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ABSTRACT

Diffusion tensor magnetic resonance imaging allows detailed studies of the diffusion of
water to be carried out non-invasively in-vivo. Brain white matter consists of coherently
oriented fibre bundles, in which the diffusion coefficient is larger when measured along
the direction of fibres rather than across them. Fibre-tracking techniques attempt to use
this information to establish connectivity within the brain, by assuming that the direction
of fastest diffusion corresponds to the orientation of the underlying fibre tract.

Fibre-tracking requires the acquisition of a large number of images with the diffusion
weighting applied in different directions. A number of technical difficulties had to be
overcome before such data could be acquired on our Siemens Vision 1.5T system. In
particular, eddy-current problems needed to be addressed, and all image reconstruction
was implemented offline to allow a more rapid acquisition of the raw data.

Fibre-tracking techniques are susceptible to noise, partial volume effects, diffusion
anisotropy and other properties of the underlying structure. In this work, simulations were
carried out to assess the reliability of a popular fibre-tracking algorithm when applied to
artificial data sets designed to model in-vivo structures. Partial volume effects in particular
were found to have a detrimental effect on the reliability of fibre tracking.

To address the issues raised above, a novel fibre-tracking technique is proposed, based
on the evolution of a front. It is capable of branching and produces estimates of the
likelihood of the connections established. The algorithm is designed to be more robust
to noise and to deal with the problem of crossing fibres more adequately. Fibre tracts
reconstructed using this technique are presented and discussed.

To illustrate a practical application of diffusion tensor MRI, the relationship between
diffusion anisotropy and language deficits in patients with unilateral basal ganglia infarc-

tions was investigated.
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CHAPTER 1

INTRODUCTION

Magnetic resonance imaging (MRI) is a powerful imaging tool that can be sensitised
to different properties of tissue, enabling images to be obtained with a wide range of
contrasts. In addition to this versatility, MRI has the important advantage of being entirely
non-invasive, with no known biologically hazardous effects. For these reasons, its use is
becoming increasingly widespread, both in the clinical and research environments.

During the last 10 years, a particular form of image contrast, namely diffusion-weighted
imaging (DWI) has become an established MRI technique. DW1 is sensitised to the micro-
scopic random motions of water molecules in the tissue, which are intimately linked with
the physical arrangement of their immediate surroundings. Diffusion-weighted imaging
thus offers a unique means of probing tissue microarchitecture at the cellular level. One of
the most useful clinical applications of diffusion-weighted imaging is in the assessment of
acute stroke patients: the region of ischaemia can be visualised within minutes of infarct
onset, and hours before becoming apparent using more conventional MRI techniques [1].

In 1990, Moseley et al [2] showed that in the white matter and spinal cord of the cat,
the diffusion coefficient measured using diffusion-weighted MRI was dependent on the
direction of the measurement. This anisotropy was attributed to the coherent arrange-
ment of fibres in those tissues causing a greater hindrance to the free movement of water
molecules in directions perpendicular to the orientation of the fibres. In order to charac-
terise this anisotropic behaviour, the diffusion fensor model was introduced in 1994 by
Basser et al [3]. From this mathematical formalism, a number of rotationally invariant
properties can be derived, in particular the trace (corresponding to the magnitude of the
diffusion) and the major eigenvector (corresponding to the direction of fastest diffusion).
Various measures of diffusion anisotropy have also been proposed, such as the fractional
anisotropy (FA) [4], and are increasingly being used in interesting new applications (see
Horsfield et al [5] for a recent review).

White matter consists of tightly packed bundles of neuronal axons that connect the

11



CHAPTER 1: INTRODUCTION 12

different cortical areas to each other and to the rest of the body. The coherent arrangement
of these fibres results in pronounced diffusion anisotropy that can readily be observed
using diffusion tensor imaging (DTI). The magnitude of this anisotropy depends on a
number of factors, including axonal density and the degree of myelination [6, 7]. Maps
of diffusion anisotropy may therefore be useful in assessing the integrity of white matter
tissue, and have been used to investigate a number of white matter diseases [5].

DTI has also made it possible to estimate the orientation of the white matter fibres by
equating it to the direction of fastest diffusion. Based on this assumption, a number of
techniques have recently been proposed to map the path of white matter tracts by follow-
ing the direction of fastest diffusion from point to point [8, 9]. Using such techniques, in
vivo white matter tractography may be feasible, opening up the possibility of studying the
connectivity of the brain in vivo.

The acquisition of diffusion tensor data is demanding on the scanner hardware, partic-
ularly the gradients. However, recent technological advances have allowed most modern
MR scanners to meet those requirements. DTI is therefore becoming more common, and
thus increasingly important.

This thesis therefore had four main objectives:

¢ to implement a diffusion tensor acquisition sequence for use in our institution
e to investigate the limitations and requirements of diffusion tensor tractography
o to develop a robust novel tractography algorithm

e to investigate potential applications for diffusion tensor imaging

The basics of MR image acquisition necessary for an understanding of diffusion-weighted
MRI are given in chapter 2. The diffusion process and its effect on the NMR signal is
described in chapter 3. This chapter also details MRI acquisition issues particular to DTI,
and reviews some of the techniques currently available for the analysis of diffusion tensor
data.

The first of the above objectives is addressed in chapter 4, where the image acquisition
sequence implemented in our institution is described. This sequence was designed to have
reduced sensitivity to eddy-current effects, while remaining time-efficient and providing
images of optimal quality. The diffusion weighting was applied along 20 directions to
minimise bias in the calculation of the diffusion tensor [10], and image reconstruction
was performed offline to minimise the scan time.

The second objective is addressed in chapter 5, which describes numerical simulations
performed using a well-established algorithm on synthetic data. Since there is currently
no appropriate ‘gold standard’ for tractography, simulations on synthetic data where the
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true outcome is known provide an alternative method of validating fibre-tracking algo-
rithms. The results show the impact of noise, partial volume effects, and other parameters
on the reliability of tracking, and provide a means to determine the minimum image qual-
ity (in terms of resolution and signal to noise ratio) required to track a given structure of
interest successfully. The algorithm was also used on real data acquired on a volunteer to
verify the relevance of the simulations to the in vivo case.

The results of the above simulations also provided a clearer focus to address the third
issue: chapter 6 describes the concept behind and the implementation of a novel trac-
tography algorithm, designed to address some of the limitations of current techniques,
in particular susceptibility to noise and the lack of an indication of the likelihood of a
connection. Results obtained using this algorithm are presented that are consistent with
known anatomy. However, there are remaining limitations to the use of this algorithm,
and these are discussed in the text.

Chapter 7 presents results of a study performed in collaboration with a neuropsy-
chology PhD student, Alison Rowan. A group of patients with acquired unilateral basal
ganglia infarctions was investigated using behavioural measures of speech and language,
and a range of MRI techniques including diffusion tensor imaging. The role of the basal
ganglia in the mediation of speech and language deficits in these patients is poorly under-
stood. The aim of this study was to investigate potential additional abnormalities that may
not readily be observed using conventional imaging. Using more advanced MR imaging
and analysis methods, abnormalities remote from the site of the lesion were identified that
showed a significant correlation with language performance. This study also illustrates
the practical application of diffusion anisotropy maps.

Finally, chapter 8 discusses the issues raised in the preceding chapters, and highlights
possible avenues for further research.

All the work presented in this thesis has been performed entirely by the author, except
for chapter 7, which was performed in collaboration with a neuropsychology PhD student,
Alison Rowan. The author’s contribution to this chapter included the development and
implementation of software for the image reconstruction (described in chapter 4) and for
the generation of the parameter maps. This required a more user-friendly interface to
the software to be written in order that the data processing could be collaborative. The
author was also responsible for training Ms Rowan in the use of the software, and in the
identification of corrupted or artefacted images. The latter required input from the author
throughout the data processing period. The acquisition of the neuropsychology data and
the subsequent correlation analyses were performed by Alison Rowan.
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IMAGE ACQUISITION
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2.1 GENERAL PRINCIPLES

Following a radio frequency (RF) excitation pulse, nuclear spins in a static magnetic field

By will precess about the field’s axis at the Larmor frequency, w = By, where v is

the magnetogyric ratio, which relates the magnetic moment of the nucleus to its angular

momentum [1]. Consider now the effect of applying a magnetic field gradient in addition

to the main static By field!. Suppose a gradient G, = dB,/dz is applied. The Larmor

frequency is now:
w = ’y(Bg + Gxx)

By convention, By is aligned along the z-axis

15

(2.1)
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The resonant frequency of the spins is now position-dependent. Frequency analysis of
the free induction decay (FID) in the presence of such a gradient shows a distribution of
frequencies representing the spin density profile of the sample along the z-axis (ignoring
relaxation effects). By acquiring a number of such profiles with the gradient oriented
along a range of angles, enough information is acquired to deduce the internal distribution
of spins within the sample, by means of the ‘back projection’ algorithm. This is the basis
of the earliest method of MRI, known as projection reconstruction [2].

Although projection reconstruction is still used in a number of specific applications,
there are drawbacks associated with its use [3]. In particular, the sampling of the data is
not efficient: the centre of k-space is much more densely sampled than the outer regions
of k-space (see next section for a description of k-space). In addition, signal that is off-
resonance will be smeared around its true position, giving rise to characteristic ‘half-
moon’ artefacts. Consequently, most techniques commonly in use today are based on

Fourier analysis and the concept of k-space.

2.1.1 k-SPACE

The signal S(z, t) in the sample at position z and time ¢ can be represented by a complex
number, having amplitude p(z) and phase ¢(z, t):

S(z,t) = p(z) e =9 (2.2)

Ignoring the effects of relaxation, p(x) represents the spin density of the sample as a
function of position. The phase of the signal increases at a rate given by its angular
velocity w(z, t):

t
bzt = [ wizt) at 2.3)

The angular velocity is given by the Larmor equation, and depends on the local magnetic
field. In MRI, the field normally consists of a large static field By and an applied gradient
G(t). The Larmor equation then gives (see equation 2.1):

w(z,t) = v(By + G(t) - z) (2.4)

The magnitude of By is several orders of magnitude larger than the gradient-induced
field, and represents a fast constant phase velocity that will be identical for all spins in the
sample. Since it is relative phase differences that are of interest, the B, term is ignored,
and the relative phase is given by:

st = | [ G) ar

0

z=k(t) z 2.5)
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where we have defined the k-space vector k(t) as:

t
k) =7 [ G(¥) dt 2.6)

If we now combine equations 2.2, 2.5 and 2.6, and add up the contributions to the signal

from the whole sample, the signal can be expressed as a function of time:

S(t) = /V plz) e kO 33g @2.7)

Since k(¢) is a function of time, this equation can be reformulated as a function of k alone,
such that the time variable does not need to be explicitly stated:

S@) = [ plg) = d’x 2.8)

This is the Fourier transform equation, stating that S(k) is the Fourier transform of the
spin density distribution? p(z) [4].

Conventional imaging sequences are based on the 2D Fourier transform. If a single
slice is excited, for example that normal to the z-axis (by applying a magnetic field gra-
dient along z during the RF excitation pulse), the equation for the signal S(k) reduces to
its 2D equivalent:

S(k) = d/Ap(g) e k2 2z (2.9

where d is the slice thickness, and x is now a 2D vector in the image plane. In this case
the z dimension is already in image space, and a number of such slices can be acquired
sequentially at various positions along z in a so-called multislice experiment. A typical
2D-FT spin-echo imaging sequence and its corresponding k-space sampling scheme are
illustrated in figure 2.1. Following the slice-selective excitation, gradients are applied
along the z and y axes, such that the position in k-space is shifted to a desired location.
As described later, the 180° pulse reverses the position in k-space. A gradient is then ap-
plied along z while the signal is sampled. In this example, the x direction corresponds to
the frequency-encoding or read-out axis, while the y direction corresponds to the phase-
encoding axis. This process is repeated after a suitable relaxation time TR with an in-
crement in the phase-encoding gradient until adequate coverage of k-space is achieved.
The image of the spin density distribution is then calculated with a simple inverse 2D fast
Fourier transform (FFT) [5]. It is also possible to apply equation 2.8 directly, by applying
the excitation pulse without slice selection and using phase-encoding along z in addition
to y, in a so-called 3D experiment. In this case, an extra FFT is also performed in the 2

2Note that in a practical imaging situation, relaxation and other contrast mechanisms will also affect the
magnitude of the signal, such that p(z) will not depend solely on spin density
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90 180 echo

RF

Figure 2.1: conventional spin-echo puise sequence (left), and a schematic rep-
resentation of its /c-space trajectory (right), kx corresponds to the read direc-
tion of /c-space, while ky corresponds to the phase-encoding direction. Mul-
tiple RF excitations are required to cover /c-space. After each RF excitation,
gradient pulses in the read (the ‘read dephasing gradient’) and phase-encoding
direction (‘phase-encoding step gradient’) are applied to move the /c-space po-
sition away from the centre (A). The 180° pulse (B) reverses the position to
the start of the current line. Data are then collected along that line during the
application of the read-out gradient pulse (C).

direction.

2.1.2 Properties of A:-space

During an imaging experiment, the NMR signal will be sampled at discrete time points.
The Nyquist criterion states that in order to accurately represent the original signal, the
interval 6¢ between successive time samples must be less than half the period of the
maximum angular frequency component wmax contained within the signal [6]. In other
words, the sampling rate //6¢ must be higher than 2(wmaz/27r). Higher frequency com-
ponents will be aliased, such that their original angular frequency w will be interpreted as
Ul — 2uJmax-

This treatment can be applied to /c-space, by recognising that the frequency measured
in a MRI experiment is the difference between the reference frequency, as measured in a
static B 0 field, and the true frequency of the spins in the presence of the imaging gradi-
ents [7]. It is then clear that the maximum frequency components in the measured signal
emanate from the outermost edges of the sample, where the effect of the gradients is great-
est. However, the frequency on one side of the sample will be negative with respect to the
frequency on the other side. To differentiate between positive and negative frequencies,
the phase of the signal must also be known, and this is achieved using quadrature detec-
tion [8]. Using the Nyquist criterion, the maximum spatial extent that can be correctly

encoded in /c-space is thus given by the /c-space sampling rate, and is called the field of
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view (FOV): )
7
FOV = 5k (2.10)
where the factor of 2 has been dropped since the FOV extends from —z,,,,; t0 +Zyqz- If
the sample extends beyond the FOV, the signal emanating from that region will be aliased
or wrapped-around, such that it will appear to originate from a region displaced by one
FOV, to the other side of the image.
In the same way, the extent of k-space sampled, &,,,,, corresponds to the maximum
spatial frequency that can be accurately represented in the image, and is related to the

image resolution or pixel size, dz, as follows:

™

= — 2.11
kmaa: (Sl' ( )

The fact that the spin density p(z) is a real quantity leads to another property of k-
space, namely its conjugate symmetry. This is expressed mathematically as (see equa-
tion 2.8):

S(k) = [S(=K)I (2.12)

where z* denotes the complex conjugate of z. This property can be exploited to shorten
acquisition times, by acquiring fewer samples than otherwise required, and reconstructing
the missing data using equation 2.12. This is the basis of partial Fourier acquisitions,
described in section 2.2.2.

The centre of k-space contains information about the low spatial frequency compo-
nents contained in the sample spin density distribution, whereas regions further away from
the centre of k-space contain information about the higher spatial frequency components.
An image formed from a k-space sample where the outer regions of k-space have been
discarded thus contains very little fine detail or edge information (see figure 2.2), whereas
the overall intensity for the different parts of the image is correct. On the other hand,
an image formed from a k-space sample where the central region of k-space has been
discarded contains only edge information, and the overall intensity for the different parts
of the image is close to zero. Thus, edge information is contained in the outer regions of
k-space, whereas the regional signal intensity information, or contrast, in contained near
the centre of k-space. For this reason, the time at which the centre of k-space is acquired
is of special significance, since it determines the overall contrast of the image.

It is also important to consider the effect of a 180° refocusing pulse on the position
in k-space. A signal with phase ¢ will have its phase reversed to —¢ by a 180°. In other
words, the complex signal S will be transformed into its complex conjugate S*. Using

the conjugate symmetry of k-space, it can be seen that this corresponds to transforming
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Figure 2.2: image information in &-space. Data acquired near the centre of
/c-space contain low spatial frequency information about the image, while data
acquired near the periphery represent high spatial frequencies. Top: /c-space
data. Bottom: reconstructed image. Left: the original /c-space data and the
corresponding image. Middle: data outside of the centre of A:-space have been
set to zero, leaving only the low spatial frequency information. Note the loss of
fine detail in the resulting image. Right: data near the centre of /c-space have
been set to zero, leaving only the high spatial frequency information. Fine

detail in the resulting image are restored, but information about the overall

contrast is lost.

20
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the position in k-space from k to —k.

2.2 ECHO-PLANAR IMAGING

Equation 2.9 indicates that if data are acquired such that k-space is adequately sampled,
then an image can be formed. 2D-FT techniques acquire one line of k-space per excita-
tion, which makes them relatively slow. However, it is in theory possible to acquire all
the data necessary for an image from a single excitation. This is the basis of echo-planar
imaging (EPI) [9].

To acquire all of the k-space data required from a single excitation, the gradients must
be manipulated such that an appropriate trajectory in k-space is sampled. To produce
artefact-free images, such trajectories must sample k-space such that the Nyquist criterion
is satisfied. However, the time available for sampling is limited, so the traversal of k-space
must be as fast and efficient as possible. This will tend to place extreme demands on the
gradient and receiver hardware [10]. Another important consideration is the complexity
of the image reconstruction algorithm, which will depend on the characteristics of each
trajectory. These factors will tend to impose sometimes conflicting requirements on EPI
acquisition schemes, which are described in detail in this section.

2.2.1 k-SPACE SAMPLING STRATEGIES

There are two main approaches to k-space sampling: one aims to minimise hardware
demands, while the other aims to minimise image reconstruction complexity. Although
these two approaches are not in principle mutually exclusive, in practice sampling schemes
that attempt to combine the benefits of both strategies will not be as fast and efficient as

otherwise possible, and are rarely used in practice.

LINEAR SAMPLING IN k-SPACE

The simplest image reconstruction algorithm is the inverse 2D FFT. However, to be able
to use such a simple approach, the data must be sampled on a regular Cartesian grid in
k-space [11]. Sampling strategies that aim to minimise the complexity, and hence com-
putation time of the reconstruction must sample the signal such that each data point is
acquired on a Cartesian grid node in k-space. This is achieved using a k-space traver-
sal such as that illustrated in figure 2.3. Although using a constant frequency-encoding
gradient while sampling each line would result in a regular time sampling rate, such a
scheme would incur a large time penalty from the gradient ramp-up dead time. In prac-
tice data must be acquired during the gradient ramps, such that the sampling rate cannot
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Figure 2.3: EPI read-out pulse sequence with a blipped phase-encoding gra-
dient. Left: a schematic representation of the sequence. The oscillatory read
gradient (G ;) generates multiple echoes, which are encoded differently by the
successive phase-encoding blips (Gy). Right: a schematic representation of
the corresponding k-space trajectory. The entire k-space can thus be scanned
from a single RF excitation. In contrast to the conventional spin-echo sequence
shown in figure 2.1, alternate lines of k-space are traversed in opposite direc-
tions.

be constant in time if the data are to be regularly sampled in k-space. The receiver must
therefore be able to sample the signal at non-constant intervals, and must be accurately
synchronised with the gradient waveform.

This type of EPI readout therefore requires specialised hardware, which most modern
clinical scanners are equipped with. The receiver can be synchronised with the gradients
using preparation scans (see section 2.3.2), which must be performed prior to the EPI
sequence. Another drawback of this type of readout is that the receiver filter bandwidth
cannot in general be adjusted while the sequence is running. This means that it must be
set to accommodate the highest sampling rate present, such that the image SNR is lower
than might ideally be achieved using a variable bandwidth.

LINEAR SAMPLING IN TIME

Acquiring data with a constant sampling rate is much less demanding on the receiver
hardware. However, it then becomes impractical to sample data on a Cartesian grid in
k-space, and image reconstruction will be significantly more complex than with linear
sampling in k-space. The data will often need to be re-gridded onto a Cartesian grid,
which is a very computer-intensive process. There may therefore be a significant time de-
lay between running the sequence and obtaining the images. Since some scanners do not
allow other sequences to run until the reconstruction has completed, this may introduce a
significant amount of ‘dead time’ in the examination. In addition, since the Nyquist cri-
terion needs to be satisfied at all points in k-space, the number of time samples required
will be greater than the minimum number achieved with regular sampling.
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Figure 2.4: EPI read-out pulse sequence with a constant phase-encoding gra-
dient. Left: a schematic representation of the sequence. The oscillatory read
gradient (G;) generates multiple echoes, which are encoded differently by
the continuous application of the phase-encoding gradient (Gy). Right: a
schematic representation of the corresponding k-space trajectory. The entire
k-space can thus be scanned from a single RF excitation. As for the blipped
EPI sequence (figure 2.3), alternate lines of k-space are traversed in opposite
directions, although the trajectory is no longer collinear with the Cartesian
grid.

2.2.2 k-SPACE TRAJECTORIES

The echo time in conventional spin-echo sequences is the same for each line of k-space.
In EPI however, each line is acquired with a different echo time. Since the image contrast
comes from the central portion of k-space, its echo time is used as the effective echo time
of the EPI readout?.

CONSTANT PHASE-ENCODING EPI

EPI images can be acquired in the presence of a constant phase-encoding (CPE) gradient,
such as that illustrated on figure 2.4. Since linear sampling in k-space is not possible using
this type of trajectory, the reconstruction of the images tends to be computer-intensive.
For this reason, however, there is little motivation to use non-linear sampling in time,
and linear sampling in time tends to be used, which is less demanding on the receiver

hardware.

BLIPPED EPI

The other common EPI readout trajectory is based on scanning through k-space as illus-
trated on figure 2.3. The rectilinear readout is achieved by applying a short duration phase-
encoding gradient pulse, or ‘blip’, between every frequency-encoding gradient pulse, that
increments k, before each line is acquired along k. Blipped EPI uses linear sampling in

3In this work, the terms ‘echo time’ and ‘effective echo time’ are used interchangeably when referring
to EPI sequences.
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Figure 2.5: spiral EPI read-out pulse sequence. Left: a schematic representa-
tion of the sequence. The read and phase-encoding gradient oscillate with a
90° relative phase lag, generating the k-space trajectory shown schematically
on the right. The entire k-space can thus be scanned from a single RF excita-
tion. This sequence allows very short echo times, since the centre of k-space
is sampled first. As for the constant phase-encoding EPI sequence (figure 2.4),
the trajectory is not collinear with the Cartesian grid.

k-space, such that data samples are acquired on a Cartesian grid in k-space. Therefore,
the main advantage of this trajectory is the simplicity of the image reconstruction.

SPIRAL EPI

This k-space trajectory involves starting from the centre of k-space and spiralling out-
wards to the edges (figure 2.5). This is done by oscillating the phase-encoding and fre-
quency-encoding gradients with an increasing amplitude and a relative phase lag of 90°.
This readout therefore allows the acquisition of images with a very short echo time (TE),
since the centre of k-space is acquired first. The readout is intrinsically flow compen-
sated [12], which is advantageous for MRA applications. The acquisition time is also
shorter, since the corners of k-space are not acquired. This readout is less demanding on
the gradient hardware, since the gradients do not need to be switched as rapidly. How-
ever, the scanner’s pulse programming environment may not allow the application of the
required gradient waveforms. In addition, spiral EPI is difficult to reconstruct, and arte-
facts manifest themselves differently than with blipped or CPE EPI, due to the fact that
the bandwidth is not constant along either axes (see section 2.3.1).

PARTIAL FOURIER EPI

Due to the conjugate symmetry of k-space (see section 2.1.2), it is possible to acquire
fewer data than otherwise required, and estimate those missing samples using equa-
tion 2.12. This can be used as an alternative method to shorten TE while reducing artefacts
associated with a long readout, in particular 77 blurring (see section 2.3.5) and flow arte-

facts [12]. It does however lead to a reduction in SNR. Using this technique, acquisition
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schemes can acquire as little as half of the data and still produce an image. However,
in practice, a few extra lines near the centre of k-space are often acquired to correct for
phase errors [13].

2.2.3 MULTI-SHOT EPI

The long readout period in EPI acquisition schemes introduces a number of problems,
described in detail in section 2.3. Many of these problems can be alleviated using multi-
shot EPI sequences, where different portions of k-space are acquired for each excitation,
such that the combination of these different portions produces a complete k-space sam-
ple. These techniques allow the acquisition of higher resolution images with reduced arte-
facts. However, the time taken to acquire all the data necessary to reconstruct an image is
markedly increased, since a suitable TR must be introduced to allow sufficient recovery
of the signal before the next excitation. In addition, the use of these techniques to acquire
diffusion-weighted images remains problematic due to the extreme motion sensitivity of
the phase of the signal (see section 3.2.3).

There are a number of ways to divide up k-space in a manner suitable for multi-
shot EPI. In general, care must be taken not to introduce discontinuities in the k-space
signal that will cause image artefacts. Two commonly used multi-shot EPI schemes are
described below.

Mosaic EPI

In this scheme, k-space is divided into blocks to be acquired separately. It can easily
be combined with a partial Fourier acquisition to further reduce scan time. Although
this technique does reduce the readout period, the bandwidth per pixel along the phase-
encoding axis remains similar to that of single-shot EPI techniques, such that bandwidth-
related artefacts remain problematic (see section 2.3.1).

INTERLEAVED EPI

Interleaved EPI makes use of a larger phase-encoding gradient to acquire lines of k-space
that are spaced further apart (figure 2.6). The next excitation can then be used to acquire
the lines adjacent to those acquired previously, and so on. This results in a significant
increase in the bandwidth per pixel along the phase-encoding direction, such that artefacts
due to field inhomogeneities and chemical shift are much reduced (see section 2.3.3). For

this reason, interleaved EPI is much more commonly used than mosaic EPI.
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Figure 2.6: a schematic representation of interleaved EPI. Each linestyle rep-
resents the /c-space trajectory of a single interleave, each acquired from a dif-
ferent RE excitation. Each acquisition starts from a slightly different position
along «,. such that the entire fc-space is covered by the combination of all
the interleaves. Within each interleave, alternate lines are spaced further apart
than in single shot EPI, by applying a stronger phase-encoding gradient. This
results in increased bandwidth per pixel and reduced artefacts due to field in-
homogeneities and chemical shift.

23 Artefacts in EPI

This section concentrates on artefacts particular to the more commonly used blipped and
CPE EPI readouts. Imaging artefacts using these types of /c-space trajectories are due
to the long readout period, the small bandwidth along the phase-encoding axis (see be-
low), and the fact that alternate lines of &-space are acquired in opposite directions along
the frequency-encoding axis. Image artefacts for other A:-space trajectories have similar
causes, but will manifest themselves differently depending on the details of the trajectory

(see [12] for more details).

2.3.1 Bandwidth

Many of the artefacts commonly seen in EPI images are due to the different bandwidth
per pixel (the frequency difference between adjacent voxels) along the phase-encoding
axis from that along the frequency-encoding axis. If the dwell time (the time between
adjacent samples) along the frequency-encoding axis is At, then the dwell time along the
phase-encoding axis is approximately A At, where N is the number of samples along
the frequency-encoding axis. Since the bandwidth per pixel is inversely proportional
to the dwell time, it is much smaller along the phase-encoding axis. For example, a

128 x 128 EPI acquisition will typically have a 5 //s dwell time, corresponding to a 12 Hz
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Figure 2.7: Nyquist ghost artefact in EPI. A ghost image is clearly seen dis-
placed half the FOV from the main image. In this case, the source of the ghost
is mainly a small misalignment (delay) between the gradient waveform and the
analog-to-digital converter. As can be seen, the intensity of the ghost increases
with increasing delay. (Adapted from F. Calamante’s PhD thesis, 2000)

bandwidth per pixel along the phase-encoding axis. At 1.5 T, a I ppm frequency offset
would then give rise to a 5 pixel shift along the phase-encoding axis, and only a 0.04 pixel
shift along frequency-encoding axis. For this reason, small frequency offsets (due for
example to field inhomogeneities or chemical shifts) will have a significant effect along
the phase-encoding axis, and artefacts along the frequency-encoding axis can to all intents
and purposes be ignored.

Bandwidth will also have an impact on the SNR. Due to the rapid traversal of A:-space,
the sampling rate needs to be very high. The bandwidth of the receiver therefore needs
to be larger for EPI than it is for conventional sequences. This has a considerable impact
on the SNR, since SNR oc 1/\/BW , where BW is the receiver bandwidth. A larger
bandwidth will mean that noise from a broader range of frequencies will contribute to the
measured signal, and translates to a reduced SNR for EPI images. However, EPI does

provides a much higher SNR per unit time than conventional imaging.

2.3.2 NYQUIST GHOSTING

In EPI, alternate lines of /c-space along the frequency-encoding axis are acquired by
traversing /c-space in opposite directions, and are therefore reversed with respect to time.
This unique feature makes EPI particularly prone to an artefact commonly known as
Nyquist or N/2 ghosting, which is due to inconsistencies in the signal between alternate
lines of A:-space. This introduces an extra frequency component at exactly half the sam-
pling frequency, such that a ghost of the image is formed that is shifted from the original
image by half the field of view along the phase-encoding axis (see figure 2.7). This kind
of inconsistency can arise either from imperfect synchronisation of the receiver with the

A:-space trajectory, or from a modulation of the phase. If the data acquisition is delayed
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Figure 2.8: Echo asymmetry caused by the time-reversal of alternate lines of
/j-space. Top: schematic representation of the effect of a time delay between
the gradient waveform and the data sampling. Bottom: after time-reversal of
the even lines, the signal is modulated from line to line. The arrows indicate
the time direction.

with respect to the gradient waveform, the centre of /r-space for each line will be acquired
later than expected. Since alternate lines are reversed with respect to time, this shift in
time will translate to a shift in /c-space that is reversed for alternate lines (figure 2 .s).

Phase modulation can be caused by eddy-cuiTents, as described below.

EDDY-CURRENTS

When a magnetic field fluctuates, eddy-currents can be induced in any conducting struc-
ture exposed to the field. The fast gradient switching needed for EPI will therefore pro-
duce large eddy-currents that will oppose the intended change in the field. This will tend
to introduce a delay between the application of a current through the gradient coil and the
gradient field, as well as reduce the amplitude of the gradient field. For example, when
using a sinusoidal gradient waveform, its frequency and shape will remain unchanged,
but its phase and amplitude will be altered [14]. The resulting time delay between the
application of the current in the coil and the gradient waveform can, if uncorrected, be a
source of misalignment between the positions of the data samples in the time and /c-space
domains, and hence of Nyquist ghosting.

Eddy-currents may also contain a B 9gcomponent that will alternate with the gradients.

In this case, the resonant frequency will be different for alternate lines, resulting in a phase
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Figure 2.9: the desired gradient waveform (thick solid line) will be corrupted
by unwanted eddy-currents, such that the sample experiences a different, de-
layed waveform (dashed line). With gradient pre-emphasis, the input wave-
form to the gradient amplifier is modified to alleviate these effects (thin solid
line).

difference between these lines, and the appearance of a Nyquist ghost.

In order to reduce the magnitude of the eddy-currents induced by the gradients, a new
gradient coil design was developed, that significantly reduced the magnitude of the gradi-
ent field induced outside the coil. These so-called shielded gradients consist of a second
coil wound outside the primary gradient coil, such that the field generated by the first coil
is exactly cancelled by the second coil. Although this results in reduced coil efficiency
and increased inductance, this type of coil design has now become commonplace.

A technique known as gradient pre-emphasis is often used to alleviate the effect of
eddy-currents on the main gradient field. The unwanted gradients induced by the eddy-
currents, themselves produced by the applied gradient switching, can be estimated from
the input gradient waveform using linear system theory [15]. Gradient pre-emphasis in-
volves modifying the gradient waveform fed into the gradient coils in an effort to cancel
the effects of unwanted gradients. For a typical trapezoidal gradient, this will in general
involve ramping up more steeply, then overshooting and gradually declining to the in-
tended gradient magnitude (see figure 2.9). Although pre-emphasis significantly reduces
errors in the gradients due to eddy-currents, other approaches will be necessary to elimi-

nate the remaining small timing errors between the gradients and the recetver.

RECEIVER

To prevent noise associated with frequencies higher than the receiver sampling rate from
being aliased back and degrading the SNR of the signal, the receiver system must be
equipped with a low pass filter. However, such a system will introduce a time delay
between the incoming raw signal and the outgoing filtered signal (see figure 2.10). Oscil-
lations will also be introduced in the signal following sudden intensity changes, but these
fortunately have only minor consequences [14]. The delay introduced by the low pass
filter is determined by the bandwidth of the receiver, and can thus be corrected straight-
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Figure 2.10: signal degradation due to the low-pass filter of the receiver sys-
tem. The filter effectively convolves the incoming signal with a smoothing
kernel, introducing both delay and ringing into the measured signal. The sig-
nal oscillations have only minor consequences, but if uncorrected, the delay
will introduce Nyquist ghosting in EPI images due to the time-reversal of al-
ternate lines.

forwardly.

The approach most often used to estimate and correct any delays between the gradi-
ents and the sampling involves the acquisition of a nyquist ghost correction scan. The
central line of k-space is acquired repeatedly, using the same frequency-encoding gradi-
ent waveform as for the main EPI readout, but without any phase-encoding gradients. In
the absence of any timing errors, all the resulting lines should be identical (in the absence
of relaxation or off-resonance effects). If there are timing errors however, the set of lines
acquired in one direction will be shifted in the opposite direction to the set of lines ac-
quired in the other direction. The delay can then be estimated, and the receiver adjusted
accordingly. This process is repeated until the delay falls within tolerance limits.

This adjustment is essential when non-linear time sampling is to be used, for example
for blipped EPI. Without this correction, the data sampling rate would not be linear in
k-space. This method is however not sufficient to entirely eliminate the Nyquist ghost
artefact. The final adjustment scan can however be stored and later used to correct the re-
maining phase errors and any residual timing errors in post-processing, using the method
outlined below.

SOFTWARE CORRECTION

As mentioned above, repeated acquisition of the central line of k-space provides a means
to estimate any timing errors or phase inconsistencies. In blipped EPI, the last scan ac-
quired to adjust the receiver delay can also be used to correct all the images acquired sub-
sequently. In CPE-EPI however, receiver delay adjustments are typically not performed,
and it is common to acquire a Nyquist ghost correction scan for each EPI readout. Such
a correction scan is usually acquired by scanning the central line of k-space 2 or more
times, either after a low angle pulse immediately before the main sequence, immediately
after the main excitation pulse, or after the EPI readout [16].
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Although acquiring the central line of k-space once in both directions is in theory
sufficient, it has been found in practice that applying the correction in the presence of
off-resonance effects may re-introduce Nyquist ghosting [17]. A frequency offset will
induce a steady phase evolution from line to line, which will wrongly be interpreted by
the correction algorithm as a phase error to be eliminated. Acquiring an extra line in
the correction scan means that the first and third lines can be averaged, cancelling out
any phase evolution that may have occurred during that time and allowing the correction
algorithm to correctly interpret any remaining phase differences [17].

2.3.3 IMAGE DISTORTIONS

It is common for images acquired using EPI to be distorted in some way, either locally
or globally. Distortions are generally caused by imperfections in the magnetic field, such
that the linear relationship between spatial location and frequency (equation 2.1) is no
longer exact. Due to the low bandwidth per pixel along the phase-encoding axis, even a
small difference in the field may shift the signal from the affected region by a few pixels
along that axis. Imperfections in the field may arise from a number of causes, and the
most common are outlined here.

EDDY-CURRENTS

As mentioned above, eddy-currents induced by fast gradient switching will often generate
additional time-dependent gradients in the field, as well as a net By component. Although
gradient pre-emphasis (see section 2.3.2) can significantly alleviate the effect of these un-
wanted contributions, gradients due to long term eddy-currents may still be present during
the EPI readout. The effect of these eddy-currents will depend on the orientation and mag-
nitude of the gradient they induce, and the magnitude of their By component [18]. In the
following description, it is assumed that remaining eddy-current-induced gradients are
constant during the EPI readout, and that frequency-encoding is applied along z, phase-
encoding along y, and slice selection along z. The main field By is also assumed to be
aligned with the z-axis.

A B, shift will induce a global shift in frequency. Due to the low bandwidth per pixel
along y, this will cause the image to be shifted uniformly along that axis. Similarly, a
gradient along the z-axis can be viewed as a slice position dependent By shift, such that
the image will be shifted along y by an amount directly dependent on the slice position
along z.

A background gradient along z will interfere with the frequency-encoding gradient,

causing a gradient pulse applied in one direction to overshoot in k-space, and the op-
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Figure 2.11: eddy-current-induced image distortions. Middle: an undistorted
EPI image. Left: a sheared EPI image acquired in the presence of a small
background gradient along the read-out direction. Right: a scaled EPI im-
age acquired in the presence of a small background gradient along the phase-

encoding axis.

posite gradient to undershoot. Thus, the position of the centre of /c-space will steadily
accumulate a small offset along x, resulting in an image that is sheared, as illustrated in
figure 2.11.

A background gradient along y will alter the magnitude of the phase-encoding gra-
dient.This will change the /c-space sampling interval along 7, \ky, such that thefield
of view along y is different. The image thus appearsstretched or compressed along y,
depending on the sign of the gradient, as illustrated in figure 2.11. This is commonly
referred to as image scaling.

Eddy-current-induced image distortions can be minimised by techniques such as ac-
tive shielding and gradient pre-emphasis, as described in section 2.3.2. However, the large
prolonged gradients required for diffusion imaging tend to produce large eddy-currents
that cannot be fully compensated for using these methods. The effects of eddy-currents
can be further alleviated by careful sequence design and image processing techniques,

described in more detail in section 3.2.3.

SUSCEPTIBILITY ARTEEACTS

At the interface between two substances with different magnetic susceptibilities, there
will be a local discontinuity in the field, which will induce local field gradients. Spins
in such areas will therefore resonate at a different frequency, such that their position in
image space is shifted along the phase-encoding axis. The magnitude of that shift is given
by = ABo/Gpe, where Gpe is the magnitude of the phase-encoding gradient. This
gives rise to strong image distortions, especially at air-tissue and bone-tissue interfaces,
such as the frontal sinus (figure 2.12).

The local field gradients can also contribute to the phase-encoding gradient, and alter
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EPI Turbo SE EPI Turbo SE

Figure 2.12: image distortion in EPI (‘susceptibility artefact’). The figure
shows typical echo-planar images (128x128 matrix) with their corresponding
Turbo spin-echo images. Image distortions can be observed in the images ac-
quired using EPI (arrows), as compared to the Turbo spin-echo images. There
is also a redistribution of the signal, with regions of increased signal inten-
sity, and regions of reduced signal. (Adapted from F. Calamante’s PhD thesis,
2000y

its magnitude locally, resulting in a scaling of the affected area. Where the gradient is de-
creased, the signal that would otherwise originate from several pixels may be compressed
into a single pixel, resulting in a dramatic increase in its signal intensity. Conversely,
where the gradient is increased, the signal that would otherwise originate from a single
pixel may be stretched over several pixels, resulting in a drop in signal intensity.

A number of methods have been proposed to correct susceptibility-induced image
distortions [19]. Two images can be acquired to estimate the pixel shift, one with the
phase-encoding applied along the x-axis, the other with the phase-encoding applied along
the ?/-axis [20]. A similar approach is to acquire two images with the phase-encoding
applied in opposite directions [21]. Another approach involves the acquisition of a field
map, from which the pixel shift can be directly estimated [22]. A more recently proposed
technique involves measuring the point spread function for each voxel, and deconvolving
it from the measured signal [23]. All these approaches require the acquisition of additional
data to estimate the pixel shift, and are therefore used primarily either to image regions of
the brain that are particularly prone to susceptibility-induced artefacts, or in applications

such as functional MRI, where the same correction can be applied to a series of images.

2.3.4 CHEMICAL SHIFT ARTEFACTS

Spins that possess a large chemical shift, and therefore resonate at a slightly different
frequency, will appear shifted along the phase-encoding axis in EPI images. This is again
due to the low bandwidth per pixel in that direction. At 1.5 T, the lipid signal has a
chemical shift with respect to water of around 200 Hz [24], while the bandwidth for a
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With fat suppression Without fat suppression

Figure 2.13: fatartefact in EPI. The figure shows an example of an echo-planar
image acquired with (left) and without (right) fat suppression. In the absence
of fat suppression, the lipid signal is visible and can be seen to be displaced
along the phase-encoding direction (vertically) due to its different chemical
shift. (Adapted from F. Calamante’s PhD thesis, 2000)

typical EPI acquisition is of the order of 10 Hz per pixel in the phase-encoded direction.
Subcutaneous fat is therefore often seen as a ring of signal shifted by approximately 20
pixels from its correct anatomical position in the image (see figure 2.13). Since the brain
itself does not contain any MR visible lipids, the signal from fat is of little interest, and the
subcutaneous fat signal must be suppressed. This is done by exploiting the large chemical
shift between the lipid and water signals, either to selectively excite the lipid signal before

spoiling it, or to selectively excite the water signal [12].

2.3.5 Limits on image resolution

DECAY

The time during whichdata can be acquired is limited by decay. Since the speed of
traversal of &-space islimited by the maximum gradient amplitude and switching rate,
there is a limit to the extent of /c-space that can be adequately covered. For this reason
it is relatively rare to find EPI images acquired at resolutions higher than 128 x 128.
Although it is possible to acquire images with larger matrix sizes, their quality may be
considerably degraded. In particular, geometric distortions will be accentuated, blurring

will be increased, and the SNR will drop significantly.

BLURRING

During the course of the acquisition, the signal decay due to along the frequency-
encoding direction is negligible, whereas that along the phase-encoding direction is con-

siderable. This %2 modulation of the signal has profound consequences for the point
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spread function (PSF).

The PSF describes the appearance in the final image of a single point in the sample.
Consider a one-dimensional sample that consists of a single Dirac delta function, S(z) =
d(z). Its k-space representation is given by its Fourier transform, S(k) = 1. However,
the extent of k-space sampled during a MRI experiment is limited, such that the signal
is effectively weighted by a top hat function that sets the signal outside the acquisition

window to zero. The k-space representation of a single point in the sample then becomes:

1 for|w| <1

Sacq(k) =1 x II(k/kmaz) where IT(w) = { (2.13)

0 otherwise

The contribution in the final image of a single point in the sample is given by the inverse

Fourier transform of the previous expression, and corresponds to the PSF:

PSF(z) = ’“;" sinc(kmas ©) (2.14)

T

This function can be used to derive the appearance in the image R,.,(z) of an arbitrary
sample R(zx), by using the convolution theorem [25]:

Raeg(7) = R(z) * PSF(z) (2.15)

This treatment applies when the effects of relaxation can be ignored. In EPI however,
data in k-space are also weighted by T3 decay, depending on the time of acquisition
of each sample. For blipped or CPE EPI, each phase-encoded line in k-space will be
modulated by the T envelope, denoted here by M(k,). In this case, the PSF along the
phase-encoding axis is given by the convolution of the inverse Fourier transform of the
Ty envelope, M (y), with the original PSF:

PSFgpi(y) = PSF(y) * M(y) (2.16)

Since the effects of relaxation along the frequency-encoding axis can be ignored, the PSF
along that direction is unaffected. The PSF in EPI is therefore degraded and widened
along the phase-encoding direction by the 75 modulation of the signal during the acqui-
sition, which causes blurring and a loss of resolution along that axis [14]. In other words,
T5 effects tend to attenuate the high frequency components of the signal along the phase-
encoding axis, leading to a loss of resolution along that axis in the image. Furthermore,
if the characteristic width of M (k,) is reduced, as may happen for example if the acqui-
sition is lengthened, this would correspond to a even wider PSF and introduce additional
blurring.
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3.1 INTRODUCTION TO DIFFUSION

3.1.1 MOLECULAR DIFFUSION

Diffusion refers to the thermally driven random motion of particles, commonly known as

Brownian motion. It is classically described by Fick’s law [1], in terms of a macroscopic

flux density J driven by a concentration gradient VC:

J=-DVC

38

3.1)
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where C' is the concentration and D is the diffusion coefficient, typically measured in
mm?/s. Conservation of mass [2] dictates that:

oC
rrie -V-J (3.2)

which can be combined with Fick’s law to give the diffusion equation:

oCc
W_DVC (3.3)

This equation can be solved for various simple boundary conditions. In particular, the
solution for particles in an unbound one-dimensional medium with uniform diffusivity,

satisfying the initial condition C (z,0) = §(z) is':

2

1 —T
34
JarDt P <4Dt> (34)

Einstein [3] showed that the diffusion coefficient relates the variance in the spin dis-

C(z,t) =

placement to the diffusion time. The variance (z2) in the spin displacement can be derived
for the one-dimensional free diffusion case from equation 3.4:

(x?) = 2Dt (3.5)

This can also be expressed in terms of the conditional probability distribution P(z; | zo, t),
the probability of finding a molecule at position z; after a time ¢, given that it was orig-
inally at position . In this case, z = x; — 7o and (x?) corresponds to the variance of
P(z; | zo,t).

Equation 3.4 suggests that the diffusivity D can be inferred by monitoring the concen-
tration profile over time using tracers. Such techniques have been applied successfully in
biological systems, such as the brain [4, 5]. However, because of the invasive nature of
exogenous tracers, these cannot be used in-vivo with humans. Nevertheless, NMR does
allow non-invasive diffusion measurements to be performed in-vivo by using water as an

endogenous tracer, as described below.

3.1.2 THE EFFECT OF DIFFUSION ON THE NMR SIGNAL

The effect of diffusion on the NMR signal can be understood from a simple pulsed gradi-
ent spin-echo (PGSE) experiment [6] (figure 3.1). We define G as the gradient strength, ¢

as the gradient duration, and A as the time interval between the onset of the two gradient

3 2
!The equivalent expression for the three-dimensional case is: C(z,t) = (ﬁ) exp (Z—gt)
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90 180 echo

RF

Figure 3.1: a schematic representation of the Stejskai-Tanner pulsed-gradient
spin-echo (PGSE) diffusion-weighted pulse sequence. The first diffusion-
encoding gradient pulse induces a position-dependent phase shift that is un-
done by the second gradient pulse. Static spins will therefore experience no net
phase shift. However, for spins that moved along the direction of the diffusion-
encoding gradient between the application of the two pulses, the phase shift
induced by the first gradient pulse will not be cancelled out exactly by the sec-
ond pulse. An ensemble of diffusing spins will therefore carry a distribution

of phase shifts, leading to signal loss.

pulses. It is assumed that b <C A, such that the motion of the spins during the short du-
ration of the gradient pulse is negligible. This assumption is known as the narrow pulse
approximation [7]. The first gradient induces a phase shift (i that depends on the spin
position (see equation 2.5). Without loss of generality, we can assume that the gradient
pulses are applied along the z-axis. In this case:

rS
01 = 7J/ G(t) mxdt = NGozi (3.6)
(o]

where 7 is the magnetogyric ratio and Zi is the spin position along the z-axis. The 180"

pulse reverses 0i to —0i. The second pulse then produces a phase shift 02:

A+<5

e2=11  G{t) mdt = jGOZ2 (3.7)
where 22 is the spin position during the second pulse. The net dephasing A0 is therefore:
A0 = 02 ~ 0l = "VGO(zi —22) (3.8)

For static spins, Zi = 72 and the second pulse simply refocuses the effect of the
first pulse. However, a system of moving spins will experience a net dephasing that will

depend on their motion during the time interval A. The total magnetisation is given by the
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vector sum of the magnetic moments of the individual nuclei. Using complex notation:

M=M> s (3.9)
J

where j refers to each individual spin within the voxel, and M, is the total magnetisation
of the voxel in the absence of dephasing. For bulk or coherent motion such as flow, the
phase of each spin will be shifted by the same amount, leaving the magnitude of the
magnetisation unchanged, but altering its phase. For incoherent motion however, there
will be a distribution of phase shifts, and the resulting destructive interference will lead
to a reduction in the magnitude of the signal. It is this signal drop that forms the basis of
diffusion-weighted imaging.

The phase shift A¢; of each individual spin depends on its shift in position be-
tween the two gradient pulses. The motion of the diffusing spins can be described by
P (23|21, A), the conditional probability of finding a spin at position z, after a time A,
given that it was originally at position z;. Therefore, for a sample containing a large
number of spins, equation 3.9 can be rewritten as:

M oo oo
—_—= / / P (25| 21,A) exp [i7Gd (21 — 22)] dz1dze (3.10)
MO -0 J~00
We can see from equation 3.4 that for free diffusion along the z-axis, the conditional
probability is given by:
P2 | 21,A) = ——— exp <_(z1_22)2> (3.11)
2 VirDA ADA '

Equations 3.10 and 3.11 can then be combined and simplified to give:
M = Myexp [~y*G?6*DA| (3.12)

The effects of gradient strength and timing are often conveniently grouped together in the
so-called b-factor [8], and equation 3.12 can be further simplified to:

M = Mye™®®  where b=~2G*2A (3.13)

Equation 3.13 relates the measured signal attenuation to the diffusivity, and is the basis
for the measurement of diffusion using NMR. However, the narrow-pulse approximation
is not in general valid, due to limited gradient strengths. In this case, diffusion occurring
during the application of the gradients needs to be taken into account (see section 3.2.1).
Additional gradients, including imaging pulses and background residual gradients, may
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also have a significant effect on the measured values (see section 3.2.1). Moreover, the

diffusion process may be hindered or restricted, as discussed in the next section.

3.1.3 DIFFUSION IN BIOLOGICAL SYSTEMS

Biological tissues possess complex, heterogeneous microstructure, where the transport
properties of spins can only be approximated by the classical free diffusion approach [9].
In particular, the presence of impermeable or semi-permeable barriers to diffusion, ex-
change between the various compartments, and the orientation dependence of the dif-
fusion process all need to be taken into account. As a result, the conditional probability
distribution function mentioned above (equation 3.4) is predicted to be non-Gaussian, and
the measured diffusion coefficient will be dependent on the experimental conditions [10].
Consequently, the diffusion parameter measured in biological systems is termed the ap-
parent diffusion coefficient (ADC).

MULTIPLE COMPARTMENTS

Tissue water is contained within various compartments, notably the intra/extra-cellular
environments, and is in a state of continuous exchange between these compartments [11].
The observed signal attenuation will depend on the diffusion coefficient in each compart-
ment, the rate of exchange between these compartments, their relative volume fractions,
and specific imaging parameters, notably the diffusion time [12].

The treatment of diffusion in such systems is simplified by considering the two ex-
treme cases for the rate of exchange. In the slow exchange regime, spins can be assumed
to remain within their original compartments during the course of the experiment. In other
words, the average diffusion distance is much smaller that the average compartment size.
In this case, the signals from each compartment simply add together, such that the total
signal decays multi-exponentially [11]. For example, in a two-compartment system, the
signal is given by:

M (b) = Mo(fre¥APCr 4 f,e7bADCs) (3.14)

where f; and f, are the volume fractions for each compartment (such that f; + fo = 1)
and ADC; and ADC, are the corresponding apparent diffusion coefficients.

On the other hand, in the fast exchange regime, the spins will be completely ran-
domised between the compartments during the course of the experiment. In other words,
the average diffusion distance is much greater that the average compartment size. The
observed ADC is then averaged over all the compartments, and the signal will decay

mono-exponentially. For the two-compartment system introduced above, the observed
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ADC would be:
ADC = fiADC; + f,ADC, (3.15)

However, diffusion in biological tissues is more likely to occur in an intermediate regime
rather than either the fast or slow exchange limits.

In addition, the different 75 relaxation times within each compartment [13, 14] need
to be taken into account. The intracellular 75, is expected to be different from the extracel-
lular T5 due to the different water mobilities in the two compartments {11], introducing a

dependence of the effective volume fractions on the echo time.

RESTRICTED OR HINDERED DIFFUSION

The presence of barriers to the free movements of molecules within the sample will intro-
duce a dependence of the measured ADC on the diffusion time [15]. When the diffusion
time is short, the distance over which the molecules will have diffused will also be short,
such that they are unlikely to encounter the cell membrane (see figure 3.2). In this case,
the molecules behave as though they were diffusing freely, and the presence of bound-
aries has no detectable effect on the measured diffusion coefficient. However, if longer
diffusion times are used, a larger proportion of the molecules will strike the boundaries,
and their average displacement will be lower than expected from the free diffusion model,
leading to an underestimation of the diffusion coefficient.

In the simple case of a fully restricted system with impermeable membranes, the mean
square displacement (r2) will deviate from its expected linear relationship with diffusion
time (equation 3.5), and level off as the diffusion distance reaches the size of the restricting
compartment [16]. The effect of restriction on the ADC will thus become significant as
the diffusion distance reaches the characteristic length of the restricted compartment. If
the membranes are permeable, the mean square displacement will increase at a reduced
rate with respect to the freely diffusing case, causing the ADC to decrease towards an
asymptotic value, dependent on the permeability of the membrane.

The effect of restricted or hindered diffusion on the ADC will depend on the shape
and size of the restricted compartment, the permeability of the barriers, and the type of
NMR experiment performed. There is thus no simple way to interpret ADC measure-
ments obtained on biological tissues. However, this effect may be used to determine com-
partmental geometry, by measuring the signal attenuation as a function of the diffusion
weighting [17]. This technique, commonly known as g-space imaging, is unfortunately
very time-consuming and difficult to undertake in practice due to its hardware demands
(see section 3.3.5).
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time

Figure 3.2: free and restricted diffusion. With free diffusion, for example water
molecules in a bottle, the mean square displacement, (r"), increases linearly
with time, according to Einstein’s equation (equation 3.5). The slope then
gives the diffusion coefficient, D. If diffusion molecules are restricted to a
closed space such as an impermeable cell, the apparent diffusion coefficient
measured by MRI depends strongly on the diffusion time. For short diffusion
times, most molecules do not have time to reach the boundary, and the dif-
fusion behaves as if it were essentially free. As the diffusion time increases,
more molecules are reflected back at the boundary, and the average displace-
ment reaches an asymptote, such that the measured ‘apparent’ diffusion coef-
ficient decreases to zero. Diffusion in the presence of semi-permeable barriers
lies between these two extremes: the mean square displacement will increase
non-linearly as a function of time, and the apparent diffusion coefficient will

decrease to an asymptotic value.

44
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DIFFUSION ANISOTROPY

In a 3-dimensional system, the mobility of the water molecules may be orientationally
dependent. Such a situation may occur in the presence of coherently oriented obstructions
to diffusion, as in skeletal muscle [18] and brain whiter matter [19]. In these tissues, water
mobility is highest along the orientation of the fibres, due to the higher degree of hindrance
encountered by water molecules when moving across the fibres, rather than along their
axis. This behaviour is known as anisotropic diffusion. The ADC measured then depends
on the orientation of the sample with respect to the direction of the diffusion measurement.
However, structures that exhibit anisotropic diffusion at the microscopic level may appear
isotropic at the macroscopic level if the orientational coherence of the tissue only applies
over short (microscopic) distances, resulting in a ‘powder average’ effect that is difficult
to interpret (see section 3.3.4).

Since a single ADC value cannot adequately describe such an anisotropic system, the
concept of an apparent diffusion tensor, D, often referred to simply as the diffusion ten-
sor, was introduced [20]. Equation 3.13 can be rewritten using this tensor formalism [21]:

M = M, e %P (3.16)
where b is the b-matrix, describing the direction and strength of the diffusion weighting
used in the measurement, and the tensor dot product is introduced, defined as:

3 3
i=1 j=1

A more detailed description of the b-matrix is given in section 3.2.1. For a full description
of diffusion in anisotropic systems, the reader is referred to section 3.3.1.

3.2 DIFFUSION-WEIGHTED IMAGING

3.2.1 THE b-MATRIX

The Bloch equations [22], modified for diffusion [23], can be used to calculate the signal
attenuation for a general gradient pulse sequence. The general expression for the spin-

echo signal attenuation at the echo time TE in an anisotropic medium is then given by:

. lM(TE)

TE
") ] - —/0 E(t)TD k(t) dt (3.18)
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where D is the apparent diffusion tensor and k(t) is the k-space vector as introduced in
equation 2.6, namely:

t
E(t) = 4 /0 G(t') dt' (3.19)

Note that the k-space vector is reversed after the application of a 180° pulse (see sec-
tion 2.1.2). This must be taken into account, for example by reversing the sign of all
gradients following a refocusing pulse.

It can then be shown that:

E)TD k(t) = [k(t) - k(t)T] : D (3.20)

where the colon is used to denote the tensor dot product, as defined in equation 3.17.
Since the diffusion tensor D is assumed to be time-independent, the b-matrix introduced
in equation 3.16 can then be written:

b= TEk k()T d 3.21
= [ k() k()" dt (3.21)

The diffusion-encoding gradients are commonly much larger and longer than the
imaging gradients, and the contribution of the latter to the b-matrix is often ignored. How-
ever, it has been shown that the effect of these imaging gradients may not be negligible,
and may introduce significant errors in diffusion measurements. These effects and ways
to alleviate them are discussed in more detail in the next sub-section.

It is also interesting to note that most diffusion-weighted imaging sequences apply
the diffusion-encoding gradients at their maximum amplitude along a single direction per
excitation (with the exception of trace-weighted sequences [24, 25]). Thus, assuming
that imaging gradients are negligible, and that the diffusion gradients are applied along a
single direction, the k-space vector can be written as:

t
k(t) = 7 G [ [ m(t) dt’] i (3.22)
0
where G is the peak amplitude of the diffusion gradient, 4 is the unit vector pointing along

the direction of application of the diffusion gradient, and m(t) is a function describing the
gradient amplitude modulation. Using this notation, the b-matrix can be written:

TE [ rt 2
b="7"G*Fy [@@T] where  Fyoq = / [ / m(t) dt'] dt (3.23)
0 0

Using this formulation, all the directionality information is contained within the 4 - al

term, and the diffusion sensitivity information, or b-value, is given as 72 G?F, seq- Thus,



CHAPTER 3: DIFrFUsION IN MRI 47

90 180 echo

Figure 3.3: a schematic pulsed-gradient spin-echo pulse sequence that does
not minimise cross-terms. The read-dephasing gradient pulse is applied before
the first diffusion-encoding gradient pulse, leading to additional diffusion en-
coding arising from its interaction with the diffusion-encoding gradient pulses.
This contribution can be significant and lead to overestimation of the apparent

diffusion coefficient (see text for details).

when designing a single-direction diffusion-weighted sequence, it is only necessary to
consider the effect of the gradient timings on Fseq- For example, in the case of the
simple narrow-pulse bipolar sequence described in section 3.1.2, it can be shown that
Fseq = and that the 6-value is therefore given by Note that in practice, the
diffusion-encoding gradient pulse duration 6 will not be negligible, and the narrow-pulse
approximation cannot be assumed. See section 3.2.2 for a description of the more general

pulsed gradient spin-echo (PGSE) sequence.

CONTRIBUTION FROM THE IMAGING GRADIENTS

Imaging gradients used in typical PGSE sequences will also contribute to the 6-matrix.
If these are not taken into account, the ADC measured may be significantly overesti-
mated [26]. Consider a simple PGSE sequence such as that shown in figure 3.3. By
solving equation 3.21 along the read direction (the z-axis), the corresponding 6-matrix

element can be shown to consist of three different contributions [8]:

et 3.24)

where 6%s the contribution from the imaging gradients alone, ¢ is the contribution from
the diffusion gradients alone, and b” is the contribution arising from a cross ferm between

the imaging and diffusion gradients:
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Figure 3.4: a schematic pulsed-gradient spin-echo sequence designed to min-
imise cross-terms. In contrast to the sequence shown in figure 3.3, the diffu-
sion gradient pulses have been refocused prior to the application of the read-
dephasing gradient pulse. There is thus no extra diffusion attenuation arising
from interactions between the diffusion-encoding and imaging gradients. Al-
though the imaging gradients do cause additional attenuation, this is indepen-
dent of the diffusion gradients and can be absorbed into the M, term.

bct = 2’)’2Gde645fAd

where the parameters Gy, G4, A¢, Ay, 0, and d4 are as shown in figure 3.3.

The extra contributions from the imaging gradients and the cross terms arising from
their interaction with the diffusion gradients may be significant. Consider the simple
PGSE sequence shown in figure 3.3, with the following parameters: G4 = 20 mT/m,
Ag/b4 =45/20 ms, Gy = 10 mT/m, A;/5; = 83/10 ms. If only the diffusion pulses are
taken into account, the calculated b, term is given by b; = 439 s/mm?. However, when all
gradient pulses are accounted for, equation 3.24 gives b,, = 754 s/mm?. The contribution
from the imaging gradients alone (in this case, b; = 57.0 s/mm?) is independent of the
diffusion gradients, and can therefore be absorbed into the M, term without affecting
the measured ADC. However, the contribution from the cross-terms (b.; = 258 s/mm?) is
linear in G4: it will be present only when the diffusion gradients are applied. If it is not
taken into account, the resulting underestimation of the b-value will lead to an equivalent
overestimation of the measured ADC.

It is possible to reduce the effects of imaging gradients on the b-matrix by careful pulse
sequence design. Cross terms can be eliminated by ensuring that the diffusion gradient
pulses are refocused before the application of the imaging gradients. In the example
above, the read-dephasing gradient can be moved to a position immediately before the
read-out pulse, as shown in figure 3.4. The b,, term for that sequence would then be
444 s/mm?, a value much closer to that desired.

Some imaging gradient pulses need to be applied during the diffusion encoding. Such
gradients should be refocused as quickly as possible in order to minimise their effect. The
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180° slice-selection pulse thus has little effect since it is intrinsically refocused.

The EPI read-out train also contributes to the b-matrix. Mattiello et al [27] have shown
that since each read-out pulse is immediately refocused by the next pulse, their combined
effect is negligible. However, the phase-encoding gradients are not immediately refocused

and can have a measurable effect, particularly for low values of the diffusion-weighting.

3.2.2 DIFFUSION-WEIGHTED SEQUENCES

The measurement of diffusion will in general require the acquisition of at least two images
with different diffusion weightings, such that the ADC can be estimated from a two point
fit. It has been shown that for an optimal estimate, the difference between the two b-
values should be of the order of 1/ADC, with the lower b-value being as close to zero as
possible [28]. In most practical situations, a number of diffusion-weighted images will be
acquired with a high b-value sequence, and at least one additional image will be acquired
using an otherwise identical sequence, with little or no diffusion sensitivity (often referred
to as the b=0 image). In this way, the diffusion-weighted images can be referenced to the
b=0 image to create ADC maps that have no spin density or 75 contribution.

A typical diffusion-weighted imaging sequence will be sensitive to the motion of spins
on the order of microns, and images are therefore very prone to motion-related artefacts
(see section 3.2.3). For this reason, single-shot techniques such as EPI are typically used
for the read-out part of the sequence.

In general, the diffusion weighting will be applied in a number of directions to account
for the effects of diffusion anisotropy. Average ADC or trace maps can be generated by
acquiring 3 diffusion-encoded images with the gradient applied in orthogonal directions,
in addition to the =0 image [29]. To estimate the diffusion tensor, at least 6 diffusion-
weighted images need to be acquired in addition to the b=0 image, and schemes suitable
to acquire such data will be described in more detail in section 3.3. In this section, a
number of pulse sequences suitable for the acquisition of diffusion-weighted images are
described.

THE CONSTANT FIELD GRADIENT SPIN-ECHO SEQUENCE

Diffusion measurements were first performed by applying a constant diffusion-encoding
gradient during a spin-echo experiment [2]. From equation 3.23, the b-value for this
sequence can be shown to be v2G? TE?/12. Although this technique has allowed the very
precise measurement of the diffusion coefficient in a variety of simple liquids, it is very
rarely used in modern practice, due to the presence of the diffusion gradient during the

application of the RF pulses and during signal collection [30].
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THE PULSED GRADIENT SPIN-ECHO SEQUENCE

The pulsed gradient spin-echo (PGSE) sequence, first demonstrated by Stejskal and Tan-
ner in 1965 [6], is the most common way of acquiring diffusion-weighted images. It
consists of a pair of gradient pulses placed either side of the 180° refocusing pulse, as
shown in figure 3.1. Assuming negligible gradient ramps, the gradient pattern, in the

same form as equation 3.23, is given by:

1 0 <t < 6
m(t') = -1 A<t < A+ (3.25)
0 elsewhere

Note that the sign of the second gradient pulse has been reversed to account for the 180°
refocusing pulse. To obtain Fj., for this sequence (see equation 3.23), the integral of
m(t') needs to evaluated:

t

/ () dt’ = 5

0

o O
AN ANA
w o+
AN N A

4]
A (3.26)
0

(=2}

_S —

where the variable s = ¢t — (A + §) has been introduced in order to simplify the following
steps. This then needs to be squared:

. ) t? 0 <t <3¢
[/ m(t') dt’] . 5 <t < A (3.27)
0
s? -5 < s <0
and finally integrated a second time to give Fi,,:
TE t 2
Fur = | [ [ m) dt’] dt
0
& A 0
- & + 8% | + s
B 3 3
0 ) -5
= 6*(A~6/3) (3.28)

The b-value for this diffusion encoding is therefore v2G?§%(A—4/3). From equation 3.13,
we can see that this is the same value as would be obtained using a narrow-pulse exper-
iment with a diffusion time of A — §/3. The PGSE sequence therefore has an effective
diffusion time of A — §/3.
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Figure 3.5: a schematic representation of the diffusion-weighted stimulated
echo sequence. The diffusion encoding is applied in a similar way to the PGSE
sequence (see figure 3.1). The main difference between the two sequences is
that the magnetisation is stored along the z-axis between the application of
the second and third 90° RF pulses. During this time, the signal decays with
Ti, which is usually much longer than T:, such that diffusion measurements
at long diffusion times are possible. However, the stimulated echo sequence

carries the inherent penalty that only half the signal is preserved.

THE STIMULATED ECHO SEQUENCE

Bipolar diffusion-encoding gradient pulses can easily be introduced into a stimulated echo
sequence, as illustrated in figure 3.5. During the mixing time tm, the signal decays with
Ti, which is longer than 7”, such that longer diffusion times can be achieved than with the
PGSE sequence. This allows large values of A, and hence large 6-values to be achieved.
However, half the signal is inherently lost using a stimulated echo sequence [31], such
that it only becomes advantageous over the PGSE sequence for long echo times or in

tissues with a short 7.

THE TWICE-REFOCUSED SEQUENCE

The use of large, rapidly switched, prolonged gradients in PGSE diffusion-weighted se-
quences makes them prone to eddy-current-induced artefacts (described in section 3.2.3).
By introducing an extra 180° refocusing pulse, the long diffusion gradient pulses can each
be split into two shorter pulses of opposite polarity, as illustrated in figure 3.6. This dou-
bles the number of gradient amplitude transitions, and shortens the time lapse between
successive transitions, such that eddy-currents set up by one gradient transition are more
quickly countered by the next transition. Eddy-current-induced artefacts are thus sig-
nificantly reduced, while the diffusion-encoding efficiency remains similar to that of the
PGSE sequence [32]. This type of sequence can be further optimised by fine-tuning the

duration of the gradient pulses, as described in detail in section 4.2.1.
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Figure 3.6: a schematic representation of the twice-refocused diffusion-
weighted spin-echo sequence. In this sequence, each diffusion-encoding gra-
dient pulse of a standard PGSE sequence (see figure 3.1) has been split into
two pulses separated by a 180° refocusing pulse. The use of shorter pulses
alleviates eddy-current-related problems while retaining a similar diffusion-
encoding efficiency to the PGSE sequence.

TRACF-WFIGHTFD SEQUENCES

It is possible to design a gradient pattern such that the resulting 6-matrix contains identical
diagonal elements, and zero off-diagonal elements (in other words, b is a multiple of the
identity matrix). The signal intensity measured using such a scheme would then be di-
rectly dependent on the trace of the diffusion tensor (see section 3.3.1). The simplest such
scheme consists of applying a bipolar gradient pulse pair along each of three orthogonal
axes in succession. This encoding unfortunately results in only a small degree of diffu-
sion weighting. However, more complicated gradient patterns can be designed to achieve
higher degrees of trace-weighted diffusion encoding, such as that proposed by Mori and
van Zijl [24] and Wong et al [25].

3.2.3 A RTEFACTS

Diffusion-weighted images are typically acquired using an EPI read-out, and are therefore
prone to artefacts specific to that technique, described in section 2.3. However, the ex-
treme motion sensitivity of diffusion-weighted sequences introduces a number of further
problems, described below. Also, since very large gradients are typically used to achieve

the high 6-values necessary, eddy-currents need to be taken into consideration.

BULK MOTION

The effect on the signal of bulk, or coherent motion arises from its effect on the phase of
the individual spins. If a bulk translation occurs during the diffusion time, every spin in
the sample will acquire the same additional phase shift, resulting in a phase shift in the

overall signal. This process does not however introduce any extra dephasing, such that
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the magnitude of the signal is unchanged. This is in contrast to the case of incoherent
motion, whereby each spin will acquire a different phase shift, depending on its motion
during the diffusion time. In this case, destructive interference will cause a reduction in
the magnitude of the signal, which is the basis of diffusion imaging. Thus, using a single
shot technique, a small bulk translation has no effect on the signal intensity in the image.

On the other hand, a small bulk rotation will affect the image intensity in single-
shot diffusion-weighted imaging if the rotation axis and the direction of application of
the diffusion gradient both have in-plane components. The effect of a bulk rotation is to
introduce a linear phase shift in the sample along a direction perpendicular both to the
axis of rotation and to the applied diffusion gradient, shifting the centre of k-space away
from its initial position [33]. If this shift remains in the k,—k, plane, the effect on the
image will be to introduce a linear phase shift that will leave the magnitude of the signal
unaffected. However, if the axis of rotation and the diffusion gradient both have non-zero
components in the imaging (z-y) plane, then the centre of k-space will be shifted along
k, away from the acquisition plane, resulting in signal loss.

The k-space phase and position errors introduced by bulk translation and rotation have
a far more considerable effect when using multi-shot techniques, such as segmented EPI
or 2D-FT: any inconsistency between the different segments of k-space will introduce
severe ghosting in the image (see figure 3.7). To alleviate this problem, the relative shifts
in phase and position induced by motion between the acquisition of the different segments
must be estimated and corrected.

The navigator echo technique was introduced for this purpose [34, 33]. In its simplest
form, it consists of a single line through the centre of k-space, acquired immediately
before or after the acquisition of the corresponding k-space segment, after the diffusion-
encoding has been applied. The phase shift present in the navigator echo is then identical
to that present in the corresponding k-space segment. The relative phase shifts between
the different navigator echoes can be estimated and used to correct the relative phase
shifts between the corresponding k-space segments before they are recombined to form
an artefact-free image.

In addition to phase errors, this simple one-dimensional navigator echo approach can
also correct for shifts in the position of the centre of k-space along the axis of acquisition
of the navigator echo. Thus, it can correct artefacts due to translation, as well as a limited
subset of rotations. A wider range of rotations can be corrected using a two-dimensional
navigator echo approach, where the central portion of k-space is acquired instead of just
a single line through it [35]. However, it is still not possible to correct for the set of
rotations that cause the centre of k-space to shift out of the plane of k-space acquired (for

example, a rotation about the frequency-encoding axis with the diffusion gradient applied
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Figure 3.7: images acquired using three different diffusion-weighted se-
quences: conventional multi-shot 2D-FT spin-echo sequence (left column),
multi-shot interleaved segmented EPI (16 segments) (middle column), and
single-shot EPI (right column). The top row shows images acquired with a
¢-value = o s/mm” (unweighted images), while the bottom row shows im-
ages acquried with a ¢-value ~ 600 s/mm”. Motion induces phase errors in
the multi-shot sequences, producing ghosting in the image. (Adapted from
F. Calamante’s PhD thesis, 2000)
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along the phase-encoding axis), and k-space segments that are corrupted in this way need
to be re-acquired [36]. Although it may be possible to correct for these rotations using a
3-dimensional navigator echo technique, such an approach is impractical.

PULSATILE MOTION

Diffusion-weighted sequences are also sensitive to the motion induced by pulsations in
the vasculature. If such a pulsation occurs during or between the diffusion-encoding
gradients, spins will experience an extra phase shift. However, in contrast to the bulk
motion case, these shifts may not be coherent on the scale of a voxel, leading to additional
spin dephasing and signal attenuation. Since these are local phase shifts, they cannot be
corrected using navigated echoes. This manifests itself in diffusion-weighted imaging as
signal dropout in the affected area.

This artefact can be alleviated by using cardiac gating, and synchronising the acqui-
sition of the images with the stable phase of the cardiac cycle [37]. For single shot tech-
niques, this simply lengthens the total scan time, since the number of images per cardiac
cycle is limited by the duration of the appropriate cardiac phase. When using multi-shot
techniques, it is also important to minimise phase inconsistencies between the different
segments of each image. These segments therefore need to be acquired at the same point
in the cardiac cycle, whilst also avoiding the unstable phase of the cardiac cycle.

EDDY CURRENTS

The diffusion sensitivity is commonly induced using large prolonged gradients that are
ramped as fast as possible in order to keep the echo time at a minimum. These sequences
are therefore particularly sensitive to eddy-current artefacts (see section 2.3.3). More-
over, a number of diffusion-weighted images are typically combined together to form, for
example, an ADC map. Since each of these images is acquired using a different gradi-
ent orientation, they are affected by different eddy-currents, and are distorted in different
ways (see section 2.3.3) [38]. To produce artefact-free maps, these distortions need to be
minimised or corrected, such that the images match up correctly [39].

In addition to the techniques previously covered in section 2.3.2, various methods
have been proposed to reduce these effects in DWI. Careful design of the gradient pat-
tern may significantly reduce distortions. For example, two negative ‘dummy’ gradient
pulses can be added to a PGSE sequence, one before the excitation pulse, the other af-
ter the read-out period, such that they introduce additional eddy-currents that counter the
effects of those set up by the positive diffusion gradients, without otherwise modifying
the imaging sequence [40]. Alternatively, the durations of the gradient pulses in a twice-
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refocused spin-echo sequence (described on page 51) can be tuned to effectively eliminate
the effects of eddy-currents with a particular time constant (see section 4.2.1 for a detailed
description).

It is also possible to correct some of the phase errors induced by eddy-currents by
acquiring additional data without phase-encoding [38, 41]. Each line of k-space in the
non-phase-encoded data contains information about the evolution of the phase during data
collection that can be used to correct the phase-encoded data. However, the disadvantage
of these techniques in single-shot EPI is that the duration of the experiment is increased
two- or three-fold. Another common technique uses affine registration to retrospectively
re-align the images with a reference image [42, 43], which has the advantage that it does
not require the acquisition of additional data.

3.3 DIFFUSION TENSOR IMAGING

As previously mentioned, the ADC depends on the direction in which it is being mea-
sured. This anisotropy is due for the most part to the presence of barriers to diffusion,
such as cell membranes, organised such that diffusion is more hindered in certain direc-
tions and less in others. It is thus particularly apparent in tissues with a coherently oriented
microarchitecture, such as white matter tracts. To describe such an orientation dependent
system, the diffusion tensor model was introduced by Basser and Le Bihan in 1994 [20].

3.3.1 THE DIFFUSION TENSOR

The diffusion tensor model uses a 3 x 3 symmetric tensor to characterise the diffusion
properties of the medium. The spin displacement probability density function in this
framework takes the form (cf. equation 3.11):

1 r"D™'r

Ple[ &)= J/(4r2)? det(D) =P <— T) 329

where r is the spin displacement vector from its original position, A is the effective dif-
fusion time, D is the diffusion tensor, and det(D) and D ~! denote respectively the
determinant and inverse of D.

The diagonal elements of D, namely D,,, D,,, and D,,, reflect correlations between
displacements in the same directions, whereas its off-diagonal elements, D,,, D,,, and
D,., reflect correlations between molecular displacements in orthogonal directions [44].
For example, when observing diffusion in a lattice of semi-permeable parallel layers

aligned obliquely with respect to the x and y axes, macroscopic displacements along
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Figure 3.8: a typical diffusion ellipsoid in the lab frame of reference, repre-
sented by the x, y and z axes. In this frame of reference, the diffusion tensor
D is represented by the matrix shown in the bottom left. The diagonalisation

process aligns the axes of the coordinate system with the tensor’s principal di-

’

rections. In its eigen frame of reference, represented by the x ', y' and z' axes,
the diffusion tensor D' is represented by the matrix shown in the bottom right.
Note that all off-diagonal elements are now zero. The elements along the diag-
onal corresponds to the tensor’s eigenvalues. The corresponding eigenvectors
are aligned along the x', ' and z' axes.

X will appear to be correlated with displacements along y, resulting in a non-zero D"y

element. This formulation offers a number of advantages, outlined below.

THE EIGENSYSTEM

Although the actual elements of D may vary as the laboratory frame is rotated, many
of the properties described by the tensor will not change. Those properties are termed
rotationally invariant, and are of particular interest since they will not depend on the
orientation of the sample with respect to the laboratory frame. If the lattice of layers de-
scribed above is rotated such that the layers lie perpendicular to the x-axis, displacements
along X will cease to be correlated with displacements along y, and D"y will be zero. In
general, when the principal directions of the sample are aligned with the axis system, all
off-diagonal elements disappear, leaving a diagonal tensor (see figure 3.8). In this frame
of reference, the diagonal elements of the tensor are known as its eigenvalues, and the
vectors pointing along the principal axes are known as its eigenvectors. Each eigenvalue
is rotationally invariant, and is associated with its corresponding eigenvector, the elements
of which are dependent on the orientation of the laboratory frame [44]. The eigenvalues
are normally sorted in order of decreasing magnitude, and referred to as A% Ag, and A3,

while their corresponding eigenvectors are known as 4, £2, and £3. The eigenvector (£J
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Figure 3.9: the properties of the diffusion tensor can be expressed in terms of
the shape of its characteristic ellipsoid. Left: a prolate tensor (Ai > A = As).
Middle: an oblate tensor (Ai = A2 > As). Right: an isotropic tensor (Ai =
A - A).

coiTesponding to the largest eigenvalue (AJ gives the direction of fastest diffusion, and is
commonly known as the major eigenvector of the diffusion tensor.

The diffusion tensor is often represented visually by its characteristic ellipsoid [20], as
shown in figure 3.8, corresponding to a surface of constant spin displacement probability.

It can be seen from equation 3.29 that the surface of this ellipsoid is given by:

A (3.30)

where C is a constant. In the diffusion tensor’s eigensystem, all off-diagonal elements

disappear, and this equation reduces to:

(3.31)
2AA,  2AA,  2AA:

where C has been setto 1, and represents the component of r along  The dimensions
of the diffusion ellipsoid along its axes therefore correspond to the root mean square spin
displacements along the corresponding directions (cf. equation 3.5).

The properties of the diffusion tensor can be more clearly visualised using this repre-
sentation. For example (figure 3.9), a tensor with Ai > A2 ~ A3 corresponds to aprolate
ellipsoid, with a characteristic cigar-shaped appearance. A tensor with Ai % A2 > A3 cor-
responds to an oblate ellipsoid, with a characteristic pancake-shaped appearance. Finally,
an isotropic tensor with A% = A2 = A3 corresponds to a sphere.

The diffusion tensor can be derived from a combination of at least 6 diffusion-weighted
measurements applied along non-collinear directions (in addition to measurements ac-
quired to estimate the value of A/q, the signal in the absence of any diffusion-weighting),
by inverting equation 3.16:

hU = Mo (3.32)
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The calculation is often done using linear regression, by rewriting the equation above as:
B-d=m (3.33)

where:
bl,cccc bl,yy bl,zz 2bl,zy 2bl Tz 2bl,yz -1

’

b2,am: b2,yy b2,zz 2b2 Ty 2b2 Tz 2b2,yz -1

H »

bN,a::t bN,yy bN,zz 2bN,xy 2bN,:ztz 2bN,yz -1

Dyy
Dy, In(M;)
D.. In(M>)
d= Dy, and m=| In(Ms)
D,, :
Dy, \ In(My)
\ In(My) )

The matrix B can then be inverted using standard techniques to find d:
d=B'm (3.34)

The properties of the diffusion can also be visualised by plotting the apparent diffusion
coefficient (estimated using the simple equation M = M, e~*P) as a function of orienta-
tion, as shown in figure 3.10. This representation has the advantage that it is not dependent
on the diffusion tensor model, which may not always be appropriate (see section 3.3.5).

THE TRACE OF THE DIFFUSION TENSOR

The trace of the diffusion tensor, tr(D), is given by the sum of its diagonal elements,
and is rotationally invariant [20]. In the eigensystem, the diagonal elements correspond
to the eigenvalues, such that the average eigenvalue ) corresponds to tr(D)/3. Since the
trace of the diffusion tensor is the mean diffusivity, averaging measurements made along
a large number of uniformly distributed directions gives A. However, three ADC mea-
surements made in orthogonal directions are sufficient to estimate the mean diffusivity.
Alternatively, tr(D) can also be measured directly using a trace-weighted sequence as
described in section 3.2.2. In the normal human brain, the mean diffusivity is approx-
imately 850 x 10~® mm?/s in grey and white matter, and close to that of free water in
the CSF [45]. Trace maps such as that shown in figure 3.11 therefore appear relatively
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Figure 3.10; the relationship between the diffusion-weighted signal and the
diffusion tensor. Left: the diffusion-weighted signal (measured using the same
¢-value) plotted as a function of orientation. The signal is lowest along the
direction of fastest diffusion. Middle: the corresponding apparent diffusion
coefficient (calculated using the simple equation M — MQ plotted
as a function of orientation. Right: the diffusion tensor estimated from the
diffusion-weighted measurements shown on the left by linear regression (equa-
tion 3.33).

homogeneous over the entire brain, except in regions containing CSF.

DIFFUSION ANISOTROPY

The anisotropy of the diffusion process is a measure of its deviation from the isotropic
diffusion case (where the ADC is independent of orientation). In biological tissues, this
anisotropy arises from coherently oriented banners to diffusion. The degree of anisotropy
in bundles of neuronal axons has been shown to depend on a number of factors, in partic-
ular axonal density, fibre radius, and the degree of myelination [9, 16, 46].

A number of expressions have been proposed as objective markers of anisotropy [47,
48]. The first measures proposed were functions of the ADC as measured along two
orthogonal directions [19]. Such an approach is however dependent on the orientation of
the sample with respect to the laboratory frame, and is therefore not rotationally invariant.
Anisotropy is now commonly measured using rotationally invariant measures, the most
common of which are described below.

The volume ratio anisotropy index is defined as [49]:

det(i9
AvR = 1- _ qgq 40P (3.35)
A

where A is the average eigenvalue, given as tr(D)/3, and A is the product of the
eigenvalues. This measure corresponds to the ratio of the volume of the diffusion tensor’s
ellipsoid to the volume of the sphere representing isotropic diffusion with ADC = A. In

this definition the measure has been scaled such that 4 YR = 0 corresponds to the isotropic
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Ai>1/

Figure 3.11; various maps available from the diffusion tensor. Top left: a map
of the mean diffusivity. Top middle: a map of the fractional anisotropy (FA).
Top right: a colour-coded map of the major eigenvector of the diffusion ten-
sor weighted by the corresponding FA map. Bottom: an overlay of the major
eigenvector onto a map of the fractional anisotropy for the region highlighted
on the top middle image. The combination of these maps provides good con-
trast: grey matter has normal trace and low FA, white matter has normal trace
and high FA, and CSF has high trace and low FA. See text for details.
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anatomical region FA A Avr
corpus callosum 0.65 +0.16 0.50 £ 0.02 0.86 £ 0.05
internal capsule 0.38 + 0.06 0.39 £ 0.02 0.70 £ 0.08
optic radiation — 0.31 £0.02 0.62 +0.12
frontal white matter 0.34 £ 0.12 0.26 £ 0.01 -
periventricular white matter 0.34 + 0.08 - 0.27 £ 0.03
caudate nucleus - 0.10 £ 0.01 0.08 + 0.03

Table 3.1: diffusion anisotropy values measured in healthy adults in various
regions of the brain. Fractional anisotropy (FA) values from Filippi et al [52],
total anisotropy (A, ) values from Shimony et al [53], and volume ratio (Ay g)
values from Pierpaoli et al [54].

case, and Ay g = 1 corresponds to the highest possible anisotropy.
The relative anisotropy was introduced by Basser ez al [50] and is defined as:

N2
(-3 _b,:D, 536
A AV3 '
where the colon operator denotes the tensor dot product as defined in equation 3.17, and

D, = D — )\, such that D, contains only the anisotropic part of D (I is the 3 x 3
identity matrix). This measure corresponds to the standard deviation of the eigenvalues,

W=

RA =

normalised to the mean eigenvalue. This measure is similar to the total anisotropy index,
A,, introduced by Conturo [51], which corresponds to A, = RA/ V2.
The fractional anisotropy, also introduced by Basser et al [50], is defined as:

2 L E /\2
This measure corresponds to the standard deviation of the eigenvalues, normalised to

FA = (3.37)

the root mean square eigenvalue. It is scaled by a factor of 3/2 such that the maximum
possible value of FA is 1.

These three rotationally invariant anisotropy indices all have the advantage that they
can easily be calculated from the elements of the diffusion tensor; there is no need to
diagonalise the tensor into its eigensystem, which is a computer-intensive process. In
practice, the FA is the most commonly used anisotropy index, as it has been shown to be
more robust to noise and to provide better contrast than other indices [48]. Typical values
of the diffusion anisotropy for various tissues are shown in table 3.1, and a map of the

fractional anisotropy acquired on a healthy volunteer is shown in figure 3.11.
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THE MAJOR EIGENVECTOR OF THE DIFFUSION TENSOR

It is often assumed that the direction of fastest diffusion in brain white matter corresponds
to the orientation of the underlying neuronal fibres (see section 3.3.3). This direction can
be estimated from the diffusion tensor by evaluating its major eigenvector, and visualised
using maps such as those shown in figure 3.11. These maps can be generated in two ways.
First, the major eigenvector can be projected and overlaid onto a 2D anatomical slice, such
as a map of diffusion anisotropy. Although such maps give an accurate representation of
the direction of the major eigenvector when zooming in on a specific area of interest,
the vectors are difficult to see when displaying full brain images. The second type of
eigenvector map is generated by assigning a colour to each direction [55]. Colours on
visual display units are usually defined by their red, green and blue components. A vector
é can therefore be represented by a colour, by setting the red component to |é,|, the green
component to |é,|, and the blue component to |€,|. Therefore, regions of white matter
where the fibres run primarily from left to right will appear red, regions where fibres run
anterior to posterior will appear green, and regions where fibres run superior to inferior
will appear blue. Such maps can be used to visualise white matter architecture over the
whole brain, but do not provide an accurate representation of the orientation of the major
eigenvector, as explained by Pierpaoli et al [55].

3.3.2 DIFFUSION ENCODING SCHEMES

In order to calculate the diffusion tensor, 7 variables need to be estimated: the tensor’s
6 independent elements, and M. This means that at least 7 measurements must be per-
formed: one at low b-value and 6 at high b-value along non-collinear directions. A num-
ber of recent studies have explored the optimal set of diffusion encoding parameters that
would allow the most robust determination of the diffusion tensor within a practical scan
time. The parameters to be determined are the b-values to be used, and the directions of
application of the diffusion encoding gradients.

Jones et al [28] have shown that for the optimal determination of various properties
of the diffusion tensor, the following scheme should be employed: two b-values (b; and
bo) should be used, with (by — b1)ep = 1.09/ADC:; by should be made as small as possible
to maximise the SNR; the ratio of the number of high b-value scans acquired to low b-
value scans acquired should be approximately 5.6:1 for trace measurements, or 11.3:1 for
estimating the elements of the tensor; the set of orientations along which the diffusion-
weighting is applied should be uniformly distributed over the surface of a hemisphere.

Papadakis et al [56] showed that although a particular sampling strategy may minimise
the variance in the anisotropy of the tensor, the variance itself may be orientationally
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dependent. However, this dependence becomes negligible when using a sampling scheme
consisting of at least 20 uniformly distributed directions. It has also been shown that using
more than approximately 20 directions minimises the entropy of fractional anisotropy
maps [57].

A number of techniques for obtaining a set of uniformly distributed orientations along
which to sample the ADC have been proposed. Jones et al [28] and Papadakis et al [56]
used an electrostatic repulsion model, whereby each direction was represented by a pair
of diametrically opposed charges at a fixed radius such that, at equilibrium, the charges
are as far apart from each other as possible. Hasan et al [58] have proposed a number of
possible measures of performance that could be minimised with respect to the gradient
orientations to provide an optimal set. Tuch et al [59] obtained a set of directions from
the tessellation of an icosahedron. Skare et al [60] proposed to use the condition number
as a measure of a scheme’s robustness to noise. Finally, Batchelor et al [61] showed
that icosahedral schemes have properties that make them particularly suited to diffusion
tensor measurements: schemes based on members of the icosahedral family have the
same condition number as that using an infinite number of directions, and are rotationally
invariant (the variance in the estimated diffusion tensor elements is independent of the
orientation of the tensor with respect to the measurement axes).

Diffusion tensor acquisitions are therefore commonly done using a combination of low
(i.e. close to zero) b-value measurements, and a larger number of high b-value (typically
1000 s/mm?) measurements with the diffusion encoding applied in a number of directions.
The diffusion encoding should be applied in as many directions as the available scan
time allows. Rotational invariance can be achieved either by using at least 20 uniformly

distributed sampling directions [56, 57], and/or using an icosahedral scheme [61].

3.3.3 TRACTOGRAPHY

Brain white matter consists of fibre bundles or tracts, made up primarily of the axons of
neurons linking different structures [62]. Diffusion in this type of structure is anisotropic,
due to the greater hindrance to the movement of water molecules across the tightly packed
axon bundles than along their axis [9]. The major white matter tracts are therefore clearly
visible in anisotropy maps. The eigensystem decomposition of the diffusion tensor, de-
scribed in section 3.3.1, also provides information about the direction of fastest diffusion,
which can be exploited in tractography or fibre-tracking applications.

It is often assumed that the direction of fastest diffusion corresponds to the orienta-
tion of the underlying white matter tract fibres. This has been shown to be the case, for

example, in the optic tract of the rat, using manganese-enhanced MRI [63]. It may then
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Figure 3.12: A schematic representation of voxel-linking tractography tech-
niques. The figure shows the orientation of the major eigenvector within each
voxel. At each step, voxels adjacent to the current voxel are examined to de-
termine which one is most likely to be connected with the current voxel, ac-
cording to a set of rules specific to the algorithm. A link is then established to
the voxel selected, which becomes the current voxel. This process is repeated

until an algorithm-specific termination criterion is satisfied.

be possible to follow this direction step by step through the data set, thus delineating the
path of the tract of interest. In this way, neuronal connections between different anatom-
ical regions of the brain may be inferred. To date, a number of different tractography
algorithms have been proposed [64, 65, 66, 67, 68, 69, 70]. Most of these share a number
of characteristics in common. For example, the track will often be terminated if it enters
a region of low anisotropy, or if its curvature exceeds a predefined threshold. Many of
these algorithms fall into two main categories, according to their approach to the prob-
lem: voxel-linking or streamlines. Each of these approaches has its own advantages and
disadvantages, which will be discussed in more detail in chapter 5. A brief description of

some of the most common techniques is given below.

VOXFL-LINKING TECHNIQUES

This approach is based on establishing links between adjacent voxels as shown in fig-
ure 3.12, according to a set of algorithm-specific rules. These links form a chain through
the data set, thereby potentially enabling the identification of connections between differ-
ent brain regions. The rules used to establish these links vary widely between different
algorithms, making this approach very versatile. Another advantage of this approach is
that the tracks generated are allowed to branch to different regions of the brain, such that
the most likely connections from the seed point can be displayed. It is also possible to
extend it so that each connection is given an indication of its likelihood.

Jones et al [64] aUowed links to be established between adjacent voxels if a circular
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arc could be drawn between the centre of the two voxels, such that the major eigenvectors
of their corresponding diffusion tensors were tangential to that arc within a predefined
tolerance. Their technique allowed the delineation of groups of voxels likely to belong to
the same white matter structure.

The technique introduced by Poupon et al [70] establishes a ‘forward’ and a‘backward’
link for each voxel, according to the orientation of the major eigenvector. Links are es-
tablished in each direction to the adjacent voxel that minimises the curvature of the track.
This technique intrinsically allows the track to branch, since a particular voxel may estab-
lish a connection to another that is already connected to two other voxels. The algorithm
as described is also combined with a method to regularise the major eigenvector field,
using a ‘spaghetti plate’ model to minimise the curvature in the field.

Parker et al [67] have recently proposed a technique based on the evolution of a front
from an initial used-defined seed point, using the principles of level set theory and the
fast marching algorithm. The front evolves at a rate governed by the orientation of the
major eigenvector with respect to the surface of the front. A path is then calculated from
every point in the brain back to the seed point by following the gradient of the map of the
time of arrival of the front, and a connectivity index is assigned to each path. Only the
highest connectivity paths are eventually displayed. This allows multiple connections to
be established to the seed point, thus intrinsically allowing the tracks generated to branch
or diverge. The technique also provides a pseudo-probabilistic measure for the likelihood
of each track given the data.

Koch et al [69] recently proposed a Monte Carlo approach to establish pseudo-proba-
bilistic estimates of connectivity. Starting from a user-defined seed point, a random ‘jump’
is made to one of three adjacent voxels in the forward direction with respect to the di-
rection of fastest diffusion in the current voxel. A fixed number of such ‘jumps’ are
performed for each iteration of the algorithm. After a large number of iterations, the
‘probability’ of connectivity for a particular voxel is given by the number of times the
algorithm ‘jumped’ to that voxel, normalised to the number of iterations performed.

Voxel-linking techniques are however limited in two respects. First, the number of
orientations that the track can follow is limited to those joining adjacent voxels (a total of
26 directions). This results in a much lower angular resolution (45°) than can be achieved
with DTI (the major eigenvector can typically be determined to within 10° [63, 71]).
Second, the path of each track is constrained to pass through the centre of the different
voxels along it. This introduces errors in the estimation of the true path that may cause
the track to venture into unrelated structures and ultimately lead to a very different region
of the brain.
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Figure 3.13: a schematic representation of a streamlines algorithm. The figure
shows the orientation of the major eigenvector within each voxel. Starting from
a user-defined seed point, a small step is repeatedly taken along the direction
of the major eigenvector, until an algorithm-specific termination criterion is
satisfied. In contrast to voxel-linking techniques, the tensor field is treated as
continuous, such that the path of the track is not restricted to the centre of each

voxel.

THE STREAMLINES APPROACH

The diffusion tensor field can be expressed as a continuous function of position. The sim-
plest such description is obtained by assuming that the tensor at any point in space is that
of the nearest voxel. More sophisticated methods are available that involve interpolation,
resulting in a smoother description of the tensor field. In such a framework, tracks do
not need to jump from voxel to voxel, but can follow any continuous path in three di-
mensional space. Fibre-tracking techniques based on the streamlines technique generate
tracks by stepping along the presumed direction of the underlying white matter tract (nor-
mally the major eigenvector of the diffusion tensor) by a small amount for each iteration,
until some terminating criterion is reached, as illustrated in figure 3.13. The size of each
step is normally referred to as the step size, and should be smaller than the dimensions of
a voxel.

Mori et al [65] proposed the well-known fibre assignment by continuous tracking
(FACT) algorithm, which uses the simple non-interpolated continuous tensor field ap-
proximation described in the previous paragraph. Conturo et al [66] proposed a similar
algorithm, using an interpolated description of the tensor field. Each element of the tensor
at the point of interest is given by the tri-linear interpolation of the 8 nearest neighbours’
corresponding tensor elements. Basser ef al [68] approximate the tensor field using a set
of B-spline functions that provides estimates of the 2nd and higher derivatives of the ma-
jor eigenvector. This allows the use of the 4th order Runge-Kutta method, and hence a

more precise determination of the track path. In addition, the process of fitting B-splines
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to the tensor data intrinsically imposes constraints on the form of the tensor field and
increases its smoothness.

Although streamlines techniques do not have the angular or spatial constraints of the
voxel-linking approach, they do have a number of disadvantages. Since only one direction
is considered at each step, the tracks generated are not allowed to branch. There is only
one track per seed point, and no indication is given of other possible connections, or of the
likelihood of the track generated. The major eigenvector is sensitive to noise and partial
volume effects (see section 3.3.4), and may be corrupted. A track generated using this
corrupted orientation may establish a connection that does not exist in reality, without
giving any indication of its likelihood or of possible alternatives.

3.3.4 ARTEFACTS

In addition to artefacts specific to DWI outlined in section 3.2.3, the low SNR and low
spatial resolution of DWI causes additional problems particular to tractography. These
effects are discussed in more detail in chapter 5.

NOISE CONTAMINATION

The presence of noise in the diffusion-weighted images will propagate to the tensor ele-
ments [28, 72, 73, 74]. As mentioned in section 3.3.2, optimising the acquisition scheme
is essential to minimise the sensitivity of the tensor to the variance in the diffusion data.
However, some noise will inevitably be present in the DTI data, affecting the various
maps that can be derived.

In particular, the anisotropy of the tensor will tend to be overestimated in the presence
of noise, especially at low values of the anisotropy [75]. Consider the case of a perfectly
isotropic tensor, which would have a zero anisotropy index: if noise is present in the
images, the estimated tensor will deviate from its ideal isotropy, raising its anisotropy
index. Thus, at low SNR, anisotropy maps will be biased in addition to the expected
increase in the variance.

The presence of noise also introduces an error in the estimated direction of the major
eigenvector, depending on the anisotropy of the tensor, the SNR and the diffusion encod-
ing scheme [72, 75]. This is particularly relevant for tractography applications, since a
corrupted orientation may cause the track to venture into an adjacent, yet unrelated struc-

ture, establishing connections where none exists in reality.
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Figure 3.14: the effect of partial volume averaging, (a): the profile of the ap-
parent diffusion coefficient measured as a function of orientation for a single fi-
bre population (equivalent to a single prolate diffusion tensor, see figure 3.10).
(b): the diffusion profile for a fibre population at right angles to, but otherwise
identical to that in (a), (c): the apparent diffusion coefficient profile that would
be measured in a voxel consisting of equal fractions of the fibre populations
in (a) and (b), in the slow exchange limit. Note that the peaks of the diffusion
profile do not coincide with the orientations of either fibre populations present,
(d): the diffusion tensor that would be estimated from the diffusion profile in

(©).

PARTIAL VOLUME EFFECTS

Due to the typically low spatial resolution of DWI, multiple distinct fibre populations
may contribute to the signal from a single voxel. Unfortunately, the diffusion tensor
model is unable to describe more than one fibre population at any one point [59, 76, 77,
78]. In this case, the diffusion tensors of the various fibre populations present within the
voxel will be ‘averaged’ in some way to give a single tensor. This introduces significant
errors in estimates of the anisotropy, and has profound implications for fibre-tracking
applications [79, 80].

Consider for example a voxel consisting of a mixture of two distinct fibre populations,
with one oriented at an angle with respect to the other. This situation could happen for
example where two fibre tracts intersect, or where the tracts simply run very close to
each other. Although the diffusion tensor within each fibre population may be highly
anisotropic and prolate (i.e. Ai > A2 ~ A3), the diffusion tensor estimated within that
voxel may appear quite different. In the particular case that the fibre populations have
identical diffusion properties, contribute equally to the signal, and intersect each other
at right angles, the tensor estimated would appear oblate (i.e. Ai ~ A2 > A3), and the
anisotropy would be significantly reduced (see figure 3.14). In general, where two or
more fibre populations are present, the diffusion tensor will tend to become more oblate
or even isotropic, depending on the arrangement of the fibres, leading to a reduction of

the anisotropy [76]. In order to minimise this problem, it has recently been proposed
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to use the variance in the ADC measured using a high angular resolution scheme (see
section 3.3.5) as an alternative measure of diffusion anisotropy that is not derived from
the tensor model [81].

The impact of such a situation on tractography applications is considerable. One
consequence of the reduction in anisotropy is that tracks may be terminated prematurely.
Of far greater concern however is the fact that the major eigenvector of the diffusion
tensor will not in general be consistent with any of the fibre populations present [59].
Tracking through regions affected by partial volume effects is therefore very unreliable,
as illustrated by Pierpaoli et al [82], and is a problem that is exacerbated by not knowing
which areas are affected.

Although the impact of partial volume effects can be reduced by increasing the reso-
lution of the images, this would inevitably reduce the SNR, introducing other problems
previously described. To address these issues, alternatives to the tensor model (described
in the next section) have been proposed that may be better suited to the problem. How-
ever, even using more sophisticated models, it is not clear whether the distinction between
crossing and ‘kissing’? fibres can be made using diffusion-weighted MRI, since the diffu-
sion characteristics are expected to be similar.

3.3.5 ALTERNATIVE MODELS FOR DIFFUSION

The diffusion tensor model is valid for free Gaussian diffusion. However, it is widely
acknowledged that the diffusion anisotropy observed in the brain is due to the presence of
barriers to diffusion, which would invalidate the model. Despite this, it remains the most
commonly used model of diffusion in the brain as measured by NMR, due to its simplic-
ity, and the fact that it seems adequate in regions free from partial volume effects [39].
However, deviations from the tensor model can readily be observed in regions containing
significant partial volume effects, such as crossing fibres [59, 78, 81].

As mentioned in section 3.1.3, in the slow exchange regime, the NMR signal from the
various populations will add together. In this case, a single tensor will not be an adequate
fit to the set of ADCs measured over a large number of directions. To describe such a
system, two approaches can be employed, namely g-space and high angular resolution
imaging, each of which requires particular data acquisition conditions to be fulfilled.

g-SPACE

The g-space formalism states that, assuming the narrow-pulse approximation (see sec-
tion 3.1.1), there is a Fourier relationship between the signal measured as a function of

2Fibres are said to ‘kiss’ if they pass close to each other without crossing, forming a DC shape.
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the diffusion-encoding gradient and the spin displacement probability density function
(PDF) [83]. Thus, using a diffusion time A and a gradient pulse duration ¢, the signal
M (z, q) measured at position z in the sample as a function of ¢ = ydG is given by:

M(z,0) = pla) [ P(r|2,8) 2" dr (3.39)

where p(z) is the spin density (ignoring the effects of relaxation), and P(r | z, A) is the
spin displacement PDF, giving the probability of a spin initially at position z having dif-
fused by a displacement r after a diffusion time A (see equation 3.10). Although the spin
displacement PDF provides a complete description of the diffusing system, g-space imag-
ing is very difficult to perform in practice, for a number of reasons. First, a very large
number of measurements need to be performed to sample 3-dimensional g-space ade-
quately. For example, to obtain a 10x10x10 spin displacement map, 500 measurements
need to be performed (only half of the number of samples are needed due to the symmetry
of the spin displacement PDF) [84]. Second, to avoid truncation artefacts, g-space needs
to be sampled up to large g-values, whilst satisfying the narrow-pulse approximation [85].
This requires extremely short and intense gradient pulses, which are not currently feasible
on clinical systems.

Wedeen et al [84] have recently proposed a technique based on g¢-space imaging,
dubbed diffusion spectroscopic imaging (DSI), that ignores the narrow-pulse approxima-
tion constraint. In this case, the spin displacement measured is the difference between the
average position of the spin during the first pulse and its average position during the sec-
ond pulse [86]. If the diffusion is restricted, the average spin positions during each pulse
will tend to move towards the centre of the restricting compartment, and hence closer
together, as the pulse duration increases. The spin displacement will therefore be under-
estimated using long gradient pulse durations. Nevertheless, this technique is capable of
showing structures in areas of crossing fibres that are not visible using diffusion tensor
imaging. However, it suffers from an impractical imaging time (up to 4 hours), making it
unsuitable for clinical use.

HIGH ANGULAR RESOLUTION IMAGING

In tractography, it is the orientation of the underlying tract that is of interest. It may
therefore be sufficient to estimate the angular distribution of the spin displacement PDE.
Tuch et al [87] proposed a technique that samples the diffusion-weighted signal along a
large number of diffusion gradient orientations, using a constant b-value. This technique
also shows structures that cannot be seen using conventional diffusion tensor imaging,
and has the advantage of a shorter imaging time than its g-space counterpart.
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Alexander et al [78] and Frank et al [77] have suggested that the signal acquired
using such a technique could be fitted using the set of even spherical harmonic functions.
Statistical tests can then be performed to highlight areas of the sample where the tensor
model does not fit the data (the tensor model is equivalent to truncating the spherical
harmonic series to 2nd order ).

So far, high angular resolution data have been acquired using schemes that have been
optimised for the acquisition of diffusion tensor data. Further work is needed to optimise
the acquisition scheme for this particular technique. In addition, it remains unclear how
the ADC profile acquired using high angular resolution imaging relates to the underlying
fibre architecture. A number of models have been proposed [88, 59], and further work is

needed to extract the fibre orientation from such data.

3.3.6 UNRESOLVED ISSUES IN TRACTOGRAPHY

To date, a number of techniques have been proposed to perform fibre-tracking using DTI
data. However, these algorithms are difficult to validate in-vivo due to the lack of a gold
standard. It has been shown to be feasible to use manganese ions (Mn2?*) as a neuronal
tract tracer [63, 89]. However, it has so far only been possible to investigate tracts that can
be accessed easily (such as the optic and olfactory tracts). Moreover, due to the toxicity
of manganese, it is not possible to use this technique on the human brain in-vivo. Another
common method to provide evidence for the validity of an algorithm is to compare the
tracks generated with known anatomy. However, this does not provide any indication of
the robustness of the algorithm to, for example, noise or partial volume effects, or to the
properties of the underlying tract, such as cross-sectional radius, curvature, anisotropy or
the presence of pathology.

Existing techniques therefore need to be further assessed and validated. Furthermore,
existing algorithms suffer from various limitations inherent in their design, and there is a
need for the development of new, more robust techniques. Some of these issues are the
subject of chapters 5 and 6.
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The images presented in this work have been acquired using one of two sequences,
both of which are described in this chapter. The sequence initially used to acquire dif-
fusion tensor data was based heavily on an existing sequence, written in-house for the
acquisition of the trace of the diffusion, which was extended to acquire images according
to the tetrahedral-orthogonal diffusion encoding scheme [1]. This sequence, described in
the first section, produced images of sufficient quality for the calculation of anisotropy
maps and for simple tractography applications.

This sequence, however, suffered from a number of drawbacks. The scanner’s pulse
programming environment has a number of limitations, which in our case affected the
efficiency of data collection. In particular, it was not possible to write the sequence in a
single pulse program, and a pulse program cannot be started until all calculations for the
previous one have been completed. For reasons outlined below, a constant phase-encoding
(CPE) EPI read-out was used, so the calculations required for image reconstruction took
a relatively long time to complete (see section 2.2.2). Since the sequence had to be im-
plemented using several pulse programs, this introduced a significant time lapse between
starting successive programs (approximately two minutes for 25 128 x 128 slices). Also,
it has recently been suggested that applying the diffusion encoding in a large number of
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directions uniformly distributed over the surface of a hemisphere may reduce the bias in
the calculation of the tensor and its anisotropy [2]. For these reasons, a new sequence
was developed that would acquire data in a much more time efficient manner, using a 20
direction diffusion encoding scheme. It is described in the second section.

Different diffusion-encoding gradients will in general induce different eddy-currents,
and hence different receiver delays. With a blipped EPI read-out, the receiver delay would
need to be adjusted separately for every gradient orientation. However, the receiver gain
needs to be kept constant over all the pulse programs if the data are to be consistently
scaled. On the Siemens Vision system used in this work, adjusting the receiver delay
and gain separately is impractical. In addition, the adjustments introduce extra ‘dead
time’ into the acquisition. However, these adjustments only need to be performed once
when using a CPE-EPI read-out. For this reason, a CPE-EPI read-out was used for both
sequences.

4.1 TETRA-ORTHO SEQUENCE

The DTI sequence initially used was a simple modification of that routinely used to collect
average ADC maps in the clinical examinations at Great Ormond Street Hospital. This
consisted of a spin-echo EPI sequence, with two diffusion gradient pulses placed either
side of the refocusing pulse (see figure 4.1). Due to the limitations described above, the
sequence was split into two pulse programs, to be run sequentially. A correction scan
consisting of two lines through the centre of k-space was acquired immediately after the
90° excitation pulse to correct for Nyquist ghosting artefacts (see section 2.3.2). In or-
der to alleviate the effects of eddy-currents induced by the diffusion-encoding gradients,
two opposite polarity dummy gradients were placed one immediately before the 90° ex-
citation pulse, the other after the EPI read-out, such that they would not affect the image
contrast. The remaining eddy-current-induced artefact (a slice-dependent image shift)
was corrected by acquiring an additional data set without phase-encoding [3].

The original sequence for the acquisition of ADC maps consisted of acquiring im-
ages with the diffusion encoding applied along three orthogonal directions (z, y, ) and
one b=0 image. As described in section 3.3.2, a full characterisation of the diffusion ten-
sor requires the acquisition of at least 6 images with the diffusion-weighting applied in
non-collinear directions, in addition to the b=0 image. The tetrahedral-orthogonal diffu-
sion encoding scheme was used in this sequence, as it has been shown to perform well
for the acquisition of diffusion tensor data [1]. The diffusion-encoding directions used
for each pulse program are shown in table 4.1. The imaging parameters used in the ac-
quisition were the following: TE = 110 ms, matrix = 128 x 128, FOV = 256 mm, slice
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fat sat 90 180 echo

EPI readout

dummy dummy

Figure 4.1; The tetrahedral-orthogonal pulse sequence implemented in Great
Ormond Street Hospital. This consists of a simple POSE sequence (see sec-
tion 3.2.2), with two additional negative polarity ‘dummy’ gradients at either
end of the sequence to alleviate the effects of eddy-currents. A set of binomial
fat saturation pulses are applied prior to the 90° RF excitation pulse to selec-
tively excite and spoil the lipid signal. A set of 2 reference scans (Nyq) are
acquired immediately after the 90° excitation pulse to correct Nyquist ghost
artefacts. The EPI read-out consists of a constant phase-encoding gradient se-
quence (see section 2 .2 .2).

thickness = 2 mm (resulting in a 2x2x2 mm voxel size), with the slices acquired in in-
terleaved order. The diffusion encoding gradients were applied with b = 27.1 ms and
A =523 ms, giving a 6-value of 1066 s/mm~”. The measurements were repeated 6 times
to give a final SNR of approximately 32 in the non-diffusion-weighted (6=0) image. This
resulted in a total acquisition time of approximately 45 minutes for 25 contiguous slices
covering a 5 cm slab, 28 minutes of which were taken up by image reconstruction and
storage.

As can be seen from figure 4.2, the images produced were of a sufficient quality for
the production of suitable fractional anisotropy maps and fibre-tracking (see chapter 5).
However, as implemented, the tetra-ortho sequence suffered from a number of limitations

that prompted the development of an improved sequence. In particular, the scan time was

ortho tetra
0,0,0

1’090 73 (_v_vvl)
0,1,0

0,0, 1

Table 4.1: the diffusion-encoding gradient direction vectors used for the

tetrahedral-orthogonal sequence.
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Figure 4.2: maps calculated from DTI data acquired on a healthy volunteer us-
ing the tetrahedral-orthogonal sequence. Left: mean diffusivity map. Middle:
fractional anisotropy map. Right: colour-coded major eigenvector map.

too long to be practical, and the number of diffusion-encoded directions was limited to 7.

4.2 20 DIRECTION SEQUENCE

The tetra-ortho sequence relied on the acquisition of an additional set of data to correct
for eddy-currents distortions. However, it has been shown that these effects can be sig-
nificantly reduced by the use of a twice-refocused spin-echo EPI sequence [4], which
may eliminate the need for such a correction. Assuming that the remaining eddy-current
artefacts were small enough to be tolerated, the data acquisition part of such a sequence
could be run in half the time required for the tetra-ortho sequence, while producing im-
ages of similar quality. This approach was therefore used in the improved sequence, and
the timing of the gradients was optimised as described in section 4.2.1. The sequence as
implemented in shown in figure 4.3.

As for the first sequence, the sequence had to be split into a number of different
pulse programs, and a CPE-EPI read-out was used. In order to minimise the amount
of ‘dead time’ due to image reconstruction between successive acquisitions, the sequence
was modified to output the raw data rather than the fully reconstructed images, leaving
the reconstruction to be performed offline at a later stage. Note however that since it is
a relatively quick step, the Nyquist ghost correction (described in section 4.2.3) was still
performed on the scanner. In addition, the sequence program was modified such that data
processing and storage could be performed while the acquisition was still running, rather
than having to wait until all the data had been acquired. With these modifications, the
dead time due to the processing of 60 interleaved 128x 128 slices, acquired in 15 seconds,
was reduced from 60 to 10 seconds. The implementation of the offline reconstruction is
described in more detail in section 4.2.3.

The minimum echo time of the sequence is limited by the gradient strength and the
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fat sat 90° 180 180 echo

RF

ﬁ Nyq EPI readout

Figure 4.3: the twice-refocused diffusion-weighted spin-echo sequence imple-
mented in Great Ormond Street Hospital. This type of sequence is less suscep-
tible to eddy-current artefacts (see section 3.2.2). In this implementation, the
gradient timings have been optimised to null eddy-currents with a time con-
stant of the order of the echo time, while keeping the echo time as short as
possible. A set of binomial fat saturation pulses are applied first to selectively
excite and spoil the lipid signal. A set of 3 reference scans are acquired after
an a RF pulse to correct Nyquist ghost artefacts (a = 10°). The EPI read-out
consists of a constant phase-encoding gradient sequence (see section 2 .2 .2 ).

required h-value (see next section). However, the minimum TE may be reduced by ac-
quiring the Nyquist ghost correction scans before the 90° excitation pulse, such that the
diffusion gradients can be applied as soon as possible. In addition, using this approach,
it is possible to acquire an extra reference scan, allowing a more robust Nyquist ghost
correction (as described in section 2.3.2) without any impact on the TE. Three reference
scans were therefore acquired after a 10° RF excitation pulse, immediately prior to the
main 90° pulse.

Using a diffusion-encoding scheme consisting of at least 20 directions has been shown
to alleviate the orientational bias present in anisotropy measurements (see section 3.3.2) [2,
5]. For this reason, the sampling scheme used for this sequence consisted of 20 directions,
obtained using the electrostatic repulsion model proposed by Jones et al [6], in addition
to 3 6=0 images.

With these optimisations, a data set consisting of 60 contiguous 128 x 128 slices, cov-
ering the whole brain, with 23 images per slice (2x2x2 mm voxel size) can be acquired

in 13 minutes, to produce images such as those shown in figure 4.4.

4.2.1 OPTIMISATION OF DIFFUSION GRADIENT TIMING

The use of a twice-refocused sequence imposes a number of constraints on the gradient

timings. Referring to the sequence diagram shown in figure 4.5, these can be expressed
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Figure 4.4: maps calculated from DTI data acquired on a healthy volunteer us-
ing the 20 direction sequence. Left: mean diffusivity map. Middle: fractional
anisotropy map. Right: colour-coded major eigenvector map. Note that with
this sequence 23 images are acquired per slice location, compared to 48 using
the tetrahedral-orthogonal sequence.

as:
Ai+ A2+ A3 = TE total time
Al + A3 = A2 echo arrival (4.1)
61+ =a FQ rephasing

To minimise the echo time, the delay between (@ and 63 is set to zero. This leaves one
degree of freedom in the timings for these gradients, which can be exploited to min-
imise eddy-current artefacts. As outlined by Heid [7], the treatment of eddy-currents in
diffusion imaging can be greatly simplified if the following assumptions are made: eddy-
currents are produced only at gradient ramps, and decay exponentially to zero with a
decay constant A; the effects of imaging gradients can be ignored; and all ramps used for
the diffusion gradients are identical (apart from polarity) and have infinitesimal duration.
The eddy-current amplitude E{¢) for a particular A can then be expressed as a sum of

exponential terms:

E{t) ="' Ge where a* = *1 (4.2)

where i spans over all relevant gradient ramps that occurred before ¢, and cr, and # repre-
sent the polarity and time of onset of ramp i. This is shown schematically in figure 4.5.
It has been suggested that eddy-currents with intermediate decay rates (i.e. ATE % 1)
are the primary source of artefacts in DWI [7], so the gradient timings should be cho-
sen such that eddy-currents are minimised around the echo time, when data are being
acquired. The eddy-current behaviour of the gradient timings can be assessed using plots
of eddy-current amplitude at TE versus ATE, and the optimal combination can be found

by altering them by trial and error subject to the constraints in equation 4.1. However,
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90° . 180 180 echo

diff

Figure 4.5: a schematic representation of the twice-refocused diffusion-
weighted spin-echo sequence, illustrating the eddy-current nulling made pos-
sible by the use of this sequence. Eddy-currents (EC) are induced by the fast
gradient switching that occurs during gradient ramps, and decay exponentially
to zero. By choosing appropriate gradient timings, eddy-currents with a par-
ticular time constant can be effectively nulled around the echo time, when the
signal is being collected.

the 6-value also depends on the gradient timings, and in practice the echo time must be
allowed to change such that the desired 6-value can be obtained. The final gradient pulse
times used were: bl = 10.06 ms, s» = 22.97 ms, 63 = 23.92 ms, and <4 = 9.11 ms, giving
an echo time of 110 ms, a 6-value of 1000 s/mm”, and the eddy-current behaviour shown

in figure 4.6.

4.2.2 Remaining eddy-current arteeact reduction

Despite the use of a twice-refocused sequence to minimise eddy-current, there was a
remaining artefact in the EPI images. This artefact could be seen on a sagittal reformat ofa
set of axial interleaved images acquired on a phantom, shown in figure 4.7, consistent with
the presence of a long term eddy-current. Note that the images shown were acquired using
the non-diffusion-encoded sequence. This artefact is therefore not due to the diffusion
gradients, and is also present with identical characteristics using the diffusion-weighted
sequence programs, irrespective of the direction of application of the diffusion encoding.
The first few slices acquired (i.e. slices 1, 3, 5...) are clearly shifted with respect to the
rest of the acquisition, and this shift tends to decrease for later slices. This is most likely
due to a long-term eddy-current inducing a B Q shift, the amplitude of which increases
until a steady state is reached, such that slices acquired beyond that point are shifted by
the same amount.

This artefact was removed by introducing a number of dummy loops in order to reach
a steady state before data are actually acquired. Although this approach does not remove

the actual shift in the images, the slices are now aligned with respect to each other. It was
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Figure 4.6: remaining eddy-current amplitude (arbitrary units) as a function of

the time constant of the eddy-currents, A (expressed in units of I/TE). As can

be seen, residual eddy-currents with time constants around the echo time are
minimised.

Figure 4.7: minimising the effects of long term eddy-currents using a dummy
loop, (a): a sagittal slice through a set of contiguous 2D axial slices aquired
on an agar phantom without a dummy loop, (b): the region highlighted in (a),
showing an initial mismatch between even and odd slices, (c): the same slice
acquired using a dummy loop to reach a steady state prior to data collection,
(d): the region highlighted in (c), showing that the mismatch present in (b) has
been reduced to a negligible level by the dummy loop.
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found that using 10 such dummy loops was sufficient to effectively remove the artefact,
as can be seen in figure 4.7.

The dummy loop was also useful to locate the source of the eddy-current. Gradient
pulses can be selectively removed from the dummy loop to see which ones are responsi-
ble for the artefact. It was found that after removing the slice selection gradient and its
refocusing lobe from the dummy loop, the artefact was present with the same intensity as
in the absence of the dummy loop. Taking out other gradient pulses in the dummy loop
had negligible effect on the appearance of the images. The slice selection gradient and its

refocusing lobe are therefore the most likely cause of this artefact.

4.2.3 QOFFLINE RECONSTRUCTION

As previously mentioned, the reconstruction was implemented offline in order to speed
up the DTI scan time. Reconstructing data acquired using CPE-EPI involves the steps
outlined in figure 4.8. Each of these is described in detail in the following sections. The
implementation was written from scratch in C++ on a GNU/Linux workstation, and is
based closely on the Siemens implementation as found on the Vision system used in this
work.

NYQUIST GHOST CORRECTION

The initial step in the reconstruction of the images is the Nyquist ghost correction. Note
that since this step can be performed relatively quickly on the scanner, it was not imple-
mented offline. The algorithm as performed on the Siemens Vision is described here in
detail for completeness.

As described in section 2.3.2, Nyquist ghosting arises out of inconsistencies, due to a
relative shift in the time domain, and/or a global phase difference between alternate lines
of k-space. Although there are a number of methods to correct these errors, this section
will describe only the technique that is implemented on our Siemens Vision scanner.

A Nyquist ghost correction scan is acquired by sampling the central line of k-space
3 times, using the same frequency-encoding gradients as are used for the image data ac-
quisition, but without any phase encoding. The timing and phase errors present in the
correction scan are identical to those present in the corresponding EPI acquisition (ignor-
ing the effects of the phase-encoding gradient). However, since all three lines correspond
to the same data, inconsistencies between them can be estimated and used to correct those
present in the image data. In this implementation, the third line is averaged with the
first, to prevent the misinterpretation of off-resonance frequencies (see section 2.3.2 for
details).
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Nyquist ghost

correction

interpolation

along read-out
interlaced Fourier

transform along

phase-encode

inverse Fourier
transform along read-out

DC correction

Figure 4.8: overview of the image reconstruction process. The first step after
line reversal is the Nyquist ghost correction, described on page ss. Each line
along the read-out direction is then resampled onto a regular grid using sine
interpolation (see page ss). The interlaced Fourier transform is then used to
perform the required ID Fourier transform along the phase-encoding direc-
tion without the need for regridding (see page 90). Finally, after a simple ID
Fourier transform along the read-out direction, the DC offset artefact is cor-
rected as described on page 92. Note that the steps contained within the frame

are performed on the scanner, while all others take place offline.
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The Fourier shift Theorem states [8]:

If f(t) has the Fourier transform F'(v), then f(t — a) has the Fourier

transform e 2™ F'(v).

This means that a shift in the time domain translates into a linear phase term in the fre-
quency domain. Therefore, after a one-dimensional Fourier transform along each line of
k-space, the inconsistencies mentioned above should be fully characterised by a combina-
tion of constant and linear phase terms. However, under realistic imaging conditions, the
data will also contain some non-linear phase errors. These additional terms can also be
estimated by using all the phase information present in the corrections scans, as explained
below.

Each line of the correction scan, labelled as ¢i*, is weighted by a Hanning filter,
then Fourier transformed to yield the corresponding ¢* (& refers to the direction of
acquisition of that particular line). The purpose of the filtering is to reduce the contribution
from the highest order terms, such that very rapid phase variations are minimised. The
Hanning filter used is defined as:

(1 +COS(7T(TL—L1)/SH))/2 0 < n < Iy
H(n) = 1 Li < n < L 4.3)
(1 + cos(m(n — Ls)/SH))/2 L, < n < N

where L; = Sy /2 and L, = N — Sg/2 (as implemented, N = 180 and Sy = 128). The
phase information contained in the vectors ¢ can then be applied to the image data.
Each line of image data along the read direction, denoted by the vector db*, is Fourier
transformed to yield d*. Each element of d** then has its phase altered by the negative
phase of the corresponding element of ¢”*, in the following manner:
dr* [

v,

du,corr,j: _
N e
)

- (4.4)

where 2* denotes the complex conjugate of z, and |z| denotes the magnitude of z. Finally,

du,corr,:l:

an inverse Fourier transform is applied to each to yield the corrected data.

INTERPOLATION ALONG READ-OUT

With a constant phase-encoded EPI read-out sequence, the data points are sampled at
regular intervals in time, but not in k-space. The sampling rate along the read-out direction
can be corrected using sinc interpolation, such that a sample of /V data points, acquired
at regular time intervals d¢, can be mapped to a set of M samples, arranged at regular
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0 _kmax

time time

Figure 4.9: linear sampling in time means that consecutive samples are not
necessarily equidistant in A:-space. Left: the EPI read-out gradient waveform
dictates the A:-space velocity and hence the position in Aj-space as a function
of time. Right: this can be used to calculate the positions in time of a set of
points equidistant in A;-space. The signal intensity at these time points can then

be calculated from the time-sampled data by sine interpolation.

A:-space intervals 0k along the read-out direction (figure 4.9). The interval between any
two data samples that was constant in the time domain will now depend on the magnitude
of the gradient at that time (see equation 2.6). For accurate resampling, the maximum
interval in A'-space between these samples must be smaller than the desired constant k-
space interval. For this reason, the number of data points actually acquired along one
line of A:-space, denoted by N, will be greater than the number of data points that will
eventually be regularly sampled in A:-space, denoted by M (in the current implementation,
N= 180 and A /= 128).

Given a sample of N data points, sampled at regular time intervals 6¢, the intensity at

an arbitrary time point r as given by sine interpolation is:

En=i sinc(T/0t - n)

for 6t < T < Nét 4.5)
gmc(T/JA - P}

In order to reduce the amount of computation, the summation is usually only done over
the immediate neighbourhood of the point of interest. In this case, truncation artefacts
need to be avoided by use of a suitable filter. Here, the sine function is weighted by a

Hamming filter, the equation of which is given below:

Hix) 0.54 + 0.46 cos (yr*/E) Ix\ < F 4.6)
x) = .
0 otherwise

where E is the extent of the filter, corresponding to the number of data points either side

of the point of interest to be included in the summation (in this implementation, £ = 20).
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The intensity at time 7 can be more easily expressed as a matrix operation:
I(r) = [w(n)]" - &' 4.7

where s’ is the vector of length NV containing the regularly time-sampled intensities, and
w(7) is a vector, also of length NV, containing the weighting factors given by:
w(r) = =20 1 <i<n 4.8)
' Z;'Vzl a;(7) o
where a;(1) = sinc(r/dt —1i) H(T/dt — 1)

To map the set of /V regularly time-sampled data points to M data points evenly
distributed in k-space, the time of acquisition of each desired k-space data point needs to
be known (figure 4.9). These times can be obtained from the waveform used to drive the
read-out gradient, using equation 2.6, and stored in the read-out raster. This is a vector
u of length M, where each element u; gives the time coordinate for point ¢ at position k;
in k-space. The intensity at k; is thus given by combining equation 4.7 with the read-out
raster u:

I(k) = w(u)T - s 4.9)

Equation 4.9 gives the intensity for the point at position k;. The vector s¥, containing
the intensities for the desired M regularly sampled data points along one line of k-space,
is thus formed by setting each element s to I(k;), such that:

sF=W-s&  where W;; = w;(u;) (4.10)

Since this operation is repeated for each frequency-encoded line of k-space, it can be
generalised to:
Sk=w.s (4.11)

where S is the matrix formed by setting each column to the corresponding vector s?, and
each column of S* corresponds to a line of k-space regularly sampled along the read-out

direction.

THE INTERLACED FOURIER TRANSFORM

The final stage of image formation is a 2D inverse Fourier transform. However, data along
the phase-encoding direction are not regularly sampled, and therefore require additional
processing before the Fourier transform can be done. Although in principle these data
could be resampled using interpolation as described above, it is much more efficient to use
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Figure 4.10: (a): a constant phase-encoded EPI trajectory; (b): the section of
/c-space highlighted in (a), enlarged to show a set of data points lying along
the same column of /c-space. Looking at the set of odd data points, it can
be seen that they are regularly sampled with twice the ideal A;-space sampling
interval, and that they are displaced from their ideal position in A:-space by 6k
Similarly, the set of even data points are displaced by —o0k. This property can
be exploited to perform the interlaced Fourier transform, as described in the

text.

the interlaced Fourier Transform, which allows a ID Fourier transform to be performed
directly on each phase-encoded line of data, subject to the conditions detailed below.

An enlargement of a constant phase-encoding gradient EPI /c-space trajectory can be
seen in figure 4.10, showing a single line of data along the phase-encoding direction that
we are interested in reconstructing, overlaid onto the /c-space trajectory. It can be seen
that the set of odd data points along that line is regularly sampled in /c-space, with each
point being shifted along the phase-encode direction by o6k relative to its ideal position
for a constant sampling rate. Similarly, the even data points are shifted by —6k. The
interlaced Fourier transform makes use of this property to perform a one dimensional
Fourier transform, correcting for the shifts in /c-space using the Fourier shift theorem (see
page 88). Note that it is not possible to apply this technique to resample data in the read
direction, since these cannot be broken up into regularly sampled components.

The inverse Fourier transform of the vector containing the M data points along
the particular phase-encoded line of /c-space of interest, will contain significant ghosting
depending on the corresponding value of 6k. However, the vector formed from
by setting all even elements to zero, is regularly sampled. Its inverse Fourier transform

does not contain any ghosting, but is severely aliased, since the field of view has
effectively been halved. Its phase will also be corrupted, since p”*+ is shifted in &-space

by 8k. The latter can be corrected using the Fourier shift theorem, modified for the inverse
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Fourier transform:

If F(k) has the inverse Fourier transform f(x), then F'(k — dk) has the

inverse Fourier transform e*27ez% f ().

Therefore, the phase of p®* can be corrected by applying an adequate linear phase term:

pz,corr,+ — Q+ 01_7x’+ where ¢l-1+- — e—?wiq&k (4.12)

The symbol o is introduced here to denote element-by-element multiplication'. The set

of even data points can be corrected in the same way:

pz,corr,— = ?_ O];')z’_ where ¢; = e+27riq5k (4'13)

The full, corrected, inverse Fourier transformed line of k-space can then be obtained by
recombining the two halves of the data:

T ,CoTT

p Z,corT,+ + pw,COTT,— (4 14)

This process can be applied to each line of k-space provided the corresponding shift
0k is known. These can be obtained from the gradient waveforms using equation 2.6, and
stored in the phase-encode raster. This is a vector v of length M containing the k-space
shifts corresponding to each phase-encoded line. Equations 4.12, 4.13 and 4.14 can then
be combined and simplified to:

PoT = @ o PP + & o P™”  where @ = T (4.15)

where P%% is the matrix obtained by setting each column to its corresponding p™* vector.
After this process, the data set will have undergone a complete Fourier transform along
the phase-encode direction, and the final image can be obtained by performing a standard

Fourier transform along the read-out direction.

DC-OFFSET CORRECTION

The signal acquired during a MRI examination will typically be contaminated by some
unwanted DC signal, which will give rise to an incorrect value for the central pixel (the
zero frequency spot). In traditional 2D FT imaging, artefacts due to the presence of this
offset can be eliminated using phase-cycling [9]. However, this option is not available

In other words, if @ = b o ¢, then a; = b;¢;. This also applies to matrices: if A = B ¢ C, then
A,;j = B,’j Cij.
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in EPI, since a single excitation is used to acquire the whole image. In this case, the
magnitude of the DC offset must be estimated to remove the artefact. This may be done
in a number of ways; the method described here is based closely on the Siemens Vision
implementation.

The inverse Fourier transform is performed along one of the image axes, for example,
the y-axis. The z-axis now contains information in the image domain, while the y-axis
contains data in the k-space domain. The DC offset artefact, which in image space was
limited to the central pixel, is now present as a constant offset along the entire central
line in the y direction. By averaging the two lines either side of the central line, a good
estimate of the correct intensity for the central pixel can be obtained, as follows.

We define the vector b to be the geometric average of ¢~ and g, the two lines either
side of the central DC-contaminated line g, as follows:

T xaf (4.16)

Since there are two possible values for each b;, care must be taken to select the appropriate
one. On an Argand diagram, b; will be positioned such that it bisects the angle formed
by a; and a; . There are two such angles, one acute, the other obtuse. Assuming that the
phase does not vary too rapidly across the image, the appropriate value of b; should be
that which bisects the acute angle.

The Fourier transform of  gives an estimate of the central line free of any DC-offset,
estimated from the two lines either side of it. The central pixel can therefore be replaced
by the corresponding point on this corrected line. The same process can be repeated along
the other axis, and the two values thus obtained can be averaged to provide a more robust
estimate for the central pixel intensity.
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5.1 INTRODUCTION

As mentioned in chapter 3, diffusion tensor MRI (DT-MRI) is a promising tool for the
study of the microscopic properties of tissue [1]. In particular, it can be used to infer the
directionality of the white matter fibre architecture within a voxel. With this information,
studies of human white matter connectivity in vivo are now potentially feasible, although
a number of issues remain to be addressed.
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The lack of a relevant in vivo gold standard makes the validation of DT-MRI trac-
tography techniques particularly difficult. It has been shown that the direction of fastest
diffusion as measured by DT-MRI does correspond to the orientation of the fibres, both in
excised rabbit myocardium [2] and in vivo (using manganese-enhanced MRI) in the optic
tract of the rat [3]. However, such techniques are only applicable in limited circumstances,
and cannot in general be used to assess or validate DT-MRI tractography techniques. For
this reason, fibre tracking algorithms are often assessed by comparing tracking results to
an appropriate anatomical atlas [4, 5, 6, 7]. However, the validation is then restricted
to major white matter pathways that are well known, and biological variation cannot be
taken into account. There is therefore a need for alternative methods to assess the char-
acteristics of particular DT-MRI fibre tracking algorithms, and simulations on synthetic
data in which the fibre geometry is known exactly can be used for this purpose.

In particular, the limitations and requirements of DT-MRI fibre tracking have not been
fully assessed. Fibre tracking relies on the use of good quality diffusion-weighted images,
together with a suitable algorithm to generate the tracks. However, the acquisition of a
set of images of sufficiently high quality is time-consuming, and in practice, quality will
be compromised to allow shorter scan times. For example, a number of studies have
reported results using high quality data acquired from healthy cooperative volunteers in
30-40 minutes [5, 6, 8]. However, Jones et al [9] argue that scans longer than 15 minutes
are unlikely to be well tolerated by patients, and proposed a DTI acquisition sequence
that could be run within 15 minutes, designed to optimise the compromise between the
various image acquisition parameters. Different tracking algorithms may be susceptible
to noise, partial volume effects, motion artefacts, etc., to varying degrees. It is therefore
essential to establish which structures can be tracked reliably and under what conditions
this can be achieved. Simulations can again provide a means of assessing these issues.

Lori et al [10] have recently presented results using an algorithm proposed by Conturo
et al [5] showing the importance of signal to noise ratio (SNR) for reliable tracking.
Basser et al [6] have assessed the behaviour of their own algorithm in a range of specific
situations (for example crossing and ‘kissing’ fibres). Nevertheless, many aspects have
not been addressed, such as the dependence of these algorithms on anisotropy, partial
volume effects, curvature, and step size (see section 5.2.2).

This chapter describes how the properties of a tracking algorithm can be studied in
a controlled and systematic way using simulations. In particular, the effects of SNR,
anisotropy, fibre curvature and cross-sectional radius, interpolation and other algorithm-
specific parameters are investigated using both synthetic and real data.
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Figure 5.1: Model A - a half cylinder of constant anisotropy aligned along
a semi-circular path around a central axis, as shown on the left. Right: a
slice through the simulated data set, showing a fractional anisotropy map

(SNR = 32) with an overlay of the major eigenvector projected onto the slice.

5.2 METHODS

For the purposes of this study, the popular streamlines algorithms is assessed, as intro-
duced by Mori et al [4] (using nearest-neighbour interpolation) and by Conturo et al [5]
(using tri-linear interpolation). This algorithm is based on following the major eigenvec-
tor of the diffusion tensor stepwise, starting from a user defined seed point. It was applied
to two types of simulated diffusion tensor fields (models A & B below), as well as to
real data acquired from a healthy volunteer. The simulated data allow a controlled study
where the true outcome is known in advance, whereas the real data can be used to evaluate
the relevance of the simulation results to real in vivo fibre structures. All distances in this
study are expressed in units of voxels, such that the actual dimensions of the simulated

fibre can be derived from the image resolution.

5.2.1 SIMULATED DATA

Three-dimensional simulated data were generated using Matlab (The Mathworks Inc.,
Natick, MA) for two models, A and B, with isotropic voxel sizes and assuming an ortho-
gonal-tetrahedral diffusion encoding [5, 1] with bX = [, where bis the diffusion-weighted
6-factor, and A is the mean eigenvalue of the diffusion tensor, corresponding to the average
apparent diffusion coefficient (see section 3.1).

Model A consisted of a half cylinder of constant anisotropy aligned along a circular
path around a central axis (figure 5.1). The fractional anisotropy (FA) [12] of the material
could be varied. Various radii of curvature could be studied by seeding from points at
different distances from the central axis.

Model B consisted of a fibre of circular cross-section and constant anisotropy aligned
along a semicircular path embedded within a homogeneous background (figure 5.2). This

background was either isotropic, or anisotropic with the direction of fastest diffusion ori-
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Figure 5.2: Model B - a fibre of constant anisotropy aligned along a semi-
circular path, embedded within a homogeneous background, as shown on the
left. Right: a slice through the data set, showing a fractional anisotropy map
(SNR = 32) with an overlay of the major eigenvector projected onto the slice.

In this example, the background is isotropic (excluding the effects of noise).

anted perpendicular to the plane of the fibre. The FA within the fibre, the FA in the back-
ground outside the fibre, the radius of the path of the fibre, and the fibre cross-sectional
radius could be varied independently.

To ensure that the dimensions of the data sets did not place restrictions on the track-
ing process, the data sets generated were considerably larger than required. Semi-circular
models were chosen to allow a simple simulation of the more highly curved sections of a
fibre tract, where errors in fibre tracking are most likely to occur. The main difference be-
tween the two models is that model A consists of a homogeneous medium, while model B
consists of a fibre embedded in a background medium. A comparison of the two models

should enable the examination of the effects of partial volume.

COMPUTATION OF THE SIMULATED DATA

For both models, the origin of the coordinate system was aligned with the axis of rotation

of the fibres, giving the following expressions for the eigenvectors {rj within the fibre:

/o \

1 1 -

Ll = +op —X 2= y 13 = 0 (5.1)
y 0 \0y VA

The diffusion tensor D could be evaluated from these using the following expression:

D= EXE" (5.2)
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where:
A 0 O
E=(¢ & &) ad A=|0 X 0
0 0 X

where {\;} correspond to the eigenvalues of the diffusion tensor. For both models, the dif-
fusion tensor was assumed to be axially symmetric within the fibre (i.e. A; > As = Aj3).
The FA within the fibre was set by adjusting the eigenvalues {)\;} according to the fol-

lowing equations:

A= M1+ 20)
/\2:/\3 = 5\(1—05)
FA

where @ = ——
3 — 2(FA)?

These expressions were chosen to ensure that ) remains constant, and were derived from
the definition of the FA (equation 3.37).
For model B, the diffusion tensor in the background outside the fibre was set using

expressions similar to that above:

D =) 0 1-8 0 (5.3)
0 0 1428

where [ controls the amount of anisotropy, and is given by the same equation as « above.
In this case, the largest eigenvalue corresponds to the z-axis. The value of X is uniform
in the in vivo human brain [13], and was therefore kept constant. Note however that Ais
significantly higher in cerebro-spinal fluid (CSF), and that the effects of partial volume
with CSF have therefore not been assessed.

A point was deemed inside the fibre if it satisfied the following condition:

2
(\/x2+y2—R) +22 < 2 (5.4)

where R is the radius of curvature of the fibre, and r is its cross-sectional radius.

The values of the tensor elements derived from these expressions were numerically
integrated over each voxel to produce the data sets. Using this approach, partial volume
effects were automatically incorporated into the models. An approximation to Rician
noise [14, 15] was added in the base diffusion-weighted images, and the SNR was defined
as So/o, where S is the b = 0 image intensity and o is the standard deviation of the noise.
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5.2.2 TRACKING ALGORITHM

The tracking algorithm used is a simple streamlines technique, based on that proposed
by Mori et al [4] and Conturo et al [5]. It differs from both these techniques in the
termination criteria used: tracks are terminated if they venture outside the fibre, or once
they have reached the end plane (see later). In a real tracking experiment, the geometry
of the fibres is not known, and different termination criteria would be used (for example,
thresholds on curvature or anisotropy). The algorithm operates as follows: starting from
a user-defined seed point r, the track is generated by calculating the next point along the
path from the current point iteratively, in the following manner:

1. The base image intensities {.5,,(r;)} are calculated at the current point r,, depending
on the choice of interpolation method.

2. The corresponding diffusion tensor D(r;) is calculated from the base image inten-

sities assuming the relationship S, = Sy e P [16].
3. The normalised major eigenvector ¢, (r;) of the diffusion tensor is computed.

4. The next point 7, , along the path is calculated by stepping a distance s (the step
size) along the direction of the major eigenvector: r; ., = r; + s é(r;).

Two types of interpolation methods were used in this study: nearest-neighbour and
tri-linear. When using tri-linear interpolation, the base image intensities are calculated
at each step along the track by linearly interpolating to the point of interest from the
8 nearest discrete data points in 3D space (the data points forming the corners of the
one pixel-wide cube containing the point of interest). When using nearest neighbour
interpolation, steps 1 to 4 can all be computed prior to performing the actual tracking,
making the whole process much less computationally intensive. Tri-linear interpolation
should allow a smoother representation of the tensor field, thus enabling more accurate
tracking in regions of high curvature.

5.2.3 SIMULATIONS

The tracking algorithm was tested by computing 100 tracks for each combination of model
parameters. For each of those 100 tracks, a new data set was generated according to the
current model parameters, but with different random noise. A large range of conditions

was studied:

e SNR =38, 16, 32, 64, 128 and 100,000

e FA=0.2,0.4,0.6 and 0.8
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Figure 5.3: the dotted line indicates an ideal track; the solid line indicates an
example trajectory obtained from simulations. The outcome measures shown
are: (a) end-point z-offset and (b) maximum deviation. The end-point y-offset
is measured perpendicular to the page. Not shown here are the RMS deviation
and the success rate. See text for details.

Background FA = 0 and 0.2 (Model B)

Step size = 0.02, 0.1, 0.2, 0.4, 0.8 and 1.6 pixels

Radius of curvature = 0.5, 1, 2 and 4 pixels

Fibre cross-sectional radius = 0.25, 0.5, 1 and 2 pixels (Model B)

nearest-neighbour or tri-linear interpolation
To assess the quality of a particular track, several output parameters were computed:

e The end-point z- and y-offsets (see figure 5.3): the position of the computed end-
point relative to the true end-point in pixel units.

e The maximum departure in pixels of the computed track from the ideal track (see
figure 5.3): this gives an estimate of the size of the structures that can be tracked.
This parameter is always positive.

e The root mean square (RMS) departure in pixels of the computed track from the
ideal track: this provides a more global measure of the quality of the track.

e The success rate: for model A, the track was deemed to have failed if it ventured
outside the data set; for model B, if the track ventured outside the fibre by more
than one pixel, the simulation was terminated and the track was classed as a failure.
The threshold of one pixel was chosen since the signal from a voxel that is partial
volume averaged with the fibre will contain a contribution from the fibre. A track
may thus be as much as one voxel away from the fibre, yet still be influenced by
signal originating from it.
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Figure 5.4: FA maps for two axial slices in a healthy volunteer, showing the
fibre bundles used to test the tracking algorithm. Tracks are shown in green,
and the end ROI (see section 5.2.4) is shown in red. Fibres in the corpus
callosum on the left, in sub-cortical white matter on the right.

5.2.4 REAL DATA

Measurements were acquired from a healthy volunteer on a Siemens Vision 1.5T scanner
using a SE-EPI sequence with a pair of diffusion gradients on either side of the refocusing
RE pulse, described in section 4.1 (TE = 110ms; 128x128; 256 mm FOV; 2 mm slice
thickness; 2x2x2 mm voxels). An orthogonal-tetrahedral diffusion encoding [5, 11] was
used with the following parameters: O/4 =27.1/52.3 ms, 6-values = 0 and 1066 s/mm”.
Reference scans were acquired for the online correction of B geddy-current effects [17].
Twenty-five contiguous axial slices were acquired covering a 5 cm slab centred on the
corpus callosum. Six measurements were acquired, and the SNR in the base images was
varied by adding different numbers of images, with SNR ranging from 13 for a single
acquisition to 32 for all 6 averages. When using less than the full 6 measurements, an
approach similar to the bootstrap method can be used to generate several different data sets
with the same SNR [18]. Thus, 6 different data sets were generated for each SNR leve]
(except at the highest level, since there is only one combination for all 6 measurements).

Two fibre bundles were selected with properties similar to those studied in the simu-
lations: one in the corpus callosum (mean FA = 0.8, high cross-sectional radius and low
curvature), the other in sub-cortical white matter (mean FA = 0.3, low cross-sectional ra-
dius and high curvature). These are shown in figure 5.4. Tracking was initiated from a
seed region of interest (ROI), and a track was considered successful if it entered the end

ROI. The seed ROI consisted of a cubic region equivalent in size to one voxel, within
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which seed points were arranged in a three-dimensional 5x5x5 grid. Note that different
seed points within the same voxel will in general result in different tracks [10]. The end
ROI consisted of a spherical volume of radius two pixels. These ROIs were selected em-
pirically by performing the tracking given the optimal conditions available (SNR = 32,
step size = 0.02 pixels, using tri-linear interpolation). Those points within the seed ROI
from which the tracking failed given the optimal conditions were not used in the subse-
quent experiments. This led to a total of 125 seed points being used for the seed ROI in
the corpus callosum, and 121 for that in the sub-cortical white matter. Such an approach
is necessary due to the unknown characteristics of the actual fibre.

The experiments were performed with nearest-neighbour and tri-linear interpolation
for a range of step sizes (0.02 to 1.6 pixels) and SNR, the latter obtained from using
different numbers of averages. The outcome measures mentioned above for the simulated
data cannot be calculated for the in vivo data, since the true fibre tract is not known.
Therefore, the measure of success used was the proportion of the seed points that entered
the end ROL.

5.2.5 MEASURES OF RELIABILITY OF TRACKING

For model A, the reliability measure RM 4 = average maximum departure + 2SD was
defined. Approximately 98% (assuming a one-sided Gaussian distribution, since the de-
parture is always positive) of all tracks computed have a maximum departure smaller than
this value. Therefore if it is required that the computed track stay within a distance d of
the ideal track, the contour RM4 = d indicates the range of parameters that allows reli-
able tracking, i.e. tracking with a 98% success rate. A lower RM, indicates improved
tracking.

For model B, the reliability measure was defined as RM g = fibre radius for which the
success rate is 98%. Once again, the contour RMp = d would indicate the combination
of parameters with which a fibre of radius d can be tracked reliably. This measure was
chosen as it is comparable to the measure used for model A.

As previously mentioned, neither of the above measures can be applied to real data
since the underlying fibre structure is not known. Therefore, the success rate for the real
data was defined as the proportion of seeded points with successful tracks (i.e. entering
the end ROI). A limitation of this measure is that it does not allow a direct comparison

with the contour plots from the simulated data.
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Figure 5.5: example tracks (n = 20) computed using model A to illustrate
the effects of noise and interpolation. Top row: using tri-linear interpolation;
Bottom row: using nearest-neighbour interpolation. Left: SNR = s; middle:
SNR = 32; right: SNR = 128. The ideal track is shown by a dotted line (visible
in the left hand images). All plots were produced with a fractional anisotropy
0of 0.4 and a radius of curvature of 4 pixels, using a step size of 0.02 pixels.

5.3 RESULTS AND DISCUSSION

5.3.1 Modela

To illustrate the variability in the tracks obtained using model A as a function of SNR,
each sub-figure in figure 5.5 shows 20 tracks generated from the same seed point at differ-
ent SNR levels, using either nearest-neighbour or tri-linear interpolation. As can be seen
in the figure, the variability in the tracks is reduced by increasing the SNR. It can also be
seen that the precision of the tracks is further improved by using tri-linear interpolation.

Some interesting simple relationships were observed with the simulations using mo-
del A. As might be expected, increasing the step size increases the average end-point x-
offset. This relationship was found to be approximately linear and independent of SNR,
FA, or the type of interpolation (figure 5.6). This means that, in principle, it is possible
to improve the quality of the tracking simply by reducing the step size. The average
end-point *-offset was not significantly different from zero for all conditions. This was
expected, since there is no preferred direction for deviations along this axis. The standard
deviation (SD) of the end-point x- and "-offsets, however, had a strong dependence on
the SNR, FA and type of interpolation. In particular, using tri-linear (rather than nearest-
neighbour) interpolation produced little change in the average end-point offset, but did
reduce its standard deviation (figure 5.6). In other words, tri-linear interpolation makes
the tracking more reproducible. As expected, increasing the SNR and the FA decreases
the SD, also making the tracking more reproducible.

The relationships observed with the maximum departure and RMS departure were
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Figure 5.6: plots of the end-point z-offset (y-axis) as a function of step size (-
axis), both in pixel units, (a) using nearest-neighbour interpolation, (b) using
tri-linear interpolation. For each set, the top row corresponds to FA = 0.8, the
bottom row to FA = 0.4; the left column to SNR = 32, the right column to
SNR = 128. The error bars represent two SDs either side of the mean value.
All plots correspond to the case of a radius of curvature of two pixels.

similar to that seen with the end-point offset. However, when using nearest-neighbour
interpolation, as the step size decreases, the average maximum departure does not tend
to zero (see figure 5.7(a)). This is due to a limitation of nearest-neighbour interpolation:
the track must remain straight within each voxel, and therefore cannot remain close to
a curved ideal track. Using tri-linear interpolation, the track can follow the ideal path
much more closely. Therefore, tracking using nearest-neighbour interpolation introduces
systematic departures from the ideal track, especially when the curvature of the structure
is high. This was also true for the RMS departure (figure 5.8). It should be noted that
although sub-voxel accuracy can be obtained in this model with an appropriate step size
(see figures 5.6 and 5.7), small departures from the true path can have a significant impact
when tracking on real data, in particular if the track ventures into an adjacent structure
with an orientation unrelated to the original structure. Such problems are not seen with
this model since it consists of a single structure.

The various outcome measures demonstrated little or no dependence on curvature
(except at very low step sizes; see above). However, it is difficult to interpret this result,
since a simulated path with a lower radius of curvature is intrinsically shorter. While a
lower radius of curvature would be expected to make tracking more difficult, a shorter
path should lead to a lower percentage of tracking errors. It is possible, therefore, that the
two effects to some extent cancel each other out. Although this may be a limitation of this
particular model, in a real situation, a curved fibre-path with a lower radius of curvature
would in general be shorter, and the semi-circular model may represent a reasonably
realistic approximation to in-vivo fibre structures.

In summary, it can be seen from figures 5.6 and 5.7 that using interpolation and a low
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Figure 5.7: Plots of the maximum departure (y-axis) as a function of step
size (z-axis), both in pixel units, (a) using nearest-neighbour interpolation,
(b) using tri-linear interpolation. For each set, the top row corresponds to
FA = 0.8, the bottom row to FA = 0.4, the left column to SNR = 32, and the
right column to SNR = 128. The error bars represent two standard deviations
either side of the mean value. All plots correspond to the case of a radius of
curvature of two pixels. Note that the scale is different from that in figure 5.6.
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Figure 5.8: Plots of the root mean square departure (y-axis) as a function of
step size (z-axis), both in pixel units, (a) using nearest-neighbour interpolation,
(b) using tri-linear interpolation. For each set, the top row corresponds to
FA = 0.8, the bottom row to FA = 0.4, the left column to SNR = 32, and the
right column to SNR = 128. The error bars represent two standard deviations
either side of the mean value. All plots correspond to the case of a radius of
curvature of two pixels.
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step size can produce very accurate tracking (small end-point offset, maximum departure
and RMS departure). However, the precision (as represented by the error bars), and thus
the reliability of the tracking, will also depend on the SNR, FA and radius of curvature.

Figure 5.9 shows contour plots for model A showing the dependence of RM 4 (see
section 5.2.5) on step size and SNR. Such plots are used extensively in this chapter, and
will therefore be explained in detail here. The parameters SNR and step size were cho-
sen because they are to some extent under user control. Analysis of these plots can be
used to determine the image quality required to track a particular white matter structure
with known characteristics, or conversely whether tracking this structure is feasible for
a given image quality. They are used by considering the positions of the individual con-
tours: tracking is more easily achieved if the position of a contour with a given RM 4 lies
closer to the top left corner of the plot (i.e. when a low SNR and a high step size are
sufficient to track reliably). The effect of particular parameters (e.g. FA, interpolation,
etc.) on tracking reliability can be studied by examining their impact on the position of
the contours.

As expected from the results of figures 5.6 and 5.7, the reliability of tracking im-
proves as the SNR increases and as the step size decreases: the contours corresponding
to increased reliability in figure 5.9 are closer to the bottom right of the plot. The ef-
fect of the interpolation method can be studied by comparing plots generated using one
method to those generated using the other method: contours obtained using tri-linear in-
terpolation are closer to the top left corner than the equivalent contours produced using
nearest-neighbour interpolation. This indicates that using tri-linear interpolation improves
the quality of the tracking. Conversely, as the FA decreases, the contours move towards
the bottom right corner, indicating reduced tracking reliability.

As an example of the use of these contour plots, consider tracking with the aim of not
deviating from the ideal track by more than 0.5 pixel for a structure with FA = 0.8 and a
data set with an SNR = 32 (figures 5.9(a&b)). According to the simulation results, this can
be achieved reliably (i.e. with a 98% success rate) using a step size of 0.2 pixels and tri-
linear interpolation (figure 5.9(b)). Alternatively, it can be done using nearest-neighbour
interpolation by decreasing the step size to 0.1 pixels (figure 5.9(a)).

By comparing figure 5.9(a) (nearest-neighbour interpolation, FA = 0.8) and figure 5.9(d)
(tri-linear interpolation, FA = 0.4), it can be seen that using tri-linear interpolation has a
more important effect on the reliability of tracking than a doubling of the anisotropy (cor-
responding contours in figure 5.9(d) are closer to the top left than in figure 5.9(a)). It
1s interesting to note that although the anisotropy is a property of the particular tract of
interest, over which there is no control, the choice of interpolation method is under user
control.
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Figure 5.9: Contours of the measure of reliability, RM” (see text), as a func-

tion of SNR (a:-axis) and step size (y-dx'is), in units of pixels, (a) & (c): us-

ing nearest-neighbour interpolation, (b) & (d): using tri-linear interpolation,
(a) & (b) FA = 0.8, (¢) & (d) FA = 0.4. Each contour is labelled with its

corresponding RM” value (in pixels). Note that the x-axis uses a non-linear

scale. All plots correspond to the case of a radius of curvature of two pixels.

It can be seen that a higher SNR, a higher FA, a lower step size and the use of

tri-linear interpolation all improve the quality of the tracking.
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Figure 5.10: Contours of the measure of reliability, RM " (see text), as a func-
tion of SNR (z-axis) and step size (“-axis), in units of pixels, (a): nearest-
neighbour interpolation, (b): tri-linear interpolation. Both plots correspond to
the case of a radius of curvature of two pixels, FA within the fibre = 0.8, and
an isotropic background. It can be seen that a higher SNR, a lower step size

and the use of interpolation all improve the quality of the tracking.

The results from figure 5.9 indicate that in this model, it is possible to track without
deviating further than a quarter of a pixel. Although this suggests that it may be possible to
track fibres with cross-sectional radii as small as a quarter of a pixel reliably, it should be
noted that model A is free from partial volume effects with other structures; with different
models or in real data, tracking such small structures may not be possible (see model B).

In summary, figure 5.9 indicates that the tracking reliability increases with higher SNR
and lower step size for small fibre structures. For lower values of the FA, an even higher
SNR is needed to track as successfully as at higher FA. The use of tri-linear interpolation

allows successful tracking with a larger step size and/or a lower SNR.

5.3.2 Model B

Due to the nature of this model, the average end-point offset and the maximum and RMS
departure values will contain a significant amount of bias. For example, it is not possi-
ble for the maximum departure to be greater than 2 voxels when tracking a fibre with a
cross-sectional radius of 1 voxel, since the track would have failed. The results for these
outcome measures are therefore not presented.

The contour plots for model B (figure 5.10) show the dependence of RM g on step
size and SNR. The general trend is the same as that for model A, in that the reliability
of the tracking increases as the SNR increases and as the step size decreases. However,
the effects of partial volume are immediately apparent: a much higher SNR is required

to track small fibres using this model. The importance of interpolation can be readily
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appreciated from this figure. For example, the results suggest that it is not possible to track
a fibre with a cross-sectional radius of 0.5 pixels at an SNR of 32 reliably without using tri-
linear interpolation (figure 5.10), irrespective of the step size used (cf. figures 5.9(a&b)).
When interpolation is used, this can be achieved with a step size of 0.3 pixels or less,
indicating that lowering the step size cannot always replace the use of interpolation.

Note that for model B, it is possible to track reliably using a higher step size than
the results from model A suggest (figures 5.9(b) & 5.10(b)), which seems to indicate
that partial volume effects are in some ways beneficial. This can only be the case when
the background is isotropic (corresponding for example to grey matter): in these circum-
stances, the signal from the background contains no orientational preference, and any
directional information is due to the fibre. It may thus be possible to continue tracking the
fibre even though the track is technically outside the fibre. However, these effects would
be expected to have increasingly detrimental effects as the anisotropy in the background
increases, corresponding to increasing partial volume averaging with other white matter
structures. Figure 5.11 shows the effect of the background FA on the tracking for model B.
This figure shows contour plots using two different values of FA within the fibre and two
different values of the background FA outside the fibre, all using tri-linear interpolation.
When the FA within the fibre is reduced, a higher SNR is needed to track with the same
reliability. When the background FA is increased, tracking small fibres reliably requires
both a higher SNR and a lower step size, due to more important partial volume effects
with the background. Note that this effect can be seen even with relatively small levels
of anisotropy in the background. For example, however small the step size, the minimum
SNR required to track a fibre with FA = 0.8 and radius = 0.5 pixels in an isotropic medium
is approximately 30 (figure 5.11(b)) (note that this is not possible for any step size if the
SNR is lower than this value). If the FA within the fibre is reduced to 0.4, the SNR needs
to be increased to about 64 to track the same fibre reliably (figure 5.11(a)), corresponding
to a four-fold increase in the scan time required. If on the other hand the background FA
is increased to 0.2, the SNR needs to be increased to about 45 (figure 5.11(d)). When the
two effects are combined (i.e. fibre FA = 0.4, background FA = 0.2), it becomes extremely
difficult to track such a fibre reliably (figure 5.11(c)). Note that it is possible to track a
fibre with cross-sectional radius = 0.25 (figures 5.11(a,c&d)) only when the conditions
for tracking are optimal (cf. model A, figures 5.9(b&d)). Therefore, although the trends
are similar for both models A & B, it should be noted from model B that partial volume
effects can be important, in particular for small structures in an anisotropic background,
even for relatively small levels of background anisotropy.



CHAPTER 5: SIMULATIONS OF DIFFUSION TENSOR TRACTOGRAPHY 111

nearest-neighbour tri-linear
interpolation interpolation
2.0 2.0
. . 06
isotropic
0.5 0.5
04 04
0.25 0.25
0.2 02
16 32 64 128 100000 b 128 100000
2.0
2.0
06
background
FA=02 ® 04 0.5
02 0.5 02
16 32 64 128 100000 d 128 100000

Figure 5.11; Contours of the measure of reliability, RM g (see text), as a func-
tion of SNR (z-axis) and step size in units of pixels (*-axis). (a) & (b):
isotropic background (FA = 0), (¢) & (d): anisotropic background (FA = 0.2)
aligned perpendicular to the plane of the fibre, (a) & (c): fibre FA = 0.4,
(b) & (d): fibre FA = 0.8. All plots were produced using tri-linear interpola-
tion and a radius of curvature of two pixels.
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Figure 5.12: Contours of the success rate for tracking on real data as a func-
tion of the number of acquisitions (x-axis), and step size in pixel units (y-axis).
(a) & (b): corpus callosum, (¢) & (d): sub-cortical white matter, (a) & (c):
nearest-neighbour interpolation, (b) & (d): tri-linear interpolation. The SNR
ranges from 13 for a single acquisition to 32 for all ¢ acquisitions. Each con-

tour is labelled with its corresponding success rate.

5.3.3 Real Data

Results obtained from the real data shown in figure 5.4 are plotted on figures 5.12(a&b)
for tracking in the corpus callosum and figures 5.12(c&d) for tracking in the sub-cortical
white matter. These show contours of success rate as a function of the number of aver-
ages (x-axis) and the step size of the tracking algorithm (y-axis). Varying the number of
acquisitions allows the study of SNR ranging from 13 to 32 (from one to six averages).
It should be noted that since a maximum SNR of only 32 was used, the actual shapes of
the contours are not well defined, particularly in the areas of high step size or low SNR
where the reproducibility of tracking is decreased (equivalent to an increase in the SD in
figures 5.6 & 5.7).

Tracking reliably in the corpus callosum was possible using a wide range of SNR and
step size (figures 5.12(a&Db)). In particular, 80% success could be achieved even with one

average (SNR = 13) using tri-linear interpolation, as was expected from the simulations
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using model A. Interpolation did not have a very significant effect when tracking in the
corpus callosum. On the other hand, in the sub-cortical white matter the interpolation
had a substantial effect (the 80% success rate contour is not visible in figure 5.12(c)). As
suggested by the simulations using model B, relatively reliable tracking in the sub-cortical
white matter could only be achieved with a very restricted combination of parameters:
using interpolation with the highest SNR available and a low step size (figure 5.12(d)).

The results reflect the trends seen in the simulations. In particular, the success rate is
increased at higher SNR, lower step size and by using tri-linear interpolation. By com-
paring the results for the two fibres, it can be seen that the success rate is also increased
at higher FA, higher fibre cross-sectional radius and higher radius of curvature. In addi-
tion, assuming that the fibre in the corpus callosum is less contaminated by partial volume
effects, it can be seen that the success rate is much improved when such effects are not
significant.

5.4 CONCLUSION

In the absence of a gold standard for DT-MRI tractography, simulations where the exact
fibre geometry is known provide a framework for investigating different aspects of fibre
tracking in a controlled way. The results presented here indicate that the use of tri-linear
interpolation produces more reliable results than nearest-neighbour interpolation, and the
former should therefore be used whenever possible. In addition, the information provided
by the simulations may help to determine whether a particular acquisition sequence will
produce images of sufficient quality to track structures with particular characteristics (FA,
radius of curvature, etc). Simulations may also be helpful in deciding on the structures
that should be considered for tracking for a given quality of image.

The simulations presented in this study provide an indication of the capabilities of
the algorithm selected, in terms of its dependence on SNR, partial volume effects, etc.
However, they can also be extended to other algorithms, and could be used in their fine-
tuning and assessment. For the particular algorithm implemented in the present work,
potential developments include evaluation of other interpolation methods (spline or sinc),
tensor field regularisation techniques [8, 19] and a context-sensitive step size (as suggested
by Basser et al [6]) based on results from contour plots such as figure 5.11. More complex
models may be used to investigate the behaviour of these algorithms when faced with
more challenging situations (for example crossing or ‘kissing’ fibres, or branching) [6].

Due to uncertainties concerning the true in vivo fibre structure and other practical lim-
itations (e.g. limited SNR), it is difficult to use simulations to assess directly the reliability
of tracking performed on real data. Moreover, the models used are simplistic with respect
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to the conditions found in vivo, in that they address very specific issues. However, trends

seen in the simulations were also seen in real data, which suggests that simulations can be

related to in vivo fibre tracking and do produce meaningful results. Therefore, simulations

such as those presented in this work can make an important contribution to the assessment

of diffusion tensor tractography.
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6.1 INTRODUCTION

As mentioned in section 3.3, diffusion tensor imaging (DTI) can provide important in-
formation related to tissue micro-architecture in the brain in-vivo. The anisotropy of the
diffusion process in white matter tracts is of particular interest for tractography, since
it may be used to infer the direction of the underlying fibres, and thus follow the sup-
posed path of white matter tracts in the brain in-vivo. Most fibre-tracking algorithms to
date equate the direction of fastest diffusion, as given by the orientation of the major
eigenvector of the diffusion tensor, directly with the direction of the fibres. However, as
described in sections 3.2.3 and 3.3.4, DTI is particularly sensitive to the effects of both
partial volume averaging and noise, leading to errors in the major eigenvector direction
and artificially increased anisotropy values. The impact on the tracks generated can be
considerable: if an incorrect major eigenvector direction causes the track to venture into
an adjacent, yet unrelated structure, an apparent connection may be established where
none exists in reality.

Ideally, fibre tracking would be performed on very high quality data (high signal-to-
noise ratio (SNR), high spatial resolution, a large number of diffusion encoding directions,
etc.). However, in practice, image quality will frequently be compromised in favour of
feasible imaging times. In particular, the voxel size is often increased in order to boost the
SNR, leading to considerable partial volume effects. When more than one fibre population
is present within a single voxel, the diffusion tensor will generally fail to describe any of
these adequately (see section 3.3.4).

Another problem is that a single large fibre bundle may split up into a number of
smaller tracts, each projecting to a different area of the brain, such that there are a number
of possible solutions emanating from a single seed point. Many of the existing tech-
niques [1, 2, 3, 4] generate a single track per seed point, potentially leading to a consider-
able loss of information.

It is clear that there is a degree of uncertainty in the measurement of white matter tract
orientation using DT-MRI [5], and that the level of uncertainty depends on a number of
factors. This uncertainty in the true path of the tract will tend to increase as a function
of the distance tracked. A number of pseudo-probabilistic techniques have recently been
proposed to address this issue [6, 7, 8, 9, 10]. These assume a model to estimate the
uncertainty in the orientation of the fibres, and often work by investigating a large number
of possible paths emanating from a single seed point. Each connection thus generated is
assigned an index of connectivity with the seed point, derived from the particular model
assumed.

In such a pseudo-probabilistic framework, the tractography problem may be expressed
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in terms of a front emanating from the seed point, the evolution of which is governed by
the diffusion data at this point [6]. This chapter describes the implementation of a novel
front evolution technique for fibre-tracking using diffusion-weighted MRI, to which the
acronym FRET (FRont Evolution Tractography) has been assigned.

6.2 THE FRET ALGORITHM

6.2.1 OVERVIEW

A general outline of the various steps involved in the FRET algorithm is given below, and
illustrated in figures 6.1 to 6.7. Each step is described in more detail in the following
sections. The FRET algorithm works by iteratively evolving a front from a user-defined
location, using the information contained in the diffusion data to infer the appropriate
direction of evolution. For each iteration, the surface of the front is characterised by a set
of points that adequately samples it. Each of these points will be used to generate a new
set of points describing the surface of the next iteration of the front. In this context, a
point that is used to generate new points is referred to as a parent point, and a point being
generated in this way is referred to as a child point. The set of child points generated from
the same parent is referred to as a child front. Thus, each point on the current surface of
the front will be used as a parent point to generate its own local child front. The resulting
set of child points will eventually constitute the surface of the next iteration of the front.

Information about the strength of the connectivity between the region where the front
was initiated (the seed region) and the current point is carried by an associated index of
connectivity, which is assigned to each child point by considering both its parent’s index
of connectivity, and the local diffusion data. The contribution of the local diffusion data
is derived from the so-called fibre orientation density function (see section 6.2.2). This
approach allows the investigation of a large number of potential paths emanating from a
particular region, and to some extent to account for the effects of noise and partial volume
effects.

A number of other issues need to be addressed for this algorithm to produce adequate
results. In particular, only a finite number of directions can be used in practice to generate
the set of points making up each child front, and the optimal sampling strategy will be a
compromise between the efficiency of the algorithm and the adequacy of the sampling.
In addition, not all child points generated during the course of one iteration will lie on the
surface of the next iteration of the front. Finally, it is not computationally feasible to use
all the child points generated during one iteration as parent points in the next iteration,

and a down-sampling strategy must be implemented.
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A ‘fast marching’ tractography algorithm [6] has recently been presented that uses
a similar concept of front evolution. However, fast marching differs from the FRET al-
gorithm in several important respects, the two most significant of which are as follows.
First, fast marching is a voxel-by-voxel technique, which limits the possible directions for
tracking to those connecting the centres of two neighbouring voxels (a total of 26 direc-
tions), whereas FRET treats both the orientation space and the tensor field as continuous.
Second, fast marching uses information from the time of arrival of the front to generate
the tracks, whereas the surface of the front as obtained using FRET is the final track.

6.2.2 THE FIBRE ORIENTATION DENSITY FUNCTION

The index of connectivity assigned to a point on the front is derived from the local diffu-
sion information, assuming a model for the uncertainty in the direction of the underlying
fibres. This model can be expressed in terms of the fibre orientation density function
(ODF). This function gives an indication of the likelihood that an underlying fibre tract is
aligned along any particular direction, given the local diffusion data. This function dic-
tates the evolution of the front, using the assumptions made in the model. For example,
most streamlines-based techniques (e.g. Mori et al [1], Conturo et al [2], Basser et al [3])
follow the direction of the major eigenvector, and hence implicitly use a delta function
pointing along that direction as their ODF, in which case both noise and partial volume
effects are effectively ignored.

As mentioned in section 3.3.5, the exact relationship between the diffusion-weighted
data and the underlying fibre orientation in the presence of noise and partial volume effects
is unknown. Moreover, the most adequate model depends on the type of acquisition
performed. The g-space approach [11] (see section 3.3.5) involves impractical scan times,
and is thus not considered as a suitable candidate for this application. Although high
angular resolution imaging may reveal structures that DTI fails to describe, no adequate
model yet exists relating the diffusion-weighted signal intensities to the orientation of the
underlying fibre population. It has been suggested that a number of distinct diffusion
tensors could be fitted to the ADC profile (corresponding to a multi-compartment model
in the slow exchange regime) [12]. However, this was found to be unstable when more
than two tensors were included in the fitting. It is worth pointing out that the FRET
algorithm is not restricted to any particular ODF, and if a more appropriate model relating
diffusion to fibre orientation is developed, the particular ODF being used can relatively
easily be replaced.

Although the diffusion tensor model has been shown to be inadequate in certain re-

gions of the brain (section 3.3.5), it is well characterised, and its mathematical properties
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are well documented. For this reason, the ODF used in this study is an empirically deter-
mined function of the local diffusion tensor D. For a highly anisotropic prolate diffusion
tensor, it is assumed that a single fibre population is present, which is aligned along the
major eigenvector of the tensor. The ODF should therefore have a narrow distribution,
having maximum intensity along the direction of the major eigenvector. In the case of
an oblate diffusion tensor, it is assumed that several fibre populations may be present, in-
dicative of either fibre crossing or fibre branching. The ODF should then have a pancake-
shaped distribution, with those directions in the plane of the tensor’s major axes having
similar probabilities. For low anisotropy tensors, it is assumed that the fibres are not
arranged coherently, and all directions should have zero or low probability.

The form of the equation for the ODF used in this study was chosen empirically to
provide a good approximation to the expected behaviour as described above. At each
point, the raw diffusion-weighted intensities are computed by trilinear interpolation from
the raw data, and then used to calculate D by least-squares linear fitting. If 4 is a unit
vector along the direction of interest, then the value returned by the ODF used in this

study is given by:
P = aexp[f(|v| — A\1)] (6.1)
where:
1
a =
1 + expla;(az — FA)]
p = K

1 + explas(as — FA)]
D-

>

Q:

|v| is the magnitude of the vector v, A; is the major eigenvector of the diffusion tensor,
and FA is the value of the fractional anisotropy [13] at the point of interest. Since the
maximum value of |y| is A1, the expression exp[3(|u| — A;)] has maximum value 1 when
the direction of interest 4 corresponds to the major eigenvector, and tends to zero as the
magnitude of v decreases. For isotropic tensors, |u| = A;, and the index of connectivity is
constant for all directions. For anisotropic tensors, |y| is smaller than )\, for any direction
other than the major eigenvector, and the index of connectivity for those directions will
be smaller, depending on the value of 5. To ensure that a small (near zero) index of con-
nectivity is given for isotropic tensors, the factor « is a function of anisotropy. To ensure
that highly anisotropic tensors yield narrow, well-defined ODFs, § is also a function of
anisotropy.

The parameters {a;} control aspects of the behaviour of this ODF, for example its

width and amplitude given a particular diffusion tensor. These parameters were set em-



Chapter 6: Front evolution tractography 121

Figure ¢ .1: example diffusion tensors (top) and their corresponding fibre orien-
tation density functions (bottom) generated as described in section 6.2.2. Left:
a highly anisotropic tensor representing a fibre population for which the ori-
entation is relatively well defined. Middle: a low anisotropy tensor gives rise
to a much broader distribution with a reduced index of connectivity. Right:
an oblate tensor, representing the case of crossing fibres, where only the plane
likely to contain the fibre orientation can be determined.

pirically, such that the ODF generated for a particular tensor displayed the desired be-
haviour. Three such tensors were used in this process: a low anisotropy prolate tensor, a
high anisotropy prolate tensor, and an oblate tensor. In this way, the parameters {a"}! were
set to {10, 0.3, 200, ¢, 0.5}. Figure 6.1 shows the three tensors used in this process, along
with the corresponding ODFs generated using the final set of parameters; as can be seen,

the chosen empirical ODF describes the expected behaviour adequately.

6.2.3 SAMPLING ORIENTATION SPACE

Each child front consists of a set of points, each obtained by stepping away from the
parent point by a small distance. In order for the algorithm to produce optimal results, as
many directions as possible should be sampled. However, sampling too many directions
would imply that each child front is made up of a large number of points, increasing the
amount of computation required and impacting on the efficiency of the algorithm. Since
it is the most likely directions that are of interest, it is more efficient to take more samples
along those orientations than along others.

Since the ODF used in this study is based on the diffusion tensor, the most likely
orientation for the fibre will coincide with the major eigenvector. A suitable sampling
scheme can then be generated as illustrated in figure 6.2. A set of unit vectors that sample
orientation space evenly is generated (by tessellation of a regular polyhedron, yielding 66
vectors). Each vector is then multiplied by the tensor: if the tensor is prolate, the vectors
will tend to align with its major axis. If the tensor is oblate, the vectors will tend to move

into the plane of the two major axes. The directions of this set of vectors are then fed into
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a b c d

Figure 6.2: given a typical prolate diffusion tensor (a), the most likely orien-
tations can be sampled more densely through the following process. Starting
from a set of vectors that sample orientation space uniformly (b), each vector
is multiplied by the tensor raised to the power n, such that it tends to align
with the tensor’s major axis. The resulting set of vectors with n = 2 (¢) and
n =4 (d).

the ODF to generate the child front.

The sampling density can be increased further by using a modified version of the
diffusion tensor with an increased anisotropy for the multiplication process. This can be
done easily by raising the tensor to a power n, determined empirically (in this study, n =

4). Thus, the set of vectors {i/J used to sample the ODF is given by:

6.2)

where { rj is the set of evenly distributed vectors.

In addition, a curvature constraint was introduced to prevent the tracks generated from
turning back on themselves. A threshold was set on the angle between each vector in the
set {w]j generated above and the current direction of tracking (see below). If this angle
was exceeded, the corresponding point in the child front was discarded. The threshold
depends on the minimum radius of curvature specified by the operator and the step size
used in the algorithm, which is also specified by the operator (in general, it was found that

a minimum radius of curvature of - mm produced adequate results).

6.2.4 FRONT EVOLUTION

As previously mentioned, the front is defined by a set of points lying on its outermost
surface. During each iteration, a child front is generated from each of the parent points
that currently define the front (see figure 6.3), and all child fronts are subsequently merged
to form the front for the next iteration (see section 6.2.5 below). Each point on the child
front has an associated direction of sampling (the line joining it to its parent point), a

direction of evolution (the normal to the front at this point), and an index of connectivity
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Figure 6.3: overview of the front evolution process, for the case of a single seed
point. Left: the seed point yields a child front, consisting of a set of points,
each of which has been assigned its index of connectivity (represented by the
grey levels in this example). Each of these points in turn generates its own
child front. Right: the set of points thus generated form a crude representation
of the outer surface of the front.

with the seed point. There are a number of ways that these child fronts could be generated,
and these have profound implications for the properties of the algorithm.

It is possible to make the speed of evolution a function of the ODF, such that the time
of arrival of the front gives an indication of the level of connectivity to that region (see
figure 6.4). This is similar to the approach taken by Parker et al [¢]. In this case, it is
not necessary to maintain information about the index of connectivity explicitly, since the
time of arrival contains that information. Although this approach is conceptually more
rigorous, it suffers from a number of drawbacks. It was used for the first implementation
of the algorithm, written using MatLab (The MathWorks Inc, Natick, MA). This imple-
mentation was found to be extremely inefficient', and will not be discussed here.

The approach used for the present implementation of the FRET algorithm is to make
the speed of evolution constant for all directions, and so use a constant step size (see
figure 6.4). In this case, the index of connectivity is carried by each point explicitly, and
the child points lie on the surface of a sphere centred on their parent point. Although using
this approach removes some of the limitations of the other type of front evolution, it also
has disadvantages. In particular, problems will arise when tracking a curved fibre tract,
since highly connected points may be discarded in favour of less highly connected points
by the surface reconstruction step. However, this is a problem that can be overcome, as
described in the next section. In order to ensure its optimal efficiency, this implementation
of the algorithm was written in C++.

'MatLab is an interpreted language, and relatively inefficient for anything other than matrix operations.

In addition, its syntax is such that a number of possible optimisations could not be implemented. Finally,
using a variable speed of evolution is intrinsically more computationally intensive.
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Figure 6.4: two possible approaches for front evolution. Left: using an ODF-
dependent step size, the front evolves most rapidly along the most likely direc-
tion. The index of connectivity is then a function of the time of arrival of the
front. Right: using a constant step size, the front propagates at the same rate
in all directions, and the index of connectivity (represented by the grey levels

in this example) has to be carried explicitly.

6.2.5 Surface reconstruction

Duiing the course of an iteration, a large number of child fronts will be generated, and
many of these will inevitably overlap. When these child fronts are merged, those portions
that lie behind or inside the surface of other child fronts need to be eliminated, such that
the surface of the front is clearly defined.

In order to reconstruct the surface of the front, it is necessary to identify those points
that lie within another child front. Since the constant speed of evolution approach was
used, each child front is spherical in shape, and it is only required to test whether the
distance between the point of interest and the child front’s parent point is less than the
child front’s radius. The simplest way of reconstructing the surface would be to remove
those points that lie inside other child fronts. This is however not a satisfactory solution.
Consider the case of a tract with a relatively large curvature, as shown in figure 6.5. A
point with a high index of connectivity, generated from a parent point inside the tract,
may find itself inside a child front with an overall lower index of connectivity, originat-
ing from a parent point outside that tract, and would thus be discarded. In other words,
such an approach would be biased towards low curvature tracks. This can be avoided as
follows. Any point that lies inside another child front is projected along the line joining
it to its parent point onto the surface of that child front, as illustrated in figure ¢ .c . This
ensures that the surface of the front is clearly defined, since all points will now lie on
the outermost surface of the front. However, points will be projected further and further
away from their original position as the direction of projection tends towards the plane of
the front. This problem can be minimised by introducing a constraint on the maximum
angle allowed in the tracks: a threshold can be imposed on the angle between the current

direction of tracking at the point of interest (given by the parent point’s normal vector)
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Figure 6.5: discarding points that lie inside other child fronts may introduce
bias in the track generated, as illustrated here. In curved regions of the track,
a point with a high index of connectivity (a) may be overtaken by a point with
a low index of connectivity (b), and would thus be discarded. Curved tracks
would therefore be assigned unduly low indices of connectivity.

c d

Figure 6 .6 : (a): there will in general be some overlap between any two child
fronts (the arrows indicate the direction of tracking associated with each point),
(b): those points that lie behind another child front are identified, (c): the
points in (b) are then projected onto the surface of the outermost child front,
retaining their original index of connectivity and direction of tracking, (d): all
these points taken together define the surface of the front for the next iteration.
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and the line joining the child point to its parent. Since the plane of the previous genera-
tion’s front (the set of parent points) should be approximately parallel to the plane of the
current generation’s front, this should ensure that the directions along which the points
are projected remain close to normal to the front. Points that do not satisfy this condi-
tion are discarded. This is equivalent to constraining the maximum curvature of the track
generated, since the radius of curvature is a function of that angle and the step size. As
mentioned in section 6.2.3, such a constraint is already used to generate the child fronts,
and therefore does not need to be re-implemented.

As previously mentioned, every point on the front has an associated vector, giving the
direction normal to that point’s original child front at the point’s location (corresponding
to the direction joining that point to its parent). Points that remain after the surface re-
construction step retain their original normal vector. Thus, the set of remaining points
describe the position of the reconstructed front, and the set of normal vectors at these
points describe the normal to the front. A consequence of this is that it is possible for
two points close to each other to have different ‘normal’ vectors. Although it may appear
desirable to eliminate such discrepancies, it is not clear how such a smoothness constraint
can be implemented whilst minimising the impact on the efficiency of the algorithm, and
what its real benefits might be in practice.

6.2.6 DOWN-SAMPLING THE FRONT

If every child point was used as a parent point for the next iteration, the number of points
making up the front would increase approximately exponentially, and the computation
would soon become too slow to be useful, ultimately failing when the computer’s memory
has been filled entirely.

In order to reduce the number of points making up the front, and thus to improve the
efficiency of the algorithm, the set of points that contain the most significant information
must be identified. Given a set of points located very close to each other, the most signif-
icant point must be that with the highest index of connectivity, otherwise high probability
tracks would be discarded arbitrarily. Therefore, the set of points that contains the most
significant information consists of those points that have the highest index of connectivity
within their immediate vicinity.

An appropriate subsample can be taken from the set of points currently making up
the front as shown in figure 6.7. A 3-dimensional grid is used to divide the set of points
into small subsets of points lying close together (i.e. within the same grid node). The
subsample can then be formed by selecting the point with the highest index of connectivity

from each subset. The size of the grid must be chosen to be small compared to the
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Figure 6.7: the points making up the front need to be sampled down to a num-
ber that is computationally feasible. Left: a grid is applied to the front. Right:
the point with the highest index of connectivity (represented by the grey levels)

within each cell is identified and all others are discarded.

step size of the algorithm, whilst ensuring that the number of points in the front remains
manageable. In this study, it was found that a value for the size of each grid element of

approximately 15% of the step size gave adequate results.

6.2.7 PROPAGATION OF THE INDEX OF CONNECTIVITY

Assigning an index of connectivity to each point can be done in a number of ways. If each
track is seen as a series of probabilistic steps, then the probability of getting from a point
Pn along the track is given by the product of the probability of getting to the previous point
Pn-i and the probability of stepping onto pn- Therefore, it may initially seem appropriate
to assign to each newly-generated point the product of the index of connectivity of its
parent point with the value returned by the ODE. However, this simple treatment assumes
that there is only one path linking two points together. In the present framework, there are
an infinite number of such paths, and the contribution of each one of them would need to
be included, which is not possible in practice. In the present algorithm, the connectivity
index assigned to each child point is derived from its parent point and the local diffusion
information only; it would be very difficult to include contributions from the other parent
points in the vicinity.

The method adopted in this implementation of the algorithm attempts to take both the
information about the diffusion locally (via the ODF) and information about the current
status of the track (via the parent point’s index of connectivity) into account in order to
assign an appropriate index of connectivity to each child point. A child point cannot be
more highly connected with the seed region than its parent, since the connection must
pass through its parent. Each child point is therefore assigned the value returned by the
ODF, unless that value is higher than its parent’s index of connectivity, in which case it is

assigned its parent’s index of connectivity. In this way, the index of connectivity of any
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point on the front corresponds to the minimum value returned by the ODF at any point
along the path from the seed point. Although this index is not directly related to the actual
probability of the connection, it still provides useful information regarding the likelihood
of a track: if any step along a track is uncertain, then any connections emanating from

that point should be regarded as equally uncertain.

6.2.8 SEED POINT SELECTION

In the simplest case, a track is initiated from a single seed point. However, it is also
possible to define a set of points that can be used as the first iteration of the front. This
approach minimises the dependence of the tracks generated on the exact location of the
initial seed point. In this study, a square grid of NxN points was used (with N ranging
from 1 to 9), lying in the plane perpendicular to the initial direction of tracking. The grid
spacing used was the same as that used to down-sample the front (see section 6.2.5).

6.3 METHODS

6.3.1 DATA ACQUISITION

Two data sets were acquired over two separate occasions on a healthy adult volunteer
on a 1.5T Siemens Vision system, using the twice-refocused diffusion-weighted spin
echo EPI sequence described in section 4.2. The parameters of the sequence were:
TE = 110ms, FOV = 256 x256, matrix = 128x 128, slice thickness = 2 mm (voxel di-
mensions = 2x2x2 mm?), 60 contiguous slices covering the whole brain, with a b-

value = 1000s/mm?

. The diffusion encoding gradients were applied in 20 uniformly
distributed directions [14], and three non-diffusion encoded (b=0) data sets were also

acquired.

6.3.2 ASSESSMENT OF THE FRET ALGORITHM

Ideally, simulations would be used to assess the properties of the FRET algorithm. How-
ever, the simulations performed in chapter 5 were designed to evaluate streamlines algo-
rithms that generate a single track per experiment. New measures of reliability would be
needed to assess the results produced by the FRET algorithm, and these may or may not
be comparable to the existing measures. For this reason, the FRET algorithm was initially
assessed as described below.

The performance on the FRET algorithm was assessed first by performing tracking on
real data acquired as described above, in regions with relatively well known anatomy, and
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comparing the tracks obtained to an anatomical atlas. The behaviour of the algorithm with
respect to partial volume effects could be appreciated by looking at regions known to con-
tain multiple fibre populations, such as the centrum semiovale and the pons. This process
was repeated in the second data set to assess the reproducibility, and hence robustness
to noise, of the algorithm. The effect of changing the parameters of the algorithm (the
step size, the size of the seed region, the curvature threshold, and the parameters defining
the ODF) were investigated by repeating the tracking procedure with identical parameters
apart from that of interest. Finally, the tracking results were compared to tracks generated

using the more common streamlines technique, described below.

6.3.3 STREAMLINES TRACKING ALGORITHM

For comparison with the FRET algorithm, a commonly used streamlines algorithm (see
section 3.3.3) was also used to generate tracks. Starting from a given seed point, each
track is generated as follows:

o the raw diffusion-weighted intensities are calculated at the current point along the
track from its 8 nearest neighbours by tri-linear interpolation

o the diffusion tensor is calculated from these by least-squares linear fitting

e the FA is evaluated from the tensor: if it falls below a threshold value of 0.1, the
track is terminated

e the major eigenvector is obtained from the tensor

o the next point along the track is generated by stepping a distance of 0.1 mm along
the direction of the major eigenvector

o if the angle formed between the new track segment generated and the previous one

corresponds to a radius of curvature of less than 2 mm, the track is terminated
e this process is repeated until the track is terminated.

Tracks were initiated from a set of points located on a 5x5x5 grid, forming a 1 mm
wide cube in 3D space centred on the seed point of interest.

6.4 RESULTS AND DISCUSSION

The FRET algorithm was designed to address some of the limitations of previously pub-
lished techniques, in particular susceptibility to noise (by using the ODF), problems with
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fibre branching (by using a front evolution approach), and the lack of any indication of
the likelihood of a connection (by introducing an index of connectivity). However, trac-
tography techniques are difficult to validate, due to the lack of a gold standard. In this
study, tracking was performed in structures with relatively well known anatomy, and the
results presented show that this technique can be used to generate tracks in the major
white matter tracts that correspond well to this anatomy. The examples shown were se-
lected to demonstrate some of the characteristics of the algorithm, which are discussed
below. A full assessment of the FRET algorithm will require further work, in particular
using simulations on synthetic data such as those described in chapter 5.

The quality of the tracks generated can be appreciated from figures 6.8, 6.9 and 6.10,
showing the results of tracking in the cortico-spinal tract and the splenium of the corpus
callosum. It can be seen that in regions where the fibres are known to be highly coherently
oriented (e.g. the posterior limb of the internal capsule and the splenium of the corpus
callosum), the track remains well defined. As desired, subsequent possible branches are
identified and assigned their corresponding index of connectivity.

An important property of any algorithm is that if it establishes a connection from one
point to another, we expect it also to be able to establish a connection from the latter
point to the former. This was investigated by placing the seed region in an area that had
been assigned a high index of connectivity in a previous tracking experiment, the results
of which are shown in figure 6.8. It can be seen in figure 6.11 that the track seeded in
this area projects strongly to the structure where the seed region for the original track in
figure 6.8 was placed.

6.4.1 DEPENDENCE ON THE SIGNAL TO NOISE RATIO

To investigate the reproducibility of the FRET algorithm, tracks were generated from two
different data sets acquired on the same volunteer. The results are shown in figures 6.8
and 6.9, and it can be seen that both yield very similar tracks. The main differences
between them are that some of the branches with low connectivity indices are present
in only one of the data sets, and that the values for the connectivity indices are subtly
different. This may be attributed to the fact that these data sets differ in their noise and
partial volume distributions (since they were acquired on separate occasions), such that
the estimated diffusion tensors differ between the two acquisitions, leading the algorithm
to establish low connectivity connections in one data set but not in the other. This is most
noticeable as the track enters the region of the centrum semiovale, a region known to
contain crossing fibres and significant partial volume effects [15, 16].
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Figure ¢ .3 : a track generated using the FRET algorithm by seeding in the right
cortico-spinal tract at the level of the pons. The colour corresponds to the
index of connectivity as shown on the bottom right. Top: coronal and sagit-
tal maximum intensity projections (MIPs) of the track, overlaid on fractional
anisotropy (FA) maps. Middle right: an axial MIP of the portion of the track
above the level of the slice, overlaid on an axial FA map at the level of the right
motor cortex, showing the region of highest connectivity. Bottom: a MIP of
the track, overlaid on three orthogonal FA maps.
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min max

Figure 6.9: a track generated using the FRET algorithm by seeding in the
right cortico-spinal tract, analogous to that displayed in figure s .s , but obtained
using a data set acquired from the same volunteer several months later. The
track is displayed and colour-coded as in figure ¢ .5 .

132



CHAPTER 6: FRONT EVOLUTION TRACTOGRAPHY 133

min max

Figure 6.10: a track generated by seeding on the left side of the splenium of
the corpus callosum. Top left: a sagittal MIP projected onto a sagittal FA map.
Top right: an axial MIP projected onto an axial FA map, viewed from below
such that left is displayed on the right. Bottom: a MIP of the track, overlaid on
three orthogonal FA maps. The track is colour-coded as in figure 6 .s .
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Figure 6.11: a track generated using the FRET algorithm by seeding in the
white matter adjacent to the right motor cortex, in a region indicated as hav-
ing a high index of connectivity when seeding in the cortico-spinal tract (see
figure ¢ .8 ). Top left: a coronal MIP projected onto a coronal FA map. Top
right: a sagittal MIP projected onto a sagittal FA map. Bottom: a MIP of the
track, overlaid on three orthogonal FA maps. The track is colour-coded as in
figure ¢ .5 .
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Figure 6.12: tracks generated using the FRET algorithm to show the sensi-
tivity of the track to the exact position of the seed point. Left: a MIP of the
track generated by placing a single seed point in the centre of the seed region
used to generate figure 6.8. Right: a track generated by placing a single seed
point 1 mm away from the previous seed point. As can be seen, the track is

terminated at the level of the pontocerebellar fibres.

6.4.2 DEPENDENCE ON INITIAL SEED REGION

Figure ¢ .12 was produced to illustrate the dependence of the tracks generated on the exact
location of the initial seed point or region (see section 6.2.8). At the level of the pons, the
corticospinal tract runs very close to a number of other white matter tracts, in particular the
pontocerebellar fibres that run across to form the middle cerebellar peduncle. This region
is therefore very prone to partial volume effects, making the tracking process unreliable.
In figure 6.12, the seed region was placed in the corticospinal tract, just below the level
of the pontocerebellar fibres. When seeding from a single seed point in this region, the
tracks generated by the FRET algorithm are very sensitive to its exact location: starting
the FRET algorithm from a point only a millimetre away from a previously successful
seed point results in the front being terminated at the level of the pons. When using a grid
of seed points for the seed region (see section ¢ .2 .3 ), this dependence is markedly reduced,
since the seed region is more likely to contain an appropriate starting point. However, the
size of the seed grid should be kept small enough to fit within the structure of interest to
avoid tracking adjacent white matter pathways and producing erroneous results. For the

results shown here, the maximum extent of the grid was 1.2 mm.

6.4.3 DEPENDENCE ON ALGORITHM PARAMETERS

The properties of a track, in terms of its dispersion, connectivity index, or the number of
branches, depend on the particular model used and its assumptions. Figure 6.13 shows
tracks generated using different values for the parameters {aj used to define the ODF,

resulting in a wider ODF ({aj = { 14, 0.25, 100, 16, 0.3 }). As expected, the track gener-
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Figure 6.13: a track generated using the FRET algorithm from seed points in
the cortico-spinal tract, analogous to that in figure 6.8, but obtained using a
modified ODF (as described in section 6.4.3). Left: a coronal MIP of the track
overlaid on a coronal FA map. Right: a sagittal MIP of the track overlaid on a
sagittal FA map. The track is colour-coded as in figure 6.8. This track contains
more branching and dispersion than that in figure 6.8. However, the regions
that have been assigned the highest index of connectivity are the same as those

in figure 6.8.

ated exhibited a higher degree of dispersion and contained more branches, and these were
assigned a higher index of connectivity. The region of highest connectivity was however
the same as when using the unmodified ODF. Using such a broad ODF thus increased the
amount of computation performed by the algorithm, without adding a significant amount
of information.

The effect of each  parameter on the ODF and the resulting track may be appreciated
by looking at equation 6.1. The peak intensity for the ODF is determined by a, and its
‘width’ by Both a and ~ are simple sigmoid functions that decrease as a function of
anisotropy: ai and U correspond respectively to the sharpness and crossing point of the
a curve, and 03, Gi,and  correspond respectively to the amplitude, sharpness and cross-
ing point of the (3 curve. This allows fine control over the properties of the ODF used in
the present study. As mentioned above, the {aj parameters used in this work were cho-
sen empirically. However, it should be possible to determine the values to use for these
parameters more rigorously by performing simulations on synthetic data, where the true
path of the fibre tract is known. Such simulations would also help to determine appro-
priate values for the curvature and index of connectivity thresholds, and to validate the
FRET algorithm, in the absence of any true ‘gold standard’. Simulations to determine the
optimal values for these parameters and to assess the limitations and requirements of the
FRET algorithm more rigorously will be the subject of further work (cf. chapter 5 [17]).

Figure 6.14 illustrates the effect of modifying the threshold for the minimum radius

of curvature. This threshold is a statement about the expected properties of fibres in the
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Figure 6.14: tracks generated using the FRET algorithm from seed points in
the left side of the splenium of the corpus callosum, analogous to that in fig-
ure 6.10. Left: using a radius of curvature threshold of 2 mm. Right: using
a radius of curvature threshold of 1 mm. Note the presence of an additional
branch curving away from the original direction of tracking in an improbable

way. The tracks are colour-coded as in figure 6.8.

brain, and changing it allows a different degree of branching and dispersion to occur in
the track. When small radii of curvature are allowed, the track exhibits more dispersion,
and branches are present that would not have been allowed using a higher threshold. With
a minimum radius of curvature of 1 mm, a branch (highlighted by the arrow) is generated
that curves almost 90° away from the original direction of evolution of the front, in an
improbable way. This branch is removed using a threshold of 2 mm or higher. It should
be noted that the voxel size in the data set was 2 mm, and that structures with a radius
of curvature lower than this value cannot be expected to be represented accurately. The
use of a curvature threshold can therefore prevent this kind of error. It may also be used
to state prior assumptions about the tract of interest, for example in a major white matter

pathway that is not expected to contain high curvature.

6.4.4 DEPENDENCE ON PARTIAL VOLUME EFFECTS

The effect of partial voluming between different fibre populations can be appreciated from
figures 6.8 and 6.11. The anatomical regions where most dispersion in the tracks occurs
correspond to areas of known fibre crossing, which are likely to suffer from a high degree
of partial volume contamination [15, 16]. In particular, connections are seen in figure 6.8
posterior to the sensorimotor cortex that are anatomically implausible. These are likely
to have been caused by partial volume effects in the region of the centrum semiovale,
causing the track to branch into an adjacent, yet unconnected tract. Since the ODF used

in this study is based on the diffusion tensor, it is expected to behave relatively poorly
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with respect to partial volume effects (see later). However, these contentious connections
have been assigned a relatively low index of connectivity, indicating that this measure is
indeed a useful marker of connectivity.

The track in figure 6.11 also establishes some implausible connections. First, a con-
nection is established to the medial lemniscus, which is known to project to the thalamus.
Within the midbrain, the medial lemniscus runs close to the cortico-spinal tract, and it
is likely that this connection was established due to partial volume effects. Second, the
track also establishes a connection to the ipsilateral cerebellum via the middle cerebellar
peduncle, which is not anatomically connected to the motor cortex. This artefact is again
most likely due to partial volume effects between the cortico-spinal tract and the adja-
cent pontocerebellar fibres, and is aggravated by the fact that the angle between the fibres
in these structures is relatively small. The diffusion tensor in such regions will remain
fairly anisotropic and prolate, such that these regions can only be assumed from the data
available to contain a single fibre population.

6.4.5 COMPARISON WITH STREAMLINES

The tracking results obtained using the FRET algorithm were compared with results ob-
tained from the streamlines technique, as shown in figure 6.15. The tracks generated using
the streamlines technique agree well with those generated using the FRET algorithm. In
particular, the track obtained using the FRET algorithm contains all the tracks generated
from the streamlines technique. Moreover, the streamlines-generated tracks correspond
to the portion of the front that has been assigned the highest index of connectivity: this is
expected since streamlines only generates the most likely track emanating from each seed
point given the data. A limitation of the streamlines techniques is the lack of any indica-
tion of the reliability of the tracks thus generated, since all are effectively given the same
weighting. In contrast, it can be seen that the FRET algorithm does provide additional
information about the degree of connectivity of these and other possible tracks.

6.4.6 THE INDEX OF CONNECTIVITY

The algorithm presented in this study defines an index of connectivity (see sections 6.2.2
and 6.2.7) as a measure of the reliability of the connections established by the algorithm.
Ideally, the actual probability of the connection given the diffusion-weighted data would
be produced. However, this is very difficult to achieve in practice, primarily for the fol-
lowing two reasons. First, the method chosen to propagate the index of connectivity (see
section 6.2.7) is intrinsically unable to produce suitable estimates of the probability of a
connection. Second, the probability of a connection is directly dependent on the ODF
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Figure 6.15: a sagittal MIP of the same track as in figure 6.8, together with
the tracks (shown in blue) generated using the streamlines algorithm (see sec-
tion 6.3.3), by seeding in the same region. Both are overlaid on a midline
sagittal FA map. The track generated by the FRET algorithm is colour-coded
as in figure 6.8.

used and the model from which it is derived. As mentioned in the introduction, there
is currently no model that would take the effects of both noise and partial volume into
account to provide an adequate estimate of the probability density function for the under-
lying fibre orientation.

It should be emphasised that the FRET algorithm is not restricted to a particular ODF,
and the latter can easily be replaced if a more suitable model is developed. The current
implementation of the ODF used here is a function of the diffusion tensor. Although
inadequate in many cases, the tensor formalism is well accepted and its properties can
be derived in a relatively straightforward fashion. Given this model and its assumptions,
the major eigenvector is expected to correspond to the most likely orientation for the
underlying fibre bundle. However, the exact relationship between the diffusion tensor and
the fibre orientation is still not clear. Ways of accounting for the effects of noise have
recently been presented [5, 18], but it is still not possible to account for partial volume
effects in a rigorous way. In the present study, the ODF was therefore empirically chosen
to reflect its expected behaviour. It should also be mentioned that since all images used
in this study contain similar amounts of noise, the actual value of the SNR was not used

as a parameter in the derivation of the ODF. It is thus clear that a more rigorous ODF
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is required in order to obtain better estimates of connectivity, especially when tracking
through regions containing partial volume effects.

Despite these limitations, the index of connectivity used here provides useful infor-
mation. Connections that are not anatomically plausible have been assigned low values
for their index of connectivity, whereas the most likely connections have been assigned a
high index of connectivity.

6.5 CONCLUSION

As has been shown in this chapter, the FRET algorithm possesses many of the proper-
ties that are desirable in a tracking algorithm: it produces results consistent with known
anatomy, and provides additional information regarding other possible branches and their
degree of connectivity with the seed region. It attempts to address many of the issues pre-
viously raised, in particular fibre branching and susceptibility to noise and partial volume
effects. One of the main limitations of the current implementation of the FRET algorithm
is that it is still susceptible to partial volume effects. However, if a more adequate model
for diffusion is developed, the improved ODF may be used as a replacement. Finally,
further work is needed to assess its properties and limitations more thoroughly, using
simulations such as those presented in chapter 5. In this case, new measures of reliability
applicable to FRET would need to be defined, since the current measures apply only to

streamlines.
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7.1 INTRODUCTION

It has already been established that the basal ganglia' are important for intact motor con-
trol [1], and for the motor control of speech functions [2]. It is also known that most
speech and language processing in the human brain usually takes place in the left hemi-
sphere [3], in particular in the inferior frontal gyrus, also known as Broca’s area, and
in the posterior superior temporal cortex, also known as Wernicke’s area. However, the
relationship between aphasia® and basal ganglia damage is poorly understood. Several
theories have been put forward to explain the inconsistencies observed between speech
and language function and abnormalities found using various imaging techniques. These
include the following possibilities.

¢ The direct involvement of specific basal ganglia nuclei: specific nuclei of the
basal ganglia may play a direct role in speech and language functions. A number of
studies suggest that the basal ganglia are involved in normal language processing
either directly or indirectly through their connections with cortical language sites [4,
5,6, 7]. The variability in severity and type of aphasia following subcortical damage
may therefore be explained by the size or site of the lesion. However, several studies
have shown an absence of a correlation between lesion size and severity [8, 9] or
type of aphasic impairment [10] following basal ganglia lesions. On the other hand,
other studies have shown an association between aphasia and damage to the anterior
portion of the head of the caudate nucleus and to the anterior limb of the internal
capsule [4, 5]. However, although the caudate head may be directly involved in
language processing, the observed deficits may also be due to the disruption of
connections between this structure and other language sites.

e Damage to the white matter tracts in and around the lesion: the basal ganglia
are surrounded by white matter pathways that connect the basal ganglia to the tha-
lamus, much of the cerebral cortex and the brain stem [11]. White matter tracts sur-
rounding the basal ganglia also contain extensive projections between the thalamus,
cerebral cortex and brainstem that do not involve connections with the basal gan-
glia. Lesions affecting the basal ganglia frequently include damage to these white
matter tracts, particularly affecting the internal capsule and sometimes extending
into the external capsule, extreme capsule and corona radiata. It may therefore be
that speech and language difficulties associated with basal ganglia injury are not

!The basal ganglia are a collection of five large nuclei located beneath the cerebral cortex in the fore-
brain, midbrain and diencephalon: the caudate nucleus, putamen, globus pallidus (consisting of internal and
external segments), substantia nigra (pars compacta and pars reticulata), and subthalamic nucleus.

2impairment or loss of the faculty of using or understanding spoken or written language



CHAPTER 7: UNILATERAL BASAL GANGLIA INFARCTION STUDY 144

necessarily a direct result of injury to the basal ganglia nuclei, but of damage to
white matter connections between the basal ganglia and the cortex or even to white
matter tracts that do not involve the basal ganglia. A number of studies of basal
ganglia infarction in adults have concluded that white matter tract damage is cru-
cial in the manifestation of speech and language deficits [8, 12, 13] and that the
type of linguistic disturbance exhibited is dependent on the specific region of white
matter tract damage [8].

e Reduced input from the basal ganglia to the cortex: speech and language im-
pairments observed in adult patients with left hemisphere basal ganglia infarctions
have been linked to the presence of abnormalities beyond the basal ganglia and
surrounding white matter. Such abnormalities might be caused by deafferentiation
from subcortical inputs. The basal ganglia are part of a complex circuit involving
large regions of the cerebral cortex and the brain stem. Virtually all areas of the
cerebral cortex, including the frontal and temporal regions [14] involved in speech
and language processing, project ipsilaterally to the basal ganglia and back to the
same cortical regions via the thalamus. It might therefore be expected that damage
to the basal ganglia nuclei would deprive the language cortices of neuronal input.
This may lead to inactivity of the connected regions of the cortex and may even
progress to Wallerian degeneration® in the long-term. The cortical disconnection
hypothesis also gains support from SPECT perfusion studies [16, 17], where the
presence of aphasia in a group of patients with subcortical infarctions was associ-
ated with hypoperfusion in perisylvian regions including Broca’s and Wernicke’s
areas. However, since the majority of those patients did not have occlusion of the
internal carotid artery (ICA), the perfusion deficit was thought to be a result of
reduced cortical activity caused by deafferentiation from the subcortical inputs.

e Chronic hypoperfusion in cortical speech and language areas: an alternative
explanation for abnormalities remote from the core lesion site affecting speech and
language following basal ganglia injury is that of cortical hypoperfusion in regions
that appear structurally normal [18]. Since infarctions of the basal ganglia usually
involve the ICA or middle cerebral artery (MCA), the entire MCA territory may be
at risk. In the left hemisphere, this territory includes the perisylvian cortex, which
is essential for language functions [18]. In a recent report, using highly sensitive
diffusion and perfusion-weighted MRI techniques, Hillis et al [19] showed that
aphasia or neglect in 44 patients with acute subcortical infarctions was consistently
related (in 100% of cases) to cortical hypoperfusion in the MCA territory. More-

3the anterograde degeneration of axons and myelin sheaths following proximal neuronal injury [15]
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over, intervention to induce reversal of the cortical hypoperfusion was associated
with a resolution of aphasia in all 6 of the patients who underwent intervention.

The above theories may help in the current study to relate language impairments with
imaging findings obtained from a group of children and adolescents with acquired uni-
lateral basal ganglia infarction. These investigations were undertaken as part of a study
performed in collaboration with the Developmental Cognitive Neuroscience Unit at ICH,
in particular with Alison Rowan (PhD student). The respective contributions to this study
have already been outlined in the introduction (page 13). The data collected included
behavioural tests of speech and language performance, together with structural, diffusion
and perfusion MR imaging. Since speech and language function are known to be mostly
left-lateralised, significant differences in speech and language performance were expected
between the group of patients with a left-sided infarct and that with a right-sided infarct.
However, although both speech and language function in both patient groups were found
to be impaired relative to age-matched controls, no significant differences were found be-
tween the two patient groups. On the other hand, a considerably greater variation in lan-
guage performance was observed in the group of patients with a left-sided lesion: some
patients with left-sided injuries demonstrated marked difficulties in language function,
with three patients having scores lower than two standard deviations below the popula-
tion mean, while others with apparently similar lesions showed no evidence for language
difficulties. In contrast, all individuals with right-sided injuries performed within the nor-
mal range on tests of language function.

Until recently, many studies have been limited by the lack of imaging resolution or
sensitivity to different properties of tissue. In many cases, this has prevented the relative
importance of the different mechanisms involved in the manifestation of aphasia from
becoming apparent. Conventional MR imaging was used to select the patients partici-
pating in this study. However, additional more subtle brain abnormalities that are not
seen on conventional MRI might perhaps explain the variation in language performance
mentioned above. Such abnormalities might be detectable using a number of more re-
cently developed MRI image acquisition and analysis techniques. Such techniques were
therefore employed in the present study, with the following aims:

e to characterise the site and extent of basal ganglia infarctions, including the specific

basal ganglia nuclei involved

e to characterise the site and extent of any white matter tract damage surrounding and
beyond the basal ganglia infarctions

e to identify the presence of cortical abnormalities that are not visible on clinical

images, specifically involving the cortical speech and language regions
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subject group group size mean age age range
left-sided infarct 10 12:4 6:10-19:11
right-sided infarct 7 9:5 7:5-12:0
control 17 11:4 7:2-21:5

Table 7.1: description of the patients used in this study. All age values are
written using the notation [ years:months ].

e to assess for the presence of perfusion abnormalities beyond the basal ganglia that
have not resulted in structural abnormalities but that may produce functional im-

pairments

¢ to identify relationships between arterial abnormalities, deficits in perfusion and

functional abnormalities

This chapter will describe only a section of the whole study in order to demonstrate a
practical application of diffusion tensor imaging, namely that related to aims 2 & 3 above.
These data enabled the investigation of the correlation between language performance and
focal changes in both morphology and diffusion anisotropy (identified using voxel-based

morphometry) in a group of patients with acquired unilateral basal ganglia infarction.

7.2 METHODS

7.2.1 STUDY POPULATION

The patient group consisted of 17 children and adolescents with acquired unilateral basal
ganglia infarction. This group was split up into a group of 10 patients with a left-sided
lesion, and a group of 7 patients with a right-sided lesion. The age at assessment and time
elapsed since infarction are shown in table 7.1. Tests were also performed on a group of
age-matched controls (N = 17).

7.2.2 LANGUAGE ASSESSMENT

Language function was assessed using the clinical evaluation of language fundamentals
(CELF-III) test [20]. The CELF-III is designed to assess performance in selected aspects
of language, with its focus on language form and content rather than use in conversational
or communicative contexts. It assesses both receptive and expressive language skills, with
subtests evaluating word meaning (semantics), sentence structure (syntax), and recall and
retrieval (auditory memory). In the normal population, receptive, expressive and total
language scores have a mean of 100 and a standard deviation of 15.
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original normalised segmented smoothed

Figure 7.1: processing stages of voxel-based morphometry. The original 3D
data are first normalised into the same stereotactic space. They are then seg-
mented into grey matter, white matter, and CSF. Each of these maps is then
smoothed to increase the validity of the parametric statistical test.

7.2.3 Voxel-based morphom etry

Voxel-based morphometry (VBM) is a method of characterising subtle differences be-
tween groups of images that may not be evident on visual inspection. VBM provides
quantitative information through statistical analyses that test hypotheses (with f-tests and
F-tests) by making comparisons between brain images on a voxel-by-voxel basis. It is
often used to identify focal differences between images acquired on a particular group of
patients and images acquired on a different group (usually control subjects). It can also
be used to find correlations within a group of patients between changes in the images and
a measure of performance (such as IQ or language performance). It is not biased towards
a given structure or regional difference and can provide a comprehensive analysis of the
entire brain. VBM has the additional advantage of not being dependent on subjective
judgements, since it uses an automatic procedure and standardised parametric statistics to
provide an objective, quantitative measurement of grey and white matter changes [21,22].

Before MR data can be statistically analysed, they must first undergo several stages
of processing. Figure 7.1 illustrates the processing stages of VBM. The MR images are
first normalised into the same stereotactic space. Following this, the normalised data are
usually segmented into grey matter, white matter and CSF. This step generates probability
maps for each voxel being either grey matter, white matter or CSF, depending on its
spatial position and signal intensity in comparison to prior probability information derived
from control subjects. These maps are then smoothed using an isotropic Gaussian kernel,
to ensure that the data are more normally distributed, thereby increasing the validity of
the parametric statistical analyses. Furthermore, using a smoothing kernel of a similar
size to that of the expected differences sensitises the analysis to the spatial scale of the

structure of interest. Statistical parametric maps are then created for the entire brain
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by performing voxel-by-voxel statistical tests. For a more detailed explanation of these
processing stages, see Ashburner and Friston (2000).

These statistical parametric maps are formed from a large number of statistical tests.
In order to limit the generation of false positive results, it is necessary to correct for
multiple comparisons [21]. The correction used here is based on Gaussian Random Field
Theory. It can be applied over the whole brain, to yield so-called corrected p-values,
or if a prior hypothesis exists, over a small volume of interest containing the structure
thought to be relevant, to yield so-called small volume corrected (SVC) p-values. Itis also
acceptable to interpret significant results that are not corrected for multiple comparisons
in cases where a prior hypothesis exists about specific voxels.

In this study, all VBM analyses were performed using Statistical Parametric Mapping
software (SPM99, Wellcome Department of Imaging Neuroscience, London, UK).

7.2.4 MR IMAGING AND ANALYSIS

All MR images were collected using a 1.5T Siemens Vision System. The protocol con-
sisted of conventional 7} and 75 weighted imaging, high resolution 3D structural imaging,
and diffusion tensor imaging. Although they will not be reported here, perfusion imaging
and MR angiography were also performed when possible. Note that in this chapter, all
images are displayed in neurological convention (i.e. the left hemisphere is on the left,
right is on the right), since this is the SPM convention.

CONVENTIONAL T; AND 715 WEIGHTED IMAGING

T weighted images were acquired using a sagittal multi-slice sequence (TR = 570 ms,
TE = 14 ms, flip angle = 60°, FOV = 200 mm, matrix size = 256x512, slice thick-
ness = 4 mm, 19 slices). Axial T, weighted images were acquired using a multi-slice
turbo spin-echo (TSE) sequence (TR = 3458 ms, TE = 96 ms, 7 echoes, FOV = 220 mm,
matrix size = 196x512, slice thickness = 5 mm, 19 slices). The 77 and 7, weighted
images obtained from all patients and control subjects were visually inspected by a neu-
roradiologist (Dr. K. Chong). The presence of lesions, the number of lesions, and the
specific structures affected were recorded. In addition, the presence of atrophy and other
abnormalities were noted.

HIGH RESOLUTION 3D STRUCTURAL IMAGING

High resolution images were acquired using a 77 weighted 3D fast low angle shot (FLASH)
sequence [23] (TR = 16.8 ms, TE = 5.70 ms, flip angle = 21°, FOV = 200 mm, matrix
size = 200x 256, 160 partitions, voxel size = 1.00x0.78 x0.78 mm). A VBM analysis was
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then performed on these data. The MR data were first normalised by global grey matter
to a T; weighted template. They were then segmented into grey matter, white matter and
CSF, and the resulting grey matter and white matter maps were smoothed with a 12 mm
and an 8 mm isotropic Gaussian kernel respectively since these dimensions correspond
approximately to the dimensions of the cortical regions of interest and the cross-sectional
dimensions of white matter. A series of correlation analyses was then carried out to ex-
amine the relationship between structural abnormalities on the 3D FLASH scans and the
CELF-III measure of language, with particular focus on the following areas: the basal
ganglia nuclei of the injured hemisphere, the cortical language areas and white matter
tracts surrounding the basal ganglia and connecting the cortical language areas with the
basal ganglia, in particular the internal capsule.

Inferences from statistical parametric maps were made at three different threshold
levels. Firstly, correlations throughout the entire brain were reported if they reached the
significance value p = 0.05, corrected for multiple comparisons across the entire brain.
Secondly, correlations involving the regions predicted to be affected were reported if they
reached significance with the application of small volume corrections to correct for mul-
tiple comparisons within the regions of predicted differences (i.e. p = 0.05, SVC). The
principal regions of predicted difference were the basal ganglia and surrounding white
matter, and the left hemisphere inferior frontal and superior temporal regions (correspond-
ing to the cortical language areas). The regions used for the SVC are shown in figure 7.2.
These regions were highly conservative since they encompassed regions of greater vol-
ume than the structures of interest. Finally, correlations involving the regions predicted
to be affected were reported if they reached a conservative level of significance without
correction for multiple comparisons (i.e. p = 0.001, uncorrected).

The statistical parametric maps are shown superimposed onto the mean normalised
image of the group data in order to aid anatomical localisation. Identification of the
anatomical location of regions of abnormality was carried out in reference to Durvernoy’s
atlas [24]. The maps are shown at an uncorrected threshold p = 0.005, and cross hairs
indicate the location of the maximal peak.

DIFFUSION TENSOR IMAGING

Diffusion tensor data sets were acquired using a twice-refocused diffusion-weighted spin-
echo EPI sequence (TE = 110 ms, matrix size = 128 x 128, zero-filled to 256 x256, pixel
size = 1.5x 1.5 mm after zero-filling, slice thickness = 3 mm, 40 contiguous slices cov-
ering the whole brain). For each slice location, a total of 23 images were acquired,
including 3 b=0 images, and the remainder with the diffusion-encoding gradients (b-
value = 1000 s/mm?) applied along 20 non-collinear directions uniformly distributed over
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SVC around basal ganglia and
surrounding white matter:
30x42x30 mm box,
centre: [£15 ¢ 10 ]

SVC around left inferior frontal
region (Broca’s area):
sphere, 20 mm radius,
centre: [ -40 20 10 ]

SVC around left superior tem-

poral region (Wernicke’s area):
sphere, 20 mm radius,
centre: [-60 -35 20 ]

Yo

Figure 7.2: regions where a small volume correction (SVC) analysis was per-
formed in this study. The centre of each SVC region is indicated by cross-hairs
overlaid on axial, sagittal and coronal group-averaged structural images.
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Figure 7.3; average receptive, expressive, and total language scores for both
left and right-sided lesion groups. The thick dashed lines represent the normal
range (mean = 2 SD).

the surface of a sphere. This sequence is described in more detail in section 4,2.

The raw diffusion-weighted images underwent a number of pre-processing stages us-
ing in-house software. First, all slices were visually inspected to identify those corrupted
by pulsation or movement. These were not taken into account in the subsequent calcu-
lation of the tensor images. A subject’s entire data set was rejected if more than five
diffusion-weighted images from any one slice needed to be rejected. Maps of the frac-
tional anisotropy (FA) [25] were then calculated from the resulting diffusion tensor maps.

The FA maps thus generated were analysed using VBM. In order to normalise the
FA maps, the corresponding 6=0 {72 weighted) images were normalised to a standard
EPI template, and the same transformation was applied to the corresponding FA data. In
contrast to the analysis performed for the structural data, no segmentation was performed
for the normalised FA maps, since the intensity in these images is mainly from white
matter. The nonnalised FA data were then smoothed and analysed in the same way as

described above for the structural data.

7.3 Results

7.3.1 Language performance

The group average CELF-IIl scores of the left and right-injured groups are shown on
figure 7.3. No significant differences in the mean performance were observed between
the left-sided and right-sided lesion groups for all three measures of language. Individual
scores for the left-sided and right-sided lesion groups are shown in figure 7.4. Language
performance for all patients in the right-sided lesion group is within the normal range.

However, the variance in language performance in the left-sided lesion group is much
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Figure 7.4: receptive, expressive and total language scores for individual pa-
tients in the left-sided (left) and right-sided (right) lesion groups. The thick
dashed lines represent the normal range (mean + 2 SD).

greater, with three patients having scores lower than two standard deviations below the
population mean.

No significant differences were observed between receptive and expressive language
scores measured using this test. The total language score was therefore considered to
be representative of overall language function, and was used as a correlate in subsequent

analyses.

7.3.2 Conventional Ti and T" weighted imaging

The T2-weighted clinical MR images are shown in figures 7.5 and 7.6. No common
site of damage was observed in the basal ganglia in relation to language performance.
In particular, the head of the left hemisphere caudate nucleus was not damaged in all
patients with language impairments, but was damaged in some patients without language

difficulties.

7.3.3 Voxel-based morphometry: structural imaging
LEFT-SIDED LESION GROUP

Figures 7.7 to 7.11 and table 7.2 show the results of the correlation between language
function (as measured by the CELF-III) and changes on structural scans in patients with
a left-sided injury. In this group, grey and white matter density in and around the basal
ganglia were not found to be significantly correlated with language function. However,
a significant correlation between language function and grey matter density was found
in the left cortical language areas, including the inferior frontal gyrus, middle frontal
gyrus, insular cortex and superior temporal gyrus (all smoothed to 12 mm). A significant

correlation between white matter density and language scores was also observed in left-
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Figure 7.5: T2 weighted images showing the location of the lesion for each
patient in the left-sided lesion group. The arrows indicate the site of the lesion.
Top, left to right: patients 1to 5 (numbered as in figure 7.4). Bottom, left to
right: patients ¢ to 1.

Figure 7.6: T:» weighted images showing the location of the lesion for each
patient in the right-sided lesion group. The arrows indicate the site of the
lesion. Top, left to right: patients 1to 4 (numbered as in figure 7.4). Bottom,
left to right: patients 5 to 7.
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Figure 7.7: correlation between CELF-III language scores and grey matter
density in the left inferior frontal gyrus (pars triangularis), identified by VBM
in the group of patients with a left-sided lesion. Right: The centre of the
significant region is indicated by cross-hairs overlaid on axial, sagittal and
coronal group-averaged structural images. Left: CELF-III total language score
(x-axis) plotted against grey matter density (~-axis). The red line represents
the best fit through the data.

hemisphere deep frontal white matter (smoothed to 8 mm). No other predicted regions
of grey or white matter density were found to be significantly correlated with language

function.

RIGHT-SIDED LESION GROUP

In the right-injured group, the same analysis did not highlight any cortical language area
where grey matter density was significantly correlated with language score. However, a
significant correlation was observed between white matter density and language score in

deep frontal white matter, as shown in table 7.2.

location position Z-score corrected p-value smoothing
left inferior frontal gyrus [-52, 30, 18] 4J3 SvVC 0.05 12 mm
left middle frontal gyrus [-40, 26, 45] 3.80 no <o0.001 12 mm
left insular cortex [-42, -4, -3] 3.40 no <o0.001 12 mm
left superior temporal gyrus [-69, -40, 15] 3.04 no 0.001 12 mm
left deep frontal white matter [-34, 27, 16] 3.83 no <o0.001 s mm
right deep frontal white matter [38, 32, 8] 3.55 no <o0.001 s mm

Table 7.2: results of correlation analyses between language function (CELF-
III) and structural damage on 3D-FLASH images in patients with left-sided
(first 5 results) and right-sided (last result) infarctions
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Figure 7.8; correlation between CELF-III language scores and grey matter
density in the left middle frontal gyrus, identified by VBM in the group of
patients with a left-sided lesion (cf. figure 7.7).
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Figure 7.9: correlation between CELF-III language scores and grey matter
density in the left insular cortex, identified by VBM in the group of patients
with a left-sided lesion (cf. figure 7.7).
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Figure 7.10: correlation between CELF-III language scores and grey matter
density in the left superior temporal gyrus, identified by VBM in the group of
patients with a left-sided lesion (cf. figure 7.7).
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Figure 7.11: correlation between CELF-III language scores and white matter
density in the left deep frontal white matter, identified by VBM in the group of
patients with a left-sided lesion (cf. figure 7.7).

TOTAL CONTROL GROUP

In the control group, no region was found where either grey or white matter density were

significantly correlated with language score.

7.3.4 Voxel-based morphometry: diffusion tensor imaging
LEFT-SIDED LESION GROUP

Figures 7.12 to 7.14 and table 7.3 show the results of the correlation between language
function (as measured by the CELF-III) and changes on FA maps in patients with left-
hemispheric injuries. Anisotropy in the left internal capsule and deep frontal white matter
(all smoothed to 8 mm) was found to be significantly correlated with language function
in patients with left-hemispheric infarctions. No other predicted regions of white matter

anisotropy were found to be significantly correlated with language function.

RIGHT-SIDED LESION GROUP

In the right-sided lesion group, no significant correlation was found between fractional

anisotropy and language score.

location position Z-score corrected p-value smoothing
left gyrus rectus 1-7, 1,-15] 432 no <o0.001 s mm
left internal capsule, anterior limb [-14, 4,15] 3.50 no <0.001 § mm
left deep frontal white matter [-27, 15, 1IS] 4.46 no <o0.001 s mm

Table 7.3: results of correlation analyses between language function (CELF-
IIT) and fractional anisotropy in patients with left-sided infarctions
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Figure 7.12: correlation between CELF-11I language scores and diffusion
anisotropy in the left gyrus rectus, identified by VBM in the group of patients
with a left-sided lesion. Right: The centre of the significant region is indicated
by cross-hairs overlaid on axial, sagittal and coronal group-averaged fractional
anisotropy maps. Left: CELF-III total language score (T-axis) plotted against

fractional anisotropy (y-axis). The red line represents the best fit through the
data.
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Eigure 7.13: correlation between CELF-III language scores and diffusion
anisotropy in the anterior limb of the left internal capsule, identified by VBM
in the group of patients with a left-sided lesion (cf. figure 7.12).
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Figure 7.14: correlation between CELF-III language scores and diffusion
anisotropy in the left deep frontal white matter, identified by VBM in the group
of patients with a left-sided lesion (cf. figure 7.12).
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TOTAL CONTROL GROUP

In the control group, no region was found where the fractional anisotropy was signifi-

cantly correlated with language score.

7.4 DISCUSSION

This study highlights some of the limitations of relying on conventional imaging to in-
vestigate structure-function relationships. Abnormalities may exist that are not apparent
using conventional imaging techniques. Such a lack of evidence may be misleading and
could result in the wrong structure/function conclusions being drawn, as pointed out by
Incisa della Rocchetta et al [26]. There is considerable controversy surrounding the role
of the basal ganglia in speech and language function. Using advanced MR image acquisi-
tion and analysis techniques, the current study has identified further abnormalities remote
from the site of the lesion that were not apparent using conventional imaging.

Visual inspection of the conventional 77 and 75 weighted imaging provided no evi-
dence for a relationship between language performance and lesion site or size. Damage to
specific basal ganglia nuclei did not explain the wide variance in language performance
observed in the left-sided lesion group. In particular, the head of the left caudate nucleus
was not damaged in all patients with language impairments and was damaged in some pa-
tients without language difficulties, contrary to the suggestion that damage to the head of
the caudate nucleus is crucial in the mediation of language deficits in such patients [4, 5].
These results are consistent with a number of studies demonstrating an absence of a clear
relationship between the type of speech and language deficit and the involvement of spe-
cific basal ganglia nuclei [7, 18, 27].

The VBM analysis of the high resolution structural imaging provided evidence for
a positive correlation in the left-injured group between language performance and grey
matter density in a number of conventional language areas, including Broca’s area and
Wernicke’s area. No such correlation was observed in the other groups, suggesting that
this structure-function relationship does not extend to the normal population.

The VBM analyses of both the structural and diffusion tensor data independently iden-
tified a positive correlation in the left-injured group between language performance and
white matter density (for the structural data) and fractional anisotropy (for the diffusion
tensor data) in a similar location in the left deep frontal white matter. The proximity of this
region to the inferior frontal gyrus suggests that the white matter pathway connecting the
basal ganglia to the inferior frontal gyrus may be involved. However, this region contains
many white matter pathways and it is not possible from this study to determine which is
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affected. This issue may be resolved using tractography techniques (see section 3.3.3),
although this would require the acquisition of higher quality diffusion tensor data, lead-
ing to much increased scan times. The structural VBM analysis also identified a similar
correlation in the right-injured group in a homologous area in the right deep frontal white
matter. Again, no such correlation was found in the control group, suggesting that it is
not due to a normal structure-function relationship.

In the left-sided lesion group, the VBM analysis of the diffusion tensor data identified
a positive correlation between language score and fractional anisotropy in the anterior
limb of the left internal capsule. Since this region is close to the lesion site, this rela-
tionship might be due to the more extensive lesions resulting in poorer functional perfor-
mance. On the other hand, the anterior limb of the internal capsule is known to contain
fibre projections from the basal ganglia and thalamus to all parts of the frontal lobes [11].

In summary, abnormalities remote from the core site of the lesion were identified in
key language areas and in white matter regions likely to contain connections between
some of these areas and the basal ganglia. These results are consistent with the theory
that language deficits following basal ganglia infarctions are related to white matter tract
damage [8, 13], and/or cortical deafferentiation from basal ganglia inputs [16].

The findings reported here should at this stage be regarded with caution since most
regions do not reach significance when corrected for multiple comparisons. The corre-
lation identified in the left-injured group in the left inferior frontal gyrus (Broca’s area)
between language performance and grey matter density did however reach significance
with a small volume correction, and can be regarded with more confidence. Also, the
analyses of both the structural and diffusion tensor data independently identified a re-
gion of significance in the left deep frontal white matter. This convergence of evidence
suggests that the findings in this region are less likely to represent false positive results.

Diffusion anisotropy values must be interpreted with care, since they have been shown
to be dependent on the degree of myelination [28], which increases most rapidly during
the first two years of life, but continues to rise into early adulthood [29]. However, the
control subjects were age-matched, effectively removing this confounding factor. In ad-
dition, since language performance was not found to be significantly correlated to age
in these patients, the correlation found between the imaging data and language perfor-
mance cannot be attributed to age. Partial volume effects also complicate the interpre-
tation of anisotropy data. As described in section 3.3.4, it is possible for several highly
anisotropic fibre populations to be present within the same voxel, arranged such that the
overall anisotropy is reduced. However, this should not influence the significance of the
results, since these effects are not expected to be group specific.

The normalisation of fractional anisotropy maps into a common stereotactic space for
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use in the VBM analyses is not straightforward, since there are a number of ways to per-
form this operation. First, the anisotropy maps themselves could be directly normalised.
However, this implies the existence of a template image with identical contrast proper-
ties, with which each patient’s image can be compared, and such a template is difficult
to generate*. A second approach would be to normalise the diffusion tensor maps prior
to calculating the corresponding anisotropy maps. However, the normalisation process
involves linear and non-linear transformations that may adversely affect the diffusion ten-
sor. Although it has been shown that such transformations can be done robustly [30],
performing the normalisation requires considerably more processing [31]. Moreover, this
approach would also require the creation of a template. The approach that was used in this
study was to normalise each subject’s T, weighted b=0 image to the standard EPI template
supplied with SPM99, and apply the same transformation parameters to the anisotropy
maps. This is possible since the anisotropy map is calculated voxel-by-voxel from the
base images, such that a transformation that is valid for one image should also be valid
for the other.

It is interesting to note that the correlations observed between language scores and
fractional anisotropy exhibit better linearity than those observed using the structural data.
However, to understand this relationship, further work is needed. As previously men-
tioned, changes in diffusion anisotropy are difficult to interpret, but the diffusion tensor
contains more information that may prove to be useful. There may for instance be a rela-
tionship between the trace of the diffusion tensor and language performance, that would
be revealed by performing additional VBM analyses. Considerable insight may also be
gained by looking at the properties of the diffusion tensor in the areas highlighted by this
study. For example, there may be a relationship between language scores and the direction
of the major eigenvector in the deep frontal white matter region: if that region contains
several white matter pathways, it is possible that the degeneration of one pathway (in this
case, that connecting Broca’s area to the basal ganglia) allows the orientation of the others
to dominate, as has been shown in the pons by Pierpaoli et al [32]. This effect may also be
evident on inspection of the profile of the apparent diffusion coefficient as a function of
orientation: it may be possible to observe a reduction in the contribution from the pathway
that is thought to be involved [33].

4Generating a template involves averaging several normal brain images normalised to the same standard
space. However, the problem of normalising these images still remains.
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7.5 CONCLUSION

The results presented here provide evidence for abnormalities remote from the core site of
the lesion that are not detectable using conventional MR image acquisition and analysis
techniques in patients with acquired unilateral basal ganglia infarction. The findings are
consistent with the theory that language deficits in this group of patients are associated
with the loss of grey matter in left hemisphere cortical language areas and the interruption
of the white matter tracts connected to these areas. This study highlights the importance
of considering abnormalities beyond those observed on conventional MR imaging when
investigating structure-function relationships. Advanced MR imaging techniques such as
diffusion tensor imaging can provide additional valuable information that may influence
the interpretation of the observed findings, and should be used whenever possible.
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Diffusion tensor imaging is emerging as a powerful tool to probe tissue microstructure
in vivo, and provides quantitative information that cannot be obtained using conventional
methods. Maps of diffusion anisotropy have been used successfully in a number of patient
studies, and practical applications of tractography are beginning to be identified. How-
ever, diffusion tensor data acquisition sequences and analysis techniques are technically
challenging, and a number of issues need to be taken into consideration. Some of these
issues have been the subject of this thesis.

Optimal diffusion tensor imaging requires the acquisition of a large number of diffu-
sion-weighted images, with the diffusion-encoding gradients applied along a large number
of directions. The arrangement of these directions needs to be chosen with care, since it
will have an impact on the quality of the data (see section 3.3.2). In addition, diffusion-
weighted images are very sensitive to motion. For this reason, rapid single-shot imaging
techniques such as EPI are frequently used. As detailed in section 2.3, EPI images are
prone to local susceptibility-induced distortions and signal dropout, as well as global
eddy-current-induced distortions. Furthermore, the large gradients needed to induce a
suitable diffusion weighting introduce further problems, described in section 3.2.3, no-
tably increased eddy-current distortions and a significant reduction in the signal-to-noise
ratio (SNR). The eddy-current-induced distortions will in general be different depending
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on the direction of application of the diffusion-encoding gradients, such that the different
diffusion-weighted images may not align with each other correctly. Finally, the com-
bination of low SNR with the need to acquire a large number of images means that a
compromise must be made between total imaging time, image resolution, and SNR. This
is most acute in the clinical setting, where the scan time must be kept as short as possi-
ble. It is therefore important to rigorously assess the diffusion tensor acquisition sequence
that is to be used to ensure that the data produced are of sufficient quality. The optimal
compromise between scan time, image resolution and SNR will depend on the applica-
tion for which the data is intended. There are two main applications for diffusion tensor
data (apart from trace mapping): diffusion anisotropy mapping and tractography. Their
particular requirements are discussed below.

8.1 DIFFUSION ANISOTROPY

Diffusion tensor data are often acquired for visual inspection or to perform region of inter-
est analyses on anisotropy maps. These types of analyses have been performed to investi-
gate acute [1] or chronic stroke [2, 3], multiple sclerosis [4, 5], epilepsy [6], schizophre-
nia [7], and CADASIL [8], amongst others. In this case relatively few slices are needed,
the slice thickness can be made relatively large to increase the SNR, and the scan time
can be kept down to a few minutes whilst still producing images of acceptable quality.
A more rigorous analysis of diffusion anisotropy maps can be performed using statistical
techniques such as voxel-based morphometry (VBM). Such studies have previously been
performed to investigate patients with epilepsy [9], schizophrenia [10], or poor reading
ability [11]. For this type of analysis, the data should ideally cover the whole brain with
no gaps between the slices. This will tend to increase the number of slices required, and
consequently also the total scan time.

For diffusion anisotropy-related applications, the SNR and scan time are often im-
proved by increasing the slice thickness and/or reducing the image resolution. Therefore,
the data produced typically have large voxels and contain a relatively large amount of par-
tial volume averaging (see section 3.3.4). However, this type of application is relatively
insensitive to these effects, and suitable data can be acquired within clinically acceptable
scan times.

Chapter 7 presented results obtained using DTI in conjunction with VBM to investi-
gate the relationship between language deficits and imaging abnormalities remote from
the lesion site in patients with unilateral basal ganglia infarctions. Correlations were
found in several cortical language areas remote from the infarct site between language

performance and grey matter density, calculated from high resolution structural data. A
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correlation was also observed in a region in the left deep frontal white matter between
language performance and both white matter density and diffusion anisotropy. These
abnormalities were not detected using conventional MR image acquisition and analysis
techniques. This highlights the importance of considering abnormalities beyond those ob-
served on conventional MR imaging when investigating structure-function relationships.
It can also be seen from this study that the DTI protocol used was of sufficient quality to

perform a rigorous quantitative analysis of anisotropy maps.

8.2 DIFFUSION TENSOR TRACTOGRAPHY

Fibre-tracking or tractography is a methodology that is still under development, but has
the potential to provide new applications for diffusion tensor data. Applications to date
include studies of band heterotopia [12], Wallerian degeneration [2], brain tumours [13],
multiple sclerosis [14] and periventricular leukomalacia [15]. However, as demonstrated
in chapter 5, these techniques are highly dependent on SNR, partial volume effects, and
specific anatomical properties of the structure being tracked, such as anisotropy. This
dependence stems from the fact that errors in the major eigenvector may cause the track
to follow structures adjacent but unrelated to that intended. This places more stringent
constraints on the quality of the data required for successful fibre-tracking.

First, the voxel size should be kept small in order to minimise partial volume effects.
Although the major tracts may initially seem relatively unaffected by these problems,
there are many regions where these pathways cross or run immediately past each other.
In these areas, erroneous connections may be inferred due to partial volume effects [2].

Second, due to the intrinsically 3-dimensional nature of the fibre-tracking process, it
is essential to ensure that the diffusion tensor data set used to perform the tracking is
also 3-dimensional: it should consist of contiguous slices covering the entire structure of
interest, and the voxels should be as isotropic as possible to avoid directional bias.

In order to satisfy both of these constraints, the acquisition should consist of a large
number of contiguous thin high-resolution slices. This implies an increase in the scan
time due to the increased number of slices to be acquired, as well as a marked reduction
in SNR due to the reduced slice thickness. This drop in SNR is usually addressed by
acquiring multiple averages of the data (or more directions for the diffusion weighting),
which results in a large additional increase in the scan time. It may then become necessary
to correct for patient movement during the scan. Realigning diffusion-weighted images
with different contrasts is a difficult problem, although various techniques have been pro-
posed [16, 17]. It may also be necessary to adjust the b-matrix image-by-image if large
rotations are needed in the correction, since the direction of the diffusion weighting with
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respect to the sample would then be incorrect (this effect has not been investigated so far).

For these reasons, diffusion tensor data sets intended to be used for fibre-tracking
will generally require longer scan times than data intended for the analysis of anisotropy
maps. In order to assess the requirements that diffusion tensor tractography imposes on
the quality of the data, the simulations presented in chapter 5 were performed. Image
acquisition sequences can then be designed to meet those requirements.

The simulations presented in chapter 5 also made it possible to assess the limitations
and requirements of the tractography algorithm investigated, in terms of its robustness to
the various problems previously outlined. In particular, as might be expected, the tracking
reliability was demonstrated to be dependent on SNR, step size and the interpolation
method. The effects of partial volume averaging were of particular interest, since they are
expected to have an increasingly detrimental effect as the size of the structures tracked
decreases. The simulations could therefore be used to provide an estimate of the size of the
structures that could be reliably tracked, depending on the image acquisition parameters.
Conversely, they could be used to determine the image quality required to successfully
track white matter structures with particular characteristics.

The most commonly used tracking algorithms are based on the streamlines approach
pioneered by Mori et al [18] and Conturo et al [19], and have a number of inherent
limitations. First, only one track is generated per seed point. Due to the presence of noise
or partial volume effects, its path will to some degree deviate from the true underlying
fibre tract, and may follow entirely unrelated structures if those small deviations lead the
track outside the original structure. Furthermore, these algorithms give no indication of
the level of confidence that can be placed in the resulting track. Possible alternative paths
for the underlying tract from that seed point are not investigated, although this is addressed
to some extent by using multiple seed points. In order to perform reliable tractography,
algorithms must be capable of producing more informative results.

A more fundamental problem common to most tractography algorithms to date is
the use of the diffusion tensor model to relate the measured diffusion-weighted signal to
the estimated orientation of the underlying fibre population. A number of studies [20,
21, 22] have shown the inadequacy of this model in regions containing partial volume
averaging, where several fibre populations are present that have distinct orientations. It is
unfortunately not clear at this time how this problem can be resolved (see section 3.3.5).

The FRET algorithm, described in chapter 6, was developed in order to address some
of the issues raised above. It was designed to follow as many possible alternative paths as
was computationally feasible, taking into account the effects of noise and partial volume
effects, and assign an index of the connectivity with the seed region to each point reached

by the algorithm. The current implementation was designed to be as independent as pos-
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sible of the model used to relate the diffusion-weighted signal to the orientation of the
underlying fibre tract, so that new models could easily be incorporated into the algorithm.
Preliminary results obtained using this algorithm are encouraging, although susceptibility
to partial volume effects remains an issue. However, since this implementation uses the
diffusion tensor model, such problems were anticipated, and may be alleviated by using a
more adequate model. For a more complete assessment of the FRET algorithm, simula-
tions would need to be performed on synthetic data where the true outcome is known, as
has been done in chapter 5 for the streamlines algorithm.

8.3 REMAINING ISSUES

Diffusion tensor imaging is an emerging technique that holds considerable promise as
a means of probing tissue micro-architecture. Maps of diffusion anisotropy have been
shown to be useful in identifying abnormalities not visible using other imaging tech-
niques. There are however a number of issues that need to be addressed before diffusion
tensor imaging can be used robustly for fibre-tracking applications.

First, depending on the intended application, the required SNR and image resolution
may imply impractical scan times, although with careful sequence design, DTI data suit-
able for most applications can be acquired within a clinically acceptable scan time [23].
The scan time may also be reduced by improving the MR hardware. In particular:

e using larger and faster gradients allows a reduction of the echo time, resulting in
increased SNR. In addition, the EPI echo train length can be reduced, resulting in
reduced image distortions.

e parallel imaging techniques such as SMASH [24] or SENSE [25] can be used to
substantially reduce susceptibility-induced distortions in the image, although the
spatial non-uniformity of the noise may become a problem.

e Imaging at higher field strengths may also bring considerable benefits, due to the
significant increase in SNR. However, at these field strengths, increased suscepti-
bility artefacts make the use of EPI problematic. Furthermore, dielectric resonance
effects in the sample degrade the B; field homogeneity, introducing intensity dis-
tortions in the image. In addition, T, relaxation times are shorter at higher field
strengths, reducing the gain in SNR. Since the diffusion effect is not dependent on
By (as opposed to the BOLD effect [26]), it is not clear at present whether DTT will
benefit significantly from higher field systems.

Second, as previously mentioned, the diffusion tensor model is not adequate in regions
affected by partial volume effects. Unfortunately, there is currently no viable alternative
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model relating the measured diffusion-weighted signal to the underlying fibre orienta-
tion'. This places restrictions on the practical use of diffusion tractography, since the
results obtained may be corrupted. There is therefore a need for a more generally appli-
cable model that would be able to give an estimate of the distribution of fibre orientations
present. Such a model will most likely be based on high angular resolution acquisition
methods (see section 3.3.5), which may require longer scan times. If such a model was
developed, further work would be required to optimise the acquisition schemes for its use.

The third limitation, also related to partial volume effects, is that it may not be possible
to distinguish between crossing and ‘kissing’ fibres in voxels containing distinct fibre
populations using diffusion-weighted MRI (see section 3.3.4). Regardless of the model
used, the distribution of spin displacements in these two cases may be too similar to allow
a distinction to be made.

Despite these limitations, diffusion tensor imaging can provide valuable information
that cannot be obtained by conventional imaging methods. Maps of diffusion anisotropy
are increasingly being used, and are sufficiently robust for clinical use. Sequences for the
acquisition of diffusion tensor data are currently being implemented by the major scanner
manufacturers, and clinicians will soon be able to generate maps of anisotropy online
routinely. On the other hand, current tractography techniques produce reliable results only
if given sufficient prior information. They are therefore currently not sufficiently robust
for clinical use. However, research in this area is progressing rapidly, and algorithms
suitable for implementation on clinical systems may soon become available.
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