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This research has been conducted at University College London in collaboration with 
Loughborough University of Technology. It is aimed at studying the theoretical and 
practical aspects of circular radiating arrays under conventional and high-resolution 
processing for sonar applications.

The thesis opens with a short introductory review on circular arrays, quoting 
relevant past and recent publications and pointing to the significance of the sonar 
context. Some of the basic concepts involved in the conventional analysis of discrete 
circular arrays are then recalled, in particular that of phase-mode excitation and the 
derived techniques of mode-space beamforming, null steering and phase-comparison 
(multimodal) direction finding.

From a multimodal direction finding scheme that requires no mode alignment the 
study leads on to the introduction of the novel notion of sectoral phase modes and 
their possible application in directional multimodal direction finding with enhanced 
immunity to out-of-sector interference, and in sectorally-controlled multibeam 
nulling. One aspect pertaining to the benefit of sectoral phase modes as well as to the 
usefulness of most modal techniques is that of bandwidth. Options and limitations 
relating to digitally-implemented broadband mode alignment are examined and 
shown to depend on the directional properties of the element patterns. The effect of 
random homoscedastic aperture errors on the performance of modally-formed beams 
are analysed next followed by the introduction of a calibration-based least-squares 
correction scheme which is designed to compensate for deterministic or random 
variations in element radiation pattern behaviour and in array channel responses. The 
proposed two-stage multimode correction scheme, which is shown to be equivalent to 
a least-squares correction of a multiple set of mode-space beams, is extended to the 
wideband case, with some simulated results demonstrating the expected performance 
of filtered phase modes, sectoral phase modes and mode-space beams.

Finally, the application of spatial superresolution estimators to circular arrays is 
considered, where, after an overview of various relevant approaches and specific 
algorithms, a covariance-matrix structural equivalence is shown between nairowband 
element-space linear-array methods and the corresponding mode-space circular-array 
formulation. It is shown that spatial estimators for the latter case are better modelled 
under an ambient noise field that varies in elevation, and it is demonstrated that



established linear-array algorithms such as the Minimum Norm estimator and the 
decorrelating technique of spatial smoothing may be reformulated to apply to circular 
arrays in mode space. Furthermore it is noted that, under wideband processing, mode- 
space estimators are particularly suited for handling a multipath environment by 
virtue of an inherent ffequency-domain smoothing effect.
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1. INTRODUCTION

1.1 GENERAL

The circular symmetry of ring and cylindrical arrays has attracted the attention of 
antenna and sonar researchers over the past sixty years. Potentially, these arrays offer 
360° azimuth coverage for communications, direction-finding, radar and sonar 
applications, and may be installed on or conveniently wrapped round land, naval or 
airborne platforms. However, the rapid theoretical and technological growth in the 
related field of linear and planar arrays as well as the more complex and lossy feeding 
schemes devised for the earlier circular arrays, have inevitably limited the interest in 
their implementation and have held back their development. The past three decades 
have seen significant progress in the analysis of circular arrays, based on the concept 
of phase mode excitation, which has led to the development of ‘multi-modal’ 
direction-finding systems and to new techniques for the synthesis and steering of 
directional beams and nulls.

Sonar transducer arrays of various shapes have likewise been under research and 
development for many years [Hay 20], [HoL 47], [And 63], [Que 70]. Experimental as 
well as operational arrays of (receiving) hydrophones and (transmitting) projectors in 
linear, planar, circular, cylindrical, and spherical arrangement have been built and 
used for passive or active source detection and localisation, for minesweeping, fish 
finding, communication and telemetry [Uri 83], [Bur 91]. The low (acoustic) speed of 
propagation in water has led to the development of multiple-beam sonar array systems 
with the emphasis being placed (in the case of passive sonar) on true time-delay 
beamformers which could handle the wide bandwidths involved. Aided by the low 
frequencies of the useful ‘sonar spectmm’, fully-digital beamformers have, to a large 
extent, replaced the earlier analogue networks of receiving sonar arrays, thus opening 
the way to more elaborate signal processing algorithms [And 60], [Cur 80].

Over the last three decades there has also been tremendous interest directed at 
surpassing the Rayleigh resolution limit of spatial spectral estimation. Known 
collectively as spatial superresolution techniques, these are non-linear signal
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processing methods that use the information available in the received (and sampled) 

incoming wavefront, subject to some assumptions, to (statistically) enhance the 

system performance in detecting and separating between closely-spaced sources. 

They are generally relevant in the context o f digitally processed receiving arrays of 

arbitrary shape, but a number o f important high-resolution schemes have been either 

restricted to, or better modelled, when applied to equi-spaced linear arrays. The 

inherent symmetry and full peripheral coverage that characterise sensor arrays with 

circular geometry have, rather surprisingly, attracted only limited interest of authors 

in the field [Zey 91], [Roc 88], [Mes 90].

Papers on circular arrays started to appear in the 1930s dealing mainly with the 
azimuth and elevation patterns as well as the directivity of co-phased, equi-phased 
and periodically-phased arrays [Ste 29], [Chi 36], [Han 38], [Han 39]. The basic radiation 
properties of ring and cylindrical arrays, their radiation impedance and directivity 
continued to feature in later works [Car 43], [Pag 48a], [Pag 48b], [LePSO], [KuN 51], 
[KuN 53], [Ti l 55], [KuN56], [Kin56], [Wai58], [CHU59], [Mir59], [Hic60], [Hic61], 
[Hic 63], [Mac 63], [Roy 64], [Roy 66], [Che 67], [Kin 68], some of which included an 
analysis of concentric ring arrays proposed for improving pattern control [Ste 29], 
[Han 38], [Han 39], [Pag 48b], [LeP50], [Ste 65], [MAW 68], [Got 70]. The synthesis of 
directional beams based on co-phased (or close to co-phased) excitation has likewise 
provided a popular subject of research [DuH 52], [Tay 52], [Zm 64], [Fen 65a], [Fen 65b], 
[Jam 65], [Mot68], [Tse68], [Red70], [Col 70], [Got 77], [Nag 78], [Wat 80], although the 
development of the phase mode excitation concept [CoL 69], [Pro 72], [DAv81a], 
[Day 83] in the 1960s has led to a simple transformation from the then well- 
established linear array synthesis techniques to circular arrays [Day 65b], [Lon 67], 
[Rah 80], [Rah 81], [Rah 82], [Jon89], [Jon90]. Beam scanning and multi-beam forming 
which had previously required the commutation of excited array sectors, the 
switching of a feed lens ports or a phase-modulating network (for continuous beam 
rotation) [NEF 50], [NEF 60], [Tan 62], [McC 63], [Day 65a], [Fen68], [Lon 68], [Boy68], 
[Sta69], [Boy 70], [Bog 74] could now be achieved by feeding the array with a Butler 
matrix and applying a linear progressive phase taper to its output ports [But 61], 
[CHA 62], [CHO 66], [CHO 67], [She 68], [Day 69], [Wit69], [She 70], although practical 
aspects of realising large Butler matrices have led some authors to consider 
alternative hybrid beam switching schemes in which a small phased Butler matrix is 
used for fine phase-centre deflection of the excited aperture or beamforming lens 
sector [Hol 74], [Ska 75]. One application for a Butler-matrix-fed circular array as a 
transmit-receive antenna on a communication-antenna site is proposed in [Guy 83b] 
where use is made of the isolation between different phase modes excited by the 
matrix. An interesting application for an electronically rotating circular-array beam
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(however implemented) relates to obtaining a non-rotating directional radiation 

pattern from an antenna mounted on a spinning spacecraft [Gre 74]. Null forming and 

null steering techniques have similarly benefited from the novel phase-mode approach 

making it possible to synthesise omnidirectional ‘modes’ as well as directional beams 

with a specified number o f steerable pattern nulls [LiM 75], (Lim 77], [Day 77], [Riz77], 

[Day 78a], [Dav 78b], [Day 81b], [Gri 86], [Kar 86], [CvE 88a], [Cve 88b].

Early applications considered for circular arrays included direction finders 

[Cra47], [Ear 47], [RiN 56], [Bai60], [Get 66], [Wun66], [Get 78], [KuM 83a] o f which the 

WuUenwever array is perhaps the most well known, naval and air navigational aids 

[Han 53], [CHR 74], [She 74] and HF communications antennas [Sta 69]. The classic 4- 

element Adcock array patented in 1919 and more so the 8-element (interleaved) 

Adcock are in fact examples o f a circular array implementation o f a direction finding 

system [CRA 47], [Adc 19], [Guy 83a]. More recent circular-array DF techniques are 

based on multi-beam amplitude comparison, multi-modal phase comparison, a nulling 

scheme or any combination o f the above [Cve 88a], [Cve 88b], [Reh 80]. The formation 

o f nulls to suppress interference may also be achieved through the use o f  adaptive 

hardware and software, applicable at either element level or at mode level [Guv 81].

Closely related with the idea o f adaptive array processing are superresolution 

techniques for the spatial resolution o f incident plane waves emanating from a 

number o f far-field sources [JoH 86], [Nic 87]. A variety o f algorithms have been 

developed and analysed in the literature, among them scalar-search (one-dimensional 
parameter-search) methods such as Capon’s MVDR, Burg’s Max-Entropy, MUSIC, 

and Min-Norm [Cap 69], [Bur 67], [Bur 68], [Bur 75], [Sen 79], [Sœ81], [Bm 80], 

[Red 79], [KUM83b], [KuM 83c], [Nic 88], [LiV 90] search-free (translational invariance) 

methods such as ESPRIT and TAM [Pau 85], [Pau 86], [Roy 86a], [Roy 86b], [Roy 87], 

[O n 88], [Roy 89], [OTT 90], [Orr 91], [ViB91a], [LiC 91], [KuN 86], [RAO 88], [RAO 89], 

[LiV 91] and vector-search (multidimensional) schemes such as IMP, Stochastic Max- 

Likelihood, Deterministic Max-Likelihood and W SF [Tup 82], [Mat 89], [KAV 91], 

[CLA 88], [CLA 91], [Sch68], [Van68], [Ban71], [Lig73], [Ows 81], [Wax 83], [Wax85], 

[Boh 84], [Boh 85], [Boh 86], [Jap 88], [Zis 87], [Zis 88], [San 87], [Sto 89], [STO 90a], 

[STo90b], [Sto 91], [OTT 89], [O n 92], [Vm91a], [Vm 91b].

Superresolution estimators may be directly applied to the signals received by the 

array elements, but it often proves beneficial to pre-process the array outputs, 

transforming the superresolution scheme from ‘element space’ onto ‘beam space’ 

[Bib 84], [Gra 84], [XuB 89], [XuB 90], [Lee 92]. The particularly useful transformation 

from element space to circular-array mode space which is to play a major role in our
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Study, has, however, excited but fleeting consideration in the literature [Moo 80], 

[Mu 81].

1.2 OBJECTIVES AND LAYOUT OF THESIS

Despite the dearth of published material in the field of circular arrays for sonar 
applications, most antenna array techniques for HF, VHP, UHF and microwave 
frequencies are basically applicable to sonar arrays. In fact adapting these techniques 
to sonar array systems means that traditional beamforming matrices whose imperfect 
analogue components have often limited their performance at microwave frequencies, 
may now be implemented digitally in hardware or in software, thereby allowing 
complex processing configurations and making the systems more amenable to 
corrective calibration and alignment schemes. Indeed, it may well be argued that the 
context of our study, which had initially been targeted at circular sonar arrays, has 
somewhat shifted to address circular digitally-processed receiving arrays of either 
antenna elements or sonar hydrophones; in the latter case, though, one has the double 
benefit of both low frequency and manageable array size.

Our research study thus aims at exploring theoretical and practical aspects of 
conventional as well as high-resolution circular-array processing schemes for sonar 
applications, adapting some of the established circular-array techniques, as well as 
applying a number of new ideas to circular sonar arrays fed by digital beamformers. 
The material contained in this thesis is organised as follows:

CHAPTER 2 reviews some of the basic concepts involved in the analysis of discrete 
circular arrays and considers some transient aspects of the array radiation patterns. 

CHAPTER 3 deals with conventional beamforming and nulling techniques based on 
phase-mode analysis, introduces the idea of directional multimodal direction 
finding based on the new notion of sectoral phase modes, and studies the options 
and limitations of wideband mode alignment which directly affect the usefulness 
of the above techniques.

CHAPTER 4  examines the effect o f random aperture errors on the performance o f a 

modally formed beam and introduces a correction scheme which is designed to 

compensate for deterministic or random variations in element radiation pattern 

behaviour and in array channel responses.

CHAPTER 5 is devoted to the application of superresolution techniques to circular 
arrays. From a brief review of this dynamic field it leads on to the viability of 
mode-space circular-array spatial estimators in terms of signal and noise
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covariances, and to the possible implementation of spatial and ffequency-domain 
smoothing.

CHAPTER 6  concludes the main part o f the thesis with a summary o f  the main results 

and recommendations for further study.

CHAPTER 7  holds the bibliographical references quoted in the thesis and is divided 
into five sections, each containing the references for the respective chapter and its 
appendices. Publications are quoted in the text using a bracketed ‘key’ comprising 
the first three letters of the (first) author’s surname and the last two digits of the 
year of publication. Whenever two or more publications share the same key, they 
are distinguished by appending a, b, etc. to their respective keys. Thus [Day 78a] 
and [Day 78b] refer to two different articles both of which had D. E. N. Davies as 
principal author, and both of which were published in 1978.

The remainder of the thesis is divided into six parts. Part A contains an extensive 
list of the abbreviations and symbols that appear in the thesis. Although an effort has 
been made to maintain a reasonable globality of definitions, some symbol re­
designation has proved to be unavoidable. Parts B to E hold the appendices to 
chapters 2 to 6 respectively, each part corresponding to a single chapter, while part F 
describes the latest version of a computer simulation program for the conventional 
analysis of circular arrays, including an overview of the program with structural 
details of its code as well as a layout of all user-interface menus in the form of a 
concise manual.
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2. BASIC CONCEPTS

2.1 GENERAL

The idea of stacking discrete aperture elements of an antenna or sonar system in a 
regularly-shaped array fed by a power combining/dividing network saw its first 
(antenna) implementation in the late 1920s. Such an arrangement allows the synthesis 
of prescribed radiation beams through the control of the aperture distribution, 
enhances the single-element signal-to-noise ratio (SNR) in reception^, enables the 
delivery of high ERP^ in transmission through the use of the active array^ 
concept and provides the basis for electronic scanning^ and multiple 
beamforming®. Although the radiation fields produced by an excited array (and 
likewise, the signals picked up by an array from outside sources) are governed by the 
solution to the wave equation® under the appropriate boundary conditions imposed 
by the array structure and loading, the underlying approach behind array theory is the 
principle of superposition. Accordingly, the radiation pattern of the array at a given 
observation angle‘s is obtained by a linear combination of the element-pattem fields

 ̂ The single-element SNR is improved under the assumption of low aperture correlation of the 
received noise and low loss of the feeding network.

2 ERP stands for the Effective Radiated Power of the array, denoting the power per unit solid angle
transmitted by the array in a given direction, divided by An.

 ̂ An active array uses a set of power amplifiers whose outputs are combined in space. The 
amplifiers are attached to the array elements or distributed within the branches of the feeding 
network, replacing the traditional approach of a single power amplifier at the input.

 ̂ Electronic scanning refers to the electronically-controlled inertialess movement of an array 
radiation beam via the controlled switching of element channel phases or delays.

® A multiple beamformer is an array feed network that can simultaneously generate a set of 
radiation beams, ordinarily at different directions.

® The wave equation is derived in a source-free region from either Maxwell’s equations for the 
electric and magnetic fields (e.g. [Har61], [Col 91]) or from the hydrodynamic equations for the 
acoustic pressure and particle velocity fields [Bre 80].

 ̂ The term radiation pattern of a transmitting system denotes the frequency-domain (far-) field 
strength, measured on a constant radius with the excited antenna or sonar system at its centre, as a 
function of angle. By virtue of reciprocity, the same concept equally applies to the signal picked 
up by a receiving system from a far-field point source, as a function of its angular position.
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in that direction. Note though that each element-pattem contribution refers to the 
radiation pattern of a single array element in the presence of all other elements, but 
such that the superimposed parameter (say, incident feedline mode) does not excite 
any other element. In the inevitable presence of inter-element coupling, superposition 
of incident-modes is therefore only applicable in a matched-terminated environment 
of the surrounding feedlines. The shape of each element pattern is theoretically 
obtainable from the exact solution of the prevailing boundary-value problem, and in 
the case of periodic (infinite) linear or planar arrays of closely-spaced radiators, it is 
also fully expressible in terms of inter-element coupling coefficients. Practically, 
though, the required patterns may be measured on the antenna or sonar range, and we 
shall therefore assume their availability in the pursuing analysis.

Superimposing the radiation patterns of identical array elements, all facing in the 
same direction®, results in a separable spatial array pattern that is the product of the 
element pattern with the array factor. The latter pattern which is controllable via the 
(complex) weight excitation of the element signals at the array aperture, is the main 
contributor to the shape of the array radiation pattern, its beamwidth, sidelobe level 
and peak direction of its maximum lobe (i.e. scan angle). The element pattern, being 
typically characterised by a relatively broader main radiation beam, affects these 
pattern parameters to a much lesser extent, and has its main influence on the potential 
angular coverage of the array, and in the electromagnetic case, also on the 
polarisation of the radiated fields. Naturally, the array pattern is also affected by 
geometry. Under a large inter-element spacing, the effective spatial sampling 
involved in the formation of the array factor may, in the case of a regularly-shaped 
array, give rise to visible Floquet modes commonly referred to as grating lobes 
[Ami 72], a phenomenon that is the spatial manifestation of the time-domain under­
sampling occurrence of aliasing®. Grating lobes may be somewhat suppressed by 
the directional properties of the element pattern, and are diffused on departure fi*om 
regular linear or planar geometry.

The work contained in this thesis is devoted to circular arrays of radially- 
symmetric elements, also known as ring arrays. Unlike linear or planar arrays the 
radiation pattern of a circular array is not separable and spatial-aliasing contributions

® Strictly speaking, for all element radiation patterns to be identical, all elements must 'sense' the 
same array environment This imposes a periodic structural constraint of an infinitely-long linear 
or planar array of uniformly spaced radiators.

® Strictly speaking, Floquet modes are relevant to a periodic (and therefore infinite) array structure 
under uniform excitation, representing the radiated field by a series of few (‘main beam’ + 
‘grating lobes’) propagating plane waves and an infinite number of evanescent plane-wave terms. 
In the case of a finite (linear or planar) array, grating lobes are spatially aliased contributions of 
the array factor.
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are not represented by distinct grating lobes. In this chapter we review two 
fundamental feeding concepts on which much of the analyses and implementations of 
discrete circular arrays have been based, namely the beam-cophased and phase­
mode excitation schemes.

Beam-cophased (or ‘phase-compensated’) excitation involves the phase 
equalisation of the contributions from all the array element, when the array receives a 
signal from (or transmits to) a specified angular direction. In the case of a linear or 
planar phased array the elements are co-phased by the (controlled) application of a 
linear phase taper across the array, whose gradient determines the scan angle of the 
array radiation beam. Although the pattern’s characteristics such as directivity^®, 
beamwidth and sidelobes are separately controlled by the (usually constant) amplitude 
weighting taper (shading), the gain, beamwidth and sidelobe level typically 
deteriorate with scan, limiting the angular coverage of such arrays to (depending on 
bandwidth) 90°-120®. The beam-cophased excitation for circular arrays is a direct 
extension of the linear array phasing concept and has consequently received 
considerable attention as a directional beam forming technique. Associated with this 
concept is the idea of co-delayed excitation whereby true time-delay equalisation of 
the element signals ensures the wideband operation of the array [Lon 68], [Sta 69]. 
Unfortunately, in the case of a circular array, the required phase (or delay) taper is not 
linear (leading, in the case of analogue beamforming architecture, to more complex 
digitally-controlled phase or delay shifters); a reasonable sidelobe performance 
requires the application of both amplitude and phase taper to the co-phased (or co­
delayed) array, and scanning a beam (beyond a limited ‘within sector’ deflection) 
requires the commutation of the excited array sector. The beamwidth of the 
‘wideband’ co-delayed circular array beam is frequency-dependent^^ just as in the 
case of a linear array, but it does offer the advantage of 360° coverage with virtually 
no attendant beam deformation.

The concept of circular-array phase modes refers to the excitation of the array 
elements with equal amplitude and a linear-periodic phase taper. The excitation of 
each ‘phase mode’ has been shown to form a far-field pattern which, on any conical 
surface around the array axis, approaches omni-directionality in amplitude with linear

10 The directivity of a radiation pattern is defined as the power per unit solid angle directed at a 
given direction (ordinarily that of the pattern peak), normalised to (l/4;r) of the total integrated 
power. Directivity is commonly expressed in dBi units (‘dB above isotropic’), denoting 10 times 
the logarithm to the base 10 of the above power ratio.

11 This dependence may be reduced by exciting the array through a lens feed or a multiple-beam 
network, and feeding the outputs to a ‘conversion matrix’ that linearly combines the interlaced 
feed outputs.
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phase-versus-angle characteristics, whose average gradient depends on the number of 
excited phase cycles around the array. A phase moding network may be implemented 
as an analogue Butler matrix or as a digital Discrete Fourier Transform (DPT) unit, 
and as described in chapter 3, it provides (at least in theory) a convenient basis for 
multiple-beamforming, direction finding and null steering. The outputs of a phase 
moding network fed by a circular array share one common property with the outputs 
of a uniformly-weighted multibeam network connected to a (strictly speaking 
infinitely long) linear array. Each of the outputs represents an excitation condition 
under which the electrical (or acoustic) environment of all array elements is identical. 
This means that although they are all subjected to mutual coupling, their active 
radiation impedance^^ is the same and can in theory be compensated for by applying 
the appropriate filters to the network’s outputs.

In section 2.2 the far-field radiation pattern for a discrete circular array of co­
phased or co-delayed directional elements is formulated and represented as an infinite 
Fourier series with Bessel function coefficients. The transient effects associated with 
the reception of short or frequency-coded pulses by a co-delayed circular array are 
then considered in section 2.3. Finally, the far-field representation for each phase 
mode pattern as another infinite Fourier series with Bessel coefficients is developed in 
section 2.4. The result is classic although previous analyses have either treated non- 
directional elements or have simulated a discrete array by sampling a continuously 
excited array.

The active radiation impedance at an input port of an array is the port impedance measured while 
the aixay is operational. In terms of coupling coefficients (of a non-operating match-terminated 
array) it is given by the complex sum of the reflection coefficient at that port and the coupling 
coefficients to all other ports, each multiplied by the complex weight to be applied to the 
corresponding array element when operational. In an infinitely-long equi-spaced linear or planar 
array of identical elements under uniform amplitude and linear phase excitation, as well as in a 
(finite) equi-spaced circular array of identical radially-symmetric elements under phase-mode 
excitation, all elements share the same active impedance.
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2.2 BEAM-COPHASED EXCITATION

Consider an array of M  elements (antenna radiators in an antenna array or acoustic 
transducers in a sonar array) uniformly arranged on a circle of radius R  with radial 
symmetry, as depicted in Fig. 2.2.1 which also serves to define the relevant 
coordinate system. Let the radiation pattern of the m’th array element as functions of 
direction and frequency be given by ĵ{(oRic)sm e cos( . ( p - i T o n i M ) co), where 

c is the velocity of propagation and co is the temporal (angular) frequency. In the 

above expression, the phase term el̂ o)Ric)smdcos(<p-27oniM) corresponds to the 
propagation delay from a far-field source to the m ’th array element, with the 
reference point (of zero delay) chosen at the array centre; the remaining functional

M - l

Fig. 2.2.1 Circular array geometry
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dependence of the element pattern on direction and frequency is contained in 
<p, oS) with serving as a convenient normalising constant. We generally 

allow gmi.0, (p, cû) to become complex, in which case the array elements either have no 
phase centres, or else these are not stationary with respect to direction and 
frequency^^. Assuming that over the relevant frequency band all element patterns are 
symmetrically identical and frequency-independent, we have:

gm <P̂O)) = g (^, (p-27mlM) , m = 0 , l , - - - , M - l  ••• (22.1)

and the far-field radiation pattern of the array is given by:

F ( 0 , ( p , û ) ) = ^ 2  47I& ^ _ 2 ;r /? z /M )g ;(^ % sm e c o s(y -2 ;D ? % /M ) . . . ( 222 )
^m=Q

where { }  is a complex weighting taper applied to the array channels. A directional 
pattern may be formed by constructively summing the contributions of some or all of 
the array elements in a given direction. In other words, at the specified frequency, 
channel phases are set (to within a constant delay) to:

{ain}= •■■{223)

where (Ô, ç>) define the desired beam pointing angle on the (0, (p) coordinate system 
of Fig. 22.1 . Such phase setting is known as beam-cophased excitation. If all the 
array elements are co-phased and uniformly weighted in amplitude, the resulting 
radiation pattern may be given an alternative representation in terms of Bessel 

functions of the first kind. Let us first assume that g(0, (p) is a directional element 
pattern expressible as the following Fourier series:

g(e,< p)= 'Z  hi(e)ej‘v ■■■(22.4)

The expression for the far-field array pattern is then given by.

A phase centre of an antenna or sonar element is the centre of a coordinate system with respect to 
which the (unwrapped) far-field phase pattern is either globally constant or has an extremum in a 
given direction. In the latter case one speaks of a non-stationary or apparent phase centre [Dys 67]. 
If stationary phase centres do exist, then R  is taken as the electrical rather than the physical 
radius of the array, i.e. the radius of the circle on which all phase centres lie.
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F (0 ,  (p, CO) =

M-l
=  — ^  g { $ ,  Ç  ' ^ ^ m ) d  (o)R/c)[sm 6 cos{ç-27mlM)-sm 6 cos {<p-270n/M)]

^m=0 ^

M-l
=  - L V  hi ( 6 ) e/ * ^ (2 /̂Af)t m g/ (ca^c)cos (t? - 27tmlM) • • •

m=0

where:

q>, 6, (p) -  R[ (sin 9 cos (p-sia6  cos (p)'̂  + (sin 0 sin <p - sin ë  sin <p)̂ ]

= R[sin^O + sin^ë - 2 sin0 sinëcos(ç>- (p)Ÿ^ • • ■ (22.6)

ü(ços 'â = R(sm 6 cos 9  - sin ë  cos (p) • • - (22.7)

% in i)=  R(smO s in ç -  sinë sin^) • • - (22.8)

But the term eJ (6>̂ c)cos (o - 27oniM) on the right hand side of (225) may be represented 
by the following infinite Bessel series:

g7(©i^c)cos(t?-2;zm/M) = ^  yV y ( 0 3 ^ c ) g V -2wM/M) •••(22.9)
y=i-oo

where Jy{x) denotes a Bessel function of the first kind of order v and argument x. 
Substituting in (225) and changing the order of summations we then have:

I  ~  M-l
F (0 ,(p ,û ))  =  ^ X  hi(e)eJi<P  X  r M O X K l c ) e - J ^ - ^ [ ^  g-;(2;?/M)(i-v)m]M  î=-I v!=-oo m=0

(2.2.10)

with I  denoting the order o f the highest non-vanishing element-pattern Fourier 

coefficient. Noting that the bracketed term in (22.10) is equal to:

M-l
^  = 8(i-v+qM ) ■■■{22.11}
/7l=0 g=-oo
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where 5  (n) is the Kronecker delta function,

1̂ fi—0
S(n) = l >

0 n*0

the expression for F (6, (p, cd) takes the form:

I
F(0,(p,co) = '£

i=-I q = - o o

OO J

q=-oo i—~I

= ' ^  Kg(œ,0, >» . . .  (22.13)
q=-oo

where:

/
K^iO), e, 9) = E  (0)Ji-HiM (.<mc)eJ‘(4 -^  . . .  (22.14)

i=-I

and use has also been made of the identity:

j-^J .v (a )= rJy (a )

For the special case of element patterns that are omnidirectional in ç), the expression 
for the far-field pattern simplifies to:

F (0, <p, CO) = A o(0 X  f^^Jq u ico iU cye -j^M o
q=-oo

= /zo(0)UoioXRlc) 4- 2 ^  j^^JqM(co^c)cosiqM t>)] . . .  (22.16)
<7=1

which, save for the /zo ( 0  element pattern variation in elevation, comprises simply the 

zero-order Bessel f u n c t i o n ç>)/c), distorted by an infinite series of 
higher order terms.
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Assuming that the desired beam peak is set to lie on the azimuth (0=;r/2) 
plane^^, the array azimuth pattern is approximately given by:

=[(cosç)-cos^)^ + (sin<p-sin^)^]^^
U—U—7Ü/̂  f

= 2sm[((p-(p)/2]

F((p, œ) « Jo[2 iœ R /c)sm ^^]  

whereas in the main elevation plane,

iRlR = [ (sin 6 cos (p- cos (pŸ + (sin 0 -sin (p- sin (pŸ ]
e=n!2 , (p=(p =» 1 • Û= l-sm 6

and the elevation pattern is thus approximated by the expression:

F(0 , CO) « hoiO) Jo[(coR/c)(l - sin0)]

Note that strictly speaking expression (223) defines a ‘co-delayed’ rather than a 
‘co-phased’ excitation taper, by which we mean that the array remains properly 
compensated regardless of the operating frequency. In the case of narrowband co­

phased excitation at frequency cdq» i^and t) must be redefined as follows:

R[swP- 6 + {cûo/coŸ’sm^S - 2 ^ s i n 0  sinè cos((p - (p)Ÿ^ • • ■ (22.17)

% os û  -  R(sin 6 cos (p - ^ s i n  9 cos (p) • • • (22.18)

!^sin Û = R(sin 9 sin q>- ^ s i n  & sin (j?) • • • (2.2.19)

and the two special cases considered above are respectively modified to:

Fi(p, Û» = Jo [(.coom ii-^-lf+ 4(0/(O o) s in 2 (^ ) ] i /2  )
CÛQ Z

and

F (9, co) »  ho(9)Jo {((OqRIc) I(cü/tao)sin0 - 1 1}

Any other setting of 6 would by symmetry also apply to (jt- 6) leading to a wider or even partly- 
split beam in elevation
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In practice not all the elements of a circular array are excited for the formation of 
a co-phased or co-delayed beam in a given direction. Since element patterns in an 
array environment are in general outward-directional, it is often wiser to generate the 
required beam using a typical aperture sector of 90“ to 120“ facing the specified beam 
pointing direction so that backward radiation in the form of sidelobes is reduced. A 
further reduction in sidelobe level may be achieved by the symmetric application of 
amplitude weighting, phase weighting or both^^, although mode-space beamforming 
described in chapter 3, presents a more systematic approach to pattern synthesis. A 
major drawback in the beam cophased architecture lies in the interlaced sector feeding 
and switching needed for multiple beamforming^^ and beam scanning respectively. 
The latter arrangement is exemplified by Fig. 22.2  which schematically describes a 
120“ switched feeding configuration for a 24-element circular phased array.

To circular array elements
16 17 18 19 20 21 22 23

13 1410 1211 15

switches
y phase 
shifter

Power
combiner

Digitally-controlled 
switches and 

phase shifters Control linesOutput signal

Fig. 2.22  Feeding matrix for a 24-element circular phased array

15

16

A number of papers dealing with co-phased pattern synthesis and sidelobe reduction have 
appeared in the 1960s and ’70s -  see for example [Fen 65].
At microwave frequencies multiple cophased beams for circular antenna arrays are conveniently 
generated via two-dimensional spatial feed in the form of an electromagnetic R2R or RKR lens. 
Full 360’ coverage by the same array, however, requires the combination of 2 identical lenses 
through a set of hybrid coupler devices.
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2.3 TRANSIENT EFFECTS

When the bandwidth of the received signals is of the same order of, or greater than 
the reciprocal of the propagation delay across the array (as may be the case in the 
reception of frequency-coded or short CW pulses), the radiation performance of the 
array cannot be satisfactorily represented by its steady-state array pattern at a single 
frequency. The true time-varying response of the array depends on the characteristics 
of the received pulse as well as on the frequency dependence of the array radiation 
pattern.

Qualitatively, the transient effects associated with the reception of a short CW 
pulse are fairly simple to visualise. Pulsed signals incident at the different elements of 
the array are in general temporally displaced depending on the array geometry and on 
the relative direction of the radiation source. Unless these delays are negligible 
compared with the duration of the pulses, they may not all overlap in time — this is 
depicted in Fig. 23.1  for the case of a 4-element semi-circular array. Without 
appropriate compensation, the radiation pattern of the array will consequently be 
distorted by the fact that contributions from the array elements do not occur 
simultaneously, or equivalently by the frequency-dependent phase differences 
between the summed signals which make up the array response over the whole 
bandwidth of the pulse.

Direction

incident pulse

etvf

Fig. 2.3.1 Reception of a CW pulse whose duration is not much greater than the 
propagation delay across the array
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A common method for the wideband compensation of either a linear array or a 
circular beam-cophased array is by the implementation of true time delays at the array 
channels. In the case of an M-element circular array of radius R  the required delays 
(to within a constant delay) are:

'Vfn = (^/c)sm 6cos((p-^m ) 0<m<M-l

where (6, (p) define the direction for which the array is to be delay-matched and c is 
the velocity of propagation. These delays may be realised by using physical 
transmission line sections or, when digital beamforming architecture is employed, by 
utilising previously stored data samples in conjunction with interpolation filters for 
the reduction of delay quantisation errors. If the array is delay-matched to the 
direction of arrival of the signal, then at the beam peak direction all contributions are 
coherent and occur simultaneously. However, if a signal pulse hits the array from any 
other direction, especially well away from the main beam, channel contributions wül 
once more depart from proper temporal alignment and will no longer be 
simultaneously processed. Depending on the shape and duration of the received pulse 
this delay mis-match may degrade the sidelobe performance of the array.

For a more quantitative examination of a circular array response to a short CW 
pulse, let us consider the following signal travelling towards the array of Fig. 2.2.1 

from direction {6, <p):

where IJ(t) denotes the waveform envelope (a rectangular pulse, a shaped pulse etc.) 
and CÜO is the carrier (angular) frequency. At the m'th array element the received

signal is given in the frequency domain by gm(0, (p, c y ) | ^ d f p ( r ' w h e r e

gm(0, <p, co) is the radiation pattern of that element, tc denotes the time of pulse arrival 
at the array centre and is given by:

(Rfc)sin0cos{(p-27Dn/M) • •. (233)

The summed response of the whole array is given by:

P(Oy(p,co) = e-j coo)F(6, cp,co) • • • (23.4)
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where n(co) is the Fourier transform of the waveform i7(r) and for a given set {Om] of 
applied shading coefficients, F(fi, (p, co) is the steady-state array pattern given by

A f-l

F {e , = (p, . •. (235)
^m=Q

The time-domain array response is therefore given by,

= da>ei<^0-‘‘)F(,e,<p,(iH-oi>o)ÎH.co) ■■■{23j6)
« / - O O

From (23.6) it is clear that if to within some delay response F{Q, <p, cû̂ cûq) can 

be made approximately fi*equency invariant over the bandwidth of i7(û)),

F(0, (p, CÛ+ O)o) = e~j (p) • • • (23.7)

then:

F(0, (p,t) « F(0, q>)p(t-tc-td)ej^^^ • • • (23.8)

and the steady-state array radiation pattern applies. An inspection of (23.5) reveals (as 
expected) that this indeed is what beam co-delayed excitation sets out to achieve. By 
requiring that in the direction of the main beam:

= 0 » 0 <m<M -l

F(&, (p, ctH- Cüo) is made dependent only on the frequency response of the element 
patterns, which is assumed to be fairly flat over the relevant band. Away from the 

main beam direction F(^6,<p,o>\-(ûo) is frequency dependent and should be 

characterised by low sidelobes over the whole bandwidth of îli^cS) for the sidelobe 

level of F(0, (p,t) to remain low. Omnidirectional delay matching is possible, but as 
we show in chapter 3, it requires each array beam to be synthesised from wideband 
aligned phase modes. Phase modes are reviewed and discussed in section 2.4 of this 
chapter; their broadband alignment is treated in section 3.5 of chapter 3.

Transient phenomena may also (and are more likely to) result from the (equalised) 
reception of frequency-coded pulses. For an examination a circular-array response to 
a linear FM pulse, refer to appendix B .l.
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2.4 PHASE-MODE EXCITATION

Phase mode excitation refers to the excitation of circular-array elements with uniform 
amplitude but with a linear phase sequence which obeys the periodicity condition, 
allowing only an integer number of 360° phase cycles around the array -  see 
Fig. 2.4.1. For a radially-symmetric ring array of M  elements whose frequency- 
independent patterns are symmetrically identical and denoted by (2.2.1), the ^ ’th far- 
field phase mode pattern (p, (û) is expressible as the following sum:

M-l
(p, CO) =  S  (p -27 tm lM )e-j[i'^^i^)^^'n-icûR/c)sm ecos { (p - ln m lM )]

m=0

which, under the Fourier series representation (22.4) for the element patterns, may be 
rewritten as:

M -l I
(p, co) =  — }i.(^Q^^j((p-27Cm/M)i-^g-j[i27C/M)fim-icûR/c)smecos  (<jp -  2nm/M)]  

^ m = 0  i=-I

I M -l
_  _1_X  h  (^Q)eji 9  X  £ -j(2n fM )(j i+ i)m gj((ûRlc)s'm 6 cos ( ç  - 27cmlM)

^ i = - I  ‘

(2.42)

with I  denoting the maximum non-vanishing element-pattem coefficient in (2.2.4). A  
simpler though quite useful representation for the element pattern is the following:

J
^-j(27tlM)(M-l)ii

g-j{2nlM)(M-2)gL

Fig. 2.4.1 Phase mode excitation of mode no. fj.
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= . p > 0  ■■■(2.43)

with ho (6) denoting an arbitrary elevation dependence, for which the corresponding 
array pattern is -

co) = —̂  ^  Q-j{27zlM)̂ m̂ [{(ùRlc)+j\np\sin ©cos {(p-lnmlM) . . .  (2.4.4)
^  m=0

The term sin 6cos(9)-2wn/M) which appears in (2.4.2) is expressible as the
following infinite Bessel series:

ĵicùRc) sinflcos {<p-2nmlM) = ^  jVJ^ Q'^̂ -jv{<p-2nmlM) . . .  (2.45)
\ -̂eo

Substituting in (2.42) and changing the order of summations we have:

(p, co) =

/ ~ M-l
2  X  y''-^v(^sin0)e/O-'')9’[ ^ ] £  g-;(2;r/M)(;x+i-v)m] ...(2.4.6)
i—~î y=-oo t?i—0

The bracketed term in (2.4.6) is equal to zero or to 1 according to the values of m, i 
and V.

M-l
e-K2 n/M)(fi+i-v)m^'^ S(^+i-v+qM ) (2.4.7)

^m=0

The expression for 0^(0 , cp, co) therefore takes the form:

0^(e,(p,w) = 'Z  A,(e) 2  f
q=-oo

/ _
= E  [Ê  (^sine)]dvO :M M )f

q=-oo t=-/

■■■(2.43)
q=-oo
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where 6) is the frequency-dependent phase mode coefficient of order q for the
ji'th  phase mode, and is given by:

/
e) = s  (0) V,>^M[(û)R'c)sin0] ■.. (2.4.9)

i=-I

The far-field pattern of a phase mode is thus expressible as a sum of the form

<p, <a) = X  6)e-i<M+‘!tf)<i> . . .  (2.4.10)
q=-oo

which may be viewed as the azimuthally-omnidirectional linear-phase pattern 
CpiQ{cû,0)e-iy-^^ distorted by an infinite series of higher order terms^'^. Note that 
(2A.10) still applies when element patterns of the form (2A3) are assumed, only each 
phase mode coefficient is given by (see appendix B.2 for details):

C^î(û). m = pA o(e);(^-^»*«V ,M [(^+;lnp)sin0] ■ • • (2.4.11)

For array elements that are omnidirectional in azimuth, we have /z/ = 0 , zVO in 
{22 A), or equivalently p  = 1 in {2A3}, both of which lead to:

CMi<o, e)  v , M ( ^ s i n e )  ■ •  • (2.4.12)

Since (2A.12) also applies to the dominant ^ = 0 mode, whenever the frequency and 

the array radius are such that/^(-^^) hits one of its zeros, there will effectively be a 
‘hole’ in the far-field circumferential coverage of that mode around elevation zero

(0 = n fl). In the vicinity of the zero, the far-field azimuth pattern is not completely 
cut out, but ripple from higher order terms (especially those characterised by <7 = ± 1) 
will dominate, and thus limit the practical usefulness of that mode. If on the other 
hand the element patterns are of the form:

The original motivation for considering the zero-order term as dominant stems from the 
corresponding analysis of a continuously-distributed circular-array source under linear-phase 
excitation [Day 83], [Jon 90] where the far-field pattern for the /i’th mode is seen to be given by 

In the case of a circular array of discrete but closely spaced elements (an 
inter-element spacing of less than half a wavelength), higher order modes (though not necessarily 
the first one) wül indeed die out by virtue of the asymptotic properties of a Bessel function whose 
order is much greater than its argument.
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g(G, ç) = ^e(0)cos2^  = ^g(0)[l+ lc o sç )]

then.

where Jy (• ) signifies the derivative of the Bessel function of the first kind with 
respect to its argument. Since the zeros of /v(* ) and of Jy (• ) do not coincide for any 

V, it follows that for this type of element pattern the phase mode coefficients never 
fall to zero. In fact noting that the zeros of a Bessel function of integer order are 
always real it follows that any element pattern of the form (2.4,3) which is either 
outward-directional (p < 1) or even inward-directional (p > 1) leads to phase mode 
coefficients (2.4.11) that never fall to zero.

One last result relates to symmetric element patterns given either by (2.4.3) or by 
(22.4) with:

hi(e) = h.i(e)  ,  i > o

The phase mode coefficients of symmetric modes are then related by:

/
= E  . . .  (2.4.13)

* = - /

as can also be directly deduced from (2.4.11), where use has been made of the Bessel 
identity (22 J5). Consequently if  0^(0, ç,co) is given by (2.4.10) then the 
corresponding expression for (p, co) is:

0.^(6, «).£»)= X  . . .  (2.4.14)
q=-eo

In the next chapter we shall show how the above symmetry may be used in phase- 
comparison direction finding without resorting to mode alignment. Another important 
point to note is that by symmetry, the phase-mode coefficients for modes fi = MU  and
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jj, = -M/2 (when M is even) are the same, and both mode terms are ‘available’ in

^±M/2 (^» Û))» constituting a far-field pattern that is very different in both amplitude
and phase from the desired linear-phase omnidirectional pattern^®:

^±MP. ( »̂ Çy «  C(m/2) o(G), 6) [e/W^) ç+e-j^Mi2) y] = 2 C(m/2)o(û>» cos(M(p/2)

2.5 CONCLUDING REMARKS

In this chapter we have reviewed the beam-cophased and phase-mode excitation 
methods for circular arrays. The first approach, although a direct extension of linear- 
array beamforming, does not lend itself to systematic pattern synthesis techniques and 
is quite awkward to incorporate in a scanning array system. We have seen that even 
when delay-matched, transient effects may alter the designed sidelobe performance of 
the array. A beam-cophased array of reciprocal transducers is also susceptible to 
aperture excitation errors due to the combined effect of inter-element coupling and 
feed network back coupling.

The alternative approach of transforming from ‘element space’ onto ‘phase-mode 
space’ provides us with a set of (possibly rippled) omnidirectional patterns, each 
characterised by a linear far-field phase. Although we have hitherto considered the 
synthesis of a single phase-mode pattern from an M-element circular array, it is 
simple in principle to simultaneously generate up to M independent phase modes 
with the aid of an analogue Butler-type matrix, or through a spatial Discrete Fourier 
Transform (DPT) operation on the digitised outputs of the array sensors. Phase modes 
are affected by mutual coupling, but since they each place all the array elements 
under identical periodic boundary conditions, the outcome is that each phase mode 
simply ‘acquires’ a new complex coefficient which is correctable through re­
calibration. Properly aligned phase modes may be weighted and linearly combined 
according to well established linear-array synthesis techniques, to form directional 
beams. This well known technique together with other existing schemes and some 
new related ideas, such as directional phase mode beams and omnidirectional delay 
matching, are discussed next in chapter 3.

The summed pair of oppositely-numbered phase modes is sometimes called an amplitude mode. 
The case of = Af/2 is unique in that both phase modes appear at the same output port already in 
amplitude-mode form.



3 6

3. CONVENTIONAL MODE-SPACE  
TECHNIQUES AND  

APPLICATIONS

3.1 GENERAL

Circular array phase modes provide a convenient basis for a number of interesting 
antenna and sonar array applications. Their most common use is in multimodal 
direction finding where the phases of several pairs of excited modes are detected and 
compared, achieving the angular accuracy of larger amplitude-comparison 
(multibeam) DF systems^. Other conventional techniques^ include the phased 
addition of adjacent modes to form patterns with phase-controlled steerable nulls, as a 
way of suppressing co-channel interference, and directional beamforming where 
phase modes are weighted, phased and combined by essentially linear-array feeders. 
Sections 3.2, 3.3 and 3.4 of this chapter are devoted to a short review of these 
schemes. The usefulness of the latter two depends on the broadband alignment of the 
phase modes, which calls for the separate deconvolution of their dominant 
coefficients. It is worth noting that once such wideband alignment is successfully 
implemented, the array becomes circumferentially delay-matched for incident pulses 
of lower bandwidth.

In mode-space beamforming a set of excited phase modes is treated, after some 
angular transformation, as omnidirectional elements of a fictitious linear array, where 
all phase modes are assumed to be aligned and distortions due to higher order modes 
are neglected. The modes are linearly combined using linear-array synthesis

 ̂ In the traditional circular-anay amplitude-comparison DF system the array is fed by a multiple 
beam-cophased network (normally an RKR electromagnetic lens in the case of microwave 
antennas), in conjunction with a beam width-stabilising sidelobe-reducing interlaced conversion 
matrix. The attained angular resolution of the system is a function of beam width which in turn 
depends on the array dimensions. In contrast, the angular resolution obtainable fiom a multimodal 
array may actually improve (due to reduced ripple) when the array radius is decreased (up to a 
limit below which radiation efficiency drastically drops)

2 The term conventional is used here to distinguish from high-resolution methods which are 
discussed in chapter 5.
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techniques (for, say, sidelobe suppression), and under broadband mode alignment, the 
generated beams remain unchanged with frequency. The essence of this well known 
concept and a convenient technique for exciting a multiple set of directional beams 
are briefly recalled, together with a number of examples, in section 3.2,

Multimodal direction finders detect and compare the phases of pairs of phase 
modes, utilising the approximate linear-phase characteristics of their far-field patterns 
to provide an output voltage that is linearly proportional to the angular location of a 
single far-field source. It is commonly accepted that to within an angular ambiguity of 
180°, no mode alignment or look-up calibration tables are theoretically required. In 
section 3.3 we show that under some reasonable and easily verifiable assumptions, the 
above angular ambiguity may in fact be eliminated.

Mode-space null-steering is based, as described in section 3.4, on a tree 
arrangement that starts by the phased subtraction of adjacent phase modes and 
continues, if desired, by a similar subtraction of adjacent output beams^. Provided 
the subtracted modes are properly aligned, this scheme yields far-field patterns with 
one independently-steered null per stage. The incorporation of a null-forming network 
in a DF system may provide an iterative (though non-adaptive) direction finder that 
can handle a multiple source environment [CVE 88a], [CvE 88b].

In section 3.5 we introduce a new type of beams which we name sectoral phase 
modes. A sectoral phase mode is a directional beam with phase-mode-like phase 
behaviour, which may be synthesised by a linear combination of omnidirectional 
phase modes that have been equalised over the relevant frequency band. Sectoral 
phase modes allow the phase-mode concept to be confined to a single or multiple 
angular sectors instead of the usual omnidirectional phase-mode coverage. A single­
sector implementation may be used to limit the spatial sensitivity of a circular array to 
a given (possibly large) angular zone, whereas multiple-sector applications include 
phase-comparison direction-finding with enhanced immunity to interference and 
sectorally-controlled multibeam null-steering.

The question of bandwidth is finally dealt with in section 3.6, which includes a 
somewhat academic search for the ‘optimal’ element pattern, but also a discussion on 
the viability and design considerations for a set of stable phase mode filters. The 
chapter concludes with a summary of the main techniques, their advantages and 
possible limitations.

The ouQ)uts of stage 1 are wide mode-space beams, each formed by two phase modes, those of 
stage 3 are a linear combination of three phase modes, etc.
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3.2 DIRECTIONAL MULTIBEAM EXCITATION

Approximating a set of phase mode patterns {0 ^(6 y (p, by:

0fi(OyÇyû))--C^o(û)ye)e-jt^<P , -A<fi<A - '(3 2 J )

where the coefficients {C^o]^ are all non-zero, enables one to use linear array 

techniques to synthesise a low-sidelobe (2A+l)-“element” directional beam in any 
direction [Day 65]. The application of a linear array aperture taper to form the 
weighted sum of distortionless phase modes, each normalised to its zero-order 
coefficient results in a radiation pattern that is identical to the array factor of the 
corresponding linear array but with the following coordinate transformation:^

2;r(dA)sinç)[lineararray] ( p  [circulararray] •••(322)

where d is the inter-element spacing for the linear array. This means that as long as 
(32.1) holds, the resulting array pattern is independent of frequency, provided a way 
is found to flatten out the frequency responses of all the zero-order mode coefficients. 

As previously noted, a multiple set of (2A+1) phase modes may be generated from an 

M-element circular array with the aid of an M x(2A+1) analogue Butler matrix, or its 
digital equivalent of a spatial DFT unit. Cascading the modeforming unit with an 
array of deconvolving filters, a set of weights and an inverse DFT unit
(assuming digital implementation), as schematically illustrated in Fig. 3.2.1, results 
in the simultaneous excitation of M  (possibly broadband) radiation patterns^

A
E m ( ç ) ) * - V E  a^e-J^^(v-27cm/M)  ̂ 0<m<M-l •••(323)

with respective beam pointing directions {(pm = 27rm/M). One possible 
implementation for each of the digital filters in Fig. 32.2  is illustrated in Fig. 3.2.2, 
where two temporal DFT units are used to divide the frequency band into N (q 
separately aligned bins with complex weights { } which are given by:

 ̂ We refer here to the radiation pattern on the xy-plane from a circular array lying on the same 
plane and from a linear array lying parallel to the y-axis.

 ̂ Each weighting unit may in fact be incorporated with the corresponding mode filter.
® We assume a constant elevation cut (say, 9 -  90’) for both the deconvolution of the phase mode

coefficients and for the radiation patterns.
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i Post-DFT Weighting
 I  I. . . . . . . . . . . . . . . . . r

0 1 A M-A
0 1 Digital (Inverse) DFT M-2 M-l
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Fig. 3.2.1 Digital multibeam network

Digital DFT

Digital (Inverse) DFT

Fig. 3 .22 FIR filtering unit for the /z’th phase mode
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-  l/C^o(û)= nCûsINoy, 6 = %!X) , 0<n<Ny^-l

where is the (angular) sampling frequency. However the Fourier transform of 

yC^o (o)y 6 = n il) is not necessarily finite in its extent, and consequently the required 
order N o for this finite impulse response (FIR) approach (as well as other FIR filter 
realisations) may become excessively large (see for example [OPP 76])."7 
Alternatively, the order of an HR (infinite impulse response) filter realisation is 
shown in section 3.6 to depend on the Fourier transform of C^o(ù), 6 = n il)  whose 
extent is indeed finite.

Let us now return to expression (323) for the approximate far-field pattern of 
mode-space radiation beams. Such a multiple set of beams with a reduced sidelobe 
level is displayed in Fig. 3.2.2 for the case of an array of 7 directional elements at 
0.456-wavelengths spacing®, using a set of 5 aligned phase modes (u = -2 to 2), 
pre-weighted as follows:

Mode - 2 - 1 0 1 2

W eig h ts - 1 0 . 5  dB - 2 . 3  dB 0 dB - 2 . 3  dB - 1 0 . 5  dB

- 1  2 0 - 6 0  0 60  
Angle (degrees)

Fig. 3.23  Multibeam pattern formed by 5 weighted modes from a 7-element array 

(H = 0.508A, g(p{(p) = 0.612+0.384 cos 9+0.004 cos2(p)

 ̂ This really depends on the smoothness of each of the phase mode coefficients, which in turn is a 
function of the element pattern.

® A sonar array of these dimensions was built at Loughborough University of Technology in 1992, 
and a parametrised version of its measured element patterns is used here.



41 C onventional m o d e -sp a c e  tec h n iq u es  and applications

In the case of a uniform amplitude weighting, (3.2.3) may be put in the following 
closed form:

17 _ (1+ 2A) sm [(l+ 2A)(çî-2;rm/Af)/2]

(l+2A)ànl((i>-2jtm/M)/2]

which is the familiar sampling function pattern whose directivity increases with the 

number (1+2A) of combined phase modes. Table 3.2.1 compares the beamwidths and 
peak sidelobe levels of uniformly excited modal beams formed by different numbers 
of normalised phase modes for a circular array of 8 omnidirectional radiators at half­
wavelength spacings. The 9-mode case refers to the excitation of all 8 phase modes 

with mode /x = ±4 weighted 6dB above all other modes. This accounts for the fact 
that modes fi = +4 and /i = -4 are both ‘available’ at the same port. Equivalently, 

the 9 modes ;x = -4 to +4 are uniformly excited. Note also that although modes +4 
and -4 are not independent, they require the same phasing for a 9-mode beam to be 
scanned to (or simultaneously formed at) the following 8 directions:

0 < /< 7

and in general for an M-element array, an undistorted (M+l)-mode beam may be 
formed at M directions given by:

Number
of

modes

True pattern
B eam w id th  

-3dB 1

Peak
sidelobe

level

Expression (323)
B eam w id th
,  h r  1-3 dB 1 to nuU

Peak
sidelobe

level

4 9 .6 ° 236° - 7 .8  dB
4 3 .1 ° 186° - 1 0 .4  dB
3 9 .3 ° 140° — 1 2 .6  dB
4 2 .4 ° 124° - 1 0 .4  dB
4 1 .0 ° 112° - 8 .7  dB
3 2 .9 ° 8 6° - 1 2 .4  dB

1 1 1 . 8° 240° - 9 . 5  dB
8 2 .0 ° 180° - 1 1 .3  dB
6 4 .9 ° 144° - 1 2 .0  dB
5 3 .8 ° 120° - 1 2 .4  dB
4 6 .0 ° 103° - 1 2 .6  dB
3 5 .6 ° 80° - 1 2 .9  dB

Table 3.2.1: Uniformly excited mode-space beams from an 8-element array 

[omnidirectional radiators, 0.5A inter-element spacing]
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Table 3.2.1 shows that (at least the null-to-null) beamwidth of the main beam is 
indeed reduced when the number of phase modes used for its synthesis is increased. 
The apparent deviation from the ‘ideal’ beam pattern expressed by (3.2.3), and in 
particular the irregular shapes of the broader beams (leading to the misleadingly small 
half-power beamwidths) is a consequence of the pronounced presence of higher-order 
terms attendant to phase modes ±1, ±2 and ±3. These phase modes carry a peak-to- 
peak amplitude ripple of 3.8 dB, 2.4 dB and 5.5 dB respectively. Note though that 
although mode 4 is characterised by an even larger ripple, this is due to the 
combination of modes +4 and -4 and in fact it follows very closely a pattern of 
^[e-74ç>+^+/4çjJ = cos4ç).

The phase and amplitude ripples of modes ±1 to ±3 may be reduced and the modal 
beam patterns be made to more closely follow (32J) by reducing the array radius so 
that the inter-element spacing is well below half a wavelength. The performance of 
the same 8-element array but with 0.4 wavelengths spacing between radiators is 
summarised in Table 3.2.2, where one may note the closer resemblance, though not 
identity, to the ‘ideal’ sin(N (pl2)INsm{(pl2) patterns.

Number
of

modes

3
4
5
6
7
9

True pattern
Beamwidth

1
Peak

sidelobe
level

Expression (32.3)
Beamwidth 
,  h r  1-3 dB 1 to null

Peak
sidelobe

level

1 1 1 .5 ° 242° - 9 .6  dB
8 1 .3 ° 178° - 1 1 .2  dB
6 3 .2 ° 146° - 1 1 .8  dB
5 7 .2 ° 118° - 1 2 .4  dB
5 0 .6 ° 104° - 1 1 .0  dB
3 7 .3 ° 82° - 1 2 .5  dB

1 1 1 . 8° 240° - 9 . 5  dB
8 2 .0 ° 180° - 1 1 .3  dB
6 4 .9 ° 144° - 1 2 .0  dB
5 3 .8 ° 120° - 1 2 .4  dB
4 6 .0 ° 103° - 1 2 .6  dB
3 5 .6 ° 80° - 1 2 .9  dB

Table 3.2.2: Uniformly excited mode-space beams from an 8-element array 
[omnidirectional radiators, 0.4A inter-element spacing]
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3.3 MULTIMODAL DIRECTION FINDING

A direction finder is a sub-system designed to indicate the direction of arrival of 
signals. Simple single-source scenarios have classically been handled by one of 
several conventional approaches: i amplitude comparison

a phase comparison 
Hi monopulse

Modem amplitude-comparison systems process the (pre-calibrated) outputs of a 
multibeam array network to find the one with the highest power level as a rough 
indication of source direction, with the relative power at the neighbouring ports 
serving to fine-tune the initial bearing estimation. In element-space phase-comparison 
DF, the angle of arrival is obtained from the (relative) detected phases of signals 
received by pairs of array elements. Phase detection is also part of the monopulse 
approach, but this time it is between the d ifference  and su m ^  outputs of a 
(mechanically or electronically) scanning beamformer. In the context of mode-space 
circular array beamforming, one can think of a DF system employing amplitude 
comparison between a multiple set of frequency-independent directional beams, or 
even of the incorporation of a mode-space monopulse unit

The mode-space equivalent of the phase-comparison approach, and perhaps also 
the most common use for phase modes, is the so called multimodal DF [Reh 80]. In its 
usual application the phases of several pairs of symmetrically numbered phase modes 
are detected and compared providing a high-resolution angle-versus-phase function:

arg[^.^(0, co)l0^{e, <p, Û))] « 2/t(p • • • (33.1)

where symmetric element patterns have been assumed, so that, as we presently show, 
the corresponding phase mode coefficients effectively cancel out. Angular ambiguity 
is resolved by comparing the phases of two adjacent modes, say modes no. -1 and 0:

arg[0_i(0,<p,cù)l0Q{e,Ç),©)] «  ç)+arg[C(_i)o(ty,0)/Coo(G), 6)] • • ■ (332)

but that entails, as is evident from (332), the alignment or at least the calibration of 
the corresponding two (zero-order) phase mode coefficients.

® Sum and difference beams are produced by respectively adding and subtracting the summed 
outputs from two symmetric halves of an array. In its simple implementation the same weighting 
taper is used for both beams, but this is not always so. In any case, the sum beam is typically 
characterised by a pattern maximum, whereas the difference beam has a null in that direction.
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Actually, there is a neat way to avoid (at least in theory) mode calibration by 
relying on the assumed symmetry of the element patterns. Specifically, we assume 
element patterns to be given either by an expression of the form (2.4.3), or by the 
Fourier series (22.4) with:

h.i{e)=hi(e) , i>0 ••■(333)

which, as can be inferred from (2.4.14) in section 2.4 of chapter 2, leads to the 
following expression for the radiation pattern of phase mode -jJ., relative to that of 
phase mode +jll:

(p, co)l0^{e, (p, CO) =

~ a^(®, e, <p)-jpft(co, e, (p)

q=-oo

where,

a^(w, 0, ç>) = 1 + X  ^  çosgM (p ■ ■ ■ (335)
q=\ C'iiO(û), 0)

0,y) = X  sinqMcp ■ ■ ■ (33.6)
q=l 63fio(.0), 6)

and clearly, for the 2M directions given by:

<Pf=27c(^/2M) , 0 < /^ 2 M -l ■■■(33.7)

we have

^-n(.6,(p/,0))

%  CO)
= ■■■(33S)
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which is the basis for the approximation (33.1). In other words, the comparative phase 
response between the two phase modes is characterised by symmetric and equi-ripple 
phase fluctuation of 6, 6, <p)] about the value of 2/xç) and is
thus usable for DF purposes without the need for mode alignment.

The angular ambiguity inherent in (3.3.8) (in comparing the phases of non- 
adjacent phase modes) may be resolved by detecting and comparing the phases of 

both mode 0 . \  and <2>i to that of mode 0 q:

4>±i(0,(p,(o) Cio(g).6>) a i(a ),e .y F jA (< a ,e ,y )_ .^,.^

0o(O,(p,cû) Coo(o), e) a o (œ ,e ,(p )

(pi. CÙ) ^  gioCff, g) «1 (m, e, (p/)  ̂ 0 < /< 2M -l •^■(33.10)
0o(Oy q>/, CO) Coo(û>, 0) ccq (co, 6, ç/)

where the angles {(p/) are given by (3.3.7). Now, we often find that the phase bias 
3Tg[Cio(co, 0 )a i (co, 6, (p/)/[Coo(co, O)ao(co, 6, çv)] is less in absolute value than ;r/2. 
In fact, for an array of omnidirectional elements, [argCi o(co, 6)-aigCoo(co, 0)] (which 
is normally dominant in the above phase-bias expression) is clearly equal to ± tu/2 
( see (2.4.12) ), and as we show at the beginning of section 3.6 of this chapter, it is 
asymptotically (for large (coR/c'j) equal to zero in the case of directional elements of 
the form (l+cos(p), and is always zero for impulsively-directional array elements. 
Having the phase bias bounded by 150" allows its straightforward elimination via:

arg[Cio(cD, $ )a i (co, $, <p/)/[Coo(co, 9)cxo(co, 6, cpM =

-n  + U n  + arg- — + arg^*~ - ^^]mod2;r , 0< /< 2A f-l ...{33.11}
^  <pt, Û)) <Po(e, ÇV, o)

where \x ]mod in  denotes the modulo-2;r value of x.

Associated with the omnidirectional nature of the compared phase mode patterns 
is the obvious advantage of 360° coverage, but also the attendant drawback of high 
vulnerability to co-channel interference. In section 3.5 we propose an alternative 
phase-comparison DF scheme in which the compared phase modes become 
directional in amplitude while retaining their linear phase characteristics, and 
therefore less susceptible to interference.
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3.4 NULL STEERING

The need for generating radiation pattern nulls arises in communication as w ell as in 

direction-finding applications, where the receiving array has to reject unwanted 

interference or jamming signals. The synthesis o f static or steerable nulls in the far- 

field pattern of an antenna array has been described in the past by a number o f authors 

in the context o f non-adaptive linear [Dav 67], [Cla68], [Mel 70] and later also circular 

arrays [LiM 75], [Lim 77], [Dav 77], [Re  77], [Day 78a], [Dav 78b], [Day 81], [Gri85], 

[Kar 86], [CvE 88a], [Cve 88b]. A variety o f  adaptive and sem i-adaptive signal 

processing techniques have also been suggested for the closed-loop generation of 

pattern nulls in the directions o f the interfering signals. Interference may, o f course, 

refer to a multi-source or multipath environment which often degrades the 

performance o f a conventional direction finder. In that event a nulling scheme might 

be devised that sequentially nulls out sources whose bearings have already been 

determined, and is then iterated in order to reduce bias errors in the estimated 

locations o f the sources and nulls.

One method for forming a steerable cardioid-shaped single-null circular-array 
pattern is by the phase-controlled combination of two adjacent phase modes of 

equalised amplitudes. Thus, if the far-field patterns of phase modes 0 ^  and are 
respectively given by:

0^(9 , <p, CÛ) « C^oico,

and

0^i+i(9, <p, CO) «  C îo(co, 0)e-7Ox+i)<p

then a null in direction p  is produced by subtracting the normalised and phased 0^+i 
output from the normalised output 0^.

_ 0 ^ ^ i { 9 , ( p , ( o ) ^  j 2 e - j ^ < P s in ^ ^  • • • (3.4.1 ) 
C ^o(co,0) C(̂ i+i)o(û>, 0)

The new pattern is characterised by a new phase slope of -(ji+1/2), a phase offset of 

p/2  and a sin(<p/2)-type null in direction p  which introduces a phase jump of ±n/2. 
The null may be steered by controlling the inter-mode phase-shift /3, but note that the 

p/2 phase offset changes also. Additional phase modes may be used to either reduce
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the null width [Lim 77] or to introduce additional pattern nulls. The latter option, 
suggested in [Dav 77] is illustrated in Fig. 3.4.1. Here, each output beam is formed by 
linearly combining three adjacent phase modes, with two sets of phase shifts Pi and 
p 2 independently controlling the respective directions of two sin((p/2)-type pattern 
nulls. Except for two ±nH  phase jumps 2X Ç -  p \ and ç) = /fc, the resulting phase 
patterns remain linear, following as before the average phase slopes of the generating 
phase modes. A double-null output beam with phase slope -[X is thus obtained from 

phase modes <^_i, 0 ^  and

[—£1-   e/ft] - [— p;-------------^ ----------- e/ft]e/ft =

sin-  ̂ -sin™2 2 (342)

M-2 M -l

. . . Digitising Network. . .

M-2 M -lDigital DFT
-A

WeightingPost-DFT

network

2A+1
modes

2A
beams 

[1 null]

2A-1 
beams 

[2 null]

Fig. 3.4.1 Independent angular steering of multiple nulls
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Three or more nulls may be similarly generated by extending the nulling network of 
Fig. 3.4.1, with the number of beam outputs decreasing at each stage. Eventually, a 

single beam with 2A  independently steerable nulls wiU be produced.

Pattern nulls sharper than sin[(^-j3)/2] may be synthesised at each stage at the 
expense of fewer beams (or equivalently fewer nulls) and increased complexity. 
Instead of forming each nulled beam from a pair of adjacent phase modes as 
illustrated in Fig. 3.4.1, each sharply-nulled beam is generated by linearly combining 
an interlaced set of N>2  modes -  see Fig. 3.4.2 for the case of N=3. Each set of 
phase modes is linearly phased (with phase shifts p, 2p, 3p  etc.) as well as multiplied 
by a set of weights {w„), where p ± n  is the desired direction of the null and the 
weights are yet to be determined. A pattern synthesised by a set of N  symmetrically 
numbered phase modes (with N  odd) may be expressed as:

N-l
f̂ (Ç>) = £j(N-l)Pl2^ . . .  (3.43)

n=0

and, following the lines suggested in [Lim 77], the single-null target pattern we seek is 

given by:

q-((p) = e;(Â -i)/3/2 e-K(p-P)l2 . .. (3̂ 44)

One may therefore use standard Fourier analysis to solve:

/  • • • (3.43)
n=0

which yields:

For example, if A = 3 we have: wq = -213%
W2 = W2 = 2/%

Note that whichever type of radiation pattern nulls are produced, the same null 
factors are shared by all the (typically wide) output beams, the latter being also 
characterised, as we remember, by linear phase. This makes the above null-steering 
schemes readily adaptable for the generation of directional beams with steerable nulls.
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A multibeam network that achieves this is schematically illustrated in Fig. 3.4.3. 
Here a weighted set of double-null beams are operated on by an inverse DFT unit to 

form a multiple set of M  directional beams with pattern nulls at (p = Pi and <p = P2 . 
Assuming wide sin(ç?/2)-type nulls, each of these directional beams is approximately 
given by:

Afl/2 ^-A+1

0 1
Array Elements

M-2 M -l

,Digitising Network,

Digital DFT

Post-DFT
Weighting

w o  I W 2 1 W1

wo I W 2 1 W1Wl WO I W2 I Wl

double-null
beams

Fig. 3.42  Independent angular steering of sharp nulls
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where {a^} is the set of weights applied by the post-nulling weighting unit. If 
uniform amplitude weighting is used, then (3.4.7) takes the form:

FmiV) = . 4 ( M l l ) e / ( A . f t V 2 s i n ^ s i n ^^ iy 2 2 2

sin [{(p- InmlM) {2A-1 )/2]

(2A-1) sin[((p-2;rm/A0/2]

In section 3.5 we introduce the new concept of sectoral phase modes, which one may 
describe as phase modes with directional properties, and propose a more agile 
multibeam nulling architecture where the order of operations (null forming followed 
by multiple beamforming) is effectively reversed.

0 1 Array Elements M-2 M-1

D i g i t i s i n g  N e t w o r k

M D i r e c t i o n a l  b e a m s  

Fig. 2.4.3 A  multibeam network with 2 steerable nulls

  I I

0 1 D i g i t a l  DFT M-2 M-1
-A  • ■ • • • -1 0 1 .............A

Post-DFT filtering and alignment

Nulling network
I

Weighting unit 
I

-1 0 1 A A
D i g i t a l  ( I n v e r s e )  DFT m -2 M-1

2A+1
modes

2A-1 

beams 
[2 nulls]
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3.5 SECTORAL PHASE MODES

The multimodal direction finder described in section 3.3 combines the advantage of 
full circumferential coverage with the benefit of small size and (theoretically) 
automatic calibration by symmetry. One of its main drawbacks though is its high 
susceptibility to co-channel interference. In fact applying (332) to evaluate the 
direction of arrival of a signal, when a second signal at the same frequency is also 
received by the array, will result (see appendix C .l for details) in angular errors 
which, at a worst-case scenario, may reach the values tabulated in Table 3.5.1.

Improved immunity to interference may be attained, at the expense of some 
reduction in angular resolution and of having to align the modes, by transforming the 
compared phase modes into directional beams while retaining their linear-phase 
property. The idea is to divide the azimuth observation plane into a number of angular 
sectors, and form two sets of multibeam patterns so that each angular sector is 
covered by a pair of low-sidelobe directional beams with linear and opposite phase 
slopes. Inter-sector amplitude comparison may then be used to unambiguously 
determine the angular sector facing each incident signal, while a more accurate 
bearing is obtained by detecting and comparing the phases of the two directional 
beams covering that sector, just as with ordinary phase modes, but with a much 
reduced susceptibility to out-of-sector interference. Since the phase behaviour of 
these beams in their respective angular sectors is similar to that of omnidirectional 
phase modes, we have chosen to name them sectoral phase modes or equivalently 
SPM beams.

Relative strength Minimum Maximum
of second signal angular error angular error

-30 dB

-25 dB 6.4"

-20 dB 0 " 1 1.5"

-15 dB 20 .5"

-10 dB 36 .9"

Table 3.5.1 Angular errors in multimodal DF due to the presence of a second signal
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A set of M  pairs of sectoral phase modes pointing in directions:

, 0<m<Af-l

may be approximately synthesised by applying a spatial (inverse) DFT operation to 
two aligned sets of asymmetrically-numbered omnidirectional phase modes, say 

modes no. {-AtoA-Ao} and {-A+Aq to A}, under the same symmetric weighting 
taper. The radiation patterns for the m’th pair of beams are then given by:

l̂ =-A

« A (Ç-lTCmfM) g/(AV2) iç-lnmlM) . . .  J J j

pt?=-A+Ao

« A (y-2;rm/M) . . .  (352)

where A<M/2, 0<Ao<2A,

it;c=Int(lxl + l/2 )  ••■(353)

A-Int(Ao/2)
A(ç)  = cco + 2 ^  akCosk(p • • - (35.4)

k=l

and for an odd Aq: cxq=0. The superscripts m and Aq on the left hand side of (35.1) 
and (352) indicate respectively the direction Çm of the two beams and the number of 

unused phase modes (out of the set {-A to A}) in the synthesis of each beam. We refer 
to the subscripts ±A qI2 as the effective mode numbers, denoting, in analogy with 
mode numbers of omnidirectional phase modes, the local phase slope of the 
corresponding far-field sectoral phase mode pattern. A schematic block diagram for a 
digital SPM beamformer is given in Fig. 3.5.1. Under uniform weighting, the 
common far-field amplitude pattern of the beams becomes:

A (Ç) = sin[(2A-Ao) <p/2]/sin(ç)/2) • • • (355)

with a null-to-nuU beamwidth of A ç  = 4;r/(2A-A q) > 4;r/Af. The full coverage of each
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of the M  angular sectors \(p-Q.nlM)m\<7i/M , 0<m<M-\ is thus ensured with 
some main-lobe illumination of the neighbouring sectors and a peak sidelobe level of 
approximately -13.5 dB. This sidelobe performance may be improved at the expense

Q 2 Circular array ^  ̂  
sensors

0

I h  D i g i t i s i n g  h  
^  ^  n e t w o r k  ^

D i g i t a l  
DFT u n i t

M-

Alignment
filters

Weighting 
units

0

-A -A+Aq

I n v e r s e  
1

u n i t

Positive-slope 
SPM beams

r Ti
-A+Aq 0 A -A q a

I n v e r s e DFT u n i t
0 1 M-1

Negative-slope 
SPM beams

I

Fig. 3.5.1 Digital beamformer generating 2 sets of sectoral phase modes
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of an increased beamwidth by applying a weighting taper such as a sampled linear 
Taylor distribution to the combined phase modes. Fig. 3.5.2 displays the amplitude 
and phase patterns for a pair of sectoral phase modes with effective mode numbers 
±1/2. The beams are formed from a 16-element circular array by the linear 
combination of two overlapping sets of 14 phase modes. Note the almost identical 
low-sidelobe amplitude patterns and the comparative linear phase slope of 
approximately 1 over an azimuth angular sector larger than 360714 = 25.7“.

The choice of A q affects both the amplitude pattern and the phase slopes of the 
SPM beams. As previously noted, the effective mode numbers of the two SPM beams

and F'2^{(p) defined by (35.1) and {3.5.2) are given by -A q/ 2  and A qU  

respectively. The larger Ao, the higher are these effective mode numbers, indicating 
steeper phase slopes but the wider are the beams. Thus whereas the highest DF 
accuracy but poorest immunity to out-of-sector interference are achieved by 

comparing the phases of the highest-order omnidirectional phase modes O.a and 
best immunity but least accuracy result from the comparison of two sectoral phase 

modes with Aq= 1. In the latter case the effective mode numbers of the two compared 
SPM beams are -1/2 and 1/2 respectively, and

<DT50
• HrHa

-1 2 0
- 1 8 0  - 1 2 0  - 6 0  0 60 

Direction (degrees)
120 180

Fig. 3.52  Comparative phase plot and amplitude patterns for a pair of sectoral

phase modes. (M = 16, A = 7, Aq = 1, g(^/2, (p)-cos(p!2,2nR /M -0.4A) 
Mode weighting [in dB]:
{-15.5 -12.8 -8.3 -4.7 -2.3 -0.7 0 -0.7 -2.3 -4.7 -8.3 -12.8 -15.5}
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argF!|^(0)-argF^H0)=0-2;rm/M  • •. (3^.6)

Note also that when A q > 1 , more than two SPM beams may be synthesised to serve 

each angular sector. In fact one may generate A q+1 such beams:

F ” \< p) =

A-Aof2+v
X  ç), cû)IC^q{cû, n /l)

fi;=-A+Ao/2+v

= , v  = -A on ,-A o /2+ l,--;A on  ■■■(3S7)

with effective mode numbers:

v= -Aq/2, -A 0/ 2 + 1,.........., A q /2

respectively. This set of beams may then be used to add a sectoral null-steering 
capability to the beamformer, an application which we consider next.

In section 3.4 we saw how a set of 2A+1 phase modes 0 .a  ̂ ^ -a+u ■ • • » is 

used to form a set of 2A ‘modified’ phase-mode beams

all sharing the same sin(ç?/2)-type nuU at g> = p:

« e-7(̂ i+i/2) y sin p)/2 . . .  (35,9)

The superscript and subscript on the left hand side of (3.5.8) signify the direction of 
the null and the effective mode number (i.e., the phase slope in reverse sign) of the

modified mode beam ^^+1/2 * respectively. When the elements of the set (35.8) are 
linearly combined by an inverse DFT operator, the result is a multiple pattern of M  
directional beams all sharing the same pattern null (or nulls for a multistage nulling 

network). If each angular sector l<p-(2;r/M)ml < itlM , 0<m<Af-l is served by a set

of two or more SPM beams ......... then one may consider an
alternative multibeam nulling scheme that will allow each directional beam to steer its
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own nulls. Instead of combining and phasing adjacent phase modes, the same nulling 
concept is applied here to adjacent sectoral phase modes, as illustrated in Fig. 3.5.3 

for the case o f  A q - 2  and three sectoral phase modes per sector. Under this last 
configuration, the rrCûi directional beam will be given by:

Q  ̂ Circular array 
\ x sensors M-1

\ /

Phase-mode
generator

-A -A'¥\ -A~i~2 A -2  A - \

Weighting
unit

Weighting
unit

Weighting
unit

Inverse DFT 
unit

0 1 M-1

Inverse DFT 
unit

0 1 M-1

Inverse DFT 
unit

0 1 M-1

First
nulling
block

Second
nulling
block

Directional beams W W 
with 2 sectoral 
pattern nulls

Phase
control

Fig. 3.5.3 Multibeam null-steering scheme incorporating sectoral phase modes
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(/2)^g;(A +p2 )I^A {(p-lnm/M) 

sin(ç)-j3i” -lK m lM )ll sin((p-p2 -27tm/M)f2 (3.5.10)

where A {(p) and {F^^(ç)) , v= -l, 0,1} are given by (3.5.4) and (3.5.7) respectively, 

with Ao set equal to 2. In contrast with the two control phases pi and P2 in the 
multibeam network of Fig. 3.4.3 which employs a standard two-stage nulling 

scheme, there are now M  pairs of phase shifts { p o , p ^ ) ^ ^  available in Fig. 3 5 3 ,  
allowing each sectoral beam to independently control two pattern nulls. A similar 
scheme for synthesising sectorally-controUed sharp nulls is described in appendix 
C.2. A directional beam with a sectoral pattern null is depicted in Fig. 3.5.4. The 
nulled pattern is synthesised by applying a 30" phase shift to one of two sectoral 
phase modes and subtracting one from the other. The sectoral phase modes 
themselves are formed from a 16-element circular array by combining two sets of 14 
phase modes each with the same low-sidelobe taper. The result is a sin(ç>/2)-type null 
at = 32.3".

SPM Beams 
Nulled pattern

Prescribed 
null

“>— n  
-180 -120 -60 0 60 120

Direction (degrees)
180

Fig. 3.5.4 A directional beam with a designed pattern null formed close to 30" by 

the phased subtraction of two SPM beams F %  andF^y^-

(Af = 16, A = 7, g{nl2, ç))=cos(ç?/2), 2%RIM = 0.4 A, mode weighting [ in 
dB]: {-15.5 -12.8 -8.3 -4.7 -2.3 -0.7 0 -0.7 -2.3 -4.7 -8.3 -12.8 -15.5} )
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3.6 BANDWIDTH CONSIDERATIONS

The practical usefulness of the non-adaptive mode-space beamforming, null steering 
and sectorally-confined direction finding schemes that have been discussed in this 
chapter, depends, to a large extent, on our ability to equalise the intrinsic frequency 
response variations between the excited phase modes which constitute the building 
blocks in the implementation of the above techniques. One possible solution to the 
problem is that of narrowband mode alignment, which refers to the calibration of each 
phase mode over the relevant frequency band, so that a look-up table may be set up 
and used (in conjunction with possible interpolation) for its alignment at each 
frequency. This method is instantaneously narrowband in the sense that it is limited to 
the reception of narrowband signals that must all have the same carrier frequency, 
which is either known or pre-detected.

Of course if element patterns were controllable (alas, they rarely are) one could 
try and achieve wideband mode alignment by searching for an ideal element pattern 
that will flatten, or at least linearise the frequency responses of all phase mode 
coefficients. A hint to the solution for this somewhat academic pattern control 
problem has been provided in section 2.4 of chapter 2, where an azimuth element 
pattern of (l+cosç>) was shown to lead to phase mode coefficients that caimot fall to 
zero. In fact by examining the asymptotic expression for the relevant Bessel functions 
of large arguments^®, expression (2.4.13) for the | t ’th phase mode coefficient takes 
the form:

C^oio), 6) ~ ge(.e)e-j”/^ (2c/jia>Rnn . . .  ( jg j;

which is indeed linear in its phase response, but requires amplitude equalisation for 
broadband operation. A little thought will reveal the ‘optimal’ solution for which all 
phase mode coefficients become linear in phase and invariant in amplitude, only it 
turns out to be impulsive in qr.

g(6,V>) = g e (6 ) 'Z  e i i f  ■■■{3.62}
(=-oo

Under (3.62) all phase mode coefficients become (see (2.4.9)):

When the order and argument of Jfi+i[(ci}R/c)smd] are such that: \ii+i\ «(coR/c)sin 6, or 
equivalently l/i+zl «  Af/2 (for an inter-element spacing smaller than XJl and 9  = n /l)  then:

//i+ i [(£ofli/c)sin 9\ ~ (2c/7t(D R sin 6)^^cos [(û)/?/c)sin 9-n!A - (pL+ i)nP.]
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C^f(co,e ) ^ X  0] = e ...

but this affects all coefficients regardless of order, with the result that each phase 
mode pattern is given by a series of M  impulses at angles (p = litm lM  , 0<m<Af-l, 
which, after all, is to be expected from M  impulsive element patterns. The pursuit 
after the ideal element pattern is further discussed in appendix C.3.

A more pragmatic approach for the broadband alignment of circular-array phase 
modes to which we devote the rest of this section, involves the separate deconvolution 

of their dominant coefficients {C^o(û>» ^o))/i for a given azimuth cut The
required analogue transfer function for the /I’th phase mode filter is accordingly given 
by:^i

Hii(s) \s=j(o=̂ '-̂  ̂ IC ^(co, n il) , coijô  co< cùhi

where the (assumed finite) time delay r  is needed to make the impulse response of 
H^(jœ) causal, and cdlo and œni are, respectively, the lower and upper frequency in 
the operating band. The stability of such a filter would depend on the radiation 
properties of the element patterns. Assuming the latter to be of the form (2.43) then 
from (2.4.11) we have:

c^o(to, TcfZ) = +j\np) - ■ • (3.6.4)

and the filter’s Laplace-domain transfer function is

= e-^Vpj^J^[-j(sR/c)+jlnp] • ■ • (3.6.5)

Noting that the zeros of a Bessel function of integer order are always real, it follows 
that for outward directional element patterns characterised by 0 < p < l, the poles of 
H^(^s) are located on the left half of the complex 5-plane, rendering it stable. In 

contrast, omnidirectional elements (p = 1) as well as inward-directional elements 
(p > 1) both lead to unstable filter designs.

In the context of discrete time-sampled signals, a corresponding causal digital 
filter WÜ1 be stable if and only if the poles of its transfer function y^(z) all lie inside 
the unit circle on the complex z-plane. A stable realisation of as l/(D^(z), where 
2^(z) is the digital implementation of (3.6.4), therefore depends on îD (̂z) having all

We henceforth assume: 6 - n l2  and hoiitH) = 1.
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its zeros confined to within the unit circle, which in turn, as we shall shortly see, is 
again a function of the shape of the element patterns. For the implementation of a 
causal digital filtering unit (D^(z) having a finite impulse response of length N, and a 

non-aliased frequency response which, over the bandwidth 0<Q)<cohj, is equal (to 
within a constant group delay) to C^q(co, we must have:

^  C^o(û)"2^pM^^/2)5(û)2ir-2;r/7)evXû>-2;r/?/4r)(N-i)z\f/2
p=-e

(3.6,6)

where S (H) is a sampling window function which is zero for values of £2 outside the

interval [-2;r+ 2;r- and At is the temporal sampling interval (with

a>s = 2nlAt denoting the sampling f r e q u e n c y ) ^ ^  _  pig^ 3.6.1. The corresponding 
transfer function for this filter is then given by:

2^(z) = îD^(lzle/^ =

pjfi2-m)/2 ^ S(a-2xp)ei’V(.N-i)ĵ [(R/cAtXa-27cp)+j]n ^

pyMz (N-W g ( ^ ) /  [A S + yin P. ] , -cOH iAt^Ci^m i^t
cAt

(3.6.7)

S (Q) Cpo(n/At, Kl2)e-J^(N.1)P.

Fig. 3.6.1 Digital implementation of phase mode coefficient response

^2 Under the finite-impulse-response assumption (which is later proven), the addition of the delay 
term e'̂ '̂̂ xo Cfioio), nH) with t  = (N-\)Atl2., renders the filter causal.
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and it is evident from (3.6.7) that the zeros of iD (̂z) (and therefore the poles of 

lie on a circle of radius in the complex z-plane. A stable design once more
depends on the array elements being outward directional with p  < 1 -  see Fig. 3.6.2.

In order to adequately describe a single Bessel function J^(coR/c) multiplied by a 

window S(O)At) of approximate temporal duration^ ̂  Stu/ cOs from its frequency 

samples, the frequency-sampling period Act) -  2%!Zs must be such that:

%  < nlAo) (3.6.8)

where rjji is the maximum effective extent in the time domain of the convolved 

expression/v(0*5 (f), where:

Jv(t) dcoeJ^^JvicoR/c) —
(jYTyict/Fl) Id < R/c

7c[(R/cf -

0 Id > R/c
(3.6.9)

S (t) is the Fourier transform of S (oAt) and Ty(x) is the Chebyshev polynomial of the 
first kind of order v. Since Jy(t) and S (t) are bounded in the time domain by Id < R/c 
and Id < Ak/cOs respectively, it follows that:

z-plane

cAt/R.

Fig. 3.62  Poles of l/^D^iz) on the complex z-plane

This is the null-to-null width of mainlobe + first sidelobes in the Fourier transform of a 
rectangular window whose cutoff frequencies are 21(0  At = ± n
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tHi = (Fi/c) + 47t/û)s • • • (3.6,10)

which in view of (3.6.8) also means that:

Tj > 2R/C+ Sk/ o)s • • • (3.6.11 )

Now, exactly the same argument holds for a Bessel function J^(coRlc) of any order.
Since each phase mode coefficient is expressible as a sum of such Bessel

functions^^. It follows that Aco is also the frequency sampling period required for the 
digital representation of Ĉ xo(û), 7r/2)S((oAt), and the fact that it is effectively bounded 
both in frequency and in time justifies our attempts to implement it as a finite impulse 
response (FIR) filter. The number of required frequency samples N  which defines the 
order of the filter (Dfi{z) is given by the inequality:

N  = zJAt > 2(2+ RIcAt) • • • (3.6.12)

whereas the frequency sampling period must not exceed:

A a  = 27clt, = ^ < — % —  ■■■Q.6J3)
N  4+cOsRlnc

Denoting

Kx = (ùsl2(ûiii > 1 

> 1
(3.6.U)

we can write:

N  =[2 Ko)i2 + KrCOHiR/nc)] • • • (3.6.15)

where Fxl the ceiling of x is defined as-

r%l = 1 +Int(x) - Int[Int(x+1 ) - x ] - • • (3.6.16)

Noting that the arc wise inter-element spacing must be kept smaller than 0.5 or even

This clearly follows from (2.4.9) when element patterns are represented by (2.2.4), but it is also 
the case under the representation (2.43) by virtue of the identity:

where Iv(x) = j'^Jvijx) is the modified Bessel function of the first kind of order v and argument x
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0.4 of a wavelength at the highest operating frequency, we define a third constant k 
with a value of about 1.25:

cOffiR/c =-^(M/2) 

which allows us to rewrite (3.6.15) as:

iV = r 2K a(2+ ^M /2n)] ■ ■ • (3.6.17)

Assuming: K= 1.25, kv= /Co= 1.5 we thus conclude that an 8-element array would 
require at least 11 frequency samples, a 16-element array would need no less than 16 
samples and 25 frequency samples are the minimum requirement for a 32-element 
array.

The FIR filter block îD (̂z) may be realised in a variety of ways [Opp 76] such as 
one of the designs based on a frequency sampling structure:

2v(z)= X

or in a direct-form implementation, the coefficients for which are obtained via an Ap­
point (inverse) DFT operation on the set of samples { where:

I Inn lN  N  odd
cOnAt^l 0< n< N -l (3.6.19)

I 27u(n+l/2)/N N  even

Explicit expressions for the frequency samples are given in
appendix C.4, in terms of the ^ ’th phase mode coefficient as well as in terms of 
element pattern measurement data.

Two of several possible schemes for realising the /z’th deconvolution filter
j^(z) = l/Tf^iz) are suggested in Fig. 3.6.3 and Fig. 3.6.4. In the first scheme the

inverse of the frequency sampling expression (3.6.18) is implemented with a minor 

correction in the form of a parameter f  < 1 which is close to unity. This parameter is 
introduced in order to relocate the N  common poles and zeros of (3.6.18) from the unit 

circle onto a circle of radius f  on the complex z-plane [Opp 76], [Gol 69]:

The actual number of frequency samples needed may be somewhat higher depending on the exact 
window function used.
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1-C ^  l.fz-ie/(2»tfw»

 N

]-*

l-f2-l£7WWXn+l/2)

f5.6i0j

and in view of:

= îZ)^(e/(2Ji/^n) l< n < rW 2 l-l

q)̂ {e3(?-7tlN){N-\-n-̂ ll2)>̂  = /jl* (g;(2;i/A0(n+l/2)) 0</Z<r N/21-1

the above structure may be reduced to a network with real weights by implementing 
the complex poles in second-order sections [Opp 76].

in

out

% n =

Q<n<N-l

Fig. 3.6.3 IIR frequency-sampling phase mode filter
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The second filter shown is a direct-form HR realisation for which the real impulse- 
response sequence of the block (D (̂z) has to be evaluated:

N-l

n=0

N-l
(3.621)

= eK27tfN)(n+l/2)k^^(^(2nlN)(n+ll2))  ̂ 0<k<N-l
n=0

The availability of this sequence also allows us to apply Jury’s stability criterion 
[JUR 64], [Ant 79] in order to ensure the stability of the designed U(D^(z) filter.

As noted in section 3.2 of this chapter, there is also the option of approximating 
^ ( z )  by a non-recursive (FIR) filter. Since the extent of the Fourier transform of 
l/C^oicOy n il)  in the time domain does not equal R/c but rather depends on the exact 
nature of the array element patterns, the length of the filter’s impulse response may 
have to be determined by simulations. The impulse response sequence itself may be 
obtained by truncating the infinite series:

outin

Z'l

r

Fig. 3.6.4 UR phase mode filter: direct-form implementation
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l /Z ^ (z )= E
vM)

at some power (Norl) of where îD̂ (z) is given by (3.6.18), or the implementation 
of ̂ i(z)  may be based on the set { whi ch are taken as the frequency 

samples of The FIR filter may then be designed in various forms such as a
frequency-sampling realisation of

n=0 1 -

with f  serving the same purpose as in (3.620), a direct-form realisation of which the 
schematic diagram shown in Fig 3.65  below is an example, or a DFT-based 
realisation as was suggested in Fig. 32.2.

i/xO

z-1

Z‘l

^ 2
^<»n=0

k = 0, 1,   ,N (if\
- 1

ĵU(Âarl)

Fig. 3.65  FIR phase mode filter: direct-form implementation
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3.7 SUMMARY

In this chapter we have been looking into spatial processing techniques for circular 
arrays based on phase mode analysis, which appear to have practical aspects in the 
context of digital beamforming. Previously studied beamforming, null-steering and 
direction finding methods were reviewed and new ideas pertaining to their digital 
implementation and to their performance over wide bandwidths were examined.

We began with the classic linear-airay to circular-array synthesis transformation 
which, in principle, allows one to produce frequency-independent directional beams. 
It was however noted that a temporal filtering unit would be needed at the output of 
each phase mode in order to equalise the frequency characteristics of all zero-order 
phase mode coefficients. The principles of the multimodal phase-comparison 
direction finder were subsequently recalled, where it was shown that relying on 
element pattern symmetry and assuming the phase mode coefficients for modes 0 and 
1 to have their arguments differ by less than ±;r/2, one may obtain unambiguous 
angular information without the need for mode alignment. Also reviewed were mode- 
space null forming and null steering methods, leading up to the implementation of a 
digital multibeam network with one or more steerable nulls

Next, we introduced the idea of transforming the essentially omnidirectional 
phase modes into a new set of beams which are still linear in phase but directional in 
their far-field amplitude patterns. It was shown that two multiple sets of such beams, 
which we named sectoral phase modes, may be used to enhance the immunity of 
multimodal DF to co-channel interference while retaining its 360* azimuth coverage, 
and add sectorally-controUed null steering capability to a multibeam system. With the 
latter application, being based on the linear combination of adjacent sectoral phase 
modes whose linear-phase characteristics are confined to approximately a 360“/A/ 
angular sector, the synthesised nuUs should be steered within their own sectors.

The viability of broadband mode alignment as the basis for wideband mode-space 
techniques was finaUy considered. FoUowing an initial discussion on the quest for the 
‘ideal* element pattern, a recursive digital scheme was suggested for the de- 
convolution of zero-order phase mode coefficients, its stability depending on the 
directional properties of the array elements. The resultant broadband phase modes, as 
well as beams derived by their linear combination, provide the array with 
omnidirectional delay matching to incident pulses.
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4. PATTERN CORRECTION

4.1 GENERAL

The ability of an array system to meet its design goals largely depends on the 
sensitivity of its specified performance to variations in the effective illumination of 
the array aperture. The nominally weighted aperture distribution of amplitudes and 
phases, which shape and steer the radiated or received beams, is inevitably perturbed 
by a number of contributing factors both stationary and time varying in nature. 
Amplitude and phase fluctuations due to internal reflections and to non-ideal transfer 
characteristics of electronic components, phase-centre displacement and variations in 
element patterns (such as pattern rolls) due to production tolerances, inter-coupling 
and site effects, as well as quantisation and thermal noise aU effectively modify the 
weighted aperture excitation, whereas non-linear channel operation and imperfect in­
phase/quadrature mixing^ may introduce spurious responses in both the frequency 
domain and in beam space. Another important cause for errors which is especially 
relevant in the sonar context, is ambient noise. As noted in chapter 5, section 5.3, an 
isotropic or semi-isotropic spatial distribution of independent noise sources will 
deliver uncorrelated noise^ to the half-wavelength spaced elements of a linear array. 
There (and in appendix E.3) we show that although the noise received by circular- 
array elements will not be uncorrelated, mode-space noise will be uncorrelated when 
the ambient noise field is azimuthally isotropic and impulsive in elevation.

The effects of random amplitude and phase excitation errors at the aperture of a 
linear or planar array have been studied in the past [Ruz 52], [Ron 59], [Sko 80] where it 
has been shown that for small uncorrelated errors, the expected value of the array 
power pattern differs from that of the error-free power pattern by effectively a 
constant term. That term, which is directly proportional to the sum of the aperture 
error variances and inversely proportional to the number of array elements, is known

 ̂ This is relevant to arrays employing digital beamforming
2 Two random variables x and y  with corresponding expected values ^ x  = x and S y  = Ÿ are said

to be uncorrelated if 5 ( x ’-x)(y-ÿ) = 0. By uncorrelated noise at the array elements we mean that 
for any two elements, the received noise is pairwise uncorrelated.
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(with respect to the pattern’s peak) as the rms sidelobe level due to errors. In the 
context of circular arrays of closely spaced sensors, we show in section 4.2 that 
uncorrelated equi-variance contributions from ambient noise fields to the phase-mode 
signals will affect the rms sidelobe level of mode-space beams in a very similar 
manner. Uncorrelated equi-variance aperture errors, on the other hand, generally lead 
to an angle-dependent rms sidelobe pattern, unless the array elements are 
omnidirectional. This is shown for amplitude, phase, element displacement and 
pattern rotation errors in sections 4.3 and 4.4.

Various schemes for monitoring, correcting and maintaining the accuracy of 
antenna and sonar arrays, have appeared in the calibration literature. Those relevant to 
arrays with digital beamforming, ordinarily comprise initial pre-deployment 
calibration measurements and a re-alignment procedure based on a near-field source 
or on internally injected test signals [Bar 80], [War 89], [Lon 85a]. The latter procedure 
is executed prior to, or interlaced with the normal operational deployment of the 
array, using test equipment attached to or built into the system. Sections 4.5 and 4,6 
of this chapter examine ways of re-aligning a digitally-beamformed circular array of a 
known geometry with given element patterns and channel responses. The idea behind 
these calibrating algorithms has been inspired by [Lon 85b] which deals with the 
correction of site effects on a phased array radiation pattern. We start by introducing 
the concept of ‘least squares’ pattern correction for a single co-phased beam at a 
single frequency, where a set of correction weights is applied to the array channels. A 
narrowband correction algorithm for the special case of a single phase mode pattern is 
then considered, and later extended to include a multimode scheme which involving 
two sets of correction weights. A similar formulation for a multibeam excitation is 
then followed, and is shown to be equivalently implementable as a two-stage 
multimode correction algorithm. Sections 4.7, 4.8 and 4.9 conclude this chapter with 
wideband versions of the foregoing correction algorithms, a set of simulation plots 
and a summary of the main results.
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4.2 MODE-SPACE EXCITATION ERRORS

Let us consider an M-element circular array excited to form a nominal (i.e. error-free) 
mode-space beam pattern whose peak is ‘scanned’ to direction Çm = il7ülM)m. 

The beam is synthesised by the linear combination of (2A+1) of the circular array 

phase modes O.Aj ^-A+h • ■ • » » A<M/2, Each of the processed phase modes is
assumed to have undergone appropriate alignment, in addition to which it is linearly 
phased and weighted, as represented (for the | t ’th phase mode) by the phasing 
operator and the (possibly complex) weight If (for an even M)

A  = M/2, we assume the alignment of phase mode fx = ±M/2 to be such that:

■■ -  -  cos(M<p/2) + distortion terms
C(MP,)0 C(MI2)0

The sensitivity of the array to uncorrelated mode-space errors pertains, as mentioned 
in section 4.1, to the effect of a circumferentially-isotropic and elevationwise- 
impulsive ambient noise field. Its analysis, being similar to that relating to linear 
arrays, is based on the inclusion of a zero-mean phase error and a fractional 
amplitude error with each of the summed phase modes in the expression (323) for 
FmiçX where the errors are uncorrelated and their variances independent of fx. The 

perturbed far-field mode-space beam pattern, denoted here by j/m (A  is given by:

A
Jm{(p) =  “ V  X  CP/1 +  K ^ e j^ e -M 9 -2 n m /M )  . . .  (42J )

and the expected value of \%i((p)\^ is clearly given by

A A

* M ^  ^  ^ ')(1 +
//=-A fjr=-A

■■■(422)

Now, for small errors one can approximately write:

5 [ ( l  + Ky)(l+K-^)e/(V-*y^ = d - o i ) [ l+ o 2 5 ( / i '- / / ') ]  . . .  (423)

where o^, o f and denote the error variances
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-A< ^< A  . . .  (42.4)
P

<j2 = {oI+ gI)K I-gI) .. • (425)

and 5(n) is the Kronecker delta function. Expression (4.22) may consequently be 
rewritten as:

S\:Fm{(pt * + 1^1^) • ■ • (42.6)

where the nominal power pattern \Fm{(p)9’ has been augmented by an additional 

constant term IzlFP which is given by:

\AF? = (cf/M) y  l a /  = — ^ —  IF„(2ron/Ai)|2 • • • {42.7)
fi=-A ( 2 A + 1 )^

with^

A A
a ^ P /(2 y l+ l)X  l a /  ■■■(42.8)

fJ^-A fjb=-A

The constant factor a^/(2A+ \)Q  multiplying WmQ.mnlM)?- on the right hand side of 
(421), constitutes the rms sidelobe level of the mode-space beam, and is seen to be
directly proportional to the sum of the error variances, and inversely proportional to
the number of phase modes and to the gain factor of the tapered array. A very similar 
result has been obtained for an M-element linear array under uncorrelated zero-mean 

amplitude and phase aperture errors, with M  substituted for (2A+1) in the expressions 
(42.7) and (42.8) above.

In the next two sections we shall be examining the effect of uncorrelated equi- 
variance amplitude and phase errors at the circular array elements, as well as element 
displacement and pattern rotation errors, on the sidelobe level of mode-space beams.

Q is commonly referred to in the array literature as the gain factor^ denoting the relative power 
per unit solid angle directed, under the given weighting taper, by the array in the direction of its 
main lobe peak, as compared to the power per unit solid angle directed in that direction by the 
same array under a uniform taper.
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4.3 APERTURE EXCITATION ERRORS

In order to analyse the effect of aperture errors on mode-space beams, we assume as 
before the presence of uncorrelated zero-mean equi-variance phase and fractional 
amplitude errors, but this time at the element channels. The receive channel connected 
to the m’th array element thus includes a random error signal whose phase and 
fractional amplitude are given by em and Km respectively. The expression for the /t’th

perturbed phase mode on the azimuth (9 = nH) plane becomes:

/  M-1
0  = -L V  Y  ( l 4 - K ) y i ' ) e / G " 'e V M M ) ( / z + 0 / R 'g / ( G ) f y c ) c o s  i<p-2nm'IM) . . .  f4J j j

and the m ’th mode-space beam generated from a set of (2A+1) modes, is given by:

A
!Fm (<P) = - \ z r  X  [ (G), 7Ü/2)]e/(2?r/M)m/i<p^(;j/2, <p, CO)

M-1
Y  ( 1 + V(2;:/M)(ff+;)/»'g/(û)A/c)cos(y-2;rm'/M) . . . ( 4 3 2 )

m'=0

where the (finite) Fourier series representation (22.4) for the element patterns has 
been used. The expected value of lj^(^)l^ is given for small errors by the expression:

5Um(ç>)l^ =
*

^t^Afir=.AC^o(CD,nl2)C*^Q(co,7il2)

M-1 M-1 

m'=0 m"=0

= ( l - 0 # ) ( l f m ( # + l ^ m ( # )  ■ • • (43.4)

with

X m -i.G )R lc)co s{(p -2 n m /M )  , 0 < m < M - l  • • • (4 3 5 )
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where use has again been made of (42J). IFm(9)l^ is the nominal far-field power 
pattern and \AF^((p)i^ is an error power pattern which is given by:

^  i - - Î  i"=-I fj^=-A fj!^=-A

M-1
^  ^-j{2nlM )(j£-if+V-nm ' 

m'=0

21 2A min(yl,A+v) *
=  - ^ X  È  z  É  " r  e iO -m )m v

^  k=-2I i=-rwn(J,I-k) v=-2A ^;=-mm(A,A-v) ^^toC (^.y)o

%  5(Â:+ v+qM) • • • (43.6)

and may also be written as:

Int[2(/+A)/M] Twn(2I,2A-qM)

^  ^=-Int [2(/+yl)/Af] ik=-min (2/, 2A+^A/)

min(/,/+A:) rcàiL{A,A-k-qM) ^

I  W ,  I  ^  - r « . 7 ;
/—min (/,/-^) y;=-tiàn.{A,A+k+qM) ^fiO^(ji+k+qM)0

As is evident from random aperture errors lead, in general, to a ^dependent 
rms sidelobe pattern, so that different rms levels of spurious sidelobes are expected at 
different directions. However in the case of omnidirectional elements, 1 = 0 and we 
are once more left with a constant rms error level, though this time it is given by:

= \hofi X  ' « /  /

— [ X  I X  ...(43.8)
(2A+1)^ =̂-yV

where Q is given by (42.8).

The effects of element displacement and pattern rotation errors on the rms 
sidelobe level of mode-space beams are treated next in section 4.4.

A A



4 . 4  E le m e n t  d i s p la c e m e n t  a n d  p a tte r n  ro ta tio n  e r r o r s__________________________  iiilllllillllll 7 4  lllllll

4.4 ELEMENT DISPLACEMENT AND PATTERN ROTATION 
ERRORS

Displacement and rotational errors respectively refer to the random radial and/or 
angular deviation of each element from its nominal equi-spaced position in the array, 
and to the random angular roll of element patterns from their nominal orientation. In 
order to assess the effect of such errors let us re-examine the mode-space beam 
pattern of section 4.3 under an error model in which the phase centre of the m ’th 
radiating element is displaced radially by Rvm, and angularly by pm and the radiation 
pattern of that element is rotated about the array centre through a random angle of 
The /i’th phase mode is then expressible as:

I M-1
d>^ =  - L ^  ^  g/>,rfg-7(2îi/Af)Ou+Ow*g/(û>W(l+^m')cos(<p-An'-2;onVAf) . . . ( 4,4.1)

m'=0

and the m ’th mode-space generated beam is given by:

A
iTm(ç)) = — [a^C^o(û),;r/2)]e/W^)^/^<2>/;r/2,<p,û))

M-1
^  gjyrm'£-j{27i/M)(p.+iyn'̂ io)R/cXl+rm’)cos(,<p-fim'-27cm'IM) ...(4.42) 

m'=0

Taking the expected value of \7m{<p)  ̂for small errors as before we obtain

S  X  %  Y    g/(2;r/M)m(X-K)
i'=-I i"=-I X=-4 C ^ Q  (CD, n/T)

M-1 M-1 

/»'=0 m"=0

ei^XntO- +r„‘)C0S P^-Xm- ( l 4 - r ^ ' ) C 0 S  +r^)smp^-^m' (l+r„-)sin pm-]]

. . .  (4.43)
where.
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= (coR/c)sm((p-27umfM) , 0<m<M-l ■•'(4AA)

It is not hard to see that rotational errors in (4A3) play the same role as the phase 
errors in (43A). Consequently, when only amplitude, phase and rotational errors are 
present we have, for small zero-mean equi-variance uncorrelated errors:

5 1 F „ ( ç))|2 = (1 - o f -<t|,)(IF „(ç))|2+I4F„((p)|2) • • • (4.4J)

where,

=  , 0 < m < A f-l •■•(4A.6)

is the nominal m ’th modal pattern and the error power pattern \AFmi<p)\  ̂ is 

given by (43.7) with defined as:

<j2 = (c7?+oi+<T^)/(l-cT|-a^) • • • (4A.7)

Finally, we account for displacement errors by making the usual assumption of 
small zero-mean equi-variance uncorrelated random errors, while also letting:

Sr]ri = Bpm  = <7? , 0<m<M-l . • • (4A.8)

We may then approximate,

+W cos Arf-Zm- (l+rm")cos (1 +r,rf)sm A»*- (l+r,».)sm A»”] «

g;(i-o?/2X;jv-;»v)[l.<T?+<T?5(m'-m")] •.. (4.4.9)

and therefore, when all errors are included, S \7 m i0 ^  takes the form:

+ IAP;n((p)|2) • • ■ (4.4.10)

where (<p) is the nominal m’th mode-space pattern of the array at a modified radius 

of (1 - a } /lŸ ^  R  and \AFm(.ç)\^ is given by (43.7) with C7̂  defined as:

=  (c l+  o f + o f  ) /( l  - o f - o ^ o f )  • • • (4.4.11)
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4.5 SINGLE-PATTERN CORRECTION

The effect of aperture errors on the array performance may be alleviated by 
incorporating one or more correction units in the design of the system. Each 
correction unit comprises a set of complex weights, so selected as to align one or 
more of the array patterns, in the least squares sense, with its desired spatial 
responses.'* In its simplest form schematically illustrated in Fig. 4.5.1, such an 
error compensation scheme may be used to correct a single beam-cophased pattern. 
H ereM  complex weights {vq, vi, • ■ •, v m - \ ]  modify the corresponding M  element 
channel signals, which are then phased, weighted and summed to form a single output 
beam.5 Sampling the desired far-field radiation pattern F{q>) at L  equally-spaced 
observation angles®

ç /=  Q.n/L)£ , /  =0, 1, • • •, L -\ (45.1)

0 1 M-2 M-1. . I •Array Elements . . • .

j , , , Digitising Network . . . [

Correction unit . . . v m -2 VM-i

Co-phase weighting network

Fig. 4.5.1 Single beam co-phased correction

We restrict our discussion to azimuth-plane pattern correction, with the elevation angle being 
kept constant at 0 = n/2.
The functions of the correction unit and of the co-phase weighting unit may of course be 
combined in a single complex weighting unit
A different range of angles and different angular spacings (say, uniform in sin ç  space) may be 
chosen, especially in the case of a linear array.
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where in general L > M , the required set of weights is found by solving, in the least 
squares sense, the following matrix equation:

G K v = F

where:

V = [vo vi • • • V;n • • • v m -i Y  • • • (453)

P  = [F((Po) F((f>i) ■ • ■ P((p^ ' • •  ̂ • • • (^3.4)

K is a diagonal Mx-M co-phase weighting matrix whose mm^ih element is given in the 

case of a circular array (for 6 = %H) by (223), and G is an LxM  element pattern 
matrix available from calibration measurements, whose /m ’th element is given by:

[G\/rn = eJ(<oRlc)cos [2^r(//L.m/M)]^[;r/2,2;r(//L-m/M), w]

0 < /< L -l , 0<m<M-l --■(43.5)

The optimal vector v is obtained from (452) by minimising the following cost 
function expression:

£  = [v "K "G "-F^W  [G K V -F  ] • • • (45.6)

where W  is an LxL  real diagonal weighting matrix whose elements may be chosen, 
for satisfactory sidelobe performance down to a level of 77 dB below the peak of the 
main lobe, as:

[TV]//=l/max[10-’>"MF((p^)/F(ç)^i)P] , ■■■(45.7)

IF(W I^ = max[lF(vH))P, lf(% )F, . . .  IF(%.i)P] . . .  (45.8)

Taking the ‘complex gradient* with respect to v ” and equating to zero‘d we obtain 
the standard least-squares solution to the above problem:

V = [K"G"W GK]-i K^'G^WF • • • (45.9)

Note that the evaluated weight vector v is only optimal with respect to the target 
pattern F . In section 4.6 we shall be looking at ways of handling the simultaneous

 ̂ The concept of complex gradient is defined and explained in [BRA 83].
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correction of a number of beams. But before we do that, let us first apply the same 
concept for the correction of a single circular-airay phase mode. The /I’th uncorrected 
phase mode d>^(;r/2, <p, co) and the target mode pattern will be represented by 
the Lxl vectors:

= [O^(Jt/2,0,®)• • ■ CO)--- û))]’' • • • {4520}

Tw = ['F'^CO)..........................  ' ¥ y ! ? ^ l ) ) f

=  [1  e-K2nlL)n/ g-j(27t/L)fi(l^l)Y (4.5.11)

and our aim is to find a ‘pre-DFT’ correction vector v of complex weights, which we 
shall apply, as illustrated in Fig. 45.2., to the outputs of the array channels prior to 
the formation of modes such that the expression

£  = IGE^v - V P / = [ V  % G " -  [G E >  - ï y {4522}

is minimised. In (45.12) above, is an AfxM diagonal mode forming matrix for the 
j f ih  phase mode, whose mm’th element is given by:

(4.5.13)

0 1 Array Elements M-2 M-1

Phase
modes

, , . Correction unit

Digital DFT 
A M-A M-2 M-1

Fig. 4.52  Single mode correction
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Note that since the target pattern is omnidirectional in amplitude, there is no need for 
a weighting matrix, v is obtained as before by differentiating £  with respect to v " and 
equating to zero. The mode-dependent result is:

V =  E ^ [ G " G ] - ' G " « V

and the single corrected phase mode is given by:

(45.14)

(45.15)

One rather complex scheme for the simultaneous correction of more than one phase 
mode is suggested in Fig 4 5 3 .  It is based on (45.15), rewritten as

L-l M-1
¥>/, m) = £  { £  [ G ] / „ [ r U t ) , 0 ^ /^ L - l  • • • (45.16)

k=0 m=0

with [r\mk denoting the mk^xh element of F =  [G”G ]'^G ”. The above expression 
indeed constitutes an L-point DFT as implemented in Fig. 43 .3 . A more elegant 
multimode scheme based on a two-stage correction is the subject of section 4.6.

0 Array m Elements M - 1

NetworkDigitising

[■Tioo

L - lDigital DFT

Phase
modes

Fig. 4.5.3 Multimode correction using a pre-DFT matrix
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4.6 MULTI-PATTERN CORRECTION

Although the pre-DFT weight vector v as given by (4.5.14) is phase-mode dependent 
and may not provide simultaneous correction for more than one phase mode, we may 
try and find another ‘global’ weight vector that will minimise the deviation of a 
prescribed set of phase modes from their respective ideal patterns. Noting that for an 
error-free circular array:

it appears reasonable to add a second set

u = Ufj,--' • • • (4.6.1)

of complex weights at the output of the DFT unit of Fig. 4 .52, which we shall refer 
to as post-DFT correction weights. This scheme, which is illustrated in Fig. 4.6.1, is 
more easily implemented that the one suggested in Fig. 45.3, and moreover a post- 
DFT weighting unit would in any case be needed for the purpose of mode alignment 
and for the possible application of an additional (amplitude) taper in the 
implementation of low-sidelobe mode-space radiation beams.

0 M-2 M-1
Array Elements

Digitising Network

Pre-DFT Weighting

Post-DFT Weighting

Corrected phase modes

UM-l

M-A

M-2 M-1
M-2 M-1

Fig. 4.6.1 Two-stage multimode correction
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We thus seek a new pre-DFT weight vector v which minimises the expression:

E =  X  [ y [ G E j l v - ■■■(4.62)
fi=-A

where
% = 1 • • • (4.63)

and the second set of minimisation parameters.

Differentiating with respect to v"  and { and equating to zero leads to the 
following result (refer to appendix D .l for details):

V = [G"G+ X  E;,(G ''G -1,-1 G "y ^T ^G )E g |-i G"9% • • • (4.6.4)
fl=-A

and the corrected (but as yet mis-aligned) phase mode patterns { given

by:

%  = GE^v

= G E 2 [G " G + X  E^(G "G -l-'G '"f% '!^G )E% ]-i G"f% ■■■(4.6.5)
/f=-yl
/fctO

The set of post-DFT alignment will now be evaluated in two slightly different ways: 
i As part of the minimisation process of expression (4.6.2) which in addition to 

(4.6.4) (see equation (D.12) in appendix D .l) also yields:

L-l
Un= —  -  — ^77-  = <P«(;r/2,2;r//L,co)e i (2?r/L)Ai/ j - i

Ai = 0, ± 1 ,..........., ±A  • • • (4.6.6)

a By the application of the following least squares' minimisation process to each 
mode:

min , -A<fi<A ” >(4.6.7)

which leads to:
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^  *

X  10 p f j c l2 ,2 n t lL , 0 ) P
/’=0

/z = 0, ±1, •••,  ±A (4.6.8)

This last option, as we now show, is also optimal for the correction of a multiple set 
of mode-space beams. Such an arrangement is schematically illustrated in Fig. 4.6.2, 
with the post-DFT alignment unit being also used for controlling the mode-space 
‘aperture’ illumination. Consider the following set of target beams:

where

Ë  = , OSmSA/-l ■■■{4.69)

.......... ................... (4.6.10)

0

¥

VO

MO

1
\ /

Vl

Array Elements 

Digitising Network

Pre-DFT Weighting

M-1 M-1
\ / Y

VM-2 VM-1

0 1 . . . Digital DFT . . . . M-2 M-1
0 1 - . . . .  A M-A - - . - - M-2 M-1

.1 ! ..

Post-DFT Weighting mm-1

0 1 A  M-A  M-2 M-1
0 1 Digital (Inverse) DFT M-2 M-1

M Beamsn~
Fig. 4.62  Two-stage mode-space multibeam correction

n
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and each is a diagonal (2A+ l)x(2A+1) matrix whose elements are given by:

= , -A< ^< A ••>(4.6.11)

Assuming that the availability of the pre-DFT correction weights, and consequently
also of the corrected (but mis-aligned) phase modes via (43.14) and (4.3.15) 
respectively, we seek a vector u of post-DFT weights which will minimise the 
following cost function:

M-1
£  = X  - a Æ „ V '] W [ è a „ « - Y S „ a ]  . • • (4.6.12)

m=0 I

where,

®  =  « b .......... ■■■(4.6.13)

a  = [a .^ ......... oco • (4.6.14)

and W  is a real diagonal weighting matrix. Minimisation of £  with respect to u 
yields:

M-1 M-1
[ X  Em® w 6 S m ]« = [ X  S „ Ô V y S „]a  . . .  (4.6.15)
m=0 m=0

and since for every (2A+ l)x(2yl+1) matrix A, the following is true when A  < M/2:

1 ^  H
^ X  = diag(A) . . .  (4.6.16)
^m=0

Expression (4.6.15) leads to:

diag(&"w Ô) M = diag (6^W V ) a  ••• (4.6.17)

which may also be written as:

Ufx = ( tf^l^^l^) oCfx , -A ^ fx^A  • • • (4.6.18)

which is exactly (4.6.8) cascaded with the corresponding mode-space weighting taper.
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4.7 WIDEBAND CORRECTION

In the pattern correction algorithms outlined so far, narrowband operation of the array 
over a constant elevation cone has been assumed. The element pattern matrix was

defined in (4.5.5) for a single frequency œ and a constant elevation angle 9 = k/2 at 
which the performance of the compensated array was subsequently optimised. This 
approach may suffice for narrowband operation over a limited elevation range, or in 
applications where the elevation bearing of the received signal is known and its 
frequency is either known (e.g. hops in a known sequence) or pre-detected. The 
correction scheme may then be independently performed at a number of frequencies 
at the prescribed elevation angle (at which element pattern measurement data must be 
available) and a corresponding set of look-up weight vectors constructed. In most 
other instances a single weight vector must cater for the whole frequency band and 
over some finite range of elevation angles.

The simplest approach for correcting a broadband array is by averaging over both 
frequency and elevation range. This option is reasonable when the frequency band 
and range of elevation over which the correction algorithm must be applied are small. 
Refening to the two-stage multimode corrections scheme discussed in the previous 
section, we now look for a weight vector v which will minimise the following 
expression:

ÇCÛHI çTt/i+e ^

do>±-\ d e 'Z  [v » E ^ G V ,^ )-r;:* f^ [G (û ),0 )E > -» F ^ r^
^^Jcûto ^^Jnt2-0 pb=-A

. . .  (47.1)

where % = L { is a second set of minimisation parameters and

G(û), 0) is a frequency and elevation angle dependent element pattern matrix. 
Minimising £  with respect to v and we obtain (see appendix D.2):

V = [G"G+ X  E;x(G ''G -L-iG "ÏV Ï^G )E2]-*G ''ï*i) • • •
Ĵb=-A

where.
fCÙHI fi

= ^ |  d co -^ lG = - L |  dSGico^e) • ‘ •(4.73)
'(ÛLO 7 /̂2-9
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f  71/2+0

G ''= - J - (  d c o ^ l  deG \(0,€f) ■■■(4.7.4)
'cto ^^Ja/1-0

ftÛHI fi
r ^ = - ^ |  d ( 0 - ^ \

^^JcoLo

^^JcûLO ^^J7l

Ttfi+e
deG \(ù ,B )G {(û ,e) •■■(4.75)

ccfco

[c%o, (%/] -  range of frequencies

[;r/2-0,71/24-0] -  range of elevation angles

and where matrix integration is understood to mean integration of each of its 
elements. The corrected (but still mis-aligned) phase modes are now given by:

œ) = G(m, 0)Ejlv

= G ( t» ,0 )E j[G ^ +  X  E ^ (G ^ -L - 'G " 'P ^ Ï^ G )E 2 ] - 'G ''y o
(Ĵ -A
/totO

(4.7.6)

The post-DFT alignment weight vector u may be evaluated along the same lines. 
Option 2 of of section 4.6 is accordingly modified by seeking a set of weights that 
will minimise the cost functions:

f(ÛHl ÇTCjl+e
Ï ^  = j - J  d ffl- l- j , - A < n ^  ■■■(47.7)

resulting in:

= , - A < f i ^  ■■■(4.7.8)

where

> ; = J _  aay±-\ 
^ ^ J cUjo ^ ^ J td

»7t/2+0

——I dcù-- I dO^^OfCd) , ■■■(4.7.9)



4.7 Wideband correction___________________________________________ lllllllllllllii 86

çn ll+ 0

1 0 / =  - 1 -  d c o -^ \ d e \^ f/i0 ,o ))f , - A < n ^  ■■■(4.7JO)
^^Jcuo

Frequency and elevation averaging as described above is only applicable to very 
small bandwidths and elevation ranges. The degradation in array performance 
attendant to broadband frequency averaging may be reduced by utilising post-DFT 
filters, pre-DFT filters or both. For post-DFT filtering, the frequency domain is 
sampled in accordance with the results of chapter 3, section 3.6, and a set of 
frequency-dependent post-DFT weight vectors {w(câ t) In are independently evaluated 
by the minimisation of,

fjtfl+G

2 © L

which results in:

u îo>n) = ^icOn) • • • (4.7.12)

where

  rnH+0

^  I dO ^^O fO ^) , -A<ji<A •••(4.7.13)
^^Jn/2-0

__________  rJtf2+0

= d0\0fj(0,û)n)(^ , -A<fl<A ■■■(4.7.14)

A digital filter is then implemented at the output of each mode using one of the 
configurations suggested in chapter 3, section 3.6 (as illustrated in Fig. 3.6.3 and in 
Fig. 3.6.4), with the set of weights [u'^iohd] substituted for the values {2^»} 
appearing in Fig. 3.6.3.
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4.8 SIMULATION RESULTS

The narrowband and wideband correction algorithms discussed in sections 4.5 to 4.7 
have been included in a computer simulation program for conventionally processed 
circular arrays, the details of which are given in appendix F. In this section we have 
collected some results pertaining to the post-DFT filtering of a circular array 
operating in the frequency range 12 to 24 kHz. These include amplitude and phase 
plots of phase mode patterns in Fig. 4.8.1 and Fig. 4.8.2 respectively, as well as a

“6 --- 1 1 1—I - 1 I I I r~ I I I I I I I I 'I I I I I i "f T I I I I I I T
•180 -1 2 0  -6 0  0 60

A n g le  [ d e g r e e s ]
120 180

Mode 0 
Mode 1 
Mode 2

12 kHz 18 kHz 24 kHz

Fig. 4.8.1 Simulated amplitude plots of digitally filtered phase modes no. 0, 1 and 
2 from a 7-element circular array at frequencies: 12,18 and 24 kHz.
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mode-space directional beam and a sectoral phase mode in Fig. 4.8.3 and Fig. 4.8.4. 
The array in question was a 7-sensor sonar ring of radius 28.8 mm, whose measured 
element patterns^ were parametrised as:

8<p{(Py co) = 0.43 +0.68 cosç?-0.11 cos2ç)

+[0.03 -0.12 cos ç)+0.09cos2ç)][(ûycüio)-1]

180

120 -

60 —en
0)
0)
&
•S asm

0)
in
co
g  - 6 0 -

- 120 -

-1 8 0
120 180-1 8 0 -120 -6 0 0 60

Angle [degrees]

12 kHz 18 kHz 24 kHz
Mode 0 
Mode 1 
Mode 2

-------- —

Fig. 4.82  Simulated phase plots of digitally filtered phase modes no. 0, 1 and 2 
from a 7-element circular array at frequencies: 12,18 and 24 kHz

® The array was developed and measured at Loughborough University of Technology in 1992.
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where cûq refers to a frequency of 18 kHz. Assuming the acoustic propagation speed 
to be given by c = 1500ms’i, the simulated array radius was taken as 0.4608 
wavelengths at 24 kHz. Equivalently, the (arcwise) inter-element spacing at that 
frequency was entered as 0.4136 wavelengths. UR filtering was simulated with the 
sampling frequency and the order of the filters being given by:

cOs/ I tt = 72kHz 

N  =12

•0-18-4

-1 8 0  -1 2 0  -6 0  0 60
A n g le  [ d e g r e e s ]

T—I—r 
120 180

12 kHz 18 kHz 24 kHz

Fig. 4.8.3 Simulated mode-space beam from digitally filtered phase modes -2 to 2 
excited in a 7-element circular array at frequencies: 12, 18 and 24 kHz 
Mode weighting = {-14 dB -3 dB OdB -3 dB -14 dB)
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In Fig. 4.8.1 and Fig. 4.8.2, the presence of higher-order mode ripple is particularly 
noticeable in phase mode number 2 at the upper frequency. Nevertheless, the 
synthesised directional beam of Fig. 4.83  as well as the pair of oppositely-numbered 
sectoral phase modes® are almost independent of frequency, at least in their main- 
lobe sector.

180

- 1 2 0

——60

— 120

-180 -1 2 0 0 60 
[d e g r e e s ]

120 180

CO
o
o

a>
CO
(C5
43
ÇU

-180

12 kHz 18 kHz 24 kHz
Beam 1 (ampl) ...... ------

Beam 2 (ampl) ----- — ------

Compared phase ----- —

Fig. 4.8.4 Simulated sectoral phase modes from digitally filtered phase modes 
{-2 to 1} and {-1 to 2) excited in a 7-element circular array at 12,18 and 
24 kHz. Mode weighting = {-7.5 dB OdB OdB -7.5 dB}

The effective mode numbers of the two sectoral phase modes are 1/2 and -1/2 respectively.
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4.9 SUMMARY

In this chapter we have examined the effect that amplitude and phase fluctuations as 
well as position and roll errors of circular array elements, may have on the power 
pattern of a mode-space directional beam, and have suggested a least-squares 
correction approach for calibrating and re-aligning the array. An expression was 
derived for the expected value of the far-field power pattern in the presence of small 
unbiased and mutually uncorrelated random errors of specified variances. This pattern 
was shown to be expressible as the nominal pattern multiplied by a gain reduction 
coefficient, plus an additional (generally direction-dependent) error term, and in the 
case of position errors a reduction in the effective array radius was also noted. That 
additional error term when referred to the (gain reduced) peak of the nominal pattern 
constitutes the rms sidelobe pattern due to aperture errors. It is directly proportional to 
the (approximate) sum of all the error variances, becoming a constant function of 
direction in the case of equi-variance mode-space errors, as well as under equi- 
variance aperture errors when the array elements are omnidirectional.

The above error analysis was followed with a proposed calibration-based 
procedure for the least-squares pattern optimisation of a multiple set of beams. The 
algorithm was shown to be equivalently realisable as a two-stage correction scheme, 
comprising a set of complex correction weights applied to the element channels, plus 
a second set of complex weights at the phase mode outputs. For broadband operation, 
these weights may be replaced by appropriate ‘pre-DFT’ and ‘post-DFT’ filters, the 
latter being implemented in accordance with the results of chapter 3.
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5. APPLICATION OF SUPERRESOLUTION 
TECHNIQUES

5.1 INTRODUCTION

Superresolution schemes for enhanced spatial estimation are considered whenever 
conventional beamforming fails to deliver the required bearing accuracy of a sensor 
array under a constrained aperture size. These are spectral estimation algorithms 
which adaptively use information provided by the received signals, usually through 
second-order statistics of their temporal Fourier transforms, with the aim of 
surpassing the Rayleigh resolution limit of Fourier-based direction-finding methods. 
According to the classical Rayleigh resolution criterion, two uncorrelated equi-power 
far-field sources are just resolvable when their angular separation equals half the null- 
to-null delay-and-sum beamwidth of the receiving array.^ If the angular separation 
of the two sources is decreased below this limit, the two (mainlobe) pattern peaks in 
the spectral response of a conventional beamformer will merge into a single 
maximum representing the two sources. In practice the beamforming receiver may 
also be adversely affected by the presence of additional noise which can mask the 
received signals altogether, let alone allow their resolution. High-resolution 
estimation of directions of arrival (DOA) from noisy data has therefore attracted 
intensive research interest for over 30 years and a variety of different spatial spectral 
estimation algorithms have been developed or adapted from the closely related 
context of time-ffequency signal analysis.

In the simplest scenario often investigated, spatial and temporal samples of the 
received signals are assumed to originate from a number of narrowband sources all 
having the same centre frequency. A somewhat more realistic model consists of 
narrowband sources centred at known but different frequencies. In both cases, as well 
as in the more general case of wideband sources of known spectral densities, the 
problem is effectively that of a one-dimensional spectral estimation in the spatial 
domain.2

 ̂ For a uniformly illuminated line source or linear array of length DM wavelengths, this angular 
separation is approximately equal to A/D radians.
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The spatial distribution of the array sensors may or may not be restricted by the 
specific algorithm used while the sensors themselves may take a variety of forms such 
as antenna elements or acoustic hydrophones in radar and sonar systems respectively. 
In any event, the digitised array outputs are assumed to be available, together with a 
precise knowledge of the array geometry (in some cases, the arrangement of the array 
sensors need only be partially known, subject to some structural constraint) and (for 
most estimators) a calibrated record of the array element patterns over the relevant 
frequency band and angular sector.

Two different types of data models are generally used to map the observation 
space of received signals onto the parameter space of estimated directions of arrivals 
[Sto 90b]. Under the stochastic (or unconditional) model the signals emanating from 
the distant sources are regarded as random processes, and are ordinarily assumed to 
be stationary zero-mean jointly complex Gaussian, uncorrelated with the additive 
noises. The deterministic (conditional) model, on the other hand, assumes the 
received signals to be non-random. In both cases the additive noises received or 
generated at the array channels are considered to be random, and commonly taken as 
stationary zero-mean uncorrelated (“spatially white”) complex Gaussian processes.

In section 5.2 we review and compare several superresolution schemes pertinent 
to arbitrarily shaped arrays, as well as methods apposite to arrays of some constrained 
geometry. The algorithms considered may involve a scalar (‘one-dimensional’) search 
in which the DOA parameters are sought one at a time, a vector parameter search for 
the simultaneous (‘multi-dimensional’) estimation of all directions of arrivals, or they 
may employ no parameter search at all. Section 5.3 then considers the application of 
such techniques to circular arrays and in particular to their phase-mode outputs. It is 
shown that this particular kind of ‘beam-space’ formulation allows superresolution 
algorithms which are specific to linear arrays to be also applicable to circular arrays. 
The (pre-processing) transformation from ‘element space’ to ‘mode space’ also 
allows the decorrelation of coherent sources or multipathed signals received by a 
circular array, through spatial and omni-directional frequency smoothing; these two 
techniques, which have hitherto been restricted to linear arrays, are discussed in the 
context of circular arrays in section 5.4. Section 5.5 concludes this chapter with a 
simulated study of DOA estimation procedures under various multiple-source 
scenarios, in which the performances of a representative superresolution algorithm 

using linear and circular arrays are examined and compared.

Strictly speaking a spatial spectra estimator is one-dimensional only when the estimated (DOA) 
parameters are evaluated one by one.
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5.2 GENERAL OVERVIEW 

52.1 CRAMÉR‘RAO LOWER BOUND

The effectiveness of any method for the estimation of a K y \  vector <j> o f  K  DOA 
parameters from a random observation vector u, is ordinarily evaluated in accordance 
with the following quality criteria:

z. R eso lv ab ility  - its ability to reveal the presence of two equal-power sources of 
nearly equal bearings

ii. B ia s  - the average error in estimating the location of a source. An estimate is 
unbiased when its expected value equals the parameter itself. 

in. V ariab ility  - the variance of the estimation bearing (which is also the variance 
of the estimation error)

Since the direct computation of the bias and variance of the estimated DOA 
parameters is in general difficult to achieve, the usual procedure is to derive a lower 
bound on the variance of each estimated parameter. A popular lower bound on the 
variance var Q>k) of any unbiased estimate of a parameter is provided by the 
Cramér~Rao lower bound (CRLB), the determination of which is closely linked to 
the Fisher information matrix. The ̂ 'À:"th element of the latter Ky^K matrix J  is 
defined as:

j , . , .  = . . . ^^2.1)

provided the derivatives exist and are absolutely integrable. In (52.1) U is a random 
vector of the received array data, represented by the observed sample vector m, 

/u(mI^) is the conditional joint probability density function (PDF) for the random 
vector £/, viewed as a function of the DOA parameter vector 0 ,  and S  is the 
expectation operator. It can be shown [Van 68], [Rag 73] that for an unbiased vector 

estimate ^

cov (ÿ) > j '  . . .  (522)

where J '^  is the inverse of J ,  cov (ÿ) is the covariance matrix for the estimated 
parameter vector (or in other words the estimation error covariance matrix) and the 

matrix inequality is in the sense that the difference matrix [cov (^) -  J '^ ] is positive
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semi-definite. One consequence of (522) is that the CRLB for the variance of each of 

the K  parameters { M i s  given by:

, 0 < k < K - l  -•-(523)

where is the ^’th diagonal element of

An estimator is said to be efficient if  its covariance matrix equals J  \  Note 
however that the stochastic and deterministic (or any other non-Gaussian signal) 
models each leads to a different Fisher information matrix and therefore to a different 
CRLB [Sto 90b], [Ott 92].

5.22 DATA MODEL

For a given observation interval (f-NT, t] the observed sample vector u may denote a 
stacked tempo-spatial vector of the form:

u  =  [x \to) x \ t i )  X  \tN.l)V
• • • (52.4)

t f i - t - n T  , 0 < n < N - \

where each of th e //  temporally delayed vectors (or ‘snapshots’) {x{tn )} j^ ,  being a 
statistical sample of a corresponding random vector x(f„), groups the complex 
(analytical) representation of signals received by the array sensors. For an M-element 
array we denote:

x{tn) = [%o(W % ;(W  XM-iitrifŸ • • • (52.5)

and similarly,

X(t„) = [Xo(W X j ( 0  Xm-1 W ] • • • (52.6)

where x^(tn) is a random variable of the received data at the m ’th array sensor at 
time r„, represented by the observed sampled value An alternative
representation of (52.4) is via an MxN data matrix X:

X  = [%(W x(t2) X  ( W ) ]  • • • (52.7)
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Under wideband formulation, each snapshot Xmitrd is often represented over the 
relevant sub-interval (r„ - 7/2, tn + 7/2) by its (assumed bandlimited) Fourier series 
coefficients {Xmi.C0/\ r»)}/ so that for each discrete frequency, the sample data vector 
(denoted here by U) is given by:

U = [ X \( O f , to ) X \a e - , tù  X \a i \ tN . i ) Ÿ  ■■■{52.S)

where

X (û)/; = [Xo{(Of, Ird X iieo/; W  Xm-i(o>4 ; ■ ■ ■ (52S)

represents the corresponding random vector X(a>/ ; r„), and

ûV=(2tc/7)/ , - ‘ ‘ (52.10)

are the discrete frequencies in the passband of the Fourier series
coefficients.

Under stochastic formulation the signal delivered by the m’th sensor of an M- 
element array is generally modelled as a random noise process x^^(t) added to a sum 

of K  delayed random signals {Sjt(0}f=o convolved with respective ‘steering impulse 

responses’ {^w(0}£o:

K-l
Xm(t) = X  , 0<m <M -l .. ■ (52.11)

k=0

The noise may be internally (thermally) generated at the sensor channels or picked up 
by the array sensors from a variety of external sources (see [Wen 62], pjRi 83] for a 
detailed review of ocean noise). In the latter case it is usually modelled as a 
continuous far-field noise distribution that is statistically independent with respect to 
direction. The delayed signals emanate from K  sources (including multipath ‘image 
sources’), each at a different bearing and (in general) a different range from the array

centre, and it is assumed that K  <M. The steering impulse response Omkit) is the 

response of the m’th array sensor to a temporal impulse arriving from direction (f)k of 

the A:’th source, and Tm(<l>k) is the propagation delay to the m’th sensor from that 
source direction, referred to the corresponding delay to the array centre (or some other 
stationary reference point); the propagation delay of each of the signals from its 
respective source (or ‘image source’) to the reference point is assumed to be 
‘contained’ in the function form s^(- ). The corresponding deterministic data model is
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similar in form to the above, except that the delayed signals are non-random. The 
distinction between the stochastic and the deterministic models is particularly relevant 
for spectral estimators (such as the ML method -  see sub-section 5.2.5) based on a 
statistical inference approach.

Under single-frequency narrowband conditions i.e. when the (Fourier- 
transformed) steering responses are constant over the common bandwidth of the 
signals, and the bandwidth, with centre frequency (Op, is also much smaller than the 
reciprocal of the propagation delay across the array, (52.11) may be modified to the 
following matrix form:

x{t) = A(ûJo)S(r) + Xjf)  . •. (52,12)

where S{t) = [sp(f) Si(f) SK-i(t)Ÿ and xjjt) = [a^j(0  are
the corresponding narrowband random signal and noise vectors and A(cop) = A (^, Cüp) 
is an M ^ K  steering matrix^ whose m^’th element corresponds to the spatial 
response of the m ’th array sensor to a plane wave at frequency cop arriving from the 
^’th source, i.e.

Amk = I I dt(knk{t)e-l^ • • • (52.13)

It is common to assume that the K  columns of A(cüp) are linearly independent, and in 
the case of a linear array of equally spaced sensors this is indeed true by virtue of its 
Vandermonde structure for non-coincident sources^. The spatial covariance matrix 

R = S x x ^  may thus be written in terms of a signal covariance matrix R s = S s s ^ ,  a 
noise covariance matrix R* = G ^Sx^xJ^  and a full-rank steering matrix^ A:

 ̂ The steering matrix A obviously depends on the DOA parameter vector For both notational 
convenience and clarity, especially when dealing with search-based superresolution schemes, we 
denote the functional form of the steering matrix by A(ç>, <»), and use 
A(ù)o) = K isp -  0 , = CDo) to indicate the steering matrix associated with the actual sources. In a
similar manner, the Jt’th column of A will be given by: A *(û)o) = A((p -(f>k,0) = a>o)

 ̂ The steering matrix A has a Vandermonde structure when the array sensors are omni-directional. 
In the more general case of array sensors having a common element pattern, A is a Vandermonde 
matrix multiplied by a diagonal matrix whose kk'th element equals Aat. Obviously, an 
element pattern null in the direction of one of the incoming signals reduces the rank of A. This 
also happens in the case of two signals arriving from equivalent (‘grating-lobe’) directions; herein 
we assume that the array inter-sensor spacing is such that grating-lobe propagation is suppressed.

 ̂ It is common to refer to R* = AR@A^as the signal-only covariance matrix.
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R = R* + (gR. = A R jA " + <t1R. • • • (52J4)

where R. is usually normalised (through c^) such that its trace equals M. The noise 
is generally assumed to be spatially-white and homoscedastic (or spatially- 
stationary^), in which case (52.14) becomes:

R = ARsA"+cél ■■■(52.15)

where I  is the M xM  identity matrix and a i  is the noise power at each of the array 
sensors. For the wideband case, the temporal Fourier transform of the covariance of 
(52.11 ) yields the following expression for the cross-spectral density matrix P(m):

iP(m)= I dTR(T)eV‘»*’= A(m)Ps(ct))A"(m) + P*(m)

= A(û))Ps(û>)A"(m) + 77.W  I . . .  (52.16)

where rj îco) is the spatially white noise power density at each array sensor, and each 
element A^k  of the steering matrix A(m) is the temporal Fourier transform of the 

corresponding steering impulse response Omk{t-%n{(l>k)\ R('T) = S x{t)x \t-T )  is the 
tempo-spatial covariance matrix, and for similarly defined respective signal and noise 
covariance matrices, R s (t) = S s(t)S \t-T )  and <t2(t)R*(t) = Sx^(t)xJ^(t-x):

Ps(û>)= I dzRs('t)e-J^

and

P*(m) = I dzciiT)RJ,T)e-J^I
are the corresponding signal and noise cross-spectral density matrices. Assuming the 
time interval 7  to be much longer than the propagation delay across the array, (52.11) 
leads to the following matrix expression for the Fourier series coefficient vectors:

® The noise at the airay sensors is said to be homoscedastic if all elements on the main diagonal of 
the noise covariance matrix = are equal. It is spatially-stationary if R* has a
Toeplitz structure. Le. if elements on its main diagonal or on any diagonal parallel to it, are equal. 
If the noises at the array sensors are pairwise uncorrelated, R . is diagonal and the noise is said to 
be spatially-white.
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; trd =  A ( û v  )S ico /;t,d  + K (co /  ; W  • • ■ (52.17)

where ^co/< <0/„f for co/ as defined by (52.10). If 7  is also large compared to 
the correlation time of the processes involved, then the frequency-domain vectors 

Q  and XCco/"; Q  are approximately uncorxelated for /  '  it /  " and.

pT

S.2J CONVENTIONAL BEAMFOSMING

In the conventional (‘delay and sum*) beamforming approach the output of each array 
sensor is shaded with a constant-amplitude weight"^ whose phase is delay-matched 
for a given look (‘scan’) direction of the array. The weighted outputs are then 
summed to form a spatial pattern whose maxima, above a prescribed threshold level, 
indicate the presence and the angular locations of radiation sources. The choice of the 
threshold depends on the dynamic range of the receiver, but also on the sidelobe 
levels of the ‘dynamic* radiation patterns of the array.® The sidelobes may be 
reduced by applying a low-sidelobe weighting taper, but only at the expense of a 
wider mainlobe. Estimates for the maximum of the sum beam are obtained by such 
techniques as monopulse or conical scan, and for a single-source environment this 
method is asymptotically (for a large number of sensors or snapshots) unbiased and 
efficient [Hin 72], [Nic 87]. This is also nearly true for a low-sidelobe antenna receiving 
signals from two or more sources that are angularly several beamwidths apart. Pattern 
peaks contributed by more closely spaced sources will interfere and wül become 
unresolvable at an angular separation of approximately one null-to-null beamwidth 
(depending on the degree of correlation of the sources and on signal-to-noise 
conditions). Under the above scheme, the bearing estimation accuracy and resolution 
of the array may only be improved by increasing the physical size of the array 
aperture.

The term constant-amplitude weight refers here to a pre-determined amplitude taper that does 
not depend on the received signal.
The dynamic pattern of a phased array refers to its radiation characteristics from a stationary far- 
field source, as a function of its look direction (the angle to which it is scanned). The ‘ordinary’ 
radiation pattern, on the other hand, is measured as a function of the relative direction of the far- 
field source, for a given look direction of the array.
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The array power pattern for the delay and sum beamformer is given for the 
narrowband case by:

-  S \w  \(p, cùq)x\'̂  = w û)o)Rw {q>, cûq) • • • (52.19)

where the random vector X(t) = [Xo(f) X\{t) groups the temporal signals
received by the array sensors, w {(p, co) = [wq(ç , œ)wi(<p,co) WM-iiÇy Cû)V is the
weight vector, with

Wfniç, co) = , 0 < m < M - l  • • • (5220)

and TmiÇ) is the relative delay from a far-field source at angular direction (p to the 
m’th array sensor. For the special case of uniform (amplitude) weighting, one obtains 
the Bartlett estimate:

fPfi (q>) = E \ ç, coo)RE((p, coq) • ■ • (5.221)

where,

E((p, co) = gVü)Ti(y)..........  ̂ . . .  (5222)

For wideband signals observed over a time interval whose duration T  is much larger 
than the propagation delay across the array and is also large compared to the 
correlation time of the processes, the beam power contained at a discrete frequency 

slice centred around co/= I tc/IT  , / lo< /< /hi is given by:

îP(ç), CO/) = £ \w  % ,  co/)X(co/)\^ = \(p, co/)V{coi)w (<p, cô ) . . .  (5225)

where X{cô  = \Xq(̂cô  X\{co^ Xm.\{co/)Y  is a random vector of the / ’th
Fourier series coefficients of the received signals over the interval T. The Bartlett 
estimate for the corresponding frequency slice is subsequently given by:

!Pb(9. ÛV) = coj) ■■■ (5224)

52.4 SCALAR-SEARCH SUPERRESOLUTION ALGORITHMS

In the conventional beamforming approach described in sub-section 5.2.3, each 
direction-of-arrival angle is estimated by locating the corresponding peak in the
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dynamic power pattern of the array when excited by the received signals, 
independently of all other maxima. The source directions are thus evaluated one at a 
time in what constitutes a scalar (or ‘one-dimensionaT) parameter search. The 
algorithms to be considered next are also of the scalar-search type — each is 

characterised by a spectral pattern (P((p) whose peaks are assumed to indicate 

directions of arrival, and it is again the maxima of (P((p) (or alternatively the minima 
of the inverse pattern that one tries to locate.® The processors are, however,
adaptive in that their spectral patterns are formed using information provided by the 
received signals, outperforming conventional beamformers in accuracy and 
resolution, and are therefore denoted here as scalar-search superresolution algorithms. 
Although the conceptual framework under which such estimation methods were 
originally formulated varies from one algorithm to another, they may nevertheless be 
generally described as linearly-constrained minimum-variance schemes in which the 
weight vector w of the array beamformer is optimised so as to minimise the average 
power in the beam. The constraint may relate to the look direction in what may be 
viewed as the dynamic radiation pattern of the processor, where signals arriving from 
that direction are ‘safeguarded* or even enhanced while all other signals are 
suppressed. P̂((p) is then taken as the optimised dynamic power pattern excited by the 
received signals, sometimes normalised to \w 1̂  (which, for spatially white noise, is 
proportional to the noise power). Alternatively, w is optimised under a single linear 
constraint that does not ‘protect’ any look directions. The optimised ordinary 
radiation pattern (i.e. the array response to a single far-field source as a function of its 
relative angular position) is then characterised by minima in the directions of the 
incoming signals, and the squared inverse of that pattern is subsequently taken (to 
within a constant) as the spectral pattern of the processor. We shall identify estimation 
algorithms that follow the above two approaches as Minimum Variance Protected 
Response (MVPR) and Minimum Variance Inverse Response (MVIR) methods 
respectively.

Under narrowband formulation, the MVPR optimisation problem may be 
expressed as follows:

min w "Rw , w 'TIA(ç?, ûJo) = 1 • • • (5225)w

where H  is some M'xM transformation matrix whose choice depends on the particular
algorithm, and A{ç, co) = [Ao((p, cu) Ai(ç), tu) Am-i(9, co)Y  is a steering vector
whose m’th element denotes the response of the corresponding array sensor to a

® l/fK^ is commonly referred to as the null pattern.



5 .2  G eneral overview ______________________________________________________ iilllllllllilll 102  lllllll

plane wave at frequency œ arriving from direction (p. In the case of omni-directional 
sensors:

A(ç),© )= jE;(ç),û))

The processor is thus constrained to have unity gain for some linear transformation of 
the response of the sensor array to a plane wave impinging on it from direction (p. 
With the aid of a Lagrange multiplier (5225) is solved by minimising

T,(w y(p) = w "Rw coo)Tl^w -l]+[w ^TIA(ç), (%)-1]% • • • (5226)

which yields:

A  ((p,cûo)lfR-^IlA((p,cûo)

resulting in the following expression for the total power, which is also the MVPR 
spectral pattern:

îP(ç?) = w opt^w opt = -  • • • (5228)
ûJb)n^R-^nA((p,tüo)

In the case of wideband signals observed over T-long snapshot intervals where T  is 
much larger than the propagation delay across the array and is also large compared to 
the correlation time of the processes involved, a similar minimisation procedure may 
be carried out for the beam power at discrete frequency slices centred around 
frequencies G)/= 2%£fT , , leading to:

^  A > ,£o /)n"p-'(® /)nA ((p ,ûv)

Expression (5229) is used in incoherent MVPR-type spatial spectral estimation 
methods -  see sub-section 5.2.7.

The narrowband formulation for the MVIR minimisation problem is:

min w "Rw , w "B = • • • (5230)w

where B is a rectangular Mxi5T' matrix of rank K ' with \ < K '  < M-Ky and k ^O  is a 

real constant K'^1 vector. The narrowband cost function to be minimised this time is:
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'E(w ) = w ^ w +x !^[B^w - k]+[w ^ - k^ X  "-(5231)

where % is a K 'xl vector Lagrange multiplier. The resulting weight vector is:

w opt = • • • (5232)

the received (noise) power is:

w^ptRwopt = K"(B"R-iB)-i%: •. • (5233)

the radiation power pattern of the optimised array is given by:

\w^p,A(<p, <Bo)P = I A > ,  eb)R-'B(B"R-»B)-iK|2 • • • (5234)

and the MVIR spectral pattern is taken as

\w ^A ((p , ü)d)P IA"(Ç), (B"R-»B)-‘

The corresponding MVIR spectral pattern for the (incoherently solved) wideband case 
is given at each discrete frequency by:

= =   ...(S236)
T  lA>,ffl^)P-i(®^)B(B'l>-i(cv)B)-iic|2

Of course the true correlation matrix R  and cross-spectral density matrix P(û)^) 
are not available to the processor. Assuming stationarity throughout the duration NT  
of the record, they may be consistently estimated from the respective sample matrices 
[And 84]i °:

N-\
R = x(fn)x%tn) = X« . . .  (5237)

n=0

N-\
P(Û>/) = X (0 /;  QX%cor, Q  . . .  (5238)

n=0

It may be shown [And84] that each sample matnx is a maximum-likelihood estimate of the true 
correlation matrix, and as such is consistent, i.e. convCTges in probability to its true values.
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More optimal estimates are possible if a priori structural information of these 
matrices is available [Bur 82], [Sha 88a], [Zis 90].

Expressions (5228) (or (5229)) and {5235) (or (5236)) are generic for a number 
of well known algorithms to be considered next in this sub-section. Estimation 
schemes derived from the MVIR spectral pattern are ordinarily restricted to equally 
spaced linear arrays, for which the radiation pattern (which is essentially the MVIR 
null pattern) is given by:

w ”A(ç), co) -  CD) ̂  , z = gVWc)sm(p . . . (5239)
m=0

where c is the speed of propagation and d  is the inter-element spacing. This is a 
polynomial expression of order M-1 which is therefore characterised by M-1 zeros on 
the complex z-plane. K  of these zeros may be forced by the MVIR minimisation 

procedure (5230) to lie on the unit circle at points corresponding to
the sought after directions of arrival, provided that I < K ' < M -K . Unless K  = M-1, 
spurious nulls or minima may also result due to extraneous roots that lie close to the 
unit circle Izl = 1 —  these may be suppressed by a prudent choice of B and

a* Varijuace OisitoTtioiEiless IRespomse (MIVIDIR]) maathod.

This method developed by Capon [Cap 69] has been formerly referred to as the 
Maximum Likelihood Method (MLM), although it has little to do with the standard 
approach used in maximum-likelihood estimates. Its spectral pattern is given (for the 
narrowband model) by:

îPmvdr(<P) = —T--------- ^   • * • (52.40)
A  (<p, œo)R-^A(q>, ûjo)

and is obtained from the MVPR pattern (5228) by setting: I I  = I, where I  is the 
identity matrix. Physically it means that the beam power (or variance) is minimised 
subject to the condition that there is a distortionless response to a plane wave incident 
from the look direction. If the noise covariance matrix is available, trapezoidal- 
diagonal factorisation may be used to alleviate the numerical instability inherent in

K '-l columns of B together with the corresponding elements of jc may be chosen so that the 
extraneous zeros in the z-domain radiation pattern are evenly distributed within the unit circle. 
This very effect is achieved with a specific vector B (K'=l) in theMinimum Norm method 

reviewed later in this sub-section.
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the inversion o f  R [Bra 86]^^.

lb« Admpidve Amgmlmr iRespoms® (AAR.) zmeithod

This method, introduced by Borgiotti and Kaplan [Bor 79] and later by Lagunas- 
Hemandez and GasuU-Llampallas [Lag 84] is a derivative of the MVDR technique in 

which the (dynamic) power pattern of the array is normalised to \w P. For spatially 
white noise this normalises the processor pattern to the noise power pattern, 
suppressing the effect of the latter on the spectral pattern. From (5227):

\A\<p, ( % ) n ^ - i n a ( y .  oo)P

w^,Rw„p, A “(<p,co[))ltR-^IlA(<i>,(Oo) 

A % ffib )n ^ '^ n A (9 ,£ » o )
(52.42)

and by setting H  = I in the above expression, one obtains the AAR spectral pattern:

A  (<p, œo)R-^A(ç, ûJo)

©* MîudmTiflMi lEmibropy ( M E )  m ettihiod

The idea behind the ME method, as devised by Burg [Bur 67], [Bur 68], [Bur 75] for 
the spectral estimation of time series, was to extrapolate the autocorrelation function 
of an assumed stationary stochastic process beyond a set of known values, so that the 
entropy of the process (or, in other words, its ‘randomness’) is maximised. The 
problem is akin to that of linear prediction, and the corresponding power spectrum 
may be shown to be given by the transfer function of the forward prediction-error 
filter for the time series, as well as by the synthesised output of an autoregressive (all­
pole) process generator, excited by the received noise power. The corresponding 
narrowband spatial processing problem is restricted to linear uniformly-spaced arrays, 
in which context the order of the appropriate prediction filter or of the autoregressive 
process generator (for an M-sensor array) is given by M-1. The power spectrum for 
the (narrowband) ME array processor is of the form:

Note that the rank of the signal-only component of R (which is assumed dominant) is K (or less,
for coherent signals) which means that R is ‘almost’ singular.
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where [i?’ ]̂oo is the element on the first row and first column of the matrix R \  the 
vector [R ’ ]̂o denotes the first column of the matrix and the Mxl vector I q is 
given by:

/ o = [ 1 0 0 ..........0 ]’" - ‘ -(52.45)

Although the rationale behind the ME method is rather different from the argument 
leading to (5235), it is in fact a special case of the latter MVIR expression with:

B = / o  ( = > / 5 T ' = l )

It has also been shown [Nic 88] that (for the case of an equally spaced linear array):

M

= I
%VDR(<P) m=l é ^ l ( ( p )

where refers to the ME power spectrum from an m-sensor array and

^VDR(<p) pertains as before to an Af-element array.

MUIttipl® S lgm al Oassifa<satti(Q>ii (M U S IC ) mettlhod

The MUSIC algorithm as introduced by Schmidt [SCH 79], [ScH 81] and independently 
by Bienvenu and Kopp [Bie 80] is based on eigenvector-eigenvalue decomposition of 
the spatial covariance matrix. Referring to the narrowband model described by 
equation (52.15), the signal sources are assumed to have distinct bearings and not to 
be fully correlated. This implies that in:

R = A R sA "+gÎI ■■■{52.46)

both the signal covariance matrix Rg and (at least for the case of a uniformly spaced 
linear array of equi-pattem sensors that cover the relevant source regions) the My-K
steering matrix A are full rank. I f A o ^ A i >  > Xm-\ and ço>Çi>  > çm-i
denote the eigenvalues of the covariance matrix R and of the signal-only covariance
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matrix = ARsA” respectively,^^ then from (52.46):

A, = @ + eg , i = 0, ■■■(52.47)

Assuming A and Rg to be full rank, it follows that:

Çk = Çk+i =    Çm-1 = 0

and consequently,

= ^K+i  ............   ^M-i = <7»

The covariance matrix R , being Hermitian, may be characterised by a set of M  

orthonormal eigenvectors , each associated with its respective eigenvalue Xi.
Obviously:

A R gA %  = 0  , K < i < M - l  - ‘^(52.48)

where 0 is a vector of zeros. Since A and Rg are full rank we may multiply both sides 
of (52.48) from the left by R^(A%A)'^A" to obtain:

A ^ i = 0  , K < i < M A  (52.49)

In other words, the subspace spanned by the eigenvectors { is orthogonal to 
the subspace spanned by the columns of A. The latter subspace is therefore also 

spanned by the complementary set of eigenvectors { The space spanned by the 
eigenvectors of R thus consists of two disjoint subspaces:

i, the signal subspace which is spanned by the eigenvectors of R associated with 
the K  largest eigenvalues, and also by the columns of the steering matrix A 

a  the noise subspace which is spanned by the eigenvectors of R associated with the 
M~K smallest eigenvalues; all vectors in this subspace are orthogonal to the 
columns of A.

The spectral pattern of the (narrowband) MUSIC estimator is given by:

Note that the sensor noise has to be both spatially white and homoscedastic. If this is not the case, 
and R* is available, one must resort to generalised eigen-decomposition [Bel 70] of the matrix 
pencil (R, R»), or equivalently, perform the appropriate pre-whitening transformation -  see 
appendix E.l.
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MUSIC(?>) ^  A > ,< a » ) V .V if l ( p .c a o )

i=K+l

where

V ^ = [F o V i Vk.{\

V«=[Vĵ Va:h.i Vm-Û ...f5.2i2j

As effectively noted by Johnson and Degraff [JOH 82a], [JoH 82b], 2kusic(^) may be 
derived from the MVPR pattern (5228) by setting:

M-1
n = £  v,A/ v f = o iV .v :

i=K

and noting that:

R-i = V[diag (Ao‘  ̂Ai  Am.i)]V” = %  Vi(l/Ai)Vf • ■ • (5255)
1=0

where

V = [V^VJ = [Vo V i  Vm-i] • • • (5254)

and diag  Xm-i ) is an AfxM diagonal matrix whose ifth  element is equal

to l/Aj. The above setting means that the constraint on the MVPR minimisation 
problem {5225} does not just ensure a ‘distortionless response’ at the look direction, 
but forces a projection of A(ç>, cûq) onto the noise subspace to be equal to one. When 

(p approaches a DOA angle (J>k of one of the incident signals, A(<p, coq) coincides with 

the corresponding column of the steering matrix A, and V^V2A(^, ûJq), its projection 
onto the noise subspace therefore falls to zero. Constraining the optimal weight vector 
to form a finite array response with V*V*A(^, cüo), therefore means that (the norm of 
the) optimal weight vector must increase, thus enhancing the (dynamic) power pattern

in that look direction. If the true matrix and its eigenvectors (rather than estimates 

thereof) were available, the spectral pattern (PtAUSiciÇ) would indeed be characterised 
by infinitely high pattern peaks at the required DOA angles. The MUSIC algorithm
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may thus be viewed as an enhanced MVDR-type scheme and has in fact been shown 
to possess an MVDR spectral pattern that uses a covariance matrix corresponding to 
infinite signal-to-noise ratio [Nic 88].

MiimiaBTDuraii M om u (M N )  mettiKod

The M N  method proposed by Reddy [Red 79] and reformulated by Kumaresan and 
Tufts [Kum 83a] is another popular eigen-decomposition scheme, but one which tries to 
represent the noise subspace by a single vector. The underlying idea is based on 
prediction theory and as such is restricted to equi-spaced linear arrays, although its 
application to arbitrary arrays has been suggested [Vac 89]. The (narrowband) M N  

spectral pattern is given by:

where ^ = [6o ......... is the vector with least Euclidean norm whose first
element bo is equal to one, belonging to the noise subspace. Obviously, A ”(ç), (ûo)b 
falls to zero whenever (p approaches one of the K  DOA angles (j>ki and it has been 
shown by Kumaresan [Kum 83b] that this choice of a weight vector b ensures (for a 
linear uniformly-spaced array) that the (M-l-K) extraneous zeros of the pattern

M-1
^  bm Z '^ , Z =  f 

m=0

are approximately uniformly distributed in angle within the unit circle in the z- 
plane^^. Denoting:

^ = [1 P"Y
and letting

V , = [Vo V i  Vk-i ] = [v^YJ^

V . = [Va:V i  VM.i] = [ % Y .r

the orthogonality of b to the columns of V* may be expressed as:

%

In  th e  c o n te x t o f  a rra y  p ro c e s s in g  [Kum 83b] is  a c tu a lly  fo rm u la ted  in  te rm s  o f  a  s ig n a l-o n ly  

sp a tia lly -sm o o th ed  vers ion  o f  th e  (s ing le-) sam p le  co v a rian ce  m atrix .
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which (assuming that /5T < Af-1) is an underdetermined matrix equation for p , whose 
least-squares solution subject to p  having minimum norm is:

^  = Y.%1%1-2 ...(5256)

where use has been made of

r X  = v r v .  - o X = I  - w.tji'

as well as of the Woodbury identity (matrix inversion lemma)^®

(I - = I + %(1 - IvJ^y^vH

and of the easily checked identities:

\vj^  = 1 - \vj^

= -Y^v^

From (5256) we also have:

M-1 M-1
b = V .vyittP  = 2  ViV'oi /  X  • • • (5257)

i=K i=K

where Vq/ denotes the complex conjugate of the z’th element in the first row of V. It 
is apparent that by setting:

B = 6 ( = > A r ' = i )

in the MVIR spectral pattern (5235) one obtains:

M-1

!P(Ç)) =
La"(ç»,fflD)6P

which (to within a constant) is the MN spectral pattern. The MN method may 

therefore be viewed as an enhanced version of the ME scheme and is in fact

The matrix inversion lemma version used here relates to a Kt<L matrix A and an matrix B, 

and states that: (IxxX + AB )'̂  =lKyK - A (Tlxl + BA )'̂  B
where Î xX and Ilxl are the respective K t<K andlxf, identity matrices.
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related to in exactly the sam e w ay that (PMXJSiciÇ) is  related to %VDR(9)

[NIC 88]: p ossesses an ME spectral pattern that uses a correlation matrix

corresponding to infinite signal-to-noise ratio.

5.2.5 SEARCH-FREE SUPERRESOLUTION ALGORITHMS

The DOA parameter search involved in forming the spectral patterns of scalar-search 
estimation schemes (see sub-section 5.2.4), although straightforward to implement, 
does pose a considerable computational burden on those algorithms. This adds to the 
typically large amounts of data storage associated with the crucial but non-trivial task 
of calibrating the responses of the array sensors. Both these drawbacks are essentially 
removed in the spatial estimators described in this sub-section: the evaluation of the 
angles of arrival requires no search procedure nor does it depend on a knowledge of 
the sensor characteristics being available to the estimator. The structural requirements 
of these techniques as well as their independence of the actual sensor patterns are 
similar to those encountered in conventional phase-comparison direction-finding, and 
they may indeed be viewed as extended phase-comparison schemes that are pertinent 
to a noisy multiple-source environment. Since no parameter search is involved, these 
methods are referred to here as search-jfree superresolution algorithms.

a. HsttifloiiisittiiDiiii of SigxisI PsursuDnottoirs via IRotattiomal Hmvaiiamoe 
T e d h m q ia o s  ( E S P R I T )

The ESPRIT method introduced by Paulraj, Roy and Kailath is an eigen-structure 
scheme that exploits a known translational invariance in the array stmcture in order to 
ease the computational and storage requirements that characterise scalar-search eigen- 
decomposition algorithms such as MUSIC or the MN method. The required structural 
constraint is that the array be comprised of two identical sub-arrays, displaced by a 
known vector (with respect to which all bearings are to be defined). In the original 
form of ESPRIT [Pau 85], [Pau 86], [Roy 86a], [Roy 86b] the required DOA parameters 
appear as the largest generalised eigenvalues of the signal-only covariance matrix of 
one sub-array in the metric of the cross-covariance matrix of the two sub-arrays. In 
later more numerically robust developments of the algorithm [Roy 87], [Roy 89], 
[Ott 91] two sets of vectors that span the sub-array signal sub-space are obtained by 
pre-multiplying the complementary of the fuU-array noise-space eigenvector matrix 
by the fuU-array noise covariance matrix, and partitioning in accordance with the two 
sub-arrays. The DOA parameters are then estimated as the full set of eigenvalues of
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the matrix operator that maps, in the least squares (or preferably in the total least 
squares) sense, one of these sets of vectors into the other. Other modifications include 
the reformulation of (total-least-squares) ESPRIT as a (vector-search) subspace fitting 
scheme [VIB 91a], its extension to the wideband problem [O tt 88], [O tt 90a] and its 
application to polarisation-sensitive (antenna) arrays as a combined DOA and signal- 
polarisation estimator [LiC 91],

For the mathematical formulation of ESPRIT, let K  incoherent far-field sources 
illuminate à sensor array possessing at least one translational invariance so that it can 

be viewed as two M"-element sub-arrays of identical geometries with a vector 

displacement of A  between them, and let K  The M ' = 2M" narrowband
signals [x’’’ y ’’Y  at the outputs of the two sub-arrays may be expressed as:

X A x
S  +

y A x V y«.
(5258)

where X» and denote the additive M"xl noise vectors for the two sets of sensors, s  
is the Æxl signal vector, A% is the M"yK sub-array steering matrix and V  is a KxK  
diagonal matrix of the phase delays between the corresponding sensors of the two 
sub-arrays:

y  = d i a g s i n  ̂  g/((%̂ /c)sm 01 <pK-î\ . . .  (S259)

In (5259) A = \A\ and spatial angles are measured with respect to a vector 
perpendicular to A. The covariance matrix R for the combined ESPRIT array is given 
bŷ "̂ :

R = Rx
Ryx

R
R,

xy U A x R s A i A x R s ^  A i
+

AxTRsAS A x T R sV  A j / 

= ÂRsÂ" + c^R^

R«yx R*y

(52.60)

where R^ and A = [A j W ^AxY  are respectively the combined noise matrix and 
combined steering matrix for the two sub-arrays^®. Note that in the case of spatially-

For an M-sensor array consisting of two non-overlapping sub-arrays we are restricted to 

K < M/2. An equally-spaced linear array possesses more than one translational invariance, so that 
overlapping sub-arrays may be formed. By selecting: M'' = M-1 the above restriction is relaxed to 

Jir<M-l.
For non-overlapping sub-arrays, R is simply the fuU-array covariance matrix R .
For non-overlapping sub-arrays, R . and Â are simply the full-array noise matrix R , and steering 
matrix A respectively.



1 1 3  iiillllllllllll Application of su oerresolution  tech n iq u es

white homoscedastic noise:

and if the two sub-arrays are non-overlapping, then also,

= R.yx = *

Following the original ESPRIT formulation let us denote:

— R% - Q# • • • (52.61)

R*j(y — Rjcy - 

and consider the matrix pencil (R*ĵ , Clearly:

" V̂ R̂ xy — A xRs(I - ' ■ • (52.63)

and for full-rank Ax, R s and (I - V '^ )  matrices -

rank[AxRs(I - V '^)A 5] = rank[AxRsAx] = K

But whenever:
^  , 0 < k < K - l

the ^ ’th row of (I - y/*¥^) becomes a row of zeros and rank[R^j^ - v̂ ^R̂ xy] drops to 

-K'-l, which by definition means that [\ffk}ki) are generalised eigenvalues of the 
matrix pair (R̂ ^̂ , R^xy)- Since both R̂ ĵ  = AxRsAx and R̂ ^̂ y = AxRgV^Ax span the 

same sub-space, the M"-K' generalised eigenvalues corresponding to their common 
null-space will be zero^^, and the DOA parameters are thus estimated by evaluating 
the K  largest generalised eigenvalues of the matrix pair (R̂ ^̂ ,

Notice that this is a singular generalised eigen-decomposition problem in that the matrix in 
the pair (R̂ ,̂ R*xy) is singular. This means that IR̂ x - V̂ R*xyl = 0 and (R»x - yR*xy)v= 0 for 
a vector v in the common null space of R,x and R»xy, are satisfied by any value of yr. Two 
procedures for solving this problem based on the factorisation of R«xy are suggested in [Zol 87a], 
[ZoL 87b]. Both procedures evaluate the generalised eigenvalues corresponding to the range space 
of R̂ xjA and in the second procedure the extraneous M"-K null-space eigenvalues are obtained as 
zero.
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lb ,  I L e a s t t  S q u a a r e s  ( I L S )  a m d  T o t a l  I L e a s t  S q n a t e s  ( T I L S )  H S F M T

In these versions of ESPRIT the K  generalised eigenvectors {^o, , ^K-i)
corresponding to the K  largest generalised eigenvalues of the matrix pair (R, R*) are 

used to define the M 'x^ matrix = R .[ÿo • Vr-i ] whose columns span the 
same sub-space as do the columns of the combined steering matrix À -  see appendix 
E .l. There must therefore exist a unique nonsingular KyK  transformation matrix T 
such that:

V .= " Vx _
AxT

= AT ‘■>(5.2.64)
.  V y .

where V* has been partitioned in accordance with the two sub-arrays. A% may be 
eliminated from the above equation, resulting in:

{52m

The elements of V  are therefore the eigenvalues of the operator that maps the 

columns of onto Vy. In LS-ESFRTT, this operator

F =T iT T

is estimated through a least-squares minimisation procedure

(52.66)

n ^  lIVy - VjfFI^ (52.67)

or, alternatively:

mmllVyF-i-Vxig (5.2.68)

where IIAIlJ = tr(A”A) is the squared Frobenius norm of the matrix A.^° Procedures 
(52.67) and (52.68) above result in the following two respective expressions for F:

F = ( v ;v x ) - iv ;v y  

F = (VyVx)-lVyVy (5.270)

Note that the Frobenius norm of A = [Ao Ai is also given by: IIA11̂ = ^  lAtP
fc=0
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Although both these expressions are equivalent in theory^ ,̂ this is not so in practice, 
where only an estimate of V* = [V% Vy]" is available. The non-symmetrical nature 

of the least-squares formulation with respect to and Vy means that DOA estimates 
based on the above solutions will in fact be non-identical and biased [Gol 84].

A more symmetric approach for extracting F based on the total least squares 
criterion [Gol 80], [Gol 84] is employed in TLS-ESPRTT. The minimisation procedure 
pursued here is:

^niin IIVjfFjf + VyFylÇ (5271)

constrained by the non-triviality condition

FjfFx + FyFy = I

Denoting:

(52.72)

Vjcy -  [Vjf Vy] 

Fjgy = [F% Fy]^
(52.73)

the total least squares minimisation problem described by (5.2.71) and (52.72) may be 
rewritten as

min IIVxyFjjylf̂  , FxyFxy—I
Fxy

(52.74)

■ S 'r Hthe solution for which is obtained in terms of the eigenvector matrix U of V^yV^y 
whose columns (eigenvectors of vJyVxy) are arranged in decreasing order of the 
corresponding eigenvalues (see appendix E.2 for details):

Fxy - F , ■ U 1 2 '
Fy .U 2 2 .

(52.75)

where U 12 and U 22 are K'>̂ K sub-matrices of -

U = U ii U 12 
. U 21 U 22

This can be easily checked by substituting Vy = V%F for Vy in (52.70).

(5.2.76)
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The required operator F is finally given by:

F  = -FxFÿ = - V n V '^  ■ ■ ■ (52.77)

and the DOA parameters may be directly evaluated from the eigenvalues obtained 
from its eigen-decomposition.

ToepMttz Appirosdmsittioii Meithod (TAM )

In the context of array processing, TAM is a search-free spatial spectral estimation 
scheme, based on extracting signal-bearing information from an operator that 
transforms between two sets of vectors spanning the signal-subspace of two 
overlapping sub-arrays. The method has been originally formulated under state-space 
representation as a solution for the harmonic retrieval problem [Kun 83] and later 
proposed by Kung et al. [Kun 86] as a spatial estimator, in which context it is 
inherently restricted to linear equi-spaced arrays. TAM does, however, bear strong 
resemblance to ESPRIT, and it has in fact been shown that TAM and LS-ESPRIT 
(and asymptotically, also TLS-ESPRTT) are statistically equivalent [Rag 88], [Rag 89], 

[LIV91].

The state-space formulation for a set of K  narrowband incoherent signals, 
incident on an M-sensor linear uniformly-spaced array is as follows:

= 0 < m < M - 2

^ « (0  = aénCO = & (0  1 < m < M-1
• (52.78)

In (52.78) is a K-dimensional state-vector with initial value equal to

& (0  = S(f)

ct is a row vector denoting the spatial response of the first sensor at the K  different 
source directions, is the signal-only output at the m ’th array sensor, and

y  = ^2ig[eJ(o^c)sm ^  ^(aodJc)sm (f)i gj(üW/c)sm (pK-i] . . .  (52.79)

which is the same as the ESPRIT diagonal matrix defined in (5.2.59), but with the 
inter-array spacing A set equal to the inter-sensor spacing d. It is easy to see that the
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covariance matrix for the array outputs takes the familiar form:

R = A R g A "+  

with the steering matrix A being given by:

a

A =
a 'F B a

B y  _

(52.80)

where the matrix B comprises the top M-1 rows of A. The signal-only
covariance matrix may be factorised as follows:

R . = A R sA " = [R.V.(A. - <ril)>«] [R .V /A . - ■ • • (52.81)

where A* is a diagonal matrix of the K  largest generalised eigenvalues of R 

(arranged in decreasing order), (A^ - <7* has the square roots of the generalised
eigenvalues of R* on its main diagonal and Y» is the corresponding generalised 
eigenvector (sub-) matrix -  see appendix E .l. Denoting the top and bottom M-1 rows 

of R^V^(A^ - (7^1)^^ by the sub-matrices and respectively, we then have:

B
R s[ B" y "B «  ] =

_ B y .
[ v ;  v ; ] (52.82)

Since B, R s and Y  are full rank it follows that the columns of [ V^B" T
and [ span the same sub-space, which means that for some non-singular

transformation T we have:

(52.82)

When B is eliminated from the above equation, 'F  is obtained as the eigenvalue 
matrix of the operator F that transforms the columns of onto V^:

B T
B y

V ^ = V ^ iT i 'F T  = V^iF (52.83)
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The above transformation is of exactly the same form as the corresponding ESPRIT 
mapping given by (6^.65), and the least-squares solution for F is similarly given by:

F = (V" ...(52.84)

Comparing the TAM formulation to ESPRIT, it is clear that the TAM operator Ftam  
is related to the ESPRIT operator F esprtt (for the case of a linear equi-spaced array 
where Af" = M-1) by the diagonal similarity transformation:

Ftam = (A* - I) '^ ^ F ESPRrr(A* - • • • (52.85)

5J .6  VECTOR-SEARCH SUPERRESOLUTION ALGORITHMS

The performance of search-free and scalar-search spatial estimators depends on the 
non-singularity of the signal covariance matrix R s, degrading substantially when 
coherent signals are encountered. As discussed in section 5.4 of this chapter, signal 
coherence can be tackled by resorting to pre-processing in the form of spatial 
smoothing with its attendant loss of resolution, frequency-domain smoothing which 
only applies to wideband signals or both. A different approach is to seek a more 
optimal algorithm which is inherently insensitive to the presence of coherent signals. 
Such algorithms are reviewed in this sub-section under the heading of vector-search 
superresolution methods, as they all require a multivariate search of the K  - 
dimensional parameter space of DOA vectors. The superiority of these algorithms is 
also exhibited under low SNR conditions (‘threshold region’), or when the number of 
available snapshots is small^^ [TUF 82], [Mat 89], [Vm 91a], [Kav91], [Sic 91]. The 
price paid for the improved performance and robustness of these algorithms is the 
high computational load involved in the simultaneous parameter search which they 
employ.

a* Iiteoiiti've Miailid-Fîurminiiieteir (IM P) meitihod

The IMP algorithm proposed by Clarke [CLA 88], [Mat 89], [Cla91] is conceptually 
very simple. It employs an iterative search that utilises conventional beamforming for 
alternately estimating the bearing of each of the sources while nulling the estimated 
bearings of all others. The multivariate parameter search is thus transformed into a

Note that if the number of snapshots N  is smaller than the number of array sensors M, then the 
sample covariance matrix (5237) is rank deficient.
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series of single-parameter maximisations, an approach similar to the alternating  
projection technique that has been suggested for the numeric solution of the DML 
method reviewed later in this sub-section [Zis 87], jZis 88].

The IMP algorithm begins by searching for an initial estimate for the direction 

of arrival (pQ of the first (and presumably strongest) signal. This is taken as the largest 
peak of the (dynamic) power-pattem of a conventional beamformer that forms a 
spatial matched filter in each scanned directions (pr.

000 = arg max{A”(^,û3o)RA(<p,ûJo) /  A'^(9 ,coo)A(<p,tao)} • • • (52.86)
<p

where A(<p,£«o) is the array steering vector and R, the array covariance matrix is 
estimated in the usual way^a. Next, a projection matrix onto the null-space of 

Ago = A(0oo, Cüo) is formed:

n(Aoo) = I - Aoo(AooAoo)"^Aoo

and the search for a second signal is conducted with projected steering vectors 
n(Aoo)A(ç>,mo) so that the initial estimate 0io for the direction of arrival 0i of the 
second signal is obtained as:

010 = arg max/^ (II(Aoo), (p)
<p

where^^

P ( P l, ( p) = A^(ç?,cüo)nRIIA(ç),ûJo) /  A^((p,cûo)TlA(ç,œo) ■ • • (52.87) 

A subsequent estimate 0oi is then evaluated for 0o -

001 = argm axP(II(A io), (p)
<p

where II(Aio) is a projection matrix onto the null-space of Aio = A(0io, Cüo), and the 

process continues with similar iterations for 0n ,  0O2, 012 etc. until stable respective

23 Note that in (52.86) (p =  0oo maximises the SNR provided the noise is spatially white and 
homoscedastic. In the more general case of an arbitrary but known noise covariance matrix R*, 
(52.86) should be modified to:

000 = arg mæc {a ”(ç>,0o)R A(ç),û>o) /  A^(ç>,û)o)R*A(0,û)o}}

24 when the noise covariance matrix is not equal to the identity matrix then (52.87) ought to be 

modified to: ^ (H , (p) = A \(p ,  mo)IIR II A(0, <Uo) /  A \(p ,  û>o)IIR.IIA(ç>, û>o)
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estimates (re-denoted here as 0oo and 0io) for ^  and 0i are obtained. Next, I I  is 
redefined as a projection matrix onto the null space of the columns of a matrix A:

n(A ) = I  - a (a " a ) - i  a "

and the iterations restart with:

^ 0  = arg m axP  (II(Aoo Aio), (p)
<P

(poi = arg m axP(II(A io A20), <p)
<f>

= arg m axP(II(A oi A20), <p)
<p

and so on, until convergence to stable estimates for and ^  is achieved. The
process continues until all sources have been localised, or (if K  is not known) until 
some pre-determined criterion for the flatness of the residual spatial spectrum 

P  (II(Aoo Aio • • • A(j^.i)o), ç>) is satisfied.

lb, Stoclhasttic Maximnam LikeM]h©©d (SW IL) m ethod

The statistical inference technique known as the maximum-likelihood (ML) method 
was among the first approaches to be pursued for estimating the directions of arrival 
of signals in a multiple emitters environment using a sensor array [ScH 68], [Lie73], 

[Ows 81], [Wax 83]. The idea is to estimate the K-dimensional DOA parameter vector 

(j> by its most likely value, given the observed sample vector u. Assuming a uniform 
a p r io r i  PDF for and noting the monotonie nature of the logarithmic 
transformation, this is equivalent to seeking a K ^l vector that will maximise the 
log-likelihood function ]nfu(u\q>). In the context of a general data vector of length L, 

the ML estimator exhibits a number of desirable asymptotic (L «>) properties 
[Van 68]: it is asymptotically Gaussian, unbiased and efficient, and it is consistent in 

that it converges in probability (for L —> <») to the true parameter value.

In the context of array processing, two different signal models, namely the 
stochastic (unconditional) and the deterministic (conditional) models, have formed the 
basis for two statistically different versions of the ML estimator [Sto 90b], [Ott 92]. 
For OiQ Stochastic Maximum-Likelihood method [Ban 71], [Boh 86], [Ja f 88] one 
assumes the sources to be stationary zero-mean jointly complex Gaussian random
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processes, uncorrelated with the additive noises. The latter are taken as stationary 
zero-mean uncorrelated (“spatially white”) complex Gaussian processes. The 
(assumed statistically independent) samples of the received array data are then zero- 
mean complex Gaussian vectors with a log-likelihood function given byr^s

N-l
\nfu{u\(p) = -N  ln (n^ \gx(< p)x^((p )\) - % x^(tn)[gx(q>)x^(<p)y^x(tn)

n=0

= -iVMln;r - NlnlR(y)l - iVtr[R(ii) R-\(p)] • • • (52.88)

where IRI denotes the determinant of the array covariance matrix R given the

parameter vector y , R ^ is its inverse, and R is the sample covariance matrix defined 
in (5.237). Under wideband conditions, data snapshots may be represented by their 
Fourier series coefficients as discussed in section 5.2, sub-section 5.2.2. The log-
likelihood function for U  = [ X \(D /;  to) X \ œ / ;  t j )  X \a > /;  tN-i)Ÿ being also a
zero-mean complex Gaussian vector, is similarly given by:

Infu(U\<p) -

- N l n ( n ^ \ S X « 0/\<p)X\a>/\q»\) - % %"(%; f ( %;  r„)
n=0

= NM  )n(T/n) - N  lnlP(<a/l(j»)l - N  tr[P((T; • • • (62.89)

where P is the array cross-spectral density matrix given the parameter vector 9 , and P  
is the sample spectral density matrix as defined by (5238). The ML maximisation 
described by^®

^  = arg max ]nfu(u\<p) or ÿ  = arg max Infu(U\q>)
9 9

constitutes a non-linear optim isation problem  that is  num erically solvab le v ia  

Newton-Raphson iterations or by the method o f  steepest descent^^, as w ell as by a 

number o f  other techniques [Sha 88b], [Sha 89].

Here u is taken as the tempo-spatial vector defined in (5.2.4), and the conditional joint PDF for 
the random M x l  vector u  is given b y  [Wha 71]:

M u lv )  =/u(Xly) = n  — '--------------------= ----- 1— exp[.% i
W) d e t[ ;rR ]  [ ;r" lR I]  «=0

2 ^ An equivalent large-sample SML estimation problem is [Boh 86], [Jaf 88]:

J = argminlnlIlA(ç>)RIlA(<p) + (M-^'^tr{II-Hx(çJt)]R}[I-HA(ç>)]l , IIa = aCa'^aX^a" 

27 See [Wax 83] for a brief description of these iterative methods.
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C. D©t©imimstic (*condittioiDial*) Maximiom L ikelihood  ÇDMIL) m ethod

For the formulation of the Deterministic Maximum-Likelihood estimator [Boh 84], 
[Boh 85], [Wax 85a] the additive noises are taken as before to be stationary zero-mean 
uncorrelated complex Gaussian processes, but the sources are assumed to be non- 
random and the signals are consequently modelled as arbitrary deterministic 
sequences. The log-likelihood function for a narrowband tempo-spatial array data 
vector is then given byr^s

]nfu(u\q>) =

N-l
-iVln(;r^lïLI) - ^  [% % )-f % ) A " ( y ,cûo)]R;^[%(W-A(ç>,c%)j(W]

n=0

N-l
= -NMlniTUoi)— - \x(tn)-^((PiCûo)s(tn)\^ ’ ->(5290)

n=0

Holding the signals {s(/n)}n and q> fixed, the log-likelihood function may be 

maximised with respect to <7* yielding,

l%(W-A(y. œa)s(tn)fi ■ ■ ■ {5291}

Substitution of %  for <7̂  in (5290) leaves us with the following ML maximisation 
problem:

m a x  { -iV M [ln;r+ 1 + l n ( ^ ^  %  I% (fj-A (y, J l^ )] }
<P, s(to), ••• , s(fjv-i) NM

or equivalently,

m in  { 2  lx(r„)-A(ç>, } • • • (5292)
y, (̂̂ o), ••• , s(ts-l)

The minimisation of (5292) with respect to each s(tn) yields

The conditional joint PDF for the random vector u  is given this time by:
M u\(p) =
n  1 A(9.mDX4,)] = (;ro;2)-^exp[--LV Ix(rn) - A(ç>,®o)s(r«)P]

det[;rR J
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s(tn) = [A"(y, cub)A(9, Û3b)]-1A"(Ç>, Cùo)xitn) • • • (52.93)

These may be substituted back into (52.92) leading to the following minimisation 
problem:

N-\
^  = arg m in  { l[I-H^(y)]%(fJI^ ) ■ • • (52.94)

<p n=0

where
% (y ) = A (y, û30)[A"(9, Cüb)A(9>, û30)]'̂ A”(9>, cûo) • • ■ (52.95)

is the projection operator onto the space spanned by the columns of A(ç>, cüo)- 
Equivalently, the maximum-likelihood estimate of ÿ  is obtained by the maximisation 
process:

^  N-l
^  = arg max IIlA(ç>)j:(r„)|2 = arg max tr [IIa(ç>)R(m)] • • • (52.96)

^  ^n=0 ^

where R(m) is the sample covariance matrix as given by (5237). The numerical 
solution of (52.94) or (52.96) involving a nonlinear search for the DOA parameter 
vector, is implementable by various algorithms such as the alternating projection 
method of Ziskind and Wax [Zis 87], [Zis 88] or Kaufman’s variable projection method 
[Kau75], [VlB91b].

The statistical properties of both the SML and the DML method have been 
asymptotically analysed by a number of authors [San 87], [Sto 89], [Sto 90b]. It has 
been shown that whereas the SML estimator is asymptotically efficient in that the 
covariance matrix of DOA errors approaches the (‘stochastic’) Cramér-Rao bound

as the number of samples N  tends to infinity, this is not true of the DML 
estimator which, for a finite number of elements M, never reaches the corresponding

‘deterministic’ Cramér-Rao bound J d^. In fact it has been proved that [Ott 90b], 
[Sto 90b], [Ott 92]:

Cd ^ Cs =

where Cd and Cs are the asymptotic DOA error covariance matrices for the 
deterministic and stochastic maximum-likelihood estimators respectively, and each 
matrix inequality is in the sense of positive (semi-) definiteness of the corresponding 
difference matrix.
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d* W eig M ed  Snalbspjice Fititiinig (W S F ) m eithod

The WSF method introduced by Ottersten and Viberg [Ott 89], [ViB 91a], [Vm91b] 
searches for the ^-dimensional DOA parameter vector (f> by trying to fit, in the least- 
squares sense, the column space of a search-dependent steering matrix A(ç>, wq) to 
the estimated signal subspace that is contained in the column space of the actual 
steering matrix A(cüü) = A(^, ûjo). When applied to a general arbitrarily-shaped 
sensor array, the sub-space fitting process involves a computationally intense 
optimisation search that is of the same order as the parameter search required for the 
ML method.

Mathematically, the K ^l parameter vector ^  pertaining to K  far-field nairowband 
possibly coherent sources illuminating an M-sensor array, is estimated under 
homoscedastic white noise conditions by seeking the vector q> that minimises:

min II - A(ç>, œo)T iÇ . . .  (52:97)
9>.T

where, for a signal covariance matrix R s of rank K \  is the Mx/5T' signal 
eigenvector matrix

V. = [Vo V i  V ^.j]

whose columns, the eigenvectors corresponding to the K ' largest eigenvalues of the 
array covariance matrix R, span the ‘signal subspace’ that lies in the column space of 
A(tJüt)), W  = [W^^]” is a hermitian positive-definite ‘weight’ matrix and
T is a full-rank K^K ' matrixes. Minimisation of (52:97) with respect to T yields:

T = (A'(A)-iA%Wi/^

which when plugged back into (52.97) and use is made of the definition of the 
Frobenius norm and of the invariance of the trace operator to matrix commutation, 
leads to the following optimisation problem

0 = arg min tr { [I - HaC^P)] W V” } • ■. (5.298)

or, equivalently:
0  = arg max tr { IIa(ç>) V^WV” } . ■ • (52.99)

<p

Note that in the case of incoherent signals, Rs has fiill rank and AT' = K.
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where I I a = A(A^A)‘^A” is the projection matrix onto the column space of A.

The weighting matrix W affects the asymptotic properties of the estimation error. 
The optimal choice (referred to as the WSF choice) that leads to the lowest 
asymptotic estimation error variance, which under the Gaussian signal assumption 
coincides with the stochastic CRLB, has been shown to be [ViB 91a]

w  =  [ Â .  -

where is the signal subspace eigenvalue matrix obtained by the eigen- 

decomposition of the sample covariance matrix, and is any consistent estimate of 

<7». If W is set equal to the identity matrix then (52.97) and (52.99) become:

^  = arg min I I - A(ç>, Cût>)T iÇ = arg max tr{ IIa(^)V*V” }
Ç». T  9»

which describes the vector-search algorithm suggested by Cadzow [Cad 88], also 
known as ih& Multidimensional MUSIC (MD-MUSIC) estimator [SCH 81], [Roy 87], 
[Vm 91a]. The same choice of W  but with a translated sub-array parametrisation for A  
leads to the following vector-search formulation for TLS-ESPRIT [Vm 91a]:

y  = a r g m i n l l % - A T  ig 
Ÿ . T

Â  = [Ax ^ A x ]  , { are eigenvalues of W

This algorithm, like the search-free version of ESPRIT described in sub-section 5.2.5, 
requires no knowledge of the sensor characteristics and geometry save for a known 
sub-array displacement vector, but is also unable to resolve coherent signals. Note 
also that the WSF optimisation problem (5299) is very similar to the DML procedure 

(52.96). By setting: W  = A^ - p j  I the maximisation problem (52.99) becomes:

arg max tr{ IIa (<p)R s }
9

which has been shown to be asymptotically equivalent to the DML problem (5.2.96) 
[Vm 91a].
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52.7  WIDEBAND SPATIAL SPECTRAL ESTIMATION

Superresolution spatial spectral estimators have originally been formulated for a 
narrowband model, in terms of the covariance matrix of the array outputs. The 
underlying idea behind narrowband eigenstructure-based algorithms, such as MUSIC 
and the MN method, is that the rank of the signal-only covariance matrix equals 
K, the number of (incoherent) sources, provided K  is smaller than the number of 
sensors, M. In the case of wideband sources, this ‘rank 1 per source’ assumption is 
no longer valid (strictly speaking, it does not hold for sources of any non-zero 
bandwidth), and consequently narrowband estimators are not directly applicable.

In the so called incoherent approach to wideband spatial spectral estimation, the 
frequency band is divided into bins (explicitly, in terms of cross-spectral density 
matrices of the Fourier-transformed array outputs [Wax 84], or implicitly, by sampling 
the z-transformed covariance matrix [SuM 83]) where narrowband superresolution 
procedures are separately performed. The individual narrowband estimations obtained 
across the frequency band are then averaged to yield the final result.

In the broad-band signal subspace spatial spectral estimation (BASS-ALE) 
methods proposed by Buckley and Griffiths, the effective low-rank character of the 
signal-only tempo-spatial covariance matrix (TSCM)30 is identified based on the 
expansion of a tempo-spatial source sample data vector using the TSCM eigenvectors 
as a basis^^ [Buc 86a], [Buc 86b], [Buc 87], [Buc 88]. It is claimed that over 99.99% of 

the power emanating from a flat-spectrum source in direction is represented by the 
TSCM eigenvectors corresponding to the Kg largest eigenvalues, with Kg, the 
effective rank being given by

Kgitpk) = \ I+Aco[ max ( v ( W  - T̂ m"(0k)) + (N -1)TVk  ] 
0 < m \ wT < M-l

where \x\ stands for the ceiling of (i.e. smallest integer equal or larger than) jc, Ao) 
denotes the (angular) bandwidth of the source and the expression in the square 
brackets is the total temporal duration of the source in the array during the full 
observation interval of NT. Subsequent eigen-decomposition is based on the 
effective rank of the TSCM^^, the evaluation of which requires the approximated

30 TSCM refers here to the NM^NM correlation matrix formed from the stacked tempo-spatial data 
vector U2& defined in (52AH52.6).

This is known as the Karhunen-Loéve expansion [Ah m 75].

For K  sources, the effective rank is taken as X  ^«(W.
W)
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knowledge o f  the source locations. In the special case o f  a circular sensor array, the 

dependence o f  the effective rank on source location can be practically removed 

[Roc 88], [Mes 90].

In the coherent signal subspace (CSS) methods introduced by Wang and Kaveh 
[Wan 85], [Wan 87], [Ya n87] the narrowband cross-spectral density matrices are 
transformed via ‘focusing matrices’ which align their corresponding signal and noise 
subspaces, and are then averaged to form the ‘focused’ covariance matrix. The signal- 
only focused covariance matrix is thereby reduced to rank K, but is not made rank- 
deficient by the presence of fully correlated (but relatively delayed) sources. This 
obvious improvement over the incoherent approach, in addition to its greater 
statistical stability and lower threshold SNR [Wan 85], [Hun 87], [Hun 88], [Kro 91] has 
led to considerable interest in CSS methods. These methods are, however, vulnerable 
to DOA bias due to errors in estimating the focusing matrices (for which an irtitial 
estimate of source bearings is required) and from the uncertain spectral signature of 
the sources [Swi 89]. In the related steered covariance matrix (STCM) technique, the 
(analytic) time-domain spatial covariance matrix is focused or ‘steered’ by inserting a 
set of look-direction-dependent conventional steering delays at the array outputs 
[Kro 89]. This approach solves the source location bias problem while greatly 
increasing the computational complexity as a new steered covariance matrix has to be 
estimated for each look direction. The computational burden is somewhat alleviated 
in the doubly-steered coherent signal subspace method whereby steered covariance 
matrices are evaluated for a reduced number of steering directions, but this variant is 
also susceptible to source location bias [Swi 88]. An alternative technique which 
achieves the required focusing operation independently (and without using 
preliminary estimates) of the source directions is the spatial resampling method 
[Cle89], [BiE 89], [Kro 90], [Kro 91]. The concept here, which is restricted to equi- 
spaced linear arrays, is to treat the array outputs as samples of a continuous array and 
‘resample’ the continuous array such that the new inter-element spacing d  is made 
inversely proportional to frequency. The required pre-processing transformation 
which can only be approximately realised, renders the steering matrix for the spatially 
resampled array independent of frequency, thus enabling the rank 1 modelling of each 
wideband source. In all coherent methods considered above, appropriately 
transformed narrowband cross-spectral density matrices are averaged over the 
frequency band to form a ‘focused’ covariance matrix. In that respect these schemes 
constitute frequency-domain smoothing by which multipathed signals originating 
from the same wideband source are effectively decorrelated. Frequency smoothing is 
further discussed in the context of circular sensor arrays in section 5.4.
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52 .8  BEAM-SPACE METHODS

Superresolution estimators have usually been described in the context of element- 
space, i.e. the algorithms have been directly applied to the signals received by the 
array elements without any spatial pre-filtering. Many Superresolution methods are 
equally applicable to a linearly transformed observation space. Such a spatial 
transformation could for instance be used to spatially pre-whiten the background 
noise, provided that the (assumed non-singular) noise-only covariance matrix

R« = is known. If R» is not available, the noise is generally assumed to be
spatially white, although its mis-modelling may lead to increased variances and 
biases. The linear transformation of element data into beam -space  has been 
considered by a number of authors [Bie84], [Ows 85], [For 87], [Byr 87] as a means of 
reducing the sensitivity of spatial spectral estimation algorithms to spatially coloured 
noise. It has been argued that clustering sets of directional beams in confined angular 
sectors has a whitening effect on the noise, as the spatial distribution of the 
background noise power approaches local uniformity over each sector. Beam-space 
algorithms have been shown in some cases to provide superior resolution [Van 88], 

[Lee 88], [XuB 89], [XuB 90] although there is a great dependency on the specific 
beamformer used. If the number of beams in each sector is much smaller than the 
number of array sensors, then the beamforming pre-processing will also reduce the 
computational load of the subsequent superresolution algorithm employed.

52.9  DETECTION PROBLEM

A  vital pre-processing step on which many superresolution schemes depend is the 
prior estimation of the number of sources K, or equivalently (when sources are not 
fully correlated), of the dimension of the signal subspace. This task, known as the 
detection problem, is ordinarily tackled via an information-theoretic approach, using 
Akaike's Information Criterion (AIC) [Aik 73], [Wax 85b] or the Minimum 
Description Length (MDL) criterion due to Rissanen [Ris 78], Wax and Ziskind 
[Wax 89] and Wax [Wax 91]. In [Wax 89] and [Wax 91] detection is accompanied by 
ML localisation of the sources based on the deterministic and stochastic signal models 
respectively. A brief review and a comparison of the above AIC and MDL criteria can 
be found in [Hay 92] and a ‘coherent’ extension to wideband sources is suggested in 
[Wan 85]. The detection problem is not addressed in this thesis and the number of 
sources is always assumed to be either known or correctly estimated by one of the 
above criteria.



Illllll 12 9  lllillllllllln _________________________________ Application of su perreso lu tion  tec h n iq u es

5.3 APPLICATION TO CIRCULAR ARRAYS

5.3,1 GENERAL

Although the compatibility of certain spatial superresolution schemes with arbitrarily- 
shaped arrays had been noted in the past, the inherent symmetry and full peripheral 
coverage that characterise sensor arrays with circular geometry have, rather 
surprisingly, not attracted the interest of many authors in the field. A brief reference 
to a circular array arrangement has been made by Johnson [JoH 82b ], by Li and 
Vaccaro [LiV90] and by Viberg et. al. [ViB 91b], the latter two as the array 
configuration chosen for simulations, and all in the context of element-space spectral 
estimation. Simulations using a circular array have also been reported by Xu and 
Buckley [XuB 90] in both element-space and (eigen-) beam space.^^ The desirability 
of circular array geometry when fuU 360" coverage in DF is required has been noted 
by Zeytinoglu, Litva and Qian [Zey91] who have modified an element-space 
superresolution algorithm to compensate for mutual coupling effects.^^ An 
interesting use of the special symmetry of circular arrays has been suggested by 
Messer and Rockah [Roc 88], [Mes 90] for the localisation of multiple flat-spectrum 
broadband sources. Based on the fact that the projected aperture of a (continuous) 
circular array in any direction is equal to the array diameter, they have shown that the 
circular geometry renders the eigenstructure parameters of the (element-space) signal- 
only tempo-spatial covariance matrix (TSCM) practically independent of source 
direction, thus removing a major difficulty in the implementation of the Buckley and 
Griffiths TSCM-based estimation algorithms referred to in section 5.2, sub-section
5.2.7 [Buc 86a], [Buc 86b], [Buc 87], [Buc 88]. One important type of element-space to 
beam-space pre-processing, namely, the transformation into phase-mode space, has 
hitherto received very little a t t e n t i o n . ^ ^  sub-section 5.3.2 we shall show that in 
mode-space, circular arrays can be treated essentially as uniformly-spaced linear 
arrays, thus allowing the application of estimation methods that are ordinarily 
restricted to the latter (element-space) geometry.

An eigen-beamformer is characterised by a transformation matrix whose columns are the (signal 
sub-space) eigenvectors of the spatial covariance matrix.
Under element-space formulation each circular array sensor receiving signals from a far-field 
source ‘sees’ a different field environment and is therefore differently affected by inter-element 
coupling. This is not so in an (infinitely long) uniformly-spaced linear array, where the incident 
field places a periodic boundary condition on the ^rture.
A pre-processing transformation of circular array signals from element-space into phase-mode 
space, though not referred to as such, has in fact been suggested by Moody [Moo 80], [Mil 81] who 
subsequently applied a scheme akin to Prony’s method for solving the multiple source problem.
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5.3.2 MODE-SPACE FORMULATION

The pre-processing transformation of a circular sensor array from M-dimensional 

element-space into M'-dimensional mode-space, may be represented by the matrix 
operation:

= •••{53.1)

where the Afxl vector X and the M'xl vector y  group the respective signals received
by the array sensors and the linearly transformed signals at the beamformer outputs,
the Af' orthonormal columns of the phasing matrix E = [E_ĵ  Ej^, where

Af' = 1+2yi, are given by:

(1/Af)l^[l ej^2nlM)y.  g7(2;i/M)(M-l)/z]r

-A ^ f i^ A  • • • (532)

Q is an Af'xM' diagonal matrix whose //^ ’th element is given by:

ôwi = l/M*'^C^(û)D,?r/2) , -A ^U S A  ---(SSS)

and C^(cüo» ^/2) is the zero-order coefficient for phase-mode number fj. at frequency 
Cüt) as defined in chapter 2, section 2.4. Under narrowband formulation, one obtains 
from (52.12):

y(t) = Q”E”A(<Bo)s(0+Q"E''x.(f) • • • (53.4)

and the M'xM' covariance matrix for the transformed signals is given by:

Ry = S y y " = Â R s Â ' ' + R .  ...(533)

where:

A = Q"E"A ■■■(53.6)

R . = Q 't:"R .E Q  ■■■(53.7)

and for spatially white homoscedastic noise:
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R .=  <TiQ«Q ■■■(53.8)

where is the noise power at the array sensors. Notice that although the (mode- 
space) noise remains spatially white, it is also heteroscedastic, i.e. the noise powers at 
the phase-mode outputs are not the same. They are in fact equal to:

= gIIM \C^q{cùq, , -A<ii<A  • • • (53.9)

However, the spatial whiteness assumption which leads to (53.8), although reasonable 
as far as internally generated (thermal) noise is concerned, does not necessarily hold 
for spatial contributions from ambient noise fields. Denoting the spatial power density 
of the ambient noise field by 9, ç>), and the cross-spectral density matrix of the 
ambient noise field contribution at the Af' mode outputs by P^(m), we have for a 
spatially-white noise field that is statistically independent with respect to direction:

d e  c ^ ------------ sine d<p9{iû), 0, (p)e-i<P̂ -î '>9
0 C^o(ûJb. J.„

■ ■ ■ (53.10)

where denotes the /t'/x"’th element of P*. and use has been made of the
approximate far-field phase-mode characteristics

m)/C^o(û>, 0) « • • • {53.11}

for an array of closely spaced sensors (see chapter 2, section 2.4). If the noise field is 

omnidirectional in (p and concentrated around zero (0  = n il)  elevation, then:

I n  j* d9\C^Q{cù, 9)!C^q{cûq, n/XfiO^œ, 0)sin9J o
0

_ 12;r f  d 9 IC^o(n), nfiyC^^J^atQ, ;r/2)l^fAfio, 9) sin 9 /z'=/2'J o (53.12)

0

P#a(W  is then a diagonal matrix with equal elements, and, for the narrowband 
problem, so is the spatial covariance matrix contributed by the ambient noise field.
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Note that a similar result is obtained for the (element-space) covariance matrix of a 
linear array in an isotropic noise field, provided that the array sensors are isotropic 
and spaced half a wavelength apart [Bur 91]. Taking the (internally-generated) thermal 
noise power to be negligibly small (which is a fair assumption in the case of a sonar 
system [Bur 91]), the noise at the phase-mode outputs of (a horizontal) circular-airay 
is thus seen to be spatially white and homoscedastic, for a noise field that is omni­
directional in azimuth and impulsive at zero elevation.^® This noise model allows the 
convenient eigen-decomposition of the mode-space covariance matrix in estimation 
algorithms such as MUSIC and the MN method. In contrast, the element-space 
covariance matrix for a circular array or a linear array with non-isotropic sensors in an 
isotropic noise-field, or that of a horizontal linear array under an azimuthally 
omnidirectional noise-field that varies in elevation are not white -  see appendix E.3.

From (53.11) it also follows that each column of A is approximately given by:

Â * = [ l  2*2.......... (53J2)

where for each direction of arrival <()k:

= , 0 < k < K - l

The modified M ' ^  steering matrix Â may thus be written as:

(53.13)

(  1 1 1 "I

^K -\

À  =
—2 Z^_l

--(M '-l)
1^0

-(A /'-l)
^k

--(A /M ) 
^ K -\  V

0
0

^K-lJ
(53.14)

The first matrix on the right hand side of (63.14) is characterised by a Vandermonde 

structure and consequently has full rank K  for AT distinct DOA angles {0^} (and 
therefore K  distinct zjt’s), while the diagonal matrix which multiplies it from the right

is clearly nonsingular. A is thus a full rank matrix whose structure is identical to that 

of the steering matrix of a linear array of M' equal-pattem uniformly-spaced

If the internally-generated thermal noise power is known (or measurable), one may subtract 
the matrix o^Q^Q from the mode-space covariance matrix before proceeding with eigen- 
decomposition.
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sensors^'^. Letting A(q>, co) denote the response of the M ' phase-mode outputs to a 
plane wave at frequency co arriving from direction ç), the modal radiation pattern is 
given, for a corresponding M 'xl weight vector w , by:

w œ) = Âa(ç>, G)) %  . (53.15)
pb=~A

which is of exactly the same form as (5231) for the radiation pattern of an equally- 
spaced linear array.

Since the mode-space signal-only covariance matrix and radiation pattern of an 
equally-spaced circular array are of the same structure as the corresponding signal- 
only covariance matrix and radiation pattern of an equally-spaced linear array under 
element-space formulation, and as, under isotropic noise-field conditions (for the 
linear array) and the more reasonable assumption of azimuthally-omnidirectional and 
elevationwise-impulsive noise (for the circular array), the noise covariance matrix is 
in both cases diagonal and with equal elements, it follows that superresolution 
schemes which are ordinarily restricted to uniformly-spaced linear arrays in element- 
space, are equally applicable to uniformly-spaced circular arrays in mode-space. That 
includes multiple-invariance (overlapped) ESPRIT and TAM, spatial spectral 
estimators whose spectral pattern is derived from the MVIR pattern, such as the ME 
and MN methods, as well as root-finding versions of all scalar-search algorithms. 
This means that in both circular-array mode-space and linear-array element-space the 
ME and MN null patterns are characterised by K  nulls (provided K is smaller than 
the number of circular-array phase-modes or linear-array sensors), with spurious nulls 
in the latter pattern effectively suppressed. Under the rather ideal assumption of an 
isotropic noise-field, the performance of circular-array mode-space methods in the (p 
domain is not expected to be better than that of the corresponding linear-array 
element-space schemes in the (cood/c)sm(p domain.^® However, if the (unknown) 
horizontally omni-directional noise-field is concentrated around zero elevation, then 
while the phase-mode noise remains spatially white and homoscedastic, the linear- 
array element noise is no longer spatially white. Consequently, an eigen-structure 
based linear-array element-space estimator will be mis-modelled and therefore 
outperformed by the corresponding mode-space estimator.

In the linear array case with d  the inter-element spacing, each in the Vandermonde matrix is 

given by Zjt = and the itJt’th element of the diagonal matrix is the element

pattern in direction
The number of processed phase modes of the circular array is assumed to be equal to the number 
of processed linear-array sensors.
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5.4 SPATIAL AND FREQUENCY-DOMAIN SMOOTHING

5.4.1 GENERAL

Pre-processing in the form of spatial or frequency smoothing is required by 
eigenstructure-based superresolution algorithms, such as MUSIC, MN and the 
ESPRIT method, to enable them to cope with coherent signals^®. When some of the 
received signals are coherent, the signal covariance matrix Rg in (52.46) becomes 
rank-deficient, and consequently the subspace spanned by the eigenvectors of the 
covariance matrix R associated with the minimal eigenvalue of R is no longer 
orthogonal to the columns of the steering matrix A. Thus, although these DOA 
estimators are asymptotically unbiased for uncorrelated or partially correlated signals, 
they may completely fail in the presence of multipath ‘image sources’ or when 
subjected to coherent jamming.

The spatial smoothing technique for the decorrelation of coherent signals was first 
introduced by Evans et al. [Eva 81], [Eva 82] and further developed and analysed by 
Shan et al. [Sha85] and by a number of other authors [Wil88], [PiL 89a], [PiL 89b], 
[Rao 90]. As formulated for an equally-spaced linear array of identical sensors, the 
spatial smoothing pre-processing scheme involves the reduction of the spatial 
covariance matrix into a set of ‘partial’ covariance matrices defined for a 
corresponding set of equal-size (interlaced) sub-arrays, each with a different phase- 
centre. These matrices are averaged to form the ‘smoothed’ covariance matrix, which 
may be shown to have the same structure as the covariance matrix for noncoherent 
signals. The effective size of the array is, however, reduced to the sub-array size, 
which implies a lower angular resolution.

We refer to two complex narrowband signals sd(i) and s\(i) as coherent when: sa{i) =

where  ̂is a non-zero complex constant The covariance matrix for the two signals is then given 
by:

cov (% Ji) = I where
^V(O) r(0) /

Obviously, cov(a>5i) is singular, the correlation coefficient is 1, and the signals are fully 
correlated. Under wideband conditions, and s\(i) will be said to be co h eren t when: 

fo(0 = where to is some real time delay and ̂  is again a non-zero complex constant. This
time we have:

cov(««)=(
|V ( t ) )  r ( 0 )  I

which is generally non-singular, the correlation coefficient is given by lr(A))l/r(0) andfo(0 and 
are only partially cwrelated.
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Frequency smoothing refers to frequency-domain averaging of the pre-processed 
cross-spectral density matrix which has a decorrelating effect on wideband sources. 
Pre-processing is necessary to enable the (modified) steering matrix to maintain the 
same rank 1 description per source over the whole frequency band, so that (essentially 
narrowband) eigen-decomposition algorithms may be applied. A number of coherent 
‘focusing’ techniques were considered in section 5.2, sub-section 5.2.7, of which the 
spatial resampling method was the only approach to provide true direction- 
independent focusing, with a single evaluation of the transformed covariance matrix 
that does not require preliminary estimates of source locations. However, as with 
spatial smoothing, the applicability of the spatial resampling method is limited to 
linear equi-spaced arrays.

In the following sub-sections we examine spatial smoothing and omni-directional 
frequency smoothing in the context of circular-array mode-space, and show that this 
(circular-array) configuration and (phase-mode) pre-processing does indeed allow the 

extension of the above techniques from equi-spaced linear-array geometry.

5,4J  SPATIAL SMOOTHING

Consider the Af' aligned^® outputs of phase-modes {-A, -A+1,.......... , A) formed
by applying the pre-processing transformation (53.1) to the element channels of an 
M-sensor circular array, and let the approximate far-field radiation pattern of the 
phase-modes in the above set be given by (53.11). Next, form the following 
(M'-M"+l) overlapping subsets of Af" aligned phase-modes:

{-A, -A+1,.......... , -A+Af"-1), {-A+1, -A+2,........... , -A+Af"),
 , {A-A/"+l, A-Af"+2,.......... , -A)

and denote by , v = 0, 1, • • •, Af'-Af" the vector of aligned phase-modes 
belonging to the v’th subset. Under narrowband formulation we then have:

yv(r) = B (m o)y\^)S(f) + y.^(f) , v = 0, 1,. • •, AT'-Af" . • • (5.4.1)

where y^y(t) is the mode-space additive noise vector belonging to the v’th subset, the 

M"^K matrix B(cüo) consists of the top Af" rows of the modified steering matrix 

À(cüio), and denotes the v’th power of the K^K  diagonal matrix

0̂ We assume that each phase-mode pattern to be normalised to its zero-order coefficient Cfto
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V (ÿ) = diag(g/^ ......... . . .  (5.42)

The covariance matrix of the v’th subset is given by:

Rv = SVvY^ = B ÿ ''R s ^ B "  + cèl ... (5.43)

where %  is the (white homoscedastic) noise power at the phase-mode outputs, and I 
is the M"xM" identity matrix. The construction of a spatially smoothed covariance 
matrix R  follows that suggested for an equi-spaced linear array [Sha 85], according to 
which R  is simply given by the sample mean of the subset covariances:

M'-M"

R  = ----- 1 T  Rv = B R s B "  + ( è l  . . .  (5.4.4)
A/'-AT+l v=o

where R s ,  the modified signal covariance matrix, is given by:

M'-M"

R s = ----- ]-------2  ■■■(6.45)
A/'-AT+l w)

The modified signal covariance matrix R s  will be full-rank provided that:

{M'-M"+l)>K •••(5.4,6)

This, together with the condition M "> K  needed for the subsequent eigen- 
decomposition procedure, means that we must also have:

M '> 2K  •••(5.4.7)

In other words, the number of processed phase-modes must be no less than twice the 
total number of sources. The above claim is proved in appendix E.4 which follows the 
lines of a similar proof for the case of an equi-spaced linear array found in [Sha 85]. 
Since the smoothed covariance matrix R is of exactly the same signal and noise 
structure as the (unsmoothed) covariance matrix for the incoherent case, it is equally 
applicable to eigen-structure based spatial spectral estimation algorithms. The 

dimension of the covariance matrix is, however, reduced from M'xM' to 
which may be viewed as a decrease in the effective aperture of the array.

Recall that circular-array phase-modes play a similar role to that of linear-array sensors in
forming an array radiation pattern.
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5.4 J  FREQUENCY-DOMAIN SMOOTHING

Consider again the pre-processing transformation (5.3.1) of a circular sensor array 
from M-dimensional element-space into M'-dimensional mode-space, but this time 
let each phase-mode be (digitally-) filtered so that the response of its zero-order 
coefficient is deconvolved over the relevant frequency band as described in chapter 3. 
This means that the elements of the time-domain diagonal matrix Q in (5.3.1) are 
replaced by convolution operators, such that in the frequency domain the following 
expression for the mode-space cross-spectral density matrix (CSDM) results:

fPy(®) = I = Â(û))Ps(<B)Â V) + p.(®) • • • {5 AS)

where.

P .(® )= ...{54.9)

is the mode-space noise CSDM, the steering matrix is modified to

Â(<o) = Q V )E"A (to) ...(5.4.10)

and in the relevant frequency band, the /Zju’th element of Q(û)) is given by:

a/2) , -A ^ n ^ A  ...(5.4.11)

In the incoherent approach to wideband superresolution, equation (5.2.16), which 
is of exactly the same form as (5.4.8) (or an approximation thereof via spatial 
covariances of the Fourier-series coefficients -  see (52.18)), serves as the model under 
which effectively narrowband estimations are separately performed at a number of 
discrete frequencies in the operating band. In the case of eigenstructure-based 
algorithms such as MUSIC, the MN method or ESPRIT, this approach may 
completely fail when some of the received signals are coherent, as the signal cross- 
spectral density matrix Ps(û)} is then singular irrespective of frequency -  see
appendix E.5. Although the wideband signal covariance matrix R s would in general



5 .4  Spatial and freauencv-d om ain  sm ooth ing_____________________________ iiillllllilllll 1 3 8  Illllll

remain non-singular (assuming the bandwidth is larger than the inverse of the relative 
delays of the coherent signals -  see appendix E.5), the steering matrix A(û)) is 
frequency-dependent, having a different column space at each frequency, the model 
(52 JS) does not apply, nor does the rank 1 per source assumption for the (now full- 
rank) signal-only covariance matrix R^.

In the context of a general sensor array, frequency smoothing refers to a two-stage 
process that enables a wideband source to be represented by a rank 1 model. First, the 
array outputs are pre-processed with the aim of transforming the CSDM in such a way 
that renders the (transformed) steering matrix independent of frequency while 
maintaining its rank.^^ The modified CSDM is then Fourier-transformed at zero 
correlation time (or, in other words, frequency-averaged) to yield a ‘frequency- 
smoothed’ covariance matrix that has the same structure as the CSDM (or of a 
narrowband covariance matrix), but is characterised by a generally full-rank 
(modified) signal covariance matrix. As noted before, a single ‘omni-directional’ 
frequency-smoothed covariance matrix may be approximately implemented by pre­
processing an equi-spaced linear array with a spatial resampling filter.

Returning now to the wideband mode-space formulation of (5.4.8) we note that A 
as defined by (5.4.10) is approximately given by (53.14) throughout the frequency 
band and is thus independent of frequency. This means that wideband phase-mode 
pre-processing of a circular array is inherently also a frequency smoothing operation 
that allows eigen-decomposition to be based on the mode-space covariance matrix, 
and it may be viewed as a simple extension of the spatial resampling technique from 
equi-spaced linear arrays to equi-spaced circular arrays. Although the signal 
covariance matrix will generally remain non-singular in the presence of coherent 
wideband signals when their relative delays are larger than 2nJ{coHi-(0[jo) {g>h i  and 
CÛLO are the respective upper and lower angular frequencies in the band), its 
robusmess to signal coherence may be further enhanced via a spatial smoothing 
procedure that will add to the automatic frequency-smoothing process.

This is sometimes referred to as focusing.
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5.5 SIMULATIONS AND SUMMARY

5.5.1 GENERAL

A  quantitative assessment of the superresolution capabilities of circular sensor arrays 
in phase-mode space may be obtained via illustrative and comparative Monte-Carlo 
simulations. The objective is to estimate and compare, under different signal and 
noise scenarios, the resolvability, bias and variability of such algorithms, when 
applied to (possibly pre-processed) arrays of different shape (e.g. linear and circular 
geometries), dimensions and radiation properties. An exhaustive performance study 
would have to relate to the following parameters:

a. Type of estimator -  different methods and specific implementations of algorithms 
inevitably lead to different absolute as well as comparative results

b. Geometry -  the relevant parameters are the array type, its orientation, the number 
of array sensors and the inter-sensor spacing

c. Radiation properties -  radiation patterns of array sensors as a function of 
frequency

d. Signal model -  signals may emanate from deterministic or stochastic sources 
which are either narrowband or broadband (for different bandwidths)

e. Signal scenario -  we refer here to the number of sources, their location and their 
level of coherence

f. Noise model — narrowband or bandpass noise may be internally-generated at the 
array sensors, or it may be received from ambient noise-fields of different types

g. Pre-processing -  • optional pre-whitening transformation
• beamforming transformations:

- none (sensor-space)
- beam-space: type and number of available beams
- circular-array mode-space: number of available modes

• smoothing: extent of spatial or frequency-domain smoothing
h. Sensitivity to errors -  performance under different sensor calibration and position 

errors

Other important parameters include the number of snapshot samples N , the 
(appropriately defined) SNR and the number of times each experiment is repeated for 
the evaluation of the pseudo-statistical averages. In order to keep the set of results 
manageable and within the scope of a supplementary section of a single chapter, the 
extent of our simulations has been limited herein to include:
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a. One representative scalar-search superresolution method, namely MUSIC
b. Selected geometries:

• a 5-sensor narrowband equi-spaced linear array with inter-element spacing 
of half a wavelength

• a 10-sensor equi-spaced circular array (of which 5 phase modes are used) 
with arc-wise inter-element spacing of:
-  0.3 of a wavelength for the narrowband problem
-  0.15 to 0.3 of a wavelength for the wideband problem

c. The following frequency-independent (voltage) element patterns:

• isotropic (linear array)
• ç))=sin^^ 0 cos^içll) (horizontal circular aixay)

d. Narrowband and octave-bandwidth gaussian signal sources -  see sub-section 5.5.2 
for model description

e. The following respective signal scenarios for the linear and circular arrays:
• 2 equi-power sources at ^=-3.82* and ÿi=3.82° (180°sin^, % = ± 12°) on 

the azimuth (6 = 90°) plane (angular spacing of one third of the Rayleigh 
resolution for the above specified narrowband linear array)

• 2 equi-power sources at 0q=-12° and 0i = 12° on the azimuth plane (angular 
spacing of one third of the mode-space Rayleigh resolution for the above 
specified circular array)

The following levels of signal coherence: • incoherence
• 99% coherence
• full coherence

f. Noise modelled as the integrated contribution of ambient noise fields of 2 types:
• isotropic or hemispherically-isotropic noise:

• elevation-wise spatially impulsive noise at 6 -  90°:
See sub-section 5.5.2 for model details

g. The following pre-processing transformations:
• no pre-whitening
• no beamforming transformation for the linear array

• transformation of the circular array into phase-mode space
• optional spatial smoothing using three 3-element linear-array sub-arrays

• optional spatial smoothing using three 3-mode circular-array sub-sets
• no frequency-domain smoothing for the linear array case; inherent mode- 

space frequency smoothing is demonstrated in the case of the circular array
h. Full error-free knowledge of the position and radiation properties of the array 

sensors is assumed.
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The simulations were conducted on a Macintosh computer using the Mathematica 
programming language (version 2.0), for 30 snapshot samples and varying levels of 
SNR, and were each repeated 30 times for the evaluation of the angular bias and 
variance. The models used for simulating the discrete signal sources and the 
continuous noise fields are detailed in sub-section 5.5.2. The results are presented and 
explained in sub-section 5.5.3, with a discussion and a summary of the whole chapter 
in sub-section 5.5.4.

5.5 J  SIGNAL AND NOISE MODELS

Signals were modelled as emanating from a couple of (pseudo-) random spatially- 
impulsive (discrete point) sources in the far-field region of the array. The following 
specific formulation was used for simulating the X:'th narrowband signal at time

^ik(rn)=(5ff+ySi[^)e/-^(^-^«^*) , Q<k<K-l , 0<n<N-l

where the data { S ^ y S j^ )k ,n  were obtained from a zero-mean pseudo-random 
gaussian generator set to a variance of^^ <r̂  = (1/2) û3o is the (angular) 
frequency at which the inter-element spacing in wavelengths is as specified in sub­
section 5.5.1-b, and is some time delay specific to the ^ ’th s o u r c e . F o r  the 
wideband case we used:^®

16
S k ( tr d = 'L  , O^fcSJîr-l , O ^ n ^ N -1

/=8

where the data {5j^/,5j^/};k,»,/w ere obtained as before from a zero-mean (pseudo-) 
random gaussian generator, and CDm is the (angular) frequency at which the inter­
element spacing in wavelengths reaches the highest value specified in sub-section 
5.5.1-b. The signals were received at the array sensors (or phase mode outputs) 
through the usual complex (normalised) responses of the array sensors or (aligned) 
phase modes.

S N R  is defined here as (10 times the logarithm to the base 10 of) the ratio of signal to noise power 
received by a (linear- array) sensor or an aligned (circular-airay) phase mode, due to the presence 

of a single signal source and the given noise field. Note that Sj^  and are assumed to be 
uncorrelated, so that:

siSjSf+;s"i^=2<T̂
This is important for frequency-domain smoothing -  see appendix E.5.
Flat-spectrum broadband signals are assumed which, for an approximately finite time response, 
dictates the minimum number of sampling points needed to cover the passband.
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Signals Sq and with a coherence level of 100p% were synthesised under the 
respective narrowband and wideband models as:

0<P<1

and 

•yo(̂ n) =

I  { ( , . _w 
/=8

W  =

/=8
0 < p < l

and the time delays fco, fci were chosen as: fco = 0, conitci = 3.6 tü.

Both hemispherically-isotropic and elevation-wise impulsive noise fields were 
considered. Ideally, these would have been formulated (for a hemispherically- 
isotropic noise field under the narrowband model) as:

x»^(tn)=
rn rTfl

e J ^ A  d(p\ 6f9 sine[N jF(e, <p)]g(e, <p)gA(Wc)msmesiny
J-7C Jo

flt ÇTtfl
d(p\ desme[NS^(6,<p)-\-jN’̂ (e,<p)]O^{e,(p,(00)IC^d^C0a,m)

J-7C Jo

where andy*^(rn) refer to the narrowband noise (‘voltage’) received at time r„

by the m ’th linear-array sensor and by the fi'th  circular array phase-mode 

respectively, g(6yÇ) denotes the radiation pattern of a linear-array sensor, 

^ ( ^ ,  Ç), Ct>o)IĈ oicoo, kH) describes the /i’th phase-mode pattern aligned on the
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azimuth {9=7c/2) plane, and denote spatially-continuous normally-
distributed zero-bias noise fields.

In fact, in order to save computer time, a much simpler scheme was used. Spatial 
whiteness of the (circular-array) mode-space noise has been assumed (which is the

approximate case for an elevationwise-impulsive ambient noise field at 0=;r/2, and it 
was consequently modelled as:

y .^ (Q  = (N F+ jN ^^)ei< ^’

and
16

y.„(fn) = £  iNS§+jN^)eH^<^n6)t,
/= 8

for the narrowband and wideband scenarios respectively, with 
generated by a zero-mean pseudo-random gaussian generator of variance 1/2. A 
similar scheme was also used for simulating the linear-array element-space noise 
caused by a hemispherically-isotropic noise field (see foomote 2 in appendix E.3).

The case of a linear array under an elevation-impulsive noise field at Q-%!2 required 
a somewhat more complex model. Here, element noises were formulated as:

where the data

are generated from a zero-mean pseudo-random gaussian generator of variance 1/2, 
and the MxM matrix H is the hermitian square root of the Toeplitz matrix R# whose 
elements are given by [Bur 91]:

[ / ? , W  = (l/2)/oW m '-m ")] , 0 <m ',m "<M -l

In other words.
R . = H H "

H = U a '®U"

where A  and U are, respectively, the eigenvalue matrix and eigenvector matrix of R. 

and has the square roots of the eigenvalues of R# on its main diagonal.
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5.5.3 SIMULATION RESULTS

The simulated results shown in Fig. 5.5.1 to Fig.  5 .5 .6  are aimed both at 
demonstrating mode-space superresolution processing and at comparing the 
performance of a (mode-space) circular array with that of an (element-space) linear 
array. It is important to realise that there is an inherent resolution factor of 
approximately tu in favour of the latter^® for sources close to broadside, when the 
number of processed circular-array phase modes equals the number of linear-array 
elements, and as in general, not all M  phase modes excited in an Af-element circular 
array are usable, a simple comparison may prove misleading. We have thus chosen to
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180 sin 9
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Fig. 5.5.7 MUSIC spectral pattern for two uncorrelated sources (SNR = 25 dB)
a. 5-sensor linear array in (full or hemisphericaUy) isotropic noise
b. 5-sensor linear array in elevationwise-impulsive noise
c. lO-sensor/5-mode circular array in elevationwise-impulsive noise

4 6 See (322) in chapter 3 for a linear-array inter-element spacing of half a wavelength
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simulate the following arrays:

i a 10-element equi-spaced circular array of directional sensors, with 
superresolution processing applied to 5 aligned phase modes no. {-2 to 2). The 
array is embedded in an elevationwise-impulsive ambient noise field

ii a 5-element equi-spaced linear array of isotropic sensors embedded in an isotropic 
or semi-isotropic ambient noise field

in a 5-element equi-spaced linear array of isotropic sensors embedded in an 

elevationwise-impulsive ambient noise field at 0 =

75

6 0 -
Signal sources

4 5 -

3 0 -

- -G-1 5 -

4530150-3 0 -1 5-4 5
A n g le  fp — c i r c u l a r  a r r a y  

180 s i n  -  l i n e a r  a r r a y
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Fig. 5.52  MUSIC spectral pattern for unsmoothed arrays excited by two 99% 
correlated sources (SNR = 30 dB)
a. 5-sensor linear array in (full or hemisphericaUy) isotropic noise
b. 5-sensor linear array in elevationwise-impulsive noise
c. lO-sensor/5-mode circular array in elevationwise-impulsive noise
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Note that even though the simulated circular array comprises twice the number of

linear-array elements, its diameter (for A/3 inter-element spacing) is in fact smaller

than the long dimension of the corresponding (A/2-spaced) linear array by an 
approximate factor of %. As far as our graphical output is concerned, all circular-array 
results are displayed in angle space, whereas the linear-array outputs have been

plotted versus 180“ sin which, for A/2 inter-element spacing of the linear array 
sensors, corresponds to the coordinate transformation (322).

Fig. 5.5.1 depicts the narrowband MUSIC spectral patterns for the two arrays 
when excited by two equi-power sources. The power received from each of the

75
Signal sources

60 —

4 5 -
,<3-9

3 0 -

15->

45300 15-1 5-3 0-4 5
A n g le  fp — c i r c u l a r  a r r a y  

180 s i n  9  -  l i n e a r  a r r a y
[d e g r e e s ]

Fig. 5.53  MUSIC spectral pattern for spatially-smoothed arrays excited by two 
99% correlated sources (SNR = 30 dB)
a. 5-sensor linear array in (full or hemisphericaUy) isotropic noise
b. 5-sensor linear array in elevationwise-impulsive noise
c. 10-sensor/5-mode circular array in elevationwise-impulsive noise
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sources corresponds to a signal-to-noise ratio of 25 dB. We notice that the two 
sources are easüy resolved both by the linear array (under both noise models) and by 
the circular array, although the linear-array resolution appears to be somewhat higher. 
In Fig. 5-5.2, there is a 99% correlation between the two sources, which are now also 
5 dB more powerful. As no processing has been applied to ‘decorrelate’ the sources, 
the result is an almost complete loss of resolution. This situation is remedied by 
applying spatial smoothing to the arrays, with the linear-array elements and similarly, 
the circular-array phase modes, divided into three sets of three interlaced elements 
and phase modes, respectively. The resulting spectral patterns are shown in 
Fig. 5-5 J .  Both the linear and the circular array have fully regained their resolving 
power, with the highest resolution exhibited by the circular array. But also note that

75

6 0 “
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15->
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Fig. 5.5.4 MUSIC spectral pattern for a lO-sensor/5-mode circular array excited by 
two fully correlated sources (SNR = 30 dB)
a. unsmoothed array
b. under inherent frequency-domain smoothing (octave bandwidth)
c. spatially smoothed array
d. spatial smoothing + inherent frequency-domain smoothing
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the spatially-smoothed result for the linear array under an elevationwise impulsive 
noise field is biased by approximately 3 (transformed) degrees^ which may be 
attributed to its element noise not being spatially white. No such bias has been noticed 
in the smoothed MUSIC pattern for the circular array or for the linear array when the 
ambient noise field is isotropic.

Fig. 5 J .4 is wholly devoted to the simulated circular array which is now 
illuminated by two fully-correlated signal sources. The narrowband result is a 
complete loss of resolution as depicted by plot a. In plot b, an octave-bandwidth is 
assumed for the signals, noises and phase modes, which allows the inherent 
frequency-domain smoothing mechanism of broadband mode-space processing to

0 . 8 -

cr 0 .6  —

u  0 . 4 -

0 . 2 -

605030 402010
SNR (dB)

Fig 5-5.5 Application of spectral MUSIC for two uncorrelated sources: rms error 
patterns (ç>-space for circular array, 180“sinç)-space for linear array)
a. 5-sensor linear array in (full or hemisphericaUy) isotropic noise
b. 5-sensor linear array in elevationwise-impulsive noise
c. lO-sensor/5-mode circular array in elevationwise-impulsive noise

4 7 The bias in degrees is sin' (37180* ) l
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take effect^®, leading to the fully regained resolution of the two sources. Plot c 
demonstrates the application of narrowband spatial smoothing, which partially 
recovers resolvability, albeit with noticeable bias, whereas plot d illustrates the 
benefit of combining wide bandwidth (yielding frequency-domain smoothing) with 
spatial smoothing. The statistical angular bias and rms error^® attendant to the 
MUSIC estimator as applied to the linear and circular arrays, are finally plotted in 
Fig. 5 .55  andFzg. 5 5 .6  respectively for the case of two uncorrelated sources. The 
bias and variance (or rms error) are both seen to fall to zero when the signal to noise 
ratio is increased, which, after all, was to be expected from the MUSIC estimator.

0 . 5

0 . 4 -

u 0 . 2 -

0 . 1 -

605040302010
SNR (dB)

Fig 55 .6  Application of spectral MUSIC for two uncoirelated sources: angular 
bias patterns (ç)-space for circular array, 180“sinç)-space for linear array)
a. 5-sensor linear array in (full or hemisphericaUy) isotropic noise
b. 5-sensor linear array in elevationwise-impulsive noise
c. lO-sensor/5-mode circular array in elevationwise-impulsive noise

Note again that the presence of a non-zero time delay tc between the two received signals is 
crucial for their decorrelation -  see appendix E.5.
By rms error we refer to the square root of the variance of the estimation bearing, or equivalently, 
to the variance of the estimation aror.
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5.5.4 SUMMARY

This chapter has been devoted to the application of high-resolution spatial estimators 
in circular-array mode space. Noting the structural identity between the mode-space 
steering matrix and the corresponding element-space matrix for a uniformly-spaced 
linear array, together with the spatially-white and homoscedastic mode-space noise 
received from a circumferentially-omnidirectional and elevationwise-impulsive 
ambient field, we have concluded and partially illustrated in simulations, that 
superresolution schemes that have hitherto been relevant to equi-spaced linear arrays 
are in fact equally applicable to equi-spaced circular arrays in mode space.

An important aspect of mode-space processing which we have demonstrated, is its 
compatibility with the spatial smoothing technique and (in the case of broadband 
sources and phase modes) the inherent omnidirectional ffequency-domain smoothing 
mechanism which allows such algorithms as MUSIC and MN to cope with a coherent 
signal environment. Spatial smoothing has been extended from an established linear- 
array element-space version, whereas true direction-independent frequency-domain 
smoothing, free from preliminary estimation of source locations, has ordinarily 
involved spatial resampling, a technique that is again limited to linear arrays.

It should be noted that the linear-array to circular-array coordinate transformation 
mentioned in chapter 3, means that an M-element linear array receiving signals from 
direction (j>, has a resolution factor of approximately (for half-wavelength inter­

element spacing) ;rcos0 in its favour when compared with the M-fold mode-space 
processing of a circular array. This factor equals t: for sources near broadside, but 
becomes smaller and eventually less than unity (for 1̂1 > 72") as the location of 
sources moves away from broadside, and of course the linear array lacks the full 
circumferential coverage of the circular array. Also, although the generation of a set 
of M' ‘well behaved’ phase modes, generally requires a larger number of array 
elements, the physical size of the array will usually remain smaller than the length of 
a linear array of M ' elements.

In conclusion, we have shown circular-array high-resolution mode-space 
processing to be a viable and beneficial alternative to high-resolution linear-array 
element-space techniques.
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6. CONCLUSIONS

The application of mode-space beamforming, null-steering and direction-finding 
techniques to circular sonar arrays appears to have some appealing attractions. The 
sonar frequencies are sufficiently low to enable all signal processing to be realised 
digitally, allowing the implementation of complex processing schemes which are 
readily calibrated and are not limited by the imperfect nature of analogue 
components. In this thesis we have been examining several aspects pertaining to the 
analysis and processing of circular array systems with digital beamforming 
architecture. The general context has been that of sonar systems where noise is mainly 
contributed by external fields, and where one has the benefit of low frequencies, 
making complex digital processing more feasible, as well as manageable array 
dimensions due to the low velocity of propagation; but evidently, much of the 
material is relevant, at least in parts, to antenna arrays.

The basic concepts of beam-cophased and phase-mode excitation were briefly 
reviewed in chapter 2 and the transient circular array patterns associated with the 
reception of wideband pulses were discussed. It was pointed out that even when an 
array is delay-compensated (or *co-delayed*) in a certain look direction (i.e. of its 
main beam), it remains uncompensated in aU other directions and the transient array 
pattern will depart (e.g. in the sidelobe region) from its steady-state radiation pattern. 
This is clearly manifested by the (approximately linear) change of co-delayed 
beamwidth with frequency. In contrast, beam patterns formed by the linear 
combination of phase modes that have been aligned (for a given elevation angle) over 
a wide frequency band, are effectively frequency independent, rendering the circular 
array ‘delay matched’ over the full constant-elevation azimuth cut.

In chapter 3 we considered conventional mode-space techniques that are 
applicable in the context of full digital beamforming. It was shown that 
omnidirectional phase modes may be linearly combined to form sectoral sets of 
beams with (almost) identical directional amplitude patterns but different phase 
gradients of locally linear slopes corresponding to ‘effective mode numbers’. Such 
beams with phase-mode-like phase characteristics and directivity that may be
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compromised for a steeper maximum phase gradient, were duly named sectoral 
phase modes. They may find application in a direction-finding scheme that combines 
the high resolution of multimodal phase-comparison DF with the inherent immunity 
of directional low-sidelobe beams to interference from a multi-source environment. 
Null steering may also be used for dealing with a multi-source environment, and it 
was shown that the incorporation of sectoral phase modes allows nulls to be 
independently steered for each directional beam in a multiple-beam network. An 
extension of this idea could incorporate independently steered nulls in a directional 
phase-comparison direction-finding system.

Also considered in chapter 3 were wideband extensions to the foregoing schemes. 
It was noted that with the exception of omnidirectional phase-comparison direction- 
finding (multimodal DF) which, subject to a ‘favourable’ element pattern, was shown 
to cover a wide bandwidth by virtue of symmetry, mode-space techniques generally 
rely on wideband mode alignment that will deconvolve the frequency-dependent 
zero-order phase mode coefficients. A digital filtering approach was subsequently 
proposed and its viability shown to depend on the directional properties of the array 
elements.

The effect of aperture and mode-space errors on the sidelobe level of mode-space 
beams was examined in chapter 4, where the rms sidelobe level was found to be 
constant either in the case of mode-space excitation errors of equal variance, or under 
equi-variance aperture errors, provided the array elements are omnidirectional. 
Various calibration-based pattern correction and alignment algorithms for optimising 
in the ‘least squares’ sense the array performance were then considered, and it was 
demonstrated that trying to optimise the array for multiple mode-space beams may be 
equivalent to a multimodal scheme in which the set of phase modes used for the 
synthesis of the beams, is aligned. For wideband alignment, digital filters have to be 
implemented at the phase mode outputs, based on one of the schemes discussed in 
chapter 3.

Finally, in chapter 5 we set out to exploit the benefits of mode-space formulation 
in the rapidly growing field of high-resolution processing. After an overview of 
scalar-search (‘one-dimensional’), vector-search (‘multidimensional’) and search-free 
spatial estimators, the applicability of algorithms ordinarily restricted to equi-spaced 
linear arrays was demonstrated, in terms of both the signal and noise covariance 
matrices. In fact it was shown that the ambient noise model for circular arrays in 
mode space is less restrictive than that for its linear array counterpart, especially when 
the directivity in elevation is increased by a cylindrical arrangement of rings. Another
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important aspect of mode-space processing demonstrated in this chapter was the 
applicability of the spatial smoothing technique and (in the case of broadband signals) 
the direction-independent frequency-domain smoothing inherent in wideband phase 
modes. Mode-space spatial smoothing for the decorrelation of narrowband coherent 
signals is a direct extension of the element space version of that technique, which has 
hitherto been restricted to equi-spaced linear arrays. The decorrelation of wideband 
coherent signals through ffequency-domain smoothing is both omnidirectional and 
automatic in (wideband) mode space. In contrast, true direction-independent 
ffequency-domain smoothing in element space that does not depend on preliminary 
estimates of source locations, is restricted to equi-spaced linear arrays and requires 
pre-processing in the form of spatial resampling. Mode-space versions of popular 
algorithms such as MUSIC (including its root version) and the Minimum Norm 
method are thus readily usable even in scenarios of fully correlated signals.

The main contributions of this work cover both conventional beamforming and 
superresolution processing and may be summarised as follows: 
i The introduction of sectoral phase modes and their applications in direction 

finding and in null steering 
a  The digital broadband alignment of phase modes and its dependence on the 

directional properties of the element patterns 
in The compatibility of circular arrays in mode space with linear-array estimators 
iv The extension of the spatial smoothing technique from equi-spaced linear-array 

element space to circular-array mode space 
V The inherent omnidirectional ffequency-domain smoothing effect on broadband 

mode-space signals

The study which has been undertaken here is by no means complete. Various 
other aspects relating to the analysis and applications of sonar and antenna ring arrays 
and similar structures merit further investigation. An interesting and potentially 
promising topic for further research involves the use of sectoral phase modes in 
‘beam-space’ spatial estimation. The idea is to enable the array to handle more 
(evenly spaced) sources and to reduce its susceptibility to a non-isotropic ambient 
noise field by confining the modes to sectors of locally isotropic noise, while 
continuing to enjoy the benefits of mode-space processing, namely:

-  360“ coverage through the multibeam excitation of sectoral phase modes
-  compatibility with linear-array estimators and spatial smoothing techniques
-  automatic handling of broadband multipath signals through inherent 

frequency-domain smoothing.
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Another area that deserves serious consideration pertains to the implementation of 
two-dimensional beamformers and direction-finders using arrays of related 
geometries. These may include elements in a cylindrical, conical or spherical 
arrangement as well as a toroidal array (i.e. a horizontal ring of vertical ring arrays) 
which is perhaps the most ‘natural’ two-dimensional extension to the single ring 
geometry. An interesting geometry that could well be worth investigating is that of an 
elliptical array, or of a cylindrical structure with elliptical cross-section. On the 
practical side, such an array may more easily conform to the hull of a sea vessel, 
while the (possibly phase-mode) analysis could make use of the fact that a 
(continuous) circular ring array would also look elliptical to an elevated far-field 
source. Since each azimuth bearing of the source would be equivalent to a different 
tilt of the circular array, one would have to angularly sectorise the operation of the 
array through the possible use of sectoral phase modes or their elliptical equivalent.

Other configurations are of course possible and are open to analysis. It is hoped 
that the work presented in this thesis together with some of the ideas suggested above 
will stimulate other researchers in the sonar and antenna array communities as well as 
authors in the field of high-resolution spatial processing, to focus more attention on 
circular arrays.
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A. ABBREVIATIONS AND SYMBOLS

A.1 LIST OF ABBREVIATIONS

AAR Adaptive Angular Response method -  see chapter 5, sub-section 5.2.3
AIC Akaike’s Information Criterion -  see chapter 5, sub-section 5.2.9
BASS-ALE Broad-bAnd Signal subspace Spatial spectrAL Estimation methods -  see 

chapter 5, sub-section 5.2.7 
CRLB Cramér-Rao Lower Bound -  see chapter 5, sub-section 5.2.1
CSS Coherent Signal Subspace methods -  see chapter 5, sub-section 5.2.7
CW Continuous Wave (monotonie)
DF direction finding
DPT Discrete Fourier Transform
DML Deterministic Maximum Likelihood method -  see chapter 5, sub­

section 5.2.6
DOA Direction Of Arrival (of signals relative to the array)
ERP Effective radiated power -  see footnote 2 in chapter 2
ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques -

see chapter 5, sub-section 5.2.5 
FIR Finite Impulse Response (refers to a non-recursive digital filter)
FM Frequency Modulation -  see in connection with the response to a linear

FM pulse in chapter 2, section 2.3 and in appendix B .l 
HF High Frequency ( 3 -3 0  MHz)
IDFT Inverse Discrete Fourier Transform
nR  Infinite Impulse Response (refers to a recursive digital filter)
IMP Iterative Multi-Parameter method -  see chapter 5, sub-section 5.2.6
LS Least Squares — see in connection with LS-ESPRIT in chapter 5, sub­

section 5.2.5
MDL Minimum Description length -  see chapter 5, sub-section 5.2.9
ME Maximum Entropy (Burg’s method) -  see chapter 5, sub-section 5.2.4
ML Maximum Likelihood method -  see chapter 5, sub-section 5.2.6
MN Minimum Norm method (also known as the TK method) -  see chapter 5,

sub-section 5.2.4
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MLM Maximum Likelihood Method (former name for Capon’s method) -  see
chapter 5, sub-section 5.2.4 

MUSIC Multiple Signal Classification method -  see chapter 5, sub-section 5.2.4
MVDR Minimum Variance Distortionless Response (Capon’s method) -  see

chapter 5, sub-section 5.2.4 
MVIR Minimum Variance Inverse Response -  see chapter 5, sub-section 5.2.4
MVPR Minimum Variance Protected Response -  see chapter 5, sub­

section 5.2.4 
PDF Probability Density Function
RMS Root Mean Square -  see in connection with rms sidelobes in chapter 4,

sections 4.2 to 4.4
SML Stochastic Maximum Likelihood method -  see chapter 5, sub­

section 5.2.6
STCM STeered Covariance Matrix technique -  see chapter 5, sub-section 5.2.7
SNR Signal to Noise Ratio
SPM Sectoral Phase Mode -  see chapter 3, section 3.5
TAM Toeplitz Approximation Method -  see chapter 5, sub-section 5.2.5
TLS Total Least Squares -  see in connection with TLS-ESPRIT in chapter 5,

sub-section 5.2.5
TSCM Tempo-Spatial Covariance Matrix -  see chapter 5, sub-section 5.2.7
UHF Ultra High Frequency (300 -  3000 MHz)
VHF Very High Frequency (30 -  300 MHz)
WSF Weighted Subspace Fitting -  see chapter 5, sub-section 5.2.6
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A.2 LIST OF SYMBOLS

inverse of a matrix
complex conjugate of a scalar, a vector or a matrix 
transpose of a vector or a matrix 
transpose conjugate of a vector or a matrix 
inverse of the transpose conjugate matrix

I • I determinant of a matrix. Euclidean norm of a vector, absolute value of a
scalar

II • lip Frobenius norm of a matrix: IIAIIp = tr(A^A)
[ • ] ceiling of (smallest integer larger than) an expression
[^]mod2;r modulo-2;r value of a real number x
0 null vector
0 null matrix
Om complex weighting applied to the m’th array element -  see {222} and

(235) in chapter 2
Omkit) steering impulse response of the m’th array sensor in the direction of

the it’th far-field source -  see chapter 5, sub-section 5.2.2 
A (ç)} amplitude pattern of a sectoral phase mode -  see chapter 3, section 3.5

A signal amplitude -  see appendix C.l
A(û}) array steering matrix, equals to A(ç>=^, m) -  see chapter 5, sub­

section 5.2.2
Amk mk^Xh element of the steering matrix A

A mode-space steering matrix -  see chapter 5, sub-section 5.3.2

À combined ESPRIT steering matrix -  see chapter 5, sub-section 5.2.5
Ax, Ay ESPRIT sub-array steering matrix -  see chapter 5, sub-section 5.2.5

A  steering vector -  see chapter 5, sub-section 5.2.4
A(ç>, (û) functional form of steering matrix -  see footnote 1 in chapter 5, sub­

section 5.2.2
argmaxf(^) maximising vector y  in the expression ^{q>)

<p
argminfF(y) minimising vector y  in the expression ^{<p)

<p
{bq} vectors defined in appendix C.3
B constraint matrix in an MVIR algorithm -  see chapter 5, sub­

section 5.2.4,
TAM sub-matrix comprising the top rows of A -  see (52.80) in 
chapter 5,
spatial-smoothing sub-matrix comprising the top M" rows of A -  see 
(5.4J) in chapter 5
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b vector of least Euclidean norm whose first element equals to one, that
belongs to the noise subspace -  see chapter 5, sub-section 5.2.4 

c speed of propagation
Cd, Cs asymptotic DML and SML DOA error covariance matrices -  see

chapter 5, sub-section 5.2.6 

CfiqicOy 6) ^ ’th order coefficient for the ;x’th phase-mode -  see chapter 2, 
section 2.4

Cq the vector , • • •, Coq, • • •, Cy^qf -  see (C3.6) in appendix C.3

Ĉ n unaliased component of -  see (C.4.1) in appendix C.4
cov (u) covariance matrix of a random vector u
d inter-element spacing in a uniformly-spaced linear array -  see (3.22) in

chapter 3
(inverse) DFT coefficients of { _  see (3.621) in chapter 3 

D block matrix defined by (E.43) in appendix E.4
2>̂ (z) transfer function of FIR block in UR mode-alignment filter -  see (3.6.18)

in chapter 3 

det[ • ] determinant of a matrix
diag(z) diagonal matrix whose main diagonal comprises the elements of z

!E general cost function in a minimisation process,
DOA estimation error defined by (C.l.I) in appendix C.1

E  delay-only steering vector -  see expression (5222) in chapter 5, sub­
section 5.2.3
MxM  diagonal mode-phasing matrix defined by (43.13) in chapter 4

E mode-phasing matrix as defined by (53.2) in chapter 5, sub-section 5.3.2
En a column of E -  see definition (532) sub-section 5.3.2

S i ’ ) expectation operator
exponential function 

fu(u) probability density function of a random vector u
/ u(mI^) conditional probability density function of a random vector £/, given the

second random vector 0  -  see chapter 5, sub-section 5.2.1 

Fi6,(p,cû) far-field (steady-state) array radiation pattern -  see (222), (2.3.5) in
chapter 2

Fm((p) (nominal) mode-space beam pointing in direction Inm lM  -  see (3.23) in
chapter 3

Fmi(p) nominal mode-space beam Fmiç) at a modified array radius -  see
chapter 4, section 4.4

jFmiÇ) perturbed mode-space beam pointing in direction Inm lM  -  see
chapter 4, sections 4.2,4.3,4.4
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lÆI^, \AFm^ rms error pattern -  see chapter 4, sections 4.2,4.3,4.4 
F  Lxl array far-field pattern vector -  see (45.4) in chapter 4

F y ‘̂ ((p) a sectoral phase mode pointing in direction InmlM , having an effective 
mode number of v -  see chapter 3, section 3.5

G LxM element pattern matrix -  see {455} in chapter 4,
block matrix defined by (EA7) in appendix E.4 

G ,G ”,G ”G frequency and elevation averaged matrices, defined by (4.73) - (4.75) in 
chapter 4

g(0,(p) (firequency-independent) element (voltage) pattern shared by all the
array elements

gm(0, (p, CO) element (voltage) pattern for the m’th array element 
ge(0) g (̂ç>) separable element pattern -  see appendix C.3 

Ç array gain factor defined by (42.8) in chapter 4
H hermitian square root of R* -  see chapter 5, sub-section 5.52, and also

(E.13) in appendix E.l

hi(0) the f’th angular Fourier coefficient of an element pattern -  see (22.4) in
chapter 2

h the vector [h.i h.i ho h i - •• hjY -  see (C35) in appendix C.3
{ Ik (inverse) DFT of { -  see Fig. 3 .65  in chapter 3 
TÇin complex weights in an FIR mode-alignment filter -  see (3.2.4) in

chapter 3
j^(z) transfer function of HR mode-alignment filter -  see (3.620) in chapter 3
H^{s) transfer function of an analogue deconvolution filter for phase mode

coefficients -  see chapter 3, section 3.6 
i index referring to the f’th angular Fourier coefficient of an element

pattern -  see (22.4),
index in the range 0 < i< M -l  referring to the f’th eigenvalue (in 
decreasing order) or corresponding eigenvector of the covariance matrix 

I  the order of the highest non-vanishing term in the angular Fourier-series
representation (22.4) for the element-pattems 

I identity matrix
I q first column of I

I v ( x )  modified Bessel function of the first kind of order v and argument x
Int (x)  integer part of the real number x
j  square root of -1

J  Fisher information matrix -  see chapter 5, sub-section 5.2.1
J d\  J s  ̂ CRLB matrices for the deterministic and stochastic signal model -  see

chapter 5, sub-sections 5.2.1 and 5.2.6

Jk'ic" k'k""ûi element of J  -  see chapter 5, sub-section 5.2.1



lllllll 1 9 1  Iillilllillllll _______________________________________________ L ist o f  a b b r e v ia t io n s  a n d  s y m b o ls

Jy{x) Bessel function of the first kind of order v and argument x

Jy(t) (inverse) Fourier transform of Jy{coRlc)-  see (3.6.9) in chapter 3
3q (2A+l)x(2/+l) matrix of coefficients of the ^'th terms in the series

expressions for a set of phase modes -  see (CJ.7j in
appendix C

kx function defined by (352) in chapter 3 as: kx = Int( b c l+ 1/2)

k index in the range 0 ^ - 1  referring to the kWi far-field source in a
multiple-source environment -  see chapter 5 

K  number of far-field signal sources in a multiple-source environment -
see chapter 5

K ' rank of Rg: K ' = K  - K q -  see chapter 5, sub-section 5.2.6-d
K 0 rank deficiency of Rg -  see chapter 5, sub-section 5.4.2
Ke effective rank -  see chapter 5, sub-section 5.2.7
Kq{a>, 0, (p) coefficient of the ^*th term in the series expression for the radiation 

beam of a co-phased uniformly excited array -  see (22.14) in chapter 2 
K MxM diagonal co-phase weighting matrix -  see chapter 4, section 4.5
/  index in the range 0 < /< L -l referring to the / t h  angular sample of an

array pattern -  see (45.1) in chapter 4,
(frequency-) index of the Fourier series coefficients in the range 
/ lo ^  ^  / hi -  see chapter 5, sub-section 5.2.2 

/ lo  ̂ / hi lower and upper (frequency-) index defining the passband for the Fourier
series coefficients -  see chapter 5, sub-section 5.2.2 

L Number of points at which an array pattern is sampled -  see chapter 4,
section 4.5 

In ( • ) natural logarithm
m  index in the range 0 < m < M-1 referring to the m *th array element

M  number of array elements
M ' number of processed phase modes: M ' -  1+2A -  see chapter 5, sub­

section 5.3.2,
twice the number of sub-array sensors in ESPRIT -  see chapter 5, sub­
section 5.2.5

M" number of phase-modes in a spatial-smoothing scheme subset -  see
chapter 5, sub-section 5.4.2,
number of sub-array sensors in ESPRIT -  see chapter 5, sub­
section 5.2.5

max( • ) a number equal to the largest of a (parenthesised) set of real numbers
min( • ) a number equal to the smallest of a (parenthesised) set of real numbers
n time index in the range 0 < n < N-1
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N  order of FIR block in HR mode alignment filter -  see chapter 3,
section 3.6,
number of combined modes in the synthesis of sharp nulls -  see
chapter 3, section 3.4 and appendix C.2
number of temporal snapshots -  see chapter 5, sub-section 5.2.2

Nco order of FIR mode alignment filter -  see chapter 3, sections 3.2,3.6
5\̂ (<p) sharp pattern null -  see (3.4.3) and (C.2.1) in chapter 3 and in

appendix C.2, respectively
fÂ (cy, 0 ,0 ) spatial power density of ambient noise -  see chapter 5, sub-section 5.3.2

pseudo-random data set as described in chapter 5, sub-section 5.5.2

{N ^^’ pseudo-random data vectors as described in chapter 5, sub-section 5.5.2
p  coherence coefficient -  see chapter 5, sub-section 5.5.2
p{t) a pulse in the time domain -  see (2.3.2) and (B.1.1) in chapter 2 and

appendix B .l, respectively 

Pm{&̂  (pyt) time-domain signal received by the m ’th array element -  see (B.l.2) in 
appendix B.l

PmiG, (p, oS) ffequency-domain signal received by the m’th array element -  see (B.I.6) 
in appendix B.l

P(0, (p,t) Summed time-domain response of full array -  see (23.6) and (B.l.4) in
chapter 2 and appendix B .l, respectively 

P{6,(p,oS) Summed frequency-domain response of full array -  see (2.3.4) in
chapter 2

Pk'/c"(co) k'k""xh element of Ps(0)) -  see definition (E.52) in appendix E.5

P(do) cross-spectral density matrix for the array outputs -  see chapter 5, sub­
section 5.2.2

P estimated cross-spectral density matrix -  see (5238)in. chapter 5
FJ^co) cross-spectral density matrix for the sensor noises -  see chapter 5, sub­

section 5.2.2

P«a(^) cross-spectral density matrix of phase-mode noises contributed by the
ambient noise-field -  see chapter 5, sub-section 5.3.2 

Ps(ty) cross-spectral density matrix for the source signals -  see chapter 5, sub­
section 5.2.2

(P (<p) dynamic power pattern of a conventional beamformer, or spectral power
of a general scalar-search superresolution estimator -  see chapter 5, sub­
sections 5.2.3 and 5.2.4 

%  (<j)) spectral pattern for the Bartlett estimator -  see chapter 5, sub­
section 5.2.3

P  (EE, q>) residual spatial spectral pattern of IMP estimator -  see chapter 5, sub­
section 5.2.6
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q index in the range ~Q<q<Q referring to the ^'th term in the series
expression for a phase mode pattern -  see (2.4.10), (CJ.8) in chapter 2 
and in appendix C, respectively 

Q maximum order of distortion terms assumed in the series expression for
a phase mode

Q diagonal matrix defined by (53 J) in chapter 5
Q(m) diagonal matrix defined by (5.4.II) in chapter 5

R  circular array radius
‘radius’ defined via (22.6) in chapter 2 

Ar range resolution -  see appendix B .l
{^m)m an ensemble of random fractional radial displacement errors -  see

chapter 4, section 4.4

^'it"’th element of RsCri -  see definition (E52) in appendix E.5

R  = S x x ^  spatial covariance matrix of x(t) -  see chapter 5, sub-section 5.2.2
R  estimated spatial covariance matrix -  see expression (5237) in chapter 5
R y  mode-space covariance matrix -  see chapter 5, sub-section 5.3.2

R v  v’th spatial-smoothing sub-matrix of the mode-space covariance matrix
-  see chapter 5, sub-section 5.4.2

R spatially-smoothed mode-space covariance matrix -  see chapter 5, sub­
section 5.4.2,
covariance matrix for the combined ESPRIT array -  see (5.2.60) in 
chapter 5

R%, Rxy sub-matrices of R used in ESPRIT -  see (52.60) in chapter 5 

Ryx» Ry sub-matrices of R used in ESPRIT -  see (52.60) in chapter 5 
R* covariance matrix of sensor noises: R* = Sxj^J* -  see chapter 5, sub­

section 5.2.2

R* mode-space noise covariance matrix -  see chapter 5, sub-section 5.3.2
R . noise covariance matrix for the combined ESPRIT array -  see (5.2.60) in

chapter 5

R*x> R#;gy sub-matrices of R* used in ESPRIT -  see (52.60) in chapter 5 

R^yy, R .y  sub-mauices of R» used in ESPRIT -  see (52.60) in chapter 5 

R s covariance matrix of source signals: R s = S s s ^  -  see chapter 5, sub­
section 5.2.2

R^ signal-only covariance matrix: R* = ARgA^ -  see chapter 5, sub­
section 5.2.2

^ x y  sub-matrices of [R - ojR*] -  see (52.61), (52.62) in chapter 5

R s  signal covariance matrix modified by (mode-space) spatial smoothing
see chapter 5, sub-section 5.4.2
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rank[ • ] rank (number of linearly-independent rows or columns) of a matrix
S (12) sampling window function -  see (3.6.6) in chapter 3
S (t) Fourier transform of S (Q) -  see chapter 3, section 3.6
Sic(t) signal radiated by the k'lh far-field source in a multi-source

environment -  see chapter 5, sub-section 5.2.2 
S(r) vector of signals radiated by the K  far-field sources -  see chapter 5,

sub-section 5.2.2
S(co/; Q  f i h  Fourier series coefficient of S(r) over the /I’th temporal sub­

interval -  see chapter 5, sub-section 5.2.2 

{ pseudo-random data set as described in chapter 5, sub-section 5.5.2 
sgn ( • ) sign function -  equals to 1 (-1) for a positive (negative) argument.
t time variable
fc, td time delays refeired to in chapter 2, section 2.3
tm compensated delay to m’th array element -  see (2J3) in chapter 2
în discrete time variable -  see chapter 5, sub-section 5.2.2

At temporal sampling interval, equals to At = InlcOs -  see chapter 3,
section 3.6

T  pulse length -  see chapter 2, section 2.3,
sampling time -  see chapter 5, sub-section 5.2.2 

T(<p) target pattern for sharp null -  see (3.4.4) and (C.2.2) in chapter 3 and in
appendix C.2, respectively 

T non-singular transformation matrix used in the development of (LS and
TLS-) ESPRIT -  see chapter 5, sub-section 5.2.5 

Tn(x) Chebyshev polynomial of the first kind of order n, defined as:
Tn(x) = cos(n cos-1 jc) 

u a post-DFT correction vector of weights {u^}^ -  see chapter 4,
section 4.6,
observed sample vector -  see chapter 5, sub-sections 5.2.1,5.2.2 

u random observation vector -  see chapter 5, sub-sections 5.2.1

U vector of the ( f t h )  Fourier series coefficient of x(t) over all the N
temporal sub-intervals -  see chapter 5, sub-section 5.2.2

U vector of the ( / ’th) Fourier series coefficient of x(t) over all the N
temporal sub-intervals -  see chapter 5, sub-section 5.2.2

U eigenvector matrix of R* -  see chapter 5, sub-section 5.5.2,
eigenvector matrix of a ‘pre-whitened’ hermitian matrix -  see 
appendix E.l,
eigenvector matrix of R s -  see appendix E.4
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T a correction vector of array channel weights -  see chapter 4,
sections 4.5, 4.6

Vi eigenvector corresponding to the z’th eigenvalue (in decreasing order)
of R -  see chapter 5,sub-section 5.2.4 

Vi eigenvector corresponding to the z’th eigenvalue (in decreasing order)
of R -  see chapter 5, sub-section 5.2.5

V eigenvector matrix comprising M  eigenvectors of R -  see (5.2.54) in 
chapter 5

V eigenvector matrix for the combined ESPRIT array -  see chapter 5, sub­
section 5.2.5

V* matrix comprising K  orthonormal eigenvectors of R corresponding to
its largest eigenvalues -  see chapter 5, sub-section 5.2.4

V* sub-matrix comprising the first K  columns of R*V -  see chapter 5, sub­
section 5.2.5

V# matrix comprising (M-K) orthonormal eigenvectors of R corresponding
to its smallest eigenvalues -  see chapter 5, sub-section 5.2.4 

var ( • ) variance of a random variable
{wn) complex weights for the synthesis of sharp nulls -  see (3.4S) and (C.2.3)

in chapter 3 and in appendix C.2, respectively 
w weight vector of a beamformer or of a minimum-variance estimator -

see chapter 5, sub-sections 5.2.3 and 5.2.4

W LxL real diagonal weighting matrix -  see (45.7) in chapter 4
observed sampled (temporal) value of the signal at the m ’th array sensor 
at time -  see chapter 5, sub-section 5.2.2 

x(tn) vector of observed sampled (temporal) values of the signal at the array
sensors at time -  see chapter 5, sub-section 5.2.2 

Xfn(t) random variable of the received temporal data at the m’th array sensor -
see chapter 5, sub-section 5.2.2 

x(t) random vector of the received temporal data at the array sensors -  see
chapter 5, sub-section 5.2.2
/ ’th Fourier series coefficient of  Xm(t) over the « ’th temporal sub­
interval -  see chapter 5, sub-section 5.2.2 

X(c0/;O  ^ th  Fourier series coefficient of x(t) over the w’th temporal sub­
interval -  see chapter 5, sub-section 5.2.2 

X(co/;Q f t h  Fourier series coefficient of x(t) over the « ’th temporal sub­
interval -  see chapter 5, sub-section 5.2.2 

A^ (̂f) random noise signal at the m ’th array sensor -  see chapter 5, sub­

section 5.2.2
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xjf)  vector of random noise signals at the array sensors -  see chapter 5, sub­
section 5.2.2
/*th Fourier series coefficient of xjf)  over the /I’th temporal sub­
interval -  see chapter 5, sub-section 6.2.2 

y(t) mode-space data vector -  see (53.Î) in chapter 5,
yv(0 v’th spatial-smoothing subset of the mode-space data vector -  see

chapter 5, sub-section 5.4.2

v’th spatial-smoothing subset of the mode-space noise vector -  see 

chapter 5, sub-section 5.4.2 
z a complex number defined by (5.2.39) or by (53.15) in chapter 5 for

equally-spaced linear arrays and circular arrays respectively

Z matrix defined in (E.4.6) in appendix E.4
a  relative signal phase -  see appendix C. 1
{ }  set of mode-space weights -  see chapter 3, sections 3.2, 3.5

9y (p) function defined by (335) in chapter 3 
a  mode-space weight vector -  see (4.6.14) in chapter 4

first row of steering matrix -  see (52.78) in chapter 5 
[pm]m an ensemble of random angular displacement errors -  see chapter 4,

section 4.4
P^(û), 6, q>) function defined by (33.6) in chapter 3
A  A , A  null-steering control phases -  see chapter 3, section 3.4
{ p r } sectorally-controlled null-steering phases -  see chapter 3, section 3.6
p  vector obtained from b by removing its first element -  see chapter 5,

sub-section 5.2.4
[y^] set of post-DFT minimisation parameters -  see (4.6.2), (4.6.3) in

chapter 4

'Ÿk ^’th row of matrix F -  see definition (E.4.8) in appendix E.4

F  matrix defined in chapter 4, section 4.5 as: T  = [G”G]‘  ̂G",
sub-matrix of G -  see definition (E.4.8) in appendix E.4 

A ESPRIT sub-array displacement vector -  see chapter 5, sub-section 5.2.5
A ESPRIT sub-array displacement: A = \A \ -  see chapter 5, sub­

section 5.2.5

c _ f 1 M = 0
0(n) Kronecker delta function defined as: 0(n) = ( ,

( 0 n ^ O
[em)m an ensemble of random phase errors -  see chapter 4, section 4.3,
{^kny £kn/} pscudo-random (phase) data as described in chapter 5, sub-section 5.5.2
f  a stabilising parameter in the frequency-sampling implementation of a

digital filter -  see (3.620) in chapter 3

Ck'k" k'k"'xh element of as defined in appendix E.4
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6 angle relative to the vertical axis in a spherical coordinate system

6 ^-coordinate of desired beam pointing direction -  see (223) in chapter 2

Û ‘angle’ defined via (22.7) and (22.8) in chapter 2

0  defines the elevation range of the array - see appendix C.3
rj sidelobe level in dB -  see (43.7) in chapter 4

K  constant defined in chapter 3, section 3.6: equals to the inverse of twice
the inter-element spacing in wavelengths 

XV, K(o constants defined by in chapter 3
an ensemble of random fractional amplitude errors -  see chapter 4, 
section 4.3

K constant vector used for the MVIR minimisation constraint -  see
chapter 5, sub-section 5.2.4

A wavelength -  see (322) in chapter 3

Xhi wavelength at upper frequency G>ai
Xi f ’th eigenvalue (in decreasing order) o f  R -  see expression (52.47) in

chapter 5

-A, A  lower and upper index of processed phase-modes
Aq number of phase modes out of the set {-A to A} that are left out in the

synthesis of a sectoral phase mode -  see chapter 3, section 3.5

A  eigenvalue matrix for a general hermitian matrix
// index in the range -A<ii<A  referring to the |f ’th phase-mode. The

notation in this thesis is that a positive jj. corresponds to a negative phase 
slope [change of electrical phase with q>]

^  FM modulating coefficient -  see (B.1.1 ) in appendix B.l,
a complex constant used in (E3.1) in appendix E.5 
function defined by (4.4.4) in chapter 4 

Ç TAM state-space vector -  see (52.78) in chapter 5

S LxL  diagonal phasing matrix defined by (4.6.11) in chapter 4
7Ü 4 tan‘ 1̂ = 3.14159...

n(t) waveform envelope of a pulse -  see (232) and (B.1.1) in chapter 2 and
appendix B .l, respectively

ri{co) Fourier transform of /7(f) as defined by (232) or (B.1.1)
n  transformation matrix in an MVPR algorithm -  see chapter 5, sub­

section 5.2.4,
projection matrix in IMP algorithm -  see chapter 5, sub-section 5.2.6 

p  a positive real constant parameter in the exponential description of the

element pattern -  see (2.43) in chapter 2
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combined error variance as defined by {425) or (4.4.7) in chapter 4, 
signal-to-noise ratio as defined in chapter 5, sub-section 5.5.2 

de. Ok variances of random variables [em] and {Km) -  see chap ter4,
section 4.3

o h  d ^  variances of random variables {rm\ and [Ym) -  see chapter 4,
section 4.4

a* noise power at the array sensors -  see chapter 5, sub-section 5.2.2
cè noise power at the mode-space ‘elements’ -  see chapter 5, sub­

section 5.4.2
Çi f’th eigenvalue (in decreasing order) of R* -  see expression (52.47) in

chapter 5

Zm co-phase delay for the m’th circular array element -  see (23.1) in
chapter 2

Zhi maximum effective extent of Jy^t)*S{t) in the time domain -  see
chapter 3, section 3.6 

Zs ‘sampling time’, defined by: Zs = 2 k!Am -  see chapter 3, section 3.6
(referenced) propagation delay from the k'xh source direction to the 
m’th array sensor -  see chapter 5, sub-section 5.2.2 

xC respective first row of V* and V* -  see chapter 5, sub-section 5.2.4

Y^, matrices V* and V . with their respective first row removed -  see
chapter 5, sub-section 5.2.4 

(p azimuth angle variable in a spherical coordinate system

(p ^coordinate of desired beam pointing direction -  see (223) in chapter 2
qp iT-dimensional vector variable of azimuth angles

(j)k X:’th DOA parameter -  see chapter 5, sub-section 5.2.1
0k estimate of the ^’th DOA parameter -  see chapter 5, sub-section 5.2.1
0  vector of K  DOA parameters -  see chapter 5, sub-section 5.2.1
0  estimate of the vector of DOA parameters -  see chapter 5, sub­

section 5.2.1

0^(6, (p, cS) radiation pattern of phase mode number fJL
4 ^  Lxl pattern vector of phase mode number -  see (45.10) in chapter 4

Lxl pattern vector of /f’th phase mode after pre-DFT correction -  see (4.5.15), 
(4.65) in chapter 4

1^1^ frequency and elevation averaged vectors defined by (4.7.9), (4.7.10), 
elevation-averaged vectors defined by (4.7.13), (4,7,14) in chapter 4

&  matrix of vectors { }  -  see (4.6.13) in chapter 4
X  scalar Lagrange multiplier -  see (5226) in chapter 5
X  vector Lagrange multiplier -  see (5231) in chapter 5
Xm function defined by (435) in chapter 4
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[¥m]m an ensemble of random rotation errors -  see chapter 4, section 4.4

Yk kk ’th element of Y  -  see (5259) in chapter 5

^/f+i/2 a sin(<p/2)-type pattern null formed by the phased subtraction of adjacent
phase modes and

target pattern for the /z’th phase mode: -  see chapter 4,
section 4.5

Lxl ideal pattern vector of ju’th phase mode -  see (45.11) in chapter 4 

Y  matrix of vectors { } -  see (4.6.10) in chapter 4,
a diagonal phasing matrix defined by (5259) in chapter 5, 
a diagonal subset phasing matrix defined by (5.4.2) in chapter 5

Q  defined in appendix C.3 as 12 = (a )R /c )sm  6

œ angular (temporal) frequency
(ÛQ centre frequency
(û£ discrete angular frequency defined as (^nfT)£ -  see chapter 5, sub­

section 5.2.2
cUy sampling (angular) frequency -  see chapter 3, section 3.6

Acû frequency sampling period for the digital reconstruction of a phase mode
coefficient -  see chapter 3, section 3.6
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B. APPENDICES FOR CHAPTER 2

B.l CIRCULAR ARRAY RESPONSE TO A LINEAR FM PULSE

Let us consider the following linear FM waveform with envelope iT(r), propagating 
towards the circular array of Fig. 2.2.1:

= , \ t \ ^ m  ■■■(B.1.1]

where (Cûo+^0 is the instantaneous frequency and T  is the pulse length. With tc and 
{tm.} defined as in section 2.3, the frequency-domain signal received at the m'th array 
element is given by:

<p, a) = (p,CO) d( W )  ei . . .  (b j 2)K<p,co)\

When all the received signals are eventually summed and passed through an 
equalising network whose frequency response is given by:

(m) = ■■■(B.U)

we obtain:

F(0,ç),r) =

—  I dCD F (9y  Ç, G ) ) I
L  J -

^ O O  f  oo

= I dû) ûbf/2  ̂ I df  n ( f )  • • • (B.I.4)
J - o o  J ~ o o
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provided that the steady-state array pattern F{6, (p, (ù+cûq) is given by (237) over the 

full bandwidth of the signal. For a rectangular envelope TI{t\ the bandwidth of p{t) is 

approximately given by [(^r^)+4;r/]/r about the central frequency tïïo» where the 
parenthesised term ($T^) is commonly referred to as the time-bandwidth product. 
Changing the order of integration leads after some manipulations to:

P ( e ,  (p, t) = ■ ■ ■ (B.I5)

which is a (negative-slope) linear FM pulse that follows the steady-state radiation 
pattern of the array. This output pulse is typically much narrower than T, its time 
length being approximately given by 4;rT/(^T^).

If F(0, <p, œ) is not frequency-independent over the full bandwidth of the signal, or 
equivalently, when the uncompensated delay across the array is not much smaller 
than 47tTf(^T^) (which is also the time length of the pulsed contribution from each of 

the array elements), then at angle (0, q>) the steady-state array pattern does not apply. 
Evaluating the separate time-domain contributions of the signal received by the 
various array elements, one obtains for the m'th array channel:

Pm(6, <p,t) = dcopmiO, <p, œ)ei(c-ctfCf e/*"

= ei ■ ■ • (B.1.6)

where frequency-independent element patterns have been assumed. The time-varying 
array pattern is expressible (to within a constant) as:

P(0, (p, t) =

M-l
X  (p)e-j gv^(f-ro)fmn(-^(r-fc-W) . . .

m=0

In many practical cases the sum on the right hand side of (B.17) may be approximated 
by temporally-displaced short CW pulse term. Let Ar denote the range resolution the 
system is designed to achieve. It follows (for an active radar or sonar) that:

4 ® 7 /(|r2 ) = lA r jc  ■ ■ ■ (BJB)

which in turn leads to:
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Now assuming that the (arcwise) inter-element spacing is smaller than half a 

wavelength at the highest frequency o f operation, it follows that:

Ric <MXhi/4 tuc equi-delay excitation
• • • (B.l.IO)

2 R/c < MXhiI2 nc  co-delayed excitation

where Xhi is the wavelength at the highest frequency. Equation {B.1.9) together with 
inequality (B.I.IO) subsequently lead to:

which for many practical cases is found to be negligibly small

M < 3 2  , (4 r /^ / )S 1 0  , > 1000 =>

< 0.00512 = (0.29°/360°)2æ« 2n

Next, we note that /1(a) effectively vanishes when loi > 2nlT. It follows that only the 
time interval given by:

l^(^" W ) l  — '"(B.1.12)

is of consequence in the analysis. But when slightly rearranged and use is again made 
of {B.l.8) -  {B.1.11) the above inequality takes the form

< 2 m j r + 4 t l  <  - 1— [ ] . . .  (B.U3)
($T2) (AtIXhi) {A rlh lif

Substituting practical values for Af, (^T^) and (Arl^uù we finally obtain:

A/ ^3 2  , 10 , (gr^) ^ 1000 ^

m S 0.0303 = (1.74°/360°g;t «  2n

Taking the effect of the phase terms and in (B.1.7) to be negligible.
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the array response may be approximated by a sum of time-shifted pulses all sharing 
the same linear-FM modulation:

P(6, <p, t) = . . .  (B.U3)
^  m=0

where constant terms have again been omitted. In other words, transient effects in the 
array response are essentially representable by linear temporal displacements of 
(compressed) pulsed contributions from the array elements. The actual displacement 

Aat can occur between pulses contributed by any two elements m' and m",

relative to the compressed pulse length Ak T!{^T'^) , is bounded by virtue of {B.1.8) 
and (B.1.10) (which also applies to

MXhi/ I tic ^  (M/An) ...{B U S)
4;rr/(Ç r2) lA rIc  ArlXm

and for the previously assumed case of: Af < 32 , ArlXm  ̂  10, the maximum pulse- 
to-pulse displacement does not exceed about one quarter of the compressed pulse 
width.
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B.2 DERIVATION OF (2,4.11)

We start from expression (2.4.4) for the far-field phase mode pattern:

(p̂  (o) =  ^  g-;(2?i/M)/im^‘[(û)/î'c)+ylnp]sin 6cos {(p-lTOnIM) . . .  (2.4.4)
^  m=0

and make use of the Bessel identity -

^[(a)R/c)+j}iip]sinecosiq>-27tm/M) -  ^  j v j^  y l n p ) s i n (<P-2;r/?z/M)

to obtain:

M-l
0p,id,(p,(O) = pho(6) 2  j ''J v [ (^ + j\a p )à 3 x e '] e - i^ n h '^

\̂ -eo /7Z—0

Substitution of

M-l
evX2«/M)(At-v)m = ^  5(^-v+^Af)

^m=0

in (B2.1 ) leads to:

0^,(6. (p. CO) = pho (0) X  F*'>^J,i*qU [ ( ^ + ; ln p )  sin 0]e-y(#‘+?AO«> • • • {B22}

from which (2.4.11) immediately follows.
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C. APPENDICES FOR CHAPTER 3

C.l MAXIMUM DOA ERROR IN A MULTIMODAL DF DUE 
TO THE PRESENCE OF A SECOND SOURCE

Consider a circular multimodal array system receiving a strong signal from a source 
in direction (f>, while a second signal from a weaker source at the same frequency 
reaches the array at amplitude A and phase a  relative to the first signal. The angular 
error in estimating the direction of arrival of the strong signal using (332) is given by:

*E = (j>-aig(ej^+A e-/“)+arg(l+Ae-/“)

cos 0+A cos a   ̂ ^  ^

wjhere we have assumed, without loss of generality, that the second source is 
angularly located at cp=0. To find the values of ^  and a  which maximise E we 

differentiate it with respect to (f> and a  and equate to zero:

= ------A+cos{<l>-a) ^ — A + cosa  ...(C.12)
l+A^+2Acos(0-cr) l+A ^+2A cosa

i ^ = A  = 0  ...(C .U )
d(j> l+A ^+2A cos(0-a)

which lead to:

co sa  = cos(0- a) = -A • • • (C.1.4)

or
a  =71- cos-^A • • • {CA5)

(j> = 2(x ’■■(C.1.6)
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(The solution ^  = 0 leads to a minimum rather than a maximum error). 
Inserting (C.Î.4) - (CJ.6) in (C.1.1) we obtain:

= 2a-tan-H sm2«-ç<?5« 5in« i+tan-ir -c o s» ™ »  ] 
cos2a-cos^ce l-c o s^ a

=  2«-tan-i [ [ 2 2 ! ^  ]
-sm (;r-a) sm(;r-a)

= 2a-{a+nl2)+{a-7tl2) = 2 a -n =  2[Ç  - {n-a)\

= 2sin’̂ A iC.1.7)

The ‘maximum-error’ geometry which yields (C.l.7) is illustrated in the phasor 
diagram of Fig. C.1.1 and results for several values of A are tabulated in Table 3.3.1 
in chapter 3.

Fig. C.1.1 Maximum error in estimated angle of arrival
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C.2 SYNTHESIS OF SECTGRALLY-CGNTRGLLED SHARP 
NULLS

A multibeam set of directional beams with sectorally-controlled nulls that are sharper 

than sm[(((>-pr-27cm/M)f2] may be synthesised (at the expense of increased 
complexity and wider beams or fewer sets of nulls) by linearly combining N>2  
sectoral phase modes corresponding to the same angular sector and having adjacent 
(effective) mode numbers -  see Fig. C2.1 for the case of iV = 3.

Array Elements M-2 M-l

D i g i t i s i n g  N e tw o r k

D i g i t a l  DFT 
0

P o s t - D F T  f i l t e r i n g  a n d  a l i g n m e n t

M-2 M-l

-A • • ■ • O' ' A-2
Weighting unit

i n
Inverse DFT 

0 l i t !  M-l

-A+1 • ' ' 0 • ■ ' A-1
Weighting unit

Inverse DFT 
0 i l l !  M-l

-A+2 I • 0 ■ ■ ■ • A
Weighting unit 

I » « I I 1 1 1  I
Inverse DFT 

0 i l l !  M-l

2p M-l

Wo WQ Wi Wi W2 W2

M S i n g l e - n u l l  

Fig. C.2.1 Sharp post-nulling with 3 sets of directional phase modes
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The superscripts in p  \  • • •, • • •, are used for consistency with the
notation of section 3.5 (see Fig. 3.5 J )  and denote the directions {InmlM ) o f the 
corresponding beams in which the nulls are steered. The weighting and phasing 
scheme follows the lines described by (3.4.3) - (3.4.6) for the combination of 
omnidirectional phase modes. The m’th output pattern is accordingly given by:

n=0
N-1

— gj(F-l)P 1 2 j(p-2Km/M) y .  -InmlM)
n=0

0<m<M-l •‘■(C2.1)

where A (<p) is given by (35.4) with Aq set equal to iV-1. The set of weights {w„) is 
evaluated, as outlined in section 3.4, by seeking a target pattern of the form:

= A - 2 ? r m / A / ) / 2   ̂ 0<m<M-l •••(C22)

which is characterised by a single null at direction ip ”̂ +2nmfM)^ and using Fourier 
analysis to solve:

N-\
^  -2;rm/M) = -2nmlM)H  ̂ O^m^Af-1 ••'(C23)
n=0

The result for odd N  is as given by (3.4.6):
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C.3 OPTIMAL ELEMENT PATTERN

Consider a circular array of M  radially-symmetric identical elements in which a set

o f 2A+1 phase modes is excited, where A<M/2. Assume 
frequency-independent and angularly separable element patterns:

g (e ,ç )  = g e ( 0 ) '^  — (CJl)
i=-oo

SO that each phase mode pattern may be expressed by (2 .4 .10 ), with each phase mode 
coefficients being given by:

C^î(û). 0) = ■ ■ ■ (C32)
( = - /

In our quest for the optimal element pattern, a set {hi }{=./ of angular Fourier 
coefficients is sought that, over a given frequency band û̂ < cû<cohi and elevation 
range n/2- 0<  6< ;r/2+ 0 ,  would ideally:

i minimise the amplitude and phase variations between the set {C^o(co, of
zero-order phase mode coefficients 

a  render the frequency response of the above coefficients linear in phase and 
constant in amplitude

Hi minimise the amplitudes of higher order phase mode coefficients 

{ { }  l̂ l>0

The above conditions have been partially fulfilled by both types of element patterns 
discussed at the beginning of section 3.6. The first azimuth pattern of 
g<p(ç)= I +COSÇ, has been found to be asymptotically optimal in minimising 

amplitude and in phase variations between zero-order phase mode coefficients, and 
linearising the frequency responses of their arguments. Higher order phase mode 
coefficients had not been specifically minimised, but with being represented by 
only three non-vanishing Fourier coefficients (ho, h.\, h\), each higher order 
coefficient comprises three adjacent Bessel functions, that die down by virtue of their 
asymptotic behaviour for large orders.^ The second azimuthally impulsive element 
pattern, whose Fourier coefficients had been uniformly weighted, has gone even

1 When the order and argument of Jpi^+qM[(o>Rlc)sm 0] are such that: \^,+i+qM\ »  (cûR/c)sin 6, 

then: Jfi+i+qM[((oRlc)s,u\9\'- [2;r(/i+i+^A!0]‘̂ ^{[eû)/?/2c0i+z+^M)]sine}^‘'̂ ^̂
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further in achieving amplitude equalisation of each phase mode, but has also brought 
the total contributions from higher order modes to an impulsive level. We are 
evidently faced with a trade-off between full equalisation which requires a large 
number 27+1 of non-vanishing Fourier coefficients, and low distortion which is best 
served by reducing/. In that respect, the (l+cosç))-type element pattern seems to be 
closest to optimal, especially as the reasonably attractive asymptotic result of (3.6.1 ) is 
also obtained (to within a constant) by higher-order element patterns of the form 
g(p((p)=  ̂ l+cos(p+k{cos2(p+cos3(p).

Other solutions to the elusive ideal-pattem problem involve linear optimisation. 

Ignoring the term geid) in (C.32), the set of equations relating to the ^ ’th

coefficient of the set of phase modes {0^(0, <p, may be put into the following
matrix form:

Jq(0)h = Cq(n) -••(€33)

where:

Q  = {cûRlc)sm 6 ••• (€3.4)

h  = \h.i • • • h.\ Ao h\ - • • hj)^ • • • (€33)

Cq(^Q) — 0) , • • • , Coqico  ̂0) , • • • » Cj^q{(0, 0)]^ • • • (€3.6)

and J^(/2) is a (2A+ l)x (2 /+ 1) matrix whose /t i’th element is given by:

• • • iC3.7)

Assuming I  < A, we may define the following cost function to be minimised with 
respect to h:

a a 'Z  \jç(.0 ) h - bg(0 )P ■■■(cjjs)
'iio

where.

^LO = {cû[joRlc)sm{nl2- &) 

Q h i  =  cohiR Ic
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AQ  = Qhi- Qlo • • • f C3.10)

<2 > 0, the vectors {bq(Q)]g^ are all zero and bo(Q) is the target frequency response 
vector of the zero-order phase mode coefficients, which, in view of (3.6.1 j, may be set 
equal to:

* 0 ( ^  = [l 1- '

or even

*o(^) = [l !••• 1 ]V ^

The cost function £  may be minimised by differentiating it with respect to the real 
and imaginary parts of each hi and equating to zero. Being a real-valued function, £  
may be equivalently minimised by equating to zero its complex gradient with respect 
to h^, where the notion of complex gradient has been defined and discussed in 
[Bra 83]. The result is:

Jr ih i  Q  ç i h i

d a ' ^  l - ^ \  d a M £ 2 )b o (m  ■■■(C3.ll)

Ou> ^J s2 u )

where each vector or matrix integration is threaded over to the separate terms. Note 
that the value of Q affects the relative emphasis given in the minimisation procedure 
to higher order terms. For even more control, the sum on the right hand side of (C3.8) 
may be changed into a weighted sum

Q

q=-Q

with a user-defined weighting sequence leading to:

J'Af/ Q r-Qw
d £ 2 ^  [—  d m o ( Q b o ( .m

Qio ?=H2
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C.4 SAMPLING OF PHASE MODE COEFFICIENTS

Denoting:

Cpui ~ ((%, ^/2) , O^w îV-1 • ■ • (C.4J)

the frequency samples used in (3.6.18) are respectively given for odd
and even N, by:^

((% ̂ f)C^o ((%, ^/2) 

+e/(^A0(A -̂i)(iv-«)5(-ffl^dr)C^o(-ûîv-n, Tt/l)

= e-yWWN-l)«(c^+C*(v.„)) . OSn^iV-1 ...{0.42)

and

= e-yWJV)(W-i)(»+iC)5 (ü)̂ .4f)Cpo(û)k„ Ji/2)

+e/WA0(W-i)(Ar-n-i/2) 5 (.c:^4r)C^o (-<%-»-!, ?i/2)

= e-;(>«V)(W-i)(B+iC)(c^.C*(^^.i)) , 0^n<AT-l

and under the assumption that (see Fig. 3.6.1 in chapter 3):

5(12) = 0 , II2l>2;r-(%/df

there will be no aliasing within the operating frequency band of the airay.^

The actual frequency samples for each of the the phase mode coefficients 
{C^o{cùn,nl2) , -A<jX<A) are obtainable from calibration measurements of the 
element patterns -  this is treated under the heading of ‘post-DFT correction’ in 
sections 4.6 and 4.7 of chapter 4. The application of one of the least-squares mode- 
alignment schemes described in chapter 4, leads to:

 ̂ Here S (Ü) is assumed real, and note also that: Cfid-cû, n tl) = C^o(©, ntl)
 ̂ The sampling window function should not fall to zero at \(û\<(ùsI2 so as not to introduce zeros on

the unit circle. This may give rise to some frequency-domain aliasing of Cno{o), n tl), especially 
when a gradual rather than an ideal rectangular window is implemented. However, the sampling 
frequency can always be so chosen that the affected interval is kept outside the band \(o\< cohi-
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1̂ 1 M-l
= e~j(:^^lM)t^Gimi.cOn,7tl2) ■■•(CAA)

^  /=0 M^^rn=0

where G/rn((^^^t'^) is the measured complex pattern of the m  ’th array element at 
angle (0 = n il, (p = ln£!L) and angular frequency û), andL>M  is an integer. Invoking 
(2A.10), we can rewrite (CAA) as:

L-l
Ĉ in = f  s  (COn ̂ r )X  C^g((On. 7Ul2) e-J(̂ ^^M)i27C/L)/

^  /=0

— ^  Cfi(Kq)(COni ^/2) . . .  ^CA5)

where/r is the smallest integer such that K M  is an integer multiple of L, Assuming 
contributions from higher order modes to decrease with order, it is evident from
{S.622) that the larger we make K, the more accurate is the approximation (CAA) for
the zero-order phase mode coefficient.

Note finally that if the available data cover only part of the frequency band 

0 to (InfAt)- (Ohi, then in order to avoid zeros of ®^(z) on the unit circle, the data may 
be ‘analytically continued’ as follows:

G^rniCÛHI^C0<(0s-CÛHIynl2) =

G/m{(OHh ;r/2 )fV (0-<% /)(A /c)[l -cos Cln/IL-2nmlM)] . . .  (CA.6)

G/m(0< co< CÙU), n il)  =

G/m{CO[jO, n!2)e-j^ ^ - n  <2miL-2nmlM')\ . . .  4 7j
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D. APPENDICES FOR CHAPTER 4

D .l DERIVATION OF EXPRESSION ( 4 .6 .4 )

We start from expressions (4.62) for the cost function, which we differentiate with 
respect to v " and {^  and equate to zero to obtain:

A A
[ X  E;,G"GEjav = X  E^G"T%% • • • (D.1.1)
fi^-A

We proceed by inserting from (D.l.2} and from (4.63) into (D.ÎJ), which
yields:

A A
[ £  = E o G " y b + [ £  E^G"^*P^ l^f^l'^^f^GE^jv
fJ^-A pb=-A

/W)

= G » 'F o + f [ t  E^G»-p X g E2]v
t̂=-A
/*éO

The terms in the above equation are finally rearranged leading to

[G"G + X  E;.(G"G - f  G"'P';i 1^G )E2] v = G"'Pb • • • (D.l.4)
pb=-A

from which (4.6.4) immediately follows.



Illllll 2 1 7  Iiillllllllllll __________________________________________________ A p p en d ices for ch ap ter 4

D.2 DERIVATION OF EXPRESSION ( 4 J . 2 )

We start from expression (4.7.1) for the cost function, which we differentiate with 
respect to v ^ and { and equate to zero to obtain:

A f<ÙHI f  71/2+9

[ X d œ - ^ I
p=-A J<ÙLO 2 0 S m - e

A 1r(OHi jf7cl2+9
X E . - L 1 d o > ^ \ 1 '

(ùio 2 0 ) 7cH -9

(ÛHI f7tfi+ e

(D2.1)

H = -A, • • •, -1, 1, • • •, A . . .  (D22)

We proceed by inserting from (D.2.2) and from (4.63) into (D2.I), which
yields:

[ %  E ^G % E 2 |y  =EoG "'P})+[%
fj^-A {Ĵ -A

= G " n + ^ [ X  E ^ G "ïV 'f^ G E 2 ]V . . .  (D23)
ft=-A

where G, G" and G^G are defined in (4.73) to (4.7.5). Finally, rearrangement of the 
terms in (D23) leads, after matrix inversion, to (4.72).
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E- APPENDICES FOR CHAPTER 5

E.1 SIGNAL AND NOISE SUBSPACES UNDER GENERALISED 
EIGEN-DECOMPOSITION

The generalised eigen-structure of the matrix pair (R%, R J  may be represented by the 
equation

RyV = R.VA ...(£7.7)

where the MxM matrices A  and V = [Vo V i  Va/-i ] are the diagonal generalised
eigenvalue matrix and the generalised eigenvector matrix respectively. In (£7.7) R% is 
the narrowband spatial covariance matrix modelled as:

R* = ARsA” + R . . . .  (E.I2)

where R& is the K^K  signal covariance matrix, R» is a known MxM non-singular 
covariance matrix of the sensor noises and A is the Mx/jT steering matrix; all three
matrices are assumed to be of full rank and K <M. Denoting the hermitian square
root of R» by:

R . = H H " ...(£ 7 J )

equation (£7.7) may be recast into the following equivalent form:

RyU = U A  ...(£7.4)

where the hermitian matrix Ry and the unitary matrix U are given by:

Ry = H iRxH-" = H lA R sA 'B -" + < ^ I  . . .  (E.1.5)

U = H " V  ■■■(E.1.6)
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with I  standing for the MxAf identity matrix and H " denoting the transpose conjugate

of H"^. The (diagonal) elements of A  and the columns of U are clearly the ordinary 
eigenvalues of Ry and their associated eigenvectors, respectively. The operation

y = H

that leads to the above transformation is commonly referred to as pre-whitening. 
From (Ed A) and (E.15) we have:

[H-i A RsA lH -^U  = U [A - <t5I] . . .  (Ed.7)

and since rank(AR&A^ = K  while H and U are full rank matrices, it follows that 

{M-K) eigenvalues of [H ^ A R g A ^ ^  on the main diagonal of [A -cr^I] must 
vanish, or, in other words, the (M-/T) smallest eigenvalues of Ry (or, equivalently, 

generalised eigenvalues of (R%, R J  ) must be equal to cr*. Inserting (Ed.6) in (Ed.7) 
(or alternatively, starting from (Ed.I) and (Ed2)) we also have:

ARgA"V = R .V [A -q g l]  . . .  (Ed.8)

Arranging eigenvalues in decreasing order of magnitude it immediately follows that:

A R gA %  = 0 , K < i< M -l

which, when pre-multiplied by Rg (A"A)"^A” yields

A^Vi = 0 , K < i< M - l  • ‘■(Ed.9)

The set of generalised eigenvectors associated with the smallest (M-K)
generalised eigenvalues of (R%, R«) therefore spans the ‘noise sub-space’ of vectors 
that are orthogonal to the columns of A. In addition, as the bottom (M-K) rows of 

[A - CJ Î] are zero, (Ed.8) leads to:

ARgA"[Fo V i  V k.{\ = R J Y o  V i  V k-i ] [A* - q j l ]  . . .  (Ed.10)

where A* comprises the top K  rows of A  and I is the K^K  identity matrix. It is 
evident from (Ed .10) that the column space of A is spanned by the columns of

R^[Fo V i  Vx-i]. Consequently, the set of vectors { R ^ F /lS  spans the signal
sub-space corresponding to the steering matrix A.
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Note that the vectors sets {Vo* •••.  ^ m-i ) and }
are not orthogonal. This means that although the noise and signal sub-spaces 

corresponding to the steering matrix A are spanned by the sets and

{R*Vj}jLo respectively, they are not spanned by the respective complementary vector 
sets and On the other hand, the signal and noise sub-spaces

corresponding to the pre-whitened steering matrix H A are spanned by the 

orthonormal vector sets and respectively^.

The (narrowband) MUSIC spectral pattern

is obtained from the MVPR pattern for the pre-whitened array 

2X<P) =

by setting:

where.

y .  = [VKVK^i Vm-i] •--(E.1J2)

(E.1.11) is also obtainable from the MVPR pattern for the unprocessed array:

= ---------------—77-3=--------------------A\(p, û}t))irR3f na(<p, too)

when n  is set to:

n  = q;,R.V.V:

1 [Roy 89] mistakenly assumes to spans the noise sub-space corresponding to A. This
does not affect the development of the ESPRIT algorithm which depends on the (correct) use of 

[R ,V ,}S  as a vector set that spans the signal sub-space, but it does lead to an incorrect 
expression for the spectral pattern of MUSIC.
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E.2 TOTAL-LEAST-SQUARES MINIMISATION OF (5 .2 .7 4 )

Denoting: F^y = [F^yg F%y^ minimisation of the Frobenius norm
in (52.74) is equivalent to the minimisation of:

2  Pxyt^xy^xyF jcyic
rxyo,rxyi,’-- , f  w-i ĵ =0

-•■(E2.1)
f 1 k ' = k"

F i y , ,F ^  M  , 0 < k 'X < K A
^ ^ \0  k '^ k "

which may be performed with the aid of a set of K  real Lagrange multipliers 

%o, % i,..........» Xk-\-

K -\

( Z  + X k ( \ - F x y ^ F ^ ^ ) ] } = 0 , 0 < k ^ K - l
k=0

• ••(E22)

In (E.22), — — denotes the complex gradient operator of differentiation with 
oFxy^

respect to a complex vector as defined and explained in [Bra 83] and also in appendix 
B of [Hay 91]. The result is:

[^xy^xy]F xyi^~  Fxyf^Xk > 0 < k  <K-1 •••(E23)

which means that %o, , %Â-i andFj^yg, F xy^y • • • , Fxy^^_  ̂must be eigenvalues
of the hermitian matrix [ V % y  V % y ]  and their corresponding eigenvectors, respectively. 
Pre-multiplying (E23) by Fxyj^ and invoking the constraint from (E2.1) we obtain:

F iy^V xyY xyF xy^  = Xk , 0 < k ', k" < K A  . . .  (E2.4)

which immediately leads to

l l V x y  F j f y  Xk • • • (E^3)
k=0

From (E23) it is clear that IIVxyFxy^ll? is minimised when the orthonormal columns 
of Fxy are the eigenvectors corresponding to the K  smallest eigenvalues of 

[VÏyVxy].
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E.3 ELEMENT-SPACE COVARIANCE MATRIX FOR A 
CIRCULAR ARRAY UNDER AN ISOTROPIC NOISE FIELD

Consider a circular array of M  equally-spaced radially-symmetric sensors, arranged 
on a ring of radius R  on the (horizontal) jcy-plane, and assume the sensors to be 
horizontally omni-directional, i.e. be characterised by element patterns that are 
independent of the azimuA angle (p. Denote the spatial power density of the ambient 

noise field by 6, (p), and the cross-spectral density matrix of the ambient noise 
field contribution at the M  array sensors by P*,(n)). For a spatially-white noise-field 
that is statistically independent with respect to direction we then have:

£ d (p 9 {i(û , 6 ,  Ç))e/((^/c)[cos {(p-lTim'IM) -  C O S  iç-2nm"IM)] sin 0 _

where is the m'm" ’th element of and (o) is the common elevation

pattern of the sensors. But the last term on the right hand side of (E3J) is given by:

^j{coR/c)[cos {(jhlTon'IM) - cos (^-2nm"/M)sin0 —

2  %  y>''-''7v'(^sine)/v'(^sin0)e/(2'«'WXmV-m'v')e-y(v'-v")0 ...(E 32)
V =-oo y "=-oo

where Jy(x) is Bessel function of the first kind of order v and argument x. Inserting 

(E3.2) into(E3.1) leads, for a horizontally isotropic noise field 0), to:

J fTt oo oo
1  j ' ^ - ' ^ J A ^ s i n e v r i ^ à n e )

0 v'= ~oo v"= -oo

co)ü\(̂ cù, 0)sin0 f d(pe-K '̂-^")(P
J-1C

J tIZ oo

0 Y=-eo

~ ^ f  sin[7T(m'-m")/M] s i n 0 ) g g ( 0 , 0 ) s i n 0  *• • (E33)
Jo
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where use has been made of the Bessel identity:

V=-*>o

Let us now consider two extreme cases: i an impulsive noise field at some angle Oq

a  isotropic noise-field and element pattern
In the first case, (E33) simplifies to:

•‘•{E33)
7]a(û))=(2;r/M)fAû:m, 6o)gQ(6o> co)sm0o 

whereas in the isotropic case we may use the Bessel identity

rI d6Jo(x sin 0) sin 0 = 2sinjc !x • ■ • (E3.6)

to obtain:

^a(û>)sin [(2©fyc)sin(;r(m'-m")/A/)]/[(2û)/?/c) sin(;r(m'-m")/AO] 

r]a.{cù)={AnlM)O^Cû)gl{(û) • • • {E3.7)

Under an impulsive noise-field, it is clear from {E3.5) that for the pairwise cross- 
spectral power density (and therefore also the narrowband covariance) to fall to zero, 

(2m/?/c)sin((m'-m")^/M) must be equal to one of the zeros of Jq. But since the zeros 

of Jq are not uniformly spaced, there can be no frequency and array radius at which 
the noise of all pairs of sensors becomes uncorrelated (or, in other words, spatially- 
white). This point is illustrated in Table E.3.1 for an 8-sensor circular array under an 

impulsive noise field at Oq = n!2, where the different (arcwise) inter-element spacings 
required to decorrelate the noise at different array elements are listed.

In the case of isotropic noise and element pattern, it follows from {E3.7) that in 
order to decorrelate the noise at the array sensors, we must have:

(IcoRfc) sin(;r(m'-m")Af) = (m'-m")7u • • • (E3.8)
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Obviously, (E.3.8) cannot be simultaneously satisfied by all {rn-m") and full spatial 
whiteness of the noise cannot be achieved. Note though that the noise between 
(isotropic) neighbouring sensors of a large circular array is nearly decorrelated if the 
arcwise inter-element spacing is set to half a wavelength. This follows directly from 
(E.3.8) when {m-m")IM «  1, and is also evident from Table E.3.2 which lists the 
(arcwise) inter-element spacings required to decorrelate the noise at different isotropic 
elements of an 8-sensor array under an isotropic noise field; for m'-m" = ±1 the 
decorrelating inter-element spacing is close to half a wavelength.

nï-nï ±1,±7 ±2, ±6 ±3, ±5 ±4

dJX 0.393 0.488 0.585 0.737

Table E.3.1:Inter-element spacing (in wavelengths) diX at which = 0

for an 8-element circular array under an impulsive noise field at zero 

elevation (^o = ^/2)

rrf-m" ±1,±7 ±2, ±6 ±3, ±5 ±4

dlX 0.513 0.555 0.638 0.785

Table E.3.2:Inter-element spacing (in wavelengths) diX at which [ f = 0 

for an 8-element circular array of isotropic sensors under an isotropic 
noise field

In the case of an equally-spaced horizontal linear array, true spatial whiteness is 
only achieved in an isotropic or hemispherically-isotropic noise-field when the 
sensors are isotropic and spaced half a wavelength apart -  see [Bur 91] for cross- 
spectral noise densities under isotropic, semi-isotropic^, impulsive and surface 
noise distributions.

The derivation presented in [Bur 91] for the cross-spectral power density in a linear array under 
semi-isotropic noise-field appears to be erroneous. Using our nomenclature, the expression for 
[Prn̂ m'm" under a semi-isotropic noise-field 0=[T/a(û))/2;r(l-cos0o)][l+sgn(^-0o)] is:

(1-COSft))

fib
d0sin (m"-m')sin 6]

c

which only equals (^6Qln)T]i(a)sm[^(m''-m')smd^l[^(m''-m')sind()\ as suggested in 

[Bur 91] when 6q=tiP. or k.
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E.4 RANK OF THE MODIFIED SIGNAL COVARIANCE 
MATRIX

Consider the K'>̂ K covariance matrix Rg of the received signals, and let its rank be 
given by (K-Kq). We may express Rg (conveniently normalised to (M'-M"+l), the 
number of phase-mode subsets formed in the spatial smoothing scheme of section 5.4,

sub-section 5.4.2) in terms of its eigenvalue matrix A  and the corresponding 
(orthonormal) eigenvector matrix U:

J ------- R .  = UAU" (EA.1)

Note that U is full-rank whereas the diagonal matrix A  has rank (K-Kq) with ATg zero 
eigenvalues on the main diagonal. Expression (5.4^) for the modified signal 
covariance matrix Rg may be rewritten as:

M'-M"

Rs= X ^’'UAUV'''=DD"
V=0

• (E.42)

where V  is defined by (5.42), and

D = [I .........

I V
u

u
u

1/2

1/2

1/2

(E.43)

and A^^ has the square roots of the eigenvalues of Rg on its main diagonal. Clearly,

rank Re = rank D - (E.4.4)

and by rearranging the columns of D (which has no effect on the rank of the matrix), 
we obtain:

rankD = rank(ZG) • • • (E.45)
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where: 

Z =

I
Coo 0 . . .  0 Cbi 0 0 C o(K -l) 0 . . .  Q

0 C io • 0 Cii .
. 0

j Ô ! 6 ■ 6
0 m m • 0 C(K-1)0 0 ... 0 0 • •. 0 Q,k -i x k -i )

(E.4.6)

G = (E.4.7)

r J

with Çk'k" denoting the k'k"*ih element of U and T  being given by:

r = [ y b Y i  m l "  ■■•(EA.8)

Yk = [1 e-J^ ev‘20*...................................., 0<A:<Æ-1 . . .  (EA.9)

The K^^(M'-M"+1)K matrix G has a block Vandermonde structure and is therefore of 

full rank provided it has more columns than rows, or, in other words, as long as

(EA.10)

The K  rows of Z are clearly linearly independent (none of the rows can have all its 
elements equal to zero, or else the corresponding signal variance would also be zero), 
so that rankZ = K. By the Sylvester’s law of nullity^ we therefore have:

rankD < min(rankZ, rank G ) = K  

rankD > rankZ + rankG - = K
rankD = K

The rank of D and therefore of the smoothed covariance matrix Rg is thus equal to K  
subject to condition (EA.10),

2 Sylvester’s law of nullity [Mir 55], [W yl75] states that if A is an La^Lab matrix of rank pA and B 
is an Lab^Lb matrix of rank pB, then:

p A +  p B -  L a b  ^ rank(AB) < min ( p A ,  p B >
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E.5 SINGULARITY OF SIGNAL CROSS-SPECTRAL DENSITY 
MATRIX FOR FULLY CORRELATED SIGNALS

Consider the tempo-spatial covariance matrix R s(t) = Ss(t)s^(t-T) and its Fourier 
transform Ps(û>) for the wideband signal vector

S{t) = [Soit) Slit) S2it) SK-iit)V

where two of the signals, say 5^(0 and Si(r), are coherent, so that for some time delay 
to and a complex constant

Soit) =  $  S i  (W o ) (E n )

Denoting

we have:

= Ssic'it)sl^it-i)

and

. Q < k \ k ’' ^ K - \

Pk’A f o )  = I

Çrii(T-ïo) €ri2(T-fo)
^Vii(T+fo) ril(t) riz(l)

RsC"!) — r n i i ) m(T)

3'r@r-i)i(™o) ■■ '■(k-ixk-dW) /

• (E52)

(E53)

Ps(û>) =

\ÿ^Piii(û) ^P i2i(0)e-j^^‘

<5 p n i(o )e j^ ^  P n ico) P iiico)

<5 P2\i(o)ei^^ P2\i(0) P22ico)

P(K-l)liCO)ej^^ P(K-l)liCO) P(K-l)2iC0) '

^Pi(K-i)iG))e-j^^

Pl{K-l)iO))

P2{K-l)iC0)

P(K-l)(K-l)iCO)

(E3A)
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Notice that the first two columns (and also the first two rows) of Ps(û)) are linearly 
dependent, rendering the cross-spectral density matrix singular at all frequencies. The 
signal covariance matrix R s ( 0 )  is given by.

Rs(0) =

and if:

l§Vn(0) $ H 2 W  '‘ ■ <3  ̂1(2T-1)W

^*rn(to) rii(O) H2(0) '' ■ ■ n(^-i)(0)

( \ i ( r o ) r2i(0) T22(0) ■• ' • 2̂(a:-i )(0)

\ ^ ^(^:-i)i(^o) ^(K--i)i(O) r(^-i)2(0) ••• r(^-i)(^:-i)(0) j

(E55)

rk\(to) #  rti(O) 

r\k(fo) ^  rikiO)
\ < k < K A

then the first two columns (or first two rows ) of Rs(0) will be linearly-independent 
and R s ( 0 )  will generally be full-rank. For flat-spectrum signals in the (angular) 
frequency band from cou) to

m ( t o )  = 2 c o s ( ^ Z ^  fo) — ^ -------
2 C0HI-G)L0

■Pkl

and beyond a correlation time of

çohî lq_tQ>n => îQ> InlicûHi-cûio)

l^ î(fo)l is indeed much smaller than rjti(O).
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F. BEAMFORMING SIM ULATION  
PROGRAM

F.l GENERAL OVERVIEW

RING is a user-friendly personal-computer program, written in QuickBasic, for the 
analysis of a ring array of discrete radiating elements. It may be used to assess the 
effectiveness of pre-DFT and post-DFT alignment in arrays of user-specified 
elements, analyse, under various configurations and error models, the beamwidth and 
sidelobe performance of directional beams formed in either element space or mode 
space, display the amplitude and phase characteristics of omnidirectional phase 
modes, and simulate phase-comparison DF based on either omnidirectional or 
sectoral phase modes patterns. The compiled RING package (final update: 12th 
March 1993), running on a DOS platform, comprises four executable files: 
RING.EXE, RINGOPT.EXE, RINGDSP.EXE and RINGHLP.EXE which must all 
reside in the same directory (default: C : \RING or else the user will be prompted for 
the exact directory path), as well as the QuickBasic-4.5 run-time module 
BRUN45.EXE. The program is started by invoking the first executable file name: 
RING. The corresponding QuickBasic source code comprises four chained program 
files: RING.BAS, RINGOPT.BAS, RINGDSP.BAS and RINGHLP.BAS, each of 
which consists of one or more modules of functions and subprograms. For the 
complete list of modules with their respective sub-modules see Table F.1.1

Input to the program is entered either manually or loaded from pre-saved data 
files, and includes the array geometry, parametrically synthesised or measured 
element patterns, pseudo-random aperture excitation errors, element position and 
element pattern errors, complex element-space and mode-space weighting input, 
compensation algorithms and ranges of relevant parameters for computation. Output 
may be graphically displayed in a default or customised form, listed in a scrollable 
table or saved as an ASCII data file in one of three formats. The first two file formats 
allow the saved file to be imported and displayed by external charting packages 
whereas the third is the input/output file format of program RING itself, consisting of 
all the entered or loaded input data together with the evaluated output.
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Modules Submodules

RING.BAS SUB ArrowLine 
SUB ExitProgram 
SUB LoadlnText 
SUB MainMenu 
SUB MatSca 
SUB Savelnput 
FUNCTION LOGIO!

SUB AspectRatio 
SUB ExitText 
SUB LoadRNG 
SUB MainText 
SUB SaveData 
SUB SavelnText 
FUNCTION MAX%

SUB ClearText 
SUB LoadlnOut 
SUB MainDiagram 
SUB MatLet 
SUB Welcome 
FUNCTION ATAN2! 
FUNCTION MIN%

RINGH.BAS
RINGI.BAS

SUB HelpMain
SUB InputDiagram 
SUB LoadEPT 
SUB RandomDiagram 
SUB SetDiagram 
SUB ViewPattData

SUB HelpRandom
SUB InputMenu 
SUB LoadPatt 
SUB RandomMenu 
SUB SetMenu

SUB HelpSet
SUB InputText 
SUB LoadPattText 
SUB RandontText 
SUB SetText

RINGSIP.BAS

RINGOPT.BAS

SUB AspectRatio 
SUB Helplnput 
SUB Helppptions 
SUB HelpOutputP
SUB ArrowLine
SUB CorrectionsDiagram
SUB MatLet
SUB OptionsMenu
FUNCTION LOGIO!

SUB ClearText 
SUB HelpLoadIn 
SUB HelpOutputD 
SUB HelpOutputR
SUB AspectRatio 
SUB CorrectionsMenu 
SUB MatSca 
SUB pptionsText 
FUNCTION MAX%

SUB HelpCorrections 
SUB HelpLoadPatt 
SUB HelpOutputM 
SUB HelpSaveIn
SUB ClearText 
SUB CorrectionsText 
SUB OptionsDiagram 
FUNCTION ATAN2! 
FUNCTION MIN%

RINGD.BAS

RINGM.BAS

SUB HelpWeig^tingD 
SUB OutTextD 
SUB WeightingTextD
SUB HelpWeig^tingM 
SUB OutTextM 
SUB WeightingTextM

RINGP.BAS SUB OutDiagramP
RINGR.BAS SUB OutDiagramR
RINGDSP.BAS SUB ArrayMul 

SUB ClearText 
SUB MatAdd 
SUB Matlnv 
SUB MatSca 
SUB SetArrays 
FUNCTION ATAN2! 
FUNCTION IrrMul! 
FUNCTION MAX% 
FUNCTION ReDiv!

SUB OutDiagramD 
SUB WeightingDiagraihD

SUB OutDiagramM 
SUB WeightingDiagramM

SUB OutputMenuP
SUB OutputMenuR
SUB ArrowLine 
SUB HelpDisplay 
SUB MatAss 
SUB MatLet 
SUB MatTra 
SUB SetEvector 
FUNCTION ImDiv! 
FUNCTIŒ IntRndPatt! 
FUNCTION MIN% 
FUNCTION Relnv!

SUB OutputMenxoD 
SUB WeightingMenuD

SUB OutputMenuM 
SUB WeightingMenuM

SUB OutTextP
SUB OutTextR
SUB AspectRatio 
SUB HelpSaveOut 
SUB MatCnjg 
SUB MatMul 
SUB ScaMul 
SUB SetPsiVector 
FUNCTION Imlnv! 
FUNCTION LOGIC! 
FUNCTION Pulse% 
FUNCTION ReMul!

RINGC.EAS

RINGU.BAS

SUB ConputeD SUB CoiiputeM SUB ConputeP
SUB ConputeR SUB Element45 SUB PostCorrect
SUB PreCorrSet SUB PreCorrSingle SUB PostFilter
SUB SetElements SUB SetGmatrix SUB SetModes
SUB SetModes2 SUB Sine FUNCTION Element!
SUB ArrayMinMax SUB AutoScale SUB Cu stomi seDi sp
SUB CustomiseText SUB DisplayDiagram SUB DisplayMenu
SUB DisplayText SUB DrawGrid SUB LabelsMenu
SUB LiStData SUB ListOutput SUB PlotOutput
SUB SaveData SUB SaveFile SUB SaveOutput
SUB SaveOutText SUB SaveRNG SUB XscaleMenu
SUB YscaleMenu FUNCTION Anplitude

Table F.1.1 Program structure
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RING is fully menu-driven with a ‘local’ flow chart and a ? h e lp  option available 
at almost every menu levels. There are, however, a few limitations to the current 
version of the program:

i element patterns may be randomised in amplitude but not in phase
ii only narrowband (single-frequency) pre-DFT correction may be simulated
Hi the program does not evaluate the directivity, beamwidth or peak sidelobe level 
zv the program cannot generate statistical patterns (minimum and maximum 

envelope, mean, mean ± standard deviation etc.) from a set of Monte-Carlo runs

A general flow chart of the program is displayed in Fig. F.1.1, with the rest of this 
appendix devoted to a detailed account of all menu screens.

start

Q u it
s c r e e n

>f
Welcome
s c r e e n

1 J/

S e t Random
menu menu

Y V
I n p u t
menu

Load  
e le m e n t  
p a t t e r n  

f i l e s

S ave Main Load i n p u t
in p u t menu / o u t p u t

W e ig h t in g O p t io n s C o r r e c t i o n s
menu D menu menu

O u tp u t  
menu D

O utput  
menu P

O utput  
menu R

<1 O utput  
menu M

> >I

S a v e D i s p l a y W e ig h t in g
o u t p u t menu menu M

MV

Fig. F.1.1 General flow chart
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F.2 WELCOME AND QUIT MENUS

When started, the program displays a ‘Welcome screen’ which prompts the user to 
proceed by pressing one of two keyboard letters -  see Fig. F 2.1. Under the R option 
all inputs to the program are reset to their default values. If the P key is pressed, the 
program loads the inputs and various settings of its previous session from a file called 
RINGPRF. RNG. This data file is automatically created in the root directory whenever 
the program quits. In both cases, the program proceeds to the Main menu which is 
described in section F.3.

E n t e r  R t o  r e s e t  in p u t  d a t a

P t o  k e e p  p r e v i o u s  i n p u t s

Fig. F 2.1  Welcome menu

The last menu screen before quitting is shown in Fig. F 2  2 . It is accessible from 
the Main menu under the Q u i t  p r o g r a m  option, prompting the user either to 
confirm his wish to quit or to return to the Main menu without quitting. Each option 
may be selected either by hitting the appropriate highlighted letter (C or Q), or by 
using the up or down arrow keys t and I  to move a red triangular pointer to the 
desired choice and pressing the Enter key. The C a n c e l  option is also be selected if 
the Esc key is pressed.

A re you  s u r e  you w ant t o  q u i t  t h i s  p rogram ?  

^  C a n c e l  ( r e t u r n  t o  Main menu)

Q u i t  program

Fig. F 2 2  Quit menu
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F.3 MAIN MENU

The Main menu screen which is shown in Fig. F.3.1 prompts the user for one of six 
menu options which may be invoked by either using the Î and I keys to move a red 
pointer to the desired choice and then pressing E n te r , or by hitting the relevant 
highlighted letter.

Load input 
/output

S t a r t
program

S a v e
i n p u t

Main
menu

O p t io n s
menu

In p u t
menu

Q u it
p rogram? h e lp

^  In p u t  menu 

O p t io n s  menu 

Load i n p u t / o u t p u t  

S a v e  i n p u t  

? h e lp

Q u it  program

Fig. F3.1  Main menu screen
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F.4 SAVE INPUT MENU

This menu screen which is displayed in Fig. F.4.1 is accessible from the Main menu, 
enabling the user to save all o f the previously entered input data and settings in the 
session as a sequential file of ASCII characters, with a user-defined file name + the 
extension RNG. The file is saved on the storage device selected under the S e l e c t  

d e f a u l t  D r iv e  option (by using the or key to point a yellow arrow at drive 
A, B, C or D) and in the directory specified (without the drive letter) under the 

D i r e c t o r y  P a t h  option. In addition, this menu may be used to perform the DOS 
command D IR  for the selected drive and directory by moving the red pointer (using 
the t and I keys) to L i s t  f i l e s  (DIR) and pressing E n te r (fo rD lR /P ) or by 
pressing L (for DIR/W).

The saved input file may be read and used as an optional input to the program at a 
later session through the ‘Load input/output’ menu which is described in the next 
section.

S e l e c t  d e f a u l t  D r iv e  A:

D i r e c t o r y  P a t h  i s :

L i s t  F i l e s  (DIR)

^  S a v e  i n p u t  a s  a  R IN G -c o m p a t ib le  d a t a  f i l e

? h e l p

E S C ape

E n t e r  nam e f o r  d a t a  f i l e  [RNG e x t e n s i o n  a s s u m e d ] :

Fig. F.4.1 Save input menu screen
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F.5 LOAD INPUT/OUTPUT MENU

This menu, shown in Fig. F J . i ,  enables the user to read input data which has 
previously been stored via the ‘Save input’ menu described in section F.4, or via the 
‘Save output’ menu which is outlined in section F.17. The file, with an assumed RNG 
extension, is loaded from the storage device and directory specified by the S e l e c t  

d e f a u l t  D r i v e  and the D i r e c t o r y  P a t h  options respectively, which also 
serve to define the L i s t  f i l e s  (DIR) option.

If an input data file (one that has been stored via the ‘Save input’ menu) is 
loaded, pressing the Esc key will return the program to the Main menu. If, on the 
other hand, an output data file (stored via the ‘Save output’ menu) is loaded then 
both input and previously computed output data will be read by the program and Esc 
will ‘short-cut’ the program to the Display menu (described and illustrated in section 
F.15) without further processing, to which it would ordinarily arrive at the end of 
computations.

S e l e c t  d e f a u l t  D r iv e  A: B : C: D

D i r e c t o r y  P a th  i s :  \

L i s t  F i l e s  (DIR)

|> Load d a t a  from  R IN G -c o m p a t ib le  d a t a  f i l e  

? h e lp  

ESCape

E n t e r  name f o r  d a t a  f i l e  [RNG e x t e n s i o n  assu m ed ]

Fig. F 5.1  Load input/output menu screen
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F.6 INPUT MENU

The Input menu shown in Fig. F.6.1 together with its sub-menus are used for 
defining the geometric and electrical parameters of the array.

The first four options from the top enable the user to define:

i operating frequency f  normalised to an arbitrary ‘reference frequency’ fo (default 
value: 1). f  is also equal the first frequency in the F re q u e n c y  r a n g e  option 
under the four Output menus described in section F.12 and may therefore be 
entered or modified from these menus instead.

ii pulse width T multiplied by the above reference frequency f o .  For cw operation 
(i.e. infinite pulse width), enter 0 (default value).

Hi total number o f elements Mon the ring (default: M = 8)
IV nominal array radius normalised to the wavelength at the reference frequency fo  

(default: M / A n )

To enter new input (to replace the default or previously entered data) the red pointer 
is brought next to the required option by either using the t  and I keys or by hitting 
the relevant highlighted letter, and then pressing E n te r or the -» key; the new data 
may then be entered in the usual way.

Note whenever M is modified, so are the array radius and the number of sampled 

angles L  (see Corrections menu, section F .ll) . The updated radius is for A/2 inter­
element spacing at f o  and L  is changed to 2M.  The radius and L  may then be modified 
without affecting M

The next five options are ‘switches’, set by first selecting the option as before and 
then using the or *- key to point the yellow arrow at any of the optional positions:

I The Element pattern switch sets the element patterns to
- omni-directional
- omni-directional + a random amplitude fluctuation which is defined under the 

Random menu (section F.8)
- a sum of Fourier (cosine) coefficients + an optional exponential term defined 

under the Set menu (section F.7)
- the above definition + a random amplitude fluctuation as defined under the 

Random menu.
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patterns loaded from measured data fries via the ‘Load element files* menu
the above data + a random amplitude fluctuation as defined under the Random
menu.

Main
menu

Input
menu? h e lp

Load
e le m e n t
p a t t e r n

f i l e s S e t
menu

Random
menu

^ N o r m a l i s e d  F r e q u e n c y  Old New f / f o  = 1 .0 0 0

Nmsed P u l s e  W idth  (0: cw) Old New T fo  = 0 .0

Number o f  e l e M e n t s  Old New M = 8

N o r m a l i s e d  a r r a y  r A d iu s  Old New a/Ao = 0 .6 3 6 6

E le m en t  p a t t e r n s  ^O m ni Rand S e t  Set+ R and

F i l e s  F i l e s + R a n d  

P h a se  c e n t r e  D is p la c e m e n t  ->None Rand S e t  S et+ R and

P a t t e r n  r o T a t io n  

E le m en t  G a in s  

E lem en t P h a s e s  

S e t  menu 

Random menu

Load e le m e n t  p a t t e r n  f i l e s  

? h e lp

Back t o  m ain menu

“’Nomin Rand S e t  Set+ R and

->Unif Rand S e t  Set+ R and  

->Unif Rand S e t  Set+ R and

Fig. F.6.1 Input menu screen
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ii The Phase centre displacement switch keeps the elements in their nominal 
positions (default) or displaces them deterministically, at random or both as 
defined under the Set and Random menus.

Hi The Pattern rotation switch may set each element pattern to be nominally rotated 
according to the nominal position of the element in the array (default) or to 
undergo a deterministic or random pattern roll as defined (beyond the nominal 
values) under the Set and Random menus, 

zv The Element gains and Element phases switches set the gain and insertion phase 
of each channel to 0 dB and 0* respectively (default), or uses the random and/or 
set definitions entered via the Set and Random menus.

The last five options are invoked by moving the red pointer as before and pressing 
Enter or simply by hitting the highlighted letter. Pressing B or the Esc key returns the 
program to the Main menu. The S e t  menu. Random menu and Load e l e m e n t  

p a t t e r n  f i l e s  options are described in sections F.7, F.8 and F.9 respectively.

F.7 SET MENU

Under this menu, which is displayed in Fig. F.7.7, the element patterns, the angular 
and radial displacement and the rotation of each element (beyond its nominal value) 
as well as the gain and insertion phase of each array channel may be deterministically 
set and viewed. Options are selected by moving the red pointer with the t and i 
keys or by pressing the highlighted letter.

Element patterns may be parametrically defined either globally or at two 
frequencies (typically chosen as the lower and upper operating frequencies) with 
interpolated values taken in between. In the first case. P a t t e r n  r e s p o n s e  

F r e q u e n c y  must be set (using the or key) to A l l ,  whereas in the second case 
it is set to F r e q l  or to F r e q 2  before data is entered. The actual values of the two 
frequencies are entered by selecting the I n t e r p o l a t i o n  f r e q u e n c i e s  option, 
pressing Enter or the ^  key and entering the values of the lower ( F r e q l )  and upper 
(F req2) firequencies (normalised to fo), each followed by Enter. Note that there is 
no extrapolation, so that the element pattern remains unchanged below F r e q l  or 
above F req 2 .

New values are given to sets of Fourier (cosine) coefficients (in the case of the 
third option from the top) or to sets of elements or channels (in the case of the next 
five options) by pressing Enter or the key, entering the new value, the ‘From’
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number and the ‘To’ number each followed by Enter. In the case of element pattern, 

coefficient no 7 is p  in an additional term of the form p(^

Each parameter set may be viewed by pressing L while the relevant option is 
selected (including the relevant P a t t e r n  r e s p o n s e  F r e q u e n c y  option). If 
necessary the PageUp and PageDown keys may be used to scroll the list on the screen. 
The program is returned to the Input menu by pressing B or the Esc key.

? h e lpmenu

F r e q l F req2P a t t e r n  r e s p o n s e  F r e q u e n c y  ->A11 

I n t e r p o l a t i o n  f r e q u e n c i e s  

E le m en t  P a t t e r n  C o e f f  i  = 1 
A ng. d i s p l a c e m e n t  ( d e g ) = 0
Rad. d i s p l a c e m e n t  (n m sd )= 0
P a t t e r n  r o T a t i o n  ( d e g ) = 0
Elem  c h a n n e l  G ain  (dB) = 0
Elem c h a n n e l  P h a se  ( d e g ) = 0
? h e l p
B ack t o  I n p u t  menu

L i s t  [ PAGEDOWN t o  s c r o l l  PAGEUP t o  s c r o l l  b a c k  ]

F r e q l  = 

From i =  0 
F or  m= 0 
F or  m= 0 
F or  m= 0 
F or  m= 0 
F or  m= 0

F req 2  = 
To i  = 
To m = 
To m = 
To m = 
To m = 
To m =

C h an n e l G a in ( I )  
[dB]

C h a n n e l P h a s e ( I )  
[d eg ]

0

0
0

0
0

0

Fig. F.7.1 Set menu screen



241 B eam form ing sim ulation program

F.8 RANDOM MENU

This menu is used to enter uniformly distributed random errors to the array 
parameters. As shown in Fig. F.8.1, the amplitude fluctuation of the element patterns 
and the random component of the channel gains are expressed in ±dB, the random 
angular displacement and rotation of each element as well as the electrical insertion 
phases are expressed in ±degrees and the random radial displacement of the array 
elements is normalised to the wavelength at the reference frequency fo .  The 
amplitude fluctuation of the element patterns is randomly generated for each element 
pattern at L  angular directions (the number of sample angles L  is entered under the 
Corrections menu - see section F .l l)  and interpolated for other angles according to 
the desired display resolution. The Random I n i t i a l i s a t i o n  i n t e g e r  option 
may be used to obtain different ensembles of the pseudo-random generator, but note 
that new ensembles are always obtained whenever one (or more) of the Input menu 
switches (see section F.6) is set to Rand, S e t+ R a n d  or F i l e s + R a n d  during the 
same session. As before pressing B or the Esc key returns the program to the Input 
menu.

menu

Random E le m e n t  F a t t e n  (±dB)

Random A n g u la r  d is p la c e m e n t ( ± d e g )

Random R a d i a l  d i s p la c e m e n t  (±Ao) 

Random p a t t e r n  r o T a t io n  (±deg)  

Random c h a n n e l  G ain  (±dB)

Random c h a n n e l  P h a s e  (±deg)

Random I n i t i a l i s a t i o n  i n t e g e :  

? h e l p

B ack  t o  I n p u t  mem:

Old
Old
Old
Old
Old
Old
Old New

Fig. F.8.1 Random menu screen
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F.9 LOAD ELEMENT PATTERN FILE MENU

This menu whose screen is displayed in Fig. F.9.1 allows the user to read in a 
measured element pattern file at a single frequency. The file, with an assumed EPT 
extension, is loaded from the storage device and directory specified by the S e l e c t  

d e f a u l t  D r i v e  and the D i r e c t o r y  P a t h  options respectively, which also 
serve to define the L i s t  f i l e s  (DIR) option. The loaded pattern data may be 
viewed using the V ie w  l o a d e d  p a t t e r n  d a t a  option with the PageUp and 

PageDown keys used for scrolling the screen. The program supports the automatic 
loading of a set of data files whose names are suffixed with appropriate indices (that 
could, say, denote the frequency as in PREFIX12 . EPT). To specify the frequencies 
and corresponding indices to the program, select the F r e q u e n c y  sa m p le s  options, 
press Enter or the key and type in the first (From) and last (To) normalised 
frequencies as well as the frequency step (S te p ) ,  each followed by Enter. Then 
select the U sed  f i l e  i n d i c e s  option and enter the first index (From) and index 
step (S tep )  using the Enter or the -* key, pressing Enter after each entry. The set

S e l e c t  d e f a u l t  D r iv e  
D i r e c t o r y  P a th  i s :  
L i s t  F i l e s  (DIR)

^  A: B:
\

C: D:

F r e q u e n c y  s a m p le s :  

A ssum ed f r e q u e n c y :

From:

A l l

2
— »

To: 6 

Sample
S t e p :  2 

[1 t o  3]

S u p p r e s s  l o a d e d  p h a s e  -»Off On

Load E le m en t  p a t t e r n d a t a  f i l e

U sed  f i l e  i n d i c e s From: 12 T o :1 6 S t e p : 2

^  Load s e t  o f  I n d e x e d  d a t a  f i l e s

V iew  lo a d e d  p a t t e r n  d a t a

? h e lp

ESCape

E n t e r  f i l e  name p r e f i x  [EPT e x t e n s i o n  assu m ed ]

Fig. F.9.1 Load element pattern file menu screen
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of files may then be loaded through the Load a s e t  o f  I n d e x e d  d a t a  

f i l e s  option. For a single file to be loaded, select the A ssum ed f r e q u e n c y  
option, and use the or keys to switch between A l l  (data file to be loaded will 
be assumed to apply to all frequencies) and Sam ple. In the latter case type in a single 
frequency sample number and press Enter. Then load the file using the L oad  

E lem en t p a t t e r n  d a t a  f i l e  option.
Note the frequency sample number typed in under the A ssum ed f r e q u e n c y  option 
also determines which frequency (i.e. loaded file) is viewed when V ie w  l o a d e d  

p a t t e r n  d a t a  is invoked. If the As sumed f r e q u e n c y  option is set to A11, then 
frequency sample no. 1 is viewed.

Each loaded element pattern file must be a sequential ASCII file that has been 
filled in the following (QuickBasic) format:

OPEN Filename$ + ".EPT" FOR OUTPUT AS #1

WRITE #1, Np%, Ne%, Nr%, AdbRef0 !, PhdegRef0 !

FOR Elem% = 0 TO Ne% - 1 
FOR Point% = 0 TO Np% - 1

WRITE #1, Adb!(Point%, Elem%), Phdeg!(Point%, Elem%)
NEXT Point%

NEXT Elem%

FOR Elem% = 0 TO Ne% - 1 
FOR Point% = 0 TO Np% - 1

WRITE #1, AdbRef!(Point%, Elem%), PhdegRef!(Point%, Elem%) 
NEXT Point%

NEXT Elem%

CLOSE #1
MMeMMeeMtMeMeceeMtMOMOMtNMMMMONtOI

where.

Np% - number of samples over a full 360° sector. This integer defines the angular 
resolution of the measured data

Ne% - number of element patterns measured. If this integer is different from the total 
number of elements in the array then the program assumes that Ne%=l, the 
pattern data is assumed to start at ^  = O' for element m = 0 and the same data 
is also entered (after adequate angular rotations) for each of the other array 
elements. If Ne% equals the number of array elements then the program 
assumes that direction ç) = O' always refers to the location of element m = 0.
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Nr% - number of reference patterns measured. Set:
Nr% = 0 when no reference data is available
Nr% = 1 when all patterns are to share the same reference (relevant when

array channels are simultaneously measured)
Nr% =Ne% when Ne% reference patterns are included in the file

Adb! ( P o i n t %, Elem%) refers to the amplitude in dB of the measured
radiation pattern of element no. Elem% at an observation angle of 
(Point%/Np%) 360".

Phdeg! (Point% , Elem%) refers to the electrical phase in degrees of the 
measured radiation pattern of element no. Elem% at an observation angle of 

(Point%/Np%) 3 6 0 ”.
AdbRef ! (Point% , Elem%) measured reference amplitude in dB of element 

no. Elem% at an observation angle of (Point%/Np%) 360".

P h degR ef! (Point% , Elem%) measured reference phase in degrees of element 
no. Elem% at an observation angle of (Point%/Np%) 360".

AdbRef 0 ! - additional constant amplitude (dB) reference
P h d egR ef 0 1 - additional constant phase (deg) reference

The loaded element pattern phases may be suppressed and replaced by the usual 
synthesised geometry-dependent phases by setting the S u p p r e s s  l o a d e d  

p h a s e s  option to On using the or ^  keys.
The program is returned to the Input menu by pressing the E sc  key.

F.IO OPTIONS MENU

As shown in Fig. F.10.1, the Options menu directs the user to a number of menus 
which define various options of the program:

Specifying the type of correction and alignment implemented
- Plotting one or more phase mode patterns
- Plotting one or more directly-formed (element-space) array patterns
- Plotting one or more modally-formed (mode-space) radiation patterns
- Plotting the comparative pattern of two (SPM-) beams identically formed by the 

same number of equally excited but different phase modes.

These are all described in detail in sections F .l l  and F .l l .

The program is returned to the Main menu by pressing B or the Esc key.
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F.11 CORRECTIONS MENU

This menu shown in Fig. F .l 1.1 allows the user to enable or disable narrowband 
pattern correction (‘PrE-DFT correction’) at frequency f  (defined via the Input menu 
or output menus -  see the respective sections F.6 and F.12) and two options of either 
narrowband (at frequency f )  or broadband mode alignment (T ost DFT correction’). 

No o f  s a m p le d  a n g L e s  refers to the number of (equally spaced) sampled 
direction angles which enter the correction algorithms (the display resolution is 
separately defined in the Output menus of section F.12) -  the default value is L=2K  
The next two options from the top refer to wideband mode alignment. No o f  

s a m p le d  f r e q u e n c i e s  is the number N of frequency samples used to define 
digital UR or FIR mode-alignment filters. The sampled band is from the mix-down

Options
menu

Main
menu

O u tp u t menus 
(P,D,M  o r  R)

C o r r e c t i o n s
menu? h e lp

C o r r e c t i o n s  menu

P h a se  m odes o u t p u t  menu

D i r e c t  r a d i a t i o n  p a t t e r n  o u t p u t  menu

M odal r a d i a t i o n  p a t t e r n  o u t p u t  menu

CompaRe m odal p a t t e r n s  o u t p u t  menu

? h e lp

B ack t o  m ain  menu

Fig.F.10.1 Options menu screen
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frequency shift (entered, normalised to fo , under the M ix down t o  b a s e b a n d  
option, 0 if Of f)  to the sampling frequency. The latter is specified (normalised to fo) 
under the S a m p l in g  f r e q u e n c y  option. The first { N+1 )  / 2  samples are taken 
from measurements or synthesised data, with the last two samples (3 for even IV ) 

weighted down. A complex conjugate version of these samples is then added in 
reverse order about the { N / 2  ) ’th position in the sequence. C o r r e c t e d  m odes lets 
the user define the range of modes which will be affected by the correction schemes. 
The UR and FIR settings of the P o st-D F T  c o r r e c t i o n  option refer to the filters 
discussed in chapter 3, section 3.6 where the order of the FIR filter (or filter block in 

the HR. implementation) is N -1. Note though that modes ± M /  2  undergo amplitude 
rather than phase mode alignment

Return to the Options menu is via keys B or Esc.

O p t io n s
menu

Corrections
menu ? h e lp

No o f  sa m p le d  an gL es ^ I d 32New L=

No o f  sa m p le d  f r e q u e n c i e s  -Old 12New N=

S a m p lin g  f r e q u e n c y  (nmsd) -Old 72f s =New

C o r r e c t e d  m odes New From:

-OffMix down t o  b a s e b a n d On

PrE-DFT c o r r e c t i o n -Off On

P o st-D F T  c o r r e c t i o n -Off On

P o s t - c o r r e c t i o n  O p t io n

? h e lp

Back t o  O p t io n s  menu

Fig. F .l 1.1 Corrections menu screen
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F.12 OUTPUT MENUS

The four Output menus described in this section are accessible via the Options menu. 
They allow the user to define the abscissa as angle, frequency or time and set the 
range and resolution for each of these parameters. The D i s p l a y  com p u ted  

o u t p u t  option starts off the computation process and sends the program to the 
Display menu when it is completed. To go back to the Options menu one may press B 
or the Esc key or move the red pointer to the last option and press Enter.

The Direct (element-space) radiation pattern output menu shown in Fig. F .l2.1, 
is intended for the synthesis of element-space radiation beams. In that menu, aperture 
excitation may be set to co-phased or co-delayed in the direction specified by S c a n  

( c o - e x c i t a t i o n )  a n g l e  option as well as arbitrarily weighted in amplitude and 
phase through the S e t  W e i g h t i n g  t a p e r  option which invokes the Direct 
weighting menu described in section F .l3.

The Phase modes output menu shown in Fig. F.122 is the program branch 
leading to the formation of one or more omnidirectional phase modes. The range of 
mode numbers is entered via the Mode r a n g e  option (lower mode number, upper 
mode number and step size).

The Modal (mode-space) radiation pattern output menu shown in Fig. F.12.3 
controls the synthesis of mode-space beams. Here the Mode r a n g e  option refers to 
the set of phase modes used to form the modal radiation pattern. The phase modes 
may be ‘scan phased’ in any direction and arbitrarily weighted in amplitude and phase 
through the S c a n  a n g l e  [by IDFT] and S e t  W e i g h t i n g  t a p e r  options 
respectively, the latter invoking the Modal weighting menu which is described in 
section F.14.

The ‘Compare modal patterns’ output menu shown in Fig. F.12.4 controls the 
evaluation and display of a comparative pattern formed by subtracting the amplitudes 
(in dB) and phases of two beams (e.g. sectoral phase modes) which are formed by 
summing different but equal-size sets of adjacent phase modes. Each set of modes is 
equally tapered in amplitude and in phase through the S e t  W e ig h t i n g  t a p e r  
option and scan phased via the S c a n  a n g l e  [by  IDFT] option. The S e t  

W e ig h t i n g  t a p e r  option invokes, as in the Modal radiation pattern output menu, 
the Modal weighting menu described and illustrated in section F.14, and in fact the 
same modal taper is shared between these two output menus (provided that the mode 
ranges are set to the same number of phase modes).
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W e ig h t in g  
menu D

O p t io n s
menu

Output 
menu D

O utput  
menu P

O utput  
menu R

O u tp u t  
menu M

D i s p l a y
menu? h e l p

C o - e x c i t e C o -p h a s e  C o - d e la y

Angle F r e q u e n c y  TimeV e r s u s

F r e q u e n c y  r a n g e  f / f o  = From: 1 .0 0 0  To: 1 .0 0 0  s t e p :  0 .

Time r a n g e From: 0 .f o t s t e p :  0

A n g le  r a n g e  (deg) p h i  = From: - 1 8 0  To: 180 s t e p  : 1

S ca n  ( c o - e x c i t a t i o n )  a n g l e  (deg) PhiO

S e t  W e ig h t in g  t a p e r

D i s p l a y  com p u ted  o u t p u t

? h e l p

B ack t o  O p t io n s  menu

Fig. F.12.1 Output menu D screen
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The two sets of excited phase modes are selected via the 1 s t  beam ' s  mode 

r a n g e  and 2n d  beam ' s  mode r a n g e  options (for the second beam, only the 
From mode number is entered by the user).

O p t io n s
menu

O u tp u t  
menu M

Output 
menu P

O u tp u t  
menu D

O u tp u t  
menu R

D i s p l a y
menu? h e lp

^ V e r s u s — >Angle F r e q u e n c y Time

F r e q u e n c y  r a n g e f / f o  = From: 1 .0 0 0 To: 1 .0 0 0 S t e p : 0 .

Time r a n g e f o t  = From: 0 . To : 0 . S t e p : 0

A n g le  r a n g e  (deg) p h i  = From: - 1 8 0 . To: 1 8 0 . S t e p : 1 .

Mode r a n g e mu = From: 0 To: 0 S t e p : 1

D i s p l a y  com p u ted o u t p u t

? h e lp

B ack  t o  O p t io n s  menu

Fig, F.122  Output menu P screen
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O p t io n s
menu

W e ig h t in g  
menu M

Output 
menu M

O utput  
menu D

O utput  
menu R

O u tp u t  
menu P

D i s p l a y
menu ? h e lp

-» Angle F r e q u e n c yV e r s u s Time

F r e q u e n c y  r a n g e  f / f o  = From: 1 .0 0 0  To: 1 . 0 0 0  S t e p :  0

Time r a n g e S t e p  : 0f o t  = From: 0 .
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From: 0Mode r a n g e mu

P h i OS can  a n g l e  [by IDFT] (deg)

S e t  W e ig h t i n g  t a p e r

D i s p l a y  co m p u ted  o u t p u t

? h e lp

Back t o  O p t io n s  menu

Fig. F.12.3 Output menu M screen
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O p t io n s
menu

W e ig h t in g  
menu M

O u tp u t  
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O utput  
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Output 
menu R
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? h e lp

B ack t o  O p t io n s  menu

Fig. F.12.4 Output menu R screen



F. 13 Direct w eigh ting m enu 2 5 2

F.13 DIRECT WEIGHTING MENU

This menu, shown in Fig. F.13.1, allows the user to set and view an amplitude and 
phase excitation taper at the array aperture for element-space radiation beams. 
Amplitude (dB) or phase (deg) values are entered to a range of elements by first 
selecting the desired option and pressing Enter or the -» key, then typing in the new 
value, and the first (For m =) and last (To m =) element numbers in the group of 
elements to which it is to be applied, each followed by Enter. The taper may be listed 
at any time by pressing L and scrolling if necessary with the aid of the PageDown or 

PageUp keys.

? h e lpO u tp u t  
menu D

Weighting 
menu D

A m p li tu d e  t a p e r  [dB] 

P h a s e  t a p e r  [d eg]  

? h e l p  

ESCape

= 0 F or m = 0 To m = 0 

= 0 F or m = 0 To m = 0

L i s t  [ PAGEDOWN t o  s c r o l l  PAGEUP t o  s c r o l l  b a c k  ]

8
9
10 
11 
12
13
14
15

A m p l itu d e  t a p e r  
[dB]

P h a se  t a p e r  
[d eg ]

0
0
0
0
0
0
0
0

Fig. F.13.1 Direct weighting menu screen
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F.14 MODAL WEIGHTING MENU

The ‘Modal weighting menu’ shown in Fig. F.14.1, allows the user to set and view 
an amplitude and phase excitation taper at the phase mode outputs, for the synthesis 
of a mode-space radiation beam. It may be invoked either from the Modal radiation 
pattern output menu or from the ‘Compare modal patterns’ output menu described in 
section F.12. Amplitude (dB) or phase (deg) values are entered and listed as in the 
Direct weighting menu of section F.13.

O utput Weighting O u tp u t
menu M menu M menu R

I
? h e lp

A m p l i tu d e  t a p e r  [dB] 
P h a se  t a p e r  [d eg ]  
? h e l p  
ESCape

=  0 

=  0

F or 1 = 0  
F or 1 = 0

To I = 0 
To I = 0

L i s t  [ PAGEDOWN t o  s c r o l l  PAGEUP t o  s c r o l l  b a c k  ]

A m p l i tu d e  t a p e r  
[dB]

P h a se  t a p e r  
[d eg ]

0
0
0
0
0
0
0
0

Fig. F.14.1 Modal weighting menu screen
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F.15 DISPLAY MENU

The display menu shown in Fig. F.15.1 appears as soon as the radiation pattern 
computations have been completed. It allows the user to:
-  display, list or save the output amplitude and phase data
-  add an optional amplitude (dB) and phase (degree) offset to the displayed, listed 

and saved outputs
-  show or hide the xy grid and graph labels
-  set the x-axis grid and label to automatic or customised
-  set the y-axis grid + all other labels to automatic or customised

All the above switches are set by using the or keys to point the yellow arrow at 
the selected position. Invoking the C u s t o m is e  s c a l e  + l a b e l s  option will 
direct the program to the Customise menu which is described in section F.16.

The output data may be:
-  plotted by selecting the A m p litu d e  p l o t  or P h a se  p l o t  options. Initially 

all computed graphs will be plotted; to re-plot the whole set, press 0, to re-plot 
a single graph press the corresponding graph number (1 to 9). Pressing any 
other key will return program to the Display menu.

-  listed by invoking the L i s t  o u t p u t  option. Initially the first 24 lines are 
displayed; to scroll use the PageDown or PageUp keys and press the Esc key to 
return to the Display menu.

-  saved by invoking the S a v e  o u t p u t  option. This sends the program to the 
Save output menu which is described in section F.17.

Pressing B or the Esc key returns the program back to one of the four output menus 
described in section F.12.

F.16 CUSTOMISE MENU

This menu shown in Fig. F.16.1 allows the user to add labels and modify the 
displayed scale limits, grid and tick (subdivision) marks. C u s to m ise  L a b e ls ,  

C u s to m ise  X s c a l e  or C u s t o m i s e  Y s c a l e  are first selected in the usual 
way and then activated by pressing E n ter or the key. This turns the red pointer 
into a static yellow arrow and activates a new movable red pointer within the selected 
frame. New data is then entered for the selected option by pressing E n ter or the 
key, typing in the new entry and pressing Enter again.
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' G r id  + l a b e l s  -> On
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Fig. F.15.1 Display menu screen
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Y a x i s  l a b e l  i s ^  Old New

ESCape

C u s to m is e  X s c a l e

Lower bound i s ^  Old New

Upper bound i s ^ Old New

D i v i s i o n  i s -> Old New

S u b - d i v i s i o n  i s ^  Old New

ESCape

C u s to m is e  Y s c a l e

Lower bound i s Old New

Upper bound i s Old New

D i v i s i o n  i s ^  Old New

S u b - d i v i s i o n  i s ^  Old New

ESCape

ESCape

L ...................... ..................... ................................. ................................  ....................  ...________ J

Fig. F.16.1 Customise menu screen
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By pressing the Esc key the red pointer will vanish from within the selected frame 
and will replace the static yellow arrow on the outside. It may now be moved in the 
usual way to select a new option. Pressing the Esc key again will return the program 
to the Display menu.

The entered parameters are defined as follows:
i Top l a b e l  - the label printed on the top line above the plot frame. It

defaults to ‘A m p litu d e  p lo t *  or ‘P h a se  p lo t *  when the Y s c a l e  option in
the Display menu is set to A uto. 

a  Top S u b - l a b e l  - the label printed underneath the top label.
in X - a x i s  l a b e l  - the label printed underneath the X-axis. It defaults to ‘P h i

(d eg s )  *,‘N o r m a l is e d  F req u en cy  f / f o *  o r ‘N o r m a l is e d  Time fo t*  
when the X s c a l e  option in the Display menu is set to A uto.  

iv Y a x i s  l a b e l  - the label printed to the left of the Y-axis. It defaults to
‘ [dB] * or ‘ [d e g ]  * when the Y s c a l e  option in the Display menu is set to 

A uto.
V  Lower bound - refers to the the lowest point on the X or Y axis. This is

automatically set if the corresponding X s c a l e  or Y s c a l e  option in the Display 
menu is set to A uto.

VI Upper b ou n d - refers to the highest point on the X or Y axis. This is
automatically set if the corresponding X s c a l e  or Y s c a l e  option in the Display 
menu is set to A uto .

vii D i v i s i o n  - the grid step on the X or Y axis. This is automatically set if
the corresponding X s c a l e  or Y s c a l e  option in the Display menu is set to 
Auto.

viii S u b - d i v i s i o n  - the step size between minor ticks on the X or Y axis. It 
defaults to the grid step (i.e. no minor ticks) if the corresponding X s c a l e  or 

Y s c a l e  option in the Display menu is set to Auto.
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F.17 SAVE OUTPUT MENU

The ‘Save output menu’ shown in Fig. F.17.1 enables the user to save on the
selected storage device and the specified directory:
- all the previously entered input data and settings + the computed output data on a 

sequential ASCII file with a user-defined file name + the extension RNG. The output 
file may be used as an optional input to the program at a later session through the 
‘Load input/output menu’ - see section F.5.

- the computed output data only (optionally offset through the O f f s e t  o u t p u t  
option of the Display menu -  see section F.16) in a sequential ASCII file with a 
user-defined file name + the extension TDA (for tab-delimited data) or CDA (for 
comma-delimited data), which may be imported by an external charting package.

S e l e c t  d e f a u l t  D r iv e  ->A: B: C: D:

D i r e c t o r y  P a th  i s :  \

L i s t  F i l e s  (DIR)

|> S ave  o u t p u t  a s  a T a b - d e l i m i t e d  ASCII t e x t  f i l e

S a v e  o u t p u t  a s  a Comma- d e l i m i t e d  ASCII t e x t  f i l e

Save  o u t p u t  a s  a R IN G -c o m p a t ib le  d a t a  f i l e

? h e lp

ESCape

E n t e r  name f o r  d a t a  f i l e  [TDA e x t e n s i o n  assu m ed ] :

Fig. F.17.1 Save output screen
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