proof: As step 2 of part (i).

Step 3: There is function B  : A(5) x S  x S  —* R  such that for all s,s ' G S  with 

s' ^  s:

1. B  (cr, s, X, s', y) (s) =  ( t( s )  +  B  (cr, s, s') (a; -  y)

Proof: Let a,b,c £ (0,1), and suppose a < b < c. Consider environment E  such 

that strategy s yields payoff a with probability p and payoff c with probability 1 — p, 

whereas strategy s' ^  s yields payoff b with certainty. Let p denote the value of p such 

that S* =  5, i.e. p is given by Let E  denote the environment E  such that p =  p.

The expected movement of the probability of s in environment E  is given by:

/  (<T, s) =  cr(s) ^  p(s') /o /o [S (cr, s, z, s', p) (s) -  cr(s) ] dp^dp.^,-\-

a'^a

As any strategy s' ^  s yields payoff b with certainty, the above expression can be 

written as:

/  (cr, s) =  tr(s) X; 2/(s') fo 1^ k ,  s', b) (s) -  cr(s) ] 
a'^a

+p(s) YZ («0 fo s ',b ,s ,y )  (s) -  <r(s)] d/x,
a'^a

Step 1 implies [B (cr, s,x , s', 6) (s) — cr(s) ] dp.  ̂ in every environment such that 

S  = S*. In particular for environment E  this equation reduces to:

p[B{(T,s,a;s',b){s) -  <r(s)] +  (1 [B(cr,s,c;s',b)(s) -  cr(s)] = 0

At this must be true for all a, b, c with a < 6 < c it follows that B (cr, s, c, s', b) (s) — cr(s) 

must be proportional to payoff difference, as asserted.

Step 4: For every cr G Â(5), B (cr, s, s') > 0.

Proof: As step 4 of part (i).

■
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This proposition shows that monotonicity implies that the change in the rele

vant probabilities is proportional to the payoff difference. Note that this means that 

monotonicity incorporates a reinforcement component, the sampled payoff being an 

aspiration level. A realized payoff bigger than the sampled payoff reinforces the strat

egy taken, otherwise its probability is decreased. This reinforcement effect makes it 

possible to learn the expected payoff maximizing strategy even though this strategy is 

not present in the population.

Note that condition (1) fuUy characterizes monotonicity under both the common 

and the independent events condition. This is a direct consequence of assumption 3. 

Note that this assumption implies no change in the decision maker’s state as long as the 

sampled and taken actions are the same to each other, regardless of payoff realizations.

We now outline the relationship between monotonicity and approximate maximisa

tion. We do not provide a formal analysis as it is similar to that on Chapter 5. The key 

result for linking these two properties is the fact that for a monotone imitation rule, 

the probability attached to the expected payoff maximising strategy follows a stochas

tic process which is a submartingale. This allows us to conclude that the probability 

attached to the event “(Jn(iS*) —+ 1” is always higher than cro(S'*). This property just 

says that the probability of being trapped into the expected payoff maximising action 

is always greater than the probability with which it is initially played. Note that this 

is a lower bound for this asymptotic probability.

To study approximate maximisation, we need a sequence of imitation rules derived 

from the imitation rule B. The starting point is therefore to generate a sequence of 

imitation rules indexed by a parameter e 6 (0,1). Any member of this family is defined 

as follows

s ,x ,s ',y )  -  a ~  £ [B((j, s , x ,  s ' ,  y) -  cr]

Note tha t B^ describes a behaviour process which moves into the same direction as 

B, but at speed e. Notice also that if B  is monotone, every member of the sequence 

is also monotone. We are interested in limit properties of the behaviour process cor

responding to B^ for fixed environment, fixed function C, fixed sampling procedure e, 

and fixed initial state, where the limit which we wish to take is: e —>• 0.

After introducing a continuous time variable t > 0 and following similar steps as in 

Chapter 5, the behaviour process B^ when 6 —̂ 0 can be approximated by the solution
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of the following differential equation

where /(•) describes the expected movement of imitation rule B. Note that the solution 

of the differential equation satisfies limt_>oo^t =  1.

But recall that this is a “good” approximation only for finite time intervals and 

that we are interested in the asymptotics of the process. To overcome this difficulty 

we use the fact that for monotone imitation rules, cro(5*) is a lower bound for the 

probabihty of the event “<Tn(5*) —> 1”. This is enough because for large enough finite 

time intervals, the behaviour process corresponding to when e —> 0 is close to 1,

which is to say (using that lower bound) that the probability of the event “cr^(5'*) —► 1” 

is close to 1.

7 .5  C on clu sion

In this Chapter we have focused on imitative behaviour, specifically on mixed strat

egy im itation rules. Although a complete analysis of the imitation rules which lead 

the agent to behave optimally in the long run has not been provided, we have stated 

a property called monotonicity which implies tha t any imitation rule satisfying this 

property can achieve optimality provided they evolve in small steps.

x

We have furthermore characterized all monotone imitation rules. Its basic com

ponent is that the change in the decision maker’s state is proportional to the payoff 

difference. A related proportional imitation component is found in Schlag [51] although 

in a quite different framework. In [51] Schlag considers pure strategy imitation rules in 

an evolving population whereas our characterization concerns mixed strategy imitation 

rules concerning one single decision maker. In addition, Schlag axiomatizes strictly im

proving rules, a property concerned with the evolution of the whole population, whereas 

in our setting we focus on a property concerned with the behaviour of a single individ

ual while the behaviour of the population remain fixed. Improving rules imitate higher 

payoff strategies with a probabihty which is proportional to the payoff difference. In 

our setting monotonicity implies that the change in the decision maker’s state is pro-
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portional to the payoff difference, although monotonicity incorporates a reinforcement 

component, the sampled payoff being an aspiration level, i.e. the probability attached 

to the own action is increased if it gets a higher payoflF than the observed action, other

wise is decreased. This component makes it possible to achieve optimality even if the 

expected payoff maximising strategy is not present in the population.
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Chapter 8

Im itation and Equilibrium in  

Populations

8.1  In trod u ction

This Chapter differs from the previous ones in one basic aspect: It focuses on the 

behaviour of an entire population of agents all of whom change their behaviour using 

some imitation rule, whereas in the previous two Chapters only one individual changed 

her behaviour through imitation, with all other individuals’ behaviour remaining fixed. 

We shall study the evolution of a population of agents, all of whom face the same 

two-strategy decision problem. As in the two preceding Chapters, note that the agents 

of the population are not playing any game against each other. All members of the 

population are endowed with a pure strategy imitation rule to adapt their behaviour 

and have the opportunity to observe the strategy and the payoff of one other member 

of the population. To define this sampling procedure, all members of the population 

are endowed with a (possibly different) sampling rule, i.e. a probability distribution 

defined over the population (except herself) which indicates how likely it is that an 

agent observes any other agent.

In each iteration, after choosing a strategy and receiving a payoff, each agent sam

ples, according to her sampling rule, some other member of the population and observes 

her strategy and payoff. With this information, she adapts her behaviour according to 

her imitation rule.

The first property which we investigate refem to the evolution of a population
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when all members use the same imitation rule. An imitation rule is maximising if all 

members of the population will end up playing the expected payoff maximising strategy 

independent of what the true payoff distribution is and regardless of the initial state of 

the population. We show that there are no such maximising imitation rules.

If a maximising rule existed, and if all agents cared only about their asymptotic 

payoff, then it would be obvious that it would be in their interest to adopt such a rule. In 

the absence of a maximising rule, individual agents’ incentives to adopt any particular 

rule need to be investigated more carefully. To formalize this issue, we shall begin by 

defining an appropriate payoff function. For given population and fixed imitation rule, 

the payoff function for any agent using any imitation rule is defined as the time average 

payoff that the agent receives along the path. This payoff function will be called the 

asymptotic payoff. Note that in the definition of the payoff function the assumption is 

implicit that the agent does not discount the future, i.e. we deal with infinitely patient 

agents. This is a very restrictive assumption. It will simplify the subsequent analysis.

For given population and fixed imitation rule, we can then define the set of imitation 

rules which are best responses to the fixed imitation rule. An imitation rule will be 

called an equilibrium imitation rule if it belongs to the set of best responses to itself. 

This means that there is no other imitation rule that an agent might use such that for 

every decision problem and initial distribution her asymptotic payoff is at least as good, 

and for at least some decision problem and some initial distribution, her asymptotic 

payoff is greater using the alternative rule.

Unfortunately, the investigation of equilibrium rules in the general framework has 

turned out to be very complex. We have only been able to find an example of an 

equilibrium imitation rule. Somewhat paradoxically, it is “never imitate” . This can be 

understood in light of the result of Chapter 6. If all members of the population use 

the rule “never imitate” , then an agent wondering about using an alternative rule finds 

herself in the situation analyzed in Chapter 6, where the behaviour of the rest of the 

population is fixed. Note that the rule “never imitate” yields, for every environment, 

the maximum asymptotic payoff to those agents who starts playing the optimal strategy. 

Then, by definition, a better reply should also yield this maximum asymptotic payoff 

to those agents. But note that any alternative rule should prescribe switching to the 

sampled strategy for at least one payoff realization. Then for any alternative rule, we



can always find an environment in which this alternative rule implies switching with 

positive probability from strategy s to strategy s' and also from strategy s' to strategy 

s. But note that this rule makes an agent who plays the optimal strategy initially 

switch away from it with positive probability as long as she samples an agent playing 

the suboptimal strategy. Note that even if the agent eventually switches back to the 

optimal strategy, this sampling event always happens because the population behaviour 

is fixed. Therefore, the asymptotic payoff to that agent is necessarily lower than the 

maximum asymptotic payoff.

In order to gain further insights, we shall consider a more restricted domain of 

analysis. The new framework will consider a two-strategy decision problem with binary 

payoffs, and a population of only two agents. We identify a property which is of 

relevance to the problem at hand. An imitation rule is unbiased if the asymptotic 

payoff to all members of a population when all members use this imitation rule is 

closer to the expected payoff of the optimal strategy than to the expected payoff of the 

suboptimal strategy. We characterize the set of unbiased rules and show that biased 

imitation rules are not equilibrium ones. A rule is biased if the probability with which 

it switches to lower payoff strategies is strictly higher than the probability with whick 

it switches to higher payoff strategies. Unfortunately, we have not been able to prove 

that this property is also a sufficient condition for the equilibrium property. However, 

we show two examples of unbiased rules which are equilibrium rules: “always imitate” 

and “imitate if better”. Note that in this setting, the proportional imitation rule, 

investigated by Schlag [51], would reduce to “imitate if better” , and therefore it is very 

tempting to reach the conclusion that the proportional imitation rule is an equilibrium 

rule. However, this conclusion is too premature and should not be inferred from this 

Chapter.

Schlag's paper uses a similar framework to ours. He introduces a property of learning 

rules which says that in all environments and all current states of the population, the 

expected average payoff of the population increases from round to round. He shows 

that the proportional imitation rule satisfies this property and that the dynamics of 

a large, randomly matched population in which all members of the population adopt 

this rule can be approximated by the replicator dynamics. This means that with high 

probability, this rule will yield optimality in the long run. But this also means that
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for fixed population size, there are environments in which there is a strictly positive 

probability that the population will choose in the long run a strategy which does not 

maximize expected payoff. This means that the proportional imitation rule is not 

a maximising rule and, as we have argued before, that this fact calls for a careful 

analysis of the incentives that individual members of the population have to stick to 

the proportional imitation imle.

Schlag’s attempt to analyze this is to interpret his property from an individual- 

oriented perspective. He assumes that if in every round, some members of the popu

lation are replaced by new bom members who do not know ex-ante which particular 

members they are to replace. It is then in the interest of the new members to adopt 

the proportional imitation rule as long as they have a uniform prior. This is so because 

in this case, the change of their expected payoff will be positive for aU environments 

and for all states of the population.

This argumentation does not seem to us very convincing. It has a population- 

oriented evolutionary flavour that is linked to the individual’s point of view by assuming 

new-born agents replacing existing ones. We really believe tha t the basic analysis piece 

should be the individual rather than the population evolution; moreover we prefer to 

consider tha t the individuals in the population are to face the decision problem forever. 

Agents are modelled as boundedly rational by assuming that they use simple behaviour 

rules with limited memory to adjust their behaviour. Given the rules used by the rest of 

the population, an agent chooses the rule that maximises her asymptotic payoff.

The rest of the Chapter is as follows. Sections 2 and 3 will state the formal frame

work and the main definitions, respectively. Section 4 explores the existence of max

imising rules. The equilibrium issue is taken up in Sections 5 and 6. Section 7 concludes.

8.2  F orm al Fram ew ork

This Chapter refers to the case in which the decision problem has two strategies, i.e. S  =  

{^1 ,^2 }; every agent of the population is allowed to adjust her behaviour, i.e. — W, 

and in which sampling is allowed. For each individual w G W  the sampling occurs 

following some sampling rule, i.e. some exogenously given probability distribution 

Cy, e  A(W '\ {w}) where eyj(u/) is the probability that individual w samples individual

90



tl/ ^  w.

8.3  D efin itio n s

Every agent w is characterized by a pure strategy imitation rule, which is formally 

stated in the following definition.

D efinition 27 A pure strategy imitation rule for individual w is a function :

5 x ( 0 , l ) x 5 x ( 0 , l ) - ^ [ 0 , l l -

The interpretation of a pure strategy imitation rule is the following: A ^ (s,x , s ',y) 

is the probability that individual w chooses strategy s' at iteration n  + 1  after choosing 

strategy s at iteration n, getting a payoff x  and sampling an agent choosing strategy sf 

and receiving a payoff y.

Throughout this Chapter, we focus on learning rules which satisfy the following 

assumption.

A ssum ption  5. For every individual w € W, («i, a;, S2 ,y) = Au, (&2 ,z , si, y) for all 

x , y e  (0 , 1).

This assumption means that the imitation rule only depends on payoffs and not on 

the identity of particular strategies. This assumption motivates the following definition 

which simplifies terminology.

D efinition 28 A switching function for individual w ÇlW  is a function Fu, : (0,1) x 

(0,1) -4. [0,1] such that Fu, (x, y) =  Au, (&, x, s', y) for all x ,y  e  (0,1).

Let T  denote the set of all possible switching functions.

Because, unlike in the previous two Chapters, in this Chapter all members of the 

population are allowed to adjust their behaviour through imitation, we now have to 

introduce for all members w of the population a sampling rule, Cty : W —► [0,1], which 

indicates how likely is that this agent meets the other agents. Obviously, we shall 

assume that ew{w) = 0 for all w G W .

D efinition 29 A sampling rule for individual w is complete i f

ew{w') > 0 for all w' £ W  \  {w}
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T hrou^ou t this Chapter, we focus on sampling rules which satisfy the following 

assumption.

A ssum ption  6. For every individual w G VF, Cw is complete.

This assumption means that every agent is sampled by each other agent with strictly 

positive probability.

A population is thus described by a 3-tuple (#VF,

8 .4  P a y o ff M a x im isa tio n

This Chapter investigates the performance of a given imitation rule F  by focusing on 

the behaviour of a population of agents, all of whom use this imitation rule. We will 

refer to these population as F-monomorphic. For given imitation rule F, the behaviour 

of the monomorphic population (#VF, F, {^w}.ujew) will evolve over time. We will next 

define formally the population process.

Consider the # VF-dimensional vector which has a 0 in the entry corresponding to 

individual Wt if this individual has chosen strategy si at iteration n  and which has a 

1 in that entry otherwise. Read this state as the binary expansion of some number. 

We shall denote that number as On. We refer to On as the state of the population at 

iteration n. Let 0 =  |o ,  1 , 2 , denot e the set of aU possible states of the 

population. For the sake of clarity, rename states 0 and 2* as states 5'1 and <52

respectively. Let 0  be defined as 0 \  {.91, <52}. Let 0* denote the state in which aU 

agents play the expected payoff maximising strategy.

D efinition  30 The transition matrix P  corresponding to a monomorphic popvlation 

(:ÿ̂ VF̂  aM environment E  is a # 0  x ^ 0  matrix where the entry in

the row corresponding to state i, and the column corresponding to state j ,

Pi j  =  prob{0 (n +  1) = j  \ 0(n) =  i)

is determined by the matching and imitation process described in the text.

D efinition 31 The population process corresponding to a monomorphic population 

(#VF, F, an environment E and an initial distribution 6o G A (0 ) is the

Markov chain {^n}ne7Vo (Ac initial distribution 6 q and with the transition matrix
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p  defined in definition 30. For every n  € No iwe denote by 6 n € A (0) the marginal 

distribution of On.

We can now introduce the first property which we analyze in this Chapter.

D efin ition  32 An imitation rule is maximising if  for every monomorphic population 

(#W , F, {eu,}^yg|y), every environment E  and every initial distribution 5q € A (©):

lim <5n(0*) =  1n—»oo

This property means that all members of the population will end up playing the 

expected payoff maximising strategy. Note that this definition only refers to  initial 

distributions which place probability zero on states S i  and S2. This is so because as 

the agents are restricted to play either the actual strategy or the sampled strategy, these 

two states are absorbing. The next proposition shows that there are no maximising 

equilibrium rules.

P rop osition  11 No imitation rule is maximising.

P ro o f o f  P roposition  11. The proof is indirect. Let F  be a maximising rule. We 

divide the proof in two parts. The first part deals with a population of two members 

and the second part deals with a population of more than two members.

Part (ii). Fix # W  =  2. Note that in this case, the sampling rules are trivial. Note 

that the initial state of the population is one agent playing strategy si and the other 

agent playing strategy S2 .

Step 1. Maximisation implies “Imitate a lower payoff strategy with probability strictly 

less than 1”.

Proof: The proof is indirect. Let F  be a maximising rule such that for some xo^yo £ 

(0,1) with xq > 2/0 , F{xo,yo) = 1. Consider environment E  defined by //^^(xo) =  1 

and /Zgg (%/o) =  1. For this environment, 0* =  51. Note that in this environment, the 

agent playing the optimal strategy will sample with probability one strategy S2  and will 

switch away with probability one. This means that the probability of the population 

getting absorbed in state 0* is zero. We have then found a contradiction.

Step 2. Maximisation implies “Imitate a higher payoff strategy with strictly positive 

probability” .
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Proof: The proof is indirect*. Let F  be a maximising rule such that for some xq, yo €

(0,1) with Xq < yo, F{xq, yo) =  0. Consider environment E  defined by (xq) =  1 and

=  1* For this environment, 0* =  52. Note that in this environment, the agent 

playing strategy s\ will sample with probability one strategy S2  and will stick with 

probability one. This means that the probability of the population getting absorbed in 

state 0* is zero. We have then found a contradiction.

Step 3. Consider environment E  defined by (3/0 ) =  M and fJ>si(yo) =

fjLĝ {xo) = I — with xo > yo and € (0,1). For this environment, with positive 

probability, the agent playing strategy si will get payoff xq and the agent playing 

strategy «2 will get payoff yo. With positive probability, the agent playing sticks 

(step 1) and the agent playing switches (Step 2). This means that with positive 

probability the population gets absorbed in state 51. But this event is independent of 

the particular value of fi. Take environment E  with fJ>> This implies 0* = 52. We 

have then found a contradiction to the payoff maximisation of F .

Part (ii). Fix > 2 and fix {ew),ueW’

Step 1. Maximisation implies “never switch to a lower payoff strategy”.

Proof: The proof is indirect. Let F  be a maximising rule such that for some xo^yo € 

(0,1) with Xo > 2/0 , F{xo,yo) > 0. Consider environment E  defined by /x ĵ(a:o) =  1 

and (2/0 ) =  1- For this environment, 0* =  51. Moreover as F{xo,yo) > 0, an agent 

will switch away with positive probability from the optimal strategy when she samples 

strategy S2 If one can show that for this environment there is at least one state 0 G 0  

such that p^g 2  ^  this would imply that the rule is not maximising, as with positive 

probability the population is trapped in state 52.

For state 0 € 0 , let ^s{B) denote the subset of the population W  playing strategy 

s G 5  when the population state is 6 . Consider any state 6  £ & such that #$gg (0) >  1. 

With positive probability, every lu G 0 1  (^) samples a member of #2(^) and with positive 

probability they will switch to strategy «2 - Furthermore, with positive probability every 

w G $ 2 (^) samples a member of 0 2  (^) and therefore they will continue playing strategy 

«2 - This means that there is a positive probability of transition from 6  to 52 in one 

step, i.e. p ^s 2  ^  We have thus found a contradiction to the maximisation property 

of F.

Step 2. Maximisation implies “switch with positive probability to  a better payoff strat
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egy” .

Proof. The proof is indirect. Let F  be a maximising rule such that for some xq, j/o € 

(0 ,1) with Xo > 2/0 , F(2/o, To) =  0. Consider environment E  defined by (xo) =  1 and 

lia^(yo) =  1. For this environment, ©* =  FI. By Step 1 , we know that F(xo,2/o) =  0 . 

This implies that for this environment, the imitation rule F  becomes “never imitate”. 

But this is clearly non-maximising.

Step 3. Consider environment E  defined by (xo) =  M and (2/0) =

(^0 ) =  1 — /z with Xo > 2/0 and /z £ (0,1). For this environment, an agent playing 

strategy Si and sampling strategy Sj will switch with positive probability. Then it is 

true that for any state 9 £ B  such that > 1 , >  0. We have then found a

contradiction to the maximisation property of F. ■

Proposition 11 shows that there are no imitation rules which lead to optimality 

for every environment and every initial distribution. The next section will investigate 

whether one individual might improve by using an alternative imitation rule.

8 .5  E q u ilib rium  R u les

The last section has suggested the possibility of individual improvement via the use of 

an alternative imitation rule due to the fact that there are no imitation rules which 

lead to optimality in all situations. In this Section we develop a framework in which to 

address this issue. The starting point is a population of agents described by a 3-tuple 

) Wltuevv)- For given environment E, given initial distribution 60 € 

A  (©) and given sampling rules the evolution of the population is described

by a Markov chain where the transition probabilities depend upon the imitation rules 

used by the agents of the population. Note that without loss of generality we can 

assume that the initial distribution puts probability zero on states S i  and S2. Recall 

tha t these states are absorbing independent of what the imitation rules are and therefore 

the possible improvement is not to take place when the population starts out in one of 

these states.

Our first step is to define a payoff function

TTu; : F  X F  —► i?
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such that TTiy ( /, F) G i2 is the payoff to agent w when he uses imitation rule /  and all 

other members of the population use the rule F. For given state 0 € ©, let 9) be 

the strategy that agent w plays at state 6 . Let and 0w,g2dehne a partition of 0 ,

where 0^,  ̂=  E 0  | 6 ) — s}. Starting out at state 0, let VQ Q>{n) be the number

of visits to state 9' before round n, i.e. Vg g/(n) =  ^{9 n=o'}y where is an

indicator function which takes the value 1 when 9n = 9' and 0 otherwise. Obviously, 

Vq q! (n) is a random variable. By standard results about finite Markov chains, it is true 

that converges with probability one to some limit, i.e.

Prob T ^0,0'(^) . ^hm —  existsn
=  1

Denote this limit by and note that it is a random variable. Denote its expected 

value by Cq qi.

For given environment F , given initial state 0 E 0 , and given sampling rules 

{ ^ } w e w  the asymptotic payoff to agent w is:

0̂,0'
0 G©ti;,»j 0̂ 60ti>,«2

The expected value of this random variable is:

'^Sl ^  6̂.0' +^32 X /  Ô,0>
0'e©,x,,ai 0'eëu,.»2

Note that in the definition of the asymptotic payoff, we have made use of the Law of 

Large Numbers for payoffs. Conditional to the visits to a particular state 9̂  E 0^,*^, 

the decision maker receives a time average payoff which converges with probability one 

to the expected payoff by the Law of Large Numbers.^

If the initial distribution So £ A  (0 ) is non-trivial, we stiU have to take expected

^Recall that payoff realizations are assumed to be stochastically independent across iterations and 
that in a given iteration, each strategy 5 has a payoff distribution attached to it that does not change 
over time.
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values over initial states. Thus, we arrive at this formula for the asymptotic payoff:

w » (/,F ) =  ^ « o ( 0 )  U , ,  g  V S  V

We can now state the main property of this section.

D efinition 33 Let W 6e a monomorphic popvlation with sampling rules An

imitation rule f  is a better response than an imitation rule g for individual w to the 

population rule F  if

1. For every environment E  and every initial distribution 6g € A (0 ), 7r^{f ,F)  > 

'^w{g,F)

2. There exists environment E  and initial distribution Sq G A  (©) with F) >

7Tw(g, F)

D efinition 34 >4n imitation rule f  is a best response to a popvlation rule F  if  there 

is no better response. Let BRwiF) denote the set of best responses to the popvlation 

rule F  for individual w G W .

D efinition 35 An imitation rule F  is an equilibrium rule i f  for every individual w G 

W , F g BR^(F) .

Note that a monomorphic population using an equilibrium rule can be said to be 

stable, i.e. in this class of monomorphic populations there are no individual incentives 

to deviate and use an alternative rule.

Unfortunately, we have not been able to characterise the set of equilibrium rules for 

given population W  and given samphng procedure. We have only been able to produce 

a single example of equilibrium rule that paradoxically is “never imitate” .

P roposition  12 **Never imitate^’ is an equilibrium rule.

P ro o f o f P ro position  12. Let F  be the rule “never imitate” , i.e. F{x^y) =  0 for all 

^,3/ ^ (0,1). The asymptotic payoff to agent w using the rule F  is given by

TTu, (F, F) =  ^  6o{6)7rs, +  So{9)7Ti32
dÇ.Q-w,si 0e0iu,a2
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Note that in this case, every state of the Markov chain is an absorbing state. Let /  be 

an alternative imitation rule. We shall prove that for every alternative rule /  there is 

at least one environment and one initial state for which (/, F) < tt^ (F, F). Note 

that this would mean that there is no better reply than F  to the population rule F  and 

therefore that F  is an imitation rule.

Given that /  ^  F  , it follows that there exists at least one pair (re, y) such that 

/(x , y) > 0. Consider an environment E  defined by (x) =  (y) =  fi and (y) =

/igg(x) =  1 — /i with ^  G (0,1). Note that agent w will switch away from both strategy 

and S2  with strictly positive probability because /(x ,y )  > 0. Consider that the 

initial distribution puts probability one in one particular state, and that agent w is the 

only agent playing the optimal strategy in that state. Without loss of generality, let 

«1 be the expected payoflF maximising strategy. By using the rule F , agent w gets an 

asymptotic payoflF . By using the alternative rule / ,  there is a positive probability 

that agent w switches away from strategy to strategy «2 -̂  This means that there is 

probability one that the population is trapped in the absorbing state S2, yielding an 

asymptotic payoflF . ■

The intuition of this result comes from the fact that the population behaviour is 

fixed. Note that it is always possible to find an environment in which an alternative rule 

to “never imitate” makes an agent who plays the optimal strategy to  switch away from it 

with positive probability by starting the process in an state in which there is at least an 

agent playing the suboptimal strategy. Note that even if the agent eventually switches 

back to the optimal strategy, the event of switching away from the optimal strategy 

always happens because the population behaviour is fixed. This is what motivates that 

“never imitate” is an equilibrium rule.^

In order to get more insights into the features of equilibrium rules, the next Section 

will consider a more restricted framework.

^Note than then all the members of the population will be playing strategy Sa- 
^Note that the equilibrium property of the rule “never imitate” is robust to the introduction of a 

discount factor in the definition of payoffs.
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8 .6  T h e  B in a ry  P ayoff 2x2 D ec is io n  P ro b lem

In this section we shall restrict the domain of our analysis to get further insight into 

the equilibrium property. We shall consider the case of a population with two agents, 

each of whom is facing the same two-strategy decision problem with binary payoff, i.e. 

with probability fi strategy si yields payoff one and strategy S2  yields payoff zero; and 

with probability 1 — /x strategy s\ yields payoff zero and strategy «2 yields payoff one. 

Let TT̂j =  /X denote the expected payoff of strategy si and let =  1 — ^ denote the 

expected payoff of strategy S2 -

Note that for a population of two agents, the sampling rules are trivial, i.e. e^(v/)  =  

1 for w It;',and w, it/ =  1,2. In this restricted environment, an imitation rule for agent 

w is a collection of four switching probabilities, i.e. F^(0 ,0), 1^(0,1), fL (l, 0) and 

i ^ ( l , l ) .  In order to further simplify the setup, we shall also assume that whenever 

a strategy yields payoff one, the other strategy yields payoff 0. This restriction will 

allow us to just consider two switching probabilities, Fw(0,1) and Fu^(l, 0). To simplify 

notation, let =  F ^(l, 0) and =  f ^ ( 0 ,1). An imitation rule F  will be denoted by 

the pair (a,/?).

The evolution of the population is a 4-state Markov chain with transition matrix:

(si,Si) (si,52) (52,Si) («2, «2)

( s i . s i ) 1 0 0 0

(^ 1 , ^ 2) P 2I P 22 P23 P24

( « 2 , S i ) P31 P32 P33 P34

(S 2 ,S 2 ) 0 0 0 1

where
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P21 =  P (1 -  a i )  /?2 +  (1 -  p ) (1 -  ^ l )  û!2

P22 =  p ( l  — a i )  (1 — P2) +  (1 “  m) (1 ~  Pi) (1 ~  <̂ 2 )

P23 =  m i A  +  (1 -  M) P\0^2

P24 =  p a i  (1 — P2)  +  (1 ~  P) Pi (1 “  ^ 2)
P31 =  P  (1 ~  0 :2 ) 4- (1 — p ) (1 — P2 ) 0=1

P32 =  POi2Pl +  (1 -  p ) A 0(1

P33 =  P  (1 — 0 2 ) (1 — /?i) +  (1 — p ) (1 — ^ 2) (1 ~  0!i)

P34 =  P< 2̂ (1 — P i )  4- (1 — p ) ^2 (1  ~  0 :1)

and where the state {si^Sj) is interpreted as agent 1 playing strategy si and agent 2 

playing strategy Sj.

Note that in this restricted framework, the set © has only two elements, i.e. 0  =  

{(^1) ^2), (^2 , ^i)}- Hence, the population process will heavily depend on the charac

terization of these two states. The next proposition classifies them in terms of the 

imitation rules used by the agents.

P ro p o sitio n  13 Fix p G (0 ,1 ) , Then the state space of the Markov chain can he 

classified according to the following characterization:

1. I f  there exists at least some a^ or € (0,1), then (si, «2) and (s2 , si) are transient 

states.

2. For ai, (3̂  G {0,1 } then

(a) I f  ai = Pi = 0 for i = 1 , 2 ,  then (s\, S2 ) and («2 , 5 i) are absorbing states.

(b) I f  at least some a{ or (3i equals 1  and

i. ai = pj fori  ^  j , i , j  = 1,2 then {(si, S2 ), (s2 , &i)} is a positive recurrent 

closed class.

a. a* 7  ̂Pj for some i ^  j , i , j  = 1 , 2 , then («1 , 52) and (sg,, si) are transient 

states.

P ro o f o f P ro position  13. The following straightforward equivalencies will be useful:

(i) P2 1  > 0 <=> P34 > 0
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{a) P24 > 0 <=> P31 > 0

(in) P2 i =  0 P34 =  0

(iv) P24 =  0 P31 =  0

(v) P23 > 0 P32 >  0

Part 1. Note that as long as the above probabilities are positive, states (si,S2) 

and (s2 > &i) will be transient states because each of them would communicate with an 

absorbing state. First, let a i  € (0,1). ff /?2 =  0 then (ii) applies. If /?2 =  1 then (i) 

applies. Second, let (3̂  € (0,1). If Q2 =  0 then (ii) applies. If Q2 =  1 then (i) applies. 

Third, let 0=2 G (0,1). If /3j =  0 then (i) applies. If /Jj =  1 then (ii) applies. And 

finally, let /?2 G (0,1). If qi =  0 then (i) applies. If a i =  1 then (ii) applies.

Part 2.a. Note that if Qj, =  0 for i =  1,2, then P22 =  P33 =  1 and therefore 

states («1 , 5 2) and (s2»«l) are absorbing states.

Part 2.b.i. Firstly, let a i  =  /?2 =  1 and let either a 2  = Pi = 0 or Q2  = Pi = 1. 

Then it is true that p2i =  P24 =  0 and by (iii) and (iv), p^i = pzA =  0, and it is true 

that P23 >  0 that implies pz2  > 0 by (v). This means that states («1,^ 2) and (s2, ^1) 

intercommunicate and do not communicate to either states (si,« i) and (s2 , ^2), i e. 

states («1, 5 2) and (s2 , &i) form a closed recurrent class. The proof for the case Q2 =

=  1 is similar.

Part 2.b.ii. First, consider the case q i ^  /?2 - There are two subcases, either a i  =  1 

and /?2 =  0 or a i  =  0 and /?2 =  1- In the first subcase, it is the case that p24 > 0 which 

implies p3% > 0 by (ii) and the conclusion holds. In the second subcase, it is the case 

that P21 >  0 which implies P34 > 0 by (i) and the conclusion holds. Second, consider 

the case 0 2  Pi- There are two subcases, either 0 2  =  1 and Pi =  0 or 0 2  =  0 and

=  1. In the first subcase, it is the case that p2i > 0 which implies P34 >  0 by (i) and 

the conclusion holds. In the second subcase, it is the case that p24 > 0 which implies 

P31 > 0 by (ii) and the conclusion holds. ■

R em ark 3 For the cases in which /x =  0 or p. = \ a similar analysis can be done. It 

will be done i f  necessary.

For given imitation rules and F ĵi if states («1, 52) and (s2 , s\)  happen to be 

transient then the long run behaviour of the Markov chain is described by the following
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asymptotic distribution. Let X  denote the probability of the population being trapped 

in state (5 i,si) conditional on being at state (5 1 , 5 2 ). Let Y  denote the probability

of the population being trapped in state (5 1 , 51) conditional on being at state (5 2 , 5 1).

Then it follows that:

X  =  P21 +  P2 2 X  +  P2 ^ y

y  =  P31 +  P Z 2^  +  P 3 3 ^

The solution of this equations system is:

P2I (1 — P33) +  P23P31X  =

Y  =

(1 — P33) (1 — P22 ) — P32P23 

P31 (1 — P22) +  P32P21

(1 — P33) (1 — P22) — P32P23 

Note that in this case, the expected values of the random variables are the 

following:

= l x ^  + O x ( l - X )  =  X

= Ox X + l x ( l - X )  = l - X

=  i x y  +  o x ( i - y )  =  y

=  o x y  +  i x ( i - y )  =  i - y

Thus the asymptotic payoff to agent 1 is given by:

TTi{Fyj, F^>) =  6 0 (5 1 , 52) [X'Ksi +  (1 -  X)tV3 2 ] +  6 0 (5 2 , 5 i )  [yTTsi +  ( l  -  Y)^^^]

and the asymptotic payoff to agent 2 is given by:

7: 2 ( ^ ' ,  F w )  =  6 0 (5 1 ,5 2 )  [T tT sj +  (1 -  y ) ; r a j  +  6 0 ( 5 2 ,5 i )  [ X tts  ̂ +  (1  -  X ) tTs ]̂

Note that for a monomorphic population, i.e. F^ = F̂ >̂  it is true that p2i =  P3i, 

P22 =  P33, P23 =  P32 and P24 =  P34 This implies that X  — Y  and therefore

7Tl(f^, &,') =  7T2(Fu;/, Fw) =  XtTsi +  (1 -  X)7Ts2 
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for every initial distribution 5q € A (0 ) .

The following definition will be relevant for the analysis of equilibrium rules.

D efin ition  36 An imitation rule F  is unbiased i f  for every environment E  and every 

initial distribution 5o € A (0 ), 7 r̂ w{F, F) > ^*2' ^ ^ 2  for  w =  1,2.

This property means that every agent in a monomorphic population gets an asymp

totic payoff closer to the maximising expected payoff. The next proposition character

izes the set of unbiased imitation rules

P rop osition  14 An imitation rule F  =  ^  (0,0) is unbiased i f  and only i f  a  < (3.

P ro o f o f  P roposition  14. The proof is divided in two steps. The first step deals with 

the imitation rule F  — (1,1). The second step deals with imitation rules F  ^  (1,1). 

Step 1. Consider the imitation rule F  =  (1,1). In this case, the set {(«1 , 5 2 ) , (&2,^i)} 

is a recurrent periodic closed class of states. This means that for any environment and 

every initial distribution, the variables Cq qi are no longer random. W ith probability one, 

these variables take the value Cq q> which can be interpreted as the long run proportion 

of time spent by the Markov chain in each of these two states. For this case, it is clear 

that they equal yielding a payoff and the claim follows.

Step 2. Let F  ^  (1,1). Then by Proposition 13, states (si, «2 ) and (s2 , si) are transient. 

The asymptotic payoffs are given by the asymptotic distribution. Recall that for any 

monomorphic population X =  Y. Therefore, for every environment E  and every initial 

distribution 60 E A  , the asymptotic payoff to individual w is:

7t,^(F, F) -  +  (1 -  X)7raJ

Then it follows that:

7t„(F, F) -  =  ( ^ " 0

Straightforward calculations show that:

X - - =  ( / ) - « )  ( 2 ^ - 1 )
2 2 [ a ( l - / 3) + /3( l - a ) l
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Noting that tt̂ j —tTs  ̂ =  2/x — 1, we get:

. . ( F , F )  -  =  2 [a ( l  -  a)] ~

and therefore our claim follows because^

sign ^7t^(F, F) -  ^ =  sign (f3 -  a)

Note that the rule F  =  (0,0) is not included in the definition of unbiased imitation 

rules. The reason is that it is the only rule with a = P which is biased.

The next proposition shows that an imitation rule F  =  (a, p) with a >  P \s not a 

best reply to itself, i.e. it is not an equilibrium rule.

P rop osition  15 Let F  =  (a, P) he an imitation rule such that a  > p. Then the rule 

f  = a) is a better response than the rule F  for individual w to the population rule 

F.

P r o o f o f  P rop osition  15. We first deal with the rule F  =  (1,0). In this case, the 

asymptotic payoff to each agent is given by 7Tt„(F, F) =  (1 — /a) TTaj If individual

1 uses the alternative rule /  =  (0 , 1 ), then states (si,S2) and (s2 , si) form a recurrent 

closed class of states with stationary distribution ()Lt, 1 — p). Then the asymptotic 

payoff to  individual one is 7riy(/, F ) =  (1 — p) TTĝ and therefore it follows that

F ) >  7Tti;(F, F), with strict inequality for /x ^  The analysis for individual 2 is 

similar.

We now turn to the case in which F  ^  (1,0). We first prove that for these rules, 

the asymptotic payoff to every agent for every initial distribution and every environ

ment is given by 7Ty,{f, F) — Note that F  7  ̂ (1,0) implies that states («1, 52)

and (s2j «1) are transient and therefore that the asymptotic payoff to agent w will be 

characterized by the asymptotic distribution. Straightforward calculations show that 

X  =  Y  =  Then the asymptotic payoff to each agent is given by .

Hence, for every F  =  {a,p)  and /  =  (/?, a), it is true that 7Tu,(/, F) =  ^^"2 for

every agent w, every environment and every initial distribution.

^Note that the denominator is strictly positive.
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We shall next prove that /  is better response than F  to the population rule F. To 

this end, note that:

‘̂51 "b 3̂21
5t„(F , F) -  7 r „ ( / ,  F) =  k„(F, f )  -  —  ^

But by Proposition 14, we know that

. . ( F , D  -  _  „)| w  -  »)

Therefore for environment ^  ^ it follows that 7Tu,(/, F) > 7Tti;(F, F) and for environ

ment /X =  5 it follows that TT^if, F) =  7Tu,(F, F). ■

Proposition 15 leads us to look for imitation rules among the set of unbiased rules. 

We have been unable to prove that every unbiased rule is an equilibrium one. In the 

remainder of this section, we shall show some examples of unbiased equilibrium rules.

P roposition  16 The rule "Always imitate*' is an equilibrium rule.

P ro o f o f  P roposition  16: This rule is represented by the pair F  =  (1,1). If both 

agents use this rule, then the set {(ai, sg) , (sg, si)} is a recurrent closed class of states. 

This means that for every initial distribution 5o G A (0 ), the asymptotic payoff is given 

by:

7Tu;(F, F ) =  XpT^si +  (1 -  X f ) 7Ta2 for w =  1,2.

where X p  =

We shall prove that there are no better responses than F  to F  by focusing on the 

asymptotic payoff to agent 1 for initial distribution 5o («!> «2) =  1 .

We shall divide the set of alternative imitation rules in two groups. The first group 

is composed of the rule /  =  (0,0). If agent 1 uses this rule, then her asymptotic payoff 

is given by 7Ti(/, F) =  But it is clear that 7Ti(/, F) < %i(F, F) for environments 

in which 8 2  is the expected payoff maximizing strategy. This implies that the rule 

/  =  (0,0) is not a better response that F  to the population rule F.

We shall investigate now alternative rules /  =  (a, /?) ^  (0,0) . In this case, from 

Proposition 13, states {(« i,«2) 1 (^2 j^i)} are transient and the asymptotic payoff to 

agent 1 is given by:

7Tl(/, F) =  XfTTsi +  (1 -  Xf)7Ts2 
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where

+ (1 - /3 )X f  =
1 — + ût (1 — /x)) [(1 — ii)(3 afi]

Note that X / is a function of fi. To emphasize this, we change notation and write 

X f ( ^ ) .  We shall now prove that X f  (5 ) ^  X p  (5 ) implies tha t f  is not better response 

than F  to the population rule F.  We shall prove it by finding an environment in which 

7 r i ( / , F )  - 7 r i ( F , F )  < 0.

First, consider the case X f  (5 ) >  X p  (^)* Consider a new environment defined by 

^  ^ — e, where e > 0. By continuity it is true that X / (^ — e) > X p  — e). But

this implies that

x , ( F , F ) - 7 r i ( / , F )  =  [ x f

^i(f, f') — F) = ( 2  ~  ~  f  2 ~

(tTsi -  TTgJ => 

( - 26) =>

7Ti (F ,F ) -7Ti ( / ,F )  > 0

Then it follows that the rule /  is not a better response than the rule F  to the population 

rule F . On the other hand, for the case X / (5 ) <  X f  (^ — s) a similar argument runs 

for the environment defined by /x =  ^ +  6 .

We are therefore left with those rules /  such that X / (^) =  But we shall show

that there are no such rules. Note that this condition reduces to

(a 4- /3)  ̂4-4(1 — a  — /3) =  0

Let G(a, ^) =  (a  4- ,9)^4-4 (1 — a  — /3). We shall show that for every /  with a, G [0,1], 

C(a,  13) > 0. To prove this, note tha t ^  ^  =  2 (a  4- /3) —4 < 0 for every a, 13 Ç; [0,1).

As G (l, 1) =  0, it follows that G{a,  /?) > 0 for every pair a , /? G [0,1). ■

We shall conclude this section by showing that the rule Imitate i f  better^  ̂ is also

an equilibrium rule.

P roposition  17 The rule “Imitate if better” is an equilibrium rule.

P ro o f o f  P roposition  17: This rule is the pair F  =  (0,1). If agent 1 uses this rule.
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then her asymptotic payoff for every initial distribution is given by:

7Ti(F, F) =  X ft^si +  (1 -  X f ) t̂ 32

where X f  =

In the following, we shall focus on the asymptotic payoff to individual 1 for initial 

distribution («i> «2 ) =  1 -

We shall divide the set of alternative rules /  in two groups. The first group is 

composed of the imitation rule “Imitate of worse” , i.e. /  =  (1,0). Consider environment 

defined by /x =  0. Then 7Ti(/, F) =  0 < 1 =  7ri(F, F). It follows that /  is not a better 

response than F  to the population rule F.

The second group is composed of the imitation rules /  =  {a,/3) ^  (1,0). By 

Proposition 13, states {(si,S2) j (^2»«i)} are transient and the asymptotic payoff to 

agent 1 is given by:

7Tl(/, F ) =  X/TTai +  (1 -  Xf)7Ts2

where

^  ^ _______ /X (1  -  g) [1 -  M (1  -  P)] +  _______
^ [1 — M (1  — P ) ]  [1 — (1  — m) (1  ~  ^ )1  “  Q! (1  — /x) g /x

Using a similar argument as in the proof of Proposition 16, we only need to focus on 

rules such that X/(/x =  | )  =  X p( / x =  5 ). This equation reduces to

1 + P - a  1
(l +  /3 )* -a2  2

The solution to this equation is a  + P = 1.

We have then found a continuum of rules /  =  (a, P) which are candidates to be 

better responses than F  =  (0,1) to the population rule F  =  (0,1). We shall show 

that aU the rules characterized hy a + P = 1 are not better responses than F  to the 

population rule F. We shall do it by showing that 7Tt„(F, F) =  7ri„(/, F) for every 

environment, every initial distribution and w = 1,2.

For any rule /  =  (g, P) with a  +  /? =  1 it is true that:

/ x ( l - g ) ( l - / x a ) + g ( l - g ) / x 2
A f —

[1 -  (1  -  f i )  a ]  [1 -  f i a ]  -  g 2  (1  -  /x) /X 
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By rearranging we get:

Furthermore, for any rule /  =  (a, /?) with a  +  =  1 it is true that:

^ (̂1 -  g) (1 -  (1 -  /i) g) + g (1 -  g) (1 -  /x) 
 ̂ [1 -  (1 -  /i) a] [1 -  fia] -  (1 -  )̂ /X

By rearranging we get:

Then it follows that X f  = Yf,  that implies that the asymptotic payoff to agent w is 

given by

T^w(f, F) =  X/7T,i +  (1 -  X f )  7Ts2

where X f  — fi.

Recall that for any monomorphic population it is true that X  — Y.  Therefore, the 

asymptotic payoff to individual w for any environment and every initial distribution is 

given by

7Tu,(F, F) =  XpTTsi +  (1 -  X f)  7Ts2

where X f  =  A*.

We have then found that X / =  X f- As this is true for every environment and every 

initial distribution, it follows that 7Tu,(F, F) =  F), ■

The above proof shows a counterintuitive fact. If an agent is facing another in

dividual who uses the rule “Imitate is better” , then the agent is indifferent between 

using the rule “Imitate is better” or using another rule /  =  (a, (S) with a  -f /? =  1 and 

a  >  0. Note that this includes unbiased rules such that for example /  =  (.0, .1). The 

indifference between these two rules seems striking to us. We have no intuition for this 

result.

Note that if one applies Schlag’s proportional imitation rule [51] to this setting, 

it reduces to “imitate if better” . Hence it is very tempting to conclude that propor

tional imitation is an equilibrium rule. However we are aware that it is not a sensible 

conclusion because this setting is very restrictive. Additional work needs to be done 

to assess whether there are no individual incentives to deviate from the proportional 

imitation rule. Note that a result of this sort would reinforce the replicator dynamics
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axiomatization based on this rule in [51].

8 .7  C on clu sion

In this Chapter we have investigated the ability of pure strategy imitation rules to  lead 

an entire population of agents towards rationality when all members of the population 

use the same imitation rule. We have shown that there are no imitation rules such 

that aU members of the population will end up playing the expected payoff maximising 

strategy independent of what the true payoff distribution is and regardless of the initial 

state of the population. We then have investigated the existence of equilibrium rules 

once an appropriate payoff function is defined. However this question has shown to 

be complex. We have shown a single example of imitation rule which paradoxicaUy is 

“never imitate”.

The restrictive setting of two-strategy binary payoff decision problems with a pop

ulation of two agents has aUowed us to get some further insights into this question. We 

have shown that some weU-known imitation rules Uke “always imitate” and “imitate if 

better” are equilibrium rules. Note that the latter is the translation of the proportional 

imitation rule [51] into this setting. Thus it is very tempting to reach the conclusion 

tha t the proportional imitation rule is an equilibrium rule. This would reinforce the 

replicator dynamics axiomatization based on this rule. We leave an open door for 

further research in this direction.

The equilibrium analysis undertaken in this Chapter is our attem pt to investigate 

individual incentives to adhere to a particular imitation rule in population contexts. 

As the basic analysis piece should be the individual, and given tha t agents are not 

replaced, individual members of the population evaluate the performance of different 

behaviour rules given the rules used by the remaining members of the population and 

choose the rule which maximises her asymptotic payoff. Once every single member of 

the population uses an equilibrium rule profile, no agent will have incentives to deviate.
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C hapter 9

Conclusions

In recent years, economic theorists have started to enquire into the foundations of the 

rationality hypothesis. The current thesis has joined this line of thought as it has 

tried to answer to following question: when should rational behaviour be expected. 

Within the different mechanisms proposed by the economics literature to bring about 

rationality, this thesis has focused on reinforcement learning as a mechanism to bring 

about rationality in decision problems.

Reinforcement learning models describe decision makers as simple stimulus-response 

machines, without attributing any beliefs to them, in sharp œ ntrast with belief-based 

learning models, such as fictitious play, with which economists are typically more fa

miliar. In this thesis, reinforcement learning has been interpreted in a broad sense, by 

allowing the decision maker to observe not only her own strategy choice and payoff, 

but also the strategy and payoff of some other agents who finds themselves in the same 

situation. In this way we have been able to also consider learning by imitation.

In this framework, we have studied the ability of reinforcement learning to lead 

the decision maker to play in the long run the expected payoff maximising strategy. 

In investigating this ability, we have considered a large class of reinforcement models, 

without postulating any functional form. This approach has allowed us to identify some 

features which characterize those reinforcement rules which steer the agent towards 

rationality in all decision problems.

Our characterizations focus on two properties of a learning model. The first property 

concerns the state space of the decision maker, i.e. the set of states in which the decision 

maker finds herself at any particular point in time. It has been shown that if the state
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space of the learning model is the set of pure strategies, then there are no reinforcement 

learning rules which lead to optimality. However, if the state space is taken to be the 

set of all mixed strategies, then there are rules which lead the decision maker to leam 

the optimal strategy. This difference arises because the state space provides the only 

possibility for the decision maker to store information about her past experiences and 

the memory store provided by a pure strategy state space is too small to deal with a 

large variety of environments. However, the set of all mixed strategies is sufficiently 

large. For this case, we have identified a property called monotonicity which has been 

shown to achieve optimality provided the learning rule evolves in small steps. A rule is 

monotone if the expected change in the probability of the expected payoff maximising 

action is positive.

The second property refers to the functional form which characterizes monotone 

learning rules: linearity in payoffs. An intuitive reason for this is th a t expected payoffs 

themselves are linear functions of payoffs. Obviously, this property has different impli

cations for the different frameworks in which reinforcement learning has been considered 

in this thesis. Monotone learning rules are linear in payoffs and the expected movement 

of the decision maker’s state is closely related to replicator dynamics. Monotone imi

tation rules are linear in payoff difference, displaying a reinforcement component with 

the observed payoff being an aspiration level.

The final Chapter of the thesis should be viewed as a different exercise. In a 

population context in which the members of the population are allowed to adjust their 

behaviour using simple imitation rules, we have investigated individual incentives to 

adhere to a particular imitation rule by using an equilibrium analysis. Each individual 

chooses her imitation rule so as to maximise her asymptotic payoff taken as given 

and fixed the rules used by the remaining members of the population. Once the non

existence of individuals incentives to deviate is assured the analysis of the aggregate 

evolution of the population can be safely done.

In a sense, this thesis is an axiomatic approach to learning models. However, our 

approach is not free of drawbacks. We shall point out two of them which are related 

to our interpretation of hounded rational decision-makers.
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First, we have characterised a class of learning rules tha t lead the decision-maker 

to play in the long run the expected payoff maximising choice in any circumstance. 

Thus a fully rational decision-maker who does not discount the future would find these 

decision rules optimal. This seems a serious limitation. We model boundedly rational 

decision makers as being infinitely patient. We do not wish to argue tha t this is a
\

realistic assumption. A more satisfactory analysis should incorporate a discount factor 

strictly less than one, and focus on transitional payoffs rather than exclusively focusing 

on asymptotic payoffs. Our naive assumption, which leads to a simpler analysis, should 

be seen as a starting point to a complete analysis of reinforcement learning rules as 

describing boundedly rational decision makers.

And second, a fully rational decision maker could find many strategies other than 

those discussed in this thesis which achieve asymptotic expected payoff maximisation. 

In this thesis we have focused on decision rules which have no memory. Thus, the 

current (possibly stochastic) behavioral “habit” is the only variable which can provide 

the decision-maker with information about the past. Note tha t this memory constraint 

is implicitly included in the reinforcement learning rules, i.e. there is no explicit con

sideration of it. It therefore seems worthwhile to build the analysis on a more explicit 

model of memory constraints.

And finally, as a final word, let us say that our work should not be interpreted as 

aiming to single out ’’desirable” learning models. W hether agents use learning models 

which lead to optimality in a large variety of situations is an empirical question. We 

hope our characterisation of monotone behaviour rules will help to interpret empirical 

results regarding this question.
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