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Alostract

This research has been conducted at University College London in collaboration with
Loughborough University of Technology. It is aimed at studying the theoretical and
practical aspects of circular radiating arrays under conventional and high-resolution
processing for sonar applications.

The thesis opens with a short introductory review on circular arrays, quoting
relevant past and recent publications and pointing to the significance of the sonar
context. Some of the basic concepts involved in the conventional analysis of discrete
circular arrays are then recalled, in particular that of phase-mode excitation and the
derived techniques of mode-space beamforming, null steering and phase-comparison
(multimodal) direction finding.

From a multimodal direction finding scheme that requires no mode alignment the
study leads on to the introduction of the novel notion of sectoral phase modes and
their possible application in directional multimodal direction finding with enhanced
immunity to out-of-sector interference, and in sectorally-controlled multibeam
nulling. One aspect pertaining to the benefit of sectoral phase modes as well as to the
usefulness of most modal techniques is that of bandwidth. Options and limitations
relating to digitally-implemented broadband mode alignment are examined and
shown to depend on the directional properties of the element patterns. The effect of
random homoscedastic aperture errors on the performance of modally-formed beams
are analysed next followed by the introduction of a calibration-based least-squares
correction scheme which is designed to compensate for deterministic or random
variations in element radiation pattern behaviour and in array channel responses. The
proposed two-stage multimode correction scheme, which is shown to be equivalent to
a least-squares correction of a multiple set of mode-space beams, is extended to the
wideband case, with some simulated results demonstrating the expected performance
of filtered phase modes, sectoral phase modes and mode-space beams.

Finally, the application of spatial superresolution estimators to circular arrays is
considered, where, after an overview of various relevant approaches and specific
algorithms, a covariance-matrix structural equivalence is shown between narrowband
element-space linear-array methods and the corresponding mode-space circular-array
formulation. It is shown that spatial estimators for the latter case are better modelled
under an ambient noise field that varies in elevation, and it is demonstrated that
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established linear-array algorithms such as the Minimum Norm estimator and the
decorrelating technique of spatial smoothing may be reformulated to apply to circular
arrays in mode space. Furthermore it is noted that, under wideband processing, mode-
space estimators are particularly suited for handling a multipath environment by
virtue of an inherent frequency-domain smoothing effect.
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1. INTRODUCTION

1.1 GENERAL

The circular symmetry of ring and cylindrical arrays has attracted the attention of
antenna and sonar researchers over the past sixty years. Potentially, these arrays offer
360° azimuth coverage for communications, direction-finding, radar and sonar
applications, and may be installed on or conveniently wrapped round land, naval or
airborne platforms. However, the rapid theoretical and technological growth in the
related field of linear and planar arrays as well as the more complex and lossy feeding
schemes devised for the earlier circular arrays, have inevitably limited the interest in
their implementation and have held back their development. The past three decades
have seen significant progress in the analysis of circular arrays, based on the concept
of phase mode excitation, which has led to the development of ‘multi-modal’
direction-finding systems and to new techniques for the synthesis and steering of
directional beams and nulls.

Sonar transducer arrays of various shapes have likewise been under research and
development for many years [HAY 20], [HoL 47], [AND 63], [QUE 70]. Experimental as
well as operational arrays of (receiving) hydrophones and (transmitting) projectors in
linear, planar, circular, cylindrical, and spherical arrangement have been built and
used for passive or active source detection and localisation, for minesweeping, fish
finding, communication and telemetry [URI 83], [BUR 91]. The low (acoustic) speed of
propagation in water has led to the development of multiple-beam sonar array systems
with the emphasis being placed (in the case of passive sonar) on true time-delay
beamformers which could handle the wide bandwidths involved. Aided by the low
frequencies of the useful ‘sonar spectrum’, fully-digital beamformers have, to a large
extent, replaced the earlier analogue networks of receiving sonar arrays, thus opening
the way to more elaborate signal processing algorithms [AND 60], [Cur 80].

Over the last three decades there has also been tremendous interest directed at
surpassing the Rayleigh resolution limit of spatial spectral estimation. Known
collectively as spatial superresolution techniques, these are non-linear signal
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processing methods that use the information available in the received (and sampled)
incoming wavefront, subject to some assumptions, to (statistically) enhance the
system performance in detecting and separating between closely-spaced sources.
They are generally relevant in the context of digitally processed receiving arrays of
arbitrary shape, but a number of important high-resolution schemes have been either
restricted to, or better modelled, when applied to equi-spaced linear arrays. The
inherent symmetry and full peripheral coverage that characterise sensor arrays with
circular geometry have, rather surprisingly, attracted only limited interest of authors
in the field [ZeY 91], [Roc 88], [MES 90].

Papers on circular arrays started to appear in the 1930s dealing mainly with the
azimuth and elevation patterns as well as the directivity of co-phased, equi-phased
and periodically-phased arrays [STE 29], [CHI 36], [HAN 38], [HAN 39]. The basic radiation
properties of ring and cylindrical arrays, their radiation impedance and directivity
continued to feature in later works [CAR 43], [PAG 48a], [PAG 48b], [LEP 50], [KuUN 51],
[Kun 53], [TIL 55], [KuN 56], [KIN56], [WAIS8], [CHU 59], [MIr 59], [Hic 60], [Hic 61],
[Hic 63], [MAc 63], [Roy 64], [RoY 66], [CHE 67], [KIN 68], some of which included an
analysis of concentric ring arrays proposed for improving pattern control [STE 29],
[HaN 38], [HAN 39], [PAG 48b], [LEP 501, [STE 65], [MAW 68], [GoT 70]. The synthesis of
directional beams based on co-phased (or close to co-phased) excitation has likewise
provided a popular subject of research [DUH 52], [TAY 52], [ZIE 64], [FEN 65a], [FEN 65b],
[JaM 65], [Mor 68], [TsE 68], [RED 70], [CoL 70], [Got 77], [NAG 78], [WAT 80], although the
development of the phase mode excitation concept [CoL 69], [Pro 72], [DAV 81a],
[Dav 83] in the 1960s has led to a simple transformation from the then well-
established linear array synthesis techniques to circular arrays [DAV 65b], [LoN 67],
[RaH 80], [RaH 81], [RaH 82], [JoN89], [JoN90]. Beam scanning and multi-beam forming
which had previously required the commutation of excited array sectors, the
switching of a feed lens ports or a phase-modulating network (for continuous beam
rotation) [NEF 50], [NEF 60], [TAN 62], [McC 63], [DAvV 65a], [FEN 68], [LoN 68], [Boy 68],
[STA 69], [Boy 70], [BoG 74] could now be achieved by feeding the array with a Butler
matrix and applying a linear progressive phase taper to its output ports [BUT 61],
[CHa 62], [CHO 66], [CHO 67], [SHE 68], [DAV 69], [WIT 69], [SHE 70], although practical
aspects of realising large Butler matrices have led some authors to consider
alternative hybrid beam switching schemes in which a small phased Butler matrix is
used for fine phase-centre deflection of the excited aperture or beamforming lens
sector [HoL 74], [SkA 75]. One application for a Butler-matrix-fed circular array as a
transmit-receive antenna on a communication-antenna site is proposed in [GUY 83b]
where use is made of the isolation between different phase modes excited by the
matrix. An interesting application for an electronically rotating circular-array beam
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(however implemented) relates to obtaining a non-rotating directional radiation
pattern from an antenna mounted on a spinning spacecraft [GRE 74]. Null forming and
null steering techniques have similarly benefited from the novel phase-mode approach
making it possible to synthesise omnidirectional ‘modes’ as well as directional beams
with a specified number of steerable pattern nulls [Li 75], [LiM 77], [DAV 771, [R1z 771,
[DAv 78a], [DAv 78b], [DAvV 81b], [GRI 86], [KAR 86], [CVE 88a], [CVE 88b].

Early applications considered for circular arrays included direction finders
[Cra 47], [EAR 47], [RIN 56], [BAI 60], [GET 66], [WUN 66], [GET 78], [KUM 83a} of which the
Whullenwever array is perhaps the most well known, naval and air navigational aids
[HAN 53], [CHR 74], [SHE 74] and HF communications antennas [STA 69]. The classic 4-
element Adcock array patented in 1919 and more so the 8-element (interleaved)
Adcock are in fact examples of a circular array implementation of a direction finding
system [CRra 47], [ADc 19], [GUY 83a]. More recent circular-array DF techniques are
based on multi-beam amplitude comparison, multi-modal phase comparison, a nulling
scheme or any combination of the above [CVE 88a], [CVE 88b], [REH 80]. The formation
of nulls to suppress interference may also be achieved through the use of adaptive
hardware and software, applicable at either element level or at mode level [Guy 81].

Closely related with the idea of adaptive array processing are superresolution
techniques for the spatial resolution of incident plane waves emanating from a
number of far-field sources [JoH 86], [NIC 87]. A variety of algorithms have been
developed and analysed in the literature, among them scalar-search (one-dimensional
parameter-search) methods such as Capon’s MVDR, Burg’s Max-Entropy, MUSIC,
and Min-Norm [CAP 69], [BUR 67], [BUR 68], [BUR 75], [ScH 79], [Scu81], [BIE 80],
[RED 791, [Kum 83b], [KUuM 83c], [Nic 88], [LI1V 90] search-free (translational invariance)
methods such as ESPRIT and TAM [PAu 85], [PAU 86], [RoY 86a], [RoY 86b], [RoY 87],
[OTT 88], [RoY 89], [OTT 90], [OTT 91], [VIB 91a], [LIC 91], [KUN 86], [Ra0 88], [Ra0 89],
[L1V 91] and vector-search (multidimensional) schemes such as IMP, Stochastic Max-
Likelihood, Deterministic Max-Likelihood and WSF [Tur 82], [MAT 89], [Kav91],
[CLa 88], [CLA 91], [ScH 68], [VAN 68], [BAN 71], [L1673], [Ows 81], [WAX 83], [Wax 85],
[BoH 841, [BoH 85], [BoH 86], [JAF 881, [Zis 871, [Z1s 88], [SAN 871, [STo 89], [STO 90a],
[ST0 90b], [ST0 91], [OTT 89], [OTT 92], [VIB 91a], [VIB 91b].

Superresolution estimators may be directly applied to the signals received by the
array elements, but it often proves beneficial to pre-process the array outputs,
transforming the superresolution scheme from ‘element space’ onto ‘beam space’
[BIE 84], [GRra 84], [XUB 89], [XUB 90], [LEE 92]. The particularly useful transformation
from element space to circular-array mode space which is to play a major role in our
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study, has, however, excited but fleeting consideration in the literature [Moo 80],
[M81].

1.2 OBJECTIVES AND LAYOUT OF THESIS

Despite the dearth of published material in the field of circular arrays for sonar
applications, most antenna array techniques for HF, VHF, UHF and microwave
frequencies are basically applicable to sonar arrays. In fact adapting these techniques
to sonar array systems means that traditional beamforming matrices whose imperfect
analogue components have often limited their performance at microwave frequencies,
may now be implemented digitally in hardware or in software, thereby allowing
complex processing configurations and making the systems more amenable to
corrective calibration and alignment schemes. Indeed, it may well be argued that the
context of our study, which had initially been targeted at circular sonar arrays, has
somewhat shifted to address circular digitally-processed receiving arrays of either
antenna elements or sonar hydrophones; in the latter case, though, one has the double
benefit of both low frequency and manageable array size.

Our research study thus aims at exploring theoretical and practical aspects of
conventional as well as high-resolution circular-array processing schemes for sonar
applications, adapting some of the established circular-array techniques, as well as
applying a number of new ideas to circular sonar arrays fed by digital beamformers.
The material contained in this thesis is organised as follows:

CHAPTER 2 reviews some of the basic concepts involved in the analysis of discrete
circular arrays and considers some transient aspects of the array radiation patterns.

CHAPTER 3 deals with conventional beamforming and nulling techniques based on
phase-mode analysis, introduces the idea of directional multimodal direction
finding based on the new notion of sectoral phase modes, and studies the options
and limitations of wideband mode alignment which directly affect the usefulness
of the above techniques.

CHAPTER 4 examines the effect of random aperture errors on the performance of a
modally formed beam and introduces a correction scheme which is designed to
compensate for deterministic or random variations in element radiation pattern
behaviour and in array channel responses.

CHAPTER 5 is devoted to the application of superresolution techniques to circular
arrays. From a brief review of this dynamic field it leads on to the viability of
mode-space circular-array spatial estimators in terms of signal and noise
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covariances, and to the possible implementation of spatial and frequency-domain
smoothing.

CHAPTER 6 concludes the main part of the thesis with a summary of the main results
and recommendations for further study.

CHAPTER 7 holds the bibliographical references quoted in the thesis and is divided
into five sections, each containing the references for the respective chapter and its
appendices. Publications are quoted in the text using a bracketed ‘key’ comprising
the first three letters of the (first) author’s surname and the last two digits of the
year of publication. Whenever two or more publications share the same key, they
are distinguished by appending a, b, etc. to their respective keys. Thus [DAv 78a]
and [DAv 78b] refer to two different articles both of which had D. E. N. Davies as
principal author, and both of which were published in 1978.

The remainder of the thesis is divided into six parts. Part A contains an extensive
list of the abbreviations and symbols that appear in the thesis. Although an effort has
been made to maintain a reasonable globality of definitions, some symbol re-
designation has proved to be unavoidable. Parts B to E hold the appendices to
chapters 2 to 6 respectively, each part corresponding to a single chapter, while part F
describes the latest version of a computer simulation program for the conventional
analysis of circular arrays, including an overview of the program with structural
details of its code as well as a layout of all user-interface menus in the form of a
concise manual.
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2. BASIC CONCEPTS

2.1 GENERAL

The idea of stacking discrete aperture elements of an antenna or sonar system in a
regularly-shaped array fed by a power combining/dividing network saw its first
(antenna) implementation in the late 1920s. Such an arrangement allows the synthesis
of prescribed radiation beams through the control of the aperture distribution,
enhances the single-element signal-to-noise ratio (SNR) in reception?, enables the
delivery of high ERP2 in transmission through the use of the active array3
concept and provides the basis for electronic scanning® and multiple
beamforming5. Although the radiation fields produced by an excited array (and
likewise, the signals picked up by an array from outside sources) are governed by the
solution to the wave equation® under the appropriate boundary conditions imposed
by the array structure and loading, the underlying approach behind array theory is the
principle of superposition. Accordingly, the radiation pattern of the array at a given
observation angle? is obtained by a linear combination of the element-pattern fields

1 The single-element SNR is improved under the assumption of low aperture correlation of the
received noise and low loss of the feeding network.

2 ERP stands for the Effective Radiated Power of the array, denoting the power per unit solid angle
transmitted by the array in a given direction, divided by 4.

3 An active array uses a set of power amplifiers whose outputs are combined in space. The
amplifiers are attached to the array elements or distributed within the branches of the feeding
network, replacing the traditional approach of a single power amplifier at the input.

4 Electronic scanning refers to the electronically-controlled inertialess movement of an array
radiation beam via the controlled switching of element channel phases or delays.

S A multiple beamformer is an array feed network that can simultaneously generate a set of
radiation beams, ordinarily at different directions.

6  The wave equation is derived in a source-free region from either Maxwell’s equations for the
electric and magnetic fields (e.g. [Har 61], [CoL 91]) or from the hydrodynamic equations for the
acoustic pressure and particle velocity fields [Bre 80].

7 The term radiation pattern of a transmitting system denotes the frequency-domain (far-) field
strength, measured on a constant radius with the excited antenna or sonar system at its centre, as a
function of angle. By virtue of reciprocity, the same concept equally applies to the signal picked
up by a receiving system from a far-field point source, as a function of its angular position.
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in that direction. Note though that each element-pattern contribution refers to the
radiation pattern of a single array element in the presence of all other elements, but
such that the superimposed parameter (say, incident feedline mode) does not excite
any other element. In the inevitable presence of inter-element coupling, superposition
of incident-modes is therefore only applicable in a matched-terminated environment
of the surrounding feedlines. The shape of each element pattern is theoretically
obtainable from the exact solution of the prevailing boundary-value problem, and in
the case of periodic (infinite) linear or planar arrays of closely-spaced radiators, it is
also fully expressible in terms of inter-element coupling coefficients. Practically,
though, the required patterns may be measured on the antenna or sonar range, and we
shall therefore assume their availability in the pursuing analysis.

Superimposing the radiation patterns of identical array elements, all facing in the
same direction®, results in a separable spatial array pattern that is the product of the
element pattern with the array factor. The latter pattern which is controllable via the
(complex) weight excitation of the element signals at the array aperture, is the main
contributor to the shape of the array radiation pattern, its beamwidth, sidelobe level
and peak direction of its maximum lobe (i.e. scan angle). The element pattern, being
typically characterised by a relatively broader main radiation beam, affects these
pattern parameters to a much lesser extent, and has its main influence on the potential
angular coverage of the array, and in the electromagnetic case, also on the
polarisation of the radiated fields. Naturally, the array pattern is also affected by
geometry. Under a large inter-element spacing, the effective spatial sampling
involved in the formation of the array factor may, in the case of a regularly-shaped
array, give rise to visible Floquet modes commonly referred to as grating lobes
[AMI 72], a phenomenon that is the spatial manifestation of the time-domain under-
sampling occurrence of aliasing?. Grating lobes may be somewhat suppressed by
the directional properties of the element pattern, and are diffused on departure from
regular linear or planar geometry.

The work contained in this thesis is devoted to circular arrays of radially-
symmetric elements, also known as ring arrays. Unlike linear or planar arrays the
radiation pattern of a circular array is not separable and spatial-aliasing contributions

8  Strictly speaking, for all element radiation patterns to be identical, all elements must ‘sense’ the
same array environment. This imposes a periodic structural constraint of an infinitely-long linear
or planar array of uniformly spaced radiators.

9 Strictly speaking, Floquet modes are relevant to a periodic (and therefore infinite) array structure
under uniform excitation, representing the radiated ficld by a series of few (‘main beam’ +
‘grating lobes’) propagating plane waves and an infinite number of evanescent plane-wave terms.
In the case of a finite (linear or planar) array, grating lobes are spatially aliased contributions of
the array factor.
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are not represented by distinct grating lobes. In this chapter we review two
fundamental feeding concepts on which much of the analyses and implementations of
discrete circular arrays have been based, namely the beam-cophased and phase-
mode excitation schemes.

Beam-cophased (or ‘phase-compensated’) excitation involves the phase
equalisation of the contributions from all the array element, when the array receives a
signal from (or transmits to) a specified angular direction. In the case of a linear or
planar phased array the elements are co-phased by the (controlled) application of a
linear phase taper across the array, whose gradient determines the scan angle of the
array radiation beam. Although the pattern’s characteristics such as directivity19,
beamwidth and sidelobes are separately controlled by the (usually constant) amplitude
weighting taper (shading), the gain, beamwidth and sidelobe level typically
deteriorate with scan, limiting the angular coverage of such arrays to (depending on
bandwidth) 90°-120°. The beam-cophased excitation for circular arrays is a direct
extension of the linear array phasing concept and has consequently received
considerable attention as a directional beam forming technique. Associated with this
concept is the idea of co-delayed excitation whereby true time-delay equalisation of
the element signals ensures the wideband operation of the array [LoN 68], [STA 69].
Unfortunately, in the case of a circular array, the required phase (or delay) taper is not
linear (leading, in the case of analogue beamforming architecture, to more complex
digitally-controlled phase or delay shifters); a reasonable sidelobe performance
requires the application of both amplitude and phase taper to the co-phased (or co-
delayed) array, and scanning a beam (beyond a limited ‘within sector’ deflection)
requires the commutation of the excited array sector. The beamwidth of the
‘wideband’ co-delayed circular array beam is frequency-dependentl? just as in the
case of a linear array, but it does offer the advantage of 360° coverage with virtually
no attendant beam deformation.

The concept of circular-array phase modes refers to the excitation of the array
elements with equal amplitude and a linear-periodic phase taper. The excitation of
each ‘phase mode’ has been shown to form a far-field pattern which, on any conical
surface around the array axis, approaches omni-directionality in amplitude with linear

10 The directivity of a radiation pattern is defined as the power per unit solid angle directed at a
given direction (ordinarily that of the pattern peak), normalised to (1/47) of the total integrated
power. Directivity is commonly expressed in dBi units (‘dB above isotropic’), denoting 10 times
the logarithm to the base 10 of the above power ratio.

11 This dependence may be reduced by exciting the array through a lens feed or a multiple-beam
network, and feeding the outputs to a ‘conversion matrix’ that linearly combines the interlaced
feed outputs.
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phase-versus-angle characteristics, whose average gradient depends on the number of
excited phase cycles around the array. A phase moding network may be implemented
as an analogue Butler matrix or as a digital Discrete Fourier Transform (DFT) unit,
and as described in chapter 3, it provides (at least in theory) a convenient basis for
multiple-beamforming, direction finding and null steering. The outputs of a phase
moding network fed by a circular array share one common property with the outputs
of a uniformly-weighted multibeam network connected to a (strictly speaking
infinitely long) linear array. Each of the outputs represents an excitation condition
under which the electrical (or acoustic) environment of all array elements is identical.
This means that although they are all subjected to mutual coupling, their active
radiation impedance?2 is the same and can in theory be compensated for by applying
the appropriate filters to the network’s outputs.

In section 2.2 the far-field radiation pattern for a discrete circular array of co-
phased or co-delayed directional elements is formulated and represented as an infinite
Fourier series with Bessel function coefficients. The transient effects associated with
the reception of short or frequency-coded pulses by a co-delayed circular array are
then considered in section 2.3. Finally, the far-field representation for each phase
mode pattern as another infinite Fourier series with Bessel coefficients is developed in
section 2.4. The result is classic although previous analyses have either treated non-
directional elements or have simulated a discrete array by sampling a continuously
excited array.

12 The active radiation impedance at an input port of an array is the port impedance measured while
the array is operational. In terms of coupling coefficients (of a non-operating match-terminated
array) it is given by the complex sum of the reflection coefficient at that port and the coupling
coefficients to all other ports, each multiplied by the complex weight to be applied to the
corresponding array element when operational. In an infinitely-long equi-spaced linear or planar
array of identical elements under uniform amplitude and linear phase excitation, as well as in a
(finite) equi-spaced circular array of identical radially-symmetric elements under phase-mode
excitation, all elements share the same active impedance.
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2.2 BEAM-COPHASED EXCITATION

Consider an array of M elements (antenna radiators in an antenna array or acoustic
transducers in a sonar array) uniformly arranged on a circle of radius A with radial
symmetry, as depicted in Fig. 2.2.1 which also serves to define the relevant
coordinate system. Let the radiation pattern of the m’th array element as functions of
direction and frequency be given by M1/2 gj(@Rlc)sin 8 cos (p-27m/M) g (6, @, @), where
¢ is the velocity of propagation and @ is the temporal (angular) frequency. In the

above expression, the phase term ei(@Af)sin 8 cos(9-27m/M) corresponds to the
propagation delay from a far-field source to the m’th array element, with the
reference point (of zero delay) chosen at the array centre; the remaining functional

M-1

Fig.2.2.1 Circular array geometry
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dependence of the element pattern on direction and frequency is contained in
gm (0, ¢, @) with M2 serving as a convenient normalising constant. We generally
allow g,,(6, ¢, @) to become complex, in which case the array elements either have no
phase centres, or else these are not stationary with respect to direction and
frequency3. Assuming that over the relevant frequency band all element patterns are
symmetrically identical and frequency-independent, we have:

gm(0, 9, 0)=g(0,927om/M) , m=0,1,..., M-1 -+ (221)

and the far-field radiation pattern of the array is given by:
M-1
F(0,9,0)=-3, ang (6, ¢-2nm/M)ei (OREIsm0cos (0-22mM) ...(223)
m=0

where { a, } is a complex weighting taper applied to the array channels. A directional
pattern may be formed by constructively summing the contributions of some or all of
the array elements in a given direction. In other words, at the specified frequency,
channel phases are set (to within a constant delay) to:

{an ) = {1, le7 (@R )sin B cos (- 2mom/M) ) . (223)

where (8, @) define the desired beam pointing angle on the (6, ¢) coordinate system
of Fig.22.1. Such phase setting is known as beam-cophased excitation. If all the
array elements are co-phased and uniformly weighted in amplitude, the resulting
radiation pattern may be given an alternative representation in terms of Bessel
functions of the first kind. Let us first assume that g(6, ¢) is a directional element
pattern expressible as the following Fourier series:

g(6,9)= Y, hi(0)ei® e (224)

j=-00

The expression for the far-field array pattern is then given by,

13 A phase centre of an antenna or sonar element is the centre of a coordinate system with respect to
which the (unwrapped) far-field phase pattern is either globally constant or has an extremum in a
given direction. In the latter case one speaks of a non-stationary or apparent phase centre [Dys 67].
If stationary phase centres do exist, then R is taken as the electrical rather than the physical
radius of the array, i.e. the radius of the circle on which all phase centres lie.
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F6,0,0)=

M-1 . .
= ﬁZ 8(0, ¢-2ﬁm) ¢ (@RIc) [sin 8 cos (¢-272m/M)-sin 8 cos (§-27m/M)]

m=0
- M-1

=ﬁz h; (B)eii® z ed @rM)im gj (Ric)cos (B - 2m/M) .- (225)
j=-00 m=0

where:

R(6, 9,0, ¢) = R[(sin B cos ¢ - sin B cos Y)2 + (sin 6 sin@ - sin @ sin ¢)2]1/2

= R[sin?@ + sin?0 - 2sin 6 sin @ cos(¢ - )12 .- (226)
Reos® = R(sin 6 cos ¢ - sin B cos ) e (227)
Rsin 9 = R(sin 6 sin @ - sin 0 sin @) - (228)

But the term e/ (@Xc)eos (9-27n/M) on the right hand side of (2.2.5) may be represented
by the following infinite Bessel series:

¢l (@Rlc)eos (8- 2mmIM) = ' V], (R/c) e V(D - 27mIM) e (229)

V=-c0

where J,(x) denotes a Bessel function of the first kind of order v and argument x.
Substituting in (2.2.5) and changing the order of summations we then have:

I > M-1
F(6,9,0)=:L > hi(6)ei® 3, J¥ I(0Rlc)edvI[ 3, ed @rtDG-vIm]
i=1 V=-oo m=0

-+ (2.2.10)

with I denoting the order of the highest non-vanishing element-pattern Fourier
coefficient. Noting that the bracketed term in (2.2.10) is equal to:

M-1 b
Y, i @AMGE-VIm =MD §(i-v+qM) e (22.10)
m=0 g=-c0
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where O (n) is the Kronecker delta function,

&) = b, .- (22.12)
0 n#0

the expression for F (6, ¢, @) takes the form:

I oo
F(6,9,0)= Z hi(6) e/i(e-9) z ji+qMJi+qM(wK[c)e'qu19
i=7 g=-oo

°° 1
=3 1Y M (6) ]y qu(@Rlc)ei i 9-D)] eiaM D

g=eo i=l
= z Ky(o, 8, p)eiaM P .. (22.13)
q=-°°
where:
I -
Ky(@,0,0) =Y, j*™p; (6)Ji1qu (0Rlc)eii9-5) -+ (22.14)
i=I

and use has also been made of the identity:
FYI (o) =j¥T() ee (22.15)

For the special case of element patterns that are omnidirectional in ¢, the expression
for the far-field pattern simplifies to:

F(6,0,0)=hy(8) Y, j™Jp(0Rlc)eTiM D
q=-°°

= ho (8) [Jo(@Rlc) + 2, j™M T p(@Rlc)cos(@MD)] ... 22.16)
q=1

which, save for the #(6) element pattern variation in elevation, comprises simply the
zero-order Bessel function Jo(@R(6, ¢, 8, b)/c), distorted by an infinite series of
higher order terms.
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Assuming that the desired beam peak is set to lie on the azimuth (6=7x/2)
planel4, the array azimuth pattern is approximately given by:

R(R =[(cos @-cos @)? + (sin ¢-sin )22

0=0=12 = , -
= 2sin[(@- ¢)/2]

F(p,) = Jo[2(oRlsin 22
whereas in the main elevation plane,

R[R =[(sin O cos p-cos @)? + (sin O-sin @-sin @)?11/2

b=n2 . 9=9 = 1-sin0

and the elevation pattern is thus approximated by the expression:
F (6, w) = ho(6) Jo[ (@R /c)(1 - sin6)]

Note that strictly speaking expression (2.23) defines a ‘co-delayed’ rather than a
‘co-phased’ excitation taper, by which we mean that the array remains properly
compensated regardless of the operating frequency. In the case of narrowband co-
phased excitation at frequency o, ® and ¥ must be redefined as follows:

R = R{sin2 @ + (wy/w)*sin2 8 - Z%Sin 6 sinB cos(p- @I ... (22.17)
Reos ¥ = R(sinB cos<p-%’-sin@ cosé) -+ (2.2.18)

Rsin® = R(sin 6 sin @ - %sin?é sin ) .. (2219)

and the two special cases considered above are respectively modified to:

F(p,a) = Jo (00RO~ 17 +4(@ o) s Ehyey

and
F(6, ®) = hy(6)Jy {(axyR/c) e/ ax)sin 6 - 11}

14 Any other setting of 6 would by symmetry also apply to (n-@ leading to a wider or even partly-
split beam in elevation
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In practice not all the elements of a circular array are excited for the formation of
a co-phased or co-delayed beam in a given direction. Since element patterns in an
array environment are in general outward-directional, it is often wiser to generate the
required beam using a typical aperture sector of 90° to 120° facing the specified beam
pointing direction so that backward radiation in the form of sidelobes is reduced. A
further reduction in sidelobe level may be achieved by the symmetric application of
amplitude weighting, phase weighting or both5, although mode-space beamforming
described in chapter 3, presents a more systematic approach to pattern synthesis. A
major drawback in the beam cophased architecture lies in the interlaced sector feeding
and switching needed for multiple beamforming16 and beam scanning respectively.
The latter arrangement is exemplified by Fig. 2.2.2 which schematically describes a
120° switched feeding configuration for a 24-element circular phased array.

To circular array elements

8 19 20 21 22
4 12 5 13 6 14 . 15
1tches£ 1 £
g g 7

23

16 17 1
0 8 1 9 2 10 3 11
rs SW
[T D=

shifter
Digitally-controlled

jguitehes =nd ' output signal  Control lines

Power
combiner

Fig.222  Feeding matrix for a 24-element circular phased array

15 A number of papers dealing with co-phased pattern synthesis and sidelobe reduction have
appeared in the 1960s and *70s — see for example [Fen 63].

16 At microwave frequencies multiple cophased beams for circular antenna arrays are conveniently
generated via two-dimensional spatial feed in the form of an electromagnetic R2R or RKR lens.
Full 360° coverage by the same array, however, requires the combination of 2 identical lenses
through a set of hybrid coupler devices.
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2.3 TRANSIENT EFFECTS

When the bandwidth of the received signals is of the same order of, or greater than
the reciprocal of the propagation delay across the array (as may be the case in the
reception of frequency-coded or short CW pulses), the radiation performance of the
array cannot be satisfactorily represented by its steady-state array pattern at a single
frequency. The true time-varying response of the array depends on the characteristics
of the received pulse as well as on the frequency dependence of the array radiation
pattern.

Qualitatively, the transient effects associated with the reception of a short CW
pulse are fairly simple to visualise. Pulsed signals incident at the different elements of
the array are in general temporally displaced depending on the array geometry and on
the relative direction of the radiation source. Unless these delays are negligible
compared with the duration of the pulses, they may not all overlap in time — this is
depicted in Fig.2.3.1 for the case of a 4-element semi-circular array. Without
appropriate compensation, the radiation pattern of the array will consequently be
distorted by the fact that contributions from the array elements do not occur
simultaneously, or equivalently by the frequency-dependent phase differences
between the summed signals which make up the array response over the whole
bandwidth of the pulse.

—_—_—

of
incident pulse

Fig.23.1 Receptioﬁ of a CW pulse whose duration is not much greater than the
propagation delay across the array
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A common method for the wideband compensation of either a linear array or a
circular beam-cophased array is by the implementation of true time delays at the array
channels. In the case of an M-element circular array of radius A the required delays
(to within a constant delay) are: '

Tn = (R/c)sinécos({o-%m) 0<m<M-1 - (23.0)

where (6, ’é)) define the direction for which the array is to be delay-matched and ¢ is
the velocity of propagation. These delays may be realised by using physical
transmission line sections or, when digital beamforming architecture is employed, by
utilising previously stored data samples in conjunction with interpolation filters for
the reduction of delay quantisation errors. If the array is delay-matched to the
direction of arrival of the signal, then at the beam peak direction all contributions are
coherent and occur simultaneously. However, if a signal pulse hits the array from any
other direction, especially well away from the main beam, channel contributions will
once more depart from proper temporal alignment and will no longer be
simultaneously processed. Depending on the shape and duration of the received pulse
this delay mis-match may degrade the sidelobe performance of the array.

For a more quantitative examination of a circular array response to a short CW
pulse, let us consider the following signal travelling towards the array of Fig. 2.2.1
from direction (8, ¢):

p (©) = II(t)el @ e (232)

where I1(t) denotes the waveform envelope (a rectangular pulse, a shaped pulse etc.)
and ay is the carrier (angular) frequency. At the m'th array element the received

signal is given in the frequency domain by g, (6, ¢, a))]:dt' D(-t,-t,)ed ®' where

8m(6, ¢, w) is the radiation pattern of that element, z. denotes the time of pulse arrival
at the array centre and ¢, is given by:

tm = Ty - (R/c)sin Ocos(@-27m/M) .. (233)
The summed response of the whole array is given by:

P(6, ¢, w) = e @ TI(w-wp)F (6, ¢, ») e (234)
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where IT (@) is the Fourier transform of the waveform II(¢) and for a given set {a,,} of
applied shading coefficients, F (6, ¢, ) is the steady-state array pattern given by

M-1
F(8,0,0) =Xliz Umgm (8, @, W)e Vn - (235)
_0

The time-domain array response is therefore given by,

o0

P(6, 1) = e";“ “’J dwe ©C+IF (8, ¢, o+ o) [1(w) .+ (236)

-00

From (23.6) it is clear that if to within some delay response e” @%, F(8, ¢, w+a)) can

be made approximately frequency invariant over the bandwidth of I (o),
F(6, ¢, 0+ ax) = ed ¥4F (6, ) .-+ (237)
then:
P(6, ¢,1) = F(O, Q)p(t-t.-15)e) %t .-+ (238)

and the steady-state array radiation pattern applies. An inspection of (2.3.5) reveals (as
expected) that this indeed is what beam co-delayed excitation sets out to achieve. By
requiring that in the direction of the main beam:

F(8, ?p, w+ ay) is made dependent only on the frequency response of the element
patterns, which is assumed to be fairly flat over the relevant band. Away from the
main beam direction F(8, ¢, o+ap)is frequency dependent and should be
characterised by low sidelobes over the whole bandwidth of fI(a)) for the sidelobe
level of P(6, ¢,t) to remain low. Omnidirectional delay matching is possible, but as
we show in chapter 3, it requires each array beam to be synthesised from wideband
aligned phase modes. Phase modes are reviewed and discussed in section 2.4 of this
chapter; their broadband alignment is treated in section 3.5 of chapter 3.

Transient phenomena may also (and are more likely to) result from the (equalised)
reception of frequency-coded pulses. For an examination a circular-array response to
a linear FM pulse, refer to appendix B.1.
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2.4 PHASE-MODE EXCITATION

Phase mode excitation refers to the excitation of circular-array elements with uniform
amplitude but with a linear phase sequence which obeys the periodicity condition,
allowing only an integer number of 360° phase cycles around the array - see
Fig. 2.4.1. For a radially-symmetric ring array of M elements whose frequency-

independent patterns are symmetrically identical and denoted by (2.2.1), the " ’th far-

field phase mode pattern (. (1) is expressible as the following sum:
M1
P O = S (p-27tmIM)e-j[i' " i") ""'n-icitR/c)sm ecos {(p-lnmiIM)]
m=0

which, under the Fourier series representation (22.4) for the element patterns, may be

rewritten as:

(p, co) = — H(NOMN((p-27Cm/M)i-"g-j[i27C/M)fim-iciiR/c)smecos (<p - 2nm/M)]

I M-I
_1.X h ("Qeji9 X £-j(2nfM)(ji+i)mgj((iRic)s'm 6cos (¢ - 27cmIM)

Aj=_T ‘

(2.42)

with / denoting the maximum non-vanishing element-pattem coefficient in (2.2.4). 4

simpler though quite useful representation for the element pattern is the following:

A (27HM) (M-D)ii

8-j{2nIM)(M-2)gL

Fig. 2.4.1  Phase mode excitation of mode no. f.
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(6, ) = hy(B)pt-sin6es@) | ps e (243)

with hg(6) denoting an arbitrary elevation dependence, for which the corresponding

array pattern is —
M-1 i
@6, ¢, @) = @.1%4@ S e iQuMm ¢f[@Rle)+jin plsin 6cos (9-2IM) ... (244)
m=0

The term ej(@Hfc)sin 8cos (9-22n/M) which appears in (2.4.2) is expressible as the
following infinite Bessel series:

ei(wRc) sinfcos (¢-2mm/M) = 2 jvJV (%?Sm 9) e v(g-2nm/M) ces (2'4_5)

V=-o00

Substituting in (2.4.2) and changing the order of summations we have:

Du(6, 0, 0) =

I > M-1

> hi(0) X, jI@sing)eiG-vopL 3, edeminwsi-im . n4g)
i=-] V=-co m=0

The bracketed term in (24.6) is equal to zero or to 1 according to the values of m, i
and v

M-1 had
LN ej@um@+i-nm =" §(u+i-v+gM) c-(247)

The expression for @, (6, ¢, w) therefore takes the form:

I (- -]
D8, 0,0) = X, hi0) D, My, gy (@Bsin §)eiwratne
i=-I g=—oo

hd I
= 3 X # M b0 uvivqu (Wsin )] et aig
g=—o =1

=Y. Cuyw, Q)ed+ade
q-_--oo

<= (248)
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where C4(@, 6) is the frequency-dependent phase mode coefficient of order g for the
J’th phase mode, and is given by:

1
Cug(@,6) = D, jH+*+Mh; (6)] i qu[(@RIC)sI 6] .- (249)
i=-I

The far-field pattern of a phase mode is thus expressible as a sum of the form

Du(0,0,0) = Y, Cg(@, O)eikiraiDe .- (24.10)
g=-o°

which may be viewed as the azimuthally-omnidirectional linear-phase pattern

Cuo(o, 6)ejre, distorted by an infinite series of higher order terms!?. Note that
(24.10) stll applies when element patterns of the form (24.3) are assumed, only each
phase mode coefficient is given by (see appendix B.2 for details):

Cpuq(@, 6) = pho )]+ 3 ]y, [ (@B +jIn p)sin 6] - 24.11)

For array elements that are omnidirectional in azimuth, we have #; =0 , i#0 in
(224), or equivalently p =1 in(2.4.3), both of which lead to:

Crg(@, 0) = j#+Mho (6)J 14 1y (LBsin 0) o (24.12)

Since (2.4.12) also applies to the dominant ¢ = 0 mode, whenever the frequency and
the array radius are such that J, (wTR) hits one of its zeros, there will effectively be a
‘hole’ in the far-field circumferential coverage of that mode around elevation zero
(6@ = m/2). In the vicinity of the zero, the far-field azimuth pattern is not completely
cut out, but ripple from higher order terms (especially those characterised by g = 1)

will dominate, and thus limit the practical usefulness of that mode. If on the other
hand the element patterns are of the form:

17 The original motivation for considering the zero-order term as dominant stems from the

corresponding analysis of a continuously-distributed circular-array source under linear-phase
excitation [Dav§83], [Jon 90] where the far-field pattern for the y’th mode is seen to be given by
7*Jul(@RJc)sin G]e7*®. In the case of a circular array of discrete but closely spaced elements (an
inter-element spacing of less than half a wavelength), higher order modes (though not necessarily
the first one) will indeed die out by virtue of the asymptotic properties of a Besse! function whose
order is much greater than its argument.
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(6,9 = 89(9)Cos2%’- = £4(6) [%+a2Lcos @]

then,
C[l.q(wa 6) =
jiraM @R j OB R
) 86(0) (s qm(%; Sm9)+'2'[~’u+qM+1( 21sin 6) - Jyigu-1 (L sin 6)])
in+qM
=L 5 —26(O) Upurqu(@Bsin ) - 1y 1 @Esin )] - (24.13)

where J,/(- ) signifies the derivative of the Bessel function of the first kind with
respect to its argument. Since the zeros of J,,(- ) and of J,/(: ) do not coincide for any

v, it follows that for this type of element pattern the phase mode coefficients never
fall to zero. In fact noting that the zeros of a Bessel function of integer order are
always real it follows that any element pattern of the form (2.4.3) which is either
outward-directional (p < 1) or even inward-directional (p > 1) leads to phase mode
coefficients (2.4.11) that never fall to zero.

One last result relates to symmetric element patterns given either by (2.4.3) or by
(2.2.4) with:
hi(6)=h.i(6) , i>0

The phase mode coefficients of symmetric modes are then related by:

I
Cemin =D J* " Mhi(6) J i qu(@R/c)sin 6] = Cpg - (24.13)
i=-I

as can also be directly deduced from (2.4.11), where use has been made of the Bessel
identity (22.15). Consequently if @u(6,¢,w) is given by (24.10) then the
corresponding expression for @.,(6, ¢, @) is:

D,(0,0,0)= Y, Cpy(e, 0)ei+aiDe - (24.14)
q-_'-ee

In the next chapter we shall show how the above symmetry may be used in phase-
comparison direction finding without resorting to mode alignment. Another important
point to note is that by symmetry, the phase-mode coefficients for modes y = M/2 and
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u=-M/2 (when M is even) are the same, and both mode terms are ‘available’ in

D1y (6, @, W), constituting a far-field pattern that is very different in both amplitude
and phase from the desired linear-phase omnidirectional pattern?8:

Dy (6, 9, )= Coupy 0@, 0) [e/M12) P+ £ M12) €] = 2Cpyp2) 0(, 6) cos (M ¢/2)

2.5 CONCLUDING REMARKS

In this chapter we have reviewed the beam-cophased and phase-mode excitation
methods for circular arrays. The first approach, although a direct extension of linear-
array beamforming, does not lend itself to systematic pattern synthesis techniques and
is quite awkward to incorporate in a scanning array system. We have seen that even
when delay-matched, transient effects may alter the designed sidelobe performance of
the array. A beam-cophased array of reciprocal transducers is also susceptible to
aperture excitation errors due to the combined effect of inter-element coupling and
feed network back coupling.

The alternative approach of transforming from ‘element space’ onto ‘phase-mode
space’ provides us with a set of (possibly rippled) omnidirectional patterns, each
characterised by a linear far-field phase. Although we have hitherto considered the
synthesis of a single phase-mode pattern from an M-element circular array, it is
simple in principle to simultaneously generate up to M independent phase modes
with the aid of an analogue Butler-type matrix, or through a spatial Discrete Fourier
Transform (DFT) operation on the digitised outputs of the array sensors. Phase modes
are affected by mutual coupling, but since they each place all the array elements
under identical periodic boundary conditions, the outcome is that each phase mode
simply ‘acquires’ a new complex coefficient which is correctable through re-
calibration. Properly aligned phase modes may be weighted and linearly combined
according to well established linear-array synthesis techniques, to form directional
beams. This well known technique together with other existing schemes and some
new related ideas, such as directional phase mode beams and omnidirectional delay
matching, are discussed next in chapter 3.

18  The summed pair of oppositely-numbered phase modes is sometimes called an amplitude mode.
The case of 1 = M/2 is unique in that both phase modes appear at the same output port already in
amplitude-mode form.
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3. CONVENTIONAL MODE-SPACE
TECHNIQUES AND
APPLICATIONS

3.1 GENERAL

Circular array phase modes provide a convenient basis for a number of interesting
antenna and sonar array applications. Their most common use is in multimodal
direction finding where the phases of several pairs of excited modes are detected and
compared, achieving the angular accuracy of larger amplitude-comparison
(multibeam) DF systems?. Other conventional techniques? include the phased
addition of adjacent modes to form patterns with phase-controlled steerable nulls, as a
way of suppressing co-channel interference, and directional beamforming where
phase modes are weighted, phased and combined by essentially linear-array feeders.
Sections 3.2, 3.3 and 3.4 of this chapter are devoted to a short review of these
schemes. The usefulness of the latter two depends on the broadband alignment of the
phase modes, which calls for the separate deconvolution of their dominant
coefficients. It is worth noting that once such wideband alignment is successfully
implemented, the array becomes circumferentially delay-matched for incident pulses
of lower bandwidth.

In mode-space beamforming a set of excited phase modes is treated, after some
angular transformation, as omnidirectional elements of a fictitious linear array, where
all phase modes are assumed to be aligned and distortions due to higher order modes
are neglected. The modes are linearly combined using linear-array synthesis

1 In the traditional circular-array amplitude-comparison DF system the array is fed by a multiple
beam-cophased network (normally an RKR electromagnetic lens in the case of microwave
antennas), in conjunction with a beamwidth-stabilising sidelobe-reducing interlaced conversion
matrix. The attained angular resolution of the system is a function of beamwidth which in turn
depends on the array dimensions. In contrast, the angular resolution obtainable from a multimodal
array may actually improve (due to reduced ripple) when the array radius is decreased (up to a
limit below which radiation efficiency drastically drops)

2 The term conventional is used here to distinguish from high-resolution methods which are
discussed in chapter 5.
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techniques (for, say, sidelobe suppression), and under broadband mode alignment, the
generated beams remain unchanged with frequency. The essence of this well known
concept and a convenient technique for exciting a multiple set of directional beams
are briefly recalled, together with a number of examples, in section 3.2.

Multimodal direction finders detect and compare the phases of pairs of phase
modes, utilising the approximate linear-phase characteristics of their far-field patterns
to provide an output voltage that is linearly proportional to the angular location of a
sirigle far-field source. It is commonly accepted that to within an angular ambiguity of
180°, no mode alignment or look-up calibration tables are theoretically required. In
section 3.3 we show that under some reasonable and easily verifiable assumptions, the
above angular ambiguity may in fact be eliminated.

Mode-space null-steering is based, as described in section 3.4, on a tree
arrangement that starts by the phased subtraction of adjacent phase modes and
continues, if desired, by a similar subtraction of adjacent output beams3. Provided
the subtracted modes are properly aligned, this scheme yields far-field patterns with
one independently-steered null per stage. The incorporation of a null-forming network
in a DF system may provide an iterative (though non-adaptive) direction finder that
can handle a multiple source environment [CVE 88a], [CVE 88b].

In section 3.5 we introduce a new type of beams which we name sectoral phase
modes. A sectoral phase mode is a directional beam with phase-mode-like phase
behaviour, which may be synthesised by a linear combination of omnidirectional
phase modes that have been equalised over the relevant frequency band. Sectoral
phase modes allow the phase-mode concept to be confined to a single or multiple
angular sectors instead of the usual omnidirectional phase-mode coverage. A single-
sector implementation may be used to limit the spatial sensitivity of a circular array to
a given (possibly large) angular zone, whereas multiple-sector applications include
phase-comparison direction-finding with enhanced immunity to interference and
sectorally-controlled multibeam null-steering.

The question of bandwidth is finally dealt with in section 3.6, which includes a
somewhat academic search for the ‘optimal’ element pattern, but also a discussion on
the viability and design considerations for a set of stable phase mode filters. The
chapter concludes with a summary of the main techniques, their advantages and
possible limitations.

3 The outputs of stage 1 are wide mode-space beams, each formed by two phase modes, those of

stage 3 are a linear combination of three phase modes, etc.
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3.2 DIRECTIONAL MULTIBEAM EXCITATION
Approximating a set of phase mode patterns { D,(6, ¢, co)}ﬁ=_ Aby:

Dy(0,9,0) = Cyo(w, O)eike , -ASu<A ---(32.1)

where the coefficients {Cyo}, are all non-zero, enables one to use linear array

techniques to synthesise a low-sidelobe (2A+1)-“element” directional beam in any
direction [DAV 65]. The application of a linear array aperture taper to form the
weighted sum of distortionless phase modes, each normalised to its zero-order
coefficient Cy,0, results in a radiation pattern that is identical to the array factor of the
corresponding linear array but with the following coordinate transformation:4

27(d/A)sin @ [linear array] — ¢ [circular array] ---(322)

where d is the inter-element spacing for the linear array. This means that as long as
(3.2.1) holds, the resulting array pattern is independent of frequency, provided a way
is found to flatten out the frequency responses of all the zero-order mode coefficients.
As previously noted, a multiple set of (2A+ 1) phase modes may be generated from an
M-element circular array with the aid of an Mx(2A+1) analogue Butler matrix, or its
digital equivalent of a spatial DFT unit. Cascading the modeforming unit with an
array of deconvolving filters, a set of weights { &} and an inverse DFT unit
(assuming digital implementation), as schematically illustrated in Fig. 3.2.1, results
in the simultaneous excitation of M (possibly broadband) radiation patterns®

A
Fm(¢)=+,22 oyein @-2nmiM) | 0<m<M-1 ---(323)
M "F_A

with respective beam pointing directions {¢@,=2zm/M}. One possible
implementation for each of the digital filters in Fig. 3.2.1 is illustrated in Fig. 3.2.2,
where two temporal DFT units are used to divide the frequency band into N
separately aligned bins with complex weights { #,, } which are given by:

4 We refer here to the radiation pattern on the xy-plane from a circular array lying on the same
plane and from a linear array lying parallel to the y-axis.

5 Each weighting unit may in fact be incorporated with the corresponding mode filter.
We assume a constant elevation cut (say, 8 = 90°) for both the deconvolution of the phase mode
coefficients and for the radiation patterns.
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Hym=1/Cpuo(@=n0/Ng, =72 , 0<n<N,-1 .- (324)

where @ is the (angular) sampling frequency. However the Fourier transform of
1/Cpo(@, 8 = 7/2) is not necessarily finite in its extent, and consequently the required
order N, for this finite impulse response (FIR) approach (as well as other FIR filter
realisations) may become excessively large (see for example [Opp76]).7
Alternatively, the order of an IIR (infinite impulse response) filter realisation is
shown in section 3.6 to depend on the Fourier transform of Cyo (@, 6 = 7/2) whose
extent is indeed finite.

Let us now return to expression (32.3) for the approximate far-field pattern of
mode-space radiation beams. Such a multiple set of beams with a reduced sidelobe
level is displayed in Fig. 3.2.3 for the case of an array of 7 directional elements at
0.456-wavélengths spacing®, using a set of 5 aligned phase modes (u=-2to2),
pre-weighted as follows:

Mode -2 -1 0 1 2
Weights -10.5 dB | -2.3 dB 0 dB -2.3 dB -10.5 dB

Amplitude (dB)

(@]

Angle (degrees)

Fig.3.23 Multibeam pattern formed by 5 weighted modes from a 7-element array
(R=0.5084, g4 (@) = 0.612+0.384 cos ¢+0.004 cos2¢)

This really depends on the smoothness of each of the phase mode coefficients, which in turn is a
function of the element pattern.

A sonar array of these dimensions was built at Loughborough University of Technology in 1992,
and a parametrised version of its measured element patterns is used here.
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In the case of a uniform amplitude weighting, (3.2.3) may be put in the following
closed form:

(1+2A) sin[(1+2A)(@-27m/M)/2]

MY% (1+2A)sin[(@-27nm/M)/2]

0<m<M-1  -..(325)

which is the familiar sampling function pattern whose directivity increases with the
number (1+2A) of combined phase modes. Table 3.2.1 compares the beamwidths and
peak sidelobe levels of uniformly excited modal beams formed by different numbers
of normalised phase modes for a circular array of 8 omnidirectional radiators at half-
wavelength spacings. The 9-mode case refers to the excitation of all 8 phase modes
with mode i = 4 weighted 6dB above all other modes. This accounts for the fact
that modes i = +4 and 4 = -4 are both ‘available’ at the same port. Equivalently,
the 9 modes u = -4 to +4 are uniformly excited. Note also that although modes +4
and -4 are not independent, they require the same phasing for a 9-mode beam to be
scanned to (or simultaneously formed at) the following 8 directions:

or=(m4)e , 0<L<T

and in general for an M-element array, an undistorted (M+1)-mode beam may be
formed at M directions given by:

True pattern Expression (3.2.3)

Number | [ Beamwidth Peak Beamwidth Peak

o p null sidelobe null sidelobe
modes -3dB | o pull level -3dB | 10 pull level

3 49.6° 236° -7.8dB 111.8° 240° -9.5dB

4 43.1° 186° -10.4dB 82.0° 180° [-11.3 dB

5 39.3° 140° -12.6dB 64.9° 144° -12.0 dB

6 42.4° 124° -10.4dB 53.8° 120° -12.4 dB

7 41.0° 112° -8.7dB 46.0° 103° -12.6 dB

9 32.9° 86° -12.4 dB 35.6° 80° |-12.9dB

Table 3.2.1: Uniformly excited mode-space beams from an 8-element array
[omnidirectional radiators, 0.5 inter-element spacing]
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or=Qa/M)¢ , 0<4<M-1

Table 3.2.1 shows that (at least the null-to-null) beamwidth of the main beam is
indeed reduced when the number of phase modes used for its synthesis is increased.
The apparent deviation from the ‘ideal’ beam pattern expressed by (3.2.3), and in
particular the irregular shapes of the broader beams (leading to the misleadingly small
half-power beamwidths) is a consequence of the pronounced presence of higher-order
terms attendant to phase modes *1, +2 and 3. These phase modes carry a peak-to-
peak amplitude ripple of 3.8 dB, 2.4 dB and 5.5 dB respectively. Note though that
although mode 4 is characterised by an even larger ripple, this is due to the
combination of modes +4 and -4 and in fact it follows very closely a pattern of
-%—[e'f4¢+e+f4‘l’] = cos4¢.

The phase and amplitude ripples of modes *1 to +3 may be reduced and the modal
beam patterns be made to more closely follow (323) by reducing the array radius so
that the inter-element spacing is well below half a wavelength. The performance of
the same 8-element array but with 0.4 wavelengths spacing between radiators is
summarised in Table 3.2.2, where one may note the closer resemblance, though not
identity, to the ‘ideal’ sin(V ¢/2)/Nsin(¢/2) patterns.

True pattern Expression (3.2.3)

N“g'fber Beamwidth 'clielakbc Beamwidth _‘Ii’elalf)
null siaclo null sidelobe

modes -3dB to null level -3dB to null level
3 111.5° 242° -9.6 dB 111.8° 240° -9.5 dB
4 81.3° 178° -11.2 dB 82.0° 180° |[-11.3 dB
5 63.2° 146° -11.8 dB 64.9° 144° |-12.0 dB
6 57.2° 118° -12.4 dB 53.8° 120° }|-12.4 dB
7 50.6° 104° -11.0 dB 46.0° 103° |-12.6 dB
9 37.3° 82° -12.5 dB 35.6° 80° |-12.9 dB

Table 3.2.2: Uniformly excited mode-space beams from an 8-element array
[omnidirectional radiators, 0.4 inter-element spacing]
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3.3 MULTIMODAL DIRECTION FINDING

A direction finder is a sub-system designed to indicate the direction of arrival of
signals. Simple single-source scenarios have classically been handled by one of
several conventional approaches: i  amplitude comparison

ii phase comparison

iii monopulse

Modern amplitude-comparison systems process the (pre-calibrated) outputs of a
multibeam array network to find the one with the highest power level as a rough
indication of source direction, with the relative power at the neighbouring ports
serving to fine-tune the initial bearing estimation. In element-space phase-comparison
DF, the angle of arrival is obtained from the (relative) detected phases of signals
received by pairs of array elements. Phase detection is also part of the monopulse
approach, but this time it is between the difference and sum?® outputs of a
(mechanically or electronically) scanning beamformer. In the context of mode-space
circular array beamforming, one can think of a DF system employing amplitude
comparison between a multiple set of frequency-independent directional beams, or
even of the incorporation of a mode-space monopulse unit.

The mode-space equivalent of the phase-comparison approach, and perhaps also
the most common use for phase modes, is the so called multimodal DF [REH 80]. In its
usual application the phases of several pairs of symmetrically numbered phase modes
are detected and compared providing a high-resolution angle-versus-phase function:

arg[D.,(0, 9, 0)/ Du(6, @, )] =2 ++(33.4)
where symmetric element patterns have been assumed, so that, as we presently show,

the corresponding phase mode coefficients effectively cancel out. Angular ambiguity
is resolved by comparing the phases of two adjacent modes, say modes no. -1 and O:

arg[D.1(6, ¢, )/ Do (6, ¢, W)] = p+arg[C.1y0(@, 8)/Coo(@, 6)] ---(332)

but that entails, as is evident from (3.32), the alignment or at least the calibration of
the corresponding two (zero-order) phase mode coefficients.

®  Sum and difference beams are produced by respectively adding and subtracting the summed
outputs from two symmetric halves of an array. In its simple implementation the same weighting
taper is used for both beams, but this is not always so. In any case, the sum beam is typically
characterised by a pattern maximum, whereas the difference beam has a null in that direction.
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Actually, there is a neat way to avoid (at least in theory) mode calibration by
relying on the assumed symmetry of the element patterns. Specifically, we assume
element patterns to be given either by an expression of the form (2.4.3), or by the
Fourier series (22.4) with:

hi(@®=h0) , >0 ---(333)
which, as can be inferred from (2.4.14) in section 2.4 of chapter 2, leads to the

following expression for the radiation pattern of phase mode -, relative to that of
phase mode +u:

¢-ﬂ(e’ ¢$ w)/¢#(ea ¢: w) =

z Cuq(w, 6)eitu+ae
g=-00 - a'u(d), 9’ ¢)+jﬁ,u(w’ 0’ <D) el'

- Mo ...(334)
> ' au(, 6, 9)-jPu(®, 6, )
Z Cuqg(®, B)ei+adDe
q:-oo
where,
— Cug(0,0) + Cp( o, 6
0 (,0,9) =1+ 1(@,9) * Cutf® )coqutp .- (335)
g=1 Cuo(w, 6)
S, Cugl®,0) - Cu(gf,6)
Bu(e,6,0)= Y, —4 HD = singM g .- (336)
=1 Cuo(®, 6)
and clearly, for the 2M directions given by:
Pr=2m(l2M) , 0<£<2M-1 - (337)
we have
D,(0, 9@ .
LuO. 06D _ irug, - (338)

¢,u(0’ 7 w)



I 45 ventional mode- . et

which is the basis for the approximation (33.1). In other words, the comparative phase
response between the two phase modes is characterised by symmetric and equi-ripple
phase fluctuation of #2tan"![By(, 6, p)/au(®, 6, @)] about the value of 2u¢ and is
thus usable for DF purposes without the need for mode alignment.

The angular ambiguity inherent in (3.3.8) (in comparing the phases of non-
adjacent phase modes) may be resolved by detecting and comparing the phases of

both mode &.; and &, to that of mode Py:

2:1(0,0,0) _ C10(e,6) 01(@, 6, 9Fip1(@.6,9) -,
Do(6,9,0) Coolw, 6) ao(@,6,9)

---(339)

¢:tl(9’ (72 w) = Cl 0((0, 6) (24 (0), 95 ¢l)
%(e’ (7 CD) COO(CD, 6) o (a)v es q’l)

eie: | 0<¢<2M-1 ...(33.10)

where the angles {¢,} are given by (3.3.7). Now, we often find that the phase bias
arg[Cio(@, 6) a1 (w, 8, pp/[Coo(w, 8) ap(w, 6, @] is less in absolute value than 7/2.
In fact, for an array of omnidirectional elements, [argC; o(w, 8)-argCoo(w, 6)] (which
is normally dominant in the above phase-bias expression) is clearly equal to +7/2
(see (24.12)), and as we show at the beginning of section 3.6 of this chapter, it is
asymptotically (for large (wFA/c)) equal to zero in the case of directional elements of
the form (1+cos¢), and is always zero for impulsively-directional array elements.
Having the phase bias bounded by +90° allows its straightforward elimination via:

arg[C1o(@, 0) 1 (@, 8, /[ Coo(@, 6) (@, 0, 9] =

D_1(0, ¢4, @) N a:g(pl(e’ @z, )

-+ —é—[n + arg
Do(6, @z, ) Do(0, ¢s, @)

Jmod2r , 0<4<2M-1 ...(33.1])

where [x Jmod 27 denotes the modulo-27 value of x.

Associated with the omnidirectional nature of the compared phase mode patterns
is the obvious advantage of 360° coverage, but also the attendant drawback of high
vulnerability to co-channel interference. In section 3.5 we propose an alternative
phase-comparison DF scheme in which the compared phase modes become
directional in amplitude while retaining their linear phase characteristics, and
therefore less susceptible to interference.
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3.4 NULL STEERING

The need for generating radiation pattern nulls arises in communication as well as in
direction-finding applications, where the receiving array has to reject unwanted
interference or jamming signals. The synthesis of static or steerable nulls in the far-
field pattern of an antenna array has been described in the past by a number of authors
in the context of non-adaptive linear [DAv 67], [CLA 68], [MEL 70] and later also circular
arrays [LIM 75], [LIM 77], [DAV 771, [Riz 77], [DAv 78a], [DAv 78b], [DAv81], [GRI85],
[KAR 86], [CVE 88a], [CVE 88b]. A variety of adaptive and semi-adaptive signal
processing techniques have also been suggested for the closed-loop generation of
pattern nulls in the directions of the interfering signals. Interference may, of course,
refer to a multi-source or multipath environment which often degrades the
performance of a conventional direction finder. In that event a nulling scheme might
be devised that sequentially nulls out sources whose bearings have already been
determined, and is then iterated in order to reduce bias errors in the estimated
locations of the sources and nulls.

One method for forming a steerable cardioid-shaped single-null circular-array
pattern is by the phase-controlled combination of two adjacent phase modes of
equalised amplitudes. Thus, if the far-field patterns of phase modes @, and @y, are
respectively given by:

Du(6, 9, @) = Cpo (@, B)eT 9
and
D100, 9, ) = Cpo(w, 6)ed W+ e

then a null in direction f3 is produced by subtracting the normalised and phased @1
output from the normalised output @y:

¢l‘l(0’ (p’ CO) - d>I-H'l (0’ ¢9 (0) C’]p =j2e_jﬂ¢ e-j(¢-ﬁ)/2 Sinqo—_ﬁ— L. (341)

Cuo(®,60) Cirnyo(@,0) 2

The new pattern is characterised by a new phase slope of -(1i+1/2), a phase offset of
B/2 and a sin(¢@/2)-type null in direction S which introduces a phase jump of +7/2.
The null may be steered by controlling the inter-mode phase-shift 3, but note that the
[/2 phase offset changes also. Additional phase modes may be used to either reduce
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the null width [LM77] or to introduce additional pattern nulls. The latter option,
suggested in [DAv 77] is illustrated in Fig. 3.4.1. Here, each output beam is formed by
linearly combining three adjacent phase modes, with two sets of phase shifts 3; and
B> independently controlling the respective directions of two sin(¢/2)-type pattern
nulls. Except for two £z/2 phase jumps at ¢ = 5; and @ = 3, the resulting phase
patterns remain linear, following as before the average phase slopes of the generating
phase modes. A double-null output beam with phase slope -u is thus obtained from
phase modes @1, Dy, and Dy41:

[%.1(6, ¢ 0) Dy, g, w) if] - [45,1(9, $0) Dyu1(6, 0, 0)

Cu1)0 Cuo Cuo Cu+1)0

-4ed 1o ei (Bi+B2 sin(p'zﬁl sin‘P-zﬂz .- (342)

N 1 t_'”M-2 M-1
rray ements Y Y

...Digitising Network, . [I] []]

0 1 Digital DFT M2 M1
T 0 1 ... A

I T e 3 0 I l l [ L l

[I] Post-DFT [I] lj Ij Weightinglj

2A+1
modes

2A
beams
[1 null]

2A-1
beams
[2 null]

Fig.34.1 Independent angular steering of multiple nulls
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Three or more nulls may be similarly generated by extending the nulling network of
Fig.3.4.1, with the number of beam outputs decreasing at each stage. Eventually, a

single beam with 2A independently steerable nulls will be produced.

Pattern nulls sharper than sin[(¢-§)/2] may be synthesised at each stage at the
expense of fewer beams (or equivalently fewer nulls) and increased complexity.
Instead of forming each nulled beam from a pair of adjacent phase modes as
illustrated in Fig. 3.4.1, each sharply-nulled beam is generated by linearly combining
an interlaced set of N>2 modes — see Fig. 3.4.2 for the case of N=3. Each set of
phase modes is linearly phased (with phase shifts 3, 23, 38 etc.) as well as multiplied
by a set of weights {w,}, where Bxx is the desired direction of the null and the
weights are yet to be determined. A pattern synthesised by a set of N symmetrically
numbered phase modes (with N odd) may be expressed as:

N-1
N(P) = ej(N-l)ﬁlzz w,eJln-0N-D2)(¢-p) .+ (343)
n=0

and, following the lines suggested in [LM 77], the single-null target pattern we seek is
given by:

T(p) = eI/N-D B2 ¢-j(p-Pf2 .-+ (344)

One may therefore use standard Fourier analysis to solve:

N-1
Y wredln-M-129-) = g-ito-A2 ... (345)
n=0
which yields:
— Sin[(n-N/Z)ﬂ'] — (—l)n-(N.l)fz <n<N-
T (-NR)m  (-n+N2Q)m 0<n<N-1 - (340)
For example, if N = 3 we have: wo =-2/3%

wr=w3=2/T

Note that whichever type of radiation pattern nulls are produced, the same null
factors are shared by all the (typically wide) output beams, the latter being also
characterised, as we remember, by linear phase. This makes the above null-steering
schemes readily adaptable for the generation of directional beams with steerable nulls.
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A multibeam network that achieves this is schematically illustrated in Fig. 3.4.3.
Here a weighted set of double-null beams are operated on by an inverse DFT unit to
form a multiple set of M directional beams with pattern nulls at ¢ = f; and ¢ = ;.
Assuming wide sin (¢/2)-type nulls, each of these directional beams is approximately

given by:

. _ - A-l
4G o P g 0P 5 uce-2mminy

Fm(¢)= M1/2 )

p=-A+1

0<m<M-1 ...(347)

Array Elements
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* * * double-null
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Fig.342 Independent angular steering of sharp nulls
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where {oy} is the set of weights applied by the post-nulling weighting unit. If
uniform amplitude weighting is used, then (3.4.7) takes the form:

= 424D gy @ P G, 0B
F,,,((p)—4Ml,2 el +P2)2 gin > sin >

sin[(Q-27m/M)(2A-1)/2]
(2A-1) sin[(@-27m/M)/2]

0<m<M-1 -+ (348)

In section 3.5 we introduce the new concept of sectoral phase modes, which one may
describe as phase modes with directional properties, and propose a more agile
multibeam nulling architecture where the order of operations (null forming followed
by multiple beamforming) is effectively reversed.

0 1 Array Elements M2 M-1
Ij f] Digitising Network Ij [I]
0 1 Digital DFT M-2 M-1
-A L D I B B | -1 O 1 L] . LI | L] A
I I I I I
Post-DFT filtering and alignment IA+1
5 | IO ] ] i ICHEECNN modes
ad SN ‘
— Nulling network A
ﬁZ l ] l l I L I )
beams
Weighting unit [2 nulls]
| L A1 1 I
-A+1 -1 0 1 A-1
0 1 Digital (Inverse) DFT M-2 M-1

I S

M Directional beams

Fig.34.3 A multibeam network with 2 steerable nulls
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3.5 SECTORAL PHASE MODES

The multimodal direction finder described in section 3.3 combines the advantage of
full circumferential coverage with the benefit of small size and (theoretically)
automatic calibration by symmetry. One of its main drawbacks though is its high
susceptibility to co-channel interference. In fact applying (33.2) to evaluate the
direction of arrival of a signal, when a second signal at the same frequency is also
received by the array, will result (see appendix C.1 for details) in angular errors
which, at a worst-case scenario, may reach the values tabulated in Table 3.5.1.

Improved immunity to interference may be attained, at the expense of some
reduction in angular resolution and of having to align the modes, by transforming the
compared phase modes into directional beams while retaining their linear-phase
property. The idea is to divide the azimuth observation plane into a number of angular
sectors, and form two sets of multibeam patterns so that each angular sector is
covered by a pair of low-sidelobe directional beams with linear and opposite phase
slopes. Inter-sector amplitude comparison may then be used to unambiguously
determine the angular sector facing each incident signal, while a more accurate
bearing is obtained by detecting and comparing the phases of the two directional
beams covering that sector, just as with ordinary phase modes, but with a much
reduced susceptibility to out-of-sector interference. Since the phase behaviour of
these beams in their respective angular sectors is similar to that of omnidirectional
phase modes, we have chosen to name them sectoral phase modes or equivalently
SPM beams.

Relative strength Minimum Maximum
of second signal angular error angular error
-30dB 3.6°
-25dB , 6.4°
-20dB o° 11.5°
-15dB 20.5°
-10dB 36.9°

Table 3.5.1 Angular errors in multimodal DF due to the presence of a second signal
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A set of M pairs of sectoral phase modes pointing in directions:
Om=Qa/M)m , 0<m<M-1

may be approximately synthesised by applying a spatial (inverse) DFT operation to
two aligned sets of asymmetrically-numbered omnidirectional phase modes, say
modes no. {-Ato A-Ap} and {-A+Agto A}, under the same symmetric weighting
taper. The radiation patterns for the m’th pair of beams are then given by:

A-Ao D, ()2, ¢, )
F o= a.  piCuMmu K0 %
A2 (q)) EA & prro e C 10 (o, 7t/2)

= A (¢-2am/M) e/(Ad2) (p-2zm/M) -.-(351)

A
Fi@= Y oy eiemon Il 00

ﬂo‘=-A+ Ao C#O (0), 7r/ 2)
= A (¢-2nm/M) e/(Ad2) (p-27m/M) e (352)
where A<M/2, 0<Ap<2A,
kx=Int(lx1+1/2) -+ (353)
A-Int( Ao/2) A
A(@=0p+2 Y, ogcosko - (354)
k=1

and for an odd Ag: ag=0. The superscripts m and Ag on the left hand side of (3.5.1)
and (3.5.2) indicate respectively the direction ¢, of the two beams and the number of
unused phase modes (out of the set {-A to A}) in the synthesis of each beam. We refer
to the subscripts +Ao/2 as the effective mode numbers, denoting, in analogy with
mode numbers of omnidirectional phase modes, the local phase slope of the
corresponding far-field sectoral phase mode pattern. A schematic block diagram for a
digital SPM beamformer is given in Fig. 3.5.1. Under uniform weighting, the
common far-field amplitude pattern of the beams becomes:

A(9) = sin[(2A- Ag) ¢/2]/sin(¢/2) -+ (3535)

with a null-to-null beamwidth of A@ = 471/(2A- Ag) > 47/M. The full coverage of each
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of the M angular sectors lp-Qa/MymI<n/M , 0<m<M-1 is thus ensured with
some main-lobe illumination of the neighbouring sectors and a peak sidelobe level of
approximately -13.5 dB. This sidelobe performance may be improved at the expense

o 1 Circular array p,;

\/ \/ sSensors \/

network

LH (] Digitising []

Digital M-1

DFT unit
A A+Ay 0 A-Ay A

Peifrers [|] 0 0

] " |0 0 [

A A+d 0 A4 A+dy 0 AA A

Inverse DFT unit Inverse DFT unit
0 1 M-1 0 1 M-1
* * Positive—slope% * + Negative-slope*

SPM beams SPM beams

Fig.3.5.1 Digital beamformer generating 2 sets of sectoral phase modes



3.5 _Sectorai phase modes willlll 54 I

of an increased beamwidth by applying a weighting taper such as a sampled linear
Taylor distribution to the combined phase modes. Fig. 3.5.2 displays the amplitude
and phase patterns for a pair of sectoral phase modes with effective mode numbers
+1/2. The beams are formed from a 16-element circular array by the linear
combination of two overlapping sets of 14 phase modes. Note the almost identical
low-sidelobe amplitude patterns and the comparative linear phase slope of
approximately 1 over an azimuth angular sector larger than 360°/14 = 25.7°.

The choice of Ag affects both the amplitude pattern and the phase slopes of the
SPM beams. As previously noted, the effective mode numbers of the two SPM beams

F7/8(9) and Fy%(¢) defined by (35.) and (3.5.2) are given by -Ag/2 and Ao/2
respectively. The larger Ag, the higher are these effective mode numbers, indicating
steeper phase slopes but the wider are the beams. Thus whereas the highest DF
accuracy but poorest immunity to out-of-sector interference are achieved by
comparing the phases of the highest-order omnidirectional phase modes @.4 and @4,
best immunity but least accuracy result from the comparison of two sectoral phase
modes with Ag=1. In the latter case the effective mode numbers of the two compared
SPM beams are -1/2 and 1/2 respectively, and

0 (] ] [ ] 1 120
’ ' ' ' : [
3 i : : : : 5
c) | SR o -—> [ o
Bt el Seininbidy sniely slnteiy sl ) Sl anbdetiutr betetubd I <
Lowgd - 1] . L] L] 3 d’
~ A 1 1 1 ' | ]
nw ] : : E E L =
JRNSRP O U S S S YO S S I
A s : : a T
(] h ' 1 ] ] ~
3 ) : ; : : S
= i : ' ' ‘ o7
r A B U S B
b P : : : ' T %%
g : : : : 5
) . :
-40 -120

-180 -120 -60 0 60 120 180
Direction (degrees)

Fig.3.52 Comparative phase plot and amplitude patterns for a pair of sectoral
phase modes. (M =16, A=17, Ap= 1, g(n/2, p)=cos ¢/2, 2rR/IM = 0.4 1)
Mode weighting [in dB]:
{-15.5-12.8-8.3-4.7-23-0.70-0.7 -2.3 -4.7 -8.3 -12.8 -15.5}
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argF b ()-arg i) (§)=¢-27am/M .-+ (35.6)

Note also that when Ap>1, more than two SPM beams may be synthesised to serve

each angular sector. In fact one may generate Ag+1 such beams:

Fri(g) =

A-Ao2+vV
> o, @CEMmLD(n12, @, )/Cro(e, /2)

U=-A+Ao2+V

= A(@-2m/M)eiv(e-2zmiM) | v=-Ap/2,-Aof2+1,---,Ap/2 ...(357)

with effective mode numbers:

V= 'A0/29 'A0/2+ 1, """ ’ AO/Z

respectively. This set of beams may then be used to add a sectoral null-steering
capability to the beamformer, an application which we consider next.

In section 3.4 we saw how a set of 2A+1 phase modes D.4, D.p41, -+, Pp is
used to form a set of 2A ‘modified’ phase-mode beams

B B B
'F-A+1/2’ YJ-A+3/2’ T "UA—UZ -+ (35.8)

all sharing the same sin(¢@/2)-type null at ¢ = f3:

'f'fu/z =®y/Cpo - &P D1 /Cuinyo

= j2el B2 ¢ JW+112) ¢sin (- B)/2 .-+ (359)

The superscript and subscript on the left hand side of (3.5.8) signify the direction of
the null and the effective mode number (i.e., the phase slope in reverse sign) of the

modified mode beam 'f’£+1,2, respectively. When the elements of the set (35.8) are
linearly combined by an inverse DFT operator, the result is a multiple pattern of M
directional beams all sharing the same pattern null (or nulls for a multistage nulling
network). If each angular sector 19- Qa/M)mi< n/M , 0<m<M-1 is served by a set
of two or more SPM beams F%;,Fm ITSLEEED ,F/';’of; then one may consider an
alternative multibeam nulling scheme that will allow each directional beam to steer its
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own nulls. Instead of combining and phasing adjacent phase modes, the same nulling
concept is applied here to adjacent sectoral phase modes, as illustrated in Fig. 3.5.3
for the case of Ag =2 and three sectoral phase modes per sector. Under this last
configuration, the m’th directional beam will be given by:

0 1 Circular array M-1

sensors T

Phase-mode
generator

-A+2 A-2  A-1 A

A -A+l

— T

(

Weighting Weighting Weighting
unit unit unit
Inverse DFT Inverse DFT Inverse DFT
unit unit unit
01 M-1 01 M-1 1 M-1

-------

First
nulling
block

Second
nulling
block

Directional beams
with 2 sectoral
pattern nulls

Phase
control

Fig.3.5.3 Multibeam null-steering scheme incorporating sectoral phase modes
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(F772(0)-€i BT F ()] el B [F§2(0)-ei BT P72 ()] =
(72)2 el BT +BN2 A (@-27wm/M)
sin(@- B1"-2wm/M)/2 sin(@- B3 -27m/M)/2 .+ (3.5.10)

where A (¢) and {F22(¢) , v=-1,0,1} are given by (3.5.4) and (3.5.7) respectively,
with Ag set equal to 2. In contrast with the two control phases f; and 3, in the
multibeam network of Fig.3.4.3 which employs a standard two-stage nulling
scheme, there are now M pairs of phase shifts {ﬁ(;" , [31'" }fnﬁ}) available in Fig.3.5.3,
allowing each sectoral beam to independently control two pattern nulls. A similar
scheme for synthesising sectorally-controlled sharp nulls is described in appendix
C.2. A directional beam with a sectoral pattern null is depicted in Fig. 3.54. The
nulled pattern is synthesised by applying a 30° phase shift to one of two sectoral
phase modes and subtracting one from the other. The sectoral phase modes
themselves are formed from a 16-element circular array by combining two sets of 14
phase modes each with the same low-sidelobe taper. The result is a sin(¢/2)-type null
at ¢ =32.3°.
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Fig.3.54 A directional beam with a designed pattern null formed close to 30° by
the phased subtraction of two SPM beams F3}, and F)3.
M=16,A=17, g(n/2, p)=cos(¢/2), 2rR/M = 0.4 A, mode weighting [ in
dBJ: {-15.5-12.8-8.3-4.7-23-0.70-0.7 -2.3-4.7 -8.3 -12.8 -15.5} )



Bandwidth considerati il 58

3.6 BANDWIDTH CONSIDERATIONS

The practical usefulness of the non-adaptive mode-space beamforming, null steering
and sectorally-confined direction finding schemes that have been discussed in this
chapter, depends, to a large extent, on our ability to equalise the intrinsic frequency
response variations between the excited phase modes which constitute the building
blocks in the implementation of the above techniques. One possible solution to the
problem is that of narrowband mode alignment, which refers to the calibration of each
phase mode over the relevant frequency band, so that a look-up table may be set up
and used (in conjunction with possible interpolation) for its alignment at each
frequency. This method is instantaneously narrowband in the sense that it is limited to
the reception of narrowband signals that must all have the same carrier frequency,
which is either known or pre-detected.

Of course if element patterns were controllable (alas, they rarely are) one could
try and achieve wideband mode alignment by searching for an ideal element pattern
that will flatten, or at least linearise the frequency responses of all phase mode
coefficients. A hint to the solution for this somewhat academic pattern control
problem has been provided in section 2.4 of chapter 2, where an azimuth element
pattern of (1+cos ¢) was shown to lead to phase mode coefficients that cannot fall to
zero. In fact by examining the asymptotic expression for the relevant Bessel functions
of large arguments1®, expression (2.4.13) for the u’th phase mode coefficient takes
the form:

Cuo(@, 6) ~ g¢(6) e ™4 (2c/mwRsin 6) 12 ei(@Rlc)sin 6 -+ (361)

which is indeed linear in its phase response, but requires amplitude equalisation for
broadband operation. A little thought will reveal the ‘optimal’ solution for which all
phase mode coefficients become linear in phase and invariant in amplitude, only it
turns out to be impulsive in ¢:

2(6,0)=go(0) Y, €ii? .- (362)

{=-0c0

Under (3.62) all phase mode coefficients become (see (2.4.9)):

10  When the order and argument of Ju.+:[(@R/c)sin 6] are such that: lu+il <<(@R/c)sin@, or
equivalently |+l << M/2 (for an inter-element spacing smaller than A/2 and 8 = 7/2) then:
Ju+i[(wAYc)sin 6) ~ (2c/mew Rsin 6)cos [(@R/c)sin 8- /4 -(Lu+D)m/2]
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Cuqg(®,6) = Z FF*M ], au[(@B/c)sin 0] = ei(@Flc)sin 6 .- (363)

j=-e0

but this affects all coefficients regardless of order, with the result that each phase
mode pattern is given by a series of M impulses at angles ¢ =2zm/M , 0<m<M-1,
which, after all, is to be expected from M impulsive element patterns. The pursuit
after the ideal element pattern is further discussed in appendix C.3.

A more pragmatic approach for the broadband alignment of circular-array phase
modes to which we devote the rest of this section, involves the separate deconvolution
of their dominant coefficients {Cyo(@, 60)}, for a given azimuth cut 6=6,. The
required analogue transfer function for the y’th phase mode filter is accordingly given
by:11

Hy(s)ls—jo=e7 YYCpo(@, 7t2) , ro<@<ay;

where the (assumed finite) time delay 7 is needed to make the impulse response of
Hy(jw) causal, and w0 and wyy are, respectively, the lower and upper frequency in
the operating band. The stability of such a filter would depend on the radiation
properties of the element patterns. Assuming the latter to be of the form (2.43) then
from (2.4.11) we have:

Cuo(w, m/2) = pj“J#(Q’Z,—B + jlnp) - (364)
and the filter’s Laplace-domain transfer function is
Hy(s) = esYpjhJyl-j(s Rlc)+jlnp] .- (36.5)

Noting that the zeros of a Bessel function of integer order are always real, it follows
that for outward directional element patterns characterised by 0<p<1, the poles of
H(s) are located on the left half of the complex s-plane, rendering it stable. In
contrast, omnidirectional elements (p = 1) as well as inward-directional elements
(p > 1) both lead to unstable filter designs.

In the context of discrete time-sampled signals, a corresponding causal digital
filter will be stable if and only if the poles of its transfer function #,(z) all lie inside
the unit circle on the complex z-plane. A stable realisation of H,y(z) as 1/Dy(z), where
Dy(2) is the digital implementation of (3.6.4), therefore depends on D),(z) having all

11 We henceforth assume: 8= 7/2 and ho(n/2) = 1.
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its zeros confined to within the unit circle, which in turn, as we shall shortly see, is
again a function of the shape of the element patterns. For the implementation of a
causal digital filtering unit D) (z) having a finite impulse response of length N, and a
non-aliased frequency response which, over the bandwidth 0<@w<wpyj, is equal (to
within a constant group delay) to Cpo(, 7/2), we must have:

Dy(ei 08t = Y Cpo(@>-27p/ AL, 7/2)S (@AL-27p) e4(0-27pl AYN-1) Atf2
p:-oo

.-+ (3.6.6)

where S (£2) is a sampling window function which is zero for values of £2 outside the
interval [-27+ayrAt, 27- yjAf] and At is the temporal sampling interval (with

s = 27t/At denoting the sampling frequency)12 — see Fig. 3.6.1. The corresponding
transfer function for this filter is then given by:

Dy(z) = Dy(lzleiR) =

pitz D2 Y S (Q-2mp)ei NV ], [(RlcAt)(Q2-2rp)+jln—L—]

pe=—oo lziFlc At
-z N2 S DI 2B+ jin—L ) | ega<Qsomsr .- (367)
cAt |z1Fle At
‘ Dy(el Q)

S () Cpuo($YAt, /2)e2N-H2

- -wyiAt oAt w

Fig.3.6.1 Digital implementation of phase mode coefficient response

12 Under the finite-impulse-response assumption (which is later proven), the addition of the delay
term e7% " to Cpo(@, 7/2) with T = (N-1)At/2, renders the filter causal.
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and it is evident from (3.6.7) that the zeros of Dy(z) (and therefore the poles of #,(z))

lie on a circle of radius pc4*/R in the complex z-plane. A stable design once more
depends on the array elements being outward directional with p < 1 — see Fig. 3.6.2.

In order to adequately describe a single Bessel function J,(@F/c) multiplied by a
window S(wAt) of approximate temporal duration!3 87/a; from its frequency

samples, the frequency-sampling period A@ = 27/7; must be such that:

Ty </AG <+ (368)

where 7y; is the maximum effective extent in the time domain of the convolved

expression 3\,(1‘)*3‘ (?), where:

" I had ' ’ (’)VTV(CI/R) Il < R/C
Ju(D) = S dwei*J (wR/c)={ =[(R/cY - 12112 -+ (369)
B l 0 It > Rle

5 (¢) is the Fourier transform of S (@A) and T\(x) is the Chebyshev polynomial of the
first kind of order v. Since .7V(t) and § (#) are bounded in the time domain by lfl < R/c
and lfl < 47/ w; respectively, it follows that:

z-plane

pcAt/R

Fig.3.62 Poles of 1/D,(z) on the complex z-plane

13 This is the null-to-null width of mainlobe + first sidelobes in the Fourier transform of a
rectangular window whose cutoff frequencies are at w At =+x
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tyr = (R/c)+ 47/ .-+ (3.6.10)
which in view of (3.6.8) also means that:
75> 2R/c+ 87/ wy -+ (3.6.11)

Now, exactly the same argument holds for a Bessel function J,(@F/c) of any order.
Since each phase mode coefficient is expressible as a sum of such Bessel
functionst4, It follows that Aw is also the frequency sampling period required for the
digital representation of Cpo(®, 7/2)S (@A), and the fact that it is effectively bounded
both in frequency and in time justifies our attempts to implement it as a finite impulse
response (FIR) filter. The number of required frequency samples N which defines the
order of the filter D,(z) is given by the inequality:

N = 1 /At > 2(2+ R/cAr) .-+ (3.6.12)

whereas the frequency sampling period must not exceed:

Aw =27fty= % < Z:a% .-+ (3.613)
Denoting
e = /201 > 1 . (3.6.14)
Ko=T 2ty >1
we can write:
N =2k, +x;01R/7c)] .- (3615)
where[x ] the ceiling of x is defined as-
[x]=1+Int(x)-Int[Int(x+1)-X] .. (3.6.16)

Noting that the arcwise inter-element spacing must be kept smaller than 0.5 or even

14 This clearly follows from (2.4.9) when element patterns are represented by (2.2.4), but it is also
the case under the representation (2.4.3) by virtue of the identity:

Jﬂ(“’TR +jlnp)= z pAGLI VY (ch)

where I'v(x) =" Jv(jx) is the modified Bessel function of the first kind of order v and argument x
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0.4 of a wavelength at the highest operating frequency, we define a third constant x
with a value of about 1.25:

ayRlc =-,l(-(M/2)
which allows us to rewrite (3.6.15) as:
N= szm(2+£;M/27cﬂ .- (3617)

Assuming: k= 1.25, k7= kp= 1.5 we thus conclude that an 8-element array would
require at least 11 frequency samples, a 16-element array would need no less than 16
samples and 25 frequency samples are the minimum requirement for a 32-element
array.15

The FIR filter block Dy(z) may be realised in a variety of ways [OPP 76] such as
one of the designs based on a frequency sampling structure:

-z.~’§ Dy (eimdt)

Dy(z) =1
N n=0 1 - z’l e](ﬂnAt

.-+ (3.6.18)

or in a direct-form implementation, the coefficients for which are obtained via an N-
point (inverse) DFT operation on the set of samples { D),(e/®4¢) V-1, where:

j 27n/N N odd
0<n <N-1 .- (36.19)

W, At =
\ 2n(n+1/2)/N N even

Explicit expressions for the frequency samples {Dy(e/®47) }J,Y;}) are given in
appendix C.4, in terms of the y’th phase mode coefficient as well as in terms of
element pattern measurement data.

Two of several possible schemes for realising the p’th deconvolution filter
Hy(2) = 1/Dy(z) are suggested in Fig. 3.6.3 and Fig. 3.6 4. In the first scheme the
inverse of the frequency sampling expression (3.6.18) is implemented with a minor
correction in the form of a parameter { < 1 which is close to unity. This parameter is
introduced in order to relocate the N common poles and zeros of (3.6.18) from the unit
circle onto a circle of radius { on the complex z-plane [Opp 761, [GoL 69]:

15 The actual number of frequency samples needed may be somewhat higher depending on the exact
window function used.
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N-1 i(2n/N)n
2) = N Dy(e/ ) 4

1-¢N2 N a0 1-{z-1ei@mNm

N N1, (ei@mNn+1R2)) 4
1-¢Nz N nm0 1-8z-1ef@uNn+172)

and in view of:

Dy(ef@CHNYN-)) = T (eJ@7N)m) 1<n<[N/21H1

Dy CANWN-1-n+12)) = I (f@uN@+12)y  0<n<[ N2 )1
u( ) = Dy ) /

-+ (3.620)

the above structure may be reduced to a network with real weights by implementing

the complex poles in second-order sections [OPP 76].

o —> N

+ (Dﬂut
—)GB—) Thing ---- -
) —+ +) ... -+
z-1 z-1 z-1 z-1 z-1
A A Y A Y A Y A_Y
Duo Du(no-1) Du(no+1) DuN-1)
CW no CW 0 CW no-1 CW no+1 CWN'I
A A | A A A
Wn = ei2nn/N
Dyn = Dy (W™)
0<n<N-1

Fig.3.6.3 IIR frequency-sampling phase mode filter
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The second filter Shown is a direct-form IIR realisation for which the real impulse-
response sequence of the block D,(z) has to be evaluated:

N-1
by =LY ei@nNyk g (ei@nNm)
N n=0
< (3.621)

N-1
- I—\II-Z'O eiQuN)n+12)k D (e/@7N)(+1/2)) | 0<k<N-1

The availability of this sequence also allows us to apply Jury’s stability criterion
[Jur 64], [ANT 79] in order to ensure the stability of the designed 1/D,(z) filter.

As noted in section 3.2 of this chapter, there is also the option of approximating
H,(z) by a non-recursive (FIR) filter. Since the extent of the Fourier transform of
1/Cpo(®, 7/2) in the time domain does not equal A/c but rather depends on the exact
nature of the array element patterns, the length of the filter’s impulse response may
have to be determined by simulations. The impulse response sequence itself may be
obtained by truncating the infinite series:

H—> i > >
in )CB 0 ¢ out

Dy = Dy
< du) <<
A 5
<€ d2 3

<< dy(N-1) <

Fig.3.64 1IR phase mode filter: direct-form implementation
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1Duz) = Y, [1-Du@)”
V=0

at some power (N ¢-1) of z-1, where Dy(z) is given by (3.6.18), or the implementation
of #{,(z) may be based on the set {1/D,(e/ “3-4‘)}1,:';51 which are taken as the frequency
samples of %(ef“m‘). The FIR filter may then be designed in various forms such as a
frequency-sampling realisation of

1- §NZ'N N-1 H (ef AT
Hy(2) N Z'o | g

with { serving the same purpose as in (3.620), a direct-form realisation of which the
schematic diagram shown in Fig 3.6.5 below is an example, or a DFT-based
realisation as was suggested in Fig. 3.2.2.
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Fig. 3.6.5 FIR phase mode filter: direct-form implementation
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3.7 SUMMARY

In this chapter we have been looking into spatial processing techniques for circular
arrays based on phase mode analysis, which appear to have practical aspects in the
context of digital beamforming. Previously studied beamforming, null-steering and
direction finding methods were reviewed and new ideas pertaining to their digital
implementation and to their performance over wide bandwidths were examined.

We began with the classic linear-array to circular-array synthesis transformation
which, in principle, allows one to produce frequency-independent directional beams.
It was however noted that a temporal filtering unit would be needed at the output of
each phase mode in order to equalise the frequency characteristics of all zero-order
phase mode coefficients. The principles of the multimodal phase-comparison
direction finder were subsequently recalled, where it was shown that relying on
element pattern symmetry and assuming the phase mode coefficients for modes 0 and
1 to have their arguments differ by less than +7/2, one may obtain unambiguous
a.nguiar information without the need for mode alignment. Also reviewed were mode-
space null forming and null steering methods, leading up to the implementation of a
digital multibeam network with one or more steerable nulls

Next, we introduced the idea of transforming the essentially omnidirectional
phase modes into a new set of beams which are still linear in phase but directional in
their far-field amplitude patterns. It was shown that two multiple sets of such beams,
which we named sectoral phase modes, may be used to enhance the immunity of
multimodal DF to co-channel interference while retaining its 360° azimuth coverage,
and add sectorally-controlled null steering capability to a multibeam system. With the
latter application, being based on the linear combination of adjacent sectoral phase
modes whose linear-phase characteristics are confined to approximately a 360°/M
angular sector, the synthesised nulls should be steered within their own sectors.

The viability of broadband mode alignment as the basis for wideband mode-space
techniques was finally considered. Following an initial discussion on the quest for the
‘ideal’ element pattern, a recursive digital scheme was suggested for the de-
convolution of zero-order phase mode coefficients, its stability depending on the
directional properties of the array elements. The resultant broadband phase modes, as
well as beams derived by their linear combination, provide the array with
omnidirectional delay matching to incident pulses.
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4. PATTERN CORRECTION

41 GENERAL

The ability of an array system to meet its design goals largely depends on the
sensitivity of its specified performance to variations in the effective illumination of
the array aperture. The nominally weighted aperture distribution of amplitudes and
phases, which shape and steer the radiated or received beams, is inevitably perturbed
by a number of contributing factors both stationary and time varying in nature.
Amplitude and phase fluctuations due to internal reflections and to non-ideal transfer
characteristics of electronic components, phase-centre displacement and variations in
element patterns (such as pattern rolls) due to production tolerances, inter-coupling
and site effects, as well as quantisation and thermal noise all effectively modify the
weighted aperture excitation, whereas non-linear channel operation and imperfect in-
phase/quadrature mixingl may introduce spurious responses in both the frequency
domain and in beam space. Another important cause for errors which is especially
relevant in the sonar context, is ambient noise. As noted in chapter 5, section 5.3, an
isotropic or semi-isotropic spatial distribution of independent noise sources will
deliver uncorrelated noise? to the half-wavelength spaced elements of a linear array.
There (and in appendix E.3) we show that although the noise received by circular-
array elements will not be uncorrelated, mode-space noise will be uncorrelated when
the ambient noise field is azimuthally isotropic and impulsive in elevation.

The effects of random amplitude and phase excitation errors at the aperture of a
linear or planar array have been studied in the past [Ruz 52], [RoN 59], [Sko 80] where it
has been shown that for small uncorrelated errors, the expected value of the array
power pattern differs from that of the error-free power pattern by effectively a
constant term. That term, which is directly proportional to the sum of the aperture
error variances and inversely proportional to the number of array elements, is known

1 This is relevant to arrays employing digital beamforming

2 Two random variables x and y with corresponding expected values EX =X and E¥ =¥ are said
to be uncorrelated if £ (X-X)(y-¥) = 0. By uncorrelated noise at the array elements we mean that
for any two elements, the received noise is pairwise uncorrelated.
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(with respect to the pattern’s peak) as the rms sidelobe level due to errors. In the
context of circular arrays of closely spaced sensors, we show in section 4.2 that
uncorrelated equi-variance contributions from ambient noise fields to the phase-mode
signals will affect the rms sidelobe level of mode-space beams in a very similar
manner. Uncorrelated equi-variance aperture errors, on the other hand, generally lead
to an angle-dependent rms sidelobe pattern, unless the array elements are
omnidirectional. This is shown for amplitude, phase, element displacement and
pattern rotation errors in sections 4.3 and 4.4.

Various schemes for monitoring, correcting and maintaining the accuracy of
antenna and sonar arrays, have appeared in the calibration literature. Those relevant to
arrays with digital beamforming, ordinarily comprise initial pre-deployment
calibration measurements and a re-alignment procedure based on a near-field source
or on internally injected test signals [BAR 80], [WAR 89], [LoN 85a]. The latter procedure
is executed prior to, or interlaced with the normal operational deployment of the
array, using test equipment attached to or built into the system. Sections 4.5 and 4.6
of this chapter examine ways of re-aligning a digitally-beamformed circular array of a
known geometry with given element patterns and channel responses. The idea behind
these calibrating algorithms has been inspired by [LoN 85b] which deals with the
correction of site effects on a phased array radiation pattern. We start by introducing
the concept of ‘least squares’ pattern correction for a single co-phased beam at a
single frequency, where a set of correction weights is applied to the array channels. A
narrowband correction algorithm for the special case of a single phase mode pattern is
then considered, and later extended to include a multimode scheme which involving
two sets of comrection weights. A similar formulation for a multibeam excitation is
then followed, and is shown to be equivalently implementable as a two-stage
multimode correction algorithm. Sections 4.7, 4.8 and 4.9 conclude this chapter with
wideband versions of the foregoing correction algorithms, a set of simulation plots
and a summary of the main results.
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4.2 MODE-SPACE EXCITATION ERRORS

Let us consider an M-element circular array excited to form a nominal (i.e. error-free)
mode-space beam pattern F,,(¢) whose peak is ‘scanned’ to direction @, = 2a/M)m.
The beam is synthesised by the linear combination of (2A+1) of the circular array
phase modes @4, P.p+1, -+, Pa , A<SM/2. Each of the processed phase modes is
assumed to have undergone appropriate alignment, in addition to which it is linearly
phased and weighted, as represented (for the y’th phase mode) by the phasing
operator e/@#WM)mi and the (possibly complex) weight o. If (for an even M)

A =M]/2, we assume the alignment of phase mode 1 = +M/2 to be such that:

Pup_ . Pup cos(Mg/2) + distortion terms
Curyo Cwmpyo

The sensitivity of the array to uncorrelated mode-space errors pertains, as mentioned
in section 4.1, to the effect of a circumferentially-isotropic and elevationwise-
impulsive ambient noise field. Its analysis, being similar to that relating to linear
arrays, is based on the inclusion of a zero-mean phase error £, and a fractional
amplitude error k, with each of the summed phase modes in the expression (32.3) for
Fn (), where the errors are uncorrelated and their variances independent of . The
perturbed far-field mode-space beam pattern, denoted here by 7, (¢), is given by:

A
Fm (@) = 1741_ z au(1+ Ky eituein(@-2amiM) ---(42.1)
and the expected value of 17, (@) is clearly given by

A A
EFn (P2 = ALl DD aya;,(l + Ky ) (14 K,pr) €1 - Eic)e T ¥ - 1) (9-27m M)

W=A ['=A
---(422)
Now, for small errors one can approximately write:
El+x)(1+Kp)efEa] = 1-0h)[1+0>6(W -f)] - (423)

where 62, o and o2 denote the error variances
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=& x}
) -ASU<A ... (424
iy p (424
0% = (c2+02)/(1-03) - (425)

and &n) is the Kronecker delta function. Expression (4.2.2) may consequently be
rewritten as:

E1Tn(@)F = (1-02) (Fr(p)?* + IAFP) -+ (42.6)

where the nominal power pattern IF,,(¢)2 has been augmented by an additional

constant term |AFI? which is given by:

A
AFR = (0%M) Y, o = —F>— IF, Qrem/M)P . (42.7)
p=-A (2A+1) G
with3
A A
G=1Y, ouP/2A+1) Y, oyl o (428)
p=-A u=-A

The constant factor 62/(2A+1) G multiplying IF,,(27m/M)I2 on the right hand side of
(4.2.7), constitutes the rms sidelobe level of the mode-space beam, and is seen to be
directly proportional to the sum of the error variances, and inversely proportional to
the number of phase modes and to the gain factor of the tapered array. A very similar
result has been obtained for an M-element linear array under uncorrelated zero-mean
amplitude and phase aperture errors, with M substituted for (2A+1) in the expressions
(4.2.7) and (4.2.8) above.

In the next two sections we shall be examining the effect of uncorrelated equi-
variance amplitude and phase errors at the circular array elements, as well as element
displacement and pattern rotation errors, on the sidelobe level of mode-space beams.

3 gis commonly referred to in the array literature as the gain factor, denoting the relative power
per unit solid angle directed, under the given weighting taper, by the array in the direction of its
main lobe peak, as compared to the power per unit solid angle directed in that direction by the
same array under a uniform taper.
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4.3 APERTURE EXCITATION ERRORS

In order to analyse the effect of aperture errors on mode-space beams, we assume as
before the presence of uncorrelated zero-mean equi-variance phase and fractional
amplitude errors, but this time at the element channels. The receive channel connected
to the m’th array element thus includes a random error signal whose phase and
fractional amplitude are given by &, and x;, respectively. The expression for the 1’th

perturbed phase mode on the azimuth (6 = 7/2) plane becomes:

D, = __Z h;eiie z (14 K;y) ei8m e T @AM +iym’ gj (0Rlc)cos (p-2om'IM) ... (43])
l—-I m'=0

and the m’th mode-space beam generated from a set of (2A+ 1) modes, is given by:

Fn () = 1&7_ 2 [0/Cro (@, 7/2)]f@mMImL D, (1/2, @, )
U=-A

=1 jie j(2r/M)mu
g‘, hie Z Cuo(w,ﬂ/Z)e’

M-1
-24) (1K) eftme-T QMM G+’ gj(@Rle)os (p-2umIM) (439
m =

where the (finite) Fourier series representation (224) for the element patterns has
been used. The expected value of 1%, (@)1 is given for small errors by the expression:

3'.7"”1 ((p)|2 =

-
3
M3

1

I a 'a*
S hphnei@-io Z 2 K eI 2R /MYm (- 11")
j"=-] p=A =~ Crro (O, ﬂ/z)c;['o (@, 7/2)

M-.

I

~

M-

—

M-

._a

El(+Km) (14+K,,») (6 - 6n)] e FRHM L +iWm' - @ +i )m"]ej(xm Xn)

m'=0 p7—0

3

= (1- 62) (F (@) +AF ()PP .. (434)

with
Xm = (@Rjc)cos(p-2zm/M) , 0<m<M-1 .- (435)
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where use has again been made of (423). IF,,(¢)? is the nominal far-field power
pattern and IAF,, (¢)1? is an error power pattern which is given by:

I 1
AP =T Y, hihelC9 S 3 K jomonuci)
M- i"=.1 W=-A u"=-A Cu’OCp”O
M-1
S ed@uM G-+
m'=0
min (/, I+k) 24 minAA+Y) o ox
ST TS waere S Y B ey
M? k=21 i=min (,1-k) v=-2A p=min (A, A-V) CMOC(#—V)O
Y. Sk+v+qM) -+ (4306)

q=-eo
and may also be written as:

Int[2(J+A)/M]  min (2],2A-qM)
IAF, |2 = O 2 E eik (9-27m/M)

g="Int [2(I+A)/M) k=-min I, 2A+qM)

min (f, I+k) min (A, A-k-gM) o a"‘
k+qM
D, hiby > ... 43)
i=-min (I, I-k) p=-min (A, A+k +qM) CroCluri+q0

As is evident from (43.7), random aperture errors lead, in general, to a ¢-dependent
rms sidelobe pattern, so that different rms levels of spurious sidelobes are expected at
different directions. However in the case of omnidirectional elements, / = 0 and we
are once more left with a constant rms error level, though this time it is given by:

(AP — |AFR = & |h0|22 log? /1C ol
M2 =

—o log/J o(coR/c)lz/Mz lo2 1 IFQRram/MR ... (438
(2A+1)g E’A g poyile 139

where Gis given by (42.8).

The effects of element displacement and pattern rotation errors on the rms
sidelobe level of mode-space beams are treated next in section 4.4.
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4.4 ELEMENT DISPLACEMENT AND PATTERN ROTATION
ERRORS

Displacement and rotational errors respectively refer to the random radial and/or
angular deviation of each element from its nominal equi-spaced position in the array,
and to the random angular roll of element patterns from their nominal orientation. In
order to assess the effect of such errors let us re-examine the mode-space beam
pattern of section 4.3 under an error model in which the phase centre of the m’th
radiating element is displaced radially by Rr,,, and angularly by fB,, and the radiation
pattern of that element is rotated about the array centre through a random angle of y/p,.
The p’th phase mode is then expressible as:

D, = Mz h;eii® Z €l Vi e T@AM) (+im’ g (@RI) (L +7m)Xc0s (9-Bu-270m M) ... (44.])
i=-1 m'=0

and the m’th mode-space generated beam is given by:

Fn (@) = 2 [00/C o (02, 7/2)) e CTIMIm B, (]2, , )
=1 21" hieio S ——TE___giaiMmy
= MR, i = Cuo(@, 7/2)

M-1
z e VmeF@EM)u+iym gj(@RICK1 +rm)cos (- Bu-27m'IM) ... (442)

m'=0
Taking the expected value of | }',,,(q))l2 for small errors as before we obtain

Slfm((P)lz =

! oo
—1—32 Y hphgei@-iNo 2 2 i o eI TIMYm (i -12)
M lpimer =t =t Cye0(@ T2)C g (@0, 7/2)

I

~.

Y ed @AM+ - (Y E [ Y- Yi)

M-1 M-
m=0 m"=0

€70 (1 47205 Bt - Zoe (1470105 B ] il (1 +7m)i0 Bt - Eme (147,510 B 1]
.- (443)

where,
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&n = (@R/Osin(@-2zm/M) , 0<m<M-1 -+ (444)
It is not hard to see that rotational errors in (4.4.3) play the same role as the phase

errors in (43.4). Consequently, when only amplitude, phase and rotational errors are
present we have, for small zero-mean equi-variance uncorrelated errors:

EF (@) = (1-02- 0D (Fr(@)P+IAF,(9)?) .- (44.5)
where,
Eyi=0} , 0<m<M-1 ... (446)

IF,»(¢)?? is the nominal 7’th modal pattern and the error power pattern |AF,,(¢)? is
given by (43.7) with 62 defined as:

02 = (02+ 0%+ 0D/(1-02- %) e (447)

Finally, we account for displacement errors by making the usual assumption of
small zero-mean equi-variance uncorrelated random errors, while also letting:

Eru=EBi=0? , 0<sms<M-1 - (4438)
We may then approximate,
E eiltm (1 +7m)00S Bt - 2w (147w )08 B ] @1 Emt (1 +7m)SIN Bt - Eoir (147 ) 51N B ] =
-G 22 )[1- O + G O(mm'- m")] -+ (449)
and therefore, when all errors are included, 1%, () takes the form:
E\Tn(@)P = (1-02-63-67) (Fr (Q) + IAF  (9)P) -+ (44.10)

where F,,, () is the nominal m’th mode-space pattern of the array at a modified radius
of (1-062/2)2 R and IAF,, (@) is given by (43.7) with 62 defined as:

0? = (0%2+ 0%+ 05+ 07)/(1- 02- 65~ 07) -+~ (44.11)



4.5 Single-pattern correction atfll 76 MNNI

4.5 SINGLE-PATTERN CORRECTION

The effect of aperture errors on the array performance may be alleviated by
incorporating one or more correction units in the design of the system. Each
correction unit comprises a set of complex weights, so selected as to align one or
more of the array patterns, in the least squares sense, with its desired spatial
responses.4 In its simplest form schematically illustrated in Fig.4.5.1, such an
error compensation scheme may be used to correct a single beam-cophased pattern.
Here M complex weights {vg, v1,---, vi.1} modify the corresponding M element
channel signals, which are then phased, weighted and summed to form a single output
beam.5 Sampling the desired far-field radiation pattern F(¢) at L equally-spaced
observation angles®

or=Q2n/LYt , £=0,1,.--,L-1 -+ (45.1)

M2 M-1
v+ + s Array Elements + 4

0o 1
Y Y Y Y
00

, Digitising Network | |, [I] [']

<
(=)

<
-

.+ Correction unit , . .|vM-2] |VvMa

Co-phase weighting network

Fig.4.5.1 Single beam co-phased correction

4 We restrict our discussion to azimuth-plane pattern correction, with the elevation angle being
kept constant at 8 = 71/2.

5 The functions of the correction unit and of the co-phase weighting unit may of course be
combined in a single complex weighting unit.

6 A different range of angles and different angular spacings (say, uniform in sin ¢ space) may be
chosen, especially in the case of a linear array.
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where in general L > M, the required set of weights is found by solving, in the least
squares sense, the following matrix equation:

GKvy =F ---(452)

where:
v=[vov1---v,,.---vM-1]T .. (453)
F =[F(@0) F(¢1)---F(9p--- F(r-1)]’ oo (454)

K is a diagonal MxM co-phase weighting matrix whose mm’th element is given in the

case of a circular array (for 6 =n/2) by (223), and G is an LXM element pattern
matrix available from calibration measurements, whose £m’th element is given by:

[Glm = M2 ei(@Fic)cos 2a(IL-mIM)) g [1/2, 270(4/L-m/M), @)

0<é<L-1 , 0<m<M-1 ...(455)

The optimal vector v is obtained from (452) by minimising the following cost
function expression:

£=[v"K"'G"-FMW[GKv-F ] ... (456)
where W is an LXL real diagonal weighting matrix whose elements may be chosen,

for satisfactory sidelobe performance down to a level of 77 dB below the peak of the
main lobe, as:

[Wlsz= 1/max[10710 IF(@)/F (@)1 , 0<#<L-1 ... (45.7)

IF(@g)P = max[IF(@o)?, F(@p)2, - -, IF(@r1)] - (458)

Taking the ‘complex gradient’ with respect to v* and equating to zero? we obtain
the standard least-squares solution to the above problem:

v = [K"G"WGK]'K"G"WF -+ (459)

Note that the evaluated weight vector v is only optimal with respect to the target
pattern F. In section 4.6 we shall be looking at ways of handling the simultaneous

7 The concept of complex gradient is defined and explained in [Bra 83].
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correction of a number of beams. But before we do that, let us first apply the same
concept for the correction of a single circular-array phase mode. The y’th uncorrected

phase mode @y(n/2, ¢, ®) and the target mode pattern ¥y, (¢) will be represented by
the Lx1 vectors: ’

By, = [Ou(n/2,0,0)- - Bu(/2,2E4, @) - (2, 2EL-D, ) - (45.10)
P, = [Py0)------ 'pﬂ(%ig) ...... '{jli(':,L_E(L'l))]T
=[1--0:-- ejQ@mLpL. ..... edQ@mLkL-1)]" ... (45.11)

and our aim is to find a ‘pre-DFT” correction vector v of complex weights, which we
shall apply, as illustrated in Fig. 4.5.2, to the outputs of the array channels prior to
the formation of modes such that the expression

£ = IGE}y - Py = [v"E,G"- W] [GEy - ¥, .- (45.12)

is minimised. In (4.5.12) above, E, is an MxM diagonal mode forming matrix for the
L’th phase mode, whose mm’th element is given by:

[Edmm = e/@aMpm = 0<m<M-1 .-+ (4.5.13)
0 1 Array Elements M-2 M-1
lj Ij .., Digitising Network |, [I] [j
Vo vi{ ... Correction unit ., .|[vM2| VM1
0 1 .... Digital DFT :«...M-2 M-1
0 1 e A M-A, ..., M2 M-1
* + + Phase + +
modes

Fig.4.52 . Single mode correction
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Note that since the target pattern is omnidirectional in amplitude, there is no need for
a weighting matrix. v is obtained as before by differentiating £ with respect to v ¥ and
equating to zero. The mode-dependent result is:

v = E4[G"G]I1G"P, - (45.14)
and the single corrected phase mode &5# is given by:
@, = GEly = G[G"G]1G"P, o+ (45.15)

One rather complex scheme for the simultaneous correction of more than one phase
mode is suggested in Fig 4.5.3. It is based on (4.5.15), rewritten as

‘ L1 M-1
Bu(/2, 06 = Y, { Y, [Clem[Dmi) eSCHME | 0SL<L-1 --- (4516)
k=0 m=0

with [Tk denoting the mk’th element of I" = [G¥G]1 G". The above expression
indeed constitutes an L-point DFT as implemented in Fig.4.5.3. A more elegant
multimode scheme based on a two-stage correction is the subject of section 4.6.

0 Array m Elements M-1

[I] Digitising lj Network lj

{ R, I ] [ 2]

=

[IJoo [Imo| |10 [Tos Nng |14 Then| |Mme-n| | Mleyea

0 ce Digital DFT . ... L-1

+0 % v oy 3R

Fig.4.53 Multimode correction using a pre-DFT matrix
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4.6 MULTI-PATTERN CORRECTION

Although the pre-DFT weight vector v as given by (4.5.14) is phase-mode dependent
and may not provide simultaneous correction for more than one phase mode, we may
try and find another ‘global’ weight vector that will minimise the deviation of a
prescribed set of phase modes from their respective ideal patterns. Noting that for an
error-free circular array:

GE,[11---1]"=¥uM2Cpo(w,7/2) , -ASp<A
it appears reasonable to add a second set
w=[UpUpgy-- Uy upl ---(46.1)

of complex weights at the output of the DFT unit of Fig.4.52, which we shall refer
to as post-DFT correction weights. This scheme, which is illustrated in Fig. 4.6.1, is
more easily implemented that the one suggested in Fig. 4.5.3, and moreover a post-
DFT weighting unit would in any case be needed for the purpose of mode alignment
and for the possible application of an additional (amplitude) taper in the
implementation of low-sidelobe mode-space radiation beams.

0 | T M2 M-1
Y Y Array Elements Y Y
[l] Ij . Digitising Network _ . [j |j
Vo V1 Pre-DFT Weighting vpma2| VM
0 1 Digital DFT M2 M-l
0 ) A M-A..... M2 M-1
I T | ] T

|
u | ... Post-DFT Weighting . . Up-1

Fig.4.6.1 Two-stage multimode correction
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We thus seek a new pre-DFT weight vector v which minimises the expression:

A
£= Y [W"E,G'- 1 PUIGELY - ¥, .- (462)
U=-A

where
=1 -+ (463)

and {y#}ﬁ=_ A= {l/u#]ﬁ:_ 4 is the second set of minimisation parameters.
Differentiating with respect to v ¥ and ['y; }iz0 and equating to zero leads to the
following result (refer to appendix D.1 for details):

A
v =[G"G+ Y, Eu(G"G-L1G" P, ¥,G)EL1 G"¥y ... (464)

p=A
§#0

and the corrected (but as yet mis-aligned) phase mode patterns { &iﬂ}ﬁ:_ 4 are given
by:

A
=GE4G"G+ Y, EuG"G-L GV, ¥yG)EL" G"Y¥) ---(465)

H=-A
p20

The set of post-DFT alignment will now be evaluated in two slightly different ways:
i As part of the minimisation process of expression (4.6.2) which in addition to
(4.64) (see equation (D.12) in appendix D.1) also yields:

L1
wp=t=—L— =LY &2, 2n4L, o) ef CrLYLT1
1/ ‘I‘Zdiﬂ =0

p=0,%1,-----. , A .- (46.6)

ii By the application of the following least squares' minimisation process to each
mode:
\Dyu,- P, P — min , -ASp<A .- (467)

which leads to:
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AH
_oY_

L-1 N
Y, By (72,27l IL, w)eT@HLIL

U
{7 ~
2
1@,

£=0

#:0’ il,...

L1
Y 1Dy (n/2,2n4/L, )P

, £A

.-+ (4.63)

This last option, as we now show, is also optimal for the correction of a multiple set

of mode-space beams. Such an arrangement is schematically illustrated in Fig. 4.6.2,
with the post-DFT alignment unit being also used for controlling the mode-space

‘aperture’ illumination. Consider the following set of target

beams:

A
Frn= ) Y,0,e@uMmp=PE, a , 0<m<M-1

p=-A

where

M-2 M-1

Digitising Network

‘OY Yl Array Elements o

..+ (469)

.-+ (4.6.10)

Fig.4.62 Two-stage mode-space multibeam correction

Vo Vi VM-2| |YM-1

0 1 Digital DFT . M2 M-1

0 | A M-A..... M-2 M-1
] | ] I

L Post-DFT Weighting . _ . Up-1
[ l ]

0 1 A M-A M-2 M-1

0 1 Digital (Inverse) DFT M-2 M-1

* + """ M Beams =~ 7 * +
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and each =, is a diagonal (2A+ 1)xX(2A+1) matrix whose elements are given by:
Assuming that the availability of the pre-DFT correction weights, and consequently

also of the corrected (but mis-aligned) phase modes via (43.14) and (4.3.15)
respectively, we seek a vector u of post-DFT weights which will minimise the

following cost function:
M1 H aH H A
€= Y WE,d - 5, PIWIDE,u-PE,a .- (46.12)
m=0 )
where,
D=[D,...... &y D] .- (46.13)
x=[o,------ og------ a,l’ ---(4.6.14)

and W is a real diagonal weighting matrix. Minimisation of £ with respect to u
yields:

M-1 M-1
(Y E,dWhE,Ju=[) E. WP, la .. (46.15)
m=0 m=0

and since for every (2A+1)x(2A+ 1) matrix A, the following is true when A < M/2:

M-1
LY =,A=, = diag(A) .. (46.16)
M
m=0
Expression (4.6.15) leads to:
diag(D'WD)u = diag(B'WP) .- (46.17)
which may also be written as:
Uy = (B P D20y, -ASUSA .. (46.18)

which is exactly (4.68) cascaded with the corresponding mode-space weighting taper.
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4.7 WIDEBAND CORRECTION

In the pattern correction algorithms outlined so far, narrowband operation of the array
over a constant elevation cone has been assumed. The element pattern matrix was

defined in (4.5.5) for a single frequency @ and a constant elevation angle 6 = 7/2 at
which the performance of the compensated array was subsequently optimised. This
approach may suffice for narrowband operation over a limited elevation range, or in
applications where the elevation bearing of the received signal is known and its
frequency is either known (e.g. hops in a known sequence) or pre-detected. The
correction scheme may then be independently performed at a number of frequencies
at the prescribed elevation angle (at which element pattern measurement data must be
available) and a corresponding set of look-up weight vectors constructed. In most
other instances a single weight vector must cater for the whole frequency band and
over some finite range of elevation angles.

The simplest approach for correcting a broadband array is by averaging over both
frequency and elevation range. This option is reasonable when the frequency band
and range of elevation over which the correction algorithm must be applied are small.
Referring to the two-stage multimode corrections scheme discussed in the previous
section, we now look for a weight vector v which will minimise the following
expression:

Gt n2+ 6 A
£= —1—] dw—Lf d0Y [v"E, G, 6)-1: PiIG(w, O)ELy - ]
A oo 20 -6 pu=-A

-+ (471)

where =1, { ')@}L_ A= { lluﬂ};;_ 4 is a second set of minimisation parameters and

G(w, 0) is a frequency and elevation angle dependent element pattern matrix.
Minimising £ with respect to v and {7},.0 We obtain (see appendix D.2):

S A - - - _
v =[G"G+ Y, Eu(G G-L1G"¥,¥,G)EG"¥, .- (472)
u=-A
120
where,

_ Oyt 2+ 6

G=-1] dol deG (o, 6) - (473)
Aw Oro 20 2-6
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(3] 2+ 6
GH=-1 f do-1- ] d6GH, 6) e (474)
Aw o 20 2-0
Our n2+6
G"G =Lf dw—l—f d6G*®, 6)G(w, 6) .. (475)
A o 20 2-6

[@ro, @uil — range of frequencies
[7/2-O, n/2+6)] — range of elevation angles

and where matrix integration is understood to mean integration of each of its
elements. The corrected (but still mis-aligned) phase modes are now given by:

D6, 0) = G(w, O)ELy

_ A —_ - - -
= G(w, O)ELIG"G+ ) Eu(G"G-L1G"¥,V,G)E"G"'¥

H=-A
p=0

-+ (4.7.6)
The post-DFT alignment weight vector # may be evaluated along the same lines.

Option 2 of of section 4.6 is accordingly modified by seeking a set of weights that
will minimise the cost functions:

@y nf2+6
£,=1] dol dO\®,(0, Duy - P> , -ASUSA .- (477)
Aw oo 20 72-6

resulting in:

u= B W\ DL , -A<psA .. (478)
where
- Opy 2+ O
¢Z=Lf deJ dodBL0, ) , -AspusA .-+ (479)
Aw o 20 -6
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Onr 72+ 6
|q>u12=LJ da)—l-—J dOIDL6, i , -ASusA  -..(4710)
Aw o 20 2-8

Frequency and elevation averaging as described above is only applicable to very
small bandwidths and elevation ranges. The degradation in array performance
attendant to broadband frequency averaging may be reduced by utilising post-DFT
filters, pre-DFT filters or both. For post-DFT filtering, the frequency domain is
sampled in accordance with the results of chapter 3, section 3.6, and a set of
frequency-dependent post-DFT weight vectors { u(@,) }, are independently evaluated
by the minimisation of,

2+ 6
Eu(0,) =1 dO\®B,(0, ) uy(wn) - Pl . -ASpA ... (471])
29 R2-6
which results in:
() = Bl ) P\ BU)? , -ASp<A - (4712)
where
_ 72+ 6
&, =L d0 B0, ) , -A<p<A o (4713)
260} 0
r 2+ 6
D) =-L doIBLO, )P , -ASp<A o (4714)
20)mn-6

A digital filter is then implemented at the output of each mode using one of the
configurations suggested in chapter 3, section 3.6 (as illustrated in Fig. 3.6.3 and in
Fig.3.64), with the set of weights {u,'}(a),,)} substituted for the values { Dun}
appearing in Fig. 3.6.3.
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4.8 SIMULATION RESULTS

The narrowband and wideband correction algorithms discussed in sections 4.5 to 4.7
have been included in a computer simulation program for conventionally processed
circular arrays, the details of which are given in appendix F. In this section we have
collected some results pertaining to the post-DFT filtering of a circular array
operating in the frequency range 12 to 24 kHz. These include amplitude and phase
plots of phase mode patterns in Fig. 4.8.1 and Fig. 4.8.2 respectively, as well as a

[dB]

Amplitude

-6 llllelllIlllllllllll‘l]ll‘lllTllll

-180 -120 -60 0 60 120 180
Angle [degrees]

Mode 0
Mode 1
Mode 2

Fig.4.8.1 Simulated amplitude plots of digitally filtered phase modes no. 0, 1 and
2 from a 7-element circular array at frequencies: 12, 18 and 24 kHz.
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mode-space directional beam and a sectoral phase mode in Fig. 4.8.3 and Fig. 4.8 4.
The array in question was a 7-sensor sonar ring of radius 28.8 mm, whose measured
element patterns® were parametrised as:

8¢(@, @) = 0.43+0.68 cos p-0.11 cos2¢
+[0.03 -0.12 cos ¢+0.09 cos2¢] [(af ax)- 1]

180 ; ;
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Angle [degrees]
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Mode 0
Mode 1 —_— — —
Mode 2 —_ eomcn —

Fig.4.82 Simulated phase plots of digitally filtered phase modes no. 0, 1 and 2
from a 7-element circular array at frequencies: 12, 18 and 24 kHz

8 The array was developed and measured at Loughborough University of Technology in 1992.
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where ay refers to a frequency of 18 kHz. Assuming the acoustic propagation speed
to be given by ¢=1500 ms!, the simulated array radius was taken as 0.4608
wavelengths at 24 kHz. Equivalently, the (arcwise) inter-element spacing at that
frequency was entered as 0.4136 wavelengths. IIR filtering was simulated with the
sampling frequency and the order of the filters being given by:

os2n =T72kHz
N =12

[dB]

Amplitude

)
)
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Fig.4.8.3 Simulated mode-space beam from digitally filtered phase modes -2 to 2
excited in a 7-element circular array at frequencies: 12, 18 and 24 kHz
Mode weighting = {-14dB -3dB 0dB -3dB -14 dB}
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In Fig.4.8.1 and Fig. 4.8.2, the presence of higher-order mode ripple is particularly
noticeable in phase mode number 2 at the upper frequency. Nevertheless, the
synthesised directional beam of Fig. 4.8.3 as well as the pair of oppositely-numbered

sectoral phase modes? are almost independent of frequency, at least in their main-
lobe sector.
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Angle [degrees]
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Beam 1 (ampl) —_— e —
Beam 2 (ampl) — s —
Compared phase — S —

Fig.4.84 Simulated sectoral phase modes from digitally filtered phase modes
{-2to 1} and {-1 to 2} excited in a 7-element circular array at 12, 18 and
24 kHz. Mode weighting = {-7.5dB 0dB 0dB -7.5 dB}

9  The effective mode numbers of the two sectoral phase modes are 1/2 and -1/2 respectively.
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49 SUMMARY

In this chapter we have examined the effect that amplitude and phase fluctuations as
well as position and roll errors of circular array elements, may have on the power
pattern of a mode-space directional beam, and have suggested a least-squares
correction approach for calibrating and re-aligning the array. An expression was
derived for the expected value of the far-field power pattern in the presence of small
unbiased and mutually uncorrelated random errors of specified variances. This pattern
was shown to be expressible as the nominal pattern multiplied by a gain reduction
coefficient, plus an additional (generally direction-dependent) error term, and in the
case of position errors a reduction in the effective array radius was also noted. That
additional error term when referred to the (gain reduced) peak of the nominal pattern
constitutes the rms sidelobe pattern due to aperture errors. It is directly proportional to
the (approximate) sum of all the error variances, becoming a constant function of
direction in the case of equi-variance mode-space errors, as well as under equi-
variance aperture errors when the array elements are omnidirectional.

The above error analysis was followed with a proposed calibration-based
procedure for the least-squares pattern optimisation of a multiple set of beams. The
algorithm was shown to be equivalently realisable as a two-stage correction scheme,
comprising a set of complex correction weights applied to the element channels, plus
a second set of complex weights at the phase mode outputs. For broadband operation,
these weights may be replaced by appropriate ‘pre-DFT” and ‘post-DFT’ filters, the
latter being implemented in accordance with the results of chapter 3.



11111 - 1

5. APPLICATION OF SUPERRESOLUTION
TECHNIQUES

5.1 INTRODUCTION

Superresolution schemes for enhanced spatial estimation are considered whenever
conventional beamforming fails to deliver the required bearing accuracy of a sensor
array under a constrained aperture size. These are spectral estimation algorithms
which adaptively use information provided by the received signals, usually through
second-order statistics of their temporal Fourier transforms, with the aim of
surpassing the Rayleigh resolution limit of Fourier-based direction-finding methods.
According to the classical Rayleigh resolution criterion, two uncorrelated equi-power
far-field sources are just resolvable when their angular separation equals half the null-
to-null delay-and-sum beamwidth of the receiving array.l If the angular separation
of the two sources is decreased below this limit, the two (mainlobe) pattern peaks in
the spectral response of a conventional beamformer will merge into a single
maximum representing the two sources. In practice the beamforming receiver may
also be adversely affected by the presence of additional noise which can mask the
received signals altogether, let alone allow their resolution. High-resolution
estimation of directions of arrival (DOA) from noisy data has therefore attracted
intensive research interest for over 30 years and a variety of different spatial spectral
estimation algorithms have been developed or adapted from the closely related
context of time-frequency signal analysis.

In the simplest scenario often investigated, spatial and temporal samples of the
received signals are assumed to originate from a number of narrowband sources all
having the same centre frequency. A somewhat more realistic model consists of
narrowband sources centred at known but different frequencies. In both cases, as well
as in the more general case of wideband sources of known spectral densities, the
problem is effectively that of a one-dimensional spectral estimation in the spatial
domain.?

1 For a uniformly illuminated line source or linear array of length D/A wavelengths, this angular
separation is approximately equal to A/D radians.
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The spatial distribution of the array sensors may or may not be restricted by the
specific algorithm used while the sensors themselves may take a variety of forms such
as antenna elements or acoustic hydrophones in radar and sonar systems respectively.
In any event, the digitised array outputs are assumed to be available, together with a
precise knowledge of the array geometry (in some cases, the arrangement of the array
sensors need only be partially known, subject to some structural constraint) and (for
most estimators) a calibrated record of the array element patterns over the relevant
frequency band and angular sector.

Two different types of data models are generally used to map the observation
space of received signals onto the parameter space of estimated directions of arrivals
[STo 90b]. Under the stochastic (or unconditional) model the signals emanating from
the distant sources are regarded as random processes, and are ordinarily assumed to
be stationary zero-mean jointly complex Gaussian, uncorrelated with the additive
noises. The deterministic (conditional) model, on the other hand, assumes the
received signals to be non-random. In both cases the additive noises received or
generated at the array channels are considered to be random, and commonly taken as
stationary zero-mean uncorrelated (“spatially white”) complex Gaussian processes.

In section 5.2 we review and compare several superresolution schemes pertinent
to arbitrarily shaped arrays, as well as methods apposite to arrays of some constrained
geometry. The algorithms considered may involve a scalar (‘one-dimensional’) search
in which the DOA parameters are sought one at a time, a vector parameter search for
the simultaneous (‘multi-dimensional’) estimation of all directions of arrivals, or they
may employ no parameter search at all. Section 5.3 then considers the application of
such techniques to circular arrays and in particular to their phase-mode outputs. It is
shown that this particular kind of ‘beam-space’ formulation allows superresolution
algorithms which are specific to linear arrays to be also applicable to circular arrays.
The (pre-processing) transformation from ‘element space’ to ‘mode space’ also
allows the decorrelation of coherent sources or multipathed signals received by a
circular array, through spatial and omni-directional frequency smoothing; these two
techniques, which have hitherto been restricted to linear arrays, are discussed in the
context of circular arrays in section 5.4. Section 5.5 concludes this chapter with a
simulated study of DOA estimation procedures under various multiple-source
scenarios, in which the performances of a representative superresolution algorithm

using linear and circular arrays are examined and compared.

2 Strictly speaking a spatial spectra estimator is one-dimensional only when the estimated (DOA)
parameters are evaluated one by one.
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5.2 GENERAL OVERVIEW

5.2.1 CRAMER-RAO LOWER BOUND

The effectiveness of any method for the estimation of a Kx1 vector ¢ of K DOA
parameters from a random observation vector U, is ordinarily evaluated in accordance
with the following quality criteria:

i. Resolvability - its ability to reveal the presence of two equal-power sources of
nearly equal bearings

ii. Bias - the average error in estimating the location of a source. An estimate is
unbiased when its expected value equals the parameter itself.

iii. Variability - the variance of the estimation bearing (which is also the variance
of the estimation error)

Since the direct computation of the bias and variance of the estimated DOA
parameters is in general difficult to achieve, the usual procedure is to derive a lower
bound on the variance of each estimated parameter. A popular lower bound on the
variance var (a)k) of any unbiased estimate ak of a parameter ¢ is provided by the
Cramér-Rao lower bound (CRLB), the determination of which is closely linked to
the Fisher information matrix. The k’k”th element of the latter KxK matrix J is
defined as:

2
g{[a Infu(ulg). [a lnfu(u|¢)]} . g[a lnfu(u|¢)]

] e (52)
ody’ oy~ OPr OPr

Jk’k” —

provided the derivatives exist and are absolutely integrable. In (52.1) U is a random
vector of the received array data, represented by the observed sample vector u,
Sfu(ul®) is the conditional joint probability density function (PDF) for the random
vector U, viewed as a function of the DOA parameter vector ¢, and £ is the
expectation operator. It can be shown [VAN 68], [RA0 73] that for an unbiased vector
estimate &)

cov (¢ = J! e (522)
where J! is the inverse of J, cov (a) is the covariance matrix for the estimated

parameter vector (or in other words the estimation error covariance matrix) and the
matrix inequality is in the sense that the difference matrix [cov (§) — J 11 is positive
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semi-definite. One consequence of (522) is that the CRLB for the variance of each of
the K parameters {@k} is given by:

var(B) 2 [0 , O0<Sk<K-1 . (523)
where [J i is the k’th diagonal element of J 1,

An estimator is said to be efficient if its covariance matrix equals J'. Note
however that the stochastic and deterministic (or any other non-Gaussian signal)
models each leads to a different Fisher information matrix and therefore to a different
CRLB [St0 90b], [OTT 92].

5.22 DATA MODEL

For a given observation interval (z-NT, f] the observed sample vector ¥ may denote a
stacked tempo-spatial vector of the form:

u=[x"C) x"@t)------ xan.01"

tpy=t-nT , 0<n<N-1

---(524)

where each of the N temporally delayed vectors (or ‘snapshots’) {x(z, )}I,Y;},, being a
statistical sample of a corresponding random vector X(t,), groups the complex
(analytical) representation of signals received by the array sensors. For an M-element
array we denote: -

x(tn) = [xo(tn) X1(tn) - -~ - - xm-1(tn)]" - (525)
and similarly,

X(t:) = [Xo(ta) X1(tn) -+ -+ Xu-1(t)) -+ (526)
where X,,(z,,) is a random variable of the received data at the m’th array sensor at

time ¢,, represented by the observed sampled value x,(t;). An alternative
representation of (5.2.4) is via an MxN data matrix X: ’

X =[x@)x(@)------ x (ty.1)] -++(52.7)
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Under wideband formulation, each snapshot x,,(z,) is often represented over the
relevant sub-interval (¢, - T/2, t, + T/2) by its (assumed bandlimited) Fourier series
coefficients {X,,(wy; t,)} ¢ so that for each discrete frequency, the sample data vector
(denoted here by U) is given by:

U =[X (wr; t0) X (@3 81) -+ -+ X (ay; tv.n)]” e (528)

where
X (03 ta) =[X o(@r; tn) X (@5 1) - -+ - Xur(op ]l - (529)
represents the corresponding random vector X(ay; ), and
ay=QnTY¢ , {£o<é<fys o+ (5.2.10)

are the discrete frequencies in the passband [@y,, @wy4,] of the Fourier series
coefficients.

Under stochastic formulation the signal delivered by the m’th sensor of an M-
element array is generally modelled as a random noise process X,,,(¢) added to a sum

of K delayed random signals {sk(t)}K;%, convolved with respective ‘steering impulse
responses’ {a,,,k(t)}f;}):

K-l
Xn@® =D, Gk @*Skt-Tn(@D) + X, (1) , 0<m<M-1  ...(521])
k=0

The noise may be internally (thermally) generated at the sensor channels or picked up
by the array sensors from a variety of external sources (see [WEN 62], [URr1 83] for a
detailed review of ocean noise). In the latter case it is usually modelled as a
continuous far-field noise distribution that is statistically independent with respect to
direction. The delayed signals emanate from K sources (including multipath ‘image
sources’), each at a different bearing and (in general) a different range from the array
centre, and it is assumed that K < M. The steering impulse response @, (?) is the
response of the m’th array sensor to a temporal impulse arriving from direction ¢ of
the k’th source, and 7,,(¢y) is the propagation delay to the m’th sensor from that
source direction, referred to the corresponding delay to the array centre (or some other
stationary reference point); the propagation delay of each of the signals from its
respective source (or ‘image source’) to the reference point is assumed to be

‘contained’ in the function form Si(- ). The corresponding deterministic data model is
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similar in form to the above, except that the delayed signals are non-random. The
distinction between the stochastic and the deterministic models is particularly relevant
for spectral estimators (such as the ML method — see sub-section 5.2.5) based on a
statistical inference approach.

Under single-frequency narrowband conditions i.e. when the (Fourier-
transformed) steering responses are constant over the common bandwidth of the
signals, and the bandwidth, with centre frequency @y, is also much smaller than the
reciprocal of the propagation delay across the array, (5.2.11) may be modified to the
following matrix form:

X = A(ap)S®) + x,.(D) ---(52.12)

where S(7) = [So(?) $1(2)- -+ - sg-1(0]" and X.(2) = [Xe(®) X (0) -+ - - Xepg D17 are
the corresponding narrowband random signal and noise vectors and A (ayp) = A(P, ap)
is an MxK steering matrix3 whose mk’th element corresponds to the spatial
response of the m’th array sensor to a plane wave at frequency @y arriving from the
k’th source, i.e.

Apk = j At G (T-Trn(Pr)) €T @ = €7 D=0 f dtau(eio ... (52.13)

It is common to assume that the K columns of A (ay) are linearly independent, and in
the case of a linear array of equally spaced sensors this is indeed true by virtue of its
Vandermonde structure for non-coincident sources4. The spatial covariance matrix
R = Exx" may thus be written in terms of a signal covariance matrix Rg = £8s*, a
noise covariance matrix R, = 6;2EX,x," and a full-rank steering matrix5 A:

3 The steering matrix A obviously depends on the DOA parameter vector ¢. For both notational
convenience and clarity, especially when dealing with search-based superresolution schemes, we
denote the functional form of the steering matrix by A(Q, @), and use
A(wo) = A(@= ¢, ® = o) to indicate the steering matrix associated with the actual sources. In a
similar manner, the k’th column of A will be given by: A wo) = A(@= ¢r, ® = W)

4 The steering matrix A has a Vandermonde structure when the array sensors are omni-directional.
In the more general case of array sensors having a common element pattemn, A is a Vandermonde
matrix multiplied by a diagonal KxK matrix whose kk’th element equals Aq. Obviously, an
element pattern null in the direction of one of the incoming signals reduces the rank of A. This
also happens in the case of two signals arriving from equivalent (‘grating-lobe’) directions; herein
we assume that the array inter-sensor spacing is such that grating-lobe propagation is suppressed.

5  Itis common to refer to R, = ARsA" as the signal-only covariance matrix.
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R =R, + 02R, = ARsA" + 02R, .+ (52.14)

where R, is usually normalised (through 02) such that its trace equals M. The noise
is generally assumed to be spatially-white and homoscedastic (or spatially-
stationary$) , in which case (5.2.14) becomes:

R = ARsA" + 621 .- (52.15)

where I is the M xM identity matrix and o2 is the noise power at each of the array
sensors. For the wideband case, the temporal Fourier transform of the covariance of
(52.11) yields the following expression for the cross-spectral density matrix P(w):

P(w) = j dtR(7)ei " = A(0)Ps()A () + P, (w)

-0o

= A(0)Ps(0)A (@) + nu(w) I .-+ (52.16)

where 7,(®) is the spatially white noise power density at each array sensor, and each
element A, of the steering matrix A(w) is the temporal Fourier transform of the
corresponding steering impulse response Gk (I-Tn(P)). R(7) = EX(©)xH(-7) is the
tempo-spatial covariance matrix, and for similarly defined respective signal and noise
covariance matrices, Rg(7) = £8(1)s"(t-7) and 62(DR.(7) = EX (D)X, H(t-1):

-0

Ps(w) = f dtRs(r)edor
and

P, ()= f dto2(DR(Ded@*

-0

are the corresponding signal and noise cross-spectral density matrices. Assuming the
time interval T to be much longer than the propagation delay across the array, (5.2.11)
leads to the following matrix expression for the Fourier series coefficient vectors:

6 The noise at the array sensors is said to be homoscedastic if all elements on the main diagonal of

the noise covariance matrix 62R.= XX, are equal. It is spatially-stationary if R, has a
Toeplitz structure, i.e. if elements on its main diagonal or on any diagonal parailel to it, are equal.
If the noises at the array sensors are pairwise uncorrelated, R., is diagonal and the noise is said to
be spatially-white.
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X(oy; tn) = A(0p)S(y; 1) + X (g5 1) e (52.17)

where wy, < 0y < @y, for w, as defined by (52.10). If T is also large compared to
the correlation time of the processes involved, then the frequency-domain vectors
X(w,; t) and X(w, ~; t,) are approximately uncorrelated for £ “ = £” and,

T

EX(wy; t) X (w4 1) = %j dtR(7)[1- ?]e-iwlfz % P(wy) ---(52.18)
T

5.2.3 CONVENTIONAL BEAMFORMING

In the conventional (‘delay and sum’) beamforming approach the output of each array
sensor is shaded with a constant-amplitude weight? whose phase is delay-matched
for a given look (‘scan’) direction of the array. The weighted outputs are then
summed to form a spatial pattern whose maxima, above a prescribed threshold level,
indicate the presence and the angular locations of radiation sources. The choice of the
threshold depends on the dynamic range of the receiver, but also on the sidelobe
levels of the ‘dynamic’ radiation patterns of the array.® The sidelobes may be
reduced by applying a low-sidelobe weighting taper, but only at the expense of a
wider mainlobe. Estimates for the maximum of the sum beam are obtained by such
techniques as monopulse or conical scan, and for a single-source environment this
method is asymptotically (for a large number of sensors or snapshots) unbiased and
efficient [HIN 72], [N1c 87]. This is also nearly true for a low-sidelobe antenna receiving
signals from two or more sources that are angularly several beamwidths apart. Pattern
peaks contributed by more closely spaced sources will interfere and will become
unresolvable at an angular separation of approximately one null-to-null beamwidth
(depending on the degree of correlation of the sources and on signal-to-noise
conditions). Under the above scheme, the bearing estimation accuracy and resolution
of the array may only be improved by increasing the physical size of the array
aperture.

7 The term constant-amplitude weight refers here to a pre-determined amplitude taper that does
not depend on the received signal.

8  The dynamic pattern of a phased array refers to its radiation characteristics from a stationary far-
field source, as a function of its look direction (the angle to which it is scanned). The ‘ordinary’
radiation pattern, on the other hand, is measured as a function of the relative direction of the far-
field source, for a given look direction of the array.
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The array power pattern for the delay and sum beamformer is given for the
narrowband case by:

P(p) = Elw H(p, a)x? = w (@, wo)Rw (¢, o) -+ (5219)
where the random vector X(z) = [Xo(?) x1()------ Xp1.1(9)] groups the temporal signals
received by the array sensors, w (¢, @) = [wo(p, ®) w1 (@, @)------ wir-1(@, @)]" is the

weight vector, with
W@, @) = wpledom@) | 0<m < M-1 -+ (5220)
and 7,,(¢) is the relative delay from a far-field source at angular direction ¢ to the

m’th array sensor. For the special case of uniform (amplitude) weighting, one obtains
the Bartlett estimate:

Pg(9) = E"(p, )R E(, a) .2 (5221)

where,
E(p, @) = [e70%P) gTon(9)...... e 0t (@)]7 ... (5222)
For wideband signals observed over a time interval whose duration T is much larger

than the propagation delay across the array and is also large compared to the
correlation time of the processes, the beam power contained at a discrete frequency

slice centred around wy=2xé/T , {£Lo<£f<{ys is givenby:
P(p, @) = Ew (0, 0)X(@)F = 1w (9, 0)P(@)w (9.0 ---(5223)
where X(wp) = [Xo(wp Xi(@wp)------ Xur.1(@)]” is a random vector of the £’th

Fourier series coefficients of the received signals over the interval T. The Bartlett
estimate for the corresponding frequency slice is subsequently given by:

P (¢, @) = B (@, 0) P(0) E(p, ) -+ (5224)

5.2.4 SCALAR-SEARCH SUPERRESOLUTION ALGORITHMS

In the conventional beamforming approach described in sub-section 5.2.3, each
direction-of-arrival angle is estimated by locating the corresponding peak in the



[ 101 M Application of superresolution techniques

dynamic power pattern of the array when excited by the received signals,
independently of all other maxima. The source directions are thus evaluated one at a
time in what constitutes a scalar (or ‘one-dimensional’) parameter search. The
algorithms to be considered next are also of the scalar-search type — each is
characterised by a spectral pattern (@) whose peaks are assumed to indicate
directions of arrival, and it is again the maxima of A(¢) (or alternatively the minima
of the inverse pattern 1/ ¢)) that one tries to locate.® The processors are, however,
adaptive in that their spectral patterns are formed using information provided by the
received signals, outperforming conventional beamformers in accuracy and
resolution, and are therefore denoted here as scalar-search superresolution algorithms.
Although the conceptual framework under which such estimation methods were
originally formulated varies from one algorithm to another, they may nevertheless be
generally described as linearly-constrained minimum-variance schemes in which the
weight vector w of the array beamformer is optimised so as to minimise the average
power in the beam. The constraint may relate to the look direction in what may be
viewed as the dynamic radiation pattern of the processor, where signals arriving from
that direction are ‘safeguarded’ or even enhanced while all other signals are
suppressed. (@) is then taken as the optimised dynamic power pattern excited by the
received signals, sometimes normalised to Iw|2 (which, for spatially white noise, is
proportional to the noise power). Alternatively, w is optimised under a single linear
constraint that does not ‘protect’ any look directions. The optimised ordinary
radiation pattern (i.e. the array response to a single far-field source as a function of its
relative angular pbsition) is then characterised by minima in the directions of the
incoming signals, and the squared inverse of that pattern is subsequently taken (to
within a constant) as the spectral pattern of the processor. We shall identify estimation
algorithms that follow the above two approaches as Minimum Variance Protected
Response (MVPR) and Minimum Variance Inverse Response (MVIR) methods
respectively.

Under narrowband formulation, the MVPR optimisation problem may be
expressed as follows:

m”i,nw"Rw , wHIA(p, ap) =1 .-+ (5225)

where I is some MxM transformation matrix whose choice depends on the particular
algorithm, and A(@, @) = [Ao(p, ®) A1(@, @) ----- Ap.1(p, )] is a steering vector
whose m’th element denotes the response of the corresponding array sensor to a

9 1YP(¢) is commonly referred to as the null pattern.
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plane wave at frequency o arriving from direction ¢. In the case of omni-directional
Sensors:

A(p, o) = E(p,0)
The processor is thus constrained to have unity gain for some linear transformation of
the response of the sensor array to a plane wave impinging on it from direction ¢.
With the aid of a Lagrange multiplier ¥, (52.25) is solved by minimising
Ew, ) = w "Rw + 2" [A%(@, an)[T'w - 11+ [w "T1A(@, a)-11x - -- (5.226)

which yields:

_ R''TIA(¢, ax)
A"(p, ap) IT'RIIA(g, ax)

W opt e (5227)

resulting in the following expression for the total power, which is also the MVPR
spectral pattern:

P@)=w! Rwp = 1 ..+ (5228)
PP A%, ) IR TIA(p, )

In the case of wideband signals observed over T-long snapshot intervals where T is
much larger than the propagation delay across the array and is also large compared to
the correlation time of the processes involved, a similar minimisation procedure may
be carried out for the beam power at discrete frequency slices centred around
frequencies wy=2nf4/T , {Lo<£f<{ys,leading to:

P(p, 0) =L w2 P(0)W opr = T - (5229)
T % P A%p, 0) TP () TIA(p, )

Expression (5.2.29) is used in incoherent MVPR-type spatial spectral estimation
methods — see sub-section 5.2.7.

The narrowband formulation for the MVIR minimisation problem is:
n’xvinw"'Rw , wB=x' ..+ (5.230)

where B is a rectangular MxK "’ matrix of rank X’ with 1 < K’< M~K, and Kk #0 isa

real constant K "x1 vector. The narrowband cost function to be minimised this time is:
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E(w)=w"Rw +x" [B"w-x]+[w"B-x"x -+ (5231)
where y is a K’x1 vector Lagrange multiplier. The resulting weight vector is:
Wopr = RIB(B"RIB)1x ---(5232)
the received (noise) power is:
W oot RW opr = B"R1B)1x -+ (5233)
the radiation power pattern of the optimised array is given by:
W o A, w0) = 1A%, a)RB(B"RIB) ki? .+ (5234)
and the MVIR spectral pattern is taken as

P(g) = wgptRw opt__ _ B"R1B)1x
lwH A 2 1af R1BB"R1B)! 2
W opt A(9, @) (¢, a0) B )

... (5235)

The corresponding MVIR spectral pattern for the (incoherently solved) wideband case
is given at each discrete frequency by:

1Yo P(@)Wopt _ (1/T) 'B"P1(w)B)x

= ..+ (5236
Tw ApagP 1A% 0P (@BB P @B ixe

P(p, g =

Of course the true correlation matrix R and cross-spectral density matrix P(w,)
are not available to the processor. Assuming stationarity throughout the duration NT
of the record, they may be consistently estimated from the respective sample matrices
[AND 84]10;

N-1
5_1 Hip y = L H ...
R=1 Y, x(t)x ) XX (5237)
n=0
N N-1
Pwp) =LY X (0 12X Haoy; 1) c (52.38)
N5

10 1t may be shown [AND84] that each sample matrix is a maximum-likelihood estimate of the true
correlation matrix, and as such is consistent, i.e. converges in probability to its true values.
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More optimal estimates are possible if a priori structural information of these
matrices is available [BUR 82], [SHA 88a], [Z1s 90].

Expressions (52.28) (or (5229)) and (5.2.35) (or (5236)) are generic for a number
of well known algorithms to be considered next in this sub-section. Estimation
schemes derived from the MVIR spectral pattern are ordinarily restricted to equally
spaced linear arrays, for which the radiation pattern (which is essentially the MVIR
null pattern) is given by:

M-1
w HA(Q, 0) = Bo(Q, @) Y, whz™ , z=ei(@dic)sing e (5239)

m=0

where c is the speed of propagation and d is the inter-element spacing. This is a
polynomial expression of order M-1 which is therefore characterised by M-1 zeros on
the complex z-plane. K of these zeros may be forced by the MVIR minimisation
procedure (52.30) to lie on the unit circle at points {e7(@dc)sing} KL corresponding to
the sought after directions of arrival, provided that 1 < K’ < M—K. Unless K = M-1,
spurious nulls or minima may also result due to extraneous roots that lie close to the
unit circle IzI = 1 — these may be suppressed by a prudent choice of B and x11.

a. Minimum Variance Distortionless Response (MYDR) method

This method developed by Capon [CAP 69] has been formerly referred to as the
Maximum Likelihood Method (MLM), although it has little to do with the standard
approach used in maximum-likelihood estimates. Its spectral pattern is given (for the
narrowband model) by:

PrvDR(P) = —; 1 - (5240)
A'(p, w0)RA(9, ax) |

and is obtained from the MVPR pattern (5228) by setting: II=1, where I is the
identity matrix. Physically it means that the beam power (or variance) is minimised
subject to the condition that there is a distortionless response to a plane wave incident
from the look direction. If the noise covariance matrix is available, trapezoidal-
diagonal factorisation may be used to alleviate the numerical instability inherent in

11 K’-1 columns of B together with the corresponding elements of x may be chosen so that the

extraneous zeros in the z-domain radiation pattern are evenly distributed within the unit circle.
This very effect is achieved with a specific vector B (K’=1) in the Minimum Norm method
reviewed later in this sub-section.
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the inversion of R [Bra 86]12.

b. Adaptive Angular Response (AAR) method

This method, introduced by Borgiotti and Kaplan [Bor 79] and later by Lagunas-
Hernandez and Gasull-Llampallas [LAG 84] is a derivative of the MVDR technique in
which the (dynamic) power pattern of the array is normalised to lw 2. For spatially
white noise this normalises the processor pattern to the noise power pattern,
suppressing the effect of the latter on the spectral pattern. From (5.2.27):

A", ) IT'R2I1A(p, an)
1A%, wo)II"RITIA(g, wy)?

ngtwopt = b (52.41)

W ot RW opr _ A%, o) IR TLA(p, )

! e (5242)
WoptWopt A, an)IT"R2I1A(g, wp)

and by setting II=1 in the above expression, one obtains the AAR spectral pattern:

A"(@, )R 1A(p, ax)
A", a)R2A(e, ax)

PasR@®) = -+ (5243)

c. Maximum Entropy (ME) method

The idea behind the ME method, as devised by Burg [BUR 67], [BUR 68], [BUR 75] for
the spectral estimation of time series, was to extrapolate the autocorrelation function
of an assumed stationary stochastic process beyond a set of known values, so that the
entropy of the process (or, in other words, its ‘randomness’) is maximised. The
problem is akin to that of linear prediction, and the corresponding power spectrum
may be shown to be given by the transfer function of the forward prediction-error
filter for the time series, as well as by the synthesised output of an autoregressive (all-
pole) process generator, excited by the received noise power. The corresponding
narrowband spatial processing problem is restricted to linear uniformly-spaced arrays,
in which context the order of the appropriate prediction filter or of the autoregressive
process generator (for an M-sensor array) is given by M-1. The power spectrum for
the (narrowband) ME array processor is of the form:

12 Note that the rank of the signal-only component of R (which is assumed dominant) is K (or less,
for coherent signals) which means that R is ‘almost’ singular.
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IRy, R
IA (@, 0)R o 1A%, wp)[R 1]oP

Pme(p) = ce-(5244)

where [R "1]gp is the element on the first row and first column of the matrix R, the
vector [R 1]y denotes the first column of the matrix Rl and the Mx1 vector I is
given by:

Ip=[100------0]" - (5245)

Although the rationale behind the ME method is rather different from the argument
leading to (5.2.35), it is in fact a special case of the latter MVIR expression with:

B=I, (=K'=1)

It has also been shown [Nic 88] that (for the case of an equally spaced linear array):

S T
BVDRW)  mm1 Bir(g)

where !E%);(go) refers to the ME power spectrum from an m-sensor array and
‘PmvDr(@) pertains as before to an M-element array.

d. MUltiple SIgnal Classification (MUSIC) method

The MUSIC algorithm as introduced by Schmidt [ScH 79], [ScH 81] and independently
by Bienvenu and Kopp [BIE 80] is based on eigenvector-eigenvalue decomposition of
the spatial covariance matrix. Referring to the narrowband model described by

equation (5.2.15), the signal sources are assumed to have distinct bearings and not to
be fully correlated. This implies that in:

R = ARsA"+021 .-+ (5.246)

both the signal covariance matrix Rg and (at least for the case of a uniformly spaced
linear array of equi-pattern sensors that cover the relevant source regions) the MxK
steering matrix A are full rank. If Ag2A; 2------ 2Ayqand =g =------ 2 Gy
denote the eigenvalues of the covariance matrix R and of the signal-only covariance
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matrix R, = ARsA" respectively,13 then from (5.2.46):
li=g+0Z2 , i=0,1,...,M-1 e (5247)
Assuming A and R to be full rank, it follows that:
CR=CRe1 ="~ =gy =0
and consequently,
Ag=Agy=:---- = Ay =02

The covariance matrix R, being Hermitian, may be characterised by a set of M

orthonormal eigenvectors {V,-}?ibl, each associated with its respective eigenvalue A;.
Obviously:

ARGA"V; =0 , K<is<M-1 <+ (5248)

where 0 is a vector of zeros. Since A and Rg are full rank we may multiply both sides
of (5.2.48) from the left by Rd (AA)1A¥ to obtain:

AYV; =0 , K<i<M-1 .-+ (52.49)

In other words, the subspace spanned by the eigenvectors {V,-}?i}} is orthogonal to
the subspace spanned by the columns of A. The latter subspace is therefore also
spanned by the complementary set of eigenvectors {V,-}ﬁ‘é. The space spanned by the
eigenvectors of R thus consists of two disjoint subspaces:

i. the signal subspace which is spanned by the eigenvectors of R associated with
the K largest eigenvalues, and also by the columns of the steering matrix A

ii the noise subspace which is spanned by the eigenvectors of R associated with the
M-K smallest eigenvalues; all vectors in this subspace are orthogonal to the
columns of A.

The spectral pattern of the (narrowband) MUSIC estimator is given by:

13 Note that the sensor noise has to be both spatially white and homoscedastic. If this is not the case,
and R, is available, one must resort to generalised eigen-decomposition [BeL 70] of the matrix
pencil (R, R.), or equivalently, perform the appropriate pre-whitening transformation — see
appendix E.1.
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Frosiet) = Mz‘ IAH(I 0,00)V P ", ah)ViVi‘A(rp. o)
i=K+1
XY SR AT YT 0230
where
V,=[VoVy:eee Vil oo (5251)
Vo=[VgVgsp-ooeee VM.l - (5.252)

As effectively noted by Johnson and Degraff [JoH 82a], [JoH 82b], Bvusic(®) may be
derived from the MVPR pattern (5.2.28) by setting:

e 12
=Y Vi Vi=0VV!

i=K

and noting that:

. -1 ,-1 -1 Lo ;

Rl =V[diag(Ag Al ------ DIV =Y ViAAvE ... (5253)
i=0

where

V=[V.V.]=[VoVy-e---- Vil ... (5254)
and diag (161 o 1o /’L;[}_l) is an MxM diagonal matrix whose ii’th element is equal

to 1/A;. The above setting means that the constraint on the MVPR minimisation
problem (5225) does not just ensure a ‘distortionless response’ at the look direction,
but forces a projection of A(¢, ap) onto the noise subspace to be equal to one. When
¢ approaches a DOA angle ¢ of one of the incident signals, A(¢, ax) coincides with
the corresponding column of the steering matrix A, and V,V/A(¢, ay), its projection
onto the noise subspace therefore falls to zero. Constraining the optimal weight vector
to form a finite array response with V,VZA(@, axy), therefore means that (the norm of
the) optimal weight vector must increase, thus enhancing the (dynamic) power pattern

in that look direction. If the true R"! matrix and its eigenvectors (rather than estimates

thereof) were available, the spectral pattern Pyusic(¢) would indeed be characterised
by infinitely high pattern peaks at the required DOA angles. The MUSIC algorithm
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may thus be viewed as an enhanced MVDR-type scheme and has in fact been shown
to possess an MVDR spectral pattern that uses a covariance matrix corresponding to
infinite signal-to-noise ratio [NIc 88].

e. Minimum Norm (VIN) method

The MN method proposed by Reddy [RED 79] and reformulated by Kumaresan and
Tufts [KuM 83a] is another popular eigen-decomposition scheme, but one which tries to
represent the noise subspace by a single vector. The underlying idea is based on
prediction theory and as such is restricted to equi-spaced linear arrays, although its
application to arbitrary arrays has been suggested [VAc 89]. The (narrowband) MN

spectral pattern is given by:
Pyn(@) = ——L— e+ (52.55)
1A (¢, ax)b 12
where b=[byby------ by-1]” is the vector with least Euclidean norm whose first

element by is equal to one, belonging to the noise subspace. Obviously, A"(¢, ay)b
falls to zero whenever ¢ approaches one of the K DOA angles ¢, and it has been
shown by Kumaresan [KuM 83b] that this choice of a weight vector b ensures (for a
linear uniformly-spaced array) that the (M-1-K) extraneous zeros of the pattern

M-1
Y bpzm |, z=ei@dcsing
m=0

are approximately uniformly distributed in angle within the unit circle in the z-
planel4. Denoting:

b=018T
and letting
V,=[VoVy------ Vkil=[0.Y.]"
V,=[VgVy------ Vil =[v, Y.]"

the orthogonality of & to the columns of V, may be expressed as:

Y;p = '04

14 In the context of array processing [Kum 83b] is actually formulated in terms of a signal-only
spatially-smoothed version of the (single-) sample covariance matrix.
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which (assuming that K < M-1) is an underdetermined matrix equation for 3, whose

least-squares solution subject to 8 having minimum norm is:
B=-YX.X.) v, = -Y,u,l - uPy! = Y, -+ (5256)
where use has been made of
Y., = VIV, - 0,0} =1- 00
as well as of the Woodbury identity (matrix inversion lemma)15
d- v =1+v,1-1u®

and of the easily checked identities:

lnR=1-Iy?
Y. u.=-Y,0,
From (52.56) we also have:
M-1 . M-1
b=V, ul=Y Vsl Vol c- (5257)
i=K i=K

where V&- denotes the complex conjugate of the i’th element in the first row of V. It
is apparent that by setting:

B=b (=K'=1)

in the MVIR spectral pattern (5.2.35) one obtains:

M-1
0'32 IVoil?
P(P) = —2——
P &, anp?

which (to within a constant) is the MN spectral pattern. The MN method may
therefore be viewed as an enhanced version of the ME scheme and Pyn(@) is in fact

15 The matrix inversion lemma version used here relates to a KxL matrix A and an LxK matrix B,
and states that: (xx+ AB)" =Ix.x- A Qe+ BA)' B
where Ixxx and I« are the respective KxK and LxL identity matrices.



11730 1117 Application of superresolution techniques

related to Pye(@) in exactly the same way that Pyusic(@) is related to Pvvpr(@)
[Nic 88]: Pvn(@) possesses an ME spectral pattern that uses a correlation matrix
corresponding to infinite signal-to-noise ratio.

5.2.5 SEARCH-FREE SUPERRESOLUTION ALGORITHMS

The DOA parameter search involved in forming the spectral patterns of scalar-search
estimation schemes (see sub-section 5.2.4), although straightforward to implement,
does pose a considerable computational burden on those algorithms. This adds to the
typically large amounts of data storage associated with the crucial but non-trivial task
of calibrating the responses of the array sensors. Both these drawbacks are essentially
removed in the spatial estimators described in this sub-section: the evaluation of the
angles of arrival requires no search procedure nor does it depend on a knowledge of
the sensor characteristics being available to the estimator. The structural requirements
of these techniques as well as their independence of the actual sensor patterns are
similar to those encountered in conventional phase-comparison direction-finding, and
they may indeed be viewed as extended phase-comparison schemes that are pertinent
to a noisy multiple-source environment. Since no parameter search is involved, these
methods are referred to here as search-free superresolution algorithms.

a. Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT)

The ESPRIT method introduced by Paulraj, Roy and Kailath is an eigen-structure
scheme that exploits a known translational invariance in the array structure in order to
ease the computational and storage requirements that characterise scalar-search eigen-
decomposition algorithms such as MUSIC or the MN method. The required structural
constraint is that the array be comprised of two identical sub-arrays, displaced by a
known vector (with respect to which all bearings are to be defined). In the original
form of ESPRIT [PAu 85], [PAU 86], [RoY 86a], [RoY 86b] the required DOA parameters
appear as the largest generalised eigenvalues of the signal-only covariance matrix of
one sub-array in the metric of the cross-covariance matrix of the two sub-arrays. In
later more numerically robust developments of the algorithm [Roy 87], [RoY 89],
[01T 91] two sets of vectors that span the sub-array signal sub-space are obtained by
pre-multiplying the complementary of the full-array noise-space eigenvector matrix
by the full-array noise covariance matrix, and partitioning in accordance with the two
sub-arrays. The DOA parameters are then estimated as the full set of eigenvalues of
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the matrix operator that maps, in the least squares (or preferably in the total least
squares) sense, one of these sets of vectors into the other. Other modifications include
the reformulation of (total-least-squares) ESPRIT as a (vector-search) subspace fitting
scheme [VIB 91a], its extension to the wideband problem [OTT 88], [OTT 90a] and its
application to polarisation-sensitive (antenna) arrays as a combined DOA and signal-
polarisation estimator [LIC 91].

For the mathematical formulation of ESPRIT, let K incoherent far-field sources
illuminate a sensor array possessing at least one translational invariance so that it can
be viewed as two M”-element sub-arrays of identical geometries with a vector
displacement of A between them, and let K < M”16, The M’ =2M" narrowband
signals [x” y"]” at the outputs of the two sub-arrays may be expressed as:

HEl

where X, and y, denote the additive M"x1 noise vectors for the two sets of sensors, S

s+[;:] ce-(5258)

is the Kx1 signal vector, Ay is the M”xK sub-array steering matrix and ¥ is a KxK
diagonal matrix of the phase delays between the corresponding sensors of the two
sub-arrays:

¥ = diag[e/(@ac)sin do gi(aac)sin by ... ei(aa/c)sin ¢r1) oo (5259)

In (5259) A=141 and spatial angles are measured with respect to a vector
perpendicular to A. The covariance matrix R for the combined ESPRIT array is given
byl?:

Ro(Re Ray o[ ARAE AR )+ o2 Rex Rexy
Ryx Ry AxPR:AY A PRSP AY R.,x R.,
=ARsA" + oZR, .- (52.60)

where R, and A =[A] WALl are respectively the combined noise matrix and
combined steering matrix for the two sub-arrays18. Note that in the case of spatially-

16  For an M-sensor array consisting of two non-overlapping sub-arrays we are restricted to
K < M/2. An equally-spaced linear array possesses more than one translational invariance, so that
overlapping sub-arrays may be formed. By selecting: M” = M-1 the above restriction is relaxed to
K<M-1.

17 For non-overlapping sub-arrays, R is simply the full-array covariance matrix R.

18  For non-overlapping sub-arrays, R.and A are simply the full-array noise matrix R, and steering

matrix A respectively.
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white homoscedastic noise:
R., = R,y =1

and if the two sub-arrays are non-overlapping, then also,

Following the original ESPRIT formulation let us denote:

R.,,=Rx- 0ZR,, .-+ (5261)
R,y =Ry - 0ZR.,, .-+ (52.62)

and consider the matrix pencil (R,,, R, xy). Clearly:
R.x - VRuyy = AxRs (I - yPHAY - (52.63)

and for full-rank Ay, Rg and (I - l//‘l’") matrices —
rank[A xRg (I - P )A%4] = rank[A xRsA%] =K

But whenever:
V=Y =el@i)sing | 0<k<K-1

the k’th row of (I - vl‘l’” ) becomes a row of zeros and rank[R,, - y/R,xy] drops to
K-1, which by definition means that {v/k}f;}, are generalised eigenvalues of the
matrix pair (Rey, R,y ). Since both R,, = AyRsA% and R,,, = AxRsP A% span the
same sub-space, the M”-K generalised eigenvalues corresponding to their common
null-space will be zerol?, and the DOA parameters are thus estimated by evaluating
the K largest generalised eigenvalues of the matrix pair (R,,, R,xy).

19 Notice that this is a singular generalised eigen-decomposition problem in that the matrix R,y in
the pair (Rsx, R.yy) is singular. This means that [R.y - YR.ql=0 and (R.x - yR.)Vv=0 for
a vector V in the common null space of R.y and R.,y, are satisfied by any value of y. Two
procedures for solving this problem based on the factorisation of R.,y are suggested in [Zov 87a],
{ZoL 87b]. Both procedures evaluate the generalised eigenvalues corresponding to the range space
of R.yy, and in the second procedure the extraneous M”-K null-space eigenvalues are obtained as
Zero.
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b. Least Squares (LS) and Total Least Squares (TLS) ESPRIT

In these versions of ESPRIT the K generalised eigenvectors {Vq, V1, ---, Vx.1}
corresponding to the K largest generalised eigenvalues of the matrix pair (R, R,) are
used to define the M’xK matrix V,=R,[Vo V;--- Vk.1] whose columns span the
same sub-space as do the columns of the combined steering matrix A — see appendix
E.1. There must therefore exist a unique nonsingular KxK transformation matrix T

such that:
Vx |
vy

where V, has been partitioned in accordance with the two sub-arrays. Ay may be

A,T
A PT

V.-

] =AT -+ (52.64)

eliminated from the above equation, resulting in:
Vy =V T1PT .+ (5265)

The elements of W are therefore the eigenvalues of the operator that maps the
columns of V x onto \Y y- In LS-ESPRIT, this operator

F =T 1¥PT -+ (5.2.66)

is estimated through a least-squares minimisation procedure

n%in IV - VxFI2 e (5267)
or, alternatively:

min IV, F1 - VIR .-+ (5.2.68)

F-l

where IIAI2 = tr(A"A) is the squared Frobenius norm of the matrix A.2° Procedures
(52.67) and (52.68) above result in the following two respective expressions for F:

F=ViV)lVyV, .+ (52.69)

F=VyV)lVyv, .-+ (52.70)

K-1
20 Note that the Frobenius norm of A =[Ao A --- Ag1] isalsogivenby: IAIZ=Y 144
=0
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Although both these expressions are equivalent in theory2?, this is not so in practice,
where only an estimate of V,= [V; V;]" is available. The non-symmetrical nature

of the least-squares formulation with respect to Vy and V y means that DOA estimates
based on the above solutions will in fact be non-identical and biased [GoL 84].

A more symmetric approach for extracting F based on the total least squares
criterion [GoL 80], [GoL 84] is employed in TLS-ESPRIT. The minimisation procedure
pursued here is:

min IVyFy + V,F 12 e (52.71)

Fx, Fy
constrained by the non-triviality condition
xFx + FyFy =1 -+ (5272)
Denoting:

{’xy = [Vx i‘/'y]

Fiy = Fk F}V 62

the total least squares minimisation problem described by (5.2.71) and (5.2.72) may be
rewritten as

rlxginllvxyle& , FiyFyy =1 - (52.74)
xy

the solution for which is obtained in terms of the eigenvector matrix U of V;y{’ xy
whose columns (eigenvectors of \”77,,\7,,,) are arranged in decreasing order of the
corresponding eigenvalues (see appendix E.2 for details):

| Fx [_| Un2
2HEA 279
where U1, and Uy, are KxK sub-matrices of —
Upp U
U=[ 11 12] .- (52.76
Uy Ux 270)

21 This can be easily checked by substituting Vy = VxF for V in (52.70).
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The required operator F is finally given by:
F = -F4Fj =-Up, U e+ (52.77)

and the DOA parameters may be directly evaluated from the eigenvalues obtained
from its eigen-decomposition.

c. Toeplitz Approximation Method (TAM)

In the context of array processing, TAM is a search-free spatial spectral estimation
scheme, based on extracting signal-bearing information from an operator that
transforms between two sets of vectors spanning the signal-subspace of two
overlapping sub-arrays. The method has been originally formulated under state-space
representation as a solution for the harmonic retrieval problem [KUN 83] and later
proposed by Kung ez al. [KUN 86] as a spatial estimator, in which context it is
inherently restricted to linear equi-spaced arrays. TAM does, however, bear strong
resemblance to ESPRIT, and it has in fact been shown that TAM and LS-ESPRIT
(and asymptotically, also TLS-ESPRIT) are statistically equivalent [Rao 88], [Rao 89],
[L1V 91].

The state-space formulation for a set of K narrowband incoherent signals,
incident on an M-sensor linear uniformly-spaced array is as follows:

Ena @ =FE&,(t) 0<m<M-=2
, .- (5278)
Xp () = @& (t) = ¥ Eo (2) 1<m<M-1

In (52.78) &, is a K-dimensional state-vector with initial value equal to
S =5

a is a row vector denoting the spatial response of the first sensor at the K different
source directions, X,,,, is the signal-only output at the m’th array sensor, and

P = diag[ei(@dlc)sin ¢o gj(andjc)sin ¢1. ... .. ej(and/c)sin ¢g1] -+ (52.79)

which is the same as the ESPRIT diagonal matrix defined in (5.2.59), but with the
inter-array spacing 4 set equal to the inter-sensor spacing d. It is easy to see that the
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covariance matrix for the array outputs takes the familiar form:
R = ARA” + o2R,

with the steering matrix A being given by:

a

A= “fi' =[ ;:M_l]=[B‘;] e (52.80)
: a
s 4l

where the (M-1)xK matrix B comprises the top M-1 rows of A. The signal-only
covariance matrix may be factorised as follows:

R, =ARsA" = [R,V.(A, - 2D2][R.V.(A, - G2D21" ... (5238])

where A, is a diagonal KxK matrix of the K largest generalised eigenvalues of R

(arranged in decreasing order), (A, - 62I)1/2 has the square roots of the generalised
eigenvalues of R, on its main diagonal and V, is the corresponding generalised
eigenvector (sub-) matrix — see appendix E.1. Denoting the top and bottom M-1 rows

of R, V,(A, - 62I)12 by the sub-matrices V,l and V,z respectively, we then have:

[B }Rs[ B w'Brl=|  [VM VL] 628
BY¥

Since B, Rg and W are full rank it follows that the columns of [ B* P"B* 1*
and [ Vfl {,:42 1 span the same sub-space, which means that for some non-singular

transformation T we have:

V.
) ! ={ B ]T e (5282)
7., BY¥

When B is eliminated from the above equation, ¥ is obtained as the eigenvalue
matrix of the operator F that transforms the columns of {’,1 onto de:

V=V, T1¥T =V, F - (52.83)
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The above transformation is of exactly the same form as the corresponding ESPRIT
mapping given by (65.65), and the least-squares solution for F is similarly given by:

F=", V)V, 7V, < (5284)

Comparing the TAM formulation to ESPRIT, it is clear that the TAM operator Fram
is related to the ESPRIT operator Frspryt (for the case of a linear equi-spaced array
where M” = M-1) by the diagonal similarity transformation:

Fram = (A, - 62D 2 Fgsprir(A, - 021)12 .- (5285)

5.2.6 VECTOR-SEARCH SUPERRESOLUTION ALGORITHMS

The performance of search-free and scalar-search spatial estimators depends on the
non-singularity of the signal covariance matrix Rg, degrading substantially when
coherent signals are encountered. As discussed in section 5.4 of this chapter, signal
coherence can be tackled by resorting to pre-processing in the form of spatial
smoothing with its attendant loss of resolution, frequency-domain smoothing which
only applies to wideband signals or both. A different approach is to seek a more
optimal algorithm which is inherently insensitive to the presence of coherent signals.
Such algorithms are reviewed in this sub-section under the heading of vector-search
superresolution methods, as they all require a multivariate search of the K -
dimensional parameter space of DOA vectors. The superiority of these algorithms is
also exhibited under low SNR conditions (‘threshold region’), or when the number of
available snapshots is small22 [TUF 82], [MAT 89], [VIB 91a], [Kav 91], [STO 91]. The
price paid for the improved performance and robustness of these algorithms is the
high computational load involved in the simultaneous parameter search which they
employ.

a. [terative Multi-Parameter (IIMP) method

The IMP algorithm proposed by Clarke [CLA 88], [MAT 89], [CLA 91] is conceptually
very simple. It employs an iterative search that utilises conventional beamforming for
alternately estimating the bearing of each of the sources while nulling the estimated
bearings of all others. The multivariate parameter search is thus transformed into a

22 Note that if the number of snapshots N is smaller than the number of array sensors M, then the
sample covariance matrix (5.2.37) is rank deficient.
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series of single-parameter maximisations, an approach similar to the alternating
projection technique that has been suggested for the numeric solution of the DML
method reviewed later in this sub-section [ZIs 87], [ZIs 88].

The IMP algorithm begins by searching for an initial estimate ¢y for the direction
of arrival ¢ of the first (and presumably strongest) signal. This is taken as the largest
peak of the (dynamic) power-pattern of a conventional beamformer that forms a
spatial matched filter in each scanned directions ¢:

oo = arg mgx(A”(fp, wo)RA(p, ) / A(p,00)A(Q,m0)} - (52.80)

where A(@,ayp) is the array steering vector and R, the array covariance matrix is
estimated in the usual way23. Next, a projection matrix onto the null-space of

Ay = A(¢oo, axp) is formed:
TX(ZAg0) = I - Aoo (Ao Ago)™ Ag
and the search for a second signal is conducted with projected steering vectors

II(Ap0) A(@,ax) so that the initial estimate ¢ for the direction of arrival ¢, of the
second signal is obtained as:

¢10 = arg n}gxp TX(Axw), ¢

where24
2 (I, ¢) = A"(p, ) [IRILA(p,a0) / (@, ) NA(Q,ax0) -+ (52.87)

A subsequent estimate @, is then evaluated for ¢ —
¢o1 = arg n}gx?’ (IX(A10), ¢)

where II(A;¢) is a projection matrix onto the null-space of A;g = A(¢;9, ), and the
process continues with similar iterations for @11, ¢o2, ¢12 etc. until stable respective

23 Note that in (52.86) ¢ = (oo maximises the SNR provided the noise is spatially white and
homoscedastic. In the more general case of an arbitrary but known noise covariance matrix R,,,
(5.2.86) should be modified to:

go0 = arg max (A" (.00)R A(¢.00) / A"(p.00)R.A(9.00)}

24 when the noise covariance matrix is not equal to the identity matrix then (52.87) ought to be

modified to: P01 @) = A" (¢, 0)IRILA(,00) / A" (9, 00)IR.ILA(, w0)
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estimates (re-denoted here as ¢go and ¢19) for ¢y and ¢; are obtained. Next, IT is
redefined as a projection matrix onto the null space of the columns of a matrix A:

oa)=1-A@"a)1a”
and the iterations restart with:
920 = arg max® (KA Aro), ¢)
do1 = arg ngxx? (IX(A10 A20), ¢)

¢ = arg rr{gx? (TX(Ao1 A2), )

and so on, until convergence to stable estimates for ¢p, ¢; and ¢, is achieved. The
process continues until all sources have been localised, or (if X is not known) until
some pre-determined criterion for the flatness of the residual spatial spectrum

P (Ao A1 - - Ag-1y0), @) is satisfied.

b. Stochastic (‘unconditional’) Maximum Likelihood (SMIL) method

The statistical inference technique known as the maximum-likelihood (ML) method
was among the first approaches to be pursued for estimating the directions of arrival
of signals in a multiple emitters environment using a sensor array [ScH 68], [L1G 73],

[Ows 81], [WaAx 83]. The idea is to estimate the K-dimensional DOA parameter vector
¢ by its most likely value, given the observed sample vector u. Assuming a uniform
a priori PDF for ¢ and noting the monotonic nature of the logarithmic
transformation, this is equivalent to seeking a Kx1 vector @ that will maximise the
log-likelihood function Infy,(#l@). In the context of a general data vector of length L,
the ML estimator exhibits a number of desirable asymptotic (L — ) properties
[VAN68]: it is asymptotically Gaussian, unbiased and efficient, and it is consistent in
that it converges in probability (for L — eo) to the true parameter value.

In the context of array processing, two different signal models, namely the
stochastic (unconditional) and the deterministic (conditional) models, have formed the
basis for two statistically different versions of the ML estimator [ST0 90b], [OTT 92].
For the Stochastic Maximum-Likelihood method [BAN 71], [BoH 86], [JAF 88] one
assumes the sources to be stationary zero-mean jointly complex Gaussian random
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processes, uncorrelated with the additive noises. The latter are taken as stationary
zero-mean uncorrelated (“spatially white”) complex Gaussian processes. The
(assumed statistically independent) samples of the received array data are then zero-
mean complex Gaussian vectors with a log-likelihood function given by:25

N-1
Infy(ul@) = -N ln(@M IEX(@XHP)) - Y, xHtIEXPXH PN 1x(1,)

n=0

=-NMInz - NIn[R(@)! - Nu[R(z) R ()] .. (52.88)

where IRI denotes the determinant of the array covariance matrix R given the
parameter vector @, R1 is its inverse, and R is the sample covariance matrix defined
in (5.237). Under wideband conditions, data snapshots may be represented by their
Fourier series coefficients as discussed in section 5.2, sub-section 5.2.2. The log-
likelihood function for U = [X"(cy; t0) X (wy; 21) -+ - - - X'(wy; tv.)]” being also a
zero-mean complex Gaussian vector, is similarly given by:

Infy(Ulg) =

N-1
-NIn(mMIEX(w I QX (@A) - Y, X Hwy; I EX(0 @)X (@ P X (@3 1)

n=0
= NM In(T/n) - N InIP(a/p)l - N a[P; @) Pl (/)] ---(62.89)
where P is the array cross-spectral density matrix given the parameter vector ¢, and P

is the sample spectral density matrix as defined by (5238). The ML maximisation
described by26

; = arg max Infy(ulp)  or ; = arg max Infy(Ulp)

constitutes a non-linear optimisation problem that is numerically solvable via
Newton-Raphson iterations or by the method of steepest descent27, as well as by a
number of other techniques [SHA 88b], [SHA 89].

25 Here u is taken as the tempo-spatial vector defined in (5.2.4), and the conditional joint PDF for
the random Mx1 vector U is given by [Wra 71]:

N-1 N-1
@) = fuXlp) = [] —Ll—e= @R — __1 LS x MR x ()]
fuuig) =fuXig) =[] ——lo-e —— >, MR x (o)

26 An equivalent large-sample SML estimation problem is [Box 86], [Jar 88]:
% = arg min In (@R TIx(@) + (MK & (1 - IIW(@IR) D - Ta(@)]l , Tha = A(a"8)"2"
27  See [Wax 83] for a brief description of these iterative methods.



52 General overview oo 111111 e 2

c. Determimistic (“conditional’) Maximum Likelihood (DMIL) method

For the formulation of the Deterministic Maximum-Likelihood estimator [BoH 84],
[BoH 85], [WAX 85a] the additive noises are taken as before to be stationary zero-mean
uncorrelated complex Gaussian processes, but the sources are assumed to be non-
random and the signals are consequently modelled as arbitrary deterministic
sequences. The log-likelihood function for a narrowband tempo-spatial array data
vector is then given by:28

Infy(ulgp) =

N-1
NIn(@MR,) - Y [xHtn)-s e A (@, o) R [x (2,)-A(P, 00)s ()]
n=0

N-1
= -NMIn(ro?) - ;1; % lx(t,)-A(@, ao)s (t) .+ (5290)

Holding the signals {s(z,)}» and ¢ fixed, the log-likelihood function may be
maximised with respect to 62 yielding,

N-1
=Y x()-A@, @)s )P ++ (529)
NM =

Substitution of &2 for o2 in (5.2.90) leaves us with the following ML maximisation

problem:
1 N-1 ,
max -NM[Inz + 1 + In(== ), Ix(t,)-A(@, wy)s (t,)!
o 5 (DB eyl VML i % (t)-A(@, )5 ()] )
or equivalently,

N-1
min (D, xX(t)-A(P, @o)s ()2 ) -+ (5292)
@, s(to), -+, SUN1) g

The minimisation of (5.2.92) with respect to each s(t,) yields

28 The conditional joint PDF for the random vector U is given this time by:

fu(ulg) =

5 1 e-[x(ra)-A(tp.wo)s(rn)l”k;llx(tu)-h(tp. ao)stin)] — (7,0-‘2)'”” expl- LE x(ts) - Ao, a)o)s(t,.)lz]
#=0 det[7R.] oZn0
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50 = [A(@, a0)A(@, ) TA (P, a0)x(tr) -+ (5293)

These may be substituted back into (5.2.92) leading to the following minimisation
problem:

R N-1
¢=argmin {3, I-TA(@c()? ) - (5294)
n=0

where
A (@) =A@, m)[A% (@, a)A(p, w0)] A (@, wp) .-+ (5295)

is the projection operator onto the space spanned by the columns of A(@, ax).
Equivalently, the maximum-likelihood estimate of ¢ is obtained by the maximisation

process:
N-

-1
¢=arg max 1> Ma(@x(tx)? = arg max tr (@R @)] -+ (52.96)
?» N3 P

where ﬁ(u) is the sample covariance matrix as given by (5237). The numerical
solution of (52.94) or (5.2.96) involving a nonlinear search for the DOA parameter
vector, is implementable by various algorithms such as the alternating projection
method of Ziskind and Wax [Zis 87], [Zis 88] or Kaufman’s variable projection method
[KAU 751, [V1B 91b].

The statistical properties of both the SML and the DML method have been
asymptotically analysed by a number of authors [SAN 87], [Sto 89], [STO 90b]. It has
been shown that whereas the SML estimator is asymptotically efficient in that the
covariance matrix of DOA errors approaches the (‘stochastic’) Cramér-Rao bound

J: as the number of samples N tends to infinity, this is not true of the DML
estimator which, for a finite number of elements M, never reaches the corresponding

‘deterministic’ Cramér-Rao bound J51. In fact it has been proved that [OTT 90b],
[STo 90b], [OTT 92]:
‘ Co2 Cs=Jd 2 J5°

where Cp and Cs are the asymptotic DOA error covariance matrices for the
deterministic and stochastic maximum-likelihood estimators respectively, and each
matrix inequality is in the sense of positive (semi-) definiteness of the corresponding
difference matrix.
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d. Weighted Subspace Fitting (WSF) method

The WSF method introduced by Ottersten and Viberg [OTT 89], [VIB 91a], [VIB 91b]
searches for the K-dimensional DOA parameter vector ¢ by trying to fit, in the least-
squares sense, the column space of a search-dependent steering matrix A(@, ap) to
the estimated signal subspace that is contained in the column space of the actual
steering matrix A(ayp) = A(¢@, ap). When applied to a general arbitrarily-shaped
sensor array, the sub-space fitting process involves a computationally intense

optimisation search that is of the same order as the parameter search required for the
ML method.

Mathematically, the K'x1 parameter vector ¢ pertaining to K far-field narrowband
possibly coherent sources illuminating an M-sensor array, is estimated under
homoscedastic white noise conditions by seeking the vector ¢ that minimises:

mi_lrl I V,W2 . A(p, ap)T IR .-+ (5297)
P,

where, for a signal covariance matrix Rg of rank K’, V, is the MxK" signal
eigenvector matrix

whose columns, the eigenvectors corresponding to the K’ largest eigenvalues of the
array covariance matrix R, span the ‘signal subspace’ that lies in the column space of
A(ap), W = W2 [W12]¥ is a K’xK’ hermitian positive-definite ‘weight’ matrix and
T is a full-rank KxK’ matrix29. Minimisation of (5.2.97) with respect to T yields:

T = A"A)1AV, W12
which when plugged back into (5.2.97) and use is made of the definition of the
Frobenius norm and of the invariance of the trace operator to matrix commutation,

leads to the following optimisation problem

¢=arg min tr{ [1- Ta(@)]V.WV) e (5298)

or, equivalently:
¢ =arg max w{ Ta(@)V.WV.') .. (5299)

29 Note that in the case of incoherent signals, R s has full rank and K’ = K.
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where I = A(A"A)1A"is the projection matrix onto the column space of A.

The weighting matrix W affects the asymptotic properties of the estimation error.
The optimal choice (referred to as the WSF choice) that leads to the lowest
asymptotic estimation error variance, which under the Gaussian signal assumption
coincides with the stochastic CRLB, has been shown to be [VIB 91a]

W = [A, - &I12A)

where f\‘ is the signal subspace eigenvalue matrix obtained by the eigen-
decomposition of the sample covariance matrix, and 02 is any consistent estimate of
o2. If W is set equal to the identity matrix then (52.97) and (52.99) become:

$=argmin IV, - A(p, )T If = arg max w{ Ta(@)V.VZ')
[ 8

which describes the vector-search algorithm suggested by Cadzow [CAD 88], also
known as the Multidimensional MUSIC (MD-MUSIC) estimator [ScH 81], [Roy 87],
[V 91a]. The same choice of W but with a translated sub-array parametrisation for A
leads to the following vector-search formulation for TLS-ESPRIT [ViB 91a]:

Y =argminllV,- AT I2
YT

A=[Ay PAY , ($}E] are eigenvalues of ¥

This algorithm, like the search-free version of ESPRIT described in sub-section 5.2.5,
requires no knowledge of the sensor characteristics and geometry save for a known
sub-array displacement vector, but is also unable to resolve coherent signals. Note
also that the WSF optimisation problem (52.99) is very similar to the DML procedure

(52.96). By setting: W = A, - 621 the maximisation problem (52.99) becomes:

¢=arg max ur{ Ta(@)Rs )

which has been shown to be asymptotically equivalent to the DML problem (5.2.96)
[V 91a].
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5.2.7 WIDEBAND SPATIAL SPECTRAL ESTIMATION

Superresolution spatial spectral estimators have originally been formulated for a
narrowband model, in terms of the covariance matrix of the array outputs. The
underlying idea behind narrowband eigenstructure-based algorithms, such as MUSIC
and the MN method, is that the rank of the signal-only covariance matrix R, equals
K, the number of (incoherent) sources, provided K is smaller than the number of
sensors, M. In the case of wideband sources, this ‘rank 1 per source’ assumption is
no longer valid (strictly speaking, it does not hold for sources of any non-zero
bandwidth), and consequently narrowband estimators are not directly applicable.

In the so called incoherent approach to wideband spatial spectral estimation, the
frequency band is divided into bins (explicitly, in terms of cross-spectral density
matrices of the Fourier-transformed array outputs [WAX 84], or implicitly, by sampling
the z-transformed covariance matrix [SUM 83]) where narrowband superresolution
procedures are separately performed. The individual narrowband estimations obtained
across the frequency band are then averaged to yield the final result.

In the -broad-band signal subspace spatial spectral estimation (BASS-ALE)
methods proposed by Buckley and Griffiths, the effective low-rank character of the
signal-only tempo-spatial covariance matrix (TSCM)39 is identified based on the
expansion of a tempo-spatial source sample data vector using the TSCM eigenvectors
as a basis32 [Buc 86a], [Buc 86b], [Buc 87], [Buc 88]. It is claimed that over 99.99% of
the power emanating from a flat-spectrum source in direction ¢ is represented by the
TSCM eigenvectors corresponding to the K, largest eigenvalues, with K., the
effective rank being given by

K(p)=[1+A0[ max (TP - T (9) + W-DT V/r ]

0<m',m"<M-1

where [x] stands for the ceiling of (i.e. smallest integer equal or larger than) x, Aw
denotes the (angular) bandwidth of the source and the expression in the square
brackets is the total temporal duration of the source in the array during the full
observation interval of NT. Subsequent eigen-decomposition is based on the
effective rank of the TSCM32, the evaluation of which requires the approximated

30 TSCM refers here to the NMxNM correlation matrix formed from the stacked tempo-spatial data
vector U as defined in (52.4H52.6).
31 This is known as the Karhunen-Loéve expansion [Anm 75].

K-l
32 For K sources, the effective rank is taken as Y, Ke(¢x).
=0
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knowledge of the source locations. In the special case of a circular sensor array, the
dependence of the effective rank on source location can be practically removed
[Roc 88], [MEs 90].

In the coherent signal subspace (CSS) methods introduced by Wang and Kaveh
[WAN 85], [WAN 87], [YAN87] the narrowband cross-spectral density matrices are
transformed via ‘focusing matrices’ which align their corresponding signal and noise
subspaces, and are then averaged to form the ‘focused’ covariance matrix. The signal-
only focused covariance matrix is thereby reduced to rank X, but is not made rank-
deficient by the presence of fully correlated (but relatively delayed) sources. This
obvious improvement over the incoherent approach, in addition to its greater
statistical stability and lower threshold SNR [Wan 85], [HuN 87], [HuN 88], [KRro 91] has
led to considerable interest in CSS methods. These methods are, however, vulnerable
to DOA bias due to errors in estimating the focusing matrices (for which an initial
estimate of source bearings is required) and from the uncertain spectral signature of
the sources [Sw1 89]. In the related steered covariance matrix (STCM) technique, the
(analytic) time-domain spatial covariance matrix is focused or ‘steered’ by inserting a
set of look-direction-dependent conventional steering delays at the array outputs
[Kro 89]. This approach solves the source location bias problem while greatly
increasing the computational complexity as a new steered covariance matrix has to be
estimated for each look direction. The computational burden is somewhat alleviated
in the doubly-steered coherent signal subspace method whereby steered covariance
matrices are evaluated for a reduced number of steering directions, but this variant is
also susceptible to source location bias [SWI 88]. An alternative technique which
achieves the required focusing operation independently (and without using
preliminary estimates) of the source directions is the spatial resampling method
[CLE 89], [BIE 89], [KRrO 90], [KRO 91]. The concept here, which is restricted to equi-
spaced linear arrays, is to treat the array outputs as samples of a continuous array and
‘resample’ the continuous array such that the new inter-element spacing 4 is made
inversely proportional to frequency. The required pre-processing transformation
which can only be approximately realised, renders the steering matrix for the spatially
resampled array independent of frequency, thus enabling the rank 1 modelling of each
wideband source. In all coherent methods considered above, appropriately
transformed narrowband cross-spectral density matrices are averaged over the
frequency band to form a ‘focused’ covariance matrix. In that respect these schemes
constitute frequency-domain smoothing by which multipathed signals originating
from the same wideband source are effectively decorrelated. Frequency smoothing is
further discussed in the context of circular sensor arrays in section 5.4.
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52.8 BEAM-SPACE METHODS

Superresolution estimators have usually been described in the context of element-
space, i.e. the algorithms have been directly applied to the signals received by the
array elements without any spatial pre-filtering. Many Superresolution methods are
equally applicable to a linearly transformed observation space. Such a spatial
transformation could for instance be used to spatially pre-whiten the background
noise, provided that the (assumed non-singular) noise-only covariance matrix
R, = Ex.x." is known. If R, is not available, the noise is generally assumed to be
spatially white, although its mis-modelling may lead to increased variances and
biases. The linear transformation of element data into beam-space has been
considered by a number of authors [BIE 84], [Ows 85], [For 87], [BYR 87] as a means of
reducing the sensitivity of spatial spectral estimation algorithms to spatially coloured
noise. It has been argued that clustering sets of directional beams in confined angular
sectors has a whitening effect on the noise, as the spatial distribution of the
background noise power approaches local uniformity over each sector. Beam-space
algorithms have been shown in some cases to provide superior resolution [VAN 88],
[LEE 88], [XUB 89], [XUuB 90] although there is a great dependency on the specific
beamformer used. If the number of beams in each sector is much smaller than the
number of array sensors, then the beamforming pre-processing will also reduce the
computational load of the subsequent superresolution algorithm employed.

5.2.9 DETECTION PROBLEM

A vital pre-processing step on which many superresolution schemes depend is the
prior estimation of the number of sources K, or equivalently (when sources are not
fully correlated), of the dimension of the signal subspace. This task, known as the
detection problem, is ordinarily tackled via an information-theoretic approach, using
Akaike’s Information Criterion (AIC) [AK 73], [WAx85b] or the Minimum
Description Length (MDL) criterion due to Rissanen [RIs 78], Wax and Ziskind
[Wax 89] and Wax [Wax 91]. In [Wax 89] and [Wax 91] detection is accompanied by
ML localisation of the sources based on the deterministic and stochastic signal models
respectively. A brief review and a comparison of the above AIC and MDL criteria can
be found in [HAY 92] and a ‘coherent’ extension to wideband sources is suggested in
[WaN 85]. The detection problem is not addressed in this thesis and the number of
sources is always assumed to be either known or correctly estimated by one of the
above criteria.
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5.3 APPLICATION TO CIRCULAR ARRAYS
5.3.1 GENERAL

Although the compatibility of certain spatial superresolution schemes with arbitrarily-
shaped arrays had been noted in the past, the inherent symmetry and full peripheral
coverage that characterise sensor arrays with circular geometry have, rather
surprisingly, not attracted the interest of many authors in the field. A brief reference
to a circular array arrangement has been made by Johnson [JoH 82b ], by Li and
Vaccaro [LIV90] and by Viberg et. al. [VIiB 91b], the latter two as the array
configuration chosen for simulations, and all in the context of element-space spectral
estimation. Simulations using a circular array have also been reported by Xu and
Buckley [XuB 90] in both element-space and (eigen-) beam space.33 The desirability
of circular array geometry when full 360° coverage in DF is required has been noted
by Zeytinoglu, Litva and Qian [ZEY 91] who have modified an element-space
superresolution algorithm to compensate for mutual coupling effects.34 An
interesting use of the special symmetry of circular arrays has been suggested by
Messer and Rockah [Roc 88], [MEs 90] for the localisation of multiple flat-spectrum
broadband sources. Based on the fact that the projected aperture of a (continuous)
circular array in any direction is equal to the array diameter, they have shown that the
circular geometry renders the eigenstructure parameters of the (element-space) signal-
only tempo-spatial covariance matrix (TSCM) practically independent of source
direction, thus removing a major difficulty in the implementation of the Buckley and
Griffiths TSCM-based estimation algorithms referred to in section 5.2, sub-section
5.2.7 [Buc 86a], [Buc 86b], [Buc 87], [Buc 88]. One important type of element-space to
beam-space pre-processing, namely, the transformation into phase-mode space, has
hitherto received very little attention.35 In sub-section 5.3.2 we shall show that in
mode-space, circular arrays can be treated essentially as uniformly-spaced linear
arrays, thus allowing the application of estimation methods that are ordinarily
restricted to the latter (element-space) geometry.

33 An eigen-beamformer is characterised by a transformation matrix whose columns are the (signal
sub-space) eigenvectors of the spatial covariance matrix.

34 Under element-space formulation each circular array sensor receiving signals from a far-field
source ‘sees’ a different field environment and is therefore differently affected by inter-element
coupling. This is not so in an (infinitely long) uniformly-spaced linear array, where the incident
field places a periodic boundary condition on the aperture.

35 A pre-processing transformation of circular array signals from element-space into phase-mode
space, though not referred to as such, has in fact been suggested by Moody [Moo 80], [Mr 81] who
subsequently applied a scheme akin to Prony’s method for solving the multiple source problem.
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5.3.2 MODE-SPACE FORMULATION

The pre-processing transformation of a circular sensor array from M-dimensional
element-space into M’-dimensional mode-space, may be represented by the matrix
operation:

y® = Q"E"x() ... (53])

where the Mx1 vector X and the M’x1 vector ¥ group the respective signals received
by the array sensors and the linearly transformed signals at the beamformer outputs,
the M’ orthonormal columns of the phasing matrix E = [E_ 4..- Ep.-- E ], where
M’ = 1+2A, are given by:

E, = (1/M)2[1 eJ@uMK oJ@uMR2A. ... ei@mHMYM-1)u)T

-ASp<A .- (532)
Q is an M’xM’ diagonal matrix whose yy’th element is given by:

Oup =MV Cpo(a, /2) , -ASps<A .- (533)
and Cpo(an, /2) is the zero-order coefficient for phase-mode number u at frequency

oy as defined in chapter 2, section 2.4. Under narrowband formulation, one obtains
from (52.12):

y(® = Q"E"A(ax)s()+Q"E"x,(1) - (534)

and the M’xM’ covariance matrix for the transformed signals is given by:

Ry, = Eyy"= AR;A" + R, .- (535)

where:
A = Q"E"A .-~ (53.6)
R, = Q"E"R,EQ - (537)

and for spatially white homoscedastic noise:
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R. = 62Q"Q (538

where o7 is the noise power at the array sensors. Notice that although the (mode-
space) noise remains spatially white, it is also heteroscedastic, i.e. the noise powers at
the phase-mode outputs are not the same. They are in fact equal to:

02, = O2/MICuo(an, 7P , -A<ps<A -+-(539)

However, the spatial whiteness assumption which leads to (53.8), although reasonable
as far as internally generated (thermal) noise is concerned, does not necessarily hold
for spatial contributions from ambient noise fields. Denoting the spatial power density
of the ambient noise field by A(@, 68, ¢), and the cross-spectral density matrix of the
ambient noise field contribution at the M’ mode outputs by 13.,(60), we have for a
spatially-white noise field that is statistically independent with respect to direction:

% Coro(®, 6)C (@, 6) 4
K0 K0 sinGI dpN(o, 0, p)eit+)9

[E,(wn,g,,mj d6 .
o Cyolan, 7/2)C po(m, 7/2)

74

..+ (53.10)

v/

where [f’,,.]#rﬂ» denotes the p’y”’th element of 13,, and use has been made of the
approximate far-field phase-mode characteristics

Du(6, @, &)/Cro(a, 6) = eTH¢ -+ (53.11)

for an array of closely spaced sensors (see chapter 2, section 2.4). If the noise field is

omnidirectional in ¢ and concentrated around zero (0 = 7/2) elevation, then:

H
24 dBIC (@, B)/C ro(an, T2)RA( e, 6)sin 6

Payrlod={ " ).

0
I

(1
27:] dBIC (@, W2)/C ol 00, W2EN(@, O)sin®  p'=p”
=t ) , - (53.12)

0 'ur £ u”

13,,3(0)0) is then a diagonal matrix with equal elements, and, for the narrowband
problem, so is the spatial covariance matrix contributed by the ambient noise field.
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Note that a similar result is obtained for the (element-space) covariance matrix of a
linear array in an isotropic noise field, provided that the array sensors are isotropic
and spaced half a wavelength apart [BUr 91]. Taking the (internally-generated) thermal
noise power to be negligibly small (which is a fair assumption in the case of a sonar
system [BUR 91]), the noise at the phase-mode outputs of (a horizontal) circular-array
is thus seen to be spatially white and homoscedastic, for a noise field that is omni-
directional in azimuth and impulsive at zero elevation.3€ This noise model allows the
convenient eigen-decomposition of the mode-space covariance matrix in estimation
algorithms such as MUSIC and the MN method. In contrast, the element-space
covariance matrix for a circular array or a linear array with non-isotropic sensors in an
isotropic noise-field, or that of a horizontal linear array under an azimuthally
omnidirectional noise-field that varies in elevation are not white — see appendix E.3.

From (5.3.11) it also follows that each column of A is approximately given by:
Ag=[1 z! z2----.. MDyrp . 0<k<K-1  ...(53I2)
where for each direction of arrival ¢:
7; = el

, 0<k<K-1 --+(53.13)

The modified M’xK steering matrix A may thus be written as:

(1 1 1 \[(z4 )
7" 7! o : 0
A=| z’ 7’ T zf
—(M’-1) —(M’-1) —(M’-1) O
Z V4 V4 A
\ 0 k K-1 ) \ VA K-1 Y,

e+ (53.14)

The first matrix on the right hand side of (6.3.14) is characterised by a Vandermonde
structure and consequently has full rank K for K distinct DOA angles {¢x} (and
therefore K distinct z;’s), while the diagonal matrix which multiplies it from the right
is clearly nonsingular. A is thus a full rank matrix whose structure is identical to that
of the steering matrix of a linear array of M’ equal-pattern uniformly-spaced

36  If the internally-generated thermal noise power o2 is known (or measurable), one may subtract
the matrix 02Q"Q from the mode-space covariance matrix before proceeding with eigen-
decomposition.
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sensors37. Letting El((p, o) denote the response of the M’ phase-mode outputs to a
plane wave at frequency  arriving from direction ¢, the modal radiation pattern is
given, for a corresponding M’'x1 weight vector w, by:

~ - A
w"A(p, 0)=A(p, ®) Y, wyzH .. (5315)
u=-A

which is of exactly the same form as (523!) for the radiation pattern of an equally-
spaced linear array.

Since the mode-space signal-only covariance matrix and radiation pattern of an
equally-spaced circular array are of the same structure as the corresponding signal-
only covariance matrix and radiation pattern of an equally-spaced linear array under
element-space formulation, and as, under isotropic noise-field conditions (for the
linear array) and the more reasonable assumption of azimuthally-omnidirectional and
elevationwise-impulsive noise (for the circular array), the noise covariance matrix is
in both cases diagonal and with equal elements, it follows that superresolution
schemes which are ordinarily restricted to uniformly-spaced linear arrays in element-
space, are equally applicable to uniformly-spaced circular arrays in mode-space. That
includes multiple-invariance (overlapped) ESPRIT and TAM, spatial spectral
estimators whose spectral pattern is derived from the MVIR pattern, such as the ME
and MN methods, as well as root-finding versions of all scalar-search algorithms.
This means that in both circular-array mode-space and linear-array element-space the
ME and MN null patterns are characterised by K nulls (provided K is smaller than
the number of circular-array phase-modes or linear-array sensors), with spurious nulls
in the latter pattern effectively suppressed. Under the rather ideal assumption of an
isotropic noise-field, the performance of circular-array mode-space methods in the ¢
domain is not expected to be better than that of the corresponding linear-array
element-space schemes in the (apd/c)sin¢@ domain.38 However, if the (unknown)
horizontally omni-directional noise-field is concentrated around zero elevation, then
while the phase-mode noise remains spatially white and homoscedastic, the linear-
array element noise is no longer spatially white. Consequently, an eigen-structure
based linear-array element-space estimator will be mis-modelled and therefore
outperformed by the corresponding mode-space estimator.

37 In the linear array case with d the inter-element spacing, each zy in the Vandermonde matrix is
given by z; = eJ(@dlc)sind) and the kk’th element of the diagonal matrix is the element
pattern in direction .

38 The number of processed phase modes of the circular array is assumed to be equal to the number
of processed linear-array sensors.
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5.4 SPATIAL AND FREQUENCY-DOMAIN SMOOTHING

5.4.1 GENERAL

Pre-processing in the form of spatial or frequency smoothing is required by
eigenstructure-based superresolution algorithms, such as MUSIC, MN and the
ESPRIT method, to enable them to cope with coherent signals39. When some of the
received signals are coherent, the signal covariance matrix Rg in (5.2.46) becomes
rank-deficient, and consequently the subspace spanned by the eigenvectors of the
covariance matrix R associated with the minimal eigenvalue of R is no longer
orthogonal to the columns of the steering matrix A. Thus, although these DOA
estimators are asymptotically unbiased for uncorrelated or partially correlated signals,
they may completely fail in the presence of multipath ‘image sources’ or when
subjected to coherent jamming.

The spatial smoothing technique for the decorrelation of coherent signals was first
introduced by Evans e al. [EvA 81], [Eva 82] and further developed and analysed by
Shan et al. [SHA 85] and by a number of other authors [WI 88], [PL 89a], [PLL 89b],
[RAao 90]. As formulated for an equally-spaced linear array of identical sensors, the
spatial smoothing pre-processing scheme involves the reduction of the spatial
covariance matrix into a set of ‘partial’ covariance matrices defined for a
corresponding set of equal-size (interlaced) sub-arrays, each with a different phase-
centre. These matrices are averaged to form the ‘smoothed’ covariance matrix, which
may be shown to have the same structure as the covariance matrix for noncoherent
signals. The effective size of the array is, however, reduced to the sub-array size,
which implies a lower angular resolution.

39 We refer to two complex narrowband signals so(?) and s1(¢) as coherent when:  so(?) = Esi(9),
where £ is a non-zero complex constant. The covariance matrix for the two signals is then given
by:

&% ©0) &7 (0)

Er @ r©

Obviously, cov (% 51) is singular, the correlation coefficient is 1, and the signals are fully
correlated. Under wideband conditions, so(f) and s1(f) will be said to be coherent when:

cov (1) =

) where (9 = Es1()s1 (¢-7) - IEs1F

so(?) = Esi(t-10), where 1o is some real time delay and £ is again a non-zero complex constant. This

time we have:
2 *
co,,(ml)=( I&7r (0) ér(to)}

Er@wy )
which is generally non-singular; the correlation coefficient is given by Ir()}/r(0) andso(f) and

s1(¢) are only partially correlated.
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Frequency smoothing refers to frequency-domain averaging of the pre-processed
cross-spectral density matrix which has a decorrelating effect on wideband sources.
Pre-processing is necessary to enable the (modified) steering matrix to maintain the
same rank 1 description per source over the whole frequency band, so that (essentially
narrowband) eigen-decomposition algorithms may be applied. A number of coherent
‘focusing’ techniques were considered in section 5.2, sub-section 5.2.7, of which the
spatial resampling method was the only approach to provide true direction-
independent focusing, with a single evaluation of the transformed covariance matrix
that does not require preliminary estimates of source locations. However, as with
spatial smoothing, the applicability of the spatial resampling method is limited to
linear equi-spaced arrays.

In the following sub-sections we examine spatial smoothing and omni-directional
frequency smoothing in the context of circular-array mode-space, and show that this
(circular-array) configuration and (phase-mode) pre-processing does indeed allow the
extension of the above techniques from equi-spaced linear-array geometry.

5.42 SPATIAL SMOOTHING

Consider the M’ aligned4© outputs of phase-modes {-A, -A+1, ----.. , A} formed
by applying the pre-processing transformation (53.1) to the element channels of an
M-sensor circular array, and let the approximate far-field radiation pattern of the
phase-modes in the above set be given by (53.11). Next, form the following
(M’-M"+1) overlapping subsets of M” aligned phase-modes:

[-A, -A+1, . enn .. L -AM7-1), (-A+1, -A42, e AM”),
------ » (A-M'+1, AM"+2, ......, -A}
and denote by ¥, , v=0,1,..., M-M" the vector of aligned phase-modes

belonging to the v’th subset. Under narrowband formulation we then have:
Yo = B(@p)P @)s@®) + Y., ) , v=0,1,...., M-M" ...(54])

where Y, (2) is the mode-space additive noise vector belonging to the V’th subset, the
M"xK matrix B(ap) consists of the top M” rows of the modified steering matrix

A(ay), and ¥" denotes the v'th power of the KxK diagonal matrix

40 We assume that each phase-mode pattern to be normalised to its zero-order coefficient Cyo
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¥(p) = diag(e/to eitr...... ei9xa) -+ (542)

The covariance matrix of the V’th subset is given by:
R, =&Y,y =BP'R¥"B" + &I e (543)
where G2 is the (white homoscedastic) noise power at the phase-mode outputs, and I
is the M”xM” identity matrix. The construction of a spatially smoothed covariance

matrix R follows that suggested for an equi-spaced linear array [SHA 85], according to
which R is simply given by the sample mean of the subset covariances:

M'-M"
R=—1— 3% R,=BRB"+3&I o (544)
"“M"+1 v=0

where R, the modified signal covariance matrix, is given by:

M-M”
Rs=—1 Y w'R¥" o (645)
M'-M"+1 v=0

The modified signal covariance matrix Rg will be full-rank provided that:
M-M"+1)2K ---(5456)

This, together with the condition M”>K needed for the subsequent eigen-
decomposition procedure, means that we must also have:

M 22K - (547)

In other words, the number of processed phase-modes must be no less than twice the
total number of sources. The above claim is proved in appendix E.4 which follows the
lines of a similar proof for the case of an equi-spaced linear array found in [SHA 85].
Since the smoothed covariance matrix R is of exactly the same signal and noise
structure as the (unsmoothed) covariance matrix for the incoherent case, it is equally
applicable to eigen-structure based spatial spectral estimation algorithms. The
dimension of the covariance matrix is, however, reduced from M’<xM’ to M"xM",
which may be viewed as a decrease in the effective aperture of the array.4

41 Recall that circular-array phase-modes play a similar role to that of linear-array sensors in
forming an array radiation pattern.
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5.4.3 FREQUENCY-DOMAIN SMOOTHING

Consider again the pre-processing transformation (5.3.1) of a circular sensor array
from M-dimensional element-space into M’-dimensional mode-space, but this time
let each phase-mode be (digitally-) filtered so that the response of its zero-order
coefficient is deconvolved over the relevant frequency band as described in chapter 3.
This means that the elements of the time-domain diagonal matrix Q in (5.3.1) are
replaced by convolution operators, such that in the frequency domain the following
expression for the mode-space cross-spectral density matrix (CSDM) results:

Py() = I dTRy(Dei " = A(0)Ps(@)A" (@) + P () - (5438)

-0

where,

P (0) =I dTR (7)edor e (549)

is the mode-space noise CSDM, the steering matrix is modified to
A(@) = Q(E"A(w) .- (54.10)
and in the relevant frequency band, the pp’th element of Q(w)is given by:
Ouu(@) = UMV Cpp(,mf2) , -A<ps<A cee (54.10)

In the incoherent approach to wideband superresolution, equation (5.2.16), which
is of exactly the same form as (5.4.8) (or an approximation thereof via spatial
covariances of the Fourier-series coefficients — see (5.2.18)), serves as the model under
which effectively narrowband estimations are separately performed at a number of
discrete frequencies in the operating band. In the case of eigenstructure-based
algorithms such as MUSIC, the MN method or ESPRIT, this approach may
completely fail when some of the received signals are coherent, as the signal cross-
spectral density matrix Pg(w) is then singular irrespective of frequency — see
appendix E.5. Although the wideband signal covariance matrix Rg would in general
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remain non-singular (assuming the bandwidth is larger than the inverse of the relative
delays of the coherent signals — see appendix E.5), the steering matrix A(w) is
frequency-dependent, having a different column space at each frequency, the model
(52.15) does not apply, nor does the rank 1 per source assumption for the (now full-
rank) signal-only covariance matrix R,.

In the context of a general sensor array, frequency smoothing refers to a two-stage
process that enables a wideband source to be represented by a rank 1 model. First, the
array outputs are pre-processed with the aim of transforming the CSDM in such a way
that renders the (transformed) steering matrix independent of frequency while
maintaining its rank.42 The modified CSDM is then Fourier-transformed at zero
correlation time (or, in other words, frequency-averaged) to yield a ‘frequency-
smoothed’ covariance matrix that has the same structure as the CSDM (or of a
narrowband covariance matrix), but is characterised by a generally full-rank
(modified) signal covariance matrix. As noted before, a single ‘omni-directional’
frequency-smoothed covariance matrix may be approximately implemented by pre-
processing an equi-spaced linear array with a spatial resampling filter.

Returning now to the wideband mode-space formulation of (5.4.8) we note that A
as defined by (5.4.10) is approximately given by (53.14) throughout the frequency
band and is thus independent of frequency. This means that wideband phase-mode
pre-processing of a circular array is inherently also a frequency smoothing operation
that allows eigen-decomposition to be based on the mode-space covariance matrix,
and it may be viewed as a simple extension of the spatial resampling technique from
equi-spaced linear arrays to equi-spaced circular arrays. Although the signal
covariance matrix will generally remain non-singular in the presence of coherent
wideband signals when their relative delays are larger than 27/(ap-0)ro) (wyr and
wro are the respective upper and lower angular frequencies in the band), its
robustness to signal coherence may be further enhanced via a spatial smoothing
procedure that will add to the automatic frequency-smoothing process.

42 This is sometimes referred to as focusing.
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5.5 SIMULATIONS AND SUMMARY
5.5.1 GENERAL

A quantitative assessment of the superresolution capabilities of circular sensor arrays
in phase-mode space may be obtained via illustrative and comparative Monte-Carlo
simulations. The objective is to estimate and compare, under different signal and
noise scenarios, the resolvability, bias and variability of such algorithms, when
applied to (possibly pre-processed) arrays of different shape (e.g. linear and circular
geometries), dimensions and radiation properties. An exhaustive performance study
would have to relate to the following parameters:

a. Type of estimator — different methods and specific implementations of algorithms
inevitably lead to different absolute as well as comparative results
b. Geometry — the relevant parameters are the array type, its orientation, the number
of array sensors and the inter-sensor spacing
c¢. Radiation properties — radiation patterns of array sensors as a function of
frequency
d. Signal model — signals may emanate from deterministic or stochastic sources
which are either narrowband or broadband (for different bandwidths)
e. Signal scenario — we refer here to the number of sources, their location and their
level of coherence
f. Noise model — narrowband or bandpass noise may be internally-generated at the
array sensors, or it may be received from ambient noise-fields of different types
g. Pre-processing — e optional pre-whitening transformation
¢ beamforming transformations:
- none (sensor-space)
- beam-space: type and number of available beams
- circular-array mode-space: number of available modes
¢ smoothing: extent of spatial or frequency-domain smoothing
h. Sensitivity to errors — performance under different sensor calibration and position
eITors

Other important parameters include the number of snapshot samples N, the
(appropriately defined) SNR and the number of times each experiment is repeated for
the evaluation of the pseudo-statistical averages. In order to keep the set of results
manageable and within the scope of a supplementary section of a single chapter, the
extent of our simulations has been limited herein to include:
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a.
b.

h.

One representative scalar-search superresolution method, namely MUSIC
Selected geometries:

¢ a 5-sensor narrowband equi-spaced linear array with inter-element spacing

of half a wavelength

¢ a 10-sensor equi-spaced circular array (of which 5 phase modes are used)

with arc-wise inter-element spacing of:

— 0.3 of a wavelength for the narrowband problem

— 0.15 t0 0.3 of a wavelength for the wideband problem
The following frequency-independent (voltage) element patterns:

e isotropic (linear array)

e 2(0, )=sin!2 6 cos2(¢/2) (horizontal circular array)

Narrowband and octave-bandwidth gaussian signal sources — see sub-section 5.5.2
for model description
The following respective signal scenarios for the linear and circular arrays:

¢ 2 equi-power sources at ¢p=-3.82° and ¢;=3.82° (180°sin¢p ; =£12°) on
the azimuth (@ = 90°) plane (angular spacing of one third of the Rayleigh
resolution for the above specified narrowband linear array)

e 2 equi-power sources at ¢p=-12° and ¢; =12° on the azimuth plane (angular
spacing of one third of the mode-space Rayleigh resolution for the above
specified circular array)

The following levels of signal coherence: e incoherence
¢ 99% coherence

e full coherence
Noise modelled as the integrated contribution of ambient noise fields of 2 types:

¢ isotropic or hemispherically-isotropic noise:

e elevation-wise spatially impulsive noise at 8 = 90°:
See sub-section 5.5.2 for model details
The following pre-processing transformations:

¢ no pre-whitening

¢ no beamforming transformation for the linear array

¢ transformation of the circular array into phase-mode space

e optional spatial smoothing using three 3-element linear-array sub-arrays

¢ optional spatial smoothing using three 3-mode circular-array sub-sets

¢ no frequency-domain smoothing for the linear array case; inherent mode-

space frequency smoothing is demonstrated in the case of the circular array

Full error-free knowledge of the position and radiation properties of the array
sensors is assumed.
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The simulations were conducted on a Macintosh computer using the Mathematica
programming language (version 2.0), for 30 snapshot samples and varying levels of
SNR, and were each repeated 30 times for the evaluation of the angular bias and
variance. The models used for simulating the discrete signal sources and the
continuous noise fields are detailed in sub-section 5.5.2. The results are presented and
explained in sub-section 5.5.3, with a discussion and a summary of the whole chapter
in sub-section 5.5.4.

5.5.2 SIGNAL AND NOISE MODELS

Signals were modelled as emanating from a couple of (pseudo-) random spatially-
impulsive (discrete point) sources in the far-field region of the array. The following
specific formulation was used for simulating the £’th narrowband signal at time 7,:

set)= SR+ jsMyeim@n-ta) | 0<k<K-1 , 0<n<N-1

where the data {S ,ff,S,{A,f }x,» were obtained from a zero-mean pseudo-random
gaussian generator set to a variance of43 o2 = (1/2)x105"10_ ¢y is the (angular)
frequency at which the inter-element spacing in wavelengths is as specified in sub-
section 5.5.1-b, and ¢z, is some time delay specific to the k’th source.44 For the
wideband case we used:45

16
set)= Y, SFE4+jSM yeitoaI6)@nta) | 0<k<K-1 , 0<n<N-1
£=8

where the data (S ,,S? ). . ¢ were obtained as before from a zero-mean (pseudo-)
random gaussian generator, and @y is the (angular) frequency at which the inter-
element spacing in wavelengths reaches the highest value specified in sub-section
5.5.1-b. The signals were received at the array sensors (or phase mode outputs)
through the usual complex (normalised) responses of the array sensors or (aligned)
phase modes.

43 gSNRis defined here as (10 times the logarithm to the base 10 of) the ratio of signal to noise power
received by a (linear- array) sensor or an aligned (circular-array) phase mode, due to the presence
of a single signal source and the given noise field. Note that Sz and S# are assumed to be
uncorrelated, so that:

SISG +jSh =202

44 This is important for frequency-domain smoothing — see appendix E.5.

45 Flat-spectrum broadband signals are assumed which, for an approximately finite time response,
dictates the minimum number of sampling points needed to cover the passband.
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Signals s¢ and s; with a coherence level of 100p% were synthesised under the
respective narrowband and wideband models as:

5o (tn)= {[%]IH(SRE+]SO,,)+[L-‘D2)I—]1D(SRE+JS MY} e 0ta-teo)

1= (T g (s By js ity LD P i (R sty cjentt

0<p<1
and
so(tn)=

16
1+(1-p2)12 1-(1-p2
D {[(_21’)_]1&(5 ﬁ150n1)+[_(_§_)_]1/2(51n!+] IM ) 6i(¢0ml16) (n-t:0
px

s1(tn)=
1-(1- 1+(1-
2 {[(_Zp__)_]lﬂ (SOn["J Onl).,.[_'*(L)_]I/Z (Slnl+JS1nl)}e](l07lil/16)(tn -t)
0<p<1

and the time delays ¢, #,, were chosen as: ., =0, wyjt, = 3.6 7.

Both hemispherically-isotropic and elevation-wise impulsive noise fields were
considered. Ideally, these would have been formulated (for a hemispherically-
isotropic noise field under the narrowband model) as:

xxm (tn) =

n o2
ef“’ofuj d(pf dOsin O[NRE(6, 0)+jNM(6, )] g(6, )ei(@dlcynsin Osin ¢
- 0

Y2

y nﬂ(tn) =

n w2
ot f d¢j dBsin 6[NRE(6, 0)+iNM(6, )] Du(6, 9, wo)/Cpo(ax, 7/2)
- 0

T

where x,,, (1,) and y,#(tn) refer to the narrowband noise (‘voltage’) received at time ¢,
by the m’th linear-array sensor and by the u’th circular array phase-mode
respectively, g(6, ¢) denotes the radiation pattern of a linear-array sensor,
Du(0, ¢, ax)/Cuo(an, #/2) describes the p’th phase-mode pattern aligned on the
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azimuth (@=r/2) plane, and {NfE'IM (6, )} » denote spatially-continuous normally-
distributed zero-bias noise fields.

In fact, in order to save computer time, a much simpler scheme was used. Spatial
whiteness of the (circular-array) mode-space noise has been assumed (which is the

approximate case for an elevationwise-impulsive ambient noise field at O=x/2, and it
was consequently modelled as:

Yayltn) = (VEE+jN M) s

and

16
Yay(tn) = 2 (NEG+ N M) ei(tonal16)2,
£=8

for the narrowband and wideband scenarios respectively, with {NfE”M, N,’ff’ M }

generated by a zero-mean pseudo-random gaussian generator of variance 1/2. A
similar scheme was also used for simulating the linear-array element-space noise
caused by a hemispherically-isotropic noise field (see footnote 2 in appendix E.3).

The case of a linear array under an elevation-impulsive noise field at 8=x/2 required
a somewhat more complex model. Here, element noises were formulated as:

Xy (tn) = HIN FE+N M) ej cvin

where the data

RE,IM _ (ARE.IM »;RE,IM RE,IM1
N, =[N,o' N, N ]

n(M-1)

are generated from a zero-mean pseudo-random gaussian generator of variance 1/2,
and the MxM matrix H is the hermitian square root of the Toeplitz matrix R, whose
elements are given by [BUr 91]:

[Rd]m'm" = (1/2)-,0 [E(m,'m”)] N OSm’, m”SM'l

In other words,
R,=HH"
H=UA"U"
where A and U are, respectively, the eigenvalue matrix and eigenvector matrix of R,,

and Al/2 has the square roots of the eigenvalues of R, on its main diagonal.
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5.5.3 SIMULATION RESULTS

The simulated results shown in Fig. 5.5.1 to Fig. 5.5.6 are aimed both at
demonstrating mode-space superresolution processing and at comparing the
performance of a (mode-space) circular array with that of an (element-space) linear
array. It is important to realise that there is an inherent resolution factor of
approximately x in favour of the latter#6é for sources close to broadside, when the
number of processed circular-array phase modes equals the number of linear-array
elements, and as in general, not all M phase modes excited in an M-element circular
array are usable, a simple comparison may prove misleading. We have thus chosen to

[dB]

0 gy
-45 -30 -15 0
Angle ¢ - circular array

H k) E 3 Ll

[degrees]

180 sin® - linear array

Fig.55.1 MUSIC spectral pattern for two uncorrelated sources (SNR = 25 dB)
- a. 5-sensor linear array in (full or hemispherically) isotropic noise
b. 5-sensor linear array in elevationwise-impulsive noise
¢. 10-sensor/5-mode circular array in elevationwise-impulsive noise

46 See (322) in chapter 3 for a linear-array inter-element spacing of half a wavelength
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simulate the following arrays:

i a 10-element equi-spaced circular array of directional sensors, with
superresolution processing applied to 5 aligned phase modes no. {-2 to 2}. The

array is embedded in an elevationwise-impulsive ambient noise field

ii aS-element equi-spaced linear array of isotropic sensors embedded in an isotropic

or semi-isotropic ambient noise field

iii a 5-element equi-spaced linear array of isotropic sensors embedded in an

elevationwise-impulsive ambient noise field at 6 = #/2.
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MUSIC spectral pattern for unsmoothed arrays excited by two 99%
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a. 5-sensor linear array in (full or hemispherically) isotropic noise
b. 5-sensor linear array in elevationwise-impulsive noise

¢. 10-sensor/5-mode circular array in elevationwise-impulsive noise

Application of superresolution techniques
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Note that even though the simulated circular array comprises twice the number of
linear-array elements, its diameter (for A/3 inter-element spacing) is in fact smaller

than the long dimension of the corresponding (A/2-spaced) linear array by an
approximate factor of 7. As far as our graphical output is concerned, all circular-array
results are displayed in angle ¢° space, whereas the linear-array outputs have been

plotted versus 180°sin¢, which, for A/2 inter-element spacing of the linear array
sensors, corresponds to the coordinate transformation (3.2.2).

Fig. 5.5.1 depicts the narrowband MUSIC spectral patterns for the two arrays
when excited by two equi-power sources. The power received from each of the

i :  Signal sources :

-------------------------------------------------------------

[dB]

O L ¥ I 1 L ‘ 1 T I |" 1 I 1 1 ' 1] 1
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180 sin® - linear array

Fig.5.53 MUSIC spectral pattern for spatially-smoothed arrays excited by two
99% correlated sources (SNR = 30 dB)
a. 5-sensor linear array in (full or hemispherically) isotropic noise
b. 5-sensor linear array in elevationwise-impulsive noise
¢. 10-sensor/5-mode circular array in elevationwise-impulsive noise
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sources corresponds to a signal-to-noise ratio of 25 dB. We notice that the two
sources are easily resolved both by the linear array (under both noise models) and by
the circular array, although the linear-array resolution appears to be somewhat higher.
In Fig. 5.5.2, there is a 99% correlation between the two sources, which are now also
5 dB more powerful. As no processing has been applied to ‘decorrelate’ the sources,
the result is an almost complete loss of resolution. This situation is remedied by
applying spatial smoothing to the arrays, with the linear-array elements and similarly,
the circular-array phase modes, divided into three sets of three interlaced elements
and phase modes, respectively. The resulting spectral patterns are shown in
Fig.55.3. Both the linear and the circular array have fully regained their resolving
power, with the highest resolution exhibited by the circular array. But also note that

i : :  Signal sources

) i L] 1 l T L] I 4 1] l 1] L]

1
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Angle [degrees]

Fig.5.54 MUSIC spectral pattern for a 10-sensor/5-mode circular array excited by
two fully correlated sources (SNR = 30 dB)
a. unsmoothed array
b. under inherent frequency-domain smoothing (octave bandwidth)
c. spatially smoothed array
d. spatial smoothing + inherent frequency-domain smoothing
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the spatially-smoothed result for the linear array under an elevationwise impulsive
noise field is biased by approximately 3 (transformed) degrees4?, which may be
attributed to its element noise not being spatially white. No such bias has been noticed
in the smoothed MUSIC pattern for the circular array or for the linear array when the
ambient noise field is isotropic.

Fig.5.54 is wholly devoted to the simulated circular array which is now
illuminated by two fully-correlated signal sources. The narrowband result is a
complete loss of resolution as depicted by plot a. In plot b, an octave-bandwidth is
assumed for the signals, noises and phase modes, which allows the inherent
frequency-domain smoothing mechanism of broadband mode-space processing to

rms error (degrees)

0 ——t—
10 20 30 40 50 60
SNR (dB)

Fig55.5  Application of spectral MUSIC for two uncorrelated sources: rms error
patterns (¢-space for circular array, 180°sin¢g-space for linear array)
a. 5-sensor linear array in (full or hemispherically) isotropic noise
b. 5-sensor linear array in elevationwise-impulsive noise
¢. 10-sensor/5-mode circular array in elevationwise-impulsive noise

47 The bias in degreesis sin™ (3°/180°)
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take effect48, leading to the fully regained resolution of the two sources. Plot ¢
demonstrates the application of narrowband spatial smoothing, which partially
recovers resolvability, albeit with noticeable bias, whereas plot d illustrates the
benefit of combining wide bandwidth (yielding frequency-domain smoothing) with
spatial smoothing. The statistical angular bias and rms error4® attendant to the
MUSIC estimator as applied to the linear and circular arrays, are finally plotted in
Fig.5.55 and Fig. 5.5.6 respectively for the case of two uncorrelated sources. The
bias and variance (or rms error) are both seen to fall to zero when the signal to noise
ratio is increased, which, after all, was to be expected from the MUSIC estimator.

0.5

rms error (degrees)

I I
10 20 30 40 50 60
SNR (dB)

Fig55.6 Application of spectral MUSIC for two uncorrelated sources: angular
bias patterns (¢-space for circular array, 180° sing-space for linear array)
a. 5-sensor linear array in (full or hemispherically) isotropic noise
b. 5-sensor linear array in elevationwise-impulsive noise
c. 10-sensor/5-mode circular array in elevationwise-impulsive noise

48 Note again that the presence of a non-zero time delay z. between the two received signals is
crucial for their decorrelation — see appendix E.S.

49 By rms error we refer to the square root of the variance of the estimation bearing, or equivalently,
to the variance of the estimation error.
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5.5.4 SUMMARY

This chapter has been devoted to the application of high-resolution spatial estimators
in circular-array mode space. Noting the structural identity between the mode-space
steering matrix and the corresponding element-space matrix for a uniformly-spaced
linear array, together with the spatially-white and homoscedastic mode-space noise
received from a circumferentially-omnidirectional and elevationwise-impulsive
ambient field, we have concluded and partially illustrated in simulations, that
superresolution schemes that have hitherto been relevant to equi-spaced linear arrays
are in fact equally applicable to equi-spaced circular arrays in mode space.

An important aspect of mode-space processing which we have demonstrated, is its
compatibility with the spatial smoothing technique and (in the case of broadband
sources and phase modes) the inherent omnidirectional frequency-domain smoothing
mechanism which allows such algorithms as MUSIC and MN to cope with a coherent
signal environment. Spatial smoothing has been extended from an established linear-
array element-space version, whereas true direction-independent frequency-domain
smoothing, free from preliminary estimation of source locations, has ordinarily
involved spatial resampling, a technique that is again limited to linear arrays.

It should be noted that the linear-array to circular-array coordinate transformation
mentioned in chapter 3, means that an M-element linear array receiving signals from
direction ¢, has a resolution factor of approximately (for half-wavelength inter-
element spacing) wcos¢ in its favour when compared with the M-fold mode-space
processing of a circular array. This factor equals 7 for sources near broadside, but
becomes smaller and eventually less than unity (for ¢l =272°) as the location of
sources moves away from broadside, and of course the linear array lacks the full
circumferential coverage of the circular array. Also, although the generation of a set
of M’ ‘well behaved’ phase modes, generally requires a larger number of array
elements, the physical size of the array will usually remain smaller than the length of
a linear array of M’ elements.

In conclusion, we have shown circular-array high-resolution mode-space
processing to be a viable and beneficial alternative to high-resolution linear-array
element-space techniques.
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6. CONCLUSIONS

The application of mode-space beamforming, null-steering and direction-finding
techniques to circular sonar arrays appears to have some appealing attractions. The
sonar frequencies are sufficiently low to enable all signal processing to be realised
digitally, allowing the implementation of complex processing schemes which are
readily calibrated and are not limited by the imperfect nature of analogue
components. In this thesis we have been examining several aspects pertaining to the
analysis and processing of circular array systems with digital beamforming
architecture. The general context has been that of sonar systems where noise is mainly
contributed by external fields, and where one has the benefit of low frequencies,
making complex digital processing more feasible, as well as manageable array
dimensions due to the low velocity of propagation; but evidently, much of the
material is relevant, at least in parts, to antenna arrays.

The basic concepts of beam-cophased and phase-mode excitation were briefly
reviewed in chapter 2 and the transient circular array patterns associated with the
reception of wideband pulses were discussed. It was pointed out that even when an
array is delay-compensated (or ‘co-delayed’) in a certain look direction (i.e. of its
main beam), it remains uncompensated in all other directions and the transient array
pattern will depart (e.g. in the sidelobe region) from its steady-state radiation pattern.
This is clearly manifested by the (approximately linear) change of co-delayed
beamwidth with frequency. In contrast, beam patterns formed by the linear
combination of phase modes that have been aligned (for a given elevation angle) over
a wide frequency band, are effectively frequency independent, rendering the circular
array ‘delay matched’ over the full constant-elevation azimuth cut.

In chapter 3 we considered conventional mode-space techniques that are
applicable in the context of full digital beamforming. It was shown that
omnidirectional phase modes may be linearly combined to form sectoral sets of
beams with (almost) identical directional amplitude patterns but different phase
gradients of locally linear slopes corresponding to ‘effective mode numbers’. Such
beams with phase-mode-like phase characteristics and directivity that may be
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compromised for a steeper maximum phase gradient, were duly named sectoral
Dhase modes. They may find application in a direction-finding scheme that combines
the high resolution of multimodal phase-comparison DF with the inherent immunity
of directional low-sidelobe beams to interference from a multi-source environment.
Null steering may also be used for dealing with a multi-source environment, and it
was shown that the incorporation of sectoral phase modes allows nulls to be
independently steered for each directional beam in a multiple-beam network. An
extension of this idea could incorporate independently steered nulls in a directional
phase-comparison direction-finding system.

Also considered in chapter 3 were wideband extensions to the foregoing schemes.
It was noted that with the exception of omnidirectional phase-comparison direction-
finding (multimodal DF) which, subject to a ‘favourable’ element pattern, was shown
to cover a wide bandwidth by virtue of symmetry, mode-space techniques generally
rely on wideband mode alignment that will deconvolve the frequency-dependent
zero-order phase mode coefficients. A digital filtering approach was subsequently
proposed and its viability shown to depend on the directional properties of the array
elements.

The effect of aperture and mode-space errors on the sidelobe level of mode-space
beams was examined in chapter 4, where the rms sidelobe level was found to be
constant either in the case of mode-space excitation errors of equal variance, or under
equi-variance aperture errors, provided the array elements are omnidirectional.
Various calibration-based pattern correction and alignment algorithms for optimising
in the ‘least squares’ sense the array performance were then considered, and it was
demonstrated that trying to optimise the array for multiple mode-space beams may be
equivalent to a multimodal scheme in which the set of phase modes used for the
synthesis of the beams, is aligned. For wideband alignment, digital filters have to be
implemented at the phase mode outputs, based on one of the schemes discussed in
chapter 3.

Finally, in chapter 5 we set out to exploit the benefits of mode-space formulation
in the rapidly growing field of high-resolution processing. After an overview of
scalar-search (‘one-dimensional’), vector-search (‘multidimensional’) and search-free
spatial estimators, the applicability of algorithms ordinarily restricted to equi-spaced
linear arrays was demonstrated, in terms of both the signal and noise covariance
matrices. In fact it was shown that the ambient noise model for circular arrays in
mode space is less restrictive than that for its linear array counterpart, especially when
the directivity in elevation is increased by a cylindrical arrangement of rings. Another
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important aspect of mode-space processing demonstrated in this chapter was the
applicability of the spatial smoothing technique and (in the case of broadband signals)
the direction-independent frequency-domain smoothing inherent in wideband phase
modes. Mode-space spatial smoothing for the decorrelation of narrowband coherent
signals is a direct extension of the element space version of that technique, which has
hitherto been restricted to equi-spaced linear arrays. The decorrelation of wideband
coherent signals through frequency-domain smoothing is both omnidirectional and
automatic in (wideband) mode space. In contrast, true direction-independent
frequency-domain smoothing in element space that does not depend on preliminary
estimates of source locations, is restricted to equi-spaced linear arrays and requires
pre-processing in the form of spatial resampling. Mode-space versions of popular
algorithms such as MUSIC (including its root version) and the Minimum Norm
method are thus readily usable even in scenarios of fully correlated signals.

The main contributions of this work cover both conventional beamforming and

superresolution processing and may be summarised as follows:

i The introduction of sectoral phase modes and their applications in direction
finding and in null steering

ii The digital broadband alignment of phase modes and its dependence on the
directional properties of the element patterns

iii The compatibility of circular arrays in mode space with linear-array estimators

iv The extension of the spatial smoothing technique from equi-spaced linear-array
element space to circular-array mode space

v The inherent omnidirectional frequency-domain smoothing effect on broadband
mode-space signals

The study which has been undertaken here is by no means complete. Various
other aspects relating to the analysis and applications of sonar and antenna ring arrays
and similar structures merit further investigation. An interesting and potentially
promising topic for further research involves the use of sectoral phase modes in
‘beam-space’ spatial estimation. The idea is to enable the array to handle more
(evenly spaced) sources and to reduce its susceptibility to a non-isotropic ambient
noise field by confining the modes to sectors of locally isotropic noise, while
continuing to enjoy the benefits of mode-space processing, namely:

— 360° coverage through the multibeam excitation of sectoral phase modes

— compatibility with linear-array estimators and spatial smoothing techniques

— automatic handling of broadband multipath signals through inherent

frequency-domain smoothing.
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Another area that deserves serious consideration pertains to the implementation of
two-dimensional beamformers and direction-finders using arrays of related
geometries. These may include elements in a cylindrical, conical or spherical
arrangement as well as a toroidal array (i.e. a horizontal ring of vertical ring arrays)
which is perhaps the most ‘natural’ two-dimensional extension to the single ring
geometry. An interesting geometry that could well be worth investigating is that of an
elliptical array, or of a cylindrical structure with elliptical cross-section. On the
practical side, such an array may more easily conform to the hull of a sea vessel,
while the (possibly phase-mode) analysis could make use of the fact that a
(continuous) circular ring array would also look elliptical to an elevated far-field
source. Since each azimuth bearing of the source would be equivalent to a different
tilt of the circular array, one would have to angularly sectorise the operation of the
array through the possible use of sectoral phase modes or their elliptical equivalent.

Other configurations are of course possible and are open to analysis. It is hoped
that the work presented in this thesis together with some of the ideas suggested above
will stimulate other researchers in the sonar and antenna array communities as well as
authors in the field of high-resolution spatial processing, to focus more attention on
circular arrays.
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A. ABBREVIATIONS AND SYMBOLS

A.1 LIST OF ABBREVIATIONS

AAR Adaptive Angular Response method — see chapter 5, sub-section 5.2.3

AIC Akaike’s Information Criterion — see chapter 5, sub-section 5.2.9

BASS-ALE Broad-bAnd Signal subspace Spatial spectrAL Estimation methods — see
chapter 5, sub-section 5.2.7

CRLB Cramér-Rao Lower Bound — see chapter 5, sub-section 5.2.1

CSS Coherent Signal Subspace methods — see chapter 5, sub-section 5.2.7

cw Continuous Wave (monotonic)

DF direction finding

DFT Discrete Fourier Transform

DML Deterministic Maximum Likelihood method — see chapter 5, sub-
- section 5.2.6

DOA Direction Of Arrival (of signals relative to the array)

ERP Effective radiated power — see footnote 2 in chapter 2

ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques —
see chapter 5, sub-section 5.2.5

FIR Finite Impulse Response (refers to a non-recursive digital filter)

M Frequency Modulation — see in connection with the response to a linear
FM pulse in chapter 2, section 2.3 and in appendix B.1

HF High Frequency (3 —30 MHz)

IDFT Inverse Discrete Fourier Transform

IR Infinite Impulse Response (refers to a recursive digital filter)

IMP Iterative Multi-Parameter method — see chapter 5, sub-section 5.2.6

LS Least Squares — see in connection with LS-ESPRIT in chapter 5, sub-
section 5.2.5

MDL Minimum Description length — see chapter 5, sub-section 5.2.9

ME Maximum Entropy (Burg’s method) — see chapter 5, sub-section 5.2.4

ML Maximum Likelihood method — see chapter 5, sub-section 5.2.6

MN Minimum Norm method (also known as the TK method) — see chapter 5,

sub-section 5.2.4
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MLM

MUSIC
MVDR

MVIR
MVPR

PDF
RMS

SML
STCM
SNR
SPM
TAM
TLS

TSCM

WSF

Maximum Likelihood Method (former name for Capon’s method) — see
chapter 5, sub-section 5.2.4

MUiltiple SIgnal Classification method — see chapter 5, sub-section 5.2.4
Minimum Variance Distortionless Response (Capon’s method) — see
chapter 5, sub-section 5.2.4

Minimum Variance Inverse Response — see chapter 5, sub-section 5.2.4
Minimum Variance Protected Response — see chapter 5, sub-
section 5.2.4

Probability Density Function

Root Mean Square — see in connection with rms sidelobes in chapter 4,
sections 4.2 t0 4.4

Stochastic Maximum Likelihood method — see chapter 5, sub-
section 5.2.6

STeered Covariance Matrix technique — see chapter 5, sub-section 5.2.7
Signal to Noise Ratio

Sectoral Phase Mode — see chapter 3, section 3.5

Toeplitz Approximation Method — see chapter 5, sub-section 5.2.5

Total Least Squares — see in connection with TLS-ESPRIT in chapter 5,
sub-section 5.2.5

Tempo-Spatial Covariance Matrix — see chapter 5, sub-section 5.2.7
Ultra High Frequency (300 — 3000 MHz)

Very High Frequency (30 —300 MHz)

Weighted Subspace Fitting — see chapter 5, sub-section 5.2.6
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A.2 LIST OF SYMBOLS

1

- e —
. . . . . .
d  hd  bd d Sd
1

- lle

[-1
[X1mod2x
0

0

am

ke (1)
A(Q

A(w)

Ax, Ay
A
A(p, @)

argm;Xf(q’)
argmqin FP)

{bg)
B

inverse of a matrix

complex conjugate of a scalar, a vector or a matrix

transpose of a vector or a matrix

transpose conjugate of a vector or a matrix

inverse of the transpose conjugate matrix

determinant of a matrix, Euclidean norm of a vector, absolute value of a
scalar

Frobenius norm of a matrix: IAIZ = tr(A"A)

ceiling of (smallest integer larger than) an expression

modulo-27 value of a real number x

null vector

null matrix

complex weighting applied to the m’th array element — see (2.2.2) and
(235) in chapter 2

steering impulse response of the m’th array sensor in the direction of
the k’th far-field source — see chapter 5, sub-section 5.2.2

amplitude pattern of a sectoral phase mode — see chapter 3, section 3.5

signal amplitude — see appendix C.1

' array steering matrix, equals to A(Q= ¢, w) — see chapter 5, sub-

section 5.2.2
mk’th element of the steering matrix A

mode-space steering matrix — see chapter 5, sub-section 5.3.2

combined ESPRIT steering matrix — see chapter 5, sub-section 5.2.5
ESPRIT sub-array steering matrix — see chapter 5, sub-section 5.2.5
steering vector — see chapter 5, sub-section 5.2.4

functional form of steering matrix — see footnote 1 in chapter 5, sub-
section 5.2.2

maximising vector ¢ in the expression F(@)

minimising vector @ in the expression ()

vectors defined in appendix C.3

constraint matrix in an MVIR algorithm — see chapter 5, sub-
section 5.2.4,

TAM sub-matrix comprising the top rows of A — see (5.2.80) in
chapter 5,

spatial-smoothing sub-matrix comprising the top M” rows of A - see
(54.1) in chapter 5
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eZ

Ju(u)
Sfu(ul®)
F(6, o, »)
Fr(®)

Fu(®)

Fm(Q)

List of abbreviations and symbols

vector of least Euclidean norm whose first element equals to one, that
belongs to the noise subspace — see chapter 5, sub-section 5.2.4

speed of propagation

asymptotic DML and SML DOA error covariance matrices — see
chapter 5, sub-section 5.2.6

q’th order coefficient for the u’th phase-mode — see chapter 2,
section 2.4

the vector [C(_gyg»-++» Cog» -+, Cpgl’ —see (C3.6) in appendix C.3
unaliased component of D,,(e/®4f) —see (C4.1)in appendix C.4
covariance matrix of a random vector U

inter-element spacing in a uniformly-spaced linear array — see (3.2.2) in
chapter 3

(inverse) DFT coefficients of { Dy(e/27/N)}, —see (3.621) in chapter 3
block matrix defined by (E43) in appendix E.4

transfer function of FIR block in IIR mode-alignment filter — see (3.6.18)
in chapter 3

determinant of a matrix

diagonal matrix whose main diagonal comprises the elements of z

general cost function in a minimisation process,
DOA estimation error defined by (C.1.1) in appendix C.1

delay-only steering vector — see expression (5222) in chapter 5, sub-
section 5.2.3

MxM diagonal mode-phasing matrix defined by (4.5.13) in chapter 4
mode-phasing matrix as defined by (53.2) in chapter 5, sub-section 5.3.2
a column of E — see definition (53.2) sub-section 5.3.2

expectation operator

exponential function

probability density function of a random vector U

conditional probability density function of a random vector U, given the
second random vector ¢ — see chapter 5, sub-section 5.2.1

far-field (steady-state) array radiation pattern — see (222), (2.3.5) in
chapter 2

(nominal) mode-space beam pointing in direction 2zm/M — see (3.2.3) in
chapter 3

nominal mode-space beam F,(¢) at a modified array radius — see
chapter 4, section 4.4

perturbed mode-space beam pointing in direction 2zm/M — see
chapter 4, sections 4.2, 4.3, 4.4
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|AF12,1AF |2 rms error pattern — see chapter 4, sections 4.2, 4.3, 4.4

F
FI(g)

G

Lx1 array far-field pattern vector — see (4.5.4) in chapter 4

a sectoral phase mode pointing in direction 2zm/M, having an effective
mode number of v — see chapter 3, section 3.5

LxM element pattern matrix — see (4.5.5) in chapter 4,

block matrix defined by (E4.7) in appendix E.4

(—}, é", G"G frequency and elevation averaged matrices, defined by (4.7.3) - (4.75) in

26,9

gm (9’ (ps w)
86(6) 4(9)
G

H

hi(6)

{ Aux Jx

H,(2)
H,(s)

chapter 4

~ (frequency-independent) element (voltage) pattern shared by all the

array elements

element (voltage) pattern for the m’th array element

separable element pattern — see appendix C.3

array gain factor defined by (4.2.8) in chapter 4

hermitian square root of R, — see chapter 5, sub-section 5.52, and also
(E.13)in appendix E.1

the i’th angular Fourier coefficient of an element pattern — see (22.4) in
chapter 2

the vector [h--- h.y ho hy --- hj]” —see (C3.5) in appendix C.3

(inverse) DFT of { 1/D,(e/27/N) },, — see Fig. 3.6.5 in chapter 3
complex weights in an FIR mode-alignment filter — see (3.2.4) in
chapter 3

transfer function of IIR mode-alignment filter — see (3.6.20) in chapter 3
transfer function of an analogue deconvolution filter for phase mode
coefficients — see chapter 3, section 3.6

index referring to the i’th angular Fourier coefficient of an element
pattern — see (2.2.4),

index in the range 0 <i < M-1 referring to the i’th eigenvalue (in
decreasing order) or corresponding eigenvector of the covariance matrix
the order of the highest non-vanishing term in the angular Fourier-series
representation (22.4) for the element-patterns

identity matrix

first column of I

modified Bessel function of the first kind of order v and argument x
integer part of the real number x

square root of -1

Fisher information matrix — see chapter 5, sub-section 5.2.1
CRLB matrices for the deterministic and stochastic signal model — see

~ chapter 5, sub-sections 5.2.1 and 5.2.6

k’k"’th element of J — see chapter 5, sub-section 5.2.1
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Jv(x)

:}v(t)
Jq

Lo, €Hr

In(-)

MI

Mll

max( - )
min( - )

Bessel function of the first kind of order v and argument x

(inverse) Fourier transform of Jy(@R/c)— see (3.6.9) in chapter 3
(2A+1)x(2I+1) matrix of coefficients of the g'th terms in the series

expressions for a set of phase modes {Pyu(6, ¢, co)}ﬁ=_ 2—see (C3.7) in
appendix C

function defined by (35.2) in chapter 3 as: ky = Int(Ixl+1/2)

index in the range 0 <k <K-1 referring to the k’th far-field source in a
multiple-source environment — see chapter 5

number of far-field signal sources in a multiple-source environment —
see chapter 5

rank of Rg: K’=K -Ky - see chapter 5, sub-section 5.2.6-d

rank deficiency of Rg — see chapter 5, sub-section 5.4.2

effective rank — see chapter 5, sub-section 5.2.7

coefficient of the g’th term in the series expression for the radiation
beam of a co-phased uniformly excited array — see (2.2.14) in chapter 2
MxM diagonal co-phase weighting matrix — see chapter 4, section 4.5
index in the range 0</<L-1 referring to the £'th angular sample of an
array pattern — see (4.5.1) in chapter 4,

(frequency-) index of the Fourier series coefficients in the range
1o < £ < £yp—see chapter 5, sub-section 5.2.2

lower and upper (frequency-) index defining the passband for the Fourier
series coefficients — see chapter 5, sub-section 5.2.2

Number of points at which an array pattern is sampled — see chapter 4,
section 4.5

natural logarithm

index in the range 0 < m < M-1 referring to the m’th array element
number of array elements

number of processed phase modes: M"=1+2A — see chapter 5, sub-
section 5.3.2,

twice the number of sub-array sensors in ESPRIT — see chapter 5, sub-
section 5.2.5

number of phase-modes in a spatial-smoothing scheme subset — see
chapter 5, sub-section 5.4.2,

number of sub-array sensors in ESPRIT — see chapter 5, sub-
section 5.2.5

a number equal to the largest of a (parenthesised) set of real numbers

a number equal to the smallest of a (parenthesised) set of real numbers
time index in the range 0 < n < N-1
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No
N(p)

N(w, 6, 9)
Nap ™)

{N RE, IM}
n

p

p@)

Pm(e, (0, t)

Pm(6, 0, 0)

P8, 0,0

P(6, ¢, )

Prir(@)
P(w)

~

P
P.(w)

P..(®)
Ps(w)

P(9)

P ()

21, ¢)

order of FIR block in IIR mode alignment filter — see chapter 3,
section 3.6,

number of combined modes in the synthesis of sharp nulls — see
chapter 3, section 3.4 and appendix C.2

number of temporal snapshots — see chapter 5, sub-section 5.2.2

order of FIR mode alignment filter — see chapter 3, sections 3.2, 3.6
sharp pattern null — see (3.4.3) and (C.2.1) in chapter 3 and in
appendix C.2, respectively

spatial power density of ambient noise — see chapter 5, sub-section 5.3.2
pseudo-random data set as described in chapter 5, sub-section 5.5.2
pseudo-random data vectors as described in chapter 5, sub-section 5.5.2
coherence coefficient — see chapter 5, sub-section 5.5.2

a pulse in the time domain — see (2.3.2) and (B.1.1) in chapter 2 and
appendix B.1, respectively

time-domain signal received by the m’th array element — see (B.1.2) in
appendix B.1

frequency-domain signal received by the m’th array element — see (B.1.6)
in appendix B.1

Summed time-domain response of full array — see (23.6) and (B.1.4) in
chapter 2 and appendix B.1, respectively

Summed frequency-domain response of full array — see (2.3.4) in
chapter 2

k’k"’th element of P ¢(w) — see definition (E.5.2) in appendix E.5
cross-spectral density matrix for the array outputs — see chapter 5, sub-
section 5.2.2

estimated cross-spectral density matrix — see (5.2.38)in chapter 5
cross-spectral density matrix for the sensor noises — see chapter 5, sub-
section 5.2.2

cross-spectral density matrix of phase-mode noises contributed by the
ambient noise-field — see chapter 5, sub-section 5.3.2

cross-spectral density matrix for the source signals — see chapter 5, sub-
section 5.2.2

dynamic power pattern of a conventional beamformer, or spectral power
of a general scalar-search superresolution estimator — see chapter 5, sub-
sections 5.2.3 and 5.2.4

spectral pattern for the Bartlett estimator — see chapter 5, sub-
section 5.2.3

residual spatial spectral pattern of IMP estimator — see chapter 5, sub-
section 5.2.6
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re()
R = Exx*

index in the range -O<qg<Q referring to the ¢'th term in the series
expression for a phase mode pattern — see (2.4.10), (C.3.8) in chapter 2
and in appendix C, respectively

maximum order of distortion terms assumed in the series expression for
a phase mode

diagonal matrix defined by (53.3) in chapter 5

diagonal matrix defined by (5.4.11) in chapter 5

circular array radius

‘radius’ defined via (22.6) in chapter 2

range resolution — see appendix B.1

an ensemble of random fractional radial displacement errors — see
chapter 4, section 4.4

k’k”’th element of Rg(7) — see definition (ES5.2) in appendix E.5

spatial covariance matrix of X(#) — see chapter 5, sub-section 5.2.2
estimated spatial covariance matrix — see expression (5.2.37) in chapter 5
mode-space covariance matrix — see chapter 5, sub-section 5.3.2

V’th spatial-smoothing sub-matrix of the mode-space covariance matrix
— see chapter 5, sub-section 5.4.2 '

spatially-smoothed mode-space covariance matrix — see chapter 5, sub-
section 5.4.2,

covariance matrix for the combined ESPRIT array — see (5.2.60) in
chapter 5

sub-matrices of R used in ESPRIT - see (5.2.60) in chapter 5

sub-matrices of R used in ESPRIT — see (5.2.60) in chapter 5

covariance matrix of sensor noises: R, = Ex,X,"” — see chapter 5, sub-
section 5.2.2

mode-space noise covariance matrix — see chapter 5, sub-section 5.3.2
noise covariance matrix for the combined ESPRIT array — see (5.2.60) in
chapter 5

sub-matrices of R, used in ESPRIT — see (52.60) in chapter 5
sub-matrices of R, used in ESPRIT - see (52.60) in chapter 5

covariance matrix of source signals: Rs = £ss" — see chapter 5, sub-
section 5.2.2

signal-only covariance matrix: R, = ARsA” — see chapter 5, sub-
section 5.2.2

sub-matrices of [R - 62R,] - see (52.61), (52.62) in chapter 5

signal covariance matrix modified by (mode-space) spatial smoothing
see chapter 5, sub-section 5.4.2
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rank|[ - ]
S
S
Sk(®)

s(7)

S(wy; t

RE, IM
{Sk,,([) }

sgn(-)
tL" td

Im

In
At

(9)

Tn(x)

rank (number of linearly-independent rows or columns) of a matrix
sampling window function — see (3.6.6) in chapter 3

Fourier transform of S (£2) — see chapter 3, section 3.6

signal radiated by the k’th far-field source in a multi-source
environment — see chapter 5, sub-section 5.2.2

vector of signals radiated by the K far-field sources — see chapter 5,
sub-section 5.2.2

£th Fourier series coefficient of 8(f) over the n’th temporal sub-
interval — see chapter 5, sub-section 5.2.2

pseudo-random data set as described in chapter 5, sub-section 5.5.2

sign function — equals to 1 (-1) for a positive (negative) argument.

time variable

time delays referred to in chapter 2, section 2.3

compensated delay to m’th array element — see (2.3.3) in chapter 2
discrete time variable — see chapter 5, sub-section 5.2.2

temporal sampling interval, equals to At=2n/w; - see chapter 3,
section 3.6

pulse length — see chapter 2, section 2.3,

sampling time — see chapter 5, sub-section 5.2.2

target pattern for sharp null — see (3.44) and (C.2.2) in chapter 3 and in
appendix C.2, respectively

non-singular transformation matrix used in the development of (LS and
TLS-) ESPRIT - see chapter 5, sub-section 5.2.5

» Chebyshev polynomial of the first kind of order n, defined as:

Tn(x) = cos(n cos1x)

a post-DFT correction vector of weights {u,}, — see chapter 4,
section 4.6,

observed sample vector — see chapter 5, sub-sections 5.2.1, 5.2.2

random observation vector — see chapter 5, sub-sections 5.2.1

vector of the (£'th) Fourier series coefficient of x(7) over all the N
temporal sub-intervals — see chapter 5, sub-section 5.2.2

vector of the (£th) Fourier series coefficient of X(¢) over all the N
temporal sub-intervals — see chapter 5, sub-section 5.2.2

eigenvector matrix of R, — see chapter 5, sub-section 5.5.2,

eigenvector matrix of a ‘pre-whitened’ hermitian matrix — see
appendix E.1,

eigenvector matrix of Rg — see appendix E.4
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var(-)
{wn}

w
Im(tn)

x(tn)

Xm(2)

x(©)

X m(0¢; 1)
X (wyz; tn)
X(wy; 1)

X ()

a correction vector of array channel weights {v,,}, — see chapter 4,
sections 4.5, 4.6

eigenvector corresponding to the i’th eigenvalue (in decreasing order)
of R — see chapter §,sub-section 5.2.4

eigenvector corresponding to the i’th eigenvalue (in decreasing order)
of R — see chapter 5, sub-section 5.2.5

eigenvector matrix comprising M eigenvectors of R — see (5.2.54) in
chapter 5 '

eigenvector matrix for the combined ESPRIT array — see chapter 5, sub-
section 5.2.5

matrix comprising K orthonormal eigenvectors of R corresponding to
its largest eigenvalues — see chapter 5, sub-section 5.2.4

sub-matrix comprising the first K columns of R,V — see chapter 5, sub-
section 5.2.5

matrix comprising (M-K) orthonormal eigenvectors of R corresponding
to its smallest eigenvalues — see chapter 5, sub-section 5.2.4

variance of a random variable

complex weights for the synthesis of sharp nulls — see (3.45) and (C.2.3)
in chapter 3 and in appendix C.2, respectively

weight vector of a beamformer or of a minimum-variance estimator —
see chapter 5, sub-sections 5.2.3 and 5.2.4

LxL real diagonal weighting matrix — see (4.5.7) in chapter 4

observed sampled (temporal) value of the signal at the m’th array sensor
at time ¢, — see chapter 5, sub-section 5.2.2

vector of observed sampled (temporal) values of the signal at the array
sensors at time ¢, — see chapter 5, sub-section 5.2.2

random variable of the received temporal data at the m’th array sensor —
see chapter 5, sub-section 5.2.2

random vector of the received temporal data at the array sensors — see
chapter 5, sub-section 5.2.2

£th Fourier series coefficient of x,,(f) over the n’th temporal sub-
interval — see chapter 5, sub-section 5.2.2

Z'th Fourier series coefficient of x(#) over the n’th temporal sub-
interval — see chapter 5, sub-section 5.2.2

£'th Fourier series coefficient of X(z) over the n’th temporal sub-
interval — see chapter 5, sub-section 5.2.2

random noise signal at the m’th array sensor — see chapter 5, sub-
section 5.2.2



A.2 List of symbols atflllil 196 Ml

X2
X‘(wl > tn)

y@
| )

y &v(t)

Z

(04

{ oy}
aﬂ(w’ 0’ 90)
a

Bu(®,6, 9)
B, 1, B2

{ ﬁm’ ﬁim }
B

{m}

&(n)

{én}m
{&ns Eins)

¢

Cklkll

vector of random noise signals at the array sensors — see chapter 5, sub-
section 5.2.2

£'th Fourier series coefficient of X,(f) over the n’th temporal sub-
interval — see chapter 5, sub-section 6.2.2 |
mode-space data vector — see (53.1) in chapter 5,

v’th spatial-smoothing subset of the mode-space data vector — see
chapter 5, sub-section 5.4.2

v’th spatial-smoothing subset of the mode-space noise vector — see
chapter 5, sub-section 5.4.2

a complex number defined by (5.2.39) or by (5.3.15) in chapter 5 for
equally-spaced linear arrays and circular arrays respectively

matrix defined in (E.4.6) in appendix E.4

relative signal phase — see appendix C.1

set of mode-space weights — see chapter 3, sections 3.2, 3.5

function defined by (33.5) in chapter 3

mode-space weight vector — see (4.6.14) in chapter 4

first row of steering matrix — see (52.78) in chapter 5

an ensemble of random angular displacement errors — see chapter 4,
section 4.4

function defined by (33.6) in chapter 3

null-steering control phases — see chapter 3, section 3.4
sectorally-controlled null-steering phases — see chapter 3, section 3.6
vector obtained from b by removing its first element — see chapter 5,
sub-section 5.2.4

set of post-DFT minimisation parameters — see (4.6.2), (4.6.3) in
chapter 4

k’th row of matrix I" - see definition (E4.8) in appendix E.4
matrix defined in chapter 4, section 4.5 as: I" = [G"G]1G",

~ sub-matrix of G — see definition (E4.8) in appendix E.4

ESPRIT sub-array displacement vector — see chapter 5, sub-section 5.2.5
ESPRIT sub-array displacement: 4 =141 ~ see chapter 5, sub-
section 5.2.5

1 n=0
Kronecker delta function defined as: 5(n) = s
0 n+0

an ensemble of random phase errors — see chapter 4, section 4.3,
pseudo-random (phase) data as described in chapter 5, sub-section 5.5.2
a stabilising parameter in the frequency-sampling implementation of a
digital filter — see (3.6.20) in chapter 3

k’k”’th element of UA as defined in appendix E.4
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Anr

-A, A

angle relative to the vertical axis in a spherical coordinate system
0-coordinate of desired beam pointing direction — see (2.2.3) in chapter 2
‘angle’ defined via (22.7) and (22.8) in chapter 2

defines the elevation range of the array - see appendix C.3

sidelobe level in dB — see (45.7) in chapter 4

constant defined in chapter 3, section 3.6: equals to the inverse of twice
the inter-element spacing in wavelengths

constants defined by (3.6./4) in chapter 3

an ensemble of random fractional amplitude errors — see chapter 4,
section 4.3

constant vector used for the MVIR minimisation constraint — see
chapter 5, sub-section 5.2.4

wavelength — see (32.2) in chapter 3

wavelength at upper frequency @yy

i’th eigenvalue (in decreasing order) of R — see expression (52.47) in
chapter 5

lower and upper index of processed phase-modes

number of phase modes out of the set {-A to A} that are left out in the
synthesis of a sectoral phase mode — see chapter 3, section 3.5
eigenvalue matrix for a general hermitian matrix

index in the range -A<u<A referring to the u’th phase-mode. The
notation in this thesis is that a positive i corresponds to a negative phase
slope [change of electrical phase with ¢]

FM modulating coefficient — see (B.1.1) in appendix B.1,

a complex constant used in (E5.]) in appendix E.5

function defined by (44.4) in chapter 4

TAM state-space vector — see (52.78) in chapter 5

LxL diagonal phasing matrix defined by (4.6.11) in chapter 4

4 tan'11 = 3.14159...

waveform envelope of a pulse — see (232) and (B.1.1) in chapter 2 and
appendix B.1, respectively

Fourier transform of I1(?) as defined by (232) or (B.1.1)

transformation matrix in an MVPR algorithm — see chapter 5, sub-
section 5.2.4,

projection matrix in IMP algorithm — see chapter 5, sub-section 5.2.6

a positive real constant parameter in the exponential description of the
element pattern — see (2.4.3) in chapter 2
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0-2
0%, 0%

o7, 0%

THI

Tm(Pe)

v}, vf

o
g

2] ~

e S 9 618

Qﬂ(ea ¢’ w)

Dy
D,

~H ~
2
, 1D,

S

R R &

N

m

combined error variance as defined by (4.2.5) or (44.7) in chapter 4,
signal-to-noise ratio as defined in chapter 5, sub-section 5.5.2

variances of random variables {¢,} and {x,} — see chapter4,
section 4.3

variances of random variables {r,} and {y,,} — see chapter4,
section 4.4

noise power at the array sensors — see chapter 5, sub-section 5.2.2

- noise power at the mode-space ‘elements’ — see chapter 5, sub-

section 5.4.2
i’th eigenvalue (in decreasing order) of R, — see expression (5.2.47) in

chapter 5

co-phase delay for the m’th circular array element — see (23.1) in
chapter 2

maximum effective extent of 3v(t)*§ (® in the time domain — see
chapter 3, section 3.6

‘sampling time’, defined by: 7; =27/A®@ - see chapter 3, section 3.6
(referenced) propagation delay from the k’th source direction to the
m’th array sensor — see chapter 5, sub-section 5.2.2

respective first row of V, and V,, — see chapter 5, sub-section 5.2.4
matrices V, and V,_, with their respective first row removed — see

chapter 5, sub-section 5.2.4

azimuth angle variable in a spherical coordinate system

¢-coordinate of desired beam pointing direction — see (2.2.3) in chapter 2
K-dimensional vector variable of azimuth angles

k’th DOA parameter — see chapter 5, sub-section 5.2.1

estimate of the k’th DOA parameter — see chapter 5, sub-section 5.2.1
vector of K DOA parameters — see chapter 5, sub-section 5.2.1
estimate of the vector of DOA parameters — see chapter 5, sub-
section 5.2.1

radiation pattern of phase mode number y

Lx1 pattern vector of phase mode number u — see (4.5.10) in chapter 4

Lx1 pattern vector of y’th phase mode after pre-DFT correction — see (4.5.15),

(465) in chapter 4

frequency and elevation averaged vectors defined by (4.7.9), (4.7.10),
elevation-averaged vectors defined by (4.7.13), (4,7,14) in chapter 4

matrix of vectors { &s,t] — see (4.6.13) in chapter 4

. scalar Lagrange multiplier — see (5.2.26) in chapter 5

vector Lagrange multiplier — see (5231) in chapter 5
function defined by (43.5) in chapter 4
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{(¥n}m
Vi

B
'fl/,t+1/2

Fu(o)

an ensemble of random rotation errors — see chapter 4, section 4.4

kk’th element of ¥ — see (5.2.59) in chapter 5

a sin(¢/2)-type pattern null formed by the phased subtraction of adjacent
phase modes @, and Py,

target pattern for the y’th phase mode: ‘I’#(tp) = eJH® — see chapter 4,
section 4.5

Lx1 ideal pattern vector of 1’th phase mode — see (45.11) in chapter 4
matrix of vectors { ¥} —see (4.6.10) in chapter 4,

a diagonal phasing matrix defined by (5.2.59) in chapter 5,

a diagonal subset phasing matrix defined by (5.4.2) in chapter 5

defined in appendix C.3 as 2= (@F/c)sin

angular (temporal) frequency

centre frequency

discrete angular frequency defined as (27#/T)¢ — see chapter 5, sub-
section 5.2.2

sampling (angular) frequency — see chapter 3, section 3.6

frequency sampling period for the digital reconstruction of a phase mode
coefficient — see chapter 3, section 3.6
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B. APPENDICES FOR CHAPTER 2

B.1 CIRCULAR ARRAY RESPONSE TO A LINEAR FM PULSE

Let us consider the following linear FM waveform with envelope Iz, propagating
towards the circular array of Fig. 2.2.1:

p O =Ieilot+ED] | 11<T2 .-+ (B.11)

where (wp+&r) is the instantaneous frequency and T is the pulse length. With 7. and
{tn} defined as in section 2.3, the frequency-domain signal received at the m'th array
element is given by:

-]

Pm(6, @, @) = €7 Hteting, (6, ¢, w>J dr II(¢) & [0+ g0t ... (B12)

-0

When all the received signals are eventually summed and passed through an
equalising network whose frequency response is given by:

H (o) = ei(o-@)*/2§ ...(B.13)
we obtain:

P(6,9,0)=

EI—I do F(0, ¢, w)ei ©t-t)ei(o-@)2§ J dr IIr) eilant’ +&1712] g-joor’
T

-0

i (29’ ‘p)I dow ej Ot -1-1d) gj(0- x)2& J dr IIz) eiloot +&t°R2) gjox' ... (B ] 4)
P2

-00 -00
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provided that the steady-state array pattern F(0, ¢, w+ay) is given by (23.7) over the
full bandwidth of the signal. For a rectangular envelope I1(¢), the bandwidth of p(?) is
approximately given by [(ET%)+4x/)/T about the central frequency ayp, where the

parenthesised term (£T2) is commonly referred to as the time-bandwidth product.
Changing the order of integration leads after some manipulations to:

. & A~
P(8, 0,0 = (5/27[)1/2 e/[4E+ab(t-:,-ta)-§-(t-rrta)2] F(6, ) H[-é(t- te-12)] ..-(B15)

which is a (negative-slope) linear FM pulse that follows the steady-state radiation
pattern of the array. This output pulse is typically much narrower than T, its time
length being approximately given by 47T/(ET?2).

If F(6, ¢, w) is not frequency-independent over the full bandwidth of the signal, or
equivalently, when the uncompensated delay across the array is not much smaller
than 47T/ (§T2) (which is also the time length of the pulsed contribution from each of
the array elements), then at angle (0, ¢) the steady-state array pattern does not apply.
Evaluating the separate time-domain contributions of the signal received by the
various array elements, one obtains for the m'th array channel:

©0

pm(e, ?, t) = %Z-I dwﬁm(e, ®, a))el (0-0)12§ ej ot

-0

= (E2m)P2 €] LA+ @o(e-to-tm)-8 ¢ 1Y 2] g, (B, @) TI(-E(t-te-1m)) --- (B.L6)

where frequency-independent element patterns have been assumed. The time-varying
array pattern is expressible (to within a constant) as:

P(6, 9,0 = JTliej [ (t-20)-E(¢-1PP2)

M-1
Y, Gn8m(6, Qe (@intEiiR] ¢ SC-0mII(-EG-1-1)) ... (B17)
m=0

In many practical cases the sum on the right hand side of (B.1.7) may be approximated
by temporally-displaced short CW pulse term. Let Ar denote the range resolution the
system is designed to achieve. It follows (for an active radar or sonar) that:

AnT/(ET?) = 24r/c ..-(B18)

which in turn leads to:
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& = 2Qmc/ArP/(ET?) ..« (B.19)

Now assuming that the (arcwise) inter-element spacing is smaller than half a
wavelength at the highest frequency of operation, it follows that:

Rlc <sMAy /4 rc equi-delay excitation
It < ---(B.1.10)
2R/c <MAyj/27c co-delayed excitation

where Ay is the wavelength at the highest frequency. Equation (B.1.9) together with
inequality (B.1.10) subsequently lead to:

%t,% < M2/2(ET2)(Ar/ Ay .-~ (B.111)
which for many practical cases is found to be negligibly small

M<32, (ArfAgn=10 , (ET2)=>1000 =
(&/2)t2 <0.00512 = (0.29°/360°R7 << 27

Next, we note that fY(a) effectively vanishes when lod 2 27/T. It follows that only the
time interval given by:

IE(t-to-tp)) < 270/T ..-(B.112)

is of consequence in the analysis. But when slightly rearranged and use is again made
of (B.1.8) — (B.1.11) the above inequality takes the form

\E(t- 1)ty < 27t T+ER <L [ 28M  M>2 1 .13
(ET?) (ArfAgD) (Ar/Ag?

Substituting practical values for M, (ET2) and (Ar/Ay;) we finally obtain:

M<32, (ArfAgn=210 , (£T2)=1000 =
Elt-2.t ,, <0.0303 = (1.74°/360°27 << 270

Taking the effect of the phase terms e7(§/2)#= and e¢(¢-#%= in (B.1.7) to be negligible,
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the array response may be approximated by a sum of time-shifted pulses all sharing
the same linear-FM modulation:

. £ oMl A
P(6,9,0)= Kll-ef[“*"' 121N g 0 (8, Q)eTWnIT-E(t-t,-t)] -+~ (B.LI3)
m=0

where constant terms have again been omitted. In other words, transient effects in the
array response are essentially representable by linear temporal displacements of
(compressed) pulsed contributions from the array elements. The actual displacement
(z,7-1,) that can occur between pulses contributed by any two elements m” and m”,

relative to the compressed pulse length 4xT/(ET?) , is bounded by virtue of (B.1.8)
and (B.1.10) (which also applies to lz,,,-1,,~]):

-tmrl _ MAgg/2mc _ (M/47)
AnT/(ET?) 2Ar/c Ar/Ayr

---(B.1.13)

and for the previously assumed case of: M <32 , Ar/Ayr2 10, the maximum pulse-
to-pulse displacement does not exceed about one quarter of the compressed pulse
width.
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B.2 DERIVATION OF (24.11)

We start from expression (2.4.4) for the far-field phase mode pattern:

_pho(0)™3 : s Boos (0-2m/M
@,.(0, q),a))_Tz eF@TM)pm ¢jl(0Rlc)+jin p)sin Bcos (9-2mm/M) ... (244)

m=0

and make use of the Bessel identity —

eI(@RIE)+jn plsin Ocos (g-27miM) = 3" ¥, [(28+jInp)sin 6] eV (-27mib)

V=-~00

to obtain:

s M-1
Bu(0, 0.0) = pho(9) 3, J*IV[(@B+]lnp)sin6led voLL Y, eCuw-vIm]

Ve=-00 m=0

.-+ (B2.1)

Substitution of

M-1 °°
Xliz eiQTM@-Im =Y §(u-v+gM)

in (B.2.1) leads to:

D6, 0, @) = pho(6) Y, j** M ysqrr (LB +jInp)sinledw+ao ... (B22)
q=—°°

from which (2.4.11) immediately follows.
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C. APPENDICES FOR CHAPTER 3

C.1 MAXIMUM DOA ERROR IN A MULTIMODAL DF DUE
TO THE PRESENCE OF A SECOND SOURCE

Consider a circular multimodal array system receiving a strong signal from a source
in direction ¢, while a second signal from a weaker source at the same frequency
reaches the array at amplitude A and phase « relative to the first signal. The angular
error in estimating the direction of arrival of the strong signal using (3.3.2) is given by:

E = p-arg(e/9+A e/ %) +arg(1+Ae/%)

sin¢+Asina 1r Asina
————— ]+tan [1+Acosa] - (CllI)

= ¢-tan’l[

cos¢p+Acoso

wlhere we have assumed, without loss of generality, that the second source is

angularly located at ¢ = 0. To find the values of ¢ and @ which maximise £ we
differentiate it with respect to ¢ and o and equate to zero:

OF _pp.Atcos@®) . Avcosa .o .1y
o 1+A2+2Acos(¢-a) 1+A2+2Acosa
9F _,_ Atcos@@-o) _, .- (C13)
09  1+A242Acos(¢- )
which lead to:
cosa = cos(¢-o) =-A ..-(C.14)
or
a=m-coslA -+ (C.15)
6=20 .+ (C16)
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(The solution ¢ = 0 leads to a minimum rather than a maximum error).
Inserting (C.14) - (C.1.6) in (C.1.1) we obtain:

E - 2a-tan‘1[ sin2¢-cos sino ]+tan‘1[ -cos sinQ ]
cos20a-cos2 o 1-cos2a

-cos(m- )

cos(m-) ]
-sin(7- &)

-1
el

=2a-tan’l[

=20-(a+7n2)+(a-72) =20-n = 2[12E - (m- )]

=2sinA -+ (C.17)

The ‘maximum-error’ geometry which yields (C.1.7) is illustrated in the phasor
diagram of Fig. C.1.1 and results for several values of A are tabulated in Table 3.3.1
in chapter 3.

¢\,»T’90°-a ;LA\a

A E=2(90°- q)

Fig.C.1.] Maximum error in estimated angle of arrival
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C.2 SYNTHESIS OF SECTORALLY-CONTROLLED SHARP
NULLS

A multibeam set of directional beams with sectorally-controlled nulls that are sharper
than sin[(¢- B"-2xm/M)/2] may be synthesised (at the expense of increased
complexity and wider beams or fewer sets of nulls) by linearly combining N>2
sectoral phase modes corresponding to the same angular sector and having adjacent
(effective) mode numbers — see Fig. C.2.1 for the case of N = 3.

0 1 Array Elements M2 M-1
E E i = Y Y

Digitising Network f] Ij

0 1 Digital DFT M-2 M-l
A A+l e 0 v AL A
] | [ 1 (D) || 1

Post-DFT filtering and alignment

A\/éf\

A 0 A2l[Aar 0 Al A2 0 A

Jd [

Weighting unit Weighting unit Weighting unit
LIy o o s o] oo o] | I IO NN M | Lo s o o oo« J 11
Inverse DFT Inverse DFT Inverse DFT
0 0 M-1 0 e M-1 0 =+ M-1

Qﬂo ﬁM-l QZBO 2ﬁM-1
wo s e wo wi s w1 w2 ) w2

-~

Fig.C.2.1 Sharp post-nulling with 3 sets of directional phase modes
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The superscripts in ﬁo, [31, . ﬁm, ceny ﬁM'l are used for consistency with the
notation of section 3.5 (see Fig.3.5.3) and denote the directions {27xm/M} of the
corresponding beams in which the nulls are steered. The weighting and phasing
scheme follows the lines described by (3.4.3) - (34.6) for the combination of
omnidirectional phase modes. The m’th output pattern is accordingly given by:

N-1
Non(@) = Y, wanei"B L 1 (@)

n=0
m N.l m
= e -DE"RA (9-27im/M) Y, wpeiln-(N-1029-B"-27m/M)
n=0

0<m<M-1 ...(C21)

where A (¢) is given by (3.54) with Ay set equal to N-1. The set of weights {w,} is
evaluated, as outlined in section 3.4, by seeking a target pattern of the form:

T, (@) = A(Q-2m/M)ei -1 R g-i(p-B"-2nmIM2 | 0Sm<M-1  ...(C22)

which is characterised by a single null at direction (,Bm+27rm/M), and using Fourier
analysis to solve:

N-1
Y wneiln-0-D2)9-B7-2amIM) = g-i(9-F"-22mIM2 | 0<m<M-1 .- (C23)
n=0

The result for odd N is as given by (34.6):

_sin[(n-N/2)n] _ (-1)»N-D2

w7
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C.3 OPTIMAL ELEMENT PATTERN

Consider a circular array of M radially-symmetric identical elements in which a set

{Du(6, 0, a))}:;_A of 2A+1 phase modes is excited, where A<M/2. Assume
frequency-independent and angularly separable element patterns:

2(6,0)=g9(0) D, hieii? e (C31)

[=-00

so that each phase mode pattern may be expressed by (2.4.10), with each phase mode
coefficients being given by:

I
Crg(@,6) = 86(0) D, j***MhiJysi 1 qu(@RIc)sin 6] ---(C32)

=1

In our quest for the optimal element pattern, a set {A; }{=_, of angular Fourier
coefficients is sought that, over a given frequency band awpp<w<wpy; and elevation
range 71/2- ©< < n/2+ O, would ideally:

i  minimise the amplitude and phase variations between the set { Cyo(, 6)} 2; A 0f
zero-order phase mode coefficients

ii render the frequency response of the above coefficients linear in phase and
constant in amplitude

iii minimise the amplitudes of higher order phase mode coefficients

{{Cug(@, )} 4 g0

The above conditions have been partially fulfilled by both types of element patterns
discussed at the beginning of section 3.6. The first azimuth pattern of
8o(@) = 1+cos@, has been found to be asymptotically optimal in minimising
amplitude and in phase variations between zero-order phase mode coefficients, and
linearising the frequency responses of their arguments. Higher order phase mode
coefficients had not been specifically minimised, but with g,(¢) being represented by
only three non-vanishing Fourier coefficients (hg, k.1, k1), each higher order
coefficient comprises three adjacent Bessel functions, that die down by virtue of their
asymptotic behaviour for large orders.! The second azimuthally impulsive element
pattern, whose Fourier coefficients had been uniformly weighted, has gone even

1 When the order and argument of Jusw+qm[(@FR/c)sin 6] are such that: lu+i+gM) >> (@ R/c)sin 6,
then: Jusi+gul(@RIC)sin 6] ~ Ra(u+i+gM)) P{lewR2c(u+i+qM))sin 6} + M
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further in achieving amplitude equalisation of each phase mode, but has also brought
the total contributions from higher order modes to an impulsive level. We are
evidently faced with a trade-off between full equalisation which requires a large
number 2/+1 of non-vanishing Fourier coefficients, and low distortion which is best
served by reducing /. In that respect, the (1+cos@)-type element pattern seems to be
closest to optimal, especially as the reasonably attractive asymptotic result of (3.6.1) is
also obtained (to within a constant) by higher-order element patterns of the form
2o(9) = 1+cos p+k(cos2p+cos3¢).

Other solutions to the elusive ideal-pattern problem involve linear optimisation.
Ignoring the term gy(0) in (C.3.2), the set of equations relating { 4; }f=_, to the ¢’th

coefficient of the set of phase modes { D,(6, ¢, w)}£=_ 4 may be put into the following

matrix form:
Jo(h =Cy($D) .-+ (C33)

where:
Q= (wR/c)sind .o (C34)
h=[hg--hyihyhy---h)" -++(C35)

CoD=[Copg(@.0) .-+, Cogl@,0), -+, Cp(@,0)]  ---(C36)

and J,(£2) is a (2A+1)x(2I+1) matrix whose pi’th element is given by:
[ (i = 7+ M 114 g1 (€D) -+ (C37)
Assuming I < A, we may define the following cost function to be minimised with

respect to h:

Qa  Q
£=-L j dQY, I (Dh - by(Q)P -+ (C38)
AQ)o, 0

where,

£ 0 = (o Rlc)sin(n/2- O)
---(C39)

Qur = oy ARle
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AQ = Q-0 ---(C3.10)

Q 20, the vectors {b4(2)} g0 are all zero and by (£2) is the target frequency response
vector of the zero-order phase mode coefficients, which, in view of (3.6.1), may be set
equal to:

bo(@Q)=[11-..1"eiQ"”
or even
bo(QD=[11--.1]"ei?

The cost function £ may be minimised by differentiating it with respect to the real
and imaginary parts of each 4; and equating to zero. Being a real-valued function, £
may be equivalently minimised by equating to zero its complex gradient with respect
to k", where the notion of complex gradient has been defined and discussed in
[Bra 83]. The result is:

S

Sur Qo
h= -1—[ dQy, JHI (211 [—LJ dQJo(Q2)bo(Q)] ---(C3.11)

where each vector or matrix integration is threaded over to the separate terms. Note
that the value of Q affects the relative emphasis given in the minimisation procedure
to higher order terms. For even more control, the sum on the right hand side of (C.3.8)
may be changed into a weighted sum

Qo
Y, wall(h - b ()R

=0

with a user-defined weighting sequence {w,}, leading to:

Qur 0 Qe
h= [—LI AR, (waiwo)JHUDI (D1 [—LI dQJo()bo ()]
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C.4 SAMPLING OF PHASE MODE COEFFICIENTS
Denoting:
Cun = S(@,A0)Cpo (W, 7/2) , 0<n<N-1 ---(C4.1)

the frequency samples {D#(ef“M‘)}I,Y;}) used in (3.6.18) are respectively given for odd
and even N, by:2

Dy (i) = eFANIN-DnS (03 AL) Cpao (D, 7/2)
+efEANN-DW-DS (-0 A1) Cppo (-ON-n, 7/2)

= eJ@MN-DR(Cyp+ Cuvmy) » 0<n<N-1 .- (C42)
and

Dy(ef Aty = JHNN-D(+172) § (00, At) C 0 (@, 7/2)
+ef@N)N-D)N-n-112) § (-9, A2)Cpuo (- ON-n-1, 0/2)
= eJEANN-DBAD) (G- Guvn1)) » 0<nsN-1 ... (C43)
and under the assumption that (see Fig. 3.6./ in chapter 3):
S =0, 12>2%-wyAt
there will be no aliasing within the operating frequency band of the array.3
The actual frequency samples for each of the the phase mode coefficients
{Cuo(wn, m/2) , -A<SU<A} are obtainable from calibration measurements of the
element patterns — this is treated under the heading of ‘post-DFT correction’ in

sections 4.6 and 4.7 of chapter 4. The application of one of the least-squares mode-
alignment schemes described in chapter 4, leads to:

2 Here S(f2) is assumed real, and note also that: Cpo(-@, 7/2) = Cuo(@, 7/2)

3 The sampling window function should not fall to zero at lwl< @s2 so as not to introduce zeros on
the unit circle. This may give rise to some frequency-domain aliasing of Cuo(®, 7/2), especially
when a gradual rather than an ideal rectangular window is implemented. However, the sampling
frequency can always be so chosen that the affected interval is kept outside the band lw|< @hy.
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L1 M-1
Cun= 1S (@ A:)Z,O ef(zmlengo eFQTMUNG 4 (Op, Wf2) -+ (CA4)
= m=

where G4, (@, /2) is the measured complex pattern of the m ’th array element at
angle (6 = /2, ¢ =2 £/L) and angular frequency @, and L>M is an integer. Invoking
(24.10), we can rewrite (C44) as:

L1 o
Cun = ll_, S (@, AD)Y, @TUDBEY  Cp (@, 7/2) et+aD@TLI

£=0 g=-c0
= S(n A0 Y, CuikgOn» 7/2) .o+ (C45)
q=-”

where K is the smallest integer such that KM is an integer multiple of L. Assuming
contributions from higher order modes to decrease with order, it is evident from
(3.6.22) that the larger we make K, the more accurate is the approximation (C.4.4) for
the zero-order phase mode coefficient.

Note finally that if the available data cover only part of the frequency band
0 to (27/AD)- wyy, then in order to avoid zeros of Dy,(z) on the unit circle, the data may
be ‘analytically continued’ as follows:

G ¢m(OHIS O< 05~ ORy, 7T/2) =
G tm( @1, 7/2) €7@~ @) (RIc)[1 -cos mlL-27m/M)] e+ (C46)

Gm(0<w<aro,n/2) =
G tm(@r0, /2) eJ(®- o) Rlc) [1 -cos Qnl/L-27m/M)] ... (C47)
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D. APPENDICES FOR CHAPTER 4

D.1 DERIVATION OF EXPRESSION (4.6.4)

We start from expressions (4.62) for the cost function, which we differentiate with
respect to v * and { ; } 0 and equate to zero to obtain:

A A
[Y E.G'GEfQv =), E,G"¥,y, .-+ (D.LI)
u=-A u=-A
P.GELy =¥,y , p=-A-,-1, 1., A .- (D.12)

We proceed by inserting { %}, from (D.1.2) and from (4.63) into (D.1.1), which
yields:

A A
[ E.G"GE[lv =EoG"Po+[ Y, E,G"¥, W2 PiGELv

p=-A H=-A
u20

A
=G*P+L [} E,G"¥, ¥ GE[lv

..-(D.13)
p=-A
0
The terms in the above equation are finally rearranged leading to
A
[G*G+ Y, EuG"G-1 G*¥, ¥,G)E}lv = G"¥, .- (D.14)
M=-A
0

from which (4.6.4) immediately follows.
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D.2 DERIVATION OF EXPRESSION (4.7.2)

We start from expression (4.7.1) for the cost function, which we differentiate with
respect to v ¥ and { % } .0 and equate to zero to obtain:

A W nf2+ 6
Y E,L dcoLI d0G*(@,0)G (e, O)EHv =
A Gro 26 -6

p=-A

A Our 2+ 6

Z E“—l_f da)Lj d6G"(w, 0) Y.y -..(D2.1)
=t A0}y, 20)m e

Oy 2+ 6
ﬁJ-f dej d6G(w, O)ELy = 1,2y,
Aw o 20 n2-0

p=-A -, -1,1,--0, A ...(D22)

We proceed by inserting {%;}, from (D.2.2) and from (463) into (D2.I), which
yields:

A —_ _ A _ _
[Y E,GPGEiv =EoG"¥+[ Y, E,G"P, IW,I2¥,GE]v

p=-A u=-A
w0

- A - -
=GH P+l [ E,G"¥, P, GEv .- (D23)
p=-A
=20

where G, G* and GG are defined in (4.7.3) to (4.7.5). Finally, rearrangement of the
terms in (D.2.3) leads, after matrix inversion, to (4.7.2).
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E. APPENDICES FOR CHAPTER 5

E.1 SIGNAL AND NOISE SUBSPACES UNDER GENERALISED
EIGEN-DECOMPOSITION

The generalised eigen-structure of the matrix pair (Ryx, R,) may be represented by the
equation

RyV=R, VA ---(E.LI)
where the MxM matrices AandV=[VoV;...... V p.1] are the diagonal generalised

eigenvalue matrix and the generalised eigenvector matrix respectively. In (E.1.1) Ry is
the narrowband spatial covariance matrix modelled as:

Rx=ARgA"+ 02R, ---(E12)
where Rg is the KxK signal covariance matrix, R, is a known MxM non-singular
covariance matrix of the sensor noises and A is the MxK steering matrix; all three
matrices are assumed to be of full rank and K < M. Denoting the hermitian square
root of R, by:

R,=HH" ---(E13)
equation (E.1.1) may be recast into the following equivalent form:
RyU=UA .-+ (E14)
where the hermitian matrix Ry and the unitary matrix U are given by:

Ry = HRyH*=H!AR;A"H + 021 ---(E.L5)

U =H"V ---(E16)
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with I standing for the MxM identity matrix and H™" denoting the transpose conjugate

of HL. The (diagonal) elements of A and the columns of U are clearly the ordinary
eigenvalues of Ry and their associated eigenvectors, respectively. The operation

y=Hlx

that leads to the above transformation is commonly referred to as pre-whitening.
From (E.1.4) and (E.1.5) we have:

[H1ARGAPHU =U[A - 62]] ..-(E17)

and since rank(ARgA"”) =K while H and U are full rank matrices, it follows that
(M-K) eigenvalues of [H'1ARsA"H™] on the main diagonal of [A - 62I] must
vanish, or, in other words, the (M-K) smallest eigenvalues of Ry (or, equivalently,
generalised eigenvalues of (Ry, R,) ) must be equal to 02. Inserting (E.L.6) in (E.1.7)

(or alternatively, starting from (E.1.1) and (E.1.2)) we also have:
ARSA"V =R, V[A - 621] ---(E18)
Arranging eigenvalues in decreasing order of magnitude it immediately follows that:
ARAW;=0 , K<isM-1
which, when pre-multiplied by R&(A*A)1A* yields
A'V;=0 , K<i<M-1 ..-(E19)
The set of generalised eigenvectors { V,-}f’i}} associated with the smallest (M-K)

generalised eigenvalues of (Ry, R,) therefore spans the ‘noise sub-space’ of vectors
that are orthogonal to the columns of A. In addition, as the bottom (M-K) rows of

[A - 621] are zero, (E.1.8) leads to:
ARsA"[VoVy-:--e- Vi1l =R, [VoVye...ot ViallA, - 021 .- (E.110)

where A, comprises the top K rows of A and I is the KxK identity matrix. It is
evident from (E.1.10) that the column space of A is spanned by the columns of
R [VoVy:----- V k-1]. Consequently, the set of vectors {R,V,-}fi‘& spans the signal
sub-space corresponding to the steering matrix A.
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Note that the vectors sets {Vg, V1, -+, Vp.1} and {R, Vg, RV, +--
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’ RJVM-]. }

are not orthogonal. This means that although the noise and signal sub-spaces

corresponding to the steering matrix A are spanned by the sets {V,},_K and

{R,V;: }1—0 respcctwely, they are not spanned by the respective complementary vector
sets {R, V,} ,=K and {V,} . On the other hand, the signal and noise sub-spaces

corresponding to the pre-whltened steering matrix H'A are spanned by the

orthonormal vector sets {H*V;}X1 and {H"V; },_K respectivelyl.

The (narrowband) MUSIC spectral pattern

1
A", an)V,VEA(p, ax)

Pmusic(@) =

is obtained from the MVPR pattern for the pre-whitened array

Hp) = HAq, ax;)]"lfll }TI(HLA(p, an)]
by setting:
Il = o, H"V,)H"V,)"
where,

Ve=[VkVgs1------ Vmal

(E.1.11) is also obtainable from the MVPR pattern for the unprocessed array:

Pp)=— 1
A", an)IT R} TIA(p, ax)

when IT is set to:

II=0cR. V.V,

--(E.11])

--(E.1.I2)

1 [Roy89) mistakenly assumes {R.V:}¥# to spans the noise sub-space corresponding to A. This
does not affect the development of the ESPRIT algorithm which depends on the (correct) use of

{R.V,'}ﬁ'& as a vector set that spans the signal sub-space, but it does lead to an incorrect

expression for the spectral pattern of MUSIC.



fm 221 il Appendices for chapter 5

E.2 TOTAL-LEAST-SQUARES MINIMISATION OF (5.2.74)

Denoting: Fxy = [Fxyo Fxy,------ Fxy g ,], the minimisation of the Frobenius norm
in (5.2.74) is equivalent to the minimisation of:

K-1
min 2 F;.VkV;yVXYnyk
Fyo, Fxyss -+ » Frym g
... (E2])
1 kl - k”
F3y . Fxy,, = , O0<k,k"<K-1
xyk xyk 0 k’ik”

which may be performed with the aid of a set of K real Lagrange multipliers
ZO’ XI, ...... s XK-I:

5 Kl L
—— {2 Fiy, VayVayFay, + 2e(1 - Fiy Fxy )1} =0 , 0<k<K-1
OFxy, k=0

.. (E22)

In (E.2.2), denotes the complex gradient operator of differentiation with

oF xy,
respect to a complex vector as defined and explained in [BRA 83] and also in appendix
B of [HAY 91]. The result is:

Vi VaylFxy, =Fxy, e, O0Sks<K-1 ..-(E23)

which means that xo, X1,---, Xkx-1 and nyo, nyl, <o, Fxy k., must be eigenvalues
of the hermitian matrix [V;y \Y xy] and their corresponding eigenvectors, respectively.
Pre-multiplying (E.2.3) by Fxy, and invoking the constraint from (E.2.1) we obtain:

Fiy, ViV Fay, =2, 0K, K"<K-1 .-~ (E24)

which immediately leads to

K-1
IVay FaylB= 2 .- (E2.5)
k=0

From (E.2.5) it is clear that v xy Fxy kll% is minimised when the orthonormal columns
of Fyy are the eigenvectors corresponding to the K smallest eigenvalues of

[Viy Vayl.
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E.3 ELEMENT-SPACE COVARIANCE MATRIX FOR A
CIRCULAR ARRAY UNDER AN ISOTROPIC NOISE FIELD

Consider a circular array of M equally-spaced radially-symmetric sensors, arranged
on a ring of radius A on the (horizontal) xy-plane, and assume the sensors to be
horizontally omni-directional, i.e. be characterised by element patterns that are
independent of the azimuth angle ¢. Denote the spatial power density of the ambient
noise field by A(w, 6, @), and the cross-spectral density matrix of the ambient noise
field contribution at the M array sensors by P,, (). For a spatially-white noise-field
that is statistically independent with respect to direction we then have:

3
[Pus (@) ~~-—I d0g2(6, »)sin6
0

(1
I do N, 6, @) e (@R/c)[cos (p-27m'[M) - cos (9-270m" /M)]sin 6 .--(E31)

T

where [P, ]~ is the m’m” ’th element of P, and g4(6, w) is the common elevation

pattern of the sensors. But the last term on the right hand side of (E3.1) is given by:
el (@Rfc)[cos (¢-27on’/M) - cos (§-270m"[M)sin 6 —

> 3 VI @Bsing), @Bsing)eicamm m ViV e - (E32)

V'=_oo V":.oo

where J,, (x) is Bessel function of the first kind of order v and argument x. Inserting
(E.3.2) into (E.3.1) leads, for a horizontally isotropic noise field N = A(w, 6), to:

[Pt = 2 f B3 3 VI sin0y @B 50

V=00 Y=o
/(3
ej(zﬂM)(mrvr_m"v")gg(g, N[, 6)sinf ] d¢e.j(v'_w)¢
-
T
Zﬁ” ] dez Jz(wR sin@)e/CHM)m """)Vgg(O O)N(@, 8)sinf
0

V=-co

T
;ME f dGJo(sz sin[z(m’-m")/M] sin6)g3(0, DN(w, O)sing ---(E33)
0
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where use has been made of the Bessel identity:

Y, JAx)e” = Jo(2x sin(y/2)) .-+ (E34)

V=-c0

Let us now consider two extreme cases: i an impulsive noise field at some angle 6
ii isotropic noise-field and element pattern
In the first case, (E.3.3) simplifies to:

[P @t = Na(@)Jo(RLE sin[ m(m’-m"YM]sin6o)

.-.(E35)
Na(@)=Cr/M)N(®, 60) g 3(80, ®)sino
whereas in the isotropic case we may use the Bessel identity
V3
I d6Jo(x sinB)sin@ = 2sinx /x .--(E36)
b ‘

to obtain:
[P..(0)],pm=Na(®) sin [RwR/c)sin( (m’-m™)M)V/[RwR/c) sin(z (m’-m”)/M)]

Na(@)=(47/M) N(@) g 3(w) .-+ (E37)

Under an impulsive noise-field, it is clear from (E3.5) that for the pairwise cross-
spectral power density (and therefore also the narrowband covariance) to fall to zero,
(2wR/c)sin ((m’-m™)n/M) must be equal to one of the zeros of J,. But since the zeros
of J, are not uniformly spaced, there can be no frequency and array radius at which
the noise of all pairs of sensors becomes uncorrelated (or, in other words, spatially-
white). This point is illustrated in Table E.3.1 for an 8-sensor circular array under an
impulsive noise field at 6y = 7/2, where the different (arcwise) inter-element spacings
required to decorrelate the noise at different array elements are listed.

In the case of isotropic noise and element pattern, it follows from (E.3.7) that in
order to decorrelate the noise at the array sensors, we must have:

QwA/c)sin(z(n’-m"IM) = (m"-m")x ---(E38)
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Obviously, (E.3.8) cannot be simultaneously satisfied by all (m’-m”) and full spatial
whiteness of the noise cannot be achieved. Note though that the noise between
(isotropic) neighbouring sensors of a large circular array is nearly decorrelated if the
arcwise inter-element spacing is set to half a wavelength. This follows directly from
(E.3.8) when (m"-m”)/M << 1, and is also evident from Table E.3.2 which lists the
(arcwise) inter-element spacings required to decorrelate the noise at different isotropic
elements of an 8-sensor array under an isotropic noise field; for m’-m” =1 the
decorrelating inter-element spacing is close to half a wavelength.

ml-nf 1,47 12,16 3,45 +4

i 0.393 0.488 0.585 0.737

Table E.3.1:Inter-element spacing (in wavelengths) d/A at which [P,,(®)],m” =0
for an 8-element circular array under an impulsive noise field at zero

elevation (6 = 7/2)

nl-m” +1,£7 12,16 3,15 4

diA 0.513 0.555 0.638 0.785

Table E.3.2:Inter-element spacing (in wavelengths) d/A at which [P, ()], 'm” =0

for an 8-element circular array of isotropic sensors under an isotropic
noise field

In the case of an equally-spaced horizontal linear array, true spatial whiteness is
only achieved in an isotropic or hemispherically-isotropic noise-field when the
sensors are isotropic and spaced half a wavelength apart — see [BUR 91] for cross-
spectral noise densities under isotropic, semi-isotropic2, impulsive and surface
noise distributions.

2 The derivation presented in [Bur 91] for the cross-spectral power density in a linear array under

semi-isotropic noise-field appears to be erroneous. Using our nomenclature, the expression for
[PJmm under a semi-isotropic noise-field A/(@, 8)=[1(@)/27(1-cosbo)1[1+sgn (6-60)] is:
&
[Pu(@lmirr=—T2D_ | dpsin 76124 (r"-m")sin 6]
(1-cosbo) |, ¢
which only equals (260/m) n.(®@)sin [ﬂ%{ (m”-m")sin 60]/[%1 (m”-m’)sin 6y) as suggested in
[Buwr 91] when 6o=7/2 or 7.
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E4 RANK OF THE MODIFIED SIGNAL COVARIANCE
MATRIX

Consider the KxK covariance matrix Rg of the received signals, and let its rank be
given by (K-K). We may express Rg (conveniently normalised to (M’-M"+1), the
number of phase-mode subsets formed in the spatial smoothing scheme of section 5.4,

sub-section 5.4.2) in terms of its eigenvalue matrix A and the corresponding
(orthonormal) eigenvector matrix U:

—1 __ R.=UAU* .o (E4.])
(M'-M"+1)

Note that U is full-rank whereas the diagonal matrix A has rank (K-K) with K zero
eigenvalues on the main diagonal. Expression (545) for the modified signal
covariance matrix Rg may be rewritten as:

M-M"
Rs= Y wuau"=ppD" .- (E42)

v=0

where W is defined by (542), and

---(E43)

and A has the square roots of the eigenvalues of Rg on its main diagonal. Clearly,
rank Rg = rank D ---(E44)

and by rearranging the columns of D (which has no effect on the rank of the matrix),
we obtain:
rankD =rank(ZG) ---(E45)
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where:
7 =
o O -~ O o1 0 - O Sock-1) o .- 0
0 & : 0 ¢u : 0 Lk :
: ) : T | - 0
0 -~ 0¢%gp O - 0 Lgan 0 o 0 Gy
---(E4.6)
r
c=| T. .. (E47)
r
with {p¢~ denoting the k’k”’th element of UAY andT being given by:
F=[ryn------ )’1(-1]" .--(E438)
Ye=[1 eited2...... eiM-M¥T | 0<k<K-1 .--(E49)

The K 2x(M’-M"+1)K matrix G has a block Vandermonde structure and is therefore of

full rank K ? provided it has more columns than rows, or, in other words, as long as
M-M"2K ---(E4.10)

The K rows of Z are clearly linearly independent (none of the rows can have all its
elements equal to zero, or else the corresponding signal variance would also be zero),
so that rankZ = K. By the Sylvester’s law of nullity3 we therefore have:

< mi =
rankD < min(rankZ, rank G) = K - D=K
rankD > rankZ + rankG - K2 =K
The rank of D and therefore of the smoothed covariance matrix R is thus equal to K
subject to condition (E4.10).

3 Sylvester’s law of nullity [Mir 55], [W YL 75] states that if A is an LaxLap matrix of rank pa and B
is an L apxLp matrix of rank p, then:
Pa+ pB - Lap < 1ank(AB) < min (pa, pB)
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E.5 SINGULARITY OF SIGNAL CROSS-SPECTRAL DENSITY
MATRIX FOR FULLY CORRELATED SIGNALS

Consider the tempo-spatial covariance matrix Rg(7) = £S(1)s"(-7) and its Fourier
transform P (@) for the wideband signal vector

S = [So() $1(1) (@) -+ --- sk1()]"

where two of the signals, say So(f) and S (#), are coherent, so that for some time delay
1o and a complex constant &:

So(?) = & s1(-10) .. (E5.])
Denoting
T (D) = ESp0)Spr(t-1)
- , OSK, K <K-1 .- (E52)
Prp(@) = I dvr(T)edoF
we have:
( &1 Ern(rto) &ra(v) - érl(K-n(f-Io)\
5*r11(7+t0) r11(7) ra(n) - rgn(o
Rs(7)= §*r21(1'+to) r1() ro® - rag(D
_ é*r(x-l)l(fﬂo) ren(t)  rg120® - rayg-1)(0) }
..-(E53)
and
1&%p11() € pr1(@)ed®o & pra(w)ei®o... & pyk.1y(w)ed o
Epn(@ei®  py (o) pi2(@® - pin(®)
Ps(@)=| Epy(mei®  py(w p@ - Pakn(®)
\«f *p(K-l)l(w)ej“" pe(@  pEap(® - pE-1yK-1)(D)

---(E54)



ingularity of sianal cross- ral density matrix ... atlllllNl 228 1IN

Notice that the first two columns (and also the first two rows) of Pg(®) are linearly
dependent, rendering the cross-spectral density matrix singular at all frequencies. The
signal covariance matrix Rg(0) is given by,

18211100 &riiGo)  Eriaio) -+ & rigny(io)
§*r11(l‘o) r11(0) r20) .- rign0)

Rs(0) = §*r21 (t0) r21(0) rp0) - ryg(0)

\ é*r(K.1)1(to) rgm(0) rg1200) -+ rgayxn@)
.. (ESS)

and if:

ri1(t0) # rr1(0)

rix(t0) # rix(0)

then the first two columns (or first two rows ) of Rg(0) will be linearly-independent
and Rg(0) will generally be full-rank. For flat-spectrum signals in the (angular)
frequency band from aro to wyr:

sin Q_.H.I:Zﬂg to)

re1(to) = 2 cos (PHIEALO 4y i, 1<k<K-1

2 Dur Lo ;o
2

and beyond a correlation time of

COHI:';DLO 2w = 192 27/(WgrwLo)

Iren (o)l is iﬁdeed much smaller than rg; (0).
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F. BEAMFORMING SIMULATION
PROGRAM

F.1 GENERAL OVERVIEW

RING is a user-friendly personal-computer program, written in QuickBasic, for the
analysis of a ring array of discrete radiating elements. It may be used to assess the
effectiveness of pre-DFT and post-DFT alignment in arrays of user-specified
elements, analyse, under various configurations and error models, the beamwidth and
sidelobe performance of directional beams formed in either element space or mode
space, display the amplitude and phase characteristics of omnidirectional phase
modes, and simulate phase-comparison DF based on either omnidirectional or
sectoral phase modes patterns. The compiled RING package (final update: 12th
March 1993), running on a DOS platform, comprises four executable files:
RING.EXE, RINGOPT.EXE, RINGDSP.EXE and RINGHLP.EXE which must all
reside in the same directory (default: C: \RING or else the user will be prompted for
the exact directory path), as well as the QuickBasic-4.5 run-time module
BRUN45.EXE. The program is started by invoking the first executable file name:
RING. The corresponding QuickBasic source code comprises four chained program
files: RING.BAS, RINGOPT.BAS, RINGDSP.BAS and RINGHLP.BAS, each of
which consists of one or more modules of functions and subprograms. For the
complete list of modules with their respective sub-modules see Table F.1.1

Input to the program is entered either manually or loaded from pre-saved data
files, and includes the array geometry, parametrically synthesised or measured
element patterns, pseudo-random aperture excitation errors, element position and
element pattern errors, complex element-space and mode-space weighting input,
compensation algorithms and ranges of relevant parameters for computation. Qutput
may be graphically displayed in a default or customised form, listed in a scrollable
table or saved as an ASCII data file in one of three formats. The first two file formats
allow the saved file to be imported and displayed by external charting packages
whereas the third is the input/output file format of program RING itself, consisting of
all the entered or loaded input data together with the evaluated output.
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Modules

Beamforming simulation program

Submodules

RING.BAS

RINGH.BAS

RINGI.BAS

RINGHLP.BAS

RINGOPT.BAS

RINGD.BAS

RINGM.BAS

RINGP.BAS
RINGR.BAS

RINGDSP .BAS

RINGC.BAS

RINGU.BAS

Table F.1.1

SUB ArrowLine
SUB ExitProgram
SUB LoadInText
SUB MainMenu
SUB MatSca

SUB SaveInput
FUNCTION LOG10!

SUB HelpMain

SUB InputDiagram
SUB LoadEPT

SUB RandomDiagram
SUB SetDiagram
SUB ViewPattData

SUB AspectRatio
SUB HelpInput

SUB HelpOptions
SUB HelpOutputP

SUB ArrowLine

SUB CorrectionsDiagram

SUB Matlet
SUB OptionsMenu
FUNCTION LOG10!

SUB HelpWeightingD
SUB OutTextD
SUB WeightingTextD

SUB HelpWeightingM
SUB OutTextM
SUB WeightingTextM

SUB OutDiagramP
SUB OutDiagramR

SUB ArrayMul
SUB ClearText
SUB MatAdd

SUB MatInv

SUB MatSca

SUB SetArrays
FUNCTION ATAN2!
FUNCTION ImdMul!
FUNCTION MAX%
FUNCTION ReDiv!

SUB ComputeD
SUB ComputeR
SUB PreCorrSet
SUB SetElements
SUB SetModes2

SUB ArrayMinMax
SUB CustomiseText

SUB DisplayText
SUB ListData
SUB SaveData
SUB SaveOutText
SUB YscaleMenu

Program structure

SUB AspectRatio
SUB ExitText
SUB LoadRNG
SUB MainText
SUB SaveData
SUB SavelInText
FUNCTION MAX%

SUB HelpRandom

SUB InputMenu
SUB LoadPatt
SUB RandomMenu
SUB SetMenu

SUB ClearText
SUB HelploadIn
SUB HelpOutputD
SUB HelpOutputR

SUB AspectRatio

SUB CorrectionsMenu
SUB MatSca

SUB OptionsText
FUNCTION MAX%

SUB OutDiagramD
SUB WeightingDiagramD

SUB OutDiagramM
SUB WeightingDiagrami

SUB OutputMenuP
SUB OutputMenuR

SUB ArrowLine

SUB HelpDisplay

SUB MatAss

SUB Matlet

SUB MatTra

SUB SetEvector
FUNCTION ImDiv!
FUNCTION IntRndPatt!
FUNCTION MIN%
FUNCTION Relnv!

SUB ComputeM

SUB Element45

SUB PreCorrSingle
SUB SetGmatrix
SUB Sinc

SUB AutoScale

SUB DisplayDiagram
SUB DrawGrid

SUB ListOutput

SUB SaveFile

SUB SaveRNG
FUNCTION Amplitude

SUB ClearText
SUB LoadInOut
SUB MainDiagram
SUB MatLet

SUB Welcome
FUNCTION ATAN2!
FUNCTION MIN%

SUB HelpSet

SUB InputText
SUB LoadPattText
SUB RandomText
SUB SetText

SUB HelpCorrections
SUB HelpLoadPatt
SUB HelpOutputM
SUB HelpSaveln

SUB ClearText

SUB CorrectionsText
SUB OptionsDiagram
FUNCTION ATAN2!
FUNCTION MIN%

SUB OutputMenuD
SUB WeightingMenuD

SUB OutputMenuM
SUB WeightingMenuM

SUB OutTextP
SUB OutTextR

SUB AspectRatio
SUB HelpSaveOut
SUB MatCnijg

SUB MatMul

SUB ScaMul

SUB SetPsiVector
FUNCTION ImInv!
FUNCTION LOG10!
FUNCTION Pulse$%
FUNCTION ReMul!

SUB ComputeP

SUB PostCorrect
SUB PostFilter
SUB SetModes
FUNCTION Element!

SUB CustomiseDisp
SUB DisplayMenu
SUB LabelsMenu
SUB PlotOutput
SUB SaveOutput
SUB XscaleMenu
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RING is fully menu-driven with a ‘local’ flow chart and a ?help option available
at almost every menu levels. There are, however, a few limitations to the current
version of the program:

i element patterns may be randomised in amplitude but not in phase

ii only narrowband (single-frequency) pre-DFT correction may be simulated

iii the program does not evaluate the directivity, beamwidth or peak sidelobe level

iv the program cannot generate statistical patterns (minimum and maximum
envelope, mean, mean + standard deviation etc.) from a set of Monte-Carlo runs

A general flow chart of the program is displayed in Fig. F.1.1, with the rest of this
appendix devoted to a detailed account of all menu screens.

EEREREROSEINNNEN SORBA0TERRSUSEININNNNITIIN S et Random
/Stop\ Start/ menu menu
; i I Load
Quit Welcome Input < >lclement
screen screen menu pattern
A l A files
'Save <> Main <> Load input | _________ .
input menu /output '
]
i !
]
]
]
|
»| Weighting Optionsle g [Corrections E
menu D menu menu :
A :
i
i
]
Y Y Y ¥ :
| 3| Output Output Output Output E
menu D menu P menu R menu M H
I
A A A A |
Y 2 e
Save |g Display Weighting E
output menu menu M |
A i
i i
1 ]
e cc e r e e - - ---——— |

Fig.F.1.I General flow chart
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F.2 WELCOME AND QUIT MENUS

When started, the program displays a ‘Welcome screen’ which prompts the user to
proceed by pressing one of two keyboard letters — see Fig. F.2.1. Under the R option
all inputs to the program are reset to their default values. If the P key is pressed, the
program loads the inputs and various settings of its previous session from a file called
RINGPREF . RNG. This data file is automatically created in the root directory whenever
the program quits. In both cases, the program proceeds to the Main menu which is
described in section F.3.

Enter R to reset input data

P to keep previous inputs

Fig. F2.1 Welcome menu

The last menu screen before quitting is shown in Fig. F.2.2. It is accessible from
the Main menu under the Quit program option, prompting the user either to
confirm his wish to quit or to return to the Main menu without quitting. Each option
may be selected either by hitting the appropriate highlighted letter (C or Q), or by
using the up or down arrow keys ¥ and 4 to move a red triangular pointer to the
desired choice and pressing the Enter key. The Cancel option is also be selected if
the Esc key is pressed.

Are you sure you want to quit this program?
Cancel (return to Main menu)

Quit program

Fig. F22 Quit menu
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F.3 MAIN MENU

The Main menu screen which is shown in Fig. F.3.] prompts the user for one of six
menu options which may be invoked by either using the 1 and } keys to move a red

pointer to the desired choice and then pressing Enter, or by hitting the relevant
highlighted letter.

Load input Start Save
/output program input

Input - > Main > - Options
menu menu menu

[y
\

Y R a——

i

Quit
?help J program L

Input menu

Options menu

Load input/output

Save input

?help

Quit program

Fig. F.3.1 Main menu screen
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F.4 SAVE INPUT MENU

This menu screen which is displayed in Fig. F.4.1 is accessible from the Main menu,
enabling the user to save all of the previously entered input data and settings in the
session as a sequential file of ASCII characters, with a user-defined file name + the
extension RNG. The file is saved on the storage device selected under the Select
default Drive option (by usingthe = or + key to point a yellow arrow at drive
A, B, C or D) and in the directory specified (without the drive letter) under the
Directory Path option. In addition, this menu may be used to perform the DOS
command DIR for the selected drive and directory by moving the red pointer (using
the t and ¥ keys)to List files (DIR) and pressing Enter (forDIR/P) or by
pressing L (for DIR/W).

The saved input file may be read and used as an optional input to the program at a
later session through the ‘Load input/output’ menu which is described in the next
section. '

Select default Drive
Directory Path is:

List Files (DIR)

Save input as a RING-compatible data file

?help

ESCape

Enter name for data file [RNG extension assumed]:

Fig. F4.1 Save input menu screen
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F.5 LOAD INPUT/OUTPUT MENU

This menu, shown in Fig. F.5.1, enables the user to read input data which has
previously been stored via the ‘Save input’ menu described in section F.4, or via the
‘Save output’ menu which is outlined in section F.17. The file, with an assumed RNG
extension, is loaded from the storage device and directory specified by the Select
default Drive and the Directory Path options respectively, which also
serve to define the List files (DIR) option.

If an input data file (one that has been stored via the ‘Save input’ menu) is
loaded, pressing the Esc key will return the program to the Main menu. If, on the
other hand, an output data file (stored via the ‘Save output’ menu) is loaded then
both input and previously computed output data will be read by the program and Esc
will ‘short-cut’ the program to the Display menu (described and illustrated in section
F.15) without further processing, to which it would ordinarily arrive at the end of
computations.

Select default Drive

Directory Path is:

List Files (DIR)

Load data from RING-compatible data file

2help

ESCape

Enter name for data file [RNG extension assumed]:

Fig . F 5.1 Load input/output menu screen
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F.6 INPUT MENU

The Input menu shown in Fig. F.6.1 together with its sub-menus are used for
defining the geometric and electrical parameters of the array.

The first four options from the top enable the user to define:

i operating frequency £ normalised to an arbitrary ‘reference frequency’ £, (default
value: 1). £ is also equal the first frequency in the Frequency range option
under the four Output menus described in section F.12 and may therefore be
entered or modified from these menus instead.

ii pulse width T multiplied by the above reference frequency £o. For cw operation
(i.e. infinite pulse width), enter: 0 (default value).

iii total number of elements Mon the ring (default: M = 8)

iv nominal array radius normalised to the wavelength at the reference frequency £,
(default: M/ 47)

To enter new input (to replace the default or previously entered data) the red pointer
is brought next to the required option by either using the * and d keys or by hitting
the relevant highlighted letter, and then pressing Enter or the = key; the new data
may then be entered in the usual way.

Note whenever M is modified, so are the array radius and the number of sampled

angles L (see Corrections menu, section F.11). The updated radius is for A/2 inter-
element spacing at £ and L is changed to 2M. The radius and L may then be modified
without affecting M.

The next five options are ‘switches’, set by first selecting the option as before and
then using the = or « key to point the yellow arrow at any of the optional positions:

i The Element pattern switch sets the element patterns to

- omni-directional

- omni-directional + a random amplitude fluctuation which is defined under the
Random menu (section F.8)

- a sum of Fourier (cosine) coefficients + an optional exponential term defined
under the Set menu (section F.7) ’

- the above definition + a random amplitude fluctuation as defined under the
Random menu.
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- patterns loaded from measured data files via the ‘Load element files’ menu
- the above data + a random amplitude fluctuation as defined under the Random

menu.

Load
element
pattern

files

Random
menu

| b Normalised Frequency - 0ld New £/fo

Nmsed Pulse Width (0: cw) — 01d New Tfo

Number of eleMents - 01d New M = 8
Normalised array rAdius —-0ld New a/Ao = 0.6366

Element patterns -»Omni Rand Set Set+Rand

Files Files+Rand

Phase centre Displacement ”°None Rand Set Set+Rand

Pattern roTation “Nomin Rand Set Set+Rand
Element Gains -Unif Rand Set Set+Rand
Element Phases —Unif Rand Set Set+Rand
Set menu

Random menu

Load element pattern files g
?help

Back to main menu

Fig. F.6.1 Input menu screen
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ii The Phase centre displacement switch keeps the elements in their nominal
positions (default) or displaces them deterministically, at random or both as
defined under the Set and Random menus.

iii The Pattern rotation switch may set each element pattern to be nominally rotated
according to the nominal position of the element in the array (default) or to
undergo a deterministic or random pattern roll as defined (beyond the nominal
values) under the Set and Random menus.

iv The Element gains and Element phases switches set the gain and insertion phase
of each channel to 0 dB and 0° respectively (default), or uses the random and/or
set definitions entered via the Set and Random menus.

The last five options are invoked by moving the red pointer as before and pressing
Enter or simply by hitting the highlighted letter. Pressing B or the Esc key returns the
program to the Main menu. The Set menu, Random menu and Load element
pattern files options are described in sections F.7, F.8 and F.9 respectively.

F.7 SET MENU

Under this menu, which is displayed in Fig. F.7.1, the element patterns, the angular
and radial displacement and the rotation of each element (beyond its nominal value)
as well as the gain and insertion phase of each array channel may be deterministically
set and viewed. Options are selected by moving the red pointer with the t and
keys or by pressing the highlighted letter.

Element patterns may be parametrically defined either globally or at two
frequencies (typically chosen as the lower and upper operating frequencies) with
interpolated values taken in between. In the first case, Pattern response
Frequency must be set (using the = or + key) to A11, whereas in the second case
itis set to Freql or to Freq2 before data is entered. The actual values of the two
frequencies are entered by selecting the Interpolation frequencies option,
pressing Enter or the = key and entering the values of the lower (Freql) and upper
(Freqg2) frequencies (normalised to fy), each followed by Enter. Note that there is
no extrapolation, so that the element pattern remains unchanged below Freql or
above Freqg2.

New values are given to sets of Fourier (cosine) coefficients (in the case of the
third option from the top) or to sets of elements or channels (in the case of the next
five options) by pressing Enter or the = key, entering the new value, the ‘From’
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number and the ‘To’ number each followed by Enter. In the case of element pattern,
coefficient no 7 is p in an additional term of the form p{1-¢0s #),

Each parameter set may be viewed by pressing L while the relevant option is
selected (including the relevant Pattern response Frequency option). If
necessary the PageUp and PageDown keys may be used to scroll the list on the screen.
The program is returned to the Input menu by pressing B or the Esc key.

Input g - Set - -
menu menu ?help

Pattern response Frequency -All Freql Freqg2
Interpolation frequencies Freql = Freg2 =
Element Pattern Coeff i = 1 From i= 0 To i= 0
Ang. displacement (deg)= O For m= 0 Tom= 0
Rad. displacement (nmsd)= 0 For m= 0 Tom= 0
Pattern roTation (deg)= 0 For m= 0 Tom= 0

P>Elem channel Gain (dB) = 0 For m= 0 Tom= 0
Elem channel Phase (deg)= 0 For m= 0 Tom= 0
?help

Back to Input menu

List [ PAGEDOWN to scroll PAGEUP to scroll back ]
I Channel Gain(I) Channel Phase(I)
[dB] [deg]
0 0 0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0

Fig.F.7.1 Setmenu screen
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F.8 RANDOM MENU

This menu is used to enter uniformly distributed random errors to the array
parameters. As shown in Fig. F.8.1, the amplitude fluctuation of the element patterns
and the random component of the channel gains are expressed in +dB, the random
angular displacement and rotation of each element as well as the electrical insertion
phases are expressed in *degrees and the random radial displacement of the array
elements is normalised to the wavelength at the reference frequency f,. The
amplitude fluctuation of the element patterns is randomly generated for each element
pattern at L angular directions (the number of sample angles L is entered under the
Corrections menu - see section F.11) and interpolated for other angles according to
the desired display resolution. The Random Initialisation integer option
may be used to obtain different ensembles of the pseudo-random generator, but note
that new ensembles are always obtained whenever one (or more) of the Input menu
switches (see section F.6) is set to Rand, Set+Rand or Files+Rand during the
same session. As before pressing B or the Esc key returns the program to the Input
menu.

P> Random Element Patterr (+dB) —0ld New 0
Random Angular displacement(tdeg) -01ld New 0
Random Radial displacement (*40) -0ld New 0
Random pattern roTation (xdeg) —01ld New 0
Random channel Gain (£dB) —-01ld New 0
Random channel Phase (xdeg) -01d New 0
Random Initialisation intege: -01d New 0
?help

Back to Input menu

Fig. F.8.1 Random menu screen
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F.9 LOAD ELEMENT PATTERN FILE MENU

This menu whose screen is displayed in Fig. F.9.1 allows the user to read in a
measured element pattern file at a single frequency. The file, with an assumed EPT
extension, is loaded from the storage device and directory specified by the Select
default Drive and the Directory Path options respectively, which also
serve to define the List files (DIR) option. The loaded pattern data may be
viewed using the View loaded pattern data option with the PageUp and
PageDown keys used for scrolling the screen. The program supports the automatic
loading of a set of data files whose names are suffixed with appropriate indices (that
could, say, denote the frequency as in PREFIX12.EPT). To specify the frequencies
and corresponding indices to the program, select the Frequency samples options,
press Enter or the = key and type in the first (From) and last (To) normalised
frequencies as well as the frequency step (Step), each followed by Enter. Then
select the Used file indices option and enter the first index (From) and index
step (Step) using the Enter or the = key, pressing Enter after each entry. The set

Select default Drive -—A:
Directory Path is:
List Files (DIR)

Frequency samples: From: 2 To: 6 Step: 2
Assumed frequency: All —-Sample [1 to 3]
Suppress loaded phase —-Off On

Load Element pattern data file

Used file indices From:12 To:16 Step:2

P> Load set of Indexed data files
View loaded pattern data
?help
ESCape

Enter file name prefix [EPT extension assumed]:

Fig. F.9.1 Load element pattern file menu screen
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of files may then be loaded through the Load a set of Indexed data
files option. For a single file to be loaded, select the Assumed frequency
option, and use the = or + keys to switch between A11 (data file to be loaded will
be assumed to apply to all frequencies) and Sample. In the latter case type in a single
frequency sample number and press Enter. Then load the file using the Load
Element pattern data file option.

Note the frequency sample number typed in under the Assumed frequency option
also determines which frequency (i.e. loaded file) is viewed when View loaded
pattern data is invoked. If the Assumed frequency option is setto All, then
frequency sample no. 1 is viewed.

Each loaded element pattern file must be a sequential ASCII file that has been
filled in the following (QuickBasic) format:

OPEN Filename$ + ".EPT" FOR OUTPUT AS #1
WRITE #1, Np%, Ne%, Nr%, AdbRef(0!, PhdegRef(!

FOR Elem% = 0 TO Ne% - 1
FOR Point% = 0 TO Np% - 1
WRITE #1, Adb! (Point%, Elem%), Phdeg! (Point%, Elem%)
NEXT Point$%
NEXT Elem$%

FOR Elem% = 0 TO Ne% - 1
FOR Point% = 0 TO Np% - 1
WRITE #1, AdbRef! (Point%, Elem%), PhdegRef! (Point%, Elem%)
NEXT Point%

NEXT Elem%
CLOSE #1
where,

Np$% - number of samplés over a full 360° sector. This integer defines the angular
resolution of the measured data

Ne% - number of element patterns measured. If this integer is different from the total
number of elements in the array then the program assumes that Ne%=1, the
pattern data is assumed to start at ¢ =0° for element m =0 and the same data
is also entered (after adequate angular rotations) for each of the other array
elements. If Ne$ equals the number of array elements then the program
assumes that direction ¢ = 0° always refers to the location of element m = 0.
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Nr% - number of reference patterns measured. Set:
Nr$=0 when no reference data is available

Nr$=1 when all patterns are to share the same reference (relevant when
array channels are simultaneously measured)
Nr$=Ne% when Ne% reference patterns are included in the file
Adb! (Point%, Elem%) refers to the amplitude in dB of the measured
radiation pattern of element no. Elem% at an observation angle of
(Point%/Np%) 360°. ,
Phdeg! (Point%, Elem%) refers to the electrical phase in degrees of the
measured radiation pattern of element no. E1lem% at an observation angle of
(Point%/Np%) 360°.
AdbRef! (Point%, Elem%) measured reference amplitude in dB of element
no. Elem$% at an observation angle of (Point%/Np%) 360°.
PhdegRef! (Point%, Elem%) measured reference phase in degrees of element
no. Elem$% at an observation angle of (Point%/Np%) 360°.
AdbRef0! - additional constant amplitude (dB) reference
PhdegRef0! - additional constant phase (deg) reference

The loaded element pattern phases may be suppressed and replaced by the usual
synthesised geometry-dependent phases by setting the Suppress loaded
phases option to On using the = or + keys.

The program is returned to the Input menu by pressing the Esc key.

F.10 OPTIONS MENU

As shown in Fig. F.10.1, the Options menu directs the user to a number of menus
which define various options of the program:

- Specifying the type of correction and alignment implemented

- Plotting one or more phase mode patterns

- Plotting one or more directly-formed (element-space) array patterns

- Plotting one or more modally-formed (mode-space) radiation patterns

- Plotting the comparative pattern of two (SPM-) beams identically formed by the
same number of equally excited but different phase modes.

These are all described in detail in sections F.11 and F.11.

The program is returned to the Main menu by pressing B or the Esc key.
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F.11 CORRECTIONS MENU

This menu shown in Fig. F.11.1 allows the user to enable or disable narrowband
pattern correction (‘PrE-DFT correction’) at frequency £ (defined via the Input menu
or output menus — see the respective sections F.6 and F.12) and two options of either
narrowband (at frequency £) or broadband mode alignment (‘Post DFT correction®).
No of sampled angLes refers to the number of (equally spaced) sampled
direction angles which enter the correction algorithms (the display resolution is
separately defined in the Output menus of section F.12) — the default value is L=2M.
The next two options from the top refer to wideband mode alignment. No of

sampled frequencies is the number N of frequency samples used to define
digital IIR or FIR mode-alignment filters. The sampled band is from the mix-down

Main | < - Options | | Output menus
menu menu (P,D,M or R)

LI}

(]

1

It

1t

NV
Corrections

?help menu

B> Corrections menu
Phase modes output menu
Direct radiation pattern output menu
Modal radiation pattern output menu
CompaRe modal patterns output menu
?help

Back to main menu

Fig F.10.1 Options menu screen
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frequency shift (entered, normalised to £y, under the Mix down to baseband
option, 0 if O£ f) to the sampling frequency. The latter is specified (normalised to £fo)
under the Sampling frequency option. The first (N+1) /2 samples are taken
from measurements or synthesised data, with the last two samples (3 for even N)
weighted down. A complex conjugate version of these samples is then added in
reverse order about the (N/2) ’th position in the sequence. Corrected modes lets
the user define the range of modes which will be affected by the correction schemes.
The IIR and FIR settings of the Post~-DFT correction option refer to the filters
discussed in chapter 3, section 3.6 where the order of the FIR filter (or filter block in
the IIR implementation) is N-1. Note though that modes +M/2 undergo amplitude
rather than phase mode alignment.

Return to the Options menu is via keys B or Esc.

Options | ] Corrections | g |  chel
menu menu $neip

P> No of sampled angLes -01d New L= 32
No of sampled frequencies —-01d New N= 12
Sampling frequency (nmsd) —01d New fs= 72
Corrected modes -01d New From: 0 To: 0
Mix down to baseband —0ff On
PrE-DFT correction -0ff On
Post-DFT correction -0ff Oon
Post-correction Option -1 2
?help

Back to Options menu

Fig.F.11.1 Corrections menu screen
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F.12 OUTPUT MENUS

The four Output menus described in this section are accessible via the Options menu.
They allow the user to define the abscissa as angle, frequency or time and set the
range and resolution for each of these parameters. The Display computed
output option starts off the computation process and sends the program to the
Display menu when it is completed. To go back to the Options menu one may press B
or the Esc key or move the red pointer to the last option and press Enter.

The Direct (element-space) radiation pattern output menu shown in Fig. F.12.1,
is intended for the synthesis of element-space radiation beams. In that menu, aperture
excitation may be set to co-phased or co-delayed in the direction specified by Scan

(co-excitation) angle option as well as arbitrarily weighted in amplitude and
phase through the Set Weighting taper option which invokes the Direct
weighting menu described in section F.13.

The Phase modes output menu shown in Fig. F.122 is the program branch
leading to the formation of one or more omnidirectional phase modes. The range of
mode numbers is entered via the Mode range option (lower mode number, upper
mode number and step size).

The Modal (mode-space) radiation pattern output menu shown in Fig. F.12.3
controls the synthesis of mode-space beams. Here the Mode range option refers to
the set of phase modes used to form the modal radiation pattern. The phase modes
may be ‘scan phased’ in any direction and arbitrarily weighted in amplitude and phase
through the Scan angle [by IDFT] and Set Weighting taper options
respectively, the latter invoking the Modal weighting menu which is described in
section F.14.

The ‘Compare modal patterns’ output menu shown in Fig. F.12.4 controls the
evaluation and display of a comparative pattern formed by subtracting the amplitudes
(in dB) and phases of two beams (e.g. sectoral phase modes) which are formed by
summing different but equal-size sets of adjacent phase modes. Each set of modes is
equally tapered in amplitude and in phase through the Set Weighting taper
option and scan phased via the Scan angle [by IDFT] option. The Set
Weighting taper option invokes, as in the Modal radiation pattern output menu,
the Modal weighting menu described and illustrated in section F.14, and in fact the
same modal taper is shared between these two output menus (provided that the mode
ranges are set to the same number of phase modes).
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Weighting Options |t
menu D menu
Output Output Output Output
menu D menu P menu M menu R
Display
9
?help menu
B> Co-excite —O0ff Co-phase Co-delay
Versus —Angle Frequency Time

Frequency range f/fo From: 1.000 To: 1.000 step: 0.%

Time range fot From: 0. To: 0. step: 0

Angle range (deg) phi From: -180 To: 180 step: 1

Scan (co-excitation) angle (deg) Phi0 = 0.
Set Weighting taper
Display computed output

?help

Back to Options menu

Fig. F.12.1 Output menu D screen
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The two sets of excited phase modes are selected via the 1st beam's mode
range and 2nd beam's mode range options (for the second beam, only the
From mode number is entered by the user).

- Options -t
menu
Output Output Output Output
menu P menu D menu M menu R
Display
?help menu
% B>Versus - Angle Frequency Time

Frequency range f/fo From: 1.000 To: 1.000 Step: 0.

Time range fot = From: 0. To: 0. Step: 0
Angle range (deg) phi = From: -180. To: 180. Step: 1.
Mode range mu = From: O To: O Step: 1

Display computed output

?help

Back to Options menu

Fig. F.122 Output menu P screen
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- Options Weighting
menu menu M
Output Output Output
menu D menu R menu M é
Display s
menu ?help
Versus - Angle Frequency Time

Frequency range f/fo

From: 1.000 To: 1.000 Step: O

Time range fot

= From: 0. To: 0. Step: 0
Angle range (deg) phi = From: -180. To: 180. Step: 1.
Mode range mu = From: 0 To: 0
Scan angle [by IDFT] (deg) Phi0 = 0.

Set Weighting taper

Display computed output

?help

Back to Options menu

Fig. F.12.3 Output menu M screen
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- Options Weighting
menu menu M
Output Output Output Output
menu P menu D menu M menu R
Display -
menu ?help
Versus - Angle Frequency Time
Frequency range f/fo = From: 1.000 To: 1.000 Step: 0
Time range fot = From: 0. To: 0. Step: O
Angle range (deg) phi = From: -180 To: 180 Step: 1
1st beam's mode range From: 0 To: 0
2nd beam's mode range From: 0 To: 0
Scan angle [by IDFT] (deqg) Phi0 = 0

Set Weighting taper
Display computed output
?help

Back to Options menu

Fig. F.124 Output menu R screen
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F.13 DIRECT WEIGHTING MENU

This menu, shown in Fig. F.13.1, allows the user to set and view an amplitude and
phase excitation taper at the array aperture for element-space radiation beams.
Amplitude (dB) or phase (deg) values are entered to a range of elements by first
selecting the desired option and pressing Enter or the = key, then typing in the new
value, and the first (For m =) and last (To m =) element numbers in the group of
elements to which it is to be applied, each followed by Enter. The taper may be listed
at any time by pressing L and scrolling if necessary with the aid of the PageDown or

PageUp keys.

Output | g p|Weighting < »
menu D menu D ?help

p> Amplitude taper [dB] = 0 Form=0 Tom=20
Phase taper [deg] = 0 Form=0 Tom=20
?help
ESCape

List [ PAGEDOWN to scroll PAGEUP to scroll back ]

I Amplitude taper Phase taper
[dB] [deg]
8 0 0
9 0 0
10 0 0
11 0 0
12 0 0
13 0 0
14 0 0
15 0 0

Fig. F.13.1 Direct weighting menu screen
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F.14 MODAL WEIGHTING MENU

The ‘Modal weighting menu’ shown in Fig. F.14.1, allows the user to set and view
an amplitude and phase excitation taper at the phase mode outputs, for the synthesis
of a mode-space radiation beam. It may be invoked either from the Modal radiation
pattern output menu or from the ‘Compare modal patterns’ output menu described in
section F.12. Amplitude (dB) or phase (deg) values are entered and listed as in the
Direct weighting menu of section F.13.

Output [ g » Weighting - - Output
menu M menu M menu R
?help

P> Amplitude taper [dB] = 0 For I=0 ToI=0
Phase taper [deg] = 0 For I=0 ToI=20
?help
ESCape
List [ PAGEDOWN to scroll PAGEUP to scroll back ] :
I Amplitude taper Phase taper

' [dB] [deg]
0 0 0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0

Fig. F.14.1 Modal weighting menu screen
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F.15 DISPLAY MENU

The display menu shown in Fig. F.15.]1 appears as soon as the radiation pattern

computations have been completed. It allows the user to:

— display, list or save the output amplitude and phase data

~ add an optional amplitude (dB) and phase (degree) offset to the displayed, listed
and saved outputs

~ show or hide the xy grid and graph labels

— set the x-axis grid and label to automatic or customised

— set the y-axis grid + all other labels to automatic or customised

All the above switches are set by using the = or «+ keys to point the yellow arrow at
the selected position. Invoking the Customise scale + labels option will
direct the program to the Customise menu which is described in section F.16.

The output data may be:

- plotted by selecting the Amplitude plot orPhase plot options. Initially
all computed graphs will be plotted; to re-plot the whole set, press 0, to re-plot
a single graph press the corresponding graph number (1 to 9). Pressing any
other key will return program to the Display menu.

— listed by invoking the List output option. Initially the first 24 lines are
displayed; to scroll use the PageDown or PageUp keys and press the Esc key to
return to the Display menu.

— saved by invoking the Save output option. This sends the program to the
Save output menu which is described in section F.17.

Pressing B or the Esc key returns the program back to one of the four output menus
described in section F.12.

F.16 CUSTOMISE MENU

This menu shown in Fig. F.16.1 allows the user to add labels and modify the
displayed scale limits, grid and tick (subdivision) marks. Customise Labels,
Customise X scaleorCustomise Y scale are first selected in the usual
way and then activated by pressing Enter or the = key. This turns the red pointer
into a static yellow arrow and activates a new movable red pointer within the selected
frame. New data is then entered for the selected option by pressing Enter or the =
key, typing in the new entry and pressing Enter again.
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B> Grid + labels Off

Xscale Custom

Y¥scale Custom

Offset output by 0 deg
Customise scale + label:

Amplitude plot

Phase plot

List output

Save output

?help

Back to Output menu

Fig. F.15.1 Display menu screen
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P> Customise Labels

Top label is - 0ld New
Sub-label is - 0l1d New
X axis label is - 0ld New
Y axis label is - 0ld New
ESCape

Customise X scale

Lower bound is - 0ld New
Upper bound is - 0l1ld New
Division is - 0l1d New
Sub-division is - 0ld New
ESCape

Customise Y scale

Lower bound is - 0ld New
Upper bound is - 01d New
Division 1is - 0ld New
Sub-division is - 0l1ld New
ESCape

ESCape

Fig. F.16.1 Customise menu screen
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By pressing the Esc key the red pointer will vanish from within the selected frame

and will replace the static yellow arrow on the outside. It may now be moved in the

usual way to select a new option. Pressing the Esc key again will return the program

to the Display menu.

The entered parameters are defined as follows:

i

ii
iii

iv

vi

vii

viii

Top label- the label printed on the top line above the plot frame. It
defaults to ‘Amplitude plot’or ‘Phase plot’ whenthe ¥scale option in
the Display menu is set to Auto.

Top Sub-label - the label printed undemeath the top label.

X-axis label- the label printed underneath the X-axis. It defaults to ‘Phi
(degs)’, ‘Normalised Frequency f/fo’or ‘Normalised Time fot’
when the Xscale option in the Display menu is set to Auto.

Y axis label- the label printed to the left of the Y-axis. It defaults to
‘[dB]’ or ‘[deg]’ when the Yscale option in the Display menu is set to
Auto.

Lower bound-  refers to the the lowest point on the X or Y axis. This is
automatically set if the corresponding Xscale or ¥scale option in the Display
menu is set to Auto.

Upper bound-  refers to the highest point on the X or Y axis. This is
automatically set if the corresponding Xscale or ¥scale option in the Display
menu is set to Auto.

Division- the grid step on the X or Y axis. This is automatically set if
the corresponding Xscale or ¥scale option in the Display menu is set to
Auto.

Sub-division- the step size between minor ticks on the X or Y axis. It
defaults to the grid step (i.e. no minor ticks) if the corresponding Xscale or
¥scale option in the Display menu is set to Auto.
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F.17 SAVE OUTPUT MENU

The ‘Save output menu’ shown in Fig. F.17.1 enables the user to save on the

selected storage device and the specified directory:

- all the previously entered input data and settings + the computed output data on a
sequential ASCII file with a user-defined file name + the extension RNG. The output
file may be used as an optional input to the program at a later session through the
‘Load input/output menu’ - see section F.5.

- the computed output data only (optionally offset through the Offset output
option of the Display menu — see section F.16) in a sequential ASCII file with a
user-defined file name + the extension TDA (for tab-delimited data) or CDA (for
comma-delimited data), which may be imported by an external charting package.

Select default Drive —A: B: C: D:

Directory Path is: \

List Files (DIR)

P Save output as a Tab-delimited ASCII text file
Save output as a Comma-delimited ASCII text file

Save output as a RING-compatible data file

?help

ESCape

Enter name for data file [TDA extension assumed]:

Fig . F.17.1 Save output screen
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