
MULTIPLE EQUILIBRIA 

IN 

THEORY AND PRACTICE

Ahmed Waqar Anwar 

University College London 

Department of Economics

Thesis submitted for the degree of 

Doctor of Philosophy 

University of London

September 1998



ProQuest Number: U643541

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U643541

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



To my Parents



Acknowledgements
I would like to thank Ken Binmore for his careful supervision and Tilman 

Bdrgers for his help during the course of the thesis. I am also thankful to Sandra 

Semple for her help and support especially over the weeks leading up to 

submission. Finally, I would like to thank all my colleagues who have made my 

time at UCL so enjoyable. Funding from the ESRC was greatly appreciated.



ABSTRACT

The first part of the thesis studies equilibrium selection. We use a 
stochastic evolutionary model characterised by small probability shocks or 
mutations which perturb the system away from its deterministic evolution, 
allowing it to move between equilibria over a long period of time. Much of the 
literature has concentrated on the result that, in the hmit as the mutation rate 
approaches zero, the stationary distribution becomes concentrated on the risk- 
dominant equilibrium because it is easier to flow into. However, it has been 
shown that in models o f local interaction, allowing player movement eases the 
flow into the efficient equihbrium. We look at the consequences of such player 
movement when there are capacity constraints which limit the number of agents 
who can reside at each location. The limit distribution may then become 
concentrated on a mixed state in which different locations coordinate on different 
equilibria.

The second part looks at the problem of characterising equilibria in multi­
unit auctions. Surprisingly little is known about optimal mechanism design for 
multi-unit auctions relative to the single-unit auctions. This is highlighted by the 
continuing debate on whether the US Treasury should use a discriminatory or 
uniform pricing rule. These questions have become of wider practical interest as a 
result of the innovative use of auction theory in the England and Wales Electricity 
Pool. We compare the two pricing rules in a common-value model with capacity 
constraints and uncertain demand and show that the discriminatory pricing rule 
performs better. We also present a model of the Electricity Pool and show that a 
discriminatory pricing rule would lead to more competitive prices than the current 
uniform pricing rule. The ranking holds even in the repeated game case, despite 
the problem of multiple equilibria.
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Chapter 1 

Introduction

The first part of the thesis looks at the question of equilibrium selection. 

The limitations of the early approach of equilibrium refinements is illustrated by 

the failure of this literature to predict equilibrium play correctly in numerous 

laboratory experiments. Most of the literature also ignores the question of 

selecting between strict Nash equilibria. Evolutionary game theory addresses the 

question of equilibrium selection by modelling the way agents adjust their 

strategies out of equilibrium. The evolutionary approach has been successful both 

in explaining some of the experimental evidence and addressing the question of 

selecting between strict Nash equilibria. These ideas are discussed in more detail 

in section 1.1. In chapter 2, we address the question of selecting between strict 

Nash equilibria. We present a stochastic evolutionary model with player 

movement and capacity constraints hmiting the number of agents who can reside 

at each location.

The second part of the thesis looks at equilibria in multi-unit auctions. 

Since the seminal work of Vickrey (1961), there has been an explosion of 

literature on single-unit auctions. However, surprisingly little is known about 

optimal mechanism design for multi-unit auctions relative to the single-unit 

auctions. This is highlighted by the continuing debate on whether the US Treasury 

should use a discriminatory or uniform pricing rule. These questions have become 

of wider practical interest as a result of the innovative use o f auction theory in the



England and Wales Electricity Pool. Section 1.2 looks at the main results on 

single-unit auctions and at what the multi-unit auction literature has to say about 

the discriminatory auction vs uniform-price auction debate. In chapters 3 and 4, 

we compare the auctions in specific multi-unit models. Chapter 3 looks at a 

common-value auction with capacity constraints where the quantity for auction is 

uncertain. In chapter 4, we present an explicit model of the England and Wales 

Electricity Pool.
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1.1 The Equilibrium Selection Problem.

A Nash equilibrium is a set of strategies such that each player is optimising 

given the strategies of the other players. Nash (1950) showed that every finite 

game has at least one Nash equilibrium. A question that has been the focus of 

much research since is which equilibrium will be played when a game has multiple 

equilibria. The early approach was to refine the set o f equilibria by eliminating 

equilibria that are not plausible when the game is played by rational agents. This 

approach is briefly discussed in the next section. However, experimental evidence 

has shown that the predictions of the equilibrium refinement literature are not 

always correct. Game theorists have turned instead to the evolutionary approach. 

By modelling how agents adjust their strategies out o f equilibrium we can analyse 

how a population settles on one of the equilibria. This approach is discussed in 

section 1.1.2.

1.1.1 Equilibrium Refinements.

Most of the equilibrium refinements are based on eliminating 

weakly dominated strategies. The first prominent refinement was Selten’s 

subgame perfection. To illustrate the idea, consider the Chain-Store Game of 

figure 1.1. Player 1, the entrant, moves first by deciding whether to enter the 

market and compete with the incumbent monopolist. If he stays out, his payoff is 

zero and the incumbent firm earns the monopoly rent. If player 1 enters, his payoff 

depends on whether the incumbent fights, F, or acquiesces, A. The game has two 

pure-strategy equilibria, {0 ,F } and {I,A}. However, the first equilibrium involves 

a threat by player 2 to fight in the event that player 1 enters, even though he
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would be better off acquiescing.

(-1,-1)(1,1)

(0,2)
#2,M

#1,E

Figure 1.1 
The Chain-Store Game.

Selten (1965) argued that for an equilibrium to be plausible it must consist 

of an equilibrium in every subgame, including those that are not on the equilibrium 

path. Such an equilibrium is referred to as subgame perfect. Hence the equilibrium 

{O, F} is not subgame perfect as the play in the subgame where the monopolist 

makes a move is not an equilibrium. Subgame perfection therefore involves 

eliminating some of the weakly dominated strategies. A refinement that takes this 

elimination a step further is Selten’s trembling hand perfection (1975). The idea 

underlying perfection is that players sometimes make mistakes with the 

consequence that a strategy is selected at random. If there is a positive probability 

of selecting every strategy then every information set is reached with a positive 

probability and an equilibrium would therefore involve maximising behaviour at
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every information set. Selten defines a perfect equilibrium as one that arises when 

the mistake probability goes to zero. Myerson (1978) shows that adding strictly 

dominated strategies may change the set of perfect equilibria and he introduces a 

further refinement. He postulates that rational players are more likely to make 

mistakes that are less costly. One o f many other refinements to the perfectness 

concept is strict perfectness (Okada 1981). A strictly perfect equilibrium is stable 

against arbitrary slight perturbations.

Kreps and Wilson (1982) take an alternative approach to refining subgame 

perfection. They assume that agents will maximise utility in the face of uncertainty 

using subjective probabilities. Hence, when an information set that is not on an 

equilibrium path is reached, the agent will make a best reply according to his 

beliefs about the state of the game. If there exists a set of beliefs such that each 

player optimises by continuing to play according to the equilibrium, the 

equilibrium is sequential. For a comprehensive guide to the equilibrium refinement 

literature the reader is referred to van Damme (1991). Although the refinement 

literature has had some success in dealing with the question o f equilibrium 

selection it has two major problems: some o f the predictions of the refinement 

literature have been refuted by experimental evidence; equilibrium refinements 

have nothing to say about the choice between strict equilibria.

Game theorists have been critical of many of the experiments that refute 

game-theoretic predictions. Binmore (1992) asserts that if one is to have any faith 

in the experimental results then the following conditions should be satisfied: the 

game must be reasonably simple; the incentives should be adequate; there should 

be sufficient time for trial and error learning to take place. In practice the game-
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theoretic predictions have performed much better when these conditions are 

satisfied (Ledyard 1995). However, there are some exceptions, the most notable 

of which is the Ultimatum Game. Binmore, Gale and Samuelson (1995) argue that 

it was wrong for game theorists to assume that players would always play 

according to a subgame-perfect equilibrium, which is based on eliminating weakly 

dominated strategies. They use an alternative evolutionary approach based on 

interactive learning to explain the experimental outcomes. This is discussed in the 

next section.

The second difficulty with the equilibrium refinement approach is that it 

has nothing to say about the choice between strict equilibria. Consider the 

Coordination Game o f figure 1.2.

Si S2

S]

S2

5,5 0,3
3,0 4,4

Figure 1.2

The game has two strict pure-strategy equilibria, {si, s% j and {s2 , S2 }, 

which survive all the equilibrium refinements based on eliminating weakly 

dominated strategies. Hence the scope of the equilibrium-refinement literature is 

limited. To address the question o f choosing between strict equilibria in a 

Coordination Game, Schelling (1960) appeals to the prominence o f efficiency. 

Agents will play for the prominent payoff-dominant equilibrium, {si, Si}, in the 

expectation that other agents will be similarly attracted by its focal status. But 

Harsanyi and Selten (1988) have emphasised that such an expectation may not be 

well-founded. If each player optimises on the assumption that the opponent is
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equally likely to play either strategy, the outcome will be {S2 , S2 }, which 

therefore also has a focal status that may outweigh that o f the payoff-dominant 

equilibrium. Evolutionary game theory has given the argument another 

perspective. By modelling the process by which agents adjust their strategies out 

of equilibrium we can analyse how it is that one equilibrium is selected rather 

than another. In chapter 2, we use an evolutionary model to address the question 

of equilibrium selection in 2x2 Coordination Games.

1.1.2 The Evolutionary Approach

Evolutionary game theory was developed by biologists to model situations 

in which the fitness (or reproductive success) of a gene depends on the current 

mix of genes in the population. One can think of the evolutionary game as being 

played between genes which are programmed to give their host certain 

characteristics. Together with the current mix of genes in the population, the 

fitness of a gene is determined by these characteristics as the population of hosts 

are competing for scarce resources. Genes that engender successful behaviour will 

therefore gain in frequency relative to those that result in lower reproductive 

success. A dynamic system known as the replicator dynamics (Taylor and Jonker 

1978, Zeeman 1981) based on this type of selection is derived below.

The equilibrium notion in evolutionary game theory is an Evolutionary 

Stable Strategy (ESS) which is a refinement of Nash equilibrium. In a symmetric 

game an ESS is a strategy that is a best reply to itself and a better reply to any 

alternative best reply than the alternative is to itself (Smith and Price 1973). The 

basic idea is that an equilibrium in which an ESS is being used by the whole
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population is stable against invasion by a small number of mutants.

To look at these ideas more formally we need to introduce some notation. 

Consider a population o f agents who are randomly paired to play a symmetric

two-player game, G. Let S=(S], s%,......s„) be the set of pure strategies of G.

Denote the set of mixed strategies by AS. The payoff to an agent using strategy x 

against one using strategy y is given by P[x, y] where x,y e  AS. Then Smith and 

Price define an ESS as a strategy x that satisfies the following two conditions

P[x,x] > P [y ,x] Vy,

P[x, x] = P[y, x] => P[x,  y] > P[y, y].

To get a more intuitive understanding o f an ESS consider the following 

alternative definition used by Taylor and Jonker (1978). A state x is an ESS if for 

every y # x  and for a sufficiently small £>0

P[x,£y-l-(l-£)%] > P [y ,ey - l- ( l -£ )x ] .

In a biological context, if all the population is using an ESS then the 

equilibrium is stable against mutations in genes. If a small number o f mutations 

occur, the reproductive rate of the mutants will be less than the average rate and 

as a result the proportion using the mutant strategy will diminish. In an economic 

context, one can think of an ESS as a convention. Given that everybody else in 

the population is using the strategy, the optimal thing to do is conform to the 

convention. Furthermore, the strategy is stable against experimenters as the 

strategy does better against a population mix made up partly o f experimenters 

than experimenters do, as long as the number of experimenters is sufficiently
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small. Hence the experimenters will soon switch back to the convention. The ESS 

concept says nothing about how an equilibrium is reached. It simply gives a 

stability property that an equilibrium ‘should’ have.

The most commonly used dynamic system in the biological literature is the 

replicator dynamics of Taylor and Jonker (1978). We now think of players as 

being programmed with pure strategies. This differs from the ESS analysis which 

allows for mixed strategies. Let the number of players programmed to use 

strategy Si at time t be p,(t) and X |(t)  be the corresponding proportion of the 

population using the strategy. Hence the expected payoff to a player using 

strategy s, when randomly matched with someone in the population is

7=1

This is formally equivalent to playing against an opponent using the mixed

strategy x(t)=(xi(t), X z ( t ) ,  X n (t)) with a payoff of P[Si,x]. Similarly the average

payoff in the population is P [x,x]. These proportions change over time as some of 

the hosts die and new hosts programmed to use the strategy of their single parent 

are bom. If reproduction takes place continuously over time then P[Sj, x(t)] 

represents the incremental effect on the birth rate from playing the game. If there 

is a background birth rate p that is independent o f the game and the death rate is 

a , then the population dynamics is given by

P, (0 = [P ,XO] - ot]p, (0 .

To derive the dynamics for the population proportions, X i(t ) ,  take the time
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derivative of both sides of the identity p(t)Xi(t)=pi(t) where p(t) is the size of the 

population at time t. This gives p{t )xi { t )  = p ^ (/)-  p{t )x .̂ Substituting for p^{t)

and p{t)  gives

(0  = [P[Si, x{t)] -  P[x{t),x(t)]x- (t) .

This derivation of the standard continuous time replicator equation is 

given in Weibull (1995). The growth rate of a strategy at any time is simply the 

difference between the payoff from using the strategy and the average payoff in 

the population.

The application of evolutionary game theory to an economic setting 

involves a re-labelling. The characteristics that genes are programmed to give 

their host are replaced by strategies that people use in interaction with each other. 

Fitness is replaced by the utility of agents and selection is driven by an increase in 

the proportion of the population adopting strategies that result in a higher than 

average utility. This allows us to address the question of equilibrium selection by 

modelling the actual behaviour of the population out of equilibrium. The 

assumption that agents are mathematical machines programmed to always make 

optimal choices can be put aside. Agents are assumed to maximise utility but are 

only assumed to be boundedly rational and at any point in time there may be 

agents who are making sub-optimal choices. Over a period of time, however, 

agents will adjust these choices as they learn about the game and imitate those 

who are using strategies that yield relatively high payoffs. Hence selection in a 

biological context is replaced by learning in an economic context. Eventually the
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population will settle on an equilibrium of the game which is represented by a rest 

point of the dynamics. Crucially, the equilibria that are selected in this way do not 

always correspond to those selected in the equilibrium-refinement literature. In 

particular weakly dominated equilibria are not necessarily eliminated.

Binmore, Gale and Samuelson (1995) demonstrate this in the Ultimatum 

Game. The Ultimatum Game is played between two players, a proposer and a 

responder. The proposer makes an offer to divide a cake which the responder can 

either accept or reject. If the responder accepts then the cake is divided according 

to the offer. If he rejects then both players get nothing. The unique subgame- 

perfect equilibrium of this involves the responder accepting any offer and the 

proposer offering nothing. This prediction has been consistently refuted by 

experimental evidence. Binmore, Gale and Samuelson show that an evolutionary 

analysis can lead to equilibria that involve the proposer offering a substantial 

amount to the responder thus going some way towards explaining the 

experimental results. They assume that agents are randomly matched in pairs from 

a population of proposers and responders to play a version of the Ultimatum 

Game where the proposer makes an offer from the set {1,2,3,....,40} and a 

strategy for the responder is a minimum acceptable offer. Using the simple 

replicator dynamics with uniform initial conditions, they find that the system 

converges to an equilibrium where the modal offer of the proposer is 9. They also 

consider a noisy version of the replicator dynamics where each period a small 

proportion o f each population chooses a strategy at random. The subgame-perfect 

equilibrium only appears from the uniform initial conditions if the responder 

population is sufficiently less noisy than the proposer population.
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The key lesson from this is that we cannot eliminate weakly dominated 

equilibria if the process by which an equilibrium is reached is evolutive in nature. 

The question of equilibrium selection should then be addressed by modelling the 

dynamic process by which an equilibrium is reached. The replicator dynamics is 

used quite generally in a biological context but there is no reason to assume that a 

model of strategy adjustment through interactive learning will lead to these 

dynamics. In fact, the dynamics will vary according to the assumptions made 

about the strategy adjustment process.

However, a surprising amount can be said about equilibrium selection with 

minimal assumptions on the dynamic process. If the dynamics are such that 

strategies that currently yield a higher than average payoff are used by a greater 

proportion of the population in future periods, then the equilibrium the system 

converges to will simply depend on the point where the process began. In a 2x2 

Coordination Game such as the one given in figure 1.2, if the process starts at a 

point where a significant number of agents are playing strategy Si then the 

optimum response is to play S|. Agents who are using the other strategy will 

adjust their strategy when they learn that it is better to switch. The process will 

then converge on the equilibrium where everyone plays Si.

However, this is not a complete description of the system if agents make 

mistakes by occasionally choosing a strategy at random. If each agent makes a 

mistake with some probability £ by simply choosing a strategy at random and each 

strategy is then selected with a positive probability, the system can be described 

by an aperiodic and irreducible Markov process which has a unique stationary 

distribution. If the mutation rate is very small then from any initial condition the
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process is likely to follow the ‘learning’ dynamics and converge to one of the 

equilibria of the game. However, there will eventually be enough simultaneous 

mutations to move the system into the vicinity o f another equilibrium. The system 

is then likely to converge to this equilibrium and will remain there until it is once 

again moved by a large number of simultaneous mutations. Over a long period of 

time one will find that the relative time spent in or close to some equilibria will be 

greater than others. Kandori et al (1993) and Young (1993) consider the limiting 

distribution, as the mutation rate is allowed to go to zero. They show the 

stationary distribution then becomes concentrated on a subset of the equilibria and 

very often on a unique equilibrium. An equilibrium selected in this way is referred 

to as a long-run equilibrium. This is a very strong result when one considers the 

minimal assumptions made on the strategy adjustment process'.

The theoretical literature has concentrated attention on the 2x2 

Coordination Game of the type given in figure 1.2, where one equilibrium is risk- 

dominant and the other one is payoff-dominant. Does an evolutionary analysis 

pick Schelling’s payoff-dominant equilibrium or Harsanyi and Selten’s risk- 

dominant equilibrium? We focus on this question in chapter 2. In the models 

presented by Kandori et al and Young the unique long-run equilibrium of the 

game is the risk-dominant equilibrium.

We explain the techniques used to characterise the limit of the stationary 

distribution in section 2.1. We present a model of local interaction where agents 

are only paired with players from the same location in section 2.2. We consider

' However, it is necessary to assume that the probability with which each strategy is selected 
when a mutation occurs is independent o f e. If the ratio o f probabilities with which strategies are 
selected when a mutation occurs are allowed to approach zero as e approaches zero then Bergin 
and Lipman (1996) show that any outcome can be obtained in the limit.
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the effects of allowing agents to move, with a capacity constraint limiting the 

number of agents who can reside at each location. In the case where there are two 

locations, we find that in the hmit it is possible to have equilibria where one 

location coordinates on the risk-dominant equilibrium and the other one on the 

efficient one. We show that the situation where only the risk-dominant equihbrium 

is played in the hmit requires that the capacity constraint, hmiting the number of 

agents that can reside at each location, to be sufficiently tight.
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1.2 Equilibria in Multi-Unit Auctions.

In theory one can design the optimal mechanism for the sale of multiple 

objects. By the Revelation Principle the designer can restrict attention to direct, 

incentive-compatible mechanisms. The problem of multiple equilibria would not 

arise as the mechanism would be designed to elicit truthful revelation. In practice, 

relatively little is known about optimal mechanisms for the sale of multiple 

objects. A first step to obtaining a greater understanding is to compare 

mechanisms that are currently used. Even this has proved difficult however. In the 

sale of Treasury bonds, for example, the US Treasury have switched between 

using a discriminatory auction and a uniform-price auction. In both cases the 

participants submit demand schedules reflecting the maximum price they are 

willing to pay for various quantities. These bids are used to construct the 

aggregate demand schedule and if the number o f bonds for sale is n then the n 

highest bids win. Under a discriminatory auction the bid price is paid for units 

won. With a uniform pricing rule, all winning bids pay the bid price of the lowest 

winning bid. The question of which one results in the higher revenue is still open.

The theory of single-unit auctions is relatively well developed. The three 

auction formats that are commonly used are, the English auction where the price 

is raised until only one bidder remains, the Dutch auction where the price is 

lowered from an initial high level until a bidder accepts the current price and the 

first-price sealed-bid auction where the highest bidder wins and pays his bid price. 

Another possibility that has been considered in the literature but is seldom used in 

reality is the second-price or Vickrey sealed-bid auction, where the highest bidder 

wins and pays the second highest bid price.
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It is well understood that the first-price auction and the Dutch auction are 

strategically equivalent as the bidders in a Dutch auction must simply decide the 

price at which they will stop the auction. In a model of independent private 

values^, the second-price auction and the English auction are also equivalent. In 

the second-price auction it is a dominant strategy to submit a bid equal to your 

valuation, while in an English auction it is a dominant strategy to bid until the 

auction price reaches your valuation. Both auctions therefore result in an outcome 

that is efficient, as the object is sold to the bidder that values it most highly. The 

Dutch and first-price auctions also result in an efficient outcome as in equilibrium, 

all bidders shade their bids symmetrically. Moreover, in such equilibria the bidder 

who values the object most highly will optimise by bidding at the expected value 

of the second highest bid. This gives the famous revenue equivalence result: the 

expected revenue to the seller is the same under all four auctions (Vickrey (1961), 

Myerson (1981)). In fact, with an optimally determined reserve price, the four 

auctions are also optimal mechanisms (Myerson (1981)). This result is one of the 

major achievements of mechanism design theory as it shows that there is no 

elaborate mechanism that will result in a higher expected revenue than the four 

simple auctions.

The prevalence of the English auction in practice can be explained by 

relaxing the assumptions on which the Revenue Equivalence Theorem is based. 

For example, when bidders’ valuations are affiliated, the English auction yields a 

higher expected revenue than the other three auction formats (Milgrom and 

Weber 1982). The reason is that the English auction process conveys information

 ̂Where each bidder has a private value that is independent o f the valuations o f the other 
bidders.
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to the bidders on the valuations o f other bidders. Under the other three auction 

formats, no such information is conveyed and bidders therefore reduce their bids 

to account for the fact that they have the highest valuation if they win .̂ The first- 

price auction is also used widely in practice, and this can be explained by the fact 

that it performs better than the English auction if the bidders are risk-averse (Holt 

1980). This is because under a first-price auction, bidders will increase their bids 

towards their valuation if they are risk-averse, to increase the probability that they 

win.

However, the English auction is not the optimal mechanism with affiliated 

values and the first-price auction is not the optimal mechanism when bidders are 

risk-averse. More elaborate mechanisms can be designed that increase the 

expected revenue to the seller. For example, when bidders are risk-averse the 

optimal auction involves subsidising high losing bidders and penalising low 

bidders (Maskin and Riley 1984). Such mechanisms are rarely observed in 

practice. One reason for this is that the optimal mechanism is difficult to 

characterise when a single assumption is relaxed. Hence most of the literature 

concentrates on optimal mechanisms when just one or two assumptions are 

relaxed. The problem of designing optimal mechanisms for complex economic 

environments is considered to be intractable. A second reason that elaborate 

mechanisms are rarely used in practice is that they are complicated relative to the 

simple auctions. Real economic agents are at best boundedly rational, unlike the 

idealised agents of orthodox implementation theory. The rules of the mechanism 

therefore need to be sufficiently simple for all to understand.

 ̂ A bidder that does not take this into account will find that their valuation o f the object is 
reduced in the event that they win the object. This is known as the “winner’s curse”.
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A great deal of work has been done in extending the single-unit results to 

the case o f multiple units. The Revenue Equivalence Theorem extends to the case 

where there are multiple units and each bidder demands one unit (Harris and 

Raviv 1981, Maskin and Riley 1989). Maskin and Riley also investigate optimal 

auctions in the case that bidders demand multiple units and show that neither the 

discriminatory auction nor the uniform-price auction is optimal. However, as I 

pointed out earlier, elaborate mechanisms are not used in practice. The optimal 

auction can be complicated under simple assumptions even in the single-unit case. 

It is correspondingly more complicated in the multi-unit case. The problem of 

designing the optimal auction for the sale of Treasury bonds is therefore very 

difficult and this is generally true of complex economic environments.

The public debate on the mechanism used for the sale o f Treasury bonds 

has therefore concentrated on the choice between the discriminatory auction and 

the uniform-price auction. Even this question, however, remains unresolved. The 

conceptual difficulty of multi-unit auctions is highlighted by a false analogy that is 

made between the second-price, sealed-bid auction for a single unit and a 

uniform-price auction for multiple units. For example McAfee and McMillan

(1987) state: “Both the discriminatory auction and the uniform-price auction have 

been used to sell Treasury Bills. Because this is a common-value setting, theory 

predicts the uniform-price auction, which is similar to the second-price auction, 

yields more revenue than the discriminatory auction, which corresponds to the 

first-price auction”. The theory they are referring to is the affiliated valuations 

model of Milgrom and Weber (1982).

Milton Friedman and Merton Miller seem to take the analogy even further
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by suggesting that under a uniform-price auction it is a dominant strategy to bid 

one’s true demand curve. In the Wall Street Journal (August 28, 1991) Friedman 

states: “A [uniform-price] auction proceeds precisely as a discriminatory auction 

with one cmcial exception: All successful bidders pay the same price, the cut-off 

price. An apparently minor change, yet it has the major consequence that no one 

is deterred from bidding by fear of being stuck with an excessively high price. 

You do not have to be a specialist. You need only to know the maximum price 

you are willing to pay for different quantities.” Merton Miller in an interview with 

the New York Times explains why the bidders have an incentive to shade their 

bids under a discriminatory auction. He then says of a uniform-price auction: 

“You just bid what you think it’s worth.” This argument was part of the reason 

the US Treasury experimented with the uniform-price auction in the early 90’s. A 

report by the Treasury Department, the Securities and Exchange Commission and 

the Federal Reserve Board"̂  concluded that: “Moving to a uniform-price award 

method permits bidding at the auction to reflect the true nature of investor 

preferences..., In the case envisioned by Friedman, uniform-price awards would 

make the auction demand curve identical to the secondary market demand curve.” 

Recently Back and Zender (1993), Wang and Zender (1995), Ausubel and 

Crampton (1995) and Binmore and Swierzbinski (1997), have all illustrated that 

the bidders do have an incentive to shade their bids under a uniform pricing rule. 

The reason is there is a chance that one of the bids o f a bidder will be the marginal 

bid that determines the uniform price. Bidders can reduce the price they pay for all 

the units they win in this event by shading bids. In fact, this was first noted by

Joint Report on the Government Securities Market (1992, p. B-21).
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Vickrey (1961), who also gives the correct multi-unit extension of the second- 

price auction^. Back and Zender and Wang and Zender use the share auction 

framework of Wilson (1979), where the good is perfectly divisible and has a 

common value. They find that any price between the reservation price and the 

lower bound of the common-value distribution can be supported as a symmetric 

Nash equilibrium. There is therefore a multiple-equilibrium problem. Binmore and 

Swierzbinski show that the multiple-equilibrium result holds when the bidders 

have private values.

Ausubel and Crampton (1995) concentrate on the relative efficiency of the 

auctions. They prove ^  inefficiency theorem for the uniform-price auction which 

applies when there is a private-values component and bidders demand more than 

one unit. The inefficiency arises from the fact that large bidders will shade more 

than small bidders and sometimes lose units to small bidders who actually value 

them less. They propose an ascending-bid auction based on the multi-unit Vickrey 

(sealed-bid) auction. The chief advantage o f a Vickrey auction is that it is a 

dominant strategy to bid true valuations, with the result that the outcome is 

efficient. They also show that the revenue ranking is ambiguous and give 

examples where the Vickrey auction revenue-dominates both the uniform-price 

auction and the discriminatory auction.

The revenue-ranking debate has resulted in empirical research using 

natural experiments. Simon (1994) estimates that the switch from a discriminatory 

pricing rule to a uniform one in the 1970’s cost the US Treasury $7 thousand to 

$8 thousand for every $1 million o f bonds sold. However, Umlauf (1993)

 ̂The discrete multi-unit Vickrey auction is presented in the appendix o f  chapter 4.
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estimates that the Mexican Treasury gained by switching to a uniform-price 

auction for the sale o f 30-day bills although the gains were relatively small. 

Tenorio (1993) looks at the Zambian government’s sale of US dollars to 

importers who switched from a uniform-price auction to a discriminatory one. 

The conclusion after controlling for factors such as an increase in the number of 

dollars auctioned was that the switch resulted in a loss to the government even 

though the average price received per dollar was substantially increased. The 

evidence from the natural experiments is therefore inconclusive.

It is clear that unlike in the single-unit case, relatively little can be said in 

general about the revenue ranking of the auctions in the multi-unit case. The 

difficulty of modelling auctions with multiple units has led to misguided analogies 

with single-unit auctions. In practice this has resulted in institutions experimenting 

with both the uniform-price and discriminatory auctions with inconclusive results.

The practical significance of multi-unit auctions has widened as a result of 

their use in cases where a single buyer wishes to purchase multiple units of a good  

from a number of sellers. We refer to such auctions as ‘reverse’ auctions. The 

methodology is exactly the same. Suppliers submit supply schedules detailing the 

minimum price at which they are wilhng to supply various quantities. The bids are 

ranked and the lowest bids win. Such a system has been used in the supply of 

electricity since 1990 in England and Wales. As part of the privatisation process, 

the generators of the state owned monopoly were split between three companies. 

These companies compete to supply electricity to the Electricity Pool, through a 

uniform-price, multi-unit, reverse auction. Similar systems have been adopted 

elsewhere.
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A constraint that arises naturally in reverse auctions is a limit on the 

number of units a firm can bid. The constraint simply reflects the output capacity 

of the suppliers. For example, in the case of the Electricity Pool, the constraint 

simply reflects the generating capacity. The models of Ausubel and Crampton and 

Back and Zender account for the case where each firm has a maximum amount 

they can bid for but only to the extent that there is always competition for every 

unit. In the case of the Electricity Pool, the larger firms will have some residual 

monopoly in periods of high demand as the total capacity of the other firms will 

be insufficient to meet demand.

In chapter 3, we look at common-value, multi-unit auctions. We show that 

the multiple equilibria that Back and Zander find in the case when the good is 

perfectly divisible do not carry over to the case where units are discrete. In 

section 3.2, we present a discrete multi-unit, common-value auction model with 

capacity constraints, where the quantity for auction is uncertain and compare the 

equilibria under the uniform and discriminatory pricing rules. We show that the 

discriminatory auction results in a lower expected cost to the buyer (higher 

expected revenue for the seller). Although the assumptions are motivated by 

reverse auctions, the results can be applied to conventional auctions.

Theoretical papers on the Electricity Pool have concentrated on the 

performance of the current uniform pricing rule and the consequences of 

increasing the number of bidders, (Green and Newbery 1992, von der Fehr and 

Harbord 1993). Wolak and Patrick (1996) characterise the actual bidding 

behaviour using data from the Pool. They explain why the present structure gives 

the generators an incentive to withhold capacity and present evidence o f this
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strategy being used. In chapter 4, we present a model of the Pool which captures 

the incentive to withhold capacity under a uniform pricing rule. We then look at 

equilibria under two alternative pricing rules, discriminatory and Vickrey.
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1.3 Summary of Results.

In chapter 2, we use a stochastic evolutionary model to address the 

question of equilibrium selection in 2x2 Coordination Games. Much of the 

literature has concentrated on the result that, in the limit as the mutation rate 

approaches zero, the stationary distribution becomes concentrated on the risk- 

dominant equilibrium because it is easier to flow into. However, it has been 

shown that in models of local interaction, allowing player movement eases the 

flow into the efficient equilibrium. We look at the consequences o f such player 

movement when there are capacity constraints which limit the number of agents 

who can reside at each location.

In the case of two locations, we show that, when the capacity constraints 

are sufficiently tight, the risk-dominant equilibrium continues to be selected. 

However, as the capacity constraint is relaxed, the equilibrium switches from the 

risk-dominant equilibrium to states in which one location coordinates on the 

efficient equilibrium and the other on the risk-dominant equilibrium. We extend 

the analysis to the case of three locations and also to the case where there is 

inertia in strategy revision. In the three location case, the equilibrium switches 

from the risk-dominant equilibrium to states in which two locations coordinate on 

the efficient equilibrium and the other on the risk-dominant equilibrium. We show 

that the results are the same when we model inertia in the strategy-adjustment 

process, although the equilibria are slightly more difficult to characterise. When 

the capacity constraint is relaxed, the equilibrium selected involves everyone 

playing the efficient strategy.

In chapter 3, we model common-value, multi-unit auctions. We show that
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the multiple-equilibrium problem in uniform-price auctions that has been identified 

in the literature disappears with discrete units as long as bids are allowed in 

sufficiently small increments. We then present a discrete model with capacity 

constraints and uncertain demand. When there is no binding capacity constraint 

there is a unique type of pure-strategy equilibrium under both auction formats in 

which the marginal price is equal to marginal cost. Both auction formats therefore 

result in a competitive equilibrium. When it is certain that each firm will have 

some residual market share, however, the expected cost is greater under a 

uniform-price auction. Under the uniform pricing rule there is a unique type of 

equilibrium in which the marginal price (and therefore the price paid for all units) 

is equal to the maximum permissible price. Under a discriminatory auction there is 

no pure-strategy equilibrium. We characterise a mixed-strategy equilibrium that 

holds for any distribution of the quantity up for auction.

In chapter 4, we present a model of the Electricity Pool. Under a uniform 

pricing rule, the firms maximise profits by withholding base-load capacity to 

increase the probability that the marginal price is set by peak-load units which can 

be bid at much higher prices. This results in prices substantially above marginal 

cost.

Such an incentive does not exist under a discriminatory pricing rule as the 

price paid for each unit is simply the bid price. The average prices in the 

discriminatory equilibrium are therefore much lower than under a uniform-price 

auction. The case for a discriminatory auction is even stronger in the repeated 

game for two reasons: 1) collusive behaviour would be easy to detect as it would 

involve bidding high prices for all units and not just manipulating the marginal
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price; 2) even if the firms could collude they are limited in the profits they can 

make. In fact, in our model, we show that in the monopoly outcome under a 

discriminatory pricing rule results in a lower cost than the stage-game, capacity- 

withholding equilibrium of the uniform-price auction.

A third alternative that has been suggested in the literature is the Vickrey 

pricing rule. This is advocated on the grounds o f efficiency as it is a weakly 

dominant strategy to bid all units at marginal cost. However, we show that the 

Vickrey rule can result in a high cost as peak-load prices are paid to some units 

when no peak-load capacity is required. Also, in a repeated game setting, the 

firms can collude on weakly dominated equilibria o f the stage game which 

substantially increase profits.
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Chapter 2 

Equilibrium Selection in Games.

How do players know which equilibrium to play when a game has 

multiple equilibria? This question has been at the heart of much research in game 

theory. The focus o f attention has been the 2x2 Coordination Game such as the 

one given in figure 1.2 that has two Nash equilibria in pure strategies, one of 

which is Pareto-efficient but is riskier to play than the other. Harsanyi and Selten

(1988) call the former equilibrium payoff-dominant and the latter risk-dominant. 

Schelling (1960) appeals to the prominence of efficiency to suggest that agents 

will play for the payoff-dominant equilibrium in the expectation that other agents 

will be similarly attracted by its focal status. But Harsanyi and Selten have 

emphasised that such an expectation may not be well-founded. If each player 

optimises on the assumption that the opponent is equally likely to play either 

strategy, the outcome will be the risk-dominant equilibrium of the game, which 

therefore also has a focal status that may outweigh that o f the payoff-dominant 

equilibrium.

Evolutionary game theory has given the argument another perspective. 

By modelling the process by which agents adjust their strategies out of 

equilibrium we can analyse how it is that one equilibrium strategy rather than 

another may be selected. The principle underlying the dynamic systems studied 

in evolutionary game theory is that successful strategies will be used by a greater 

proportion o f the population in future periods.
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To illustrate the idea consider again the Coordination Game o f figure 1.2. 

The game has two pure-strategy equilibria, e, = (s,, s,) and ê  = (ŝ , s )̂. Notice 

that e, is payoff-dominant while ê  is risk-dominant. There is also a mixed- 

strategy equilibrium where s, is played with probability 2/3. When expressed in 

terms of the fraction q o f the population using strategy s,, these Nash equilibria 

correspond respectively to q = l, q=0 and q=2/3. We begin by studying a specific 

dynamic system for which the population states q=l and q=0 are stable 

stationary points. Denote these stationary states by E, and respectively.

Assume that members o f the population are randomly matched each 

period to play this game. They adjust their choice by playing the strategy that 

yielded the highest expected payoff in the previous period when they are given 

the chance to do so. Now consider the case where q>2/3. If a revision 

opportunity arises, then the optimal response against the current state is to play 

s,. The proportion playing s, will therefore grow over time until the state where 

everyone plays s, is reached. The basin o f attraction of E, is therefore (2/3, 1], 

since it will be selected from any state where q>2/3. Similarly the basin of 

attraction of Ê , where everyone plays ŝ , is [0, 2/3). A third possible stationary 

state (provided the population size N is infinite) is q = 2/3. At this point, no 

agent has an incentive to change his strategy. However, only E, and Ê  are 

locally stable.

Kandori et al (1993) and Young (1993) added to this analysis by 

assuming that agents sometimes “mutate” by changing their strategies at random. 

Each agent has a positive probability o f mutating each period. There is therefore 

a small but positive probability that there will be a large number o f simultaneous
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mutations. Once in an equilibrium, it is therefore no longer the case that the 

system will stay there forever because enough simultaneous mutations will 

eventually occur to move the system into the other basin o f attraction. The 

system therefore needs to be described in terms of a probability distribution over 

the states, with much o f the time spent in or close to the two stable states when 

the mutation rate is small.

Kandori et al show that, when the probability o f mutation goes to zero, 

the distribution becomes concentrated entirely on the risk-dominant equilibrium, 

Ej. The reason for this is that more mutations are required to move from to E, 

than from E, to Ê . As the mutation rate goes to zero the probability o f the first 

transition becomes negligible compared with the second. The time-limit of the 

distribution over population states therefore puts all its mass on Ê  when the 

mutation rate becomes vanishingly small. Following Kandori et al, equilibria 

that have a positive probability as the mutation rate goes to zero will be called 

long-run equilibria.

A criticism of this model is the huge expected waiting time to move from 

E, to the long-run equilibrium Ê  when the population size is large. If the system 

is in E, and the mutation rate is very small, then although it is true that the 

stationary distribution will be concentrated on Ê , it is likely to be a very long 

time before there are enough simultaneous mutations to move the system out of 

the basin o f attraction o f E,. Ellison (1993) introduces a local interaction 

structure which dramatically reduces waiting times whilst maintaining the result 

that the state where everyone plays the risk-dominant strategy is the unique long- 

run equilibrium. In his model, players are located around a circle and interact
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only with a subset of the population who are close to them. He shows that a 

small number of mutations concentrated together may be enough to upset the 

payoff-dominant equilibrium'.

Although the overwhelming consensus o f this literature is that the risk- 

dominant equilibrium will be selected, this is not always the case when local 

interaction is modelled. In Kandori et al, the location structure does not matter 

since each agent is equally likely to be matched with every other agent in the 

population. In models of local interaction, agents are more likely to be matched 

with neighbouring players. An agent’s choice of location is therefore important, 

since this will determine his or her expected payoff. Thus, if  agents are given the 

chance, they will move to a location where they get a higher expected payoff. In 

Ellison’s model, however, this phenomenon is absent, since agents are located at 

fixed  positions around a circle and remain there. If this assumption is relaxed, a 

few mutations need no longer be enough to upset the payoff-dominant 

equilibrium because agents may move away from a locality in which deviant 

mutations have occurred in search o f a higher payoff. Similarly, the risk- 

dominant equilibrium may now be easier to upset since a few localised mutations 

may entice movement towards this locality. Ely (1995) presents a model based

' Suppose for example that each agent only interacts with the four closest players or neighbours 
either side o f  him and they are randomly matched with these neighbours to play the game in 
figure 1.2. Then each player has 8 neighbours and if  at least 3 o f them play ŝ  then the best 
response is to play s%. Now  consider the state in which everyone plays s,. If there are 4 
neighbours who simultaneously mutate then they each have 3 neighbours who are playing ŝ  
and they w ill therefore continue to play ŝ . There are now another 4 players who are currently 
playing s, but have at least 3 neighbours playing ŝ . They will revise their strategies when given 
the chance and in this way the strategy ŝ  w ill spread throughout the population. Four well 
placed mutations are enough to m ove the system  into the basin o f attraction o f the risk- 
dominant equilibrium and so the expected waiting time is much smaller and independent o f the 
population size.
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on this idea in which such movement makes the long-run equilibrium Ej rather 

than Ê .

In this chapter, we consider the consequences of movement with the 

restriction that there is a capacity constraint limiting the number of agents who 

can reside at each location. We begin by analysing the case where strategy^ 

revision is instantaneous, i.e. everybody revises their strategy each period, but 

the chance to move to another location only arises with some positive 

probability. This model is analysed with two and three locations or islands. In 

the two location case, it is shown that there is a range of parameter values for 

which the long-run equilibria involve one island playing the efficient equilibrium 

and the other playing the risk-dominant one with the first island full to capacity. 

This extends to the three-location case, where two islands play the efficient 

equilibrium.

In section 2.2.3, we show that the results hold when there is inertia in 

strategy revision. Section 2.2.4 looks at the consequences o f relaxing the 

capacity constraint altogether. As in Ely (1995), the efficient equilibria are then 

favoured.

 ̂A  strategy is simply a choice between S| and S2 and does not include location.
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2.1 Stochastic Techniques.

Kandori et al (1993) & Young (1993) use a result due to Friedlin & 

Wentzell (1984) to characterise the stationary distribution of a Markov chain. 

This enables them to analyse the behaviour of the distribution as the mutation rate 

becomes vanishingly small. Using this characterisation, Kandori et al show that in 

the limit the stationary distribution becomes concentrated on a set of states which 

they call long-run equilibria, and that these states have the property that they 

require the lowest number of mutations to move to from all other states taken 

together. Young shows that to find the long-run equilibria, it is sufficient to look 

at the number of mutations required to move between the set of equilibria rather 

than the set of states. In this section, we give a brief review of the stochastic 

techniques developed in these papers.

2.1.1 Friedlin & Wentzell

Consider a finite Markov chain, P, with state space S=(1,2,...,N). A 

stationary distribution of a Markov chain satisfies m=mP- It is well known that an 

irreducible and aperiodic Markov chain has a unique stationary distribution. For 

large N the problem of solving for m becomes intractable. However, there is a 

useful way of characterising the unique stationary distribution which is sufficient 

for our purposes.

A z-tree, h, defined on state space S, is a set of ordered pairs, 

(/ j )  i j  G S , such that each state i;^z is the initial point of one arrow and 

from every state there is a path which leads to z. Denote the set of all z-trees by

H .
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Then define the number u .

(/ •
h&H, ( i^j ) eh

Now consider the directed graph, g, where each state ie S  is the initial 

point of one arrow and there is a unique loop which contains z. The set of all 

possible graphs for state z is denoted .

Define the number,

r i 4
g e G ,  0 ^ j ) e g

The sets H, and G, are illustrated for the case S=( 1,2,3).

^ 2  

^ 3

t 2

^ 3

can be written in terms of û  as follows,

i * z  i ^ z

That is we can either take each i-tree, i7̂= z, and add the transition i ^ z  or 

take each z-tree and add the transition z ̂  i for all i z.

Hence
i * Z  i * Z

Y u '* A + ‘*zP,z =«z .
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u=Pu where u=( u,

1 “ /
j

So normalising the vector u gives us the unique stationary distribution.

2.1.2 Kandori Mailath and Rob.

This paper looks at the consequences of introducing ongoing mutations 

into an evolutionary model. The main result is that the set o f equilibria is 

drastically reduced in the limit as the mutation rate goes to zero. Consider a finite 

population that is randomly matched each period to play the 2 x 2 symmetric 

game of figure 2.1.

Si S2

S]

S2

A, A B ,C
C ,B D .P ,

Figure 2.1

At the beginning of every period each agent chooses a strategy that he 

uses for that period. The average payoff to a player using strategy Si, TCi, is equal 

to the expected payoff this strategy yields against a mixed strategy where Si is 

played with a probability equal to the proportion of the remainder of the 

population using s%. This average payoff is consistent with an infinite number of 

random matches each period or with each player being matched exactly once with 

every other player in each period. Denote the state of the system by the number of 

agents using Si, Zt. When agents adjust their strategy they adopt the strategy that 

yielded the highest expected payoff in the previous period. In a 2 x 2
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Coordination Game this will result in convergence to either the state 0 or N 

depending on the initial point. Without mutations the system will then remain 

there forever. If we now allow agents to change their strategy with some positive 

probability 8 independently of each other, then the system will no longer get stuck 

in one of the equilibrium states. In fact, there will be a positive probability of 

going from any state to any other, as any number of simultaneous mutations can 

occur. We therefore have an irreducible and aperiodic Markov process, P, on 

state space S=(0,1,....,N ). Each transition probability, Pÿ, is a polynomial in 8. We 

now make use of the characterisation of the unique stationary distribution given in 

section 2.1.1.

The value û  is constructed by taking the product of transition probabilities 

along each z-tree and summing this over all z-trees. Hence û  is also a polynomial 

in 8. The stationary distribution is just a normalisation of the vector u and is given

uA e)
by n (e) = (H |(e ),..................................... where H ,(£) =

We are interested in l im |i(8 ) . Let the lowest power of 8 in û  be and

define L = min L .
z e S  ^

If L > L then  > 0 as 8 ^ 0

If L = L then  > f  as e - > 0  where 0 < /  < I

Hence the limit distribution |X = lim)Li(8) will put a positive probability on
E->0

State z only if the lowest power of 8 in u^8) is L* . Now consider the determinant
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of the lowest power. Let be the lowest power o f 8 in Pĵ . We call this the cost of 

the transition i-^ j, since it is the minimum number of mutations required for the 

transition. The cost o f a z-tree, h, is the minimum number of mutations required 

to move along it. This is given by ĉ  = ^  c.j . The lowest power of 8 in û  will be

determined by the z-tree which has the lowest cost. Thus L^= min ĉ .
heĤ

Therefore L* will be determined by the state that has the lowest cost 

z-tree of all states. So all we need to do to characterise the limit distribution is to 

find the state which has the lowest cost z-tree.

To illustrate the idea, consider the following example. A population of 10 

individuals are randomly matched to play the Coordination Game given in figure

1.2. The state of the system at time t is given by the number o f agents playing s,, 

q̂ . Assume the dynamics are such that each period one agent revises his strategy: 

if seven or more agents play s,, the deterministic dynamics will move one place 

towards the state 10; if six or less play s,, the dynamics will move one place 

towards the state 0.

From any initial position the system will move to state 10 or 0 and then 

stay there. The introduction of mutations allows the system to move between 

equilibria. Each individual changes his strategy independently and with probability 

8. Hence we have an irreducible and aperiodic Markov chain, P. The transition 

probability P_ encompasses all the possible combinations o f mutations. For 

example, consider the transition 7 -> 6 . With no mutations the deterministic 

dynamics will take the system to state q,^j=8, where eight agents play s, and two 

play S;. If two of the s, players mutate and none o f the ŝ  players, then the system
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will move to =6. There are other ways of moving to state 6. For example, we 

could have four of the s, players and both o f the ŝ  players mutating. This requires 

six mutations. Note that in this case the smallest power of 8 in is 2.

State 9 cannot have the minimum cost z-tree because it includes an arrow 

out of state 10 which must have a positive cost. A 10-tree will not have this cost 

and there is a transition from 9 to 10 at zero cost. Therefore for every 9-tree there 

is a lower cost 10-tree. This is true for all states in the basin of attraction of state 

10 and also for all states in the basin of attraction of state 0. So that leaves us with 

two candidates for minimum cost z-tree, state 0 and state 10. The minimum cost 

0-tree is achieved by just enough mutations to get into its basin of attraction.

0 < - ^  l < - ^ 2 < - ^ 3 f - ^ 4 f - ^ 5 < - ^ 6  7 — ^ 8 —^ 9 — ^  10

Figure 2.2

Figure 2.2 illustrates that two jumps to get out of the basin of attraction 

will require more mutations than one jump since the dynamics will push back 

towards state 10. Similarly, the minimum cost 10-tree has a cost o f 7. Therefore 

L * = 4 and the limiting distribution puts a probability of 1 on the state where 

everybody plays ŝ , the risk-dominant equilibrium.
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2.1.3 Young

Peyton Young goes one step further to show that we only need to 

consider the cost of moving between the recurrent communication classes of the 

unperturbed process. In the above example the unperturbed process is 

deterministic. In general the unperturbed process may follow a Markov chain, 

with recurrent communication classes which have the following properties: from 

any state x the process will move to a state which is in one of these classes; 

once there the process will move between states within the class. If the perturbed 

process is irreducible, then the system can move between classes but this will

involve a cost since mutations are required. Denote the classes by X ,  Xy  Let n

be the lowest cost of moving from class i to j. Now define a j-tree exactly as a z- 

tree but where the vertices are the indices (1,2,..., J). Let y  j be the cost of the

least cost j-tree and y (z) the cost of the least cost z-tree. Then he shows

y (x) = y  J for all x e  X j . The intuition is easy to see. If we want the minimum

cost z-tree for a state in class i then it must involve a transition out of the other 

classes at some cost. But apart from this no cost is needed since we allow all 

other transitions to be zero cost. This gives us a simple method for finding the 

long-mn equilibria. Intuitively the equilibria which are easiest to flow into from all 

the other equilibria are selected as 6 ^ 0  .
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2.2 When Does Immigration Facilitate Efficiency.

In this section, we present a model of local interaction with movement 

between locations. We assume that agents are randomly matched with someone at 

the same location to play the game of figure 2.3 in which A>C, D>B, A>D and 

A+B<C+D. Hence e,=(s,, s,) is the payoff-dominant equilibrium while ê  =(s ,̂ s j  

is risk-dominant. The probability with which s, is played in the mixed-strategy 

equilibrium is q* = (D-B)/(A-C+D-B) > 1/2.

Si S2
51
52

A, A B ,C
C ,B D ,D

Figure 2.3

Each period some agents are given the chance to move locations. We begin by 

looking at the case where there are two locations and strategy revision at each 

location is instantaneous. The analysis is then extended to the case of three 

locations and to the case where there is inertia in strategy revision.

2.2.1 Two Islands

Players are randomly matched on each of two isolated islands to play the 

game of figure 2.3. The global population is 2N and the capacity of each island is 

(l+d)N . Strategy revision is instantaneous, that is everybody chooses a strategy 

that is a best response to the state in the previous period. The chance to change 

islands arises with a positive probability each period. When such an opportunity 

arises, the agent will choose the location and strategy that would have maximised 

their expected payoff in the previous period. If the agent is indifferent between 

two choices then we assume they choose either with a positive probability.
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However, an agent cannot move to an island that is full to capacity. If the number 

of agents who wish to move to island i is greater than (N(l+d)-ni), where ni is the 

current number on the island, then only (N(l+d)-nj) of them will be allowed to 

move. N is sufficiently large that the following set of numbers are all integers, 

{N (l-d), N (l+d), q*N, (l+d)q*N, (l-d)q*N, (l-d )(l-q*)N , (l+ d )(l-q*)N }. One 

can think of the following story underlying these dynamics. At the end o f each 

period players gather information on the proportion of the population using each 

strategy on their island. With some positive probability, they also learn the 

proportions on the other island. At the beginning of the next period they choose a 

location and strategy to use for that period. If they have no information about the 

other island then they stay where they are and choose the strategy that is a best 

reply to the proportions in the previous period. If they do learn the proportions on 

the other island then they will want to move if a best reply on the other island 

yields a higher expected payoff. If the island has spare capacity they will move and 

play the best reply. If it is full then they play a best reply on their current island.

The state space is

S = {(— ,---------- ,«,):«] E (0,l,...,n,),n2 G (0 ,l,...,2A -n , ),A(1 -  J) <n^ < N(\ + d)},
rt, 2 A -« ,

where is the number playing strategy S\ on island i and ni is the number of

agents on island 1. Denote a state of the system by s=(qi ,q2 ,n i)e  S, where q, is 

the proportion of the population playing Si on islands i.

The dynamics give rise to a Markov process, P, on state space S. From 

any initial condition, the system will move to a state or set of states where it 

remains. Following Young (1993), such a set will be called a recurrent
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communication class. The recurrent communication classes are characterised 

latter.

Without mutations, the system will move to one of these classes and 

remain there. Now assume that each agent mutates independently, with 

probability 8, with the consequence that a strategy^ is re-selected at random on 

their current island. This allows the system to move between classes and gives rise 

to the perturbed transition matrix where,

I N

(2 . 1)
A=1

P̂ - is the ijth element of P, the unperturbed transition Matrix.

Proposition 2.1: P̂  has a unique stationary distribution pfej and lim^^  ̂p(e) 

exists and is equal to one o f the stationary distributions o f P.

Proof: Young (1993) shows that this is true if P̂  is a ‘regular perturbation’ of P. 

If P̂  is a regular perturbation of P then the following conditions must hold,

i) P̂  is aperiodic and irreducible

ii) l im ,_  P'u=Py

iii) P ĵ >0 for some 8 implies 3r > 0 s.t. 0 X lim^^Q ^

From (2.1) conditions (ii) and (iii) are clearly satisfied. If P ĵ > 0 then r is 

0 if Pij >0 or equal to the lowest value of k such that ĉ k >0. We now show that P̂

 ̂A ll the results go through if  we assume a strategy and location is re-selected at random with 
the restriction that the capacity constraint cannot be broken. If the number who re-select a 
location at random would take that location over its capacity then that island becomes full to 
capacity and some agents select a strategy at random on their current island instead.
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is aperiodic and irreducible. The diagonal elements o f are all positive. This is 

because in any state, there is a positive probability that nobody moves and that 

there are mutations that keep the same numbers playing each strategy on both 

islands. Hence is aperiodic. There is a positive probability o f going from any 

state to the class in which both islands coordinate on the same equilibrium. This 

simply requires a certain number o f mutations on each island. We can then have 

any number of agents on each island up to N (l+d) and for a given number of 

agents on each island, we can have any number playing each strategy, as there is a 

positive probability that nobody moves while a certain number mutate. It is 

therefore possible to go from any state to any other and the process is irreducible. 

QED.

Definition 2.1: The set o f states in the support of lim^^  ̂ fx(£) will be called the 

long-run equilibria.

Definition 2.2: A k-tree, h, defined on state space S (the set o f recurrent 

communication classes), is a set o f ordered pairs, ( i ^ j )  i, j^S,  such that each 

state x ^ k  is the initial point of one arrow and from every state there is a path 

which leads to k.

Let rij be the minimum number of mutations required to go from class i to 

j. We know that such a number exists because P̂  is irreducible. The cost of a

k-tree is ^  r.. .
U^j)eh
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Proposition 2.2: The long-run equilibria are the set of states in the recurrent 

communication class which has the lowest cost k-tree.

For the proof the reader is referred to Young (1993). The intuition is 

clear. The long-run equilibria are the set of states in the recurrent communication 

class that is easiest to flow into from all other recurrent communication classes. 

Hence to find the long-run equilibria we need to characterise the recurrent 

communication classes and the costs r̂  o f moving between them and then find the 

class that has the lowest cost k-tree.

Recurrent communication classes.

One recurrent communication class is the set of all states where qi =q2=0. 

The basin of attraction of this class is {(q, , q2 ): q i<q* , q2 <q* }, since best 

replies wiU'̂  lead both islands to the risk-dominant equilibrium. In this class the 

system will move between states where qi =q2=0 and ni e (N (l-d), N(l-kd)), since 

agents move with a positive probability when they are indifferent and ni must lie 

in this range due to the capacity constraint.

Now consider any initial condition with qi>q* and q2 <q* . Best replies 

will move the system towards qi =1 and q2=0. This will result in movement into 

island 1, since the higher payoff equilibrium is being played there. The system wül 

eventually move to the equilibrium state (l,0 ,N (l+ d)). Similarly the set of states 

with qi <q* and q2 >q* form the basin of attraction of the equihbrium 

(0 ,l,N (l-d )). The final possibility is for both populations to coordinate on the

'‘w h en  qi =q* or qz =q* the dynamics can go either way.
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payoff-dominant equilibrium. The basin o f attraction for this class is 

{(qi , q2 ): q i>q* , qz>q* }, and the recurrent communication class is the set of 

all states with qi=q2= l and n ie (N (l-d ), N (l+d)). The four recurrent 

communication classes are illustrated in figure 2.4.

Minimum costs of moving between recurrent communication classes.

Consider the transition from class 1 to 2^. We want the minimum number 

of mutations required to get into the basin of attraction of class two, 

{(qi , q2 ): qi >q* , q2 ^q* }, from a state in class one, (0,0,ni). Hence we require 

a proportion q* of island 1 to mutate. Now the less populated island 1 is, the 

lower the number of mutations required to achieve this. The minimum value of ni 

is N (l-d) so the minimum number of mutations required is N (l-d ) q* . The 

dynamics will then move the system to the state (l,0 ,N (l+d)). The cost of moving 

back is N (l+d) (1-q*) since we require the system to move back to a state where 

qi < q* and island 1 is full to capacity.

A direct jump will not necessarily yield the minimum number of mutations. 

For example consider the transition from class 1 to 3. A direct jump from class 1 

to 3 requires 2Nq* simultaneous mutations. However, it is easier to go from class 

1 to 2 and then from 2 to 3 since this only requires 2(l-d)Nq* mutations. Hence 

the minimum number of mutations required to go from class 1 to 3 is 2(l-d)Nq*. 

All the minimum costs are given in figure 2.5.
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Class
1

Class
o A

Is.l N (l+d)-N (l-d )

Class
nB

N (l-d )

Is.2 N (l+d)-N (l-d ) N (l+d)

Class
3

N (l+d)

N (l-d )

N (l+ d)-N (l-d)

N (l+d)-N (l-d )

Figure 2.4. Recurrent communication classes:
Row i of circles illustrate the equilibrium played on island i 
in each of the classes (risk-dominant, R or payoff-dominant, P), 
plus the range of values of Ui that are consistent with the class.

(l-d)q A

( l+ d ) ( l - q )  

2(l-d ) q* A

2 ( 1 - q )

(1-d) q' A

( l - d ) d - q )

Figure 2.5
Minimum costs of moving between recurrent 

communication classes.
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Lemma 1: The two location model has 4 recurrent communication classes. To 

find the class which has the minimum cost k-tree it is sufficient to find the 

minimum cost trees between just three classes, ruling out either 2̂  or 2  ̂.

Proof: Let rij denote the minimum cost of the transition i ^ j .

Then = r.^, r^, . = / e ( 1 , 2 , 3 )  .

Let h be a minimum cost k-tree. Adjust the tree so that at least one of 2^ 

or 2® have no predecessors without changing the cost. This is easy to do since

1—>2̂  ̂can be transferred to i —>2® (or vice versa) leaving 2^ with no predecessors. 

We can split the adjusted k-tree into two parts, a minimum cost k^-tree defined on 

the vertices (1,2,3) and 2^ added at minimum cost. It must be a minimum cost 

k -̂tree because any adjustments which reduce the cost would also reduce the cost 

of the k-tree but we started with a minimum cost k-tree. Hence we can find the 

minimum cost k-tree by first finding the minimum cost k -̂tree and then adding a

2-state at minimum cost. This cost will be common to all k-trees and so does not 

need to be considered. QED

This leaves nine trees that we need to compare (3 for each communication 

class). These trees are illustrated in table 2.1.

1-trees 2-trees 3-trees

A ‘; 1 <- 2 3 A I 2 —̂ 1 <— 3 3 2 4^ 1
B': 1 3 f -  2 2 3 1 B^ 3 <- 1 <- 2
C': 2 ^  1 <- 3 Ĉ : 1 2 « -  3 Ĉ : 2 ^  3 <- 1

Table 2.1. 
k-trees

54



Proposition 2.3: The long-run equilibria are:

the set of states in class 1 ifd<2q*-l, 

and states 2̂  and 2  ̂if  d>2q^-l.

Proof: From proposition 2.2, the long-run equilibria are the set of states in the 

recurrent communication class which has the lowest cost k-tree. It is a simple 

exercise to see that the lowest cost 1-tree is A :̂ 1 <—2 <—3. The other two 1-trees 

include the transition 1 3, which has the same cost as but also include a

transition from class 2 at some cost. Similarly, the lowest cost 3-tree is 

Â : 3 ^  2 <— 1 as the other two 3-trees include the transition 3 <— 1, which has the 

same cost as A .̂ Finally, the lowest cost 2-tree is Ĉ : 1—>2<—3. The other two 

2-trees include the transitions 3 —> 1 and 1 —> 3. In each case the cost is reduced by 

going directly to class 2.

The only difference between the cost of and Â  is in the transition

1 2
between classes 2 and 3. Since T23>T32 (as q*>—), C always has a lower cost.

This leaves two candidates for minimum cost k-tree, Â  and C .̂ The cost of Â  is 

less than the cost of if r2 i<ri2 . Hence class 1 has the lowest cost k-tree if 

(l4-d)(l-q*) < (l-d)q* => d<2q*-l.

If the inequality is reversed then class 2 has the minimum cost k-tree. QED.

The long-run equilibria are illustrated in figure 2.6. Hence the long-run 

equilibria are the set of states where everyone plays S2 , the risk-dominant strategy 

if d<2q*-l. The critical value of d where class 1 becomes the long-run equilibrium
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d=2q*-l

0.5

Key

A' : 1 <------- 2<r

2 < 1

^ 3

Figure 2.6 
Minimum cost j-trees.

increases with the degree of risk-dominance. If d is above this critical value then 

class 2 has the minimum cost k-tree. The long-run equilibria are the two states 

where the two islands play different equilibria. In fact, from the symmetry of the 

cost structure, states 2^ and 2® will each have a probability of one half in the limit- 

distribution. It is easy to see why higher values of d upset the risk-dominant 

equilibrium. In class 2, the island playing the payoff-dominant equilibrium 

becomes more populated as d increases because in equilibrium it is full to 

capacity. The transition to class 1 therefore becomes more difficult.

By the same token the island playing the risk-dominant equilibrium in class 

2 becomes smaller as d increases and so easier to convert. Hence the transition 

from class 2 to class 3 where both islands play the payoff-dominant equilibrium 

becomes easier. However, we never observe class 3 as the long-run equilibrium. 

The reason for this is that although the cost of class 3 is decreasing, the cost of 

class 2 is also decreasing and is always less. Consider the minimum costs of the
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transitions 1 ^ 2  and 3 — > 2 .  A s  d in creases the sm allest p o ssib le  s ize  o f  an island, 

( l - d ) N ,  falls. In c la sses  1 and 3 th e transition  to  a state w h ere  o n e  island has a 

p op u lation  size  o f  ( ( l - d ) N )  has zero  co st . T h e  transition to  c la ss  2  then only  

requires en o u g h  m utations on  the sm all island. T he m inim um  c o s t  therefore falls 

as d increases.

2.2.2 Three islands.

W e n o w  exten d  the m od el to  the c a se  o f  3 islands. A ssu m e that the g lobal

pop u lation  is n o w  3 N . W e on ly  co n sid er  the ca ses  w h ere  there is a p ositive  

pop u lation  on  each  island. H en ce  the cap acity  constraint is  ( l+ d ) N  w here

0 < d < Y  • A ll other d eta ils o f  the m o d el are the sam e. T he state sp ace  is  n ow  

>S' =  {(— ——  -------- ,71, e  (0,1,...,71,),7l2 E ( 0 ,1 , . . . ,Tl )̂,
71, « 2  3 A -7 1 ,  -7Î2

7I3 G (0 ,1 ,... ,3  A -71, -  7I2 ), A (1  -  2üf) <  71,, 7%2 <  A ( l  +  Û?)}.

w h ere  7 1 * is the num ber p laying strategy Si o n  island i and n. is  the num ber o f

agen ts on  islan d  i. D en o te  the state o f  the sy ste m  by s= (q i,q 2 ,q 3 ,n i,n 2 )G  S w here qi 

is  the proportion o f  island  i p lay in g  Si.

A s b efore  the dynam ics g iv e  rise to  a M arkov p ro cess , P ,̂ on  state sp ace  

S . From  any initial con d ition  the sy stem  w ill m o v e  to  o n e  o f  the recurrent 

com m u n ication  c la sse s  w h ich  are characterised  latter. A n  e lem en t o f  the perturbed  

M ark ov p rocess is  n o w

3 N
3 N - k

k=l
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From propositions 2.1 and 2.2 we know that to find the long-run equilibria 

we need to find the recurrent communication class that has the lowest cost k-tree. 

To do this we need to characterise the recurrent communication classes and the 

costs of moving between them.

Recurrent communication classes.

One recurrent communication class is the set of all states where

qi=q2=q3=0. The basin of attraction is {(qi,q2 ,qs): q i^ q*, q2 ^q*, qs^q*} since 

best replies will lead both islands to the risk-dominant equilibrium. In this class the 

system will move between states where qi=q2=q3=0 and ni,n2 e (N (l-2d), N (l+d)) 

since agents move with a positive probability when they are indifferent and n\ 

must lie in this range due to the capacity constraint.

Now consider any initial condition with q i>q*, q2 <q* and qs<q*. Best 

replies will move the system towards qi =1, q2=0, q3=0. This will result in 

movement into island 1, since the higher payoff equilibrium is being played there. 

The system will eventually move to the class (l,0,0,N(l+d),n2) where

n2G(N(l-2d), N(l4-d)). Similarly the set o f states with q i<q*, q2 ^q* and q3 <q* 

form the basin of attraction of the class (0,l,0,nj,N(l-i-d)) where

ni G(N(l-2d), N(l-kd)) and the set o f states with q i< q* , q2 <q* and q3 >q* form 

the basin of attraction of the class (0,0,l,ni,n2) where ni G (N(l-2d), N(l-i-d)) and 

ni4-n2=N(2-d). Hence there are three classes where one island plays the efficient 

equilibrium and the other two play the risk-dominant one.

There are also three classes where two islands play the efficient

equilibrium and one plays the risk-dominant one. The basin of attraction of the
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class where the first two islands play the efficient equilibrium and the third island 

plays the risk-dominant one is, with q i>q*, q2 ^q* and q3 <q*. Similarly the set 

of states with q i<q*, qz^q* and qs>q* form the basin of attraction of the class 

(0 ,l,l,N (l-2d ),N (l+ d )) and the set of states with q i> q* , qz<q* and qs>q* form 

the basin of attraction o f the class (l,0 ,l,N (l+ d ),N (l-2d )).

The final possibility is for all three populations to play the payoff-dominant 

equilibrium. The basin of attraction is { (q i, qz, qs): q i^ q*, qz^q*, qs^q*}, and 

the recurrent communication class is the set of all states with qi =qz=q3= l and 

ni,nze(N (l-d), N (l+d)). The eight recurrent communication classes are 

illustrated in figure 2.7.

Lemma 2.2; In the three islands model there are 8 recurrent communication 

classes. The 8 classes can be split into 4 similar groups and to find the minimum 

cost k-tree it is sujficient to find the minimum cost tree spanning this group.

This is shown in the appendix. The minimum costs of moving between 

these groups are given in figure 2.8.

Proposition 2.4: The long-run equilibria are:

2 g * - l
the set o f states in class one if d <

\-\-q *

the states 3̂ , 3  ̂and 3^ if d >  — ----  .
1 +  4 *

This is shown in the appendix. The results are illustrated in figure 2.9.
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Class Class Class Class Class Class Class
1 2^ 2® 2*̂ 3^ 3® 3^

Is.l I N(l-2d)- ) lN(l-2d)-  ) t N(l-2d) - ) V N(l+d) ) I N(l-2d) ) I N(l+d) ) V N(l+d)

Is.3

N(l-2d)
L(l+̂

N(l-2d) N(l-2d)- N(l+d N(l-2d) N 1+d) N l-2d) N(l+d) N l-2d

N(l+d) N(l-2d) N(l+d) N(l-2d) N l-2d) -N(l-2d) N(l-2d)- N(l+d)

Figure 2.7. Recurrent communication classes:
Row i of circles illustrate the equilibrium played on island i 
in each of the classes (risk-dominant, R or payoff-dominant, P), 
plus the range of values of Uj that are consistent with the class.

(l-2d) q=

(l+ d )(l-q *) 

2(1-2d) q*

2 (l-q * )(l+ d )

A

A

(l-2d) q'

2 ( l-q ) ( l -d /2 )

A

(l+ d )( l-  q )

2(1-2d) q' \

3 (l-2d )q *  V

3 (1-q*)

(l-2d ) q*

(l-2d ) (1-q*)

A

Figure 2.8

Minimum costs of moving between recurrent 
communication classes.
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1 : 1 f -  2 f -  3 <- 4
3 : 4 ^  3 <- 2 <- 1

Figure 2.9 
Minimum cost j-trees.

Much like the two island case the graph is split into two sections. When 

the capacity constraint is below some critical value, the long-run equilibria are the 

set of states where everyone plays the risk-dominant strategy. If it is above this 

critical value, then the long-run equilibria are the set of states in group 3 where 

two islands play the payoff-dominant equilibrium and the other island plays the 

risk-dominant one. It is interesting that we never observe the case where two 

islands play the risk-dominant equilibrium and the other island plays the payoff- 

dominant one. This is because the cost of class 3 becomes less than the cost of 

class 2 just as the cost of class 2 becomes less than the cost of class 1. The 

intuition behind not observing the set of states where everyone plays payoff- 

dominant strategy is the same as in the 2 island case.
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2.2.3 Inertia in strategy revision.

The results of sections 2 and 3 rely on the assumption that each agent 

plays a best reply at their location. We now extend the 2 island model to the case 

where there is a positive probability that agents simply continue to use the 

strategy they used in the previous period. However, if  they do revise their strategy 

they do so by playing a best reply. As before, there is a positive probability that 

they are given the chance to move islands and agents will then choose the location 

and strategy that would have maximised their expected payoff in the previous 

period, as long as this does not involve moving to an island that is full to capacity.

One can now think of the following story underlying these dynamics. At 

the end of each period the following events occur with a positive probability for 

each agent: 1) the agent observes nothing about the proportions using each 

strategy, 2) the agent only observes the proportions on his current island and 3) 

the agent observes the proportions on both islands. In the first case he simply 

continues to use the same strategy in the next period. In the second case he 

chooses a best reply on his current island. Finally, in the third case, he will want to 

move if a best reply on the other island yields a higher expected payoff than a best 

reply on his current island. If the island has spare capacity he will move and play 

the best reply. If it is full then he plays a best reply on his current island. The 

previous models look at the extreme case where the probability of the first event 

is zero. In this model the probability of each event is positive.

The state space is S, is the same as in the case with no inertia. The above 

dynamics, however, give rise to a different transition matrix, M. All other aspects 

of the model are the same. The perturbed transition matrix is given by
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2 N
2N-k

*=1

The same reasoning as before can be used to show that is aperiodic 

and irreducible. Hence we can apply propositions 2.1 and 2.2 and find the long- 

run equilibria by finding the recurrent communication class that has the lowest 

cost k-tree. The recurrent communication classes are the same as in the model 

with no inertia and are illustrated in figure 2.3. However, the basins of attraction 

of the recurrent communication classes are now different. This changes the cost of 

moving between classes. In the model without inertia, the minimum cost of the 

transition 2 - > l  is (l+d)(l-q*). We can now achieve this transition with fewer 

mutations because after a certain number of mutations on the efficient island, it 

will be optimal for agents to move and get a payoff of D. If there are (I-d)(l-q*) 

mutations followed by movement, then there is a positive probability that 2Nd 

agents move and that all the agents that move were playing Si, while nobody 

revises their strategy on the efficient island. Hence the proportion playing Sj will 

be (N (l+d)-2Nd-(l-d)(I-q*)N)/(N(I+d)-2Nd)=q*. However, we must ensure 

that it is optimal to move and this requires a proportion (1-q  ̂) of the efficient 

island to mutate, where q̂  satisfies Aq^+B(l-q^) = D or q^= (D-B)/(A-B). Hence 

(1- q^)(l+d)N mutations are required before anyone will move. Since the number 

of mutations must satisfy both of the above conditions, the minimum number of 

mutations required will be m ax[(l- q^)(l-i-d),(l-q*(I-d)]. The minimum costs of 

moving between recurrent communication classes are given in figure 2.10.
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 ( l-d )q * _________^

1 2
\  :------- ;—

max [(l-d )(l-  q ) , ( l-q )(l+ d )]

2(l-d)q* \

1 3
\ ,

(l-d )(l-q*)+  max [(l-d )(l-  q ) , (1 -q )( 1+d)]

 ( l - d ) q *  \

2   3

^  ( l - d ) d - q ' )

Figure 2.10

Minimum costs of moving between recurrent 
communication classes.

Proposition 2.5: The long-run equilibria are:

all states in class 1 ifd<f(q'*', c( ) 

and states and 2  ̂ifd> f(q* , c( ),

wheref(q* (( ) = *
q * - \- l-q

Proof. From proposition 2.2 we know that we need to find the class with the 

lowest cost k-tree. Also to find the class which has the minimum cost k-tree it is 

sufficient to find the minimum cost trees between just three classes, ruling out 

either 2^ or 2® (lemma 1). Of the nine trees (table 2.1), it is a simple exercise to
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see that the minimum cost tree is either 1—>2<—3 or 1<—2<— 3̂ . Hence the set of 

states in class 1 will be the long-run equilibria when 

max[( 1-d)( 1-q*),( 1-q̂ X 1-i-d)]<( 1-d)q*.

This condition reduces to

( l-q ^ )(l4 -d )< (l-d )q * = >  d < - ^ ^ - ^ -----

If the inequality is reversed then class 2 has the minimum cost k-tree. Q.E.D.

The function f(q*, q̂ ) is increasing in q* . Apart from the transitions 2 —> 1 

and 3 ^ 1  the minimum costs of moving between recurrent communication 

classes are the same as the model with no inertia. Since C21 is smaller than in the 

earlier case, class 1 has a slightly larger range over which it is the long-run 

equilibrium. Otherwise the long-run equilibria are similar - class 1 if d is below 

some critical value and class 2 if it is above this value, where the critical value is 

increasing with q*.

2.2.4 No capacity constraints.

We now consider the consequences of removing the capacity constraints 

altogether. To do this it is necessary to make some assumptions on what happens 

when an island becomes empty. If we assume that the payoff of being alone at a 

location is less than D then there are 4 equilibrium states, all of which involve an

 ̂Any tree that includes the transition 1 3 (or 3 1) cannot be the minimum cost tree
because 1<— 2<— 3 ( o r 3 < —2<— 1) has the same cost but includes no more transitions. A lso  
3 <— 2 1 always has a higher cost than 3 —> 2 <— 1 because r]2<r23 for all values o f d.
 ̂ ( l-d )(l-q * )<  (l-d)q* when q *> l/2  which is always true.
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empty island .̂ To ensure the perturbed process is irreducible, we only consider 

the case where agents choose a strategy and location at random when they 

mutate^. Only one mutation is required to move from an equilibrium where 

everyone plays Sz to one where everyone plays Sj but to move in the reverse 

direction requires 2N (l-q*) mutations. Clearly the long-run equilibria are the two 

states where one island is empty and the other one plays the efficient equilibrium. 

The empty location plays a coordinating role.

^When the islands are playing different equilibria, then everyone will m ove to the efficient one. 
When they are playing the same equilibrium, then one island will eventually become empty 
without mutations as agents m ove with a positive probability when they are indifferent.
 ̂ Otherwise once an island becomes empty it remains empty.
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2.3 Conclusions

Kandori et al and Young have developed techniques for characterising the 

limit of the stationary distribution when the mutation rate goes to zero. This 

allows us to address the question of equilibrium selection in the long-run when the 

mutation rate is very small. Using these techniques they show that the equilibrium 

selected is the risk-dominant one rather than the efficient one.

The results of the local interaction model essentially show that the 

introduction of movement may upset the long-run equilibrium where everyone 

plays the risk-dominant strategy, but will not necessarily lead to a long-run 

equilibrium where everyone plays the efficient one. The alternatives are states in 

which some islands coordinate on the efficient equilibrium and others on the risk- 

dominant one. These equilibria are observed when there is a binding capacity 

constraint. However, risk-dominance still has a role to play in the determination of 

the long-run equilibria. The important feature is the degree of risk-dominance 

which will determine how lax the capacity constraint needs to be before the long- 

run equilibria switch from purely risk-dominant to the mixture of equilibria. When 

the capacity constraint is relaxed altogether the long-run equilibria involve 

everyone playing the efficient strategy.

Hence when agents are able to move between locations, the state in which 

everyone plays the risk-dominant strategy is no longer the unique long-run 

equilibrium. However, results that show that movement leads to a unique long- 

run equilibrium where everyone plays the efficient strategy rely on spare capacity. 

In fact, with a binding capacity constraint, the long-run equilibria will depend on 

the degree of risk-dominance and the strictness of the capacity constraint.
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2.4 Appendix: Proofs.

Proof of lemma 2.2.

Lemma 2: In the three islands model, there are 8 recurrent communication 

classes. To find the class which has the minimum cost k-tree it is sufficient to find 

the minimum cost trees between the 4 groups (1,2,3,4).

Proof: Let nj denote the minimum cost of the transition i-^ j. Then,

where, i e  ( 1 , 4  ) ,% e  ( 2 , 3 ) .

However, the minimum cost of moving between groups 2 and 3 are not 

the same. For example, r „ c >- r . g . This is because class 2^ is exactly the

opposite of class 3  ̂ since all three islands are playing a different equilibrium. The 

cost of moving between these states is greater than the minimum cost given for 

transitions between classes 2 and 3 since this requires only one island to convert 

(for example r̂ ^̂ B )• The same applies for (2® and 3®) and (2^ and 3^). However

the minimum cost tree will never include transitions between these states since if 

such a transition is present then there will always be a tree which has a lower cost.

Let 3 ^  2 be a high cost transition in a k-tree, h. Then follow this process 

of adjustment. Transfer 3 —>2̂  if this is possible. This will not be possible if both 

the other 2-classes are predecessors of 3. In this case swap 3 with 3̂ —>2 is no 

longer high cost but the change may result in a high cost 2 ^ 3  transition 

elsewhere. If this is the case, repeat the process with 2 —>3. Eventually the first
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part of the process will be possible since we are moving backward along the tree. 

The end result will be a tree with the same structure but no high cost transitions 

between classes 2 and 3.

Let h be a minimum cost k-tree. Consider the path from i —>j where 

i e  ( 1 , 4  ) . I f  the successor of i is a 3-class, adjust the tree so that there is

only one 3 state along this path. This will not change the cost since r.̂  =  . If

there is more than one 2-class along this path in the adjusted tree, then make the 

following adjustment. Let 2 be the first 2-class in the path and 2̂  be the last. 

Transfer n 2 to n 2̂ . If this results in a high cost transition 3 -^ 2 ' then swap 2 

and 2^. If the successor of i is a 2-class then do the same but with the roles of 2 

and 3 reversed.

The resulting tree will still be minimum cost and can be split into 2-parts, a 

minimum cost k'̂ -tree defined over the vertices (1,2,3,4) and the remaining

2-classes and 3-classes added on at minimum cost. It must be a minimum cost 

k^-tree because any adjustments which reduce the cost would also reduce the cost 

of the j-tree but we started with a minimum cost k-tree. Hence we can find the 

minimum cost k-tree by first finding the minimum cost k^-tree and then adding the 

remaining 2-classes and 3-classes at minimum cost. This cost will be common to 

all k-trees and so does not need to be considered. QED.
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Proof of proposition 2.4.

Proposition 2.4: The long-run equilibria are:

2 q ^ - \
the set of states in class one if d < ---------

1 + ^*
2 ^ * - l

the states 3 , 3 and 3 if  d >
\-\-q

From proposition 2.2 we know that to find the long-run equilibrium we 

need to find the recurrent communication class with the lowest cost k-tree. We 

only need to consider the cost of moving between the four groups, (lemma 2). 

Hence for each group there are 16 k-trees. All 16 1-trees are illustrated in figure 

2 . 11.

1' l f - 2 < - 3 < - 4  2 ‘ l < - 2 f - 4 < - 3

3‘ l f - 3 < - 2 < - 4  4 ‘ 1 ^ 3 < - 4 f - 2

5 ‘ l < - 4 < - 3 < - 2  6 ‘ l f - 4 < - 2 < - 3

7‘ 2 ^ 1 < - 3 < - 4  8 ‘ 2 - ^ l < - 4 < - 3

9‘ 3 ^ 1 < - 2 < - 4  10' 3 ^ 1 < - 4 < - 2

11' 4 ^ 1 < - 2 < - 3  12' 4 - ^ l < - 3 < - 2

1 1 13' 1 ^ 2 ^  14' 1 ^ 3  ^

1 1  ̂15' 1 ^ 4  ^  16' l < -----3
3 ^ ^ 4

Figure 2.11 
1-trees.
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Claim 1: The lowest cost 1-tree i s l ' :  1<—2<—3<—4.

Claim 2: The lowest cost 2-tree i s l / :  1 —>2<—3<—4.

Claim 3: The lowest cost 3-tree i s l / :  1 ^ 2 - ^ 3 < —4.

Claim 4: The lowest cost 4-tree i s l / :  1—> 2 ^ 3 ^ 4 .

C has a higher cost than V as r̂ <̂r̂ .̂ Hence class 4 is never the long-run 

equilibrium, l' has a lower cost than 1̂  if

r2,<r,2=>(l+d)(l-q*)<(l-2d)q*=» d < ^ —

The condition for l ’ having a lower cost than Ÿ  is the same as and 

r,2=r23- If the condition holds then the long-run equilibria are the set of states in 

class 1. Now compare the cost of 1̂  and 1 / The condition for C to have a lower 

cost is,

2^ * - l
r > r  , d >

1 + q

2 q * - \
The final possibility is d  = ----------- . In this case, states in classes 1, 2 and

l-H^*

3 all form the set of long-run equilibria. QED.

Proof of claim 1: Consider a tree which includes the transition 1 <—3 and has a 

minimum cost o f c. This tree must also include a transition i<—2 where i is 1 ,3  

or 4. Such a tree cannot be the lowest cost tree as r3 ,=r32+r2i. Hence there is 

another tree which has cost c-r̂ .̂ Similarly a tree with the transition 1 <— 4 cannot 

be the lowest cost tree as r̂ ]=r43+r324-r2, . The minimum cost tree must therefore
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include the transition 1<—2. Now repeating the argument for any tree that 

includes the transition 2 <—4 shows that the minimum cost tree must have 2 <—3. 

Finally the lowest cost path from 4 is 3 <—4. QED.

Proof o f claim 2: Consider a tree which has a transition 1 ^ i  where i;^2. This 

cannot be a lowest cost 2-tree. If we change the transition 1 i to 1 ^ 2  then the 

resulting 2-tree will have a lower cost. Hence the lowest cost 2-tree must include 

1 ^  2. A similar argument shows that the minimum cost tree must include 3 ^ 2 .  

Finally the lowest cost way of adding 4 is 4 —> 3. QED.

Proof o f claim 3: The same reasoning in the previous proof can be used to show 

that the minimum cost 3-tree must include the transitions 3<—4 and 3 f - 2 .  The 

lowest cost way of adding 1 is 2 <— 1. QED.

Proof o f claim 4: Consider a tree which includes the transition 4 4—2 and has a 

minimum cost of c. This tree must also include a transition i<—3 where i is 1, 2 

or 3. Such a tree cannot be the lowest cost tree as r2 =̂r2 +̂r̂ .̂ Hence there is 

another tree which has cost c-r̂ .̂ Similarly a tree with the transition 4 <— 1 cannot 

be the lowest cost tree as The minimum cost tree must therefore

include the transition 4 4 - 3 .  Now repeating the argument for any tree that 

includes the transition 3 4—1 shows that the minimum cost tree must have 34—2. 

Finally, the lowest cost path from 1 is 24— 1. QED.
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Chapter 3 

Multi-Unit, Common-Value Auctions.

The introduction highlighted the difficulties associated with the theory of 

multi-unit auctions. This chapter addresses some of these difficulties in the case of 

multi-unit, common-value auctions. In common-value auctions, the value of all 

units is the same for all bidders. There may, however, be incomplete information 

about this common value. Perhaps the best example of the use of multi-unit 

auctions where the units have a common value is the sale of index-linked bonds by 

the US Treasury. The common value is the price the bonds will fetch in the 

secondary market. In the case of reverse auctions, where suppliers submit supply 

schedules to the auctioneer, the common-value assumption simply imphes a 

constant marginal cost.

One of the problems associated with multi-unit auctions is the existence of 

multiple equilibria. Back and Zender (1993) show that in uniform-priee, common- 

value, multi-unit auctions any price between the reservation price and the lower 

bound of the common value can be supported as a symmetric equilibrium when 

the good is perfectly divisible. We illustrate this result when there is complete 

information in section 3.1, and show that the multiple equilibria disappear when 

units are discrete. If quantities are discrete and price bids are continuous then, in 

the complete information case with common values, the unique pure-strategy 

equilibrium results in a competitive market clearing price equal to the common 

value.

A second problem is characterising the equilibria. Section 3.2 investigates
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equilibria in common-value auctions with complete information and capacity 

constraints, where the quantity for auction is uncertain. Capacity constraints arise 

naturally in reverse auctions. For example, in the case of the Electricity Pool, the 

constraints simply reflect the generating capacity of each firm. In the case of 

Treasury auctions there may be a limit on the number o f units for which each firm 

can bid. The capacity constraints are significant when units are required from all 

bidders to meet demand. Each firm will then know that they have some ‘residual 

market’ share irrespective of their bids. The uncertainty in the quantity up for 

auction is also motivated by the application to the Electricity Pool, as the residual 

demand faced by the generators is uncertain. In Treasury auctions the number of 

bonds up for sale is known.

Section 3.2.1 looks at the case of a discriminatory auction. Without 

capacity constraints, we show there is a unique pure-strategy equilibrium, where 

the market clearing price is equal to the marginal cost (or the common value, in 

the case of a conventional auction). If, however, there is a positive probability that 

each firm will have a residual market then there is no pure-strategy equilibrium. 

We characterise a mixed-strategy equilibrium for the duopoly case that holds for 

any distribution of the quantity up for auction, when this probability is one. If the 

probability is less than one, then there is a similar mixed-strategy equilibrium that 

holds for a large class of distributions.

Section 3.2.2 studies the uniform case. Most of the results of this section 

are due to von der Fehr and Harbord (1993). They use a uniform-price, multi-unit 

auction to model the Electricity Pool. In their model each firm has a constant 

marginal cost but this may vary between firms. We only consider the common-
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value case where all firms have the same constant marginal cost. As with the 

discriminatory case, without capacity constraints there is a pure-strategy 

equilibrium where the market clearing price is equal to the marginal cost. If it is 

certain that each firm will have a residual market, then there is a unique set of 

pure-strategy equilibria where the market clearing price is equal to the maximum 

permissible price (or reserve price in the case of a conventional auction). If it is 

not certain but possible that each firm will have a residual market then for most 

distributions there is no pure-strategy equilibrium. We show that the mixed- 

strategy equilibrium which von der Fehr and Harbord derive for this case does not 

extend to the case where each firm has multiple units.

All the illustrations of section 3.1 and results of section 3.2 are presented 

for reverse auctions, where suppliers compete to sell goods. The results apply 

equally to conventional auctions, where the uncertainty in demand is replaced by 

uncertainty in supply, the constant marginal cost is replaced by a common value 

and the maximum permissible price by a reservation price. We present the results 

for reverse auctions because some of the results are used in chapter 4.
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3.1 Multiple Equilibria in Uniform-Price Multi-Unit Auctions.

To illustrate the multiple equilibria, consider the following simple model. 

There are two firms that produce a perfectly divisible good at a constant marginal 

cost, c. The auctioneer announces a fixed quantity, Q, that is required (hence 

demand is perfectly inelastic) and a maximum price, p", the firms can bid. The two 

firms must submit non-decreasing supply schedules s:[0,p“] ^  [0,Q]. Let Si(p )  

denote the supply schedule of firm i. The market clearing price, p*, is the 

minimum price at which s^{p) + S2 { p ) ^ Q . Each firm sells the quantity bid at a 

price less than or equal to p*‘ and is paid p* for the quantity sold. Call the above 

game G. Let qj be the quantity firm i sells in equilibrium. The market clearing 

price and quantities are illustrated in figure 3.1.

S i ( p )

Figure 3.1 
Market clearing price.

The figure plots firm I ’s supply curve against the residual demand he faces

If at p* the aggregate supply curve is flat, then all units bid at this price are rationed. The 
rationing rule is not important for our purposes.
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once we take out the supply of firm 2. The intersection of these curves therefore 

determines the market clearing price p* and the quantity each firm sells, qi and qj. 

The profit function of firm i is 7ti=qi(p*-c). An iso-profit curve is therefore given

by I = — + c . We can draw iso-profit curves of both firms on the same diagram as
q

q2=Q-qi. This is illustrated in figure 3.2.

Figure 3.2 
Iso-profit curves.

Proposition 3.1: Any price, p e  [ c , p “], can be sustained as an equilibrium o f  

G. Moreover, fo r  any price, p e  [c, p “], there is an equilibrium where firm  1 

gets q̂  G ( 0 , 0  and firm  2 gets ^ 2  = •

Proof: The optimal price and quantity combination for firm l i s p  and q̂  if firm 2

submits a supply curve such that the residual supply is tangent to an iso-profit 

curve at this point and lies below the iso-profit curve at all other points. Any 

supply curve that passes through this point will then be optimal for firm 1. If 

firm 1 submits a supply curve which is tangent to firm 2’s iso-profit curve that
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passes through this point, then any supply curve that passes through this point is 

also optimal for firm 2. Hence any pair of supply curves that pass through this 

point, that are tangent to the other firm’s iso-profit curve at this point and that do 

not cross the iso-profit curve at any other point form an equilibrium. QED.

The diagram illustrates such an equilibrium with linear supply curves.

si(p)

Q
Figure 3.3 

Multiple equilibria.

Klemperer and Meyer (1989) obtain a similar result with downward 

sloping demand, although they only consider twice differentiable continuous 

supply functions (section 4.1). Back and Zender (1993) show that this is true 

when there is incomplete information about the true common value. They show 

that any price between the reserve price and the lower bound o f the common- 

value distribution can be a market clearing price in a symmetric equilibrium. 

Finally, Binmore and Swierzbinski (1997) use the same framework to illustrate 

multiple equilibria in the case o f private values. All these papers assume the good 

is perfectly divisible. In the next section, we show that the multiple equilibria in 

pure strategies disappear when bids are for discrete units.
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3.2 Discrete Units.

Now consider a model where the bids must be for discrete units. Call this 

game Gj. As in G, the auctioneer announces a quantity Q that is required, where 

Q is an integer, and a maximum permissible price, p". Each firm submits a vector 

of Q prices, s., where the n̂ '’ element of the vector represents the minimum price at 

which the firm is willing to supply n units. One can think of each element of the 

vector as a bid for a particular unit. The vector is then a list of these bids in 

increasing order. Denote by Sj/p the vector that only includes prices up to p and by 

N(Si/p) the number of elements in s/p. Hence N (s/p) is the maximum number of 

units firm i is willing to supply at a price, p. The market clearing price is the 

lowest price such that N(si/p)+N(s2/p) >Q.  If N(si/p*) +N(s2/p*)=Q then each 

firm sells N (s/p*) units at p*. If N(si/p*) +N(s2/p*)>Q then all the units bid at p* 

are rationed. Denote by s//p  the vector that only includes prices less than p and by 

N (s//p) the number of elements in Si//p. Then the number of units rationed if 

N(si/p*)+N(s2/p*)>Q is Q-N(sj//p*)-N(s2//p*). Assume there is a proportional 

rationing rule. Hence each of the rationed units are assigned to firm i with 

probability,

 ̂ ^ ____________Njs .J  p * ) - N ( S i  // p*)____________
N(s- /  /?*) -  N{s- // /7*) + N ( s -/ /?*) -  N(Sj  // /?*)

The expected number firm i sells is therefore,

Çi = n ( Q -  // P*) -  H P*) ) + H P*) • (3.2)

Assume the firms are risk-neutral and maximise expected profits. The 

market clearing price is illustrated in figure 3.4. As before we draw firm 2 ’s 

supply backward. This represents the residual demand faced by firm 1. The
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expected profit of each  firm is  7ti(si,S2)=qi(si,S2) (p*(si,S2)-c).

A

Firm 2’s 
supply

Firm I ’s supply

Q=5

Figure 3.4
Market clearing price with discrete units.

Proposition 3.2: Gj has a unique pure-strategy equilibrium where each firm bids 

cfor all Q units.

Proof: Consider a situation where the bids (sj,S2 ) are such that p*>c. Then 

the quantity each firm sells is qi= Xj +N(Si//p*). If both firms have bid units at p* 

then Xi,X2>0. Each firm can then gain by submitting the Q -N(Sj//p*) units that are 

currently at a price p>p* at a price slightly below p*. This will result in them 

getting the other firm’s rationed quantity without significantly affecting price. If 

only firm j has bid for units at p* then Xi=0. Firm i can then gain by undercutting 

in the same way. If all bids are at c then no firm can gain by cutting bids as this 

would result in a negative profit, and no firm can gain by raising bids as these 

units would not be sold. QED.
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The proof relies on being able to undercut a price by some small amount. 

In reality prices are not continuous. Price bids must be a multiple of some finite 

amount, f. Hence undercutting the market clearing price will reduce the price 

received for all units by f. Call the game where price bids must be some multiple 

of f  Ĝ d. Assume c and p“ are also multiples of f.

Proposition 3.3: I f  the minimum price increment, f  is sufficiently large then any 

price, p e  {c,c + f  ,c + 2 f p “} , can be sustained as an equilibrium o f Ĝ 'd.

Proof: Consider the following supply schedules. Firm i submits dj units at some 

price p< p  where di>0 and di+d2 =Q -l, and all other units at p . Each firm then 

sells the units bid at p< p  and one more unit with a probability n. Increasing the 

price of some of the units submit at p  will reduce this probability and therefore 

expected profits. Reducing the price o f one of these units by f  will increase this 

probability to 1 as there will be no rationing. This, however, will reduce the 

profits of this firm if,

{p  -  c){d. + r̂ ) > {p -  c -  f){d^ +1)=> /  > ( / 7 - c ) ( l - ĵ
a, +1

If the above inequality holds for i= l,2  then neither firm can gain by 

reducing the price. Finally, the firms will have no incentive to increase the price of 

the di units bid at p< /? to a price p > /?, as this would reduce the expected 

quantity sold without affecting the price. QED.

Hence the multiple equilibria problem returns if the increments in which
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the firms are allowed to bid are sufficiently large. A simple solution for an 

auctioneer wishing to avoid this problem is to make the increments very small. We 

then get the competitive equilibrium result in proposition 3.2. This perhaps 

explains why bids in Treasury auctions can be any multiple of a fraction of one 

basis point which translates to very small increments in prices. The most suitable 

model in applications therefore seems to be one with discrete units where price 

bids are allowed in very small increments. In the next section, we investigate 

équilibra in common-value auctions with capacity constraints, where units are 

discrete and price bids continuous.

82



3.3 Capacity Constraints and Uncertain Demand.

This section studies equilibria in multi-unit, common-value auctions, 

where there is a limit on the number of units each firm can bid for and the quantity 

for auction is uncertain. As before, the reverse auction case is studied. The limit 

then represents the maximum number of units the firms have a capacity to supply. 

In a conventional auction a limit may be imposed by the auctioneer.

There are m firms who each have enough capacity to supply k units. 

Normalise the total capacity of each firm to be 1 so the size of each unit is 1/k. All 

firms produce at a constant marginal cost, c, up to capacity. The firms submit a 

vector Si, of k prices where the n̂  ̂ element of the vector is the minimum price at 

which the firm is willing to supply n units. As before, one can think of each 

element of the vector as a bid for a particular unit. The vector is then a list of 

these bids in increasing order. After the firms submit their supply schedules, 

nature chooses the level of demand, d. Let {^,d)  be the minimum and maximum 

values that demand can take. The level of demand need not be an integer as in the 

previous section. The firms know the demand distribution.

The market clearing price is the lowest price, p(d), such

t h a t ^ N { S j  / p ) > d  A f  /p(d)) = d  then each firm sells N(si/ p(d)) units at
1=1 1=1

pd. If ^ N { s -  /p(d)) > d  then d - ^ N { s ^  //p(d)) units are rationed. Once again
/=i /=]

assume there is a proportional rationing rule. Since d may not be a multiple of 1/k 

one of the firms may be assigned a fraction of a unit. Each of the rationed units 

plus this fraction is assigned to firm i with probability.
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N (f ,./p (d )) -N (j ./ /p (d ))
 ̂ -  "i;: m

% N (^ ,/p (d ))-% A f(^ ,//p (d ))
;=i y=i

The expected number firm i sells is therefore,

= r. { d - ^ N { s  j / /p{d) ) )  + N  (s . / /p(d) ) .  (3.4)
;=i

The firms are risk-neutral and maximise expected profits. Let 

(p% p^,..., p" )̂ be the vector of m.k bids in increasing order. The next two 

sections study equilibria of this model under a discriminatory and uniform-price 

auction format. In section 3.3.4, we compare the two auction formats in terms of 

the expected cost to the buyer (in a conventional auction this amounts to a 

comparison of revenue to the seller).

3.3.1 Discriminatory auction

Under a discriminatory auction the sellers are paid the bid prices 

for the units they are assigned. This section studies the equilibria under the 

discriminatory pricing rule. We begin by presenting a general result on the type of 

pure-strategy equilibria that can exist.

Proposition 3.4: In any pure strategy equilibrium the marginal price is c.

Proof: If p(û? )=p*>c then any firm can gain by reducing their bids slightly below 

p { d ) .  This increases the expected number of units dispatched (as it avoids 

rationing) without significantly affecting the price. Now assume the aggregate 

supply is increasing. Let i be the largest number such that p'<p( d  ). If only one
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firm has bid at this price, then that firm can gain by increasing the price towards 

p (J ) . If two or more firms have bid a unit at this price and these units are 

rationed with a positive probability, then these firms can gain by reducing their 

bids slightly and thereby increasing the expected quantity dispatched. If the units 

are not rationed then the firms can gain by raising these bids towards p( c? ). Hence 

there is no equilibrium in which p( d  )>c. QED.

Proposition 3.5: If d <m-l then there is a pure-strategy equilibrium in which at 

least d +1 units are bid at c.

Proof: This is the standard Bertrand type result. Reducing the price below 

marginal cost will result in negative profits. Raising price above marginal cost will 

result in a zero probability of being dispatched. QED.

Proposition 3.6: If d >m-I, then there is no pure-strategy equilibrium.

Proof: From proposition 3.4 there is no pure-strategy equilibrium where the 

marginal price is greater than c. Hence in any pure-strategy equilibrium profits 

must be equal to 0. However, each firm can make a positive profit by setting a 

positive price for all units, as they will be dispatched in the event that demand is 

greater than m-1. QED.

For the remainder of this section, we concentrate on the duopoly case, 

m=2. Where there are no pure-strategy equilibria we look for mixed-strategy 

equilibria. For simplicity assume the marginal cost is zero.
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Proposition 3.7: If P r(d > l)= l then there is a mixed-strategy equilibrium in 

which each firm submits a price Pe(Pv,p'^) with probability

E { d ) - \  (p " -c )  
2 - E ( d )  ( p - c f

<3// k units, where pv =(E(d)-l)p''+(2-E(d))c and

E(d) is the expected value of demand.

Proof: Suppose firm 2  is submitting a price p e ( P v , p “)  for all units, according to 

the distribution function F(p). Let f(p) be the corresponding density function. 

Then player I ’s expected payoff from submitting a price pi for all k units is

p" P\
n(/?i ) = J(/?i -  c ) f i p ) d p  + J(P] -  c) (E(d)  -  l ) f ( p ) d p .

Pi Pv

In equilibrium 7i^(pi)=0 for all Pi e  (pv, p" ). This gives

The unique solution of this differential equation with boundary condition 

F ( p " ) = 1 M s

E { d ) - l  ( p “ - c ) 
2 — E{d) {p — c}'f  (3.5)

Fi p)  = ______ P________ ( E W - l ) p ^ H 2 - E m c
( 2 - E ( d ) ) { p - c )  ( 2 - E ( d ) ) ( p - c )

Solving F ( p v ) = 0  gives p v  =(E(d)-l)p“+(2-E(d))c. Hence given firm 2 is using the 

mixed strategy, firm 1 is indifferent as regards submission of any price in the

 ̂It is not possible to have a mixed-strategy equilibrium with an upper bound less than p“ as the 
same quantity w ill be assigned by setting a price p" as this upper bound but the price received is 
greater.
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interval [ p v , p “]  for all k units. We now show that, given player 2 is using this 

mixed strategy, player 1 cannot gain by submitting an increasing supply function. 

To do this we need to introduce some further notation.

Let P be a vector of n prices, { p i , . . . . p n }  where n<k , p i > p 2 > . . . > p n ,  p i < p " ,  

p n  > p v ^  Let a , be the number of units bid at p, multiplied by 1/k. Hence

n 1 - 1  /

^ a .  = 1 . Let pr' be the probability that 2 - ^ o t y  > d  > 2 - ^ a ^ .  and d' be,
/=1 j = o  j = 0

E (d /(2 -^ a ^  > d  > 2 - ^ a ^  )), where Œq = 0 . The expected profit of firm 1 as
j = 0  j = 0

a function of the price vector is.

 ̂Any bid below cannot be optimal as firm 1 will be assigned such units with probability 1 but 
can increase the payment received for these units by increasing the bid to pv
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n (P) = pr^ ( j% a . (p.  -  c ) f { p ) d p
Px '■='

+ |^ 0C /(P / - c )  + {d  ̂ - (2 -a j ) ) ( /7 j  - c ) f ( p ) d p )
Pv

p ‘‘ n  P i n

+  p r^ (}Y v^ i^ P ' “ C )/(p M p +  J51a,(p ,. - c ) f { p ) d p
P\ P i

P2 n

+  j ^ o t . ( / 7 .  - c )  +{d^ - ( 2 - a ,  - a 2 ) ) {P 2 ~ c ) f  (p)dp)
Pv

p  n  Pi n

+ pr^(J% O t.(/?. - c ) f { p ) d p  +  j ^ ^ i i P i  - c ) f ( p ) d p  +
p\ Pi

/ P m -l n

+ % (  j  ' ^ O - i ( P i - c ) f i p ) d p )
m = 3  i= m

+  I  ^ o c .( /7 . - c )  +  {d^ j ) ) {p i  - c ) f { p ) d p )
,=/+! 7=1

/7r"( j ]£a.( /7 .  - c ) f { p ) d p +  - c ) f { p ) d p
p\ Pi

n  n

+ % (  j
Pn,

j ( d "  - 1 ) ( P „ - c ) f ( p ) d p ) .

p

Pn

+
P

The first line is the expected profit conditional on 2>d>2-a, multiplied by 

the probability of this event. If the other firm’s price is greater than firm I’s 

highest price then firm 1 simply sells all units at the bid prices. If the price is less 

than firm I ’s highest price then firm 1 sells all units priced below pi at the bid 

prices (as d>2-a, ) and some of the units priced at pi. The expected quantity he 

sells at Pi is d^-(2-a, ). The second fine is the expected profits conditional on



2 -a , >d>2-a, -a^ multiplied by the probability of this event. As before if the other 

firm’s price is greater than firm I ’s highest price then firm 1 simply sells all units 

at the bid prices. If the other firm’s price is between p, and pz then firm 1 sells all 

units priced below pi at bid prices and none of the units priced at pi, as d<2-a, 

and firm 2 will therefore supply the remainder of the units. If firm 2’s price is less 

than p2 then firm 1 sells all units priced below p2 at the bid prices (as d>2-a, -a^)  

and some of the units priced at p2 . The expected quantity he sells at p2 is 

d^-(2-a, -a^). The third line gives the general term for the expected profits

conditional on 2 - .  > d  > 2 - ^ a  . multiplied by the probability of this
j = o  j = 0

event. Now consider the terms in the profit function that include pi.

P" «

Px '=*

Px n

+  - c )  +  (J ' - ( 2 - a , ))(/?, - c ) f  ( p ) d p )
P v

p "  n  Px n

+  - c ) f { p ) d p +  - c ) f { p ) d p )
Px P 2

P  n  P \ n

+  p r ‘{ j ' ^ a , { P i  - c ) f ( p ) d p +  - c ) f i p ) d p )
Px P i

P  n  Px n

+  p r " { \ ' ^ o . , { P i - c ) f ( p ) d p +  j X « , ( P ,  - c ) f ( p ) d p ) .
Px P i

But pr’ +pr  ̂+ ... +pr"=l. The expression then simplifies to,



( l-F ( /? i) ) (a i( /> i  - c ) + a 2 ( / ? 2  - c )  +  ... - c ) )

+  F{P\){^2^P2  - c )  +  ... ot„(p„ - c ) )

+ pr^F{p^){d^ ~ (2 -0C i))(/? i

=  (l-F (p j)X )C i(P i - c )  +  pr^F{p^){d^ - ( 2 - a , ))(/?, - c ) .  

Substituting for F(p) using 3.6 gives,

Let d'̂  be E(d / 2 - a ,  > û? ). Then E(d)= (1-p^) d'̂  +p  ̂ d \  Substituting in for E(d) 

in the numerator and simplifying gives,

(—/ ? ' ( 2 - ( i ' ) ( l —a , ) - ( l - / ? ) ( ^ /  ' —l) a ,) p ,

2 - E { d )

Hence

d n { P )  p \ 2 - d ^ ) ( \ - a ^ ) - i \ - p ^ ) { d  ^ - l ) a ,  ^

Firm 1 can therefore increase profits by reducing the highest price towards 

the second highest price. If he sets pi=p2 then we have a new price vector with 

n-1 prices. Firm 1 can then gain by reducing the new highest price towards the 

second highest price. Repeating the argument n-1 times, firm 1 maximises profits 

by reducing all bids to p„. Hence, given firm 2 is using the mixed strategy, firm 1 

will optimise by submitting a single price between pv and pu for all units. From the 

symmetry of the game the same applies for firm 2 if firm 1 is using the mixed 

strategy and we therefore have a mixed-strategy equilibrium. QED.

The expected cost to the buyer under the mixed-strategy equilibrium is
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P\

\ ( P i { E ( d ) - \ )  +  p^)f{P2)dp.^
Pv

= l { E { d ) - \ ) p “ + {2-E{d) )c .

+
Pv

f ( P , ) d P i  (3.8)

In the appendix, we characterise the corresponding distribution for the 

case of a conventional auction. A similar result holds for the case where 

d < \ < d .  However, it does not hold for any demand distribution. To see this we 

repeat the previous analysis for this case. Suppose firm 2 is submitting a price 

P e (Pv,p“) for all units, according to the distribution function G(p). Let g(p) be the 

corresponding density function. Then player I ’s expected payoff from submitting 

a price p, for all units is

p- p,
n ( p , )  =  p " '(J(p , -c )g (p )r fp +  j ( p , - C ) ( d * - l ) g ( p ) d p )

Pi P v

+ P ] { P x - c ) d  g { p ) d p

where p^=Pr(d>l), p’=Pr(d<l), d^=E(d/d>l), d‘=E(d/d<l). 

In equilibrium 7t\p)=0 for all p e  (Pv, p"). This gives

{ p - c ) g { p )  + G { p ) =  P -^P d
p \ 2 - d ^ )  + p - d ~

The unique solution o f this differential equation with boundary condition 

G (p “)= l is

{ d * - \ ) p ^  i p " - c ) 
( / ( 2 - 6 f + ) + p - 6 f - ) ( p - c ) :

8 i p )  = . , (3.9)
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G (p )=  .  ------------
( p * ( 2 - d * )  +  p - d ~ ) ( p - c )

( d * - \ ) p * p “ + ( p * ( 2 - d * )  + p - d ~ ) c  

( p * { 2 - d * )  +  p - d - ) { p - c )

Solving G ( p v ) = 0  gives p v = ( p ^ ( d ^ - l ) p " + ( p ^ ( 2 - d ' ^ ) + p ' d ' ) c ) / ( p ^ + p ' d ) .  For 

simplicity we only consider whether firm 1 can gain by submitting two prices, 

{pi, p2 1 where pi>p2 . Let a  be the quantity bid at pi. Then firm I ’s profit given 

firm 2 is using the mixed strategy is

= - c )  + ( l - a ) ( p 2 - c ) g ( p ) d p
P\

+ j( l~oc)(/72 - c )  + {d'' - ( 2 - a ) ) ( / 7 ,  —c)g(p)dp)
P v

+ /7^(ja(/7 ,  - c )  + ( l - a ) ( / 7 2  - c ) g { p ) d p
P\

P\ P i

+ J ( l - 0 C) ( / ? 2  - c ) g ( p ) d p ) +  ^{d^ - l ) ) ( / ? 2  - c ) g { p ) d p )
P i  P v

K
+ -( l-O C ))(P i “ <̂) + ( l “ C)C)(P2 ~^)§ip)^P

+ J ( l -oc)(P2 - c ) g { p ) d p )
P i

p ‘̂ I d \ p ^ - c ) g { p ) d p

P v

P\

P\

P i

P~

P i

where p^=Pr(2<d<2-a), p =Pr(2-a <d<l), p^=Pr(l<d<l-(x), p^=Pr(l-a<d<0), 

d =E(d/2<d<2-a), d^=E(d/2-a <d<l), d '=E (d/l<d<l-a), d^=E{d/\-a  <d<0).

Taking out the terms that involve pi, substituting for G(pi) using (3.10)
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and simplifying as before, the first derivative of the profit function with respect to 

Pi is,

dll(p, p „ a ) ^ + p'Xp"(2 -  )(1 - a )  + p'’(rf'’ -l)a)
OPl

~ ( d ‘ - ( l - a ) ) p ‘ { p “{d° - Ï )  (3.11)

+ p ^ d " - l ) )  + ( d “ - { 2 - a ) ) p “{p'^d‘ + p'‘d ‘‘ ) ) l  

( 2 { p * ( d * - D  + p - d - ) ) .

The case where demand is always greater than 1 is the special case where 

p^+p^= 1. The derivative is then given by (3.7). In that case, the derivative is 

always negative regardless of the demand distribution. The denominator of (3.11) 

is always positive. All three terms in the numerator of (3.11) are positive and the 

overall sign is therefore ambiguous and depends on the demand distribution. The 

mixed-strategy equilibrium holds for any distribution where the derivative is 

negative for all a  e  [0,1]. If, however, the derivative is positive for some 

a  e  [0,1], then each firm can gain by submitting two prices when the other uses 

the mixed strategy. We now show that the mixed-strategy equilibrium holds when 

demand is distributed uniformly.

Assume d~U[0,2]. Then p^=oc/2, p*’= (l-a )/2 , p^=o/2, p^=(l-a)/2, 

d^=(4-a)/2, d’’=(3-a)/2, d^=(l-a)/2, d^=(l-a)/2. Substituting these values into the 

numerator of (3.11) gives,

— (cx^(l—ot)-i-oc(l—ot )̂ < 0.
8

This is less than zero for any value of a  and each firm can increase profits 

by reducing the higher price to the lower one. We now give an example of a 

distribution where the equilibrium does not hold. Assume a=.5, d“=1.75, d^=1.25.
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d^=.75, d^=.25. Substituting these values into the numerator of (3.11) gives,

y  ( /  - 4 /  - 2 y  - y / .  (3.12)

This expression is greater than zero when,

(3.13)

For example, if p̂  =.05, p^=.05, p‘"=.05 and p^=.85 then the inequality 

holds. Each firm can then increase profits by increasing the distance between the 

prices. The mixed-strategy equilibrium, where they set one price for all units, no 

longer holds. If, however, we substitute p̂  =.1, p'^=.l, p^=.l and p^=.7 into (3.12) 

then the term is negative and the equilibrium continues to hold. It is clear from 

(3.11) and (3.13) that, for the equilibrium not to hold, the demand distribution 

must be heavily skewed towards low levels of demand. In particular, the value of 

p̂  needs to be very high. For any distribution that is not skewed in this way the 

equilibrium holds.

The expected cost to the buyer under the mixed-strategy equilibrium is.

c=J
f
] ( P * { P i + { d * - V ) P 2 )  + P d  p^)g(P2)dp2

P\

+  \ ( P * { p M *  ~'^) +  P ï )  +  P  d  Pï ) g(P2) dp2
Pv

= 2 p \ d *  - \ ) p “ + ( p * { 2 - d * )  + p-d~)c.

g{Pi )dPi  (3.14)

3.3.2 Uniform-price auction

Under a uniform-price auction the sellers are paid the market clearing 

price for the units that are assigned to them. This case is analysed by von der Fehr 

and Harbord (1993) when each firm has a different constant marginal cost. We
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reproduce and extend their results for the common-value case where all the firms 

have the same constant marginal cost.

Proposition 3.8: If  P r ( d < m - l ) = l  then there is a unique type o f pure-strategy 

equilibrium where a quantity no less than d is bid at marginal cost by the m-1 

firm s excluding firm  i, fo r  all i.

Proof: It is simple to see that this is an equilibrium as, if any firm raises their bids 

above marginal cost these units will have a zero probability of being sold. We now 

show that there is no other type of pure-strategy equilibrium. If p"^>p( d  )>c then 

units bid at p"̂  have a zero probability of being sold. Firms submitting at p"  ̂ can 

undercut p { d )  slightly, which will have a negligible effect on the marginal price 

but will strictly increase the expected quantity sold. If p"^=p( d  ) then there must 

be more than one firm submitting at this price, as the capacity of each firm is 1. 

These firms can gain by undercutting this price, thereby avoiding rationing. Hence 

there is no equilibrium where p( d  )>c. If p( d  )=c then the only way a firm can 

gain is by raising p { d ) ,  but they cannot do this if at least d  is submitted at c by 

all the other firms. QED.

Proposition 3.9; If  P r(d > m -l)= l then there is a unique type o f  pure-strategy 

equilibrium where one firm  sets p'̂  fo r  a quantity greater than m- d_ and all other 

firm s set a price sufficiently low that this firm  cannot gain by lowering the price 

of these units.
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Remark: The simplest form of such an equilibrium is where one firm bids p" for 

all k units and all other firms bid c for all k units. The high price firm only sells a 

quantity equal to d-(m-l) while all other firms sell k units.

Proof: There is no equilibrium where p( d  )=c as all firms can gain by increasing 

bids. It is also not possible to have an equilibrium with bids greater than ^{ d )  

since these units will not be assigned. Let i be the lowest number such that p‘>c. If 

p (^ )= c , the firms only make a positive profit when demand is sufficiently high 

for p‘ to be the marginal price. However, each firm can increase the marginal price 

in the event demand is less than this, by increasing the bids currently at c. As 

d>m-l this will increase the marginal price in the event demand is equal to ^ . 

Hence, if p (^ )= c , then each firm can gain by increasing bids currently at c 

towards p', as this will only affect the ranking in the event where they were 

previously making no profit and will result in a positive profit in this event. There 

is therefore no equilibrium where p( ̂  )=c.

Suppose there are two firms with bids in the interval [p (^ ) ,  p (^  )]. If 

only one firm has units bid at p( ^  ) then this firm can gain by increasing these 

bids towards the next highest bid of another firm. If more than one firm has bids 

equal to ^ th en  each firm can gain by reducing the bids slightly to avoid 

rationing. Hence there is no equilibrium where more than one firm has bids 

greater than or equal to p ( ^ ) ,  and in equilibrium only one firm sets the marginal 

price.
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Since the payment of this firm is increasing in the marginal price, they will 

set the highest permissible price. All the other firms are indifferent between setting 

prices in the interval [c, p“) as they sell k units for p“. However, they must set 

prices sufficiently low that the high price firm cannot gain by lowering prices and 

increasing the quantity sold. QED.

Let P(d) be any demand distribution on the interval [ ^ , d ]  where 

P(di)-P(d2)>0 for all [d2 ,di] e  [ ^ , û? ].

Proposition 3.10 If  d_ < m - l < d  and demand is distributed according to some 

function P(d) that satisfies the above conditions then there is no pure-strategy 

equilibrium.

Proof: Much of the proof is the same as for proposition 3.9. It differs in the proof 

that firms can gain by increasing bids currently at c towards the next highest bid 

when p (^ )= c . As before, there is no equilibrium where p( J  )=c as all firms can 

gain by increasing bids. If p( d̂  )=c then firms who have bid units at c can gain by 

increasing these bids towards the next highest bid because such units will become 

marginal with probability one as every interval of demand has positive weight. 

Applying other parts of the proof of proposition 3.9, there is no equilibrium where 

more than one firm has bids greater than or equal to p ( ^ ) .  However, it is not 

possible for only one firm to bid units above p( ̂  ) as d_ <m-l and the capacity of 

each firm is only 1. QED.
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To see why it was necessary to assume the demand distribution P(d), 

consider the following discrete example in the duopoly case. Demand takes two 

values with positive probability, 0.8 and 1.95. Assume also that k=0.1. Then there 

is a pure-strategy equilibrium where one firm bids one unit at p" and all others at c 

and the other firm bids c for all units. The part of the proof of proposition 3.10 

that breaks down is that firms cannot gain by raising bids above marginal cost 

when p( )=c and this is because there is a hole in the distribution. If, however,

d - ^ < l ,  then there is no pure-strategy equilibrium whatever the distribution.

Proposition 3.13; If  d_ < m - l < d  and d - d_ <1,  then there is no pure-strategy 

equilibrium.

Proof: As with proposition 3.10, most of the proof is the same as for proposition 

3.9. It differs in the proof that firms can gain by increasing bids currently at c 

towards the next highest bid when p (^ )= c . There is no equilibrium where

p( d  )=c as all firms can gain by increasing bids. We now show that there is no 

equilibrium where p (^ )= c . First consider the extreme case where ̂ = m -l and

d  =m. If only one firm has bid units above c, then every other firm can increase 

p{d_)  by increasing all bids. (The total number of units bid above c will then be 

the firm’s capacity o f one plus the units the high bidding firm is submitting above 

c). If two or more firms have bid units above c and p (^ )= c  then each firm can 

increase p ( ^ )  by increasing bids currently at c. (The total number of units bid 

above c will then be the firm’s capacity of one plus the units the other firms have
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bid above c). Increasing bids in this way will increase the marginal price in the 

event demand is equal to ^  and the firms will therefore increase profits by 

increasing the bids towards the next highest bid.

Now consider the case where d  <m. Recall that in any equilibrium p( d  )>c 

and there can be no bids above p(^/ ). If more than one firm has units bid at d  

then they can gain by undercutting the others as this avoids rationing (which arises 

if there are no bids above p( d ) ) .  Hence in equilibrium only one firm can bid units 

at p ( d ) .  If p( ̂  )=c then the firms that have no bids at p( ) can increase p( ^  ) 

by increasing bids currently at c. (The firm with units at p ( d )  must have more 

than 2- d  units at this price. Increasing bids on a quantity of one will ensure p( ̂  ) 

increases as d - ^ < \ . )  Hence there is no pure-strategy equilibrium where 

p (^ )= c .

Applying other parts of the proof of proposition 3.9, there is no 

equilibrium where more than one firm has bids greater than or equal to p ( ^ ) .  

However, it is not possible for only one firm to bid units above p( ^  ) as ^  < m -l 

and the capacity of each firm is only 1. QED.

It is clear that for a large class of distributions there is no pure-strategy 

equilibrium when ^ < m - l < d . We are unable to find any mixed-strategy 

equilibria for these cases. If the firms are only allowed to set one price for all units 

then it is a simple exercise to find a mixed-strategy equilibrium of the type given 

in proposition 3.8. An example of such an equilibrium is given by von der Fehr 

and Harbord (1993). They assume that demand is discrete and takes two values, 1 

and 2, with probabilities r and 1-r. From proposition 3.13 there is no pure-
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strategy equilibrium in this case. They derive a mixed-strategy equilibrium by

finding the distribution function the other firm needs to use for each firm to be

indifferent between bidding a price in the interval [ p v , p “] .  Let the corresponding 

density function for firm 2 be t(p). We now show that this equilibrium does not 

hold if firm 1 can split his unit in two and set two prices. The profit of firm 1 if he 

sets two prices and firm 2 is using the mixed strategy is,

/  Pi
1 ( / ? , , )  =  (1 ~ '*)( j ( p - c ) t ( p ) d p  +  j (P i  - c ) t ( p ) d p )

P \ P v

'r  1+ r(j ( p - c ) t ( p ) d p +  j - { p ,  -c) t (p)dp)
P i P i

1=TC,(/?,) + - c ) t ( p ) d p .
Pi

Hence the profit is equal to the profit the firm would get by setting one 

price plus some positive amount.

3.2.4 Ranking

We now rank the auctions in terms of the cost to the buyer (or in the 

conventional auction case, in terms o f revenue for the seller). For simplicity we 

restrict attention to the duopoly case. The case where Pr(d<l) is straightforward 

as there is a unique type of pure-strategy equilibrium where the marginal price is 

always c with both auction formats. Hence in each case the buyer simply pays 

marginal cost for all units. In a conventional auction this translates to the seller 

receiving the common value. It is not surprising that we get this competitive result 

as each firm can supply the entire demand. The case where ^ < \ < d  is
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problematic as we were unable to find any equilibrium for the uniform-price 

auction case. Hence we cannot rank the auctions in this case.

The most interesting case is when Pr(d>l)=l. Each firm is then sure to sell 

some units as the capacity of the other firm is 1. In the uniform-price auction case 

there is a unique set of pure-strategy equilibria where the marginal price is always 

p“ (from proposition 3.11). The expected cost for the buyer is then p" E(d). Under 

a discriminatory auction there is no pure-strategy equilibrium for this case 

(proposition 3.7). In the mixed-strategy equilibrium given in proposition 3.8 the 

expected cost for the buyer is 2p“(E(d)-l)+(2-E(d))c. This is less than the cost 

under the pure-strategy equilibrium in the uniform case as c<p". In fact we can 

show there is no equilibrium in the discriminatory case that results in an expected 

cost of p“ E(d). This would require both firms to bid p“ for all units (as they get 

paid their bids) but each firm can then gain by undercutting the other (proposition 

3.7). Hence we have a clear ranking when each firm is certain to have some 

residual demand which makes the discriminatory auction less costly than the 

uniform one.

We can translate these results to apply to a conventional auction. The 

application to treasury auctions is particularly convenient as supply is not 

uncertain. We therefore only have two cases to consider, s< l and s> l where s is 

the quantity of bonds for sale, and we can say something about the ranking in 

each case. When s< l we get the competitive outcome with both auction formats. 

When s> l then under a uniform-price auction there is an equilibrium of the type 

given in proposition 3.11 where one firm sets the reservation price , r, for enough 

units to ensure the marginal price is r and the other firm bids sufficiently high
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prices. This type of equilibrium would be particularly bad for the seller as they 

only get the reservation price for all units. The mixed-strategy equilibrium given in 

proposition 3.8 for the discriminatory case can also be translated into an 

equilibrium in a conventional auction. The corresponding equilibrium is given in 

the appendix. The expected revenue of the seller is then v(2-s)+2r(s-l) where v is 

the common value. This results in a higher revenue for the seller as r<v.
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3.4 Conclusions.

One of the arguments used against the use of a uniform-price, multi-unit 

auction is that there are multiple equilibria in pure-strategies, some o f which are 

very bad for the buyer (or seller in a conventional auction). We show that this 

result depends on the good being perfectly divisible. If quantities are discrete and 

price bids are continuous then all pure-strategy equilibria result in a competitive 

market clearing price. The multiple equilibria reappear if the increments in which 

price bids are allowed is sufficiently large. To ensure that these equilibria do not 

exist, the auctioneer should allow for very small increments in price bids. The set 

of pure-strategy equilibria are the same if a discriminatory pricing rule is used and 

there is nothing to tell between the two pricing rules in terms of cost/revenue to 

the buyer/seller.

However, if capacity constraints are present we find that the 

discriminatory pricing rule performs better. We show that if each firm is certain to 

have some residual demand/supply then the discriminatory auction results in a 

lower expected cost to the buyer/a higher expected revenue for the seller than the 

uniform-price auction. The results show that it is a bad idea for a seller such as the 

Treasury to impose restrictions on quantity bids to such an extent that the bidders 

are certain to get some units whatever they bid, as this effectively gives them 

some market power and decreases the expected revenue whatever the pricing 

rule.

In the case of reverse auctions these constraints arise naturally as they 

represent the capacity o f the firms. In periods when demand is certain to be 

sufficiently high that capacity is required from both firms, each firm will have
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some market power. We show that under these circumstances a discriminatory 

pricing rule results in a lower expected cost to the buyer than a uniform pricing 

rule. We therefore give a case for adopting a discriminatory pricing rule.

In the next section, we apply these results to the Electricity Pool where 

generators compete to supply electricity from their generating plants. The above 

results show that, in a very simple model o f the pool, a discriminatory pricing rule 

performs better than the current uniform pricing mle in periods when demand for 

electricity is high. In a more detailed model where generators withhold capacity, 

we show the uniform pricing rule performs even worse while the capacity 

withholding does not effect the equilibria in the discriminatory auction.
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3.5 Appendix

Mixed-strategy equilibrium in a conventional auction.

We now characterise the mixed-strategy equilibrium for a conventional 

auction, corresponding to the reverse auction equilibrium given in section 3.3.1 

(proposition 3.8).

The model is the same except we now have bidders submitting demand 

functions for k units of a good, we replace the constant marginal cost with a 

common valuation, v, for each unit of the good and the maximum permissible bid 

is replaced by a minimum permissible bid or reservation price, r. Suppose firm 2 is 

submitting a price p e  (r,pm) for all units, according to the distribution function 

H(p). Let h(p) be the corresponding density function and E(s) the expected value 

of supply. Then player I ’s expected payoff from submitting a price pj for all k 

units is

n (/7 i ) =  I (E(s)  -  l)(v -  /7j ) h( p ) dp  +  j ( v  -  ) h ( p ) d p .
P\ '•

In equilibrium 7T (̂pi)=0 for all pi g (r,pm). This gives

2 - E ( s )

The unique solution of this differential equation with boundary condition F(r)=0'  ̂

is

_  ( E ( j ) - l ) ( v - r )
{ 2 - E { s ) ) ( v - p Ÿ ’

It is not possible to have a mixed-strategy equilibrium with a lower bound greater than r as the 
same quantity w ill be assigned by setting a price r as this lower bound but the price paid is less.
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H{ p )  =
E { s ) - \

P -( 2 - E ( s ) ) ( v -  p)  ( 2 - E ( s ) ) ( v -  p)
r .

Solving H(pm)=l gives pm =(2-E(s))v+(E(s)-l)r. Hence given firm 2 is 

using the mixed strategy, firm 1 is indifferent between submitting any price in the 

interval [r,pm] for all k units. The proof that player 1 cannot gain by submitting an 

increasing supply function when player 2 is using this mixed strategy is the same 

as in the text. The expected revenue for the seller from the mixed-strategy 

equilibrium is,

I  {p  ̂{E{ s )  - \ )  +  P 2 ) h( P 2 )dp:
Pi

+ j (P i  +  (E{ s )  - \ ) P 2 ) h { p 2 )dp. 

= 2{E( s )  -  l ) r  +  (2 -  E{s))v.

KPi )dp^ (3.15)
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Chapter 4 

Modelling the Electricity Pool

The electricity industry in England and Wales has gone through a radical 

transformation over the last 8 years. The 1990 reform brought to an end the 

nationalised system which was set up in 1947. Under this system the Central 

Electricity Generating Board (CEGB) had a monopoly on the supply and high 

voltage transmission of electricity, while twelve regional electricity boards were 

responsible for the distribution and sale of electricity. The regional electricity 

boards were privatised as they were, and became known as the Regional 

Electricity Companies (RECs). The supply side, however, was restructured. The 

generating plants of the CEGB were split between 3 companies. National Power, 

PowerGen and Nuclear Electric. The high voltage transmission network was 

separated from generation and put in the hands o f the National Grid Company, 

who were also given the role of central dispatcher.

At the heart o f the reform was the innovative way in which competition in 

generation was introduced. The Electricity Pool is a spot market for the sale of 

electricity. Generators compete to supply electricity from their plants by 

submitting bids for the minimum price at which they are willing to supply 

electricity from each o f their plants. The central dispatcher then constructs the 

least cost rank order of plants for each half-hour. All units dispatched are paid the 

price of the marginal unit. The rationale behind a competitive pool is that 

competition in generation will result in a more productive and efficient generating 

system. Since 1990 similar systems have been adopted elsewhere.
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One of the key features of the restructuring was that the thermal plants of 

the CEGB were divided between only two companies, National Power and 

PowerGen. Their plants accounted for 48% and 30% of the total generation 

capacity available to the Pool. Nuclear Electric took control of the nuclear plants 

which accounted for 14% o f capacity. Electricité de France and producers in 

Scotland also supply electricity to the grid although this is limited by transmission 

capacity constraints and in 1990 accounted for only 5% of the total capacity. The 

hope that this market structure would lead to competition in generation has not 

been realised with pool prices above competitive levels. The main problem has 

been the market power o f the two large generators, National Power and 

PowerGen.

The Office of Electricity Regulation (OFFER) was set up to regulate the 

newly privatised industry. The main role of OFFER was to regulate the 

transmission network and the RECs who had regional monopolies on distribution. 

There were to be no explicit controls over the Electricity Pool, as it was thought 

that competition between the generators would render any regulation 

unnecessary. Nevertheless, the Electricity Pool became the subject o f a number of 

OFFER enquiries as it became apparent that the generators were exercising 

market power. One of the roles of the regulator was to promote competition but 

the only significant weapon the regulator had to achieve this was to refer the 

companies to the Monopolies and Mergers Commission. With this threat the 

regulator was successful in getting National Power and PowerGen to agree on 

price caps between 1994 -1996 and on the divestiture of plant.

Since 1990 there has been a significant amount o f entry which, together
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with plant divestiture, has reduced the market share of National Power and 

PowerGen which stood at 34% and 28% of the total capacity available to the 

Pool in 1996. Independent Power Producers have entered with combined cycle 

gas turbines in the so called ‘dash for gas’. By 1996 they accounted for 10% of 

the market. They have been encouraged to enter by high pool prices and the 

security o f gas contracts and long-term contracts with the RECs. There is a 

widely held view that pool prices above competitive levels have resulted in 

excessive investment in new generating plants. Despite this, the market power of 

the two dominant firms is still a concern. A complete review of the Pool is 

currently taking place and among other things the government is looking at ways 

in which the Pool can be made more competitive.

In section 4.2, we look at two theoretical papers which show why we 

should not expect competitive prices under this framework. The first is Green and 

Newbery (1992) who use the supply function framework of Klemperer and Meyer 

(1989) and the second is von der Fehr and Harbord (1993) who use a discrete 

framework. We also look at an empirical paper by Wolak and Patrick (1996) who 

show that the current structure gives the generators an incentive to withhold base­

load capacity and present evidence of this strategy being used.

An important aspect of the Pool is the pricing rule. We explain the price 

determination process in detail in section 4.1. In simple terms one can think of the 

current set-up as a multi-unit uniform-price auction. In section 4.3, we present a 

model of the Pool where the firms have an incentive to withhold capacity under a 

uniform pricing rule. We show that the discriminatory auction equilibria result in a 

much lower cost. A third possibility is a multi-unit Vickrey auction. The main

109



advantage of the Vickrey auction is that it is a weakly dominant strategy for each 

firm to bid at marginal cost. We show that this equilibrium is worse for the buyer 

than the discriminatory auction.

We also consider the repeated game and show that under a discriminatory 

auction the worst possible equilibrium for the buyer results in a lower cost than 

the one-shot pure-strategy equilibrium of the uniform-price auction. With a 

Vickrey auction the firms can collude on weakly dominated equilibria of the one- 

shot game and thereby achieve high prices in the Pool. We therefore put a strong 

case for the use of a discriminatory auction format rather than a uniform one.
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4.1 Price Determination Process in the England and Wales 
Electricity Pool.

Since April 1 1990, all licensed generators and suppliers have had to buy 

and sell electricity through the Electricity Pool. The Pool operates a day ahead 

spot market to determine the generating units that are dispatched from each 

generator and the price at which trade takes place for each half-hour of the 

following day. The generators are required to submit bids for the price at which 

they are willing to supply electricity from each o f their generating units \  These 

bids are fixed for the 48 half-hour periods of the following day. For each half-hour 

they also declare the units they wish to make available. The price bids and 

availability declarations are used to construct a supply curve for each half-hour of 

the following day.

Suppliers do not make bids for the price at which they are willing to 

purchase various quantities of electricity, they simply pay the price set by the Pool 

for whatever quantity is demanded in each half-hour. Hence suppliers play no role 

in the price determination process. In place of demand side bids, the Pool uses 

forecasted demand. The intersection of the vertical forecasted demand and the 

step aggregate supply curve determines the system marginal price (SMP)^ for 

each half-hour and the generating sets that are scheduled to be dispatched^. All 

units dispatched are paid at SMP. This part of the price determination process can 

therefore be thought of as a daily multi-unit reverse auction with a uniform pricing 

rule.

’ In fact, for each generating unit they submit 3 incremental price bids plus bids for start up 
costs and no load rate to reflect fixed costs.
 ̂ i.e. the price o f  the marginal unit that is required to meet forecasted demand.
 ̂This is subject to transmission constraints.
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However, in addition to the marginal price the generators are paid a 

capacity charge CC which is given by

CC=LOLP( VOLL-SMP) (4.1 )

where LOLP is the loss of load probability and VOLL is the value o f lost load. 

This element is designed to account for the stochastic element o f demand. The 

loss of load probability is the probability that there will be insufficient capacity to 

meet demand. This probability is inversely related to the reserve margin which is 

the capacity made available net of the forecasted demand. The LOLP is negligible 

for reasonable levels of the reserve margin but rises rapidly as the reserve margin 

becomes very small. The relationship is therefore extremely convex with a 

significant LOLP only occurring when the total capacity made available is very 

close to forecasted demand. The VOLL reflects the marginal value of electricity 

to the consumer in the event that there is insufficient capacity to meet their 

demand. This was set at £2000/MWH for 1990/91 and has increased annually at 

the rate of inflation. The total price paid to the generators is therefore SMP+CC 

and is referred to as the Pool Purchase Price (PPP). The formula for PPP can be 

written as,

PPP=( 1 -LOLP)SMP+LOLP. VOLL.

If the generators bid at marginal cost then PPP is a weighted average of 

the marginal price of producing an extra unit of electricity and the marginal value 

to the consumer in the event demand is rationed. It is therefore intended to signal 

optimally to the generators on investment decisions. However, this formula gives 

the generators an incentive to withhold capacity, as this reduces the reserve 

margin and allows them to get prices substantially above SMP. In section 4.2.3,
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we look at a paper by Wolak and Patrick who present evidence of this strategy 

being used.

The aggregate supply curve used to set SMP is known as the 

unconstrained merit order. The units scheduled to be dispatched may differ from 

this merit order due to transmission constraints. The problem is the uneven 

distribution of generating plants across the country with a concentration in the 

North close to the generating inputs. To minimise cost subject to transmission 

constraints, the grid operator revises the dispatch schedule. Generating sets that 

are ‘constrained o f f  are paid (PPP-bid) while ‘constrained on’ unit are paid 

(bid+CC). This rule has given generators with plants that are likely to be 

constrained on because of their location in the network, an incentive to bid these 

units at very high prices.

The price paid by the suppliers is PPP+UPLIFT and is referred to as the 

Pool Selling Price (PSP). UPLIFT includes the cost incurred when units are 

constrained off and on. It also covers availability payments which are made to 

plants that are made available but not scheduled to run. The availability payment 

is LOLP(VOLL-max{SMP,bid price}). Costs associated with demand forecasting 

errors and ancillary services are also covered by UPLIFT.
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4.2 Electricity Pool Literature.

In this section, we present three papers that look at the England and Wales 

Electricity Pool. The first two papers take different theoretical approaches to 

model the Electricity Pool. Green and Newbery (1992) use the supply function 

framework o f Klemperer and Meyer (1989) while von der Fehr and Harbord 

(1993) use a discrete framework. Green and Newbery use their model to simulate 

the Electricity Pool by calibrating it to the electricity supply industry. The third 

paper is an empirical paper by Wolak and Patrick (1996). They look at the time 

series properties of the 48 half-hourly prices using data from the Pool between 

1991-95. They argue that the empirical evidence is consistent with the generators 

withholding capacity to achieve occasionally high pool prices which result in 

yearly revenues significantly above production costs.

4.2.1 Green and Newbery.

Green and Newbery use the supply function model of Klemperer and 

Meyer to model the England and Wales Pool. The ‘supply function equihbria’ 

approach looks at equilibria in supply functions in oligopolistic competition rather 

than Cournot equilibria where firms choose quantities and Bertrand equilibria 

where firms choose prices. Klemperer and Meyer show that when demand is 

uncertain, it is optimal for each firm to commit to a supply curve rather than 

simply choosing one price or quantity. This is because there is a different price 

and quantity combination that is optimal for the firm for each realisation of 

demand. They show that without demand uncertainty, there is nothing to be 

gained by committing to a supply function because, whatever the other firms do.
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each firm faces a residual demand and optimises by choosing a point on this 

residual demand that maximises profits. When demand is uncertain, however, the 

residual demand is also uncertain and it is therefore optimal to commit to a supply 

curve such that for each realisation o f demand the firm commits to a point on the 

residual demand curve that is profit maximising. We now illustrate their results in 

the duopoly case.

Assume there are two firms with identical marginal cost functions, C(q) 

where C^(q)>0 and Ĉ (̂q) > 0 for all q > 0 . Demand is subject to an exogenous 

shock, e, which has positive density everywhere on [ e ,e ] . The demand is equal to

D(p,£) where - <Dp<0, Dpp<0, De>0 and Dpe=0. A strategy for firm k=l,2  is a 

function S \p ):[0 , © o ) — > ( - < x > , o o ) .  Attention is restricted to twice differentiable 

supply functions. Let R'(p,e)=D(p,e)-S^(p) be the residual demand faced by firm i. 

First consider the case where there is no demand uncertainty. The profit 

maximisation problem of firm i is

Maxp: pR'(p)-C(R'(p)).

The first order condition is

R \ P )
R' i p)  =  ^^TT^TT-r- (4.2)

We now show that any output pair can be supported as an

equilibrium outcome at a market price p , where q̂  + q . = D { p ) ,  if both firms 

cover marginal cost. To see this, substitute these values into (4.1). This gives.

P - C \ q i )
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Hence the price and quantity pair { p  , q , )  is optimal for firm i if his

residual demand curve has a slope given by (4.3) at this point. This is illustrated in 

figure 4.1.

P a

D(p)

R'(P)

q

Figure 4.1 
Equilibrium with no uncertainty

Any supply curve that passes through this point is optimal for firm i.

Repeating the argument for firm j shows that an equilibrium simply requires both

firms to submit a supply curve with the correct slope at the equilibrium point. This

slope is given by (substituting for R'' {p)  in (4.3)),

s ‘\ p ) = -  l :  -  + D ' ( p ) .
P - C  (qi)

(4.4)

Hence any outcome where each firm makes a positive profit can be 

supported by a multiplicity of equilibria. The number of equilibria can be 

dramatically reduced when demand is uncertain as there is a unique optimal point 

for each realisation of demand and an equilibrium therefore specifies the slope at
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each point along the supply schedule. In the symmetric case where each firm 

supplies half of the demand in equilibrium, the first order condition in the 

uncertain demand case is,

(4.5)

The difference between this and (4.4) is that it specifies a locus of points 

such that each firm’s first order condition is satisfied for every value of the 

demand shock, e. This is illustrated in figure 4.4.

^ I 1 ) ^ 2 ) q

Figure 4.2 
Equilibrium with uncertainty

Klemperer and Meyer go on to show that the equilibrium supply functions 

lie between the Bertrand and Cournot supply functions. If the demand shock is 

bounded then there is a connected set of equilibria. They give an example where 

there is a unique equilibrium but this requires unbounded support.

To apply this model to the electricity industry Green and Newbery replace 

the demand uncertainty with demand variation over time. The demand curve is
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then given by the load duration curve D(p,t) where t is the number of hours that 

demand is above D during the day. The idea is that the generators have to commit 

to one supply curve over a period of one day and choose a supply curve to 

maximise profits given varying levels of demand over the day. This is equivalent 

to committing to a supply curve when demand is uncertain and choosing a supply 

curve to maximise expected profits given the demand distribution. They use the 

load duration curve so that demand is monatomic over time.

Using this framework, Green and Newbery model a duopoly competing to 

supply to the England and Wales Pool. This is an assumption made more 

generally and the justification is the following. The nuclear plants have a very high 

fixed cost but once up and running the marginal cost of producing up to capacity 

is relatively small. Nuclear Electric have therefore tended to bid their units at very 

low prices to ensure dispatch. This is also true of the Scottish producers and 

Electricité de France who bid low prices to ensure they sell their excess energy. 

This creates a virtual duopoly in the Electricity Pool, with National Power and 

PowerGen competing to supply the residual demand once the supply of these 

other generators is taken out"̂ .

Using this theoretical framework Green and Newbery simulate the 

England and Wales spot market to measure the extent and cost of market power. 

They fit a simple cost function to data from the CEGB Statistical Yearbook, and 

use demand and output data from 1988/89. Using a linear demand with elasticity 

-.25 they find that in the lowest-supply, highest price equilibrium, the price to

Since privatisation a significant amount o f entry has taken place by Independent Power 
Producers. However, they have entered on the back o f contracts with the Regional Electricity 
Companies which effectively fix the price they get for electricity. They therefore also bid at low  
prices to ensure dispatch. The assumption o f a duopoly is therefore still valid.
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suppliers is nearly double the competitive level and output is 10% less. They 

estimate that this results in a deadweight loss o f £340 million a year. Using 

different values for the elasticity they find the losses are much greater, the more 

inelastic the demand. They repeat the analysis for the case where there are five 

identical firms (with National Power divided into three and PowerGen into two). 

They estimate that the equilibrium price in the highest price equilibrium would be 

much closer to the competitive level with deadweight losses down to only £20 

million. They also go on to show that the present structure induces too much 

entry leading to additional welfare losses. Green and Newbery are therefore able 

to show that splitting the thermal plants of the CEGB between only two 

companies was a costly mistake and the assumption that Bertrand type 

competition in the Pool would lead to competitive prices was ill-founded.

A major difficulty with the supply function approach is the assumption that 

the generators submit continuously differentiable supply curves. In reality the 

generators submit step functions with price bids for discrete units. In section 3.1, 

we showed that the type of equilibria in models with perfectly divisible units do 

not carry through to the case where units are discrete. The next paper we look at 

models the Electricity Pool with discrete units.

4.2.2 von der Fehr and Harbord.

von der Fehr and Harbord model the Pool as a uniform-price, sealed-bid, 

multi-unit, private-value, reverse auction. It is uniform-price because all units 

dispatched are paid the bid price of the marginal unit, sealed-bid because each 

firm bids without knowledge of the bids o f other firms, and private-value because
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the firms have different marginal costs. In section 3.2.3, we presented the special 

case where all firms have the same constant marginal cost. The results for the case 

where firms have different marginal costs are very similar in nature. For simplicity 

we will concentrate on the duopoly case although many of the results extend to 

the oligopoly case.

Two generators compete to supply electricity from their plants to the 

Pool. Let the marginal cost of firm n be c„ where C2>Ci>0. Each firm has a 

capacity o f kn consisting of a number of discrete sized plants. Each firm submits 

bids for the minimum price at which they are willing to supply electricity from 

each of their plants and these bids are used to construct the aggregate supply 

curve The highest permissible bid price is /?. If there is a price at which more 

than one unit has been bid, then these units are equally likely to be called into 

operation. The level of demand is random and is not known at the time the bids 

are made. However, the generators do know the probability distribution, G(d).

The support of the demand distribution is [^,d]  c  [0,A, + . The Pool operator

equates the aggregate supply with the realised level of demand to determine the 

units that are dispatched. The firms are paid the bid price of the marginal unit that 

is required to meet the realised level of demand, for all units dispatched.

They begin by showing that in any pure-strategy equilibrium only one firm 

can set the marginal price with positive probability. However, this result depends 

on demand having full support on the interval The equilibria that they

characterise using this proposition, do not apply to discrete distributions. The

On page 98 we give a discrete example where this proposition does not hold.
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support o f the demand distribution plays an important role in the characterisation 

of the equilibria. They therefore split all possible types of support into three 

categories: ‘low demand periods’ when the support is such that each firm can 

satisfy demand; ‘high demand periods’ when neither firm has enough capacity to 

satisfy demand; and ‘variable demand periods’ when there is a positive probability 

that demand will be low enough for both firms to satisfy demand and high enough 

that neither firm can satisfy demand.

Low demand periods

If Pr(d<min{ki,k2 })=l then there is a unique type of pure-strategy 

equilibrium, where the marginal price is equal to C2 for any level of demand. This 

is basically an extension o f proposition 3.8 to the case where firms have different 

marginal costs. In this case only the most efficient generator produces.

High demand periods

If Pr(d>max{ki,k2 })= l then there is a unique type o f pure-strategy 

equilibrium, where one firm bids the maximum permissible price and the other 

sufficiently low prices^. This corresponds to proposition 3.9 and is the case where 

both firms know that they will face some residual demand whatever they bid. An 

important additional feature when firms have different marginal costs is that there 

are inefficient equilibria, as the low-cost firm can be the high pricing generator.

 ̂ In fact, these equilibria hold when Pr(d>min{k, ,kz})=1. If m in{k, ,k2 }< ̂  <max {k, ,k2 } then 

the firm with the larger capacity must be the high price firm.
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Variable demand periods

The intermediate cases that are not covered by the low demand period and

the high demand period are where J  <min{ki,k2 }< i/ . However, von der Fehr and 

Harbord do not cover all these cases. They only consider the cases where 

d  - J>m ax{ k],k2 } and show that there is no pure-strategy equilibrium when this 

condition holds. This follows from the proposition that shows that in any pure- 

strategy equilibrium only one firm can set the marginal price with positive 

probability. As the support of the demand distribution is greater than the capacity 

of either firm it is not possible for only one firm to set the marginal price with a 

positive probability. They go on to characterise a mixed-strategy equilibrium for 

the case where each firm has one unit. They also assume demand is discrete^. 

They show that there is a potentially significant probability that the high-cost 

generator submits the lower price. Hence, as in the high demand period case the 

equilibrium is not efficient. They also find that, in the oligopoly case, the expected 

pool price is lower in a more fragmented industry.

Both discrete and continuous frameworks therefore lead to the conclusion 

that splitting the thermal generators of the CEGB between more than two 

companies would have led to lower pool prices. Both papers also show that the 

present rules lead to equilibria that are not efficient. To eradicate inefficient 

dispatching, von der Fehr and Harbord suggest the use o f the Vickrey auction but 

make a slight mistake in extending it to the case of multiple units. The correct

 ̂ In section 3.3.2, we show that this equilibrium does not extend to the case where firms have 
multiple units.
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version is given in the appendix and compared with the uniform and 

discriminatory pricing rules in the model presented in section 4.3.

4.2.3 Wolak and Patrick.

The previous two papers assume that the price paid to the generators for 

units that are dispatched is the bid price o f the marginal unit. In the England and 

Wales Pool an additional element known as the capacity charge is also paid. The 

formula for the capacity charge is given by CC= LOLP(VOLL-SMP) and is 

explained in section 4.1. LOLP is the loss of load probability, the probability that 

there will be insufficient capacity to meet demand. This probability is inversely 

related to the reserve margin which is the capacity made available net of the 

forecasted demand. Wolak and Patrick show that the two large firms can 

manipulate this probability by withholding capacity and present evidence that this 

strategy has been used.

They argue that the following features allow the two firms to exercise 

market power. The two firms know the maximum amount o f capacity that can be 

made available by all the other generators and therefore know the periods when 

they are likely to face a large residual demand. They know the forecasted demand 

that will be used to determine SMP and CC, and the only uncertainty they face is 

the capacity made available by the other firms as the forecasted demand is 

independent of price. Finally, the nature o f the technology gives rise to a step 

marginal cost function that rises rapidly towards the end.

The market structure gives the two firms two strategic weapons that they 

can use to exercise market power, the price bids and the quantity choice (the
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capacity they make available to the Pool). The price bids determine SMP while 

the availability declarations are important in determining CC. Wolak and Patrick 

argue that the use of the first strategy is easier to regulate. It would be difficult for 

the firms to justify bids above £100 per MWH for anything but peak-load units 

and bids of this nature would eventually lead to intervention as it would be 

obvious that the firms were exercising market power. A strategy that is more 

difficult to regulate is bidding at close to marginal cost and withholding base-load 

capacity. In high-demand periods this results in a high SMP as the higher cost 

plants are marginal and a high CC as the reserve margin is low. Given the large 

revenues obtained, it is only necessary to do this in a relatively small number of 

periods.

Evidence that this strategy has been used comes from data on half-hourly 

pool prices from 1 April 1991 to 31 March 1995. During the sample period they 

find that CC is extremely volatile. Most o f the revenue from CC is acquired in a 

relatively small number of periods when the reserve-margin is very small and CC 

is very large. During these periods the ratio CC/SMP which is normally small is 

also very large. This evidence is consistent with their hypothesis that the firms are 

withholding capacity for a relatively small number of periods to get extremely 

high pool prices. They estimate the upper bound of the marginal cost o f National 

Power and PowerGen by taking the minimum bid for each generating unit. They 

show that the actual bids indicate that a large amount of base-load capacity is not 

made available in the summer. Some of this can be explained by scheduled 

maintenance but there is also a strategic incentive to obtain a significant payment 

for CC in the summer when demand is lower. It is difficult for the regulator to
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check whether the maintenance was necessary and as unscheduled maintenance is 

a random event it is difficult to prove that capacity has been withheld for strategic 

reasons.

The profitability o f the capacity withholding strategy can be dramatically 

reduced by simply removing CC from the pool price calculation. CC is designed 

to signal optimally to the generators on investment decisions, but given that the 

firms have some control over the reserve margin and therefore over CC, this has 

not worked out in practice. However, removing CC would not eradicate the 

incentive to withhold capacity as withholding base-load capacity makes it more 

likely that SMP will be set by units with a higher marginal cost. As it was argued 

above, the maximum price bids are a function of the marginal cost, since the firms 

would find it difficult to justify bids that are significantly above marginal cost. A 

strategy that is more difficult to regulate is that of submitting bids at close to 

marginal cost and withholding base-load units to ensure the marginal price is set 

by a high-cost unit. We make this argument more formal in the next section. We 

present a model where the firms choose prices and quantity optimally given the 

regulatory constraint on bids. We show that under a discriminatory pricing mle 

there is no incentive to withhold capacity.
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4.3 The Case for a Discriminatory Auction in the England and 
Wales Electricity Pool.

In this section, we look at how a change in the pricing rule would affect 

the extent of market power of PowerGen and National Power. We model a 

duopoly competing to supply to the Pool.

We present a model where the maximum price the firms can submit for 

units is a mark-up on marginal cost. The bid price of high-cost, peak-load units 

can therefore be much higher. Under a uniform pricing rule this gives the firms an 

incentive to withhold low-cost base-load units. We show that these results extend 

to the case where the firms have entered into financial contracts with the 

distributors.

The equilibria under a discriminatory pricing rule do not involve 

withholding capacity as there is nothing to be gained by having a high marginal 

price, and the equilibrium average pool price is therefore much lower. We also 

look at the multiple unit extension of the Vickrey auction. Under a Vickrey 

pricing rule it is a weakly dominant strategy to bid all units at marginal cost. This 

rule has been advocated on the basis of efficiency. However, we show that it 

results in a higher cost to the buyer than the discriminatory pricing rule.

Finally, we look at the repeated game. In practice the game is played every 

day and a repeated game analysis is therefore very important. A major problem 

with studying the repeated game is that the set of equilibria for each auction 

format is huge. However, we are able to show that the highest cost monopoly 

outcome under a discriminatory auction results in a cost to the buyer that is less 

than the cost in the stage-game equilibrium of the uniform-price auction. Also
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under a Vickrey auction there are equilibria in the repeated game where the firms 

withhold capacity.

4.3.1 A model of the England and Wales Pool.

Two large firms compete to supply the residual demand to the P oof. Each 

firm owns a number of generating plants. The firms submit bids for the rniiiimum 

price at which they are willing to supply electricity from each of their plants. In 

addition they also submit bids for the generating capacity they wish to make 

available to the Pool. This may involve taking out an entire plant or only making 

part of a plant available. The bids are used to construct the merit order .̂ The 

marginal price is the bid price of the marginal unit that is required to meet the 

realised level of demand‘d. Each generator dispatches the units that were bid 

below SMP plus some or all that were bid at SMP". Demand is distributed 

according to P(d), d e  ( J  J  ), and this is common knowledge.

The regulator knows the marginal cost of each generating unit and will 

observe that the firms are exercising market power if these bids are significantly 

above marginal cost. We therefore assume that price bids cannot be more than m 

units above marginal cost. There are two types of generating plant, low-cost base- 

load and high-cost peak-load, which have marginal cost Cy and Cp respectively.

This assumption is justified on page 118.
 ̂The step aggregate supply curve.

In the England and W ales Electricity Pool forecasted demand is used to set System Marginal 
Price. There are two reasons for m odelling uncertain demand. First, the two large firms compete 
to supply the residual demand which is uncertain due to the variable amount that w ill be made 
available by the small firms. Second, if  the firms can only submit one supply function for the 
entire day then maximising with uncertain demand is equivalent to choosing a supply function 
that maximises profits over the day.

In the event that two or more units have been bid at the marginal price, these units are equally 
likely to be dispatched.
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Each firm owns k units of base-load plants. We assume that only firm 2 owns 

peak-load plants'^ and that Cp>m+Cb. Hence the marginal cost of the peak-load 

units is greater than the maximum permissible base-load price. If insufficient base- 

load capacity is made available then the marginal price is set by high-cost, peak- 

load units. We begin by characterising the price equilibria given the capacity 

choices. Let (yi,y2 ) be the base-load capacity made available by the two firms. 

Then we have the following equilibria in prices.

Equilibria in prices.

In equilibrium, firm 2 will never set a price below Cp for peak-load units as 

they will make a loss in the event these units are dispatched. Also, since Cp>m-f-Cb, 

firm 2 cannot undercut a base-load unit with a peak-load unit. The strategic use of 

peak-load units comes from the fact that the marginal price is high when it is set 

by peak-load units. Hence firm 2 will set the maximum price Cp+m  for all peak- 

load units. We now consider equilibria in base-load prices.

Proposition 4.1: If Pr(d<min{yi,y2} )= l then there is a unique type of pure- 

strategy equilibrium where the marginal price is always Cb.

This follows from proposition 3.8. When firms have different capacities, it 

is necessary for demand to be less than the capacity of each firm.

W e make this assumption to avoid complications from mixed strategy peak-load prices The 
focus o f this model is on capacity choices and competition to dispatch base-load units.
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Proposition 4.2: If  j ] + y 2 > ^>mi n{ y i , y 2) then there is a unique type o f pure- 

strategy equilibrium, where one firm  sets the maximum permissible price fo r  a 

quantity greater than y i +y 2 - d_and the other firm  sets a price sufficiently low so 

that this firm  cannot gain by lowering the price o f these units.

This follows from proposition 3.9. If min{y],y2 }<^<max{yj,y2 } then the 

firm with the larger capacity must be the high price firm.

Quantity choices.

For a given demand distribution it is clear why a capacity withholding strategy 

would be profitable. Restricting the amount of capacity made available wül 

increase the chance that marginal price is set at Cp+m. This is illustrated in the 

figure 4.3. However, the desire to withhold capacity must be balanced against the 

profitability of making a surplus on units not made available. The equilibrium will 

involve a balance between these opposing forces. We assume that the capacity 

choices must he in the interval [ q , q ] .  The upper limit simply reflects the total

capacity of each firm. The lower hmit is a regulatory constraint which imposes a 

limit on the amount of capacity the firms can make unavailable without 

intervention from the regulator.
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Cn+m

Cb+m

Cb

Figure 4.3 
Quantity choices

Equilibria in prices and quantity.

To investigate equilibria in prices and quantity we analyse the model with 

a uniform demand distribution. From proposition 4.2 when min(yi,y2 )< ^  the 

equilibrium in prices will involve one firm setting a low price and the other setting 

the maximum Cb+m. In this type of equilibrium let firm 1 be the low price firm 

submitting all units at marginal cost and firm 2 the high price firm submitting all 

units at Cb+m . The condition for this equilibrium then becomes y \ < d .  For every 

equilibrium we characterise where firm 1 is the low price firm there is a similar 

equilibrium where firm 2 is the low price firm. We begin by characterising the 

equilibria when there are no binding quantity constraints. Let d - d = à ^  and

C p~C b—A c .

But not symmetric, as firm 2 owns peak-load units.
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T he profit fu n ction s con d ition a l on d <  yj +  y 2 are

n, +m)y,
d - d  d - d

i d - y , - y ^ ^j ^d-_y , - y ,   ̂  ̂ (d-y,)m^̂
d - d  d - d  ‘ ^  k  d - d  _  _

—  2
m d , , - ,  (y, + yz)

(— -(> 1̂ + y i)^  + ------ ;------ )d - d  2

+  ^  ( A ^ . + m ) y ,   ( y i  + ^ 2 ) 3^1  -  =  +  A ' , ) -
a - g  d -  d 2 2

Both profit functions are concave given Cp>0. From the first order 

condition we get the following reaction functions

-  d  1
^ 2 (^1) = — - - > ' 1

The solution is

3A.

^ _ d A ^ - A , m
3A„

The profit functions conditional on ^ > yi + yz are

7cf = (c^  + m )y ,,

Tt* = { c  + m ) y ^ + ( E ( d ) - y ^ - y ^ ) m .

(4.7)

(4.8)

(4.9)
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These are strictly increasing in quantity. Hence, if d < y \ +  yi,  firm i will want to 

set quantity to at least d -  yj. It will set quantity to Rj i y j )  if R]{y2 ) > d -  yj. The 

reaction functions are therefore

/?, (^2) =  max[i?i (^2) , (d  -  y 2 )],

(4.10)

^2 (Ti ) = max[/?2 (Ti ), (d -  y, )].

Proposition 4.3: There is a set o f  equilibria where each firm bids at least d  at 

marginal cost.

Proof: If both firms make enough capacity available to cover demand then from 

proposition 4.1, the unique equilibrium in prices involves bidding at least d  at 

marginal cost. Neither firm can gain by withholding capacity if the other firm has 

bid d  at marginal cost. QED.

Proposition 4.4: If d  satisfies (4.11) then there is a continuum o f  equilibria 

where y i+ y 2 = d  irrespective o f  the base-load price bids.

(4.11)
Ac

Proof: Assume firm 2 is bidding at m+Cy If yi*+y2 *> ^  then the reaction 

functions (4.10) cross along a continuum of points where yi+y2= ^ . Substituting 

for yi* and y2 * from (4.8) and solving for d  yields the inequality. If it is an 

equilibrium to set the total capacity at J  when an increase in quantity yields a 

chance that the marginal price will be reduced to m+cy, then it is also an
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equilibrium if the base-load price bids are less than m-i-Cb. QED.

This equilibrium is illustrated in figure 4.4. Hence, if the level of demand is 

high enough holding Ad fixed, then there is a capacity withholding equihbrium 

where the marginal price is always set by peak-load units. The critical value of J  

depends on the difference between the marginal cost of the peak-load and base- 

load units, Ac. The greater this difference the lower the critical value.

Figure 4.4.
Continuum of equilibria.

Proposition 4.5: If d satisfies (4.12) then there is an equilibrium in prices and 

quantities where yi=yi*, y2 =yi* tind firm one submits base-load units at 

marginal cost and firm two sets the maximum price, m+Cb.

(4.12)
Ac -  A ,

Proof: If yi*+y2 * > d ,  then the reaction functions are given by (4.7). They cross 

at (yi*,y2 *). If yi*<Jthen the price equilibria given by proposition 4.2 hold
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(where firm 1 is the low price firm). Substituting for yi* using (4.8) gives,

yi * < J J  . QED.

This equilibrium is illustrated in figure 4.5. The expected pool price in this

d  — y *  — y * y *  + y^* —d
equilibrium is  E +m ) + —— -----— (c  ̂+ m ). The total base-

load capacity made available under this equilibrium, yi*+y2 *, is decreasing in Ac. 

The expected pool price is therefore increasing in Ac.

Figure 4.5

If d <
AjiCp + m f

Unique equilibrium 

then the base-load price equilibrium breaks down as

yi*> J . This is illustrated in figure 4.6. Although there is an incentive to withhold 

capacity, there is no pure-strategy equilibrium in base-load prices. In this case 

there may be mixed-strategy equilibria in base-load prices.
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yi

Figure 4.6.
No base-load price equilibrium.

Capacity constraints.

Now consider the model with the capacity constraints. Assume each firm 

has a total capacity of 1. Then the equilibria given in proposition 4.3 only hold 

when each firm can make enough capacity available to satisfy the highest possible

level of demand. Hence the equilibria only exist when d < \ .  Now consider the 

capacity withholding equilibria. If demand is so high that y i*> l or y2 *>l then the 

constrained firm will set y \ = q  (since the profit function is concave and therefore 

increasing in quantity when y, <yi*). The other firm will then set min(Rj*(^ ),^  ). 

This will result in a greater probability of marginal price being set by the peak- 

load units. If demand is so low that yi*<^ or yi*<^ then the constrained firm

will set y\=q  and the other firm will set m a x ((R j* (^ ) ,^ ) .  This will result in a 

smaller probability of marginal price being set by the peak-load units.
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The contract market.

Although suppliers must purchase all electricity through the Pool they 

have managed to effectively fix the price of some o f their purchases through 

contracts for differences (CDFs). The contracts are primarily between the 

generators and distributors. An initial portfolio of contracts was drawn up by the 

government to ensure a smooth transition into the new mechanism. Most of these 

contracts have now expired and new contracts have been negotiated with no 

regulatory oversight. It has been argued that the price at which electricity is 

traded is determined outside the Pool through these financial contracts, and that 

the generators therefore have no incentive to manipulate the pool price. We 

extend our model to include contracts and show that this is not the case.

Most of the contracts have been between RECs and generators. A two- 

way CFD fixes a strike price at which the contracted quantity is traded. If the pool 

price is above the strike price then a payment equal to this difference times the 

contracted quantity is made by the generator to the RFC. If the pool price is 

below the strike price then a payment equal to the difference times the contracted 

quantity is made by the RFC to the generator. These contracts are purely financial 

contracts and are not physical contracts to deliver electricity at a stipulated price. 

They do, however, effectively fix the price the generators receive and the RFCs 

pay for the contracted quantities. Another form of contract that insures the RFCs 

against volatile pool prices is a one-way CFD, where a payment by the generator 

to the RFC is made when the pool price is above the strike price.

A number of issues concerning contracts have been identified in the 

literature. There is a general consensus that the existence of contracts reduces the
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average pool price as generators effectively compete to supply a smaller residual 

demand. Incumbent generators may then wish to supply contracts to drive down 

the pool price (Newbery 1996). It is also possible that competition in the supply 

of contracts will lead to much lower pool prices (Green 1992). Von der Fehr and 

Harbord (1994) extend their framework to show that if contracts are held in large 

enough quantities they reduce the spot price to the contract strike price. They also 

identify a strategic incentive to sell large quantities of contracts to commit to a 

low-pricing strategy in the Pool. However, these papers do not model the demand 

side of the contract market, concentrating on the strategic incentives of the 

generators.

Powell (1993) presents a more complete model of the contract market. He 

assumes the distributors are risk-averse and are willing to pay a premium to insure 

against volatile pool prices. He looks at the polar cases where generators compete 

in the contract market and drive down the strike price to the pool price and where 

they act as monopolist in the contract market in which case they set a price above 

the expected pool price and the distributors only partially cover. The overall effect 

of the contract market is to increase the average cost to the buyer, as the 

distributors are paying a premium above the average pool price for the contracted 

quantity.

We extend the capacity withholding model to show that the firms still have 

an incentive to withhold capacity to obtain a high pool price on capacity that is 

not covered. We do not model the contract market but argue that the equilibria in 

the Pool are important in determining the contract prices and therefore the cost to 

the buyer.
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Assume that the generators have entered into two-way difference 

contracts with the distributors. If the pool price is higher than the strike price, f, 

of the contract then a payment of (pool price - f) Xj is made by generator i to the 

distributors, where Xi is the contracted quantity. If the pool price is less than the 

strike price then a payment o f (f - pool price) Xj is made by the distributors to the 

generator. The quantity covered by the each firm is less than the base-load 

generating capacity, X j< l.

The profit function of generator i conditional on d  <yi+y2 is 

Tt'f = T ^ i + { f  - E { p ) ) X a i ,

E{p) = { ( d - y \ - y i ) { C p + m )  + { y x + y 2 - d ) { c ^ + m) ) l ( d - d ) ,

where Tti is given in (4.6).

The reaction functions are

- /  -  1 
R\ — R\ H— X,,

2
— I  —  1
Ri  — Ri  + —X..

2

where Ri is given in (4.7).

Hence the existence o f contracts will shift each generator’s reaction 

function out, which will result in each firm submitting a greater quantity. This will 

result in a lower expected pool price.

The profit functions conditional on d  >yi+y2 are now

Tt f  = ( C p  + ( / - ( C p

JC* = ( c  + m - C i , ) y ^ + { E ( d ) - y ^ - y ^ ) m  +  ( f - { c  + m - C p ) ) x ^ .
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As before, these are strictly increasing in quantity. Hence, if ^ < y i+  yz, 

firm i will want to set quantity to at least d -  yj. It will set quantity to /? .(y p  if 

/?, ( 7 2  ) >^  - Yj- The reaction function o f firm i is therefore

R' i i j j ) = max[R%(y .),(d -  y .)]

If we repeat the comparative static analysis with contracts then we can 

simply replace the conditions (4.11) and (4.12) with (4.13) and (4.14), 

respectively, and apply propositions 4.3-4.5.

(4.13)
A,

 ̂2 1  ̂  ^ ^ < A /2 A ,  + m) ^

A, ' 2 ' -  A , ' '

The critical level of demand where the marginal price is always Cp+m  (figure 4.1) 

is now increased by the quantity of the contract coverage. Hence a higher level of 

demand is needed to be in this regime. The capacity withholding equilibria where 

there is a unique equilibrium in quantities (figure 4.2) now involves a lower 

expected pool price than before, as the reaction functions have shifted out. In all 

the capacity withholding equilibria, the quantity made available is greater than the 

contracted quantity. However, there is now a possibility that a capacity 

withholding equilibrium does not exist.
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Proposition 4.6: If d  satisfies (4.15) then there is no incentive to withhold 

capacity.

(4.15)

Proof: If yi *+y2 *> d  then there is no gain to be made by ensuring the marginal 

price is set by peak-load units. Substituting for yi* and y2 * using (4.8) yields the 

inequality. QED.

Hence when the level of demand is sufficiently low there is no incentive to 

withhold capacity. This does not occur without contracts as Cp>m+Cb and J  

would have to be negative. The capacity withholding strategy will only be used in 

the higher demand periods.

This simple analysis bypasses the problem of modelling the bargaining 

process that takes place in negotiating the contracts and looks only at the 

resultant effect on the pool price. We show that there is still an incentive to 

withhold capacity, although the pool prices are lower. However, this does not 

mean the cost to the buyer is less. As we discussed earlier, one of the reasons the 

distributors enter into contracts is to insure against volatile pool prices for which 

they pay a premium. This would be reflected in a contract strike price that is 

above the average pool price without contracts. The overall cost to the buyer with 

a contract market would then be even greater than the cost given in the model 

without contracts. However one models the contract market, it is clear that the 

contract market and the Pool are interdependent. If rules can be introduced that 

make one of the markets competitive then the other market would fall in line. For 

example, if the pool mechanism guaranteed competitive prices then the contract
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strike price would mirror this. Since it would be more difficult to govern the 

contract market the most important question to address should be how one can 

change the pool rules in such a way as to make generation more competitive.

4.3.2 Alternative pricing rules.

In the previous section, we modelled the England and Wales Pool as a 

multi-unit, uniform-price auction with constraints on bids that are related to the 

marginal cost. We now consider the effects of changing the pricing rule. Two 

alternatives to the uniform pricing rule are the discriminatory rule, where the 

generators are simply paid the bid price for units they are assigned, and the 

Vickrey rule which is explained below.

Discriminatory pricing rule.

Under a discriminatory pricing mle there is no incentive to manipulate the 

marginal price as the generators are simply paid their bid prices for the units that 

are dispatched. Also, firm 2 does not gain by submitting peak-load units rather 

than base-load units, as the maximum profit they can make on any unit is m, 

irrespective of the marginal cost. Withholding capacity will only decrease the 

expected quantity dispatched. The model for base-load units is then formally 

equivalent to the common value model of section 3.3.1.
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Price equilibria.

Peak-load units will never be bid below Cp as firm 2 would make a loss on 

these units. Therefore in equilibrium, peak-load units are only dispatched when 

the demand is greater than the total base-load capacity. As in the previous model, 

firm 2 will therefore set the maximum price, Cp-i-m for all peak-load units.

The base-load price equilibria correspond to those given in the simple 

model of section 4.3.1. If d < \  then there is a pure-strategy equilibrium where 

firms submit base-load units at marginal cost. If d > \  then there is no pure- 

strategy equilibrium in base-load prices. We characterise a mixed-strategy 

equilibrium where each firm submits one price for all units according to (3.9)̂ "̂ . 

We need to make one change to the notation in (3.9) to account for the case 

where d > 2

Pr(l < d <  2) { E{ d  I \  < d < 2 )  +  2 ?T(d > 2)

" ---------------------------- f ï m T Ï --------------------------■ <■*“ >

The expected cost of base-load units under the mixed-strategy equihbrium 

is, 2Pr(d> 1 )(d^-1 )(m-\-Cb)+(Pr(d> 1 )(2-d^)-\-Pr(d<l)E(d/d<l))cb (from 3.14). The 

cost o f any peak-load units used will always be m+Cp. Hence the overall cost of 

the mixed-strategy equilibrium is

2Pr( d > l) ( c t - l ) (  m+Cb)+(Pr( d > l) (2 -c t  )+Pr(  d< 1 )E( d/d< l))cb

+Pr( d>2)( E( d/d>2 )-2 )( m + C p ) .

If d<l  then this equilibrium holds as long as the demand distribution is not heavily skewed  

to the left. See section 3.3.1 for details.
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Vickrey auction.

Under a Vickrey auction the pricing rule is as follows. For the lowest 

priced unit dispatched, each firm is paid the bid price of the unit that would be 

required to meet demand if the capacity of this firm were not available. Let the 

capacity o f the first unit be k. For the second unit dispatched the firm is paid the 

price of the marginal unit that would be required to meet (demand-k), if the 

capacity of this firm were not available and so on’ .̂ Hence the price paid to a firm 

is independent of that firm’s bids.

Proposition 4.7; Under the Vickrey pricing rule it is a weakly dominant strategy 

for  each firm to bid at marginal cost.

This is shown in the appendix. If the generators use this strategy then the 

following results hold.

If Pr(d<l)=l then each firm is paid at marginal cost for all units 

dispatched. This is because both firms can satisfy demand with their capacity and 

if they bid all units at marginal cost then the other firm will be paid at marginal 

cost. \ ï \ < d  <2, then in equilibrium each firm will be paid Cp for the first d-1 units 

dispatched and at marginal cost for the rest. Hence 2(d -l) units will be paid at Cp 

and the other (2-d) at Cy. When d  >2, all units dispatched are paid at Cp. The 

overall expected cost is therefore

Pr( d < l  )E( d/d< l)cb

In the event that there is insufficient capacity to meet demand when the capacity o f a firm is 
taken out we assume that the firm will be paid at the marginal cost o f the peak-load units.
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+Prf 1 <d<2 )( 2(E( d/1 < d< 2)- l  ) C p + (  2-E( d/1 <d<2))cb 

+Pr( d>2 )( 2cp+( E( d/d>2)-2))cp).

This can be rewritten as

2Pr(d>l)(d^-l )Cp+(Pr(d>l)(2-d^)+Pr(d<l)E(d/d<l))cb  

+Pr( d>2 X E( d/d>2 )-2 )cp. 

where is given by (4.16).

4.3.3 Ranking the pricing rules in the England and W ales Pool.

A summary of the equilibria and the overall expected cost to the Pool 

under the three auction formats is given in tables 4.1 and 4.2. Table 4.1 

summarises the case where d < \ .  There is a competitive equilibrium under all 

three auction formats where the buyers pay at marginal cost for all electricity 

purchased. However, under the uniform-price auction there are also capacity 

withholding equilibria.

Now consider the case where d > l .  It is simple to see that the expected 

cost in the capacity withholding equilibrium is always greater than under the 

mixed-strategy equilibrium of the discriminatory auction. All peak-load units are 

sold at m-i-Cp in both cases. However, under the capacity withholding equilibrium, 

all of the base-load units are sold at a cost o f at least m+Cy, the maximum 

permissible base-load price, and some are sold at m-i-Cp, the maximum permissible 

peak-load price, whereas under a discriminatory auction, all the base-load units 

are sold at a price less than or equal to m-t-Cy

If Pr(d>2)=0 (when the probability that there is enough base-load capacity

16 The price will be equal to m+Cy if  d >2.
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to meet demand is one), the Vickrey auction results in a greater cost than the 

mixed-strategy equilibrium of the discriminatory auction as Cp>m . If Pr(d>2)>0 

then the ranking is ambiguous. The peak-load units always go for (C p+m ) under 

the discriminatory equilibrium because we have assumed that only one firm has 

peak-load capacity. If both firms had peak-load capacity, the equilibrium peak- 

load price would be lower. Also, we have assumed that under a Vickrey auction, 

in the event that there is insufficient capacity to meet demand when the capacity 

of a firm is taken out, the firm will only be paid at the marginal cost of the peak- 

load units, Cp. Despite these assumptions, the overall cost will be less under the 

discriminatory auction if the peak-load capacity used is small relative to base-load 

capacity and/or the marginal cost o f the peak-load units is large relative to the 

marginal cost of base-load units. The problem with the Vickrey auction is that the 

payment rule allows for peak-load prices to be paid to some units when no peak- 

load capacity is required which results in a high average cost.
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Pricing Rule Equilibrium Cost

Uniform Competitive

Capacity
withholding

E(d)Cb

Pr(d>y 1 *-i-y2 *)E(d/d>y 1 *+y2 *)(Cp+m) 
+Pr(d<y 1 *+y2 *)E(d/d<y 1 *-i-y2 *)(m-i-Cb)

or E(d)pP*'
Discriminatory Competitive E(d)Cb

Vickrey Competitive E(d)Cb

TABLE 4.1 
Cost of auctions when d < \ .

Pricing Rule Equilibrium Cost

Uniform Capacity
withholding

Pr(d>y 1 *+y2 *)E(d/d>y 1 *-i-y2 *)(Cp-i-m)
-1-Pr(d<y 1 *4-y2*)E(d/d<y 1 *4-y2*)(m-i-Cb) 

or E(d) (Cp4-m)
Discriminatory Mixed strategy (Pr(d> 1 )(2-d+)+Pr(d< 1 )E(d/d< 1 ))Cb 

4-2Pr(d/d> 1 )(d^-1 )(m+Cb) 
4-Pr(d>2)(E(d/d>2)-2)(m-hCp)

Vickrey Competitive (Pr(d> l)(2-d+)+Pr(d< 1 )E(d/d< 1 ))Cb
+2Pr(d/d>l)(d+-l)Cp
+Pr(d>2)(E(d/d>2)-2)Cp

TABLE 4.2 
Cost of auctions when d > \ .

4.3.4 Repeated game analysis.

The above analysis looks at the stage game or one-shot equilibria under 

the various pricing rules. In reality the game is played repeatedly every day. This 

gives the generators an opportunity to collude on repeated game equilibria that 

result in high levels of profits. Armstrong, Cowans and Vickers (1994) argue that

In the case where there is a continuum o f equilibria (proposition 4.4)
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the market structure is particularly conducive to tacit collusion as all information 

on capacity and price bids is publicly available and the players are matched 

frequently to play the game.

Under a discriminatory pricing rule, the best outcome the firms can 

coordinate on is the monopoly outcome, where all units are bid at the maximum 

permissible price. This would be a strategy that is easy for the regulator to detect. 

It would also be relatively easy to prove that the generators are colluding and to 

take action. Even if the generators were able to get away with colluding in this 

fashion the expected cost to the buyer is still less than under the capacity 

withholding equilibria o f the one shot game under a uniform pricing mle (table 

4.2). One would expect that in a repeated game setting the firms would make 

even greater profits.

Under a Vickrey pricing mle it is a weakly dominant strategy to bid all 

units at marginal cost. Withholding capacity does not increase profits since the 

price that a firm is paid is independent of his bids. However, withholding capacity 

and/or increasing bids does increase the profits o f the other firm. In a repeated 

game setting, the firms can collude on a weakly dominated equilibrium. This 

would be a self-enforcing equilibrium, as neither firm would gain by deviating in 

the one-shot game, but would be punished in future periods. Since withholding 

capacity is more difficult to monitor than simply looking at price bids, the firms 

can collude on a strategy where they take out more capacity for maintenance than 

they need to. Hence the case for using a discriminatory pricing mle is even 

stronger in the repeated game case.
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4.4 Conclusions.

The England and Wales Electricity Pool was set up to introduce 

competition in the generation part o f the electricity supply industry. However, 

competitive pool prices have not been realised and attention has turned to ways in 

which the market can be re-structured to increase competition. In section 4.2, we 

look at two theoretical models of the Pool which show that the notion that a 

duopoly would lead to Bertrand type equilibria was ill-founded. There is also 

some evidence that the current structure has resulted in generators withholding 

capacity to obtain high pool prices.

We present a model of the Pool that captures the capacity withholding 

incentive. We show that under a uniform pricing rule the firms maximise profits 

by withholding base-load capacity to increase the probability that the marginal 

price is set by peak-load units, which can be bid at much higher prices. Such an 

incentive does not exist under a discriminatory pricing rule as the price paid for 

each unit is simply the bid price.

The case for a discriminatory auction is even stronger in the repeated 

game for two reasons: 1) collusive behaviour would be easy to detect as it would 

involve bidding high prices for all units and not just manipulating the marginal 

price; 2) even if the firms could collude they are limited in the profits they can 

make. In fact, in our model, we show that the monopoly outcome under a 

discriminatory pricing rule results in a lower cost than the stage-game capacity- 

withholding equilibrium of the uniform-price auction.

A third alternative that has been suggested in the literature is the Vickrey 

pricing rule. This is advocated on the grounds of efficiency as it is a weakly
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dominant strategy to bid all units at marginal cost. However, it can result in a high 

cost, as peak-load prices are paid to some units when no peak-load capacity is 

required. Also, in a repeated game setting, the firms can collude on weakly 

dominated equilibria of the stage-game which substantially increase profits.

We therefore put a strong case for the use of a discriminatory pricing rule 

in the England and Wales Pool, on the grounds that it minimises the market power 

of the generators and results in more competitive pool prices. One question we do 

not address, however, is the relative efficiency o f the auction formats and this is 

clearly an area for future research.
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4.5 Appendix

Vickrey pricing rule.

Under a Vickrey auction the pricing rule is as follows. For the lowest 

priced unit dispatched the firm is paid the price o f the unit that would be required 

to meet demand if the capacity of this firm were not available. Let the capacity of 

this unit be k. For the second unit dispatched the firm is paid the price of the 

marginal unit that would be required to meet (demand-k) if the capacity of this 

firm were not available and so on. This is illustrated in figure 4.7 for the case 

where there are two firms.

2 q

Figure 4.7 
Vickrey payment rule

The figure plots firm I’s bids (Si) for 5 units in the conventional manner 

and firm 2’s bids (S2 ) in reverse. In equilibrium firm 1 gets two units and firm 2 

gets 3 units. The payment firm 1 receives for the first unit is the price of the unit 

that would be required to meet demand if the capacity of this firm 1 were not 

available. As there are only two firms this is the bid of firm 2’s fifth unit. The
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overall payment for the two units is therefore the area under the last two bids of 

firm 2, Pi. Similarly, the payment to firm 2 for the 3 units is the area under firm 

I’s last three bids, ? 2 . We now show that under this pricing rule it is a weakly 

dominant strategy for each firm to bid at marginal cost.

Proof of Proposition 4.7: The firms can do nothing to affect the price they are 

paid for units dispatched through their bids as this depends on the residual 

demand curve. They can only use their bids to determine the units that are 

dispatched. Assume firm 1 has bid a unit at b, below its marginal cost, c. There is 

a possibility that this unit will be the marginal unit dispatched and that it will be 

paid a price below marginal cost. This is illustrated in figure 4.8. The firm will 

then make a loss on this unit, s. The firm can then increase profits by increasing 

this bid to be above the next highest bid so that this unit is not dispatched. 

Bidding below marginal cost is therefore weakly dominated by bidding at marginal 

cost. Now assume firm 1 has bid a unit at b, above marginal cost, c. Then there is 

a possibility this unit is the lowest rejected bid and the marginal price is above its 

marginal cost. This is illustrated in figure 4.9. The firm can make a profit, p, on 

this unit by reducing this bid to just below the next lowest bid. Bidding below 

marginal cost is therefore weakly dominated by bidding at marginal cost. QED.
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C

b

q

Figure 4.8 
Bidding below marginal cost is weakly 
dominated by bidding at marginal cost.

'2

b

c

q

Si

Figure 4.9 
Bidding above marginal cost is weakly 
dominated by bidding at marginal cost.
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