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Abstract

A numerical investigation into electromagnetic wave scattering from 

perfectly-conducting, tw o-dim ensional, G aussian , rough  surfaces is 

conducted. The rough surfaces considered have a root-mean-square surface 

height and a correlation-length of the same order, and of the order of the 

incident wavelength. These surfaces are beyond the range of application of 

existing scattering theories.

The scattering problem is . solved by determining the solution of the 

m agnetic-field-in tegral-equation . The convergence and  the ra te  of 

convergence of two iterative m ethods applied to the numerical solution of 

the m agnetic-field-in tegral-equation  are investigated ; the N eum ann 

expansion, which has been used to formally represent the solution of the 

rough surface scattering problem; and the conjugate-gradient m ethod, an 

iterative m ethod of solving m atrix equations w hose convergence is in 

theory sure. However, applied to the solution of scattering from very 

rough surfaces, both  m ethods have been found to diverge. Presented in 

this thesis is a step-by-step procedure for identifying divergent N eum ann 

expansions, and a numerically robust conjugate-gradient m ethod that has 

been successfully applied to the solution of the scattering problem.

This study provides a com parative investigation of vertical and 

horizontal polarization wave scattering. Results are presented for both the 

field in the vicinity of the surface boundary, and the average value of the 

power scattered from an ensemble of rough surface realizations.

A procedure is presented for obtaining from  the solution of the 

magnetic-field-integral-equation, two explicit corrections to the Kirchhoff 

method. In the high-frequency lim it one of the corrections accounts for 

shadowing, and the other accounts for multiple-reflections at the random ly 

rough, surface boundary. The significance of the tw o corrections at lower 

frequencies is investiagted. It is concluded that at lower frequencies the



former correction accounts for the partial-shadowing and diffraction of the 

incident and scattered waves, and the latter correction accounts for the 

illum ination of the surface by waves scattered from other parts of the 

surface.
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1
Introduction.

A plane wave incident upon an infinite plane interface betw een two 

m edia is scattered  according to the Fresnel law s of reflection and 

transmission. However, w hen the boundary  is not plane b u t rough the 

precise m anner in which the wave is scattered is in m any cases unclear. 

The m ost observable difference betw een the behaviour of a plane and a 

rough surface, is that a plane surface will reflect the wave in the specular 

direction. A rough  surface on the other hand, scatters the w ave in all 

directions, albeit that the scattered power is greater in some directions than 

in others.

A quantitative description of the scattering of electromagnetic waves 

from rough surfaces is required in many areas of science and technology, 

(Marcuse, 1982), (Ulaby et al, 1982). The scattering problem  is formally 

solved once the electromagnetic field at the surface boundary is known 

(Stratton and Chu, 1939). The field at the surface boundary is the solution 

of the field-integral-equations (Poggio and Miller, 1973). How ever, exact 

solutions to these equations are only available for sim ple geometries 

(Poggio and Miller, 1973). This study is concerned w ith the scattering of an 

electromagnetic wave from a perfectly-conducting, Gaussian rough surface. 

In § 11, we discuss the analytic m ethods that have been used to describe 

this scattering problem. Particular attention is paid to the geometric range 

w here each theory is available. In § 1-2 we provide an overview  of the 

work presented in Chapters 2 to 7.

1*1 The rough surface scattering problem.

The tw o principal analytic tools for describing rough  surface



scattering are the Kirchhoff approxim ation (Beckmann and Spizzichino, 

1963) and the field-perturbation method (Valenzuela, 1967). For a perfect- 

conductor the central assum ption of the Kirchhoff approxim ation is that 

the scattered magnetic field in the plane tangent to the surface boundary is 

equal to the incident magnetic field. This is a high frequency assumption, 

which also requires small shadow ing by the surface of the incoming and 

outgoing waves. The geometric range of the Kirchhoff approxim ation has 

recently been examined at lower frequencies. Thorsos (1988) compared the 

expected scattered power obtained w ith the Kirchhoff approxim ation w ith 

num erical sim ulations of the scattering of an acoustic w ave from a two- 

d im ensional (corrugated), G aussian rough  surface w ith  a D irichlet 

boundary condition. In the context of this study, this scattering problem is 

analogous to the scattering of a horizontally polarized electrom agnetic 

w ave from  a perfectly-conducting, tw o-dim ensional, G aussian rough  

surface. The shaded region "'KA" in fig. 1*1 is w here the Kirchhoff 

approxim ation is successful for incident and scattered grazing angles larger 

than twice the root-mean-square (RMS) surface slope. Furthermore, in this 

region the Kirchhoff approximation plus a geometric shadow ing correction 

(Wagner, 1967) is successful at large backward scattering angles too.

There has been  considerable effort devoted  to find ing  analytic 

approaches that lift the central assum ption of the Kirchhoff approximation. 

The field-perturbation m ethod (Valenzuela, 1967) provides a m ethod for 

sm all surface height and slope. Num erical sim ulations of the acoustic 

scattering problem  described above have been com pared w ith  the field- 

pertu rbation  solutions to the scattering problem  (Thorsos and Jackson, 

1989). The geometric range of the first two terms of the perturbation series 

is illustrated by the shaded region "FP" in fig. 11. It is no surprise that 

surface height should restrict the methods range of application; the surface 

height is the small param eter in the perturbation expansion. However, the 

fact that the surface correlation-length m ust be small too, is less obvious.
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Fig. 1-1. The range of validity of the Kirchhoff approximation (KA) 
(Thorsos, 1988) and the field-perturbation method (FP) (Thorsos and Jackson, 
1989) for a perfectly-conducting, two-dimensional, Gaussian rough surface. In 
the figure a is the RMS surface height,  ̂ is the surface correlation-length and 
X is the incident wavelength.



The influence of the surface correlation-length on the range of validity of 

the field-perturbation method is discussed in (Thorsos and Jackson, 1989).

The resu lts of Thorsos (1988) and Thorsos and Jackson (1989) 

dem onstrate that the Kirchhoff approxim ation and the field-perturbation 

m ethod operate in separate regions of the param eter space. Up-until 1985 

the issue of a common region of application was a m atter of controversy. 

The controversy was resolved by Holliday (1985), who by using the first two 

terms of the N eum ann series expansion (Kreysig, 1978) of the magnetic- 

field-integral-equation (MFIE) (Poggio and Miller 1973), showed that w ith 

the Kirchhoff approxim ation as the first term  in the expansion, the second 

term was required to derive the first-order field-perturbation result for a 

rough surface surface w ith small heights and slopes.

Up until the late 1970's the Kirchhoff approxim ation and the field- 

perturbation  m ethod were the only analytic tools for describing rough 

surface scattering. The situation today is very different; the last decade has 

spaw ned  phase-perturbation  expansions (Shen and  M arududin,1980), 

(W inebrenner and Ishim aru, 1985 a, b), m om entum -transfer expansions 

(Rodriguez, 1989), unified-perturbation expansions (Rodriguez and Y. K. 

Kim, subm itted in 1990), full wave theories (Bahar, 1981) and  magnetic- 

field-integral iterations (Brown, 1982), (Holliday et al, 1987), (Fung and 

Pan, 1987). However, in spite of the host of approximate theories to choose 

from the accuracy of each theory is uncertain. We have found it very 

difficult to locate most of these m ethods w ithin the param eter space of fig. 

1*1. The phase-perturbation-m ethod, however, has been com pared w ith 

num erical sim ulations of the acoustic scattering problem  described above 

(Broschat et al, 1989), and its range of validity is the shaded region "PP" in 

fig. 1*2. We suspect that the region 'T P "  is representative of the progress 

m ade by  the analytic m ethods of the last decade. To the best of our 

knowledge, the m ethods referred to above are unproven or else fail for
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Fig. 12. The range of validity of the phase-perturbation method (PP) for a 
perfectly-conducting, two-dimensional, Gaussian rough surface. The 
illustration is taken from (Ishimaru and Chen, 1990 b). In the figure a  is the 
RMS surface height,  ̂ is the surface correlation-length and X  is the incident 
wavelength. The RMS slope is given by arctan (V2a/^) and the surfaces below 
the diagonal line have a RMS slope of less than 25®.



a Gaussian rough surface with a correlation-length of the same order as the 

electromagnetic wavelength and a RMS slope as large as 25°.

An understanding of wave scattering from rough surfaces w ith large 

slopes is of considerable theoretical interest, and is required in  optics 

applications. M uch of the recent in terest in wave scattering from very 

rough  surfaces w as stim ulated by the experim ents of O 'Donnell and 

Mendez (1987). These authors observed that the average value of the power 

scattered  from  very  rough , G aussian, surfaces w as largest in  the 

backscattering direction. Furthermore, they noted that the angular w idth  of 

the backward scattered power was relatively narrow. This phenom enon is 

called enhanced backscattering and prior to their observations had only 

been seen in volume scattering materials.

The oval "EB" in  fig. 1-3 is the region of the param eter space where 

enhanced backscattering has been experimentally observed (O' Donnell and 

M endez, 1987), (M. J. Kim et al, 1990), or num erically sim ulated (Nieto- 

Vesperinas and Soto-Crespo, 1987), (Soto-Crespo and Nieto-Vesperinas, 

1989), (Saillard and Maystre, 1990), (Ishimaru and Chen, 1990 a). The ray 

picture of scattering has provided an intuitive explanation of enhanced 

backscattering. The following explanation is due to O'Donnell and Mendez 

(1987). In fig. 1-4 we illustrate a scattering path  that m ay occur in the valley 

of a rough surface. In the figure the incoming ray is reflected from point B 

onto point C, where it escapes from the surface in the direction of the 

scattering angle 0^. If Ar is the vector from point C to point D, then for a 

rough surface w ith substantially varying Ar the phase difference betw een 

all such double-scatter paths will w ash out any m utual interference terms. 

Consequently, the field from each double-scatter path  will contribute on an 

intensity basis to the m ean intensity. However, some of the incoming rays 

will follow the reversed path  DCBA, and also contribute to the scattered 

field in the direction of 0^. The am plitude of the fields from paired double­

scatter paths, ABCD and DCBA, for exam ple, w ill add  constructively.
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Fig. 1-3. The enhanced backscattering region (EB) and the region where the 
modified second-order Kirchhoff iteration (SKI) has described wave 
scattering from a Gaussian rough surface. In the figure a  is the RMS surface 
height, 4 is the surface correlation-length and X  is the incident wavelength.



thereby providing a strong contribution to the mean intensity. It is in this 

manner that the mean backscattered intensity is enhanced.

X

Fig. 14. A possible double-scattering path.

In the high-frequency limit, single and multiple-scattering does have a 

geometric interpretation, which allows these scattering contributions to be 

considered separately. It is not clear to us that the high-frequency, ray 

picture of scattering can be extended to lower frequencies. Nevertheless, 

key in the development of models for very rough, random  surfaces is the 

separation of the scattered field into a "single-scattering" and "multiple- 

scattering" contributions (Liszka and McCoy, 1982), (Stoddart, 1992). The 

single-scattering contribution is obtained with the Kirchhoff method. Each 

higher-order scattering contribution corresponds to a term in an iterative 

expansion of a field-integral-equation. Ishim aru and Chen (1990 a, b), 

(1991), for example, have used the first two terms of a Kirchhoff iteration to 

describe some aspects of wave scattering in the region "SKI" of fig. 14. In 

particular these authors have found that the second-iteration is required to 

account for enhanced backscattering.

To obtain a description of wave scattering from rough surfaces with 

large slopes and a roughness structure of the same order as the incident 

wavelength, there seems little alternative at present bu t to solve the

8



scattering problem  num erically. N um erical studies of rough  surface 

scattering have been done by, among others, Chan and Fung (1978), Axline 

and Fung (1978), Nieto-Vesperinas and Soto-Crespo (1987), Macaskill and 

Kachoyan (1987), Thorsos (1988), Thorsos and Jackson (1989), Broschat et al 

(1989), Ishim aru and Chen (1990 a), and Saillard and M aystre (1990). It is 

im portant to recognize that the solutions obtained by solving the field- 

integral-equations numerically are not exact. However, the results obtained 

by these authors suggest that good solutions to the scattering problem  can 

be obtained numerically, and for a wide range of rough surface geometries.

1*2 The present work.

This study is an investigation into wave scattering from  perfectly- 

conducting, two-dimensional (corrugated), Gaussian rough surfaces where 

the RMS height and correlation-length are of the same order, and of the 

sam e order as the electrom agnetic w avelength. The surfaces w e w ill 

consider occupy the darker of the shaded regions in  fig. 15 . W ave 

scattering from the surfaces in the lighter shaded regions of the figure is 

described w ith varying success by the scattering theories reviewed in  § 11.

The rough  surface scattering problem  is form ally solved once the 

electromagnetic field at the surface boundary is known. In the case of a 

perfectly-conducting surface, only the component of the magnetic-field in 

the plane tangent to the surface boundary is required (Poggio and Miller, 

1973). The magnetic field in the plane tangent to the surface boundary is 

the surface current density J, and a suitable equation to solve for J is the 

m agnetic-field-integral-equation (MFIE) (Poggio and Miller, 1973). The 

MFIE for a tim e-harm onic e^®! w ave incident on  a tw o-dim ensional 

surface is
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Fig. 15. The region of the parameter space that we will consider is the 
darker shaded region of the figure. Wave scattering from geometries in the 
lighter shaded area of the figure is described with varying success by 
existing scattering theories.

10



J(x) = 2n(x) X H*(x) + - L  n(x) x [  J(x') x V^>(r, r')
j-oo

Z +  X
dx

dx' (11)

Here, J is the surface current density, is the incident magnetic field at the 

surface, 0  is the Greens' function for the scattering problem , r and r* are 

position vectors of the surface at x and x', and n is the unit vector normal 

to the surface boundary. The first term on the right-hand-side (RHS) of (11) 

is the Kirchhoff approximation. The integral in (11) gives the contribution 

to J from the rest of the surface. This contribution provides the multiple- 

scattering correction to the K irchhoff approxim ation, and  the term  

"multiple-scattering" will be used by us to indicate this fact.

The integral-equations that we solve are simpler than  the one in (11). 

For a two-dimensional surface the surface current vectors for vertical and 

horizontal polarization are perpendicular to each another. This perm its the 

MFIE (11) to be replaced by two uncoupled, scalar integral-equations. In 

Chapter 2 we present the scalar MFIEs for the two-dimensional scattering 

problem . We then  proceed to how we generated the G aussian rough 

surfaces used in our num erical sim ulations, and the procedures used to 

validate the height d istribution and the autocorrelation function of the 

generated surfaces.

The starting-point for the num erical solution of the MFIE, is the 

approxim ation of the continuous equation by a discrete equation of the 

form

N-1
2H^(xn) = K^n) + 2} ^(^m^m)J(^m)- (1*̂ )

m=0

Here, K(xn,Xj^) is the weighted value of the kernel of (1*1), J is the surface 

current density , and H^ is the first term  on the RHS of the MFIE at the

11



sam ple points n = 0, N-1. A preferred m ethod of solving non­

singular, complex matrix-equations is LU decom position (Wilkinson and 

Rheinsch, 1971). We have found that the solution obtained by factorizing 

(12) into its LU form solves the discrete equation to w ithin the numerical 

accuracy of the double-precision, floating-point arithm etic used in its 

com putation. A lthough we have found that we can solve (1-2) exactly, 

there is no guarantee that the num erical solution for J will be a good 

solution to the MFIE, even at the sample points. M oreover, increasing the 

density  of the sam ple points does not guarantee tha t the num erical 

solution will be closer to the true solution of the MFIE (Sarkar, 1983), 

(Reddy, 1986). It seems to us a very difficult m atter to determine the error 

in the surface current density directly, so we have not attem pted to do this. 

We take the view that the degree to which w e can zero the total field 

beneath  the perfect-conductor is the best w ay of determ ining both the 

quality of the num erical solution for the surface current density, and the 

scattered field. We have found that the scattered field beneath the perfect- 

conductor com puted w ith  our num erical solution for the surface current 

density closely equals m inus the incident field. We will illustrate this in 

C hapter 2 w ith  contour-plots of the m odulus of the total field in the 

vicinity of the surface boundary.

The principal problem  that emerges in the num erical solution of the 

MFIE is that very large matrices are generated, even for m oderately sized 

tw o-dim ensional surfaces. D irect m ethods of so lv ing  these m atrix- 

equations can consum e substantial com puter resources. For this reason, 

there is considerable interest in solving these matrix-equations by iterative 

m ethods that one hopes will give a good estim ate of the solution in 

relatively few iterations, thereby reducing the com putational requirement. 

In Chapter 3 we examine the convergence and the rate of convergence of 

two iterative m ethods of solving the discrete approxim ation of the MFIE; 

the N eum ann expansion (Kreysig, 1978), which has been used to formally

12



represent the solution of the continuous MFIE (Brown, 1982); and the 

conjugate-gradient method (Hestenes, 1980), an iterative m ethod of solving 

matrix-equations whose convergence is in theory sure.

The N eum ann expansion used by Holliday (1985) and H olliday et al 

(1987) is a natural candidate for an iterative solution of (1*2). However, 

although the expansion has been used to formally represent the solution of 

the MFIE (Brown, 1982), there is no proof that the expansion either of the 

continuous equation or its discrete representation converges. We have 

found that the expansion m ay provide a rap id  num erical solution for 

small values of surface height and slope. However, w hen the roughness 

structure is of the same order as the electromagnetic wavelength the series 

diverges rapidly . We present in C hapter 3, step-by-step m ethods of 

identify ing d ivergen t N eum ann expansions. This has allow ed us to 

recognize divergent expansions w ithin a few iterations. Furtherm ore, to 

the extent that our num erical sim ulation is a good one, we consider that 

the results presen ted  in C hapter 3 provide strong evidence tha t the 

N eum ann expansion cannot be used w ithout qualification to provide a 

formal solution to the rough surface MFIE (Wingham and Devayya, 1992).

The conjugate-gradient methods (Hestenes, 1980) are iterative m ethods 

of solving m atrix-equations w hose convergence are in  theory sure. A 

conjugate-gradient m ethod suitable for electromagnetic scattering problems 

is given by Hestenes (1980; eqn. 12 7(a) - (d), p. 297). We refer to this m ethod 

as the least-square, conjugate-gradient (LSCG) m ethod. In spite of the 

theoretical assurance of convergence, it is no t uncom m on to find 

references in  the literature to the iteration diverging (Sarkar et al, 1988), 

(Peterson and M ittra, 1985). We have ourselves found that applied to the 

large matrix-equations generated in the discretization of the rough surface 

MFIE, convergence is not sure. The LSCG m ethod proceeds by generating at 

each iteration a conjugate-vector that has some orthogonality properties in

13



theory. Convergence is sure by virtue of these properties. However, due to 

rounding errors the conjugate-vectors may fail to satisfy the theoretical 

orthogonality properties. We present in Chapter 3 a num erically robust 

form of the LSCG m ethod that uses Gram-Schmidt orthogonalization to 

correct for rounding errors at each iteration. For obvious reasons we call 

this algorithm  the Gram-Schmidt, least-square, conjugate-gradient (GS- 

LSCG) m ethod (Devayya and W ingham, subm itted 1992). In all the cases 

that we have applied the GS-LSCG m ethod to, we have never experienced 

a problem w ith its convergence.

We examine in Chapter 3 the rate of convergence of the GS-LSCG 

m ethod for various values of RMS surface height, surface correlation- 

length and incidence angle. We have found that the rate of convergence 

depends less upon particular values of RMS surface height and surface 

correlation-length, but more upon there ratio. This ratio is proportional to 

the RMS surface slope. We have found that the rate of convergence is 

largely unaffected by the angle of incidence of the incident wave, or its 

polarization. We have also found that the size of the surface, w hich 

determines the matrix size N, does not effect the rate of convergence of the 

GS-LSCG method. This last point is im portant, because the advantages of 

the GS-LSCG m ethod then grow w ith N.

The potential advantage of an iterative m ethod is that the iteration can 

be stopped once a good estimate to the solution of the discrete equation has 

been found. To establish the point at which to stop the iteration we have 

compared the scattered far-field power com puted w ith  the iterated solution 

for the surface current density, and the scattered far-field power computed 

w ith the exact solution of (12). For the cases we have considered, we have 

found that w hen normalized error between the iterated and exact solutions 

is less than 0-01 there is small difference betw een the scattered powers. We 

have found this to be true, even w hen the dynamic range of the scattered 

power is as large as 50dB. We have found that w hen the size of the matrix

14



is very large, or w hen the surface slope is small, the GS-LSCG m ethod 

obtains a good solution to the discrete equation w ith an order of m agnitude 

reduction in the computation required by LU decom position (Devayya and 

W ingham, 1992).

The d isadvantage of the conjugate-gradient m ethod is that it is 

im plem ented for one incident field at a time. LU decom position on the 

other hand, is a m ethod that allows solutions for any incident field to be 

directly obtained. In Chapter 3, we present a numerically robust conjugate- 

gradient m ethod for electrom agnetic scattering problem s tha t require 

solutions for several incident fields. The m ethod uses the inform ation 

obtained in previous implementations to determ ine an initial-guess at the 

solution of the matrix-equation for additional incident fields. However, for 

the cases we have considered, the surface currents for different incident 

fields prove too distinct for the m ethod to provide any significant 

com putational advantage over LU decom position. This d isappointing 

result concludes Chapter 3.

We neglected to m ention that to solve the MFIE num erically the 

integral in (11) m ust be truncated at some point. The scattering problem 

described by the truncated integral-equation is that of a w ave scattered 

from a patch of surface. To guard against scattering from the patch edges 

the am plitude of the incident w ave is chosen to fall off sm oothly to 

negligible levels at the ends of the patch. In this study, we obtain an 

estim ate of the expected scattered power for a random  rough surface by 

solving the MFIEs for a num ber of uncorrelated, rough surface patches and 

th en  averag ing  the pow er sca tte red  from  each patch . From  a 

com putational standpoint a small patch size is preferable. However, since 

it is hoped that the norm alized incoherent scattered pow er computed from 

an ensemble of rough surface patches will apply to the infinite surface, the 

patch  size m ust be large enough to accommodate the average scattering 

properties of the infinite surface. In Chapter 4, we investigate the influence

15



of the patch size on the value of the incoherent scattered power. We have 

found that a relatively sm all patch size can accurately represent the 

second-order scattering properties of the infinite surface. In fact, for the 

surfaces we have considered the lim it on the patch size depends more 

upon the m ethod used to guard against edge effects. The tapered incident 

wave used in  our num erical sim ulation, for exam ple, becom es less 

consistent w ith the wave equation as the tapering on the incident wave is 

increased.

Chapter 5 starts w ith a discussion on the Kirchhoff approximation. The 

K irchhoff approxim ation  is used  to test the com putations in the 

calculation of the scattered far-field, and also provides a fram ework for 

some of the discussions in C hapters 5 and 6. The scattered far-field 

obtained w ith the Kirchhoff approxim ation is referred to as the Kirchhoff- 

field. It can be recognized from the MFIE (IT), that the scattered far-field is 

the Kirchhoff-field plus the far-field obtained w ith the surface current due 

to the integral in (IT), which we refer to as the integral-field. We present a 

procedure in Chapter 5 for determining from the solution of the MFIE, two 

corrections to the expected scattered pow er obtained w ith  the Kirchhoff 

approximation. The corrections are discussed w ith a view to scattering in 

the high frequency limit. In this limit wave scattering is not complicated by 

diffraction, and the roles of the Kirchhoff and integral-fields are intuitively 

understood. A correction to the Kirchhoff m ethod for shadow ing, is 

determ ined from the linear-m ean square estimate of the integral-field in 

terms of the Kirchhoff-field. We will show that the error in  the estimate, 

w hich provides the second correction to the Kirchhoff m ethod, then 

satisfies the coherence properties of the scattered field due to multiple- 

reflections. The significance of these two corrections at lower frequencies is 

investigated in Chapter 6.

In Chapter 6 we present the bistatic average scattered powers computed
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from our numerical simulations of rough surface scattering. Results are 

presented for Gaussian rough surfaces w ith moderate to large slopes and a 

correlation-length of the same order as the electromagnetic wavelength. 

We have compared our numerical results for the average scattered power 

w ith the expected scattered power obtained w ith the Kirchhoff method. 

The results presented in Chapter 6 provide strong evidence that the degree 

of shadowing at the surface boundary is greater for horizontal polarization 

than for vertical polarization. This point is illustrated in the near-field of 

the surface with contour-plots of the electromagnetic field in the vicinity 

of the surface boundary. In the far-field, we have found that the Kirchhoff 

m ethod can provide a qualitative description of the average scattered 

power, even w hen the surface correlation-length is com parable to the 

electrom agnetic wavelength. In the horizontal polarization case, this 

description is obtained by using the Kirchhoff approxim ation w ith the 

correction for shadow ing derived in (W agner, 1967). In the vertical 

polarization case on the other hand, the Kirchhoff m ethod often gives a 

better estim ate to the backward scattered pow er w hen the shadow ing 

correction is not used.

The results for Gaussian rough surfaces w ith very large slopes 

illustrate the enhanced backscattering reported in the literature (O'Donnell 

and M endez, 1987). The results for these surfaces also show how  the 

correction for shadowing presented in Chapter 5 is close to the correction 

for shadow ing  derived  in (W agner, 1967). W hereas the  correction 

presented in C hapter 5 for m ultiple-reflections, at low er frequencies 

describes the angular distribution of the enhanced backw ard scattered 

power.

In the concluding chapter. Chapter 7, the main results of this study are 

presented, the previous literature is reviewed in the light of the present 

findings, and the thesis concluded with a general discussion of the work.
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2
Numerical simulation of rough 
surface scattering.

In th is chapter we p resen t the m agnetic-field-in tegral-equations 

(MFIEs) for a two-dimensional surface. This is followed by a discussion of 

the m ethod of generating the G aussian rough  surfaces used  in  our 

numerical simulations of rough surface scattering, and the procedures used 

to validate the height d istribution and autocorrelation function of the 

generated surfaces. The starting-point for the num erical solution of the 

MFIE is the approxim ation of the continuous equation  by a m atrix- 

equation. We use the extinction theorem  to verify that ou r discrete 

approxim ation of the MFIE is a good one. C ontour-plots of the total 

electromagnetic field in the vicinity of the surface boundary show how our 

num erical solution for the scattered field beneath the perfect conductor 

closely equals m inus the incident field, a property of the exact solution of 

the MFIE.

24  The magnetic-field'integral-equations for a two-dimensional 

surface.

Two forms of the two-dim ensional, m agnetic-field-integral-equation 

(MFIE) are used in this study. One of them, equation (2 1), is appropriate 

w hen the incident wave is vertically polarized (Poggio and Miller, 1973; pp. 

173 -176);

J(x) = 2Hi(x) - ^  j  J(x’) ((z - z') - (x - X ') dz '/d x ) d x ', (21)
J - o o
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and the other, equation (2-2), is appropriate when the incident wave is 

horizontally polarized;

J(x) = c o se M z /d x )
Vl + (dz/âxŸ

- ^  (  J(x’) ( (z - z ') - (x - x') dz/dx)
J - o o

1 4- {dz'/dxŸ  
1 + {âz/âxŸ

dx’.

(2 2 )

Here, z and d z /d x  are the height and slope of the surface at x, r and r' are 

position vectors of the surface at x and x% is the incident magnetic field 

at the surface, Hj(^) is the first-order Hankel function of the second-kind 

(Abramowitz and Stegun, 1970), k is the electromagnetic wavenumber for 

the medium above the surface boundary, 0̂  is the angle of incidence of the 

incident wave and J is the surface current density.

X' X

Fig. 21. The geometry of the rough surface scattering problem.
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The geom etry of the problem is illustrated in fig. 21 . In the figure the 

subscripts "v" and "'h" denote vertical and horizontal polarization.

The first term  on the right-hand-side (RHS) of (21) and (2-2) is the 

Kirchhoff approximation. Only the component of the m agnetic field in the 

plane tangent to the surface contributes to J, and this is w hy in  (2-2) the 

Kirchhoff approxim ation is a function of the surface slope. The second 

term  on the RHS of the MFIE describes the contribution to the surface 

current from the rest of the surface. W hen the curvature at every point on 

the surface boundary is very small, the geometric term in  the integrand of 

the MFIE makes this contribution to J of second-order im portance (Poggio 

and Miller, 1973). For the surfaces we have considered this contribution is 

not of second-order importance and the MFIE m ust be solved.

We cannot num erically solve the MFIE for an infinite length  of 

surface; the integral in (11) m ust be truncated at some point. The solution 

of the truncated  integral-equation is the surface current induced on a 

isolated, patch of surface. To guard against scattering from the patch edges 

the am plitude of the incident wave is chosen to fall off sm oothly to 

negligible levels at the ends of the patch. In our sim ulations the incident 

wave is tapered according to (Thorsos, 1988)

H>(x, z) = Ho e-w(x, z) eik(xsinei + zcos0i).(l - a),

w here,

,  V ( X - z tanG^ )  ̂
w(x, z) = -̂------- ------ — ,

T

a = 2w (x>z)-l (2.3)

(kycosG^ ^

The taper is a Gaussian w ith a decay determ ined by the param eter y. The 

phase term  a  introduces a curvature to the phase-front of the incident
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wave, which ensures that to order l/(kycos6^)^ the incident w ave is 

consistent w ith  the Helm holtz wave equation (Thorsos, 1988). In our 

simulations, the integral is truncated at ±L = ±25X and a y = 12X is used. For 

this value of y the wave equation is satisfied to order 10"  ̂w hen 0̂  = 70°.

2-2 Generating a Gaussian rough surface.

In  this s tudy  "G aussian rough  surface" refers to a statistically  

stationary, random  surface w ith a Gaussian spectrum  and surface heights 

normally distributed about zero. To generate a Gaussian rough surface w ith 

a know n correlation-length and height distribution at the sam ple points, 

we generated a white, Gaussian, series and filtered it to obtain a regularly 

sam pled surface w ith  the correct correlation-length Ç and RMS height a  

(Axline and Fung, 1978). A Gaussian rough surface w ith a RMS height of 

0-2X and a corre lation-leng th  of 0-4A, w as generated  by filtering  

approxim ately 10,000 noise samples to acquire the height of the surface at 

each sam ple point. Rough surfaces w ith  a RMS height and a correlation- 

length different from this one, were obtained by scaling the vertical and 

horizontal dimensions of the generated surface.

In fig. 2 2, we present the height distribution (Papoulis, 1984) of a 3000 

correlation-length  long section of rough  surface generated  by this 

procedure for a RMS height of 0-2X and a correlation-length of 0-4A.. In the 

figure, the curve is the distribution function of a Gaussian rough surface, 

and the dots are the height distribution computed from a 3000 correlation- 

length long section of the generated surface. A quantitative m easure of the 

error in  the height distribution of the generated surface, was obtained using 

the Chi-squared goodness of fit test (Bendat and Piersol, 1986). The height 

distribution of the rough surfaces used in our num erical sim ulations of 

rough surface scattering are consistent at the 5% significance level (Bendat
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and Piersol, 1986), (Priestley, 1987) w ith the height d istribu tion  of a 

Gaussian rough surface .

1.0 w

0.75

0.5

0.25L_

0.0
1.5 3.00.0-3 .0 -1.5

normalized surface height

Fig. 2*2. The height distribution of a Gaussian, rough surface. In the figure the 
curve is the distribution function of a Gaussian rough surface; the dots are the 
height distribution computed from a 3000 correlation-length long section of 
generated surface.

We present in fig. 2-3 the autocorrelation function of a Gaussian rough 

surface, and the com puted correlation coefficients for a 3000 correlation- 

length long section of the generated surface. The dots in the figure are the 

correlation coefficients of the generated surfaces, curve (A) is the Gaussian 

autocorrelation function, and curve (B) is twice the RMS error in  the 

estim ate (Priestley, 1987) for a 3000 correlation-length long sam ple of a 

Gaussian rough surface (Appendix B). The autocorrelation function of the 

surfaces used in our num erical simulations of rough surface scattering are 

consistent at the 5% significance level w ith the autocorrelation function of 

a sample of a Gaussian rough surface. In fig. 2 3, for example, it can be easily
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verified that the difference betw een the correlation coefficients of the 

generated surface and their theoretical values, curve (A), is less than the 

error in the estimate, curve (B).

co
ÜcDH-

0.75

co
o
0) 0.5
L_L_o
Üo
g 0.25

■g
N

I  0.0
oc

-0 .2 5
0.0 1.0 2.0 3.0 4.0 5.0 6.0

normalized log units

Fig. 2 3. The autocorrelation function of a Gaussian, rough surface. In the figure 
curve (A) is a Gaussian autocorrelation function, (B) is the error in the 
estimate; the dots are the computed correlation coefficients for a 3000 
correlation-length long section of generated surface.

2-3 The discrete equation.

The starting-point for the num erical solution of the MFIE (11) is the 

approxim ation of the continuous equation  by  a discrete equation. We 

approxim ate the MFIE at sample points x^ n  = 0, 1 ,..., N-1, by a 3-point, 

Gaussian quadrature (Abramowitz and Stegun, 1970) over subsections Ax 

along the x-axis (Baker, 1977). In this maimer, the MFIE is replaced by an 

equation of the form
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N-1
2H^(xn) -  J(^n) + ^(^n/^m)J(^m)-

m =0
(2 4 )

Here, K(%ri,x^) is the weighted value of the kernel of (1*1), J is the surface 

current density, and is the value of the first term on the RHS of the 

MFIE at the sample points. A Ax with a variable length is used. The length 

of Ax is determined by requiring subsections along the surface contour A1 to 

be fixed, (see fig. 2-4). This ensures that, even w hen the surface is very 

rough, the incident field at the surface boundary and the integral in the 

MFIE are sufficiently sampled along the surface contour.

^m-1 ^m+1 ^
Fig. 24 Locating the sample points.

We may be able to solve the discrete equation (24) exactly, but there is 

no guarantee that solution to (24) will be a good solution to the MFIE (11). 

There are at least three sources of error. By projecting the integrand of (14) 

onto a finite basis we introduce error in the quadrature. Also, the left- 

hand-side (LHS) of (14) is approximated in (24) w ith its value at a discrete 

num ber of points. Finally, we commit further numerical errors in the 

evaluation of (24). We seek to minimise the first error by using a Gaussian 

quadrature to approxim ate the integrals in (14); the first two errors by 

having dense sam pling; and we m inimize the th ird  by evaluating the 

sums in double-precision.
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Aside from the errors incurred in  the discretization of the continuous 

equation, is the accuracy w ith which we can numerically solve the matrix- 

equation (2-4). One hopes that w hen the error in the num erical values of 

the incident field is small, the error in the solution of (2-4) will be small 

too. This is sure w hen the condition-number of the m atrix in (2 4) is small 

(W ilkinson, 1963). The m atrix condition-num ber is equal to the square- 

root of the ratio of its maximum and m inim um  singular values. We chose 

to solve the MFIE, because of the distribution of the matrix singular values 

of the operator (I + K). We could, for example, have chosen to solve the 

electric-field-integral-equation (EFIE), since this too w ould give J (Poggio 

and Miller, 1973). However, the undesirable property of the EFIE is that the 

accum ulation point (Kreysig, 1978) of its m atrix singular values is zero 

(Jones, 1979). The accumulation point of the singular values of (2-4) on the 

other hand is unity  (Jones, 1979). Therefore, given a choice of integral 

equations to solve, we consider the MFIE a better bet than the EFIE (Marks, 

1986), (Baker, 1977).

The length  of A1 will be an im portan t factor in determ ining the 

accuracy of (2-4). However, since there is no guarantee that increasing the 

density of the sample points will reduce the error betw een the numerical 

solution for J and the solution of the MFIE (Sarkar, 1983), (Reddy, 1986), it 

seems to us a very difficult m atter to determ ine the error in  the surface 

current density directly, so we have not attem pted to do this. We take the 

view  that the degree to w hich we can zero the total field beneath  the 

surface boundary  is the best w ay of determ ining the quality of both the 

num erical solution for the surface current density and the scattered field. 

We have found that a A1 of 0-2X gives a good approxim ation  to the 

scattered field beneath the conductor for rough surfaces w ith a RMS slope 

as large as 45° and for angles of incidence from 0° to 70°. W ith a A1 of 0 2X 

the sample points along the surface contour are spaced approximately 0 06X 

apart.
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In § 2 2 we described how we generated a regularly-sampled surface. To 

obtain the surface at the quadrature points, a cubic-spline (Wilkinson and 

Rheinsch, 1971) was interpolated through the regularly-sam pled surface. 

The surface slope was found by differentiating the spline polynomial.

2*4 The scattered field near to the rough surface boundary.

At a perfectly-conducting boundary the total electric field in the plane 

tangent to the surface is zero (Kong, 1986),

n(r)x(E S(r) + E»(r)) = 0. (25)

Here, n is the vector normal to the surface, E® is the scattered electric field, 

E  ̂ is the incident electric field, and r is a position vector of the surface. The 

magnetic field on the other hand, satisfies the boundary condition

J(r) + n (r)x (H S (r) + H ‘(r)) = 0. (26)

However, for a two-dim ensional surface the polarization of the scattered 

and incident fields are the same and the boundary conditions (2-5) and (2-6) 

reduce to scalar equations. In the horizontal polarization case, the electric 

field lines are perpendicular to the x-z plane of fig. 2*1 and the boundary 

condition (2 5) reduces to the scalar equation

ES(x) + Ei(x) = 0. (2-7)

This is the scalar Dirichlet boundary condition. In the vertical polarization

case, the magnetic field lines are perpendicular to the x-z plane and (2 6)

reduces to the scalar equation
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J(x) - HÎ(x) + HS(x) = 0. (28)

A more often quoted boundary condition for the vertical polarization case 

is the scalar N eum ann boundary condition,

4 f W ± l M  = 0. (2.9)
d n

Here, d /d n  = n.V. The boundary condition (2*9) is derived in the following 

manner. For a vertically polarized wave the electric field above the surface 

boundary is from Maxwell's equations

lœeo \ dz dx ^
(2.10)

The boundary  condition (2 9) is obtained by substituting (2*10) into the 

electric field boundary condition (2-5).

The scattered field beneath the boundary  of an infinite, perfectly- 

conducting, surface is equal to minus the incident field, a result known as 

the extinction theorem  (Kong, 1986). We have used the extinction theorem 

to check our numerical solution of the MFIE. We consider that examining 

the degree to which the scattered field cancels the incident field beneath the 

surface boundary gives the best indication to the quality of the numerical 

solution of the MFIE. We have found that the solutions for the surface 

current density give a good approximation to the scattered field beneath the 

perfect-conductor for rough surfaces w ith a RMS slope as large as 45° and 

for angles of incidence from 0° to 70°. This will be illustrated in  this section 

w ith contour plots of the total field in the vicinity of the surface boundary. 

The contour plots also show how the field at the surface boundary is in 

agreem ent w ith  the D irichlet boundary  condition  in  the  horizontal
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polarization case, and the N eum ann boundary condition in  the vertical 

polarization case.

The electric-field scattered by a perfectly-conducting, two-dimensional, 

rough surface illum inated by a horizontally polarized wave is obtained 

from the integral (Poggio and Miller, 1973), (see Appendix C),

ES(R) = ^  I J(x') dx'. (211)

Here, J is the solution of the MFIE (2 2), z' and  d z '/d x  are the height and 

slope of the surface at x', K is position vector of the surface a t x', R is the 

vector to a point at (X, Z) above or below the surface boundary, is the 

zero-order Hankel function of the second-kind (Abramowitz and Stegun, 

1970), Z q is the characteristic im pedance of free space, k is the 

electrom agnetic w avenum ber and  0  ̂ is the angle of incidence. In  the 

vertical polarization case, the scattered magnetic field is computed from the 

integral (Poggio and Miller, 1973),

(2) ^

H S (R )= ik  ( ( Z - z ') - ( X - x ') g . ) d x '.  (212)

(2\
H ere, H^ is the first-o rder H ankel function  of the second-kind  

(Abramowitz and Stegun, 1970) and J is the solution of the MFIE (21).

The q u ad ra tu re  used  to approxim ate the MFIE is also used  to 

approxim ate the scattered field integrals. For example, the integral (211) is 

approxim ated w ith  the sum

N-1
E®(R)= E  K(R, xm)j(xm), (213)

m=0
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w here K (R ,x^) is the weighted value of the kernel of (211). The scattered 

fields were computed with the solution for surface current density obtained 

by LU decomposition. For the geometries we have considered, the discrete 

approxim ation of the MFIE is not ill-conditioned, and J solves the discrete 

equation  to w ith in  the num erical accuracy of the double-precision, 

floating-point arithmetic used in its computation.

In fig. 2*5 we show one example of a grey scale plot of the normalized 

m odulus of the total electric field.

(2.14)
En

for a horizontally polarized wave incident at an angle of 45° on a Gaussian 

rough surface w ith a RMS slope of 45° and a correlation-length Ç of 0-8X. 

The white line in the plot is the surface boundary. It can be easily verified 

from fig. 2-5 that the total electric field beneath the perfect-conductor is zero 

to w ithin  the resolution of the plot of 0 .11 Eg I. Furtherm ore, to a good 

approxim ation the total electric field just above the surface boundary is 

correctly zero

In fig. 2-6 we show one example of a grey scale plot of the normalized 

m odulus of the total magnetic field.

(2 ..S
Ho

for the same surface considered in  fig. 2*5 illum inated by a vertically 

po larized  wave. H ere, the total m agnetic field beneath  the perfect- 

conductor is zero to w ithin the resolution of the p lo t of 0.11 Hg I . Near to 

the perfect-conductor
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Fig. 2 5. The normalized modulus of the total electric field in the vicinity of a rough surface 
with a RMS slope of 45° and a correlation-length of 0-8X, when a horizontally polarized 
wave is incident from the right with an incidence angle of 45°.
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Fig. 2 6. The normalized modulus of the total magnetic field in the vicinity of a rough surface 
with a RMS slope of 45° and a correlation-length of 0 8X, when a vertically polarized wave 
is incident from the right with an incidence angle of 45°.
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the N eum ann boundary condition requires the total magnetic field to have 

the same value at points along the vector norm al to the surface. It can be 

verified from fig. 2-6 that the contours intersecting the perfect-conductor 

are correctly perpendicular to the surface boundary.

2-5 Chapter Summary.

In this chapter we presented the num erical m ethod used to solve 

m agnetic-field-integral-equation for a tw o-dim ensional, G aussian rough 

surface. A quadrature that accommodates rough surfaces w ith large slopes 

is used to represent the continuous equation as a matrix-equation. For the 

surfaces we have considered, the matrices generated in the discretization of 

the continuous equation are not ill-conditioned, and we have found that 

LU decom position solves the discrete equation to w ith in  the num erical 

accuracy of the double-precision, floating-point-arithm etic used  in its 

com putation. C ontour-plots of the total electrom agnetic field in  the 

vicinity of the surface boundary were used to show how  our num erical 

solution for the scattered field closely equals m inus the incident field 

beneath  the perfect-conductor. We consider that the closeness of the 

scattered field to m inus the incident field, a property of the exact solution 

of the MFIE, is strong evidence that our discrete approxim ation of the MFIE 

is a good one.
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3
Iterative solution of the 
magnetic-field-integral-equation

The p r in c ip a l p ro b lem  in  the  n u m erica l so lu tio n  of the  

electrom agnetic-field integral equations is that very large m atrices are 

generated, even for m oderately sized two-dim ensional surfaces. Direct- 

m ethods of solving large m atrix-equations can consum e substan tia l 

com puter resources, and there is considerable interest in  using iterative- 

m ethods to solve these equations that one hopes will give a good estimate 

of the so lu tion  in  rela tively  few iterations, thereby reducing  the 

com putational requirement.

In this chapter we exam ine tw o iterative m ethods of solving the 

m agnetic-field-integral-equation (MFIE); the N eum ann expansion, w hich 

has been used to formally represent the solution to the continuous MFIE; 

and  the conjugate-gradient m ethod, a procedure for solving m atrix- 

equation whose convergence is in theory sure.

3*1 The numerical calculation of rough surface scattering by the 

Neumann expansion.

A na tu ra l cand idate  for an ite rative  so lu tion  of the  d iscrete  

representation of the MFIE is the N eum ann expansion used by  Holliday 

(1985), and H olliday et al (1987). However, although the expansion has 

been used to formally represent the solution to the MFIE (Brown, 1982), 

there is no proof that the expansion, either of the MFIE or its discrete 

representation converges. The convergence or otherwise of the discrete 

case cannot prove the convergence or otherwise of the continuous case
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and vice versa. On the other hand, the failure of the discrete case to 

converge w ould  provide strong evidence that the convergence of the 

continuous case was not generally true. M oreover, if the convergence of 

the discrete case is unsure, it w ould be better in numerical work to replace 

it w ith  an iteration whose convergence was certain. We have examined 

the convergence and rate of convergence of the N eum ann expansion 

applied to the discrete representation of the MFIEs for Gaussian, rough 

surfaces. We have found that w hen the surface structure is of the same 

dimensions as the electromagnetic wavelength, the series diverges rapidly.

To solve the MFIE numerically, (11) is approxim ated w ith the discrete 

equation
1^1

(3.1)2H^(xjJ -  J(xn) + ^  K(^n/^m ) J(^m)* 
m =0

The matrix K is bounded, so for every J there is a positive constant a  such 

that (Stakgold, 1979),

"N -1 N-1 2" 1/2 ■ N-1 1/2

I %  K(xn,Xji^) J(xm) < a %  ( J(^m) /
- n=0 m =0 _ -  m —0 —

= I lig i I < a l  IJI I. (3.2)

In the N eum ann expansion the solution J(xj^) of the m atrix-equation (31) 

is the limit of the sequence Jk, k = 0 ,1 ,..., «>, obtained from the iteration

N-1
Jk+l(^n) = 2H^(xn) - %  K(xi^,Xm) Jk(xm)

m =0
(3.3)

The iteration converges if a  < 1. This is true for arbitrary Jq (Kreysig, p. 375, 

1978). Furtherm ore,

g l l KI I
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Therefore, a norm  of K less than unity  is a sufficient condition for 

convergence. The only algorithmic m ethod we are aware of to determ ine 

the norm  of K directly is to determ ine its singular values, (K is no t 

H erm itian  sym m etric), (Schilling and  Lee, 1988), (W ilkinson and  

Rheinsch, 1978). Num erically, this requires essentially the same effort as 

com puting the inverse of K; if it was easy to determine a-priori the norm  

of K we w ould not require an iterative solution to (31).

We need a step-by-step m ethod of identifying divergence. At each 

iteration we substitute Jĵ  in (3-3) to generate the quantity

N-1
2Hk(xn) = Jk(^n) **■ X  Jk(^m)* (3*5)

m=0

We then form the norm alized error

We will show that satisfies the inequality

ek^akeQ , (3-7)

and if the iteration (3 5) is initialised by setting Jq = 2H^, Eq satisfies the 

inequality

£q < a . (3-8)

The inequalities (3 7) and (3-8) provide sufficient step-by-step tests for 

divergence. If > Eq, or Eq > 1, then a  > 1 and the iteration diverges. The

inequalities (3*7) and (3 8) are obtained as follows. From (3*6), (3-3) and (3-5)

we have
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ih V

But, from (3 3)

l l Jk , i - Jk N = IIK(J^-J , . l ) l l

< a  I I T k -L l ' '

= a  I I K O ^ .i - W  I I 

... S a k | | J j - J o l l ,  (310)

and (3 7) then follows by reusing (3-9). We have from (3 9) and (3 3) that if

Jo = 2Hi

s o ^ '. 'J r iq L L  
21 i r f l l

I l2H> + Jo+igol I
21 IHfll

I IKHM I 

I I l f  II
(311)

and (3*8) follows using (3 2). From (3 9) it is also apparent that £|  ̂ does not 

m easure the closeness of Jj, to the solution J(xn). However, ej  ̂ 0 when Jĵ  

-> J(xn), and we take the smallness of £j  ̂to indicate that Jj  ̂ is close to the 

solution of (31)

In fig. 3-1 w e show the norm alized error £ĵ  generated by the N eum ann 

expansion at each iteration, for a vertically polarized, electrom agnetic 

w ave (2-3), norm ally incident on a G aussian rough surface. The figure
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shows four cases w ith  the same correlation-length of 0-4X, bu t w ith  

d iffe ren t RMS heigh ts. The RMS slope of the surface is given by 

arctan(V2a/Ç); and (A) illustrates a RMS slope of 20°, (B) a RMS slope of 

25°, (C) a RMS slope of 35°, and (D) a RMS slope of 45°.

10.0-q

o
L_L_<D

“O<D
N
“Ô
EL_oc

0.01
3020100

number of iterations

Fig. 31. The convergence of the Neumann expansion. The graph shows the 
normalized error with the number of iterations k. The correlation-length is 
04 wavelengths and (A) the RMS slope is 20°; (B) the RMS slope is 25°; (C) 
the RMS slope is 35°; and (D) the RMS slope is 45°.

Three curves, (B), (C) and (D) clearly diverge. W ith a  < 1 one of the cases, 

curve (B), satisfies the inequality (3-8), but fails at the second iteration to 

satisfy the inequality (3 7), the rem aining tw o fail to satisfy both  the 

inequality  (3-7) and (3-8). One of the cases curve (A) does apparently  

converge. M oreover the convergence is rapid; the norm alized error is less 

than 0.01 w ithin 13 iterations.
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The RMS slope is clearly a factor in determ in ing  w hether the 

expansion diverges, but we have found that the rate of divergence depends 

upon the surface correlation-length too. In fig. 3-2 we show four cases w ith 

a correlation-length of 0-8X. The RMS slope of curves (A) - (D) in  fig. 3-2 is 

the same as curves (A) - (D) in fig. 31.

10.0-q

0.01
0 10 20 30

number of iterations

Fig. 3 2. The convergence of the Neumann expansion. The graph shows the 
normalized error with the number of iterations k. The correlation-length is 
0*8 wavelengths and (A) the RMS slope is 20®; (B) the RMS slope is 25®; (C) 
the RMS slope is 35®; and (D) the RMS slope is 45®

In fig. 3*2 two of the curves, (C) and(D) clearly diverge, but at a rate which is 

m arginally  slow er than  curves (C) and (D) in fig. 3-1. The apparent 

convergence of curve (A) in fig. 3*2 is rapid, and m arginally faster than 

curve (A) in fig. 31 . The expansion also apparently converges in  fig. 3-2(B), 

whereas in  fig. 3-1(B) it does not. However, since fig. 3*2(B) m arginally fails 

at the second step to satisfy the inequality (3-7) w ith a  < 1, we suspect that it
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would diverge if we took sufficient iterations.

We have show n that w hen the surface structure  is of the sam e 

dimensions as the electromagnetic wavelength, the N eum ann series may 

diverge rap id ly . The restriction  norm ally  placed on  the N eum ann 

expansion, i.e. g / X  «  1 and a /Ç  «  1, are lim itations that perm it us to 

ignore all bu t the first two terms. In our work here, we have concentrated 

on cases w here the RMS height and correlation length are of the same 

order, and of the same order of the electromagnetic w avelength, because 

we anticipated that this w ould be a region of the param eter space where 

the N eum ann expansion m ay have difficulties converging. We have 

found that the expansion m ay provide a rapid  num erical solution for 

small values of a /^ .a n d  a. To the extent that the num erical representation 

is a good approximation to the MFIE (1-1), we also consider that our results 

provide strong evidence that the N eum ann expansion cannot be used 

w ithout qualification to provide a form al solution to the rough surface 

MFIE.

3*2 The conjugate-gradient method, and avoiding rounding errors 

by using Gram-Schmidt orthogonalization.

The conjugate-gradient m ethods (Hestenes, 1980), (Sarkar et al, 1988) 

are iterative m ethods of solving matrix-equations w hose convergence are 

in theory sure. There are m any different conjugate-gradient m ethods to 

choose from. Some conjugate-gradient m ethods require the m atrix in  the 

equation to be positive-definite. The matrices in electromagnetic scattering 

problems are not positive-definite, and for the non-positive-definite case a 

suitable conjugate-gradient m ethod to use is given in  (Hestenes, 1980, eqn. 

12.7(a) - (d), p. 297). We will refer to this m ethod as the least-square- 

conjugate-gradient (LSCG) method.
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In sp ite  of the theoretical assurance of convergence, it is not 

uncom m on to find in the literature references to the iteration diverging 

(Peterson and Mittra, 1984), (Peterson and Mittra, 1985), (Sarkar et al, 1988). 

We have ourselves been applying the LSCG m ethod to the problem  of 

scattering from  rough surfaces, and have found that for large surfaces 

convergence is not sure. The LSCG m ethod proceeds by generating at each 

iteration a conjugate-vector that satisfies some orthogonality properties in 

theory. The convergence is sure by virtue of these properties. However, the 

conjugate-vectors are generated recursively, and as a consequence of 

rounding errors, may fail to satisfy their theoretical properties (Scott and 

Peterson, 1988). In this section we use Gram-Schmidt orthogonalization to 

enforce the orthogonality properties at each iteration. In  fact, a Gram- 

Schm idt conjugate-gradient m ethod for the positive-definite case w as 

given som etim e ago by H estenes (1980), and we have adap ted  this 

procedure for the non-positive-definite case. We call this m odified LSCG 

m ethod the Gram-Schmidt, least-square, conjugate-gradient (GS-LSCG) 

method. We will show that in the absence of rounding errors, the GS-LSCG 

m ethod and  the LSCG m ethod will determ ine the sam e sequence of 

conjugate-vectors. In this respect the GS-LSCG m ethod is not a new 

conjugate-gradient method. However, in  the presence of rounding errors 

we have found the GS-LSCG m ethod to be very m uch less susceptible to 

rounding errors than the LSCG method.

The LSCG and the GS-LSCG methods are applied to solving the matrix- 

equation

Lu = f. (312)

In this study we shall only consider the case where the operator L is an N 

by N, non-singular matrix. The conjugate-gradient m ethods are iterative 

m ethods of solving the m atrix-equation (312). At the iteration, the 

m ethods determ ine a conjugate-vector pj^ in the dom ain of L, and a vector
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Lpi^ in the range of L. The estim ate uj^ to the solution of the m atrix- 

equation is determined as an expansion of the vectors pj, j = 0 , k-1.

k-1
Z  Pj (313)

j=0

The coefficients aj, j = 0, k-1, of the expansion (3-13) are calculated to

force the error

r]  ̂= f - Luk, (314)

between f and Lu^ orthogonal to the vectors Lpj, j = 0 , k-1, i.e.

< r] ,̂ Lpj > = 0, for j = 0,..., k-1. (3-15)

This is the natural criterion to choose for determ ining the coefficients aj, j 

= 0, ..., k-1, for the following reason. Any set of N , linearly independent 

vectors in  the range R(L) of L are a basis spanning R(L) (Kreysig, 1978). At 

the N th  iteration of the conjugate-gradient method, the N  vectors Lpj, j = 

0, ..., N-1, in the range of L will have been determined. M oreover, as we 

will show later these vectors are linearly independent, and, therefore, span 

R(L). At the N^^ iteration, the estimate ujq to the solution of the matrix- 

equation (312), the difference betw een the vectors f and L u ^  is the error 

r%q. W ith the coefficients of the expansion determ ined according to (3-15), 

the error rjq is either orthogonal to the space spanned by Lpj, j = 0,..., N-1, 

else it is zero. However, since the vectors Lpj, j = 0 ,..., N-1, span R(L), the 

only vector in R(L) that can satisfy (3 15) is the zero vector. W ith zero on 

the left-hand-side (LHS) of (314), uN  solves the m atrix-equation (312) 

uniquely  for non-singular L. In this m anner, the conjugate-gradient 

m ethod determ ines the exact solution of the m atrix-equation in at m ost N  

iterations.
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The condition (315) can be w ritten in terms of the coefficients aj, i = 0, 

k-1, by substituting the right-hand-side (RHS) of (314) into the LHS of 

(315),

<rj^, Lpj> = <f, Lpj> - <Luj^, Lpj>

k-1
<f, Lpj> - %  aj <Lpi, Lpj>.= 0, for j = 0 , k-1. (316)

i=0

The second line of (316) is obtained from  the first line by using the 

expansion (313) for the solution uk- As (316) stands, the coefficients aj, j = 

0, ..., k-1, are them selves the solution of a system  of linear equations. 

However, the vectors pj, j = 0 ,..., k-1, determined by the conjugate-gradient 

m ethod  are term ed  "conjugate-vectors", because they  satisfy  the 

orthogonality property

< Lpi, Lpj > = 0, for i j. (317)

This property diagonalizes (316). It also guarantees that the vectors Lpj, j =

0,..., k-1, are linearly independent, as we had required earlier. Applying the 

property  (3-17) to the RHS of (316), the coefficients aj, j = 0, ..., k-1, are 

determ ined according to

< r^, Lpj > = <f, Lpj> - aj I I Lpj I I  ̂= 0, for j < k. (318)

The solution

3j = < f, Lpj > /  I I Lpj I 12, for j < k, (3-19)

solves (318), as may be verified by substitution. An im portan t fact to

recognize from  (319) is that only the vector p]  ̂ is used to compute aj.. 

Therefore, if we have already generated the sequence of vectors pj, j = 0,...,
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k-2, and by some means generate a new vector we need only deduce 

the coefficient to augment the solution (313) according to

u k =  uk-l+  ak_i Pk-l- (3 20)

Thus we have an iterative m ethod of solving (3-12). Similarly, the error r^ 

is determ ined recursively

rk = f-Luk-i- ak-1 Lpk-1

= Tk-1 - ak-lLpk-i. (321)

The first line of (3 21) is obtained by substituting the RHS of (3*20) into the 

LHS of (314). The second line follows from  the definition of the error 

vector r ^ - i ' We will make use of (3 21) below. The conjugate-gradient 

m ethod starts w ith  an initial guess uq at the solution to (312), and 

determines the first conjugate-vector as

PO = (3-22)

Here, is the complex-conjugate transpose of L.

The difference betw een the LSCG and the GS-LSCG algorithm s is the 

m anner in  which the conjugate-vectors pj, j = 1 ,..., n  < N  are determined. 

At the kth iteration, the GS-LSCG m ethod determines the conjugate-vector 

P kas
k-1

Pk = L ® rk -X  TjPi (3 23)
j=0

k-2
= L®rk - Yk-1 Pk-1 - Z  ïj Pj" (3 24)

j=0
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The coefficients Yj, j = 0, k-1, in (3 23) are determ ined to force

orthogonal to Lpj, j = 0, k-1. This guarantees that the vector pj^ satisfies

the orthogonality  property  (317). The property  (317) in  term s of the 

coefficients j = 0,..., k-1, is

k-1
< Lpi^, Lpj > = <LL^rj^, Lpj > - ^  Ti< Lpi, Lpj >, for j = 0,..., k-1. (3-25)

i=0

The RHS of (3-25) is obtained by operating on both sides of (3-23) w ith L, 

and then form ing the innerproduct on the LHS of (3-25). However, if, by 

assum ption, the vectors Lpj, j = 0, ..., k-1, having been determ ined by the 

GS-LSCG prior to the k^h iteration, satisfy the orthogonality property (317), 

th en

< Lpk, Lpj> = < LL^ri^, Lpj >- ' ^ 11  Lpj I I ^ = 0, for j = 0,..., k-1. (3-26)

The RHS of (3*26) is obtained by applying the p roperty  (317) to the 

argum ent of the sum  in  (3-25). From (3-26), the orthogonality property 

(317) is guaranteed by determining the coefficients according to

< LL^rj^, Lpj> 

I I Lpj I I

Thus, if (3-17) is true for the vectors Lpj, j = 0 ,..., k-1, then by determining 

the coefficients Yj/ j = 0,..., k-1, according to (3 27), it is also true for Lpj, j = 0, 

..., k. But, for k = 1,

<Lpi, Lpo> = < L L \ ,  Lpo> - < L L % L p o >  | | | 12 ^  (3 28)
I I Lpo I
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and thus by induction (3 25), and hence (3 17) is true for all k. In fact, the 

vector Lpj^ is the component of LL^rj^ orthogonal to the orthogonal vectors 

Lpj, j = 0, k-1, (Schilling and Lee, 1985). This is a special case of Gram-

Schmidt orthogonalization, where the Gram-matrix for the vectors Lpj, j = 

0 , k-1, is diagonalized by virtue of the orthogonality property (317).

In the case of the LSCG m ethod, the conjugate-vector pj, is determined 

from the first two terms on the RHS of (3-24) with com puted according 

to (3 27). The only difference between the LSCG m ethod and the GS-LSCG 

m ethod is due to the last term  on the RHS of (3*24). However, we will 

show^ that this term is in theory zero, because the coefficients

7j = 0, for j = 0,..., k-2. (3 29)

In other w ords we will now show that the GS-LSCG m ethod and the LSCG 

m ethod are in theory the same. From (3-21), the vector Lpj in terms of the 

error vectors rj+% and rj is

Lpj = ( rj - ij+ i ) /  aj. (3 30)

W ith (3 30) substitu ted  into (3*27),the coefficients yj, j = 0, k-1, are

determ ined according to

<LL^rj^, (rj-rj+ i)>
Y j=---------------------- —

aj I I Lpj I

< L^rj,, L^rj^2> " < L^^k/ ^^^j^

3j I I Lpj I 1̂
(3.31)

From (3 23),

j-1
L^rj = Pj + X  Yi Pi » (3-32)

i=0
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and using (3 32), the innerproduct

<L ® rj,,p j+  X  YiPi> 
i=0

= < Lpj > + X  Yi < fk 'L p i>  
i=0

= 0, for j<k. (3*33)

The last line of (3 33) is a consequence of (315). Finally, applying (3-33) to 

the innerproducts on the RHS of (3*31), we have (3*29).

The subtlety of the LSCG m ethod is it is only necessary to determine the 

one coefficient to guarantee the orthogonality property  (317). This 

property of the conjugate-gradient m ethods was proved some time ago by 

Hestenes (1980). Hestenes considered a general form  of the conjugate- 

gradient algorithm, and derived many of the results in  a general way using 

a geometric interpretation of the iteration. The algebraic proof presented 

here, although less general than the one in  (Hestenes, 1980), allows us to 

contrast the methods explicitly. Whilst the LSCG m ethod and the GS-LSCG 

m ethod are in theory the same, we have found tha t in practice the GS- 

LSCG m ethod is less susceptible to rounding errors than the LSCG method. 

This point will be illustrated later on in this section.

The solution of the m atrix-equation (312) will not be known. So the 

best guide we have to the rate of convergence of the LSCG m ethod is to 

compute at each iteration the normalized error.
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The norm alized error e does not m easure the closeness of uj^ to the 

solution u. However, -> 0 w hen uj^ —> u, and we take the smallness of 

the error ej  ̂ to indicate that u]  ̂ is close to the solution of (312). This point 

was discussed in § 31 . In theory, the LSCG m ethod guarantees that the 

norm alized error satisfies the inequality (Sarkar, et al, 1981)

Gk<ek-1. (3-35).

Furtherm ore, in the absence of rounding errors the solution of (3-12) is 

obtained in at most N  iterations,

£n = 0. (3‘36)

We have applied the LSCG algorithm to the discrete approxim ation of 

the magnetic-field-integral-equation (MFIE) for a G aussian rough surface 

w here the RMS height and correlation-length are of the same order, and 

are of the same order as the electromagnetic wavelength. The procedure 

used to represent the MFIE as a matrix-equation is described in § 2*3. In the 

following examples, the rough surface was 50 electromagnetic wavelengths 

long and the matrix size N -  800 - 1000. In fig. 3*3 we show the normalized

error 6^, generated at each iteration. The figure shows four cases w ith the

sam e correlation-length Ç of 0-6 electromagnetic w avelengths, bu t w ith  

different RMS height a. The RMS surface slope is given by arctan(V2a/Ç) 

and curve (A) illustrates a RMS slope of 20°; (B) a RMS slope of 25°; (C) a 

RMS slope of 35°; and (D) a RMS slope of 45°. For the first 16 iterations the 

norm alized error satisfies the inequality (3-35). H ow ever, by the 21st 

iteration the norm alized error has failed the inequality (3*35) in all four 

cases.
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Fig. 3-3. The convergence of the least-square-conjugate-gradient method. The 
graph shows the normalized error eĵ  with the number of iterations k. The 
correlation-length is 0*6 wavelengths and (A) the RMS slope is 20®; (B) the 
RMS slope is 25®; (C) the RMS slope is 35®; and (D) the RMS slope is 45®

In fig. 3-4 we show the norm alized error ej  ̂ generated by the GS-LSCG 

algorithm  applied to the same four cases shown in fig. 3 3. For the first 16 

iterations the error in fig. 34(A) - (D) is the same as the error in fig. 3 3(A) - 

(D). How ever, in  contrast to fig. 3-3 the norm alized error in  fig. 3 4  

converges in all cases. In fact, in all the cases we have considered, we have 

never experienced any difficulties in  the convergence of the GS-LSCG 

m ethod. Furtherm ore, we have always found the GS-LSCG m ethod to 

reduce the norm alized error at each iteration, a theoretical property of the 

LSCG m e th o d . W e h ave  fo u n d  th a t  u s in g  G ram -S ch m id t 

orthogonalization to determ ine the conjugate-vectors ensures, a t least 

w hen N  -  1000, the innerproduct (3 17) is nom inally zero to 15 decimal
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places, the num erical accuracy of the double-precision, floating-point 

arithmetic used in the computations

L_o
L_(D

"O<D
N
*0
E
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0.001
30200 10

number of iterations

Fig. 3*4. The convergence of the Gram-Schmidt, least-square, conjugate- 
gradient method. The graph shows the normalized error with the number of 
iterations k. The correlation-length is 0-6 wavelengths and (A) the RMS slope 
is 20®; (B) the RMS slope is 25®; (C) the RMS slope is 35®; and (D) the RMS 
slope is 45®

The GS-LSCG m ethod does require nN  floating-point-operations per 

ite ra tion  m ore than  the LSCG m ethod , w here n  is the num ber of 

conjugate-vectors determ ined up  to that point, because there are n  of the 

coefficients yj to calculate. The storage requirem ent is larger too, because 

the vectors Lpj, j = 0 ,..., n-1 and pj, j = 0 ,..., n -1 , m ust be stored. This may 

prove to be a problem w hen the num ber of iterations required to obtain a 

good solution to (3-12) is of the order of the m atrix size N. However, in 

these situations direct solution m ethods w ould be more appropriate.
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A second problem  associated w ith  the convergence of the conjugate- 

gradient m ethod is the problem of the iteration stagnating, (Peterson and 

M ittra, 1985). A lthough round ing  errors m ay apriori be suspected as 

causing the iteration to stagnate, we have found that the effect of rounding 

errors is to initiate divergence, rather than  stagnation. For the cases we 

have considered we have not experienced the problem  of stagnation. We 

suspect that the nature of the scattering problem , and the m ethod used to 

approxim ate the continuous equation by a m atrix-equation are the factors 

that determine whether or not the iteration will stagnate.

3*3 The conjugate-gradient method for scattering problems 

that require solutions for several incident fields.

In m any electromagnetic scattering problems the solutions to the field- 

integral-equation for a surface w ith a particular geometry are required for 

several incident fields. LU decom position is a m ethod th a t allows the 

numerical solution for any incident field to be directly obtained. Also once 

N  iterations of the LSCG m ethod have been im plem ented for a particular 

incident field, the solution for an arbitrary incident field can also be directly 

obtained (Sarkar, 1983). H ow ever, the conjugate-gradient m ethod is 

advantageous w hen a good solution is obtained in n  «  N  iterations. So, in 

practice the m ethod is im plem ented for each incident field in tu rn  in the 

hope that the total num ber of iterations will still be m uch less than N.

In this section we describe how the conjugate-gradient m ethod is 

applied to scattering problem s where solutions are required for several 

incident-fields (Smith et al, 1989). In the follow ing discussion we will 

assum e that the Gram-Schmidt, least-square, conjugate-gradient m ethod 

(GS-LSCG) m ethod, or, in the absence of rounding errors, the least-square, 

conjugate-gradient (LSCG) m ethod has been applied to the matrix-equation
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Lu = f, (337)

for a vector f = fi- In determining a solution to (3 37) for f^, we determine a 

basis p -j, i = 0, q, spanning a subspace of the dom ain of L, and an 

orthogonal basis Lp^j, i = 0 , q, spanning a subspace of the range of L. The 

best linear estimate (Papoulis, 1984) in terms of the conjugate-vectors p-^, i 

= 0 , q, to the solution of (3-37) for f = f2, is the vector Uq2 that forces the 

error

ro2 = Luq2/ (3-38)

orthogonal to the subspace spanned by Lpij, i = 0 , q,

< ro2, Lpix> = 0, for i = 0 , q. (3-39)

As was discussed in § 3-2, the condition (3 39) is true for the initial-guess 

determined according to

q-1

UQ2 = Z  ^jl P jl' 
j=0

aji = < f2/Lpji > /  I I Lpji I 12. (3-40)

In solving for f% we have determ ined the inverse of L on the basis Lpx%, 1 = 

0, q. If Î2  occupies the subspace spanned by this basis, then uq2 is the 

unique solution of (3 37) for non-singular L. In the likely event of this 

being not the case, there is some solace from the fact that the search for 

o ther vectors pj2, j = 0, ..., n, can be confined to those that satisfy the 

orthogonality property

< Lpii, Lp]2 > = 0, for i = 0,..., q, and j = 0,..., n. (3 41)
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Initialized w ith  the initial-guess (3 40), the vectors pj2 , j = 0, n, 

determ ined by the LSCG m ethod will in theory satisfy (3*41), (Smith et al, 

1989). However, due to the effect of rounding errors, we have found it 

necessary to use Gram-Schmidt orthogonalization to guarantee (3-41). The 

algorithm  that results is the GS-LSCG m ethod initialized w ith uq2- In this 

case, Gram-Schmidt orthogonalization is used to force the vector Lpj^2 

orthogonal to the vectors Lp^j, i = 0, ..., q, and Lpj2, j = 0, k-1. In this

m anner the GS-LSCG m ethod is applied to solving the m atrix-equation 

(3 37) for each additional incident field.

We have applied this m ethod to solving the rough  surface scatter 

problem  for six waves incident at angles from 0° to 70°. The m ethod 

provides a m oderate im provem ent in  the rate of convergence w ith each 

additional incident field. However, this is offset by the increase in the 

storage and computation requirement discussed at the end of § 3-2.

3 4  The numerical calculation of rough surface scattering by the 

conjugate-gradient method.

The LSCG m ethod has been used to solve the m atrix-equations that 

represent the scattering of waves from thin w ire antennae (Sarkar and Rao, 

1984) and conducting and dielectric cylinders (Peterson and M ittra, 1984). 

For some of these structures they have show n rapid convergence, bu t there 

is no wide understanding of the range of geometries for which this is true, 

(Sarkar et at, 1981), (Peterson and M ittra, 1985). This section is concerned 

w ith the rate of convergence of the GS-LSCG m ethod applied to the discrete 

app rox im ation  of the MFIE for a G aussian  ro ugh  surface w here 

correlation-length and RMS surface height are of the same order, and of 

the same order as the electrom agnetic wavelength. For the surfaces we 

have considered, N  is typically 800 - 1000, and  good solutions m ay be
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obtained w ithin 20 to 40 iterations. We have observed that the rate of

convergence depends less upon the particular value of the RMS height and

correlation-length of the surface, but more upon th e ir  ratio. This ratio is

proportional to the RMS surface slope. We suppose that the reduction in

the rate of convergence with increasing RMS surface slope is related to the

degree of multiple-scattering at the surface boundary. We have found that

the size of the surface, which determines the matrix size N, does not affect
ir>

the rate of convergence. This^important, because the advantages of the the 

GS-LSCG m ethod then grows w ith N. The GS-LSCG method generates a 

solution at the kth iteration. To determine the closeness of the iterative 

solution to the solution of the m atrix-equation (31), we calculate the 

normalized error

£k =

N-1
X  I J ( x m ) - J k ( x m )

m=0_________________
N-1
X  IJ(xm )l^

m=0

1/2

_  I IJ-Jk

IJI
(342)

H ere, J is the so lu tion  of the m atrix -equation  ob tained  by LU 

decomposition. The matrix (I + K) in (31) is not ill-conditioned and we 

have found that LU decomposition solves the matrix-equation to within 

the numerical accuracy of the double-precision, floating-point arithmetic 

used in its computation. In this section, we present the behaviour of the 

average value of the norm alized error ek (3*42). The average error is 

computed from a sample size of 20.

We present in fig. 3 5 and 3-6 the average error for a vertically polarized 

wave incident at an angle of 45°. In all, six cases are shown. The three cases 

in fig. 3 5 have a correlation-length of 0 4X and the three cases in fig. 3-6
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have a correlation-length of O-SX. The RMS slope is given by arctan(V2a/Ç) 

and curve (A) is for a RMS slope of 25°, (B) a RMS slope of 35° and (C) a 

RMS slope of 45°. The figures show how the iteration yields an average 

error of less than 0*01 w ithin 35 iterations. The figures also show how the 

RMS surface slope is a dom inant factor in  determ in ing  the rate of 

convergence of the GS-LSCG method. The rate of convergence of the GS- 

LSCG m ethod is related to the conditioning of the m atrix (I + K), (Sarkar 

and Arvas, 1985). Physically, we consider that the degree of ill conditioning 

is related to the degree of multiple-scattering at the surface boundary.
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Fig. 3*5. The convergence of the conjugate-gradient method. The graph shows 
the normalized error with the number of iterations k for a vertically 
polarized wave incident at 45®. The correlation-length is 04 wavelengths and 
(A) the RMS slope is 25®; (B) the RMS slope is 35®; and (C) the RMS slope is 
45®.
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Fig. 3 6. The convergence of the conjugate-gradient method. The graph shows 
the normalized error e(k) with the number of iterations k for a vertically 
polarized wave incident at 45®. The correlation-length is 0*8 wavelengths and 
(A) the RMS slope is 25®; (B) the RMS slope is 35®; and (C) the RMS slope is 
45®.

We have found that the polarization of the incident wave does not 

significantly effect the rate of convergence. We illustrate this point in fig, 

3-7 w here we present the average norm alized error for a horizontally 

polarized wave incident at an angle of 45°. The three cases in fig. 3*7 have 

the same geometries as the three cases in fig. 3-5. It can be easily verified by 

com paring fig. 3 7 w ith fig. 3*5, that in cases (A) - (C) the error at each 

iteration is m arginally smaller in the horizontal polarization case than in 

the vertical polarization case. However, after the 10^^ iteration the rate of 

convergence is about the same for both polarizations.
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Fig. 3*7. The convergence of the conjugate-gradient method. The graph shows 
the average normalized error with the number of iterations k for a 
horizontally polarized wave incident at 45°. The correlation-length is 0 8 
wavelengths and (A) the RMS slope is 25°; (B) the RMS slope is 35°; and (C) 
the RMS slope is 45°.

We have applied the GS-LSCG m ethod to the discrete approximation of 

the MFIE for waves incident at angles from 0° to 70°. We have found that 

the angle of incidence does not significantly affect the rate of convergence. 

In fig. 3*8 we present three cases of the average norm alized error for a 

vertically polarized wave, normally incident on a Gaussian rough surface 

w ith  a correlation-length of 0-8X. Curve (A) is for a RMS slope of 25°, (B) a 

RMS slope of 35° and (C) a RMS slope of 45°. The same three cases for a 

w ave incident at an angle of 70° are presented in fig. 3-9 and the three cases 

for a wave incident at an angle of 45° are show n in fig. 3 6. It can be easily 

verified  by com paring fig. 3-6, fig. 3-8 and  fig. 3-9, that the average 

norm alized error at each iteration is similar to all three angles of incidence.
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We have applied the GS-LSCG m ethod to surfaces where N  is as large 

as 1800. We have found that the rate of convergence is largely unaffected by 

the size of the matrix. Figure 3 6(B), for example, shows the average error 

for a Gaussian rough surface w ith  a correlation-length of 0-8X and a RMS 

slope of 35°, illuminated by a vertically polarized wave incident at an angle 

of 45°. For the case in fig. 3 6(B) the matrix size N  is on average -800, and 

the average normalized error is less than 0*01 after 26 iterations. We found 

that w hen the GS-LSCG m ethod was applied to the MFIE for the same RMS 

slope, but w ith N  = 1755 the normalized error was reduced to less than 0 01 

w ithin 30 iterations.
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Fig. 3*8. The convergence of the conjugate-gradient method. The graph shows 
the average normalized error eĵ  with the number of iterations k for a 
vertically polarized wave incident at 0®. The correlation-length is 0*8 
wavelengths and (A) the RMS slope is 25®; (B) the RMS slope is 35®; and (C) 
the RMS slope is 45®.
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Fig. 3*9. The convergence of the conjugate-gradient method. The graph shows 
the average normalized error e(k) with the number of iterations k for a 
horizontally polarized wave incident at 70®. The correlation-length is 0 8 
wavelengths and (A) the RMS slope is 25®; (B) the RMS slope is 35®; and (C) 
the RMS slope is 45®.

The fact that the rate of convergence does not depend on the matrix size N, 

bu t only upon the surface geometry, is im portant because the advantages of 

the conjugate-gradient m ethod then grow s w ith  N .H ow ever, before 

discussing the com putational advantages of the GS-LSCG m ethod it 

necessary to first establish w hat is a "good solution". This is the subject of 

the next section.

3*5 Errors in the scattered far-field.

The principal quantity of interest to us, is the far-field scattered power. 

The calculation of the scattered far-field is described in C hapter 4.
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A lthough the differences betw een our iterated  solution to the discrete 

equation and its exact solution are small, it is possible that these differences 

m ay result in large errors in the scattered far-field, particularly w hen the 

scattered far-field is small. How ever, we have found that w hen the 

norm alized error between these currents is less than  0 01, the difference 

betw een the scattered powers is small, even w hen the dynamic range of the 

scattered power is as large as 50dB.

We present in figs. 310 the scattered pow er for a horizontally polarized 

w ave incident a t angle of 45° on a G aussian rough  surface w ith  a 

correlation-length of 0-8X and a RMS slope of 25°.
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Fig. 3 10. The scattered powers for a Gaussian, rough surface with a correlation 
length of 0*8 wavelengths and a RMS slope of 25® illuminated by a 
horizontally polarized wave incident at an angle of 45®. The curve is computed 
using the solution for J obtained by LU decomposition, and the dots are 
computed using the solution Ji2 obtained by the GS-LSCG method.
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The curve in  the figure is the scattered power com puted using the exact 

solution to the matrix-equation (3 1) obtained by LU decomposition, and 

the dots show the scattered power computed w ith the solution J j2 obtained 

by the GS-LSCG m ethod. In this case the norm alized  erro r £ 2̂ is 

approxim ately 0 05. It can be verified from fig. 310, that w hen the scattered 

pow er is above -20dB there is small difference betw een the scattered powers 

com puted w ith  the exact and iterated solutions. However, below  -20dB 

there is a clear difference between the scattered powers.

In  fig. 311 we present the scattered pow er for the sam e surface, 

com puted w ith the solution J20-
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Fig. 311. The scattered powers for a Gaussian, rough surface with a correlation 
length of 0 8 wavelengths and a RMS slope of 25® illuminated by a 
horizontally polarized wave incident at at an angle of 45®. The curve is 
computed using the solution for J obtained by LU decomposition, and the dots 
are computed using the solution J20 obtained by the GS-LSCG method.

60



The norm alized error E20 is approxim ately 0 01. It can be easily verified 

from fig. 3 11 that w ith this value of error there is small difference between 

the two scattered powers, even though the dynamic range of the scattered 

power is as large as 50dB. It would appear from this result that small errors 

in J are m apped to small errors in the scattered field at each and every 

scattering angle.

3-6 Computational issues.

W hen the GS-LSCG m ethod is used in practice, we do not know  the 

exact solution to the matrix-equation. The best guide we have to the rate of 

convergence is the error in the incident field at the sample points. For the 

cases we have considered, w hen the average norm alized error in J is less 

than 0 01 the average norm alized error in  the incident field at the sample 

points is less than 0-002. Although the error in J lags behind the error in the 

incident field at the surface, w hen one of these errors is small the other is 

too.

The computations were done on a Sun Sparcstation IPC. In fig. 3-12 we 

present the CPU seconds to (A) compute the elements of the matrix; (B) 

perform  one iteration of the GS-LSCG method; and (C) factorize the matrix 

into its LU form. The CPU-time is roughly proportional to the num ber of 

floating-point-operations required by each task. One iteration of the GS- 

LSCG m ethod requires approxim ately 2N^ floating-point-operations; LU 

decomposition requires N^/B. We have found that the rate of convergence 

of the GS-LSCG m ethod applied to solving the MFIEs for Gaussian, rough 

surfaces depends upon the RMS surface slope. For the surfaces we have 

considered good solutions are obtained in 20 - 30 iterations. It can be 

verified from fig. 3-12 that w hen N ^ 800 - 1000 the GS-LSCG m ethod 

requires - 1 /5  of the CPU-time required by LU-decomposition. We have 

found that the size of the surface, which determines N, does not effect the
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rate of convergence. This is im portant, because the advantage of the GS- 

LSCG m ethod then grows w ith N. W ith N  -  2000, the GS-LSCG requires 

-1 /1 0  of the CPU-time required by LU decomposition.
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Fig. 3 12. The CPU-seconds required to (A) compute the elements of the 
matrix, (B) perform one iteration of the GS-LSCG method and (C) factorize 
the matrix into its LU form.

The CPU-time does not include the seconds spen t sw apping  data 

between the hard-disc and the random -access-m em ory (RAM). W hen the 

RAM is large enough to accommodate the com putational task, the time 

taken to do the computation is about the same as the CPU-time. The RAM 

available on the Sun Sparcstation was 24 m ega-bytes. This was large 

enough for the computations on the matrices w ith N  < 1000 to be done in 

real time. However, w ith N  -  2000, -95% of the time was spent sw apping 

data to disc. W ith the GS-LSCG m ethod the storage requirem ent can be 

reduced by not storing the m atrix. Instead, the row s of the m atrix are 

recom puted as the algorithm  requires them . W e have app lied  this
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approach to solving the m atrix-equations w ith N -  2000. We found that 

due to the reduction in the time spent sw apping to disc, recom puting the 

matrix at each iteration made little difference to the time taken to obtain a 

solution, in spite of a 20 fold increase in the CPU-time used.

3-7 Chapter summary.

The num erical solution of the MFIE for rough  surface scattering 

problem s generates large matrices. We have found that the N eum ann 

expansion applied to the discrete representation of the MFIE for Gaussian, 

rough surfaces w ith  m oderate slopes m ay provide a rap id  num erical 

solution. It however fails to converge for rough surfaces in general. To the 

extent that the num erical representation is a good one, we also consider 

that our results provide strong evidence that the N eum ann expansion 

cannot be used w ithout qualification to provide a form al solution to the 

rough surface MFIE.

The least-square-conjugate-gradient (LSCG) m ethod is an iterative 

m ethod of solving m atrix-equations whose convergence is in theory sure. 

We have applied the LSCG m ethod to the problem  of scattering from 

Gaussian, rough surfaces and have found that, due to rounding errors, 

convergence is not sure. In this chapter we presented a numerically robust 

form of the LSCG method, which we call the Gram-Schmidt, least-square, 

conjugate-gradient (GS-LSCG) m ethod. In all the cases that we have 

considered, we have never experienced a problem  w ith the convergence of 

the GS-LSCG method. We have found that the rate of convergence of the 

GS-LSCG m ethod depends upon the RMS surface slope. Moreover, the size 

of the surface, which determ ines the m atrix size N, does not significantly 

affect the rate of convergence. This is im portant, because the advantages of 

the GS-LSCG m ethod then grows w ith N. W hen N  is very large, or w hen

63



the slope of the surface is small, good solutions are obtained w ith an order 

of m agnitude reduction in the computation required by LU decomposition.

In Chapters 4 and 6 we consider the scattering of waves incident at six 

angles between 0° and 70°. The disadvantage of the GS-LSCG m ethod is 

that it is implemented for one incident field at a time. LU decomposition is 

a m ethod that allows the solution for any incident field to be directly 

obtained. We have p resen ted  in this chap ter a num erically  robust 

conjugate-gradient m ethod for scattering problem s that require solutions 

for several incident fields. However, for the cases we have considered the 

solution for the surface current for each of the incident fields are too 

d istinc t for the m ethod  to p rov ide  any significant gain  over LU 

decomposition. For this reason the solutions for the surface current used in 

Chapters 4 and 6 were obtained by LU decomposition. We consider that the 

w ork presented in this chapter, is relevant to the num erical solution of 

wave scattering from rough surfaces w hen solutions are required for a few 

incident fields, or w hen  the size of the m atrices generated  in  the 

discretization of the continuous equation prohibit the use of direct solution 

m ethods.
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4
The expected scattered power for a 
patch of rough surface.

To solve the MFIE numerically the integral in  (11) m ust be truncated 

at some point. The scattering problem described by the truncated integral- 

equation is that of a wave scattered from a patch of surface. The point at 

which the integral is truncated is im portant, because it is one of the factors 

that determines the size of the m atrix used to approximate the MFIE, and 

hence the com putation required to obtain the surface current density. 

From  a com putational s tandpo in t a sm all patch  size is preferable. 

However, since it is hoped that the normalized incoherent scattered power 

com puted for an ensemble of rough  surface patches will apply to the 

infinite surface too, the patch size m ust be large enough to accommodate 

the average scattering properties of the infinite surface. In the chapter, we 

investigate how  the patch size effects the value of the norm alized 

incoherent scattered power.

4-1 The scattered far-field.

W hen the length of surface illum inated by the incident wave is m uch 

larger than the distance from the surface to the observation point R, the 

scattered field is obtained from the integrals (Fung and Chen, 1985);

E®(e®) = Z o y ^ ^ e x p | - ^ | e x p  (-ikR)

[
J(x') exp (ik (z' cosG^- x' sin0 )̂) (cos0 -̂ d z '/d x  sin0^)V 1 + (dz'/dx)^ dx'

(41)
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and

ES(0®) = Zo exp | - 1^1 exp (-ikR)

J(x') exp (ik (z’ cos6®+ x' sinG*)) V l + {dz'/dx)^ dx' (4 2)

The integral (41) is appropriate w hen the incident wave is vertically 

polarized, and the integral (4-2) is appropriate when the incident wave is 

horizontally polarized. Here, ES(9^, 0^) is the scattered far-field in the 

direction of the scattering angle 0^ for a wave incident at 0 \  z' and d z '/d x  

are the height and slope of the surface at x', J is the surface current density, 

Zq is the characteristic impedance of free space, and k is the electromagnetic 

wavenumber. The geometry of the scattering problem is illustrated in fig. 

44.

Fig. 4 1 The geometry of the scattering problem.

In this study the scattered powers are normalized with respect to the power 

incident on the surface. The normalized power scattered from the 

surface realization, for example, is.
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Zo p‘(8‘)
(43)

Here, E®(m: 8®,8 )̂, m  = 1,..., M, is the far-field scattered from the surface 

realization, and P'(8^) is pow er incident on the surface. For the incident 

wave used our numerical simulations (Thorsos, 1988)

pi(eS = Hg Z c v ^ Y 1 -

0-5 ( 1 + 2  tan^eb

( kycosG^)
cos0^ (44)

Here, y is the param eter that controls the tapering of the incident wave. To 

simplify the notation used in the following text, we will assume that the 

scattered field com puted w ith  the integrals (41) and (4-2), have been 

multiplied by the factor V(R/ZoPi(0^)).

4*2 The expected scattered power.

A description of the scattering behaviour of a randomly, rough surface 

involves associating some expected property  to an  ensemble of surface 

realizations. We are interested in the expected value of the scattered power.

ffs(e®,eb = E[ I ES(8®,eb (45)

There are two components to the angular pattern  of radiation scattered 

from an ensemble of randomly, rough surfaces, a coherent component and 

an incoherent component. The coherent scattered power is defined as

Hs(9^eb|^ = |E[ ES(8®,8') . (46)

Here, E [ u  ] is the m ean value of the random  variable u(m), m = 1, ..., oo.
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and is read as the expected u. The coherent component contributes to the 

angular radiation pattern over a range of scattering angles centred on the 

specular angle. Its angular w id th  is dependent upon  the size of the 

illum inated surface, and in the lim it of a plane wave illum inating a 

surface of infinite extent reduces to a delta function.

The incoherent or diffuse scattering component is defined as

a O ( 0 ® ,  eb =  a s ( 0 ® ,  0 ^  - 1 H s ( 0 ® ,  0 ^  I  (4 7)

As the term  diffuse w ould suggest, the incoherent scattered pow er 

contributes to the radiation pattern  in all directions, albeit that the diffuse 

scattering is greater in some directions than in others. In the following text, 

the dependence of the scattered far-field on the angle of incidence and the 

scattering angle has been om itted. We have also norm alized the scattered 

powers w ith respect to the power incident on the surface.

We com pute the average pow er scattered from  M, uncorrelated, 

sections of a Gaussian rough surface.

M
= |E"(m)|^ (48)

m = l

H ere, E^(m) m = 1, ..., M, is the field scattered from  the m th  surface 

realization. In this m anner, we obtain the estim ate Og of the expected 

scattered pow er (4-5). The num ber of observations of the scattered power 

will be an im portant factor in determ ining the closeness of the estimate to 

its expected value. To determine the error in the estimate, let Og(j : M), j = 

1,..., oo, denote the random  variable of estimates of the expected scattered 

pow er each made from M, independent, observations. It is well known that 

irrespective of the distribution of | E^(m) | ,̂ m = 1, ..., oo, the mean-square- 

error in the estimate is (Priestley, 1987)
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[( 5 s(M )-as ) 1  = e 1 Ü 4 ^ 1 5 J ! 1 .E U  as(M.)-<Js I J — r - — (49)
M

W hen the surface illum inated by the incident w ave is m any surface- 

correlation-lengths long the random  variable |Eg(m) | m  = 1, «», is

Ricean distributed (Beckmann and Spizzichino, 1963). However, w hen the 

coherent component of the scattered pow er is small | Eg(m) | ^, m = 1, 

is exponentially distributed (Rice, 1951), (Macaskill and Kachoyan, 1988), 

and

(4.10)
4

U sing (410) in  (4 9), the norm alized RMS error in  the estim ate of the 

expected scattered power is

V (4.11)
(J? Ym

This is an unfortunate, bu t hardly  unexpected result. By increasing the 

sample size by a factor of four, the error in  the estimate is only reduced by a 

factor of two.

In this study we average the scattered powers for 60, uncorrelated, 50 

w avelength long sections of a Gaussian rough surface. Waves incident a t 

angles from 0° to 70° are considered. For normal incidence, the estimate of 

the  average sca tte red  pow er is d e te rm in ed  from  60 in d ep en d en t 

observations. Away from norm al incidence, we compute for each surface 

realization the scattered pow er at 0^ for a wave incident at a n d  th e  

scattered pow er at -0^ for a wave incident at -0^; in total 120 independent 

observations are averaged. Assuming that the random  variable of scattered 

pow ers is exponentially distributed, the normalized error in the estim ate is
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-0 1 3  for 60 independent observations, and -0  1 for 120 independent 

observations. We w ould obviously like to average a larger num ber of 

observations, and thereby reduce the error in the estimate. However, time 

has prevented us from doing so.

4*3 The size of a patch.

To solve the MFIE numerically the integral in  (11) m ust be truncated 

at some point. The scattering problem  described by the truncated integral- 

equation is that of a wave scattered from a patch of surface. The point at 

which the integral is truncated is im portant, because it is one of the factors 

that determ ines the size of the m atrix used to represent the MFIE, and 

hence the com putation required to determ ine the surface current density. 

From  a com putational s tandpo in t a sm all pa tch  size is preferable. 

However, since it is hoped that the normalized incoherent scattered power 

com puted for an ensem ble of rough  surface patches will apply to the 

infinite surface too, the patch size m ust be large enough to accommodate 

the second-order scattering properties of the infinite surface.

The scattered far-field is obtained by integrating the field scattered by 

each po in t on the surface boundary . We w ill refer to the function 

describing the spatial d istribution of scattered fields along the infinite 

surface as the scattering-function. Furtherm ore, we will use the term  

"seattering-function" to refer to the specific case of the infinite surface 

illum inated by a uniform  plane wave. In this section, we present an 

equation for the incoherent pow er scattered from a wide-sense-stationary, 

random ly, rough surface as a function of the size of the illum inated area. 

We will show that the separation required for the random  com ponent of 

the scattering-function to decorrelate, is the factor determining the size of a 

patch.

The field scattered from an infinite surface illum inated by a uniform,
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plane wave is obtained from the integral

E»(m: e‘,0®) = I  J(m: x') K(m; 0®, x') dx'. (412)

Here, ES(m: 0 ,̂ 0^) is the scattered field in the direction of 0^, for a uniform 

plane wave incident at 0 ,̂ K(m: x') is the kernel of the scattered far-field 

integral (41), or (4 2), and J(m: x') is the surface current density. The 

integrand of (4-12) is the field scattered from the surface at x'. This will be 

represented by the function E^(m: x'), which we refer to as the scattering- 

function. The dependence of the scattering-function on the angle of 

incidence and the scattering angle has been om itted from the notation. We 

shall also take for granted that the scattered power has been norm alized 

with respect to the power incident on the surface.

The scattering-function

ES(m: x) = A(m: x) eikx(sin0‘ + sin0®>. (413)

is the product of a stochastic process and a deterministic process (Ulaby et 

al, 1982). The deterministic process, which is the complex-exponential in 

(4-13), is due to the periodic phase m odulation of the incident wave along 

the x-axis. The random  component A(m: x), m = 1,..., oo, describes the phase 

and am plitude m odulation of the scattering-function by the random  

surface profile. The objective of this section is to determine the incoherent 

scattered power for an incident wave

HÎ(x) = W(x)eik(xsin0'+ zcos0^) (414)

in terms of the random  process A(m: x). In (4 14), W(x) is the footprint of 

the incident wave on a flat surface. We shall assume that the affect of the

71



footprint W(x) is to linearly weight the scattering-function along the x-axis. 

Based on this assumption, the far-field scattered from a surface illuminated 

by the tapered wave (4-14), is

ES(m) = W(x’) ES(m: x’) dx' (415)I .
We will examine the validity of this assum ption later. We will also make 

the assum ption that for wide-sense stationary, random  rough surface the 

random  process A(m: x), m = 1,..., «>, is wide-sense stationary too (Ulaby et 

al, 1982). On this assumption, the expected scattered pow er in terms of the 

scattering function is (see Papoulis, 1984)

i s
as = Rw(t) R(x) e 'k(sin8 + smG ) x dx (416)

J - o o

w here.

R(x) = E [ A(x'+ X ) , A*(x' ) 1  (417)

and

Rw(T) = J W(x'+ x) W '(x') dx' . (418)
J-oo

Here, R(x) is the autocorrelation-function of the stochastic process A(m: x'), 

m = 1, ..., oo, which we will call the scattering-autocorrelation-function.

A similar expression for the coherent scattered power

f -  i s
I Us I  ̂= Rw(x) I HA 1 ̂  eik(sine + smO ) x dx, (419)

J - o o

oo
*
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is derived using (4 15). Here, p.a  isE[A(x)], which for a w ide-sense- 

stationary process is by definition constant for all x (Papoulis, 1984). Finally, 

the incoherent scattered power (4 7) is obtained by subtracting (4 19) from 

(416),

i s
(fi = Rw(i) ( R (T )-|p A |^ ) eik(sin8 + sinG ) z  dx. (420) 

J-oo

It can be recognized from (4-20) that the effect of the footprint W(x) on the 

incoherent scattered pow er is to w eight ( R(x) - 1PA |^ ) by the function 

R ^(x ). Furtherm ore, for non-pathological, wide-sense-stationary, random  

processes (Papoulis, 1984)

R(x) -> PA as X oo. (4 21)

If follows from (4-21) that if the scattering-autocorrelation-function (4* 17) 

obtains its asym ptotic value w ithin a separation very m uch smaller than 

the w id th  of the illum ination, the finite w idth  of the footprint will have 

small affect on the incoherent scattered power. The separation required for 

the scattering-autocorrelation-function to obtain its asymptotic value, is by 

definition the separation required for the the random  com ponent of the 

scattering-function to decorrelate.

A result that is im m ediately available, is the incoherent scattered 

pow er obtained w ith  the Kirchhoff approxim ation for a Gaussian rough 

surface illu m in a ted  by a tapered  inc iden t w ave. The scattering- 

autocorrelation-function obtained w ith  the Kirchhoff approxim ation is 

derived in (Ulaby et a l  1982),

R k(t) = Rk(0) exp (c o s G V  c o s G^) (1 - c(T))], (4-22)
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c ( t )  = exp - ^  . (4 23)
L

Here, a  is the RMS surface height, Ç is the surface correlation-length and 

c(x) is the norm alized  autocorrelation-function  of the surface. The 

asymptotic value of is obtained by setting c(x) to zero, (with c(x) = 0, 

Rk(x) is the rough surface reflection coefficient discussed in § 51). It can be 

easily recognized from (4-22), that Rk('^) obtains its asymptotic value after 

about tw o surface correlation-lengths. For an incident w ave w ith  a 

Gaussian, footprint,

W(x) = (424)

and

R w W  = Rw(0) (4 25)

The function Ry^  obtains its half power point for x -  0*8y. Therefore, the 

the footprint (4 24) will have small affect on the norm alized incoherent 

scattered pow er provided the tapering param eter y  is several surface 

correlation-lengths long.

For the surfaces we have considered, the Kirchhoff approxim ation is 

inappropriate and the MFIE m ust be solved. In the next section we will 

p resen t exam ples of the scattering-autocorrelation-functions com puted 

from our numerical solutions of the MFIE.

4*4 Examples of scattering-autocorrelation-functions.

In  th is section  w e p re sen t exam ples of the backscattering - 

autocorrelation-functions com puted from  our num erical sim ulations of 

rough surface scattering. The estim ates of the scattering-autocorrelation-
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functions (417) were obtained in the follow ing m anner. Using the 

num erical solution for the surface current density, the scattering-function 

was com puted according to (4 12), and the stochastic process A(m: x^) 

determ ined by m ultiplying the scattering-function by the conjugate of the 

complex exponential in (4 13). The autocorrelation-function of A(m: Xĵ ) 

was determined for each surface realization according to,

N - r
R(m: r) = ^  X  Xn+r) A*(m: x „ ) . (4 26)

r  = l

F inally, the estim ate of the scattering-au tocorrelation-function  w as 

obtained by averaging the autocorrelations (4 26) computed for a num ber of 

surface realizations (see. § 4 2),

M
R(r) = ^ 2 ^  R(m :r) . (4 27)

m  = 1

In most of the cases we have considered the scattering-autocorrelation- 

function (4 27) obtains a constant value w ith in  a few surface correlation- 

lengths, and well w ithin the half power point of the incident wave used in 

our num erical simulations. We consider that the results presented in this 

section provide evidence that a relatively small patch size can accurately 

represent the second-order scattering properties of the infinite surface. This 

is possible because of the sm all co rrelation-leng th  of the random  

component of the scattering function. The assum ption that the footprint of 

the incident wave linearly weights the scattering-function, which was used 

to obtain equation (415), is exam ined by com paring the norm alized, 

incoherent scattered power com puted for two tapered waves, one w ith a 

tapering  param eter of 12 w avelengths, and  the other w ith  a tapering 

param eter of 6 wavelengths. For the surfaces we have considered we have
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found small difference between these two incoherent scattered powers.

To illustra te  these rem arks, we p resen t in  figs. 4 2 - 4*4 the 

backscattering-autocorrelation-functions for a Gaussian rough surface w ith 

a RMS slope of -25° and a correlation-length of 0 8L  The Gaussian, tapered 

inc iden t w ave (2 3) was used in the num erical sim ulations. In  the 

following examples the tapering param eter was 121, and unless otherwise 

stated the integral in the MFIE was truncated at ±251. In the figures curve 

(A) is for a horizontally polarized wave, and curve (B) is for a vertically 

polarized wave. The figures show how the backscattering-autocorrelation- 

functions decay to an approxim ately constant value w ithin a few surface 

correlation-lengths. In three cases, figs. 4 2(A), 4 2(B) and 4-3(B), the 

autocorrelation-functions decay to zero. In the rem aining three cases the 

autocorrelation-functions decay to a non-zero value w ithin  the range of 

the plot.

»4-
0.5

o 0.0

■g -0 .5
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1.0 2.0 3.00.0
lag units in wavelengths

Fig. 4 2. The backscattering-autocorrelation-functions for a Gaussian rough 
surface with a RMS slope of 25® and a correlation-length of 0 81 illuminated 
by a wave incident at an angle of 0®. Curve (A) Is for a horizontally polarized 
wave and curve (B) is for a vertically polarized wave.
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Fig. 4 3. The backscattering-autocorrelation-functions for a Gaussian rough 
surface with a RMS slope of 25° and a correlation-length of 0-8A. illuminated 
by a wave incident at an angle of 45®. Curve (A) is for a horizontally polarized 
wave and curve (B) is for a vertically polarized wave.
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Fig. 4*4. The backscattering-autocorrelation-functions for a Gaussian rough 
surface with a RMS slope of 25® and a correlation-length of 0*8X illuminated 
by a wave incident at an angle of 70®. Curve (A) is for a horizontally polarized 
wave and curve (B) is for a vertically polarized wave.
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We have found sm all difference betw een the incoherent scattered 

pow er com puted for the incident wave (2-3) w ith a tapering param eter of 

12À and  w ith a tapering param eter of 6X. G iven that the scattering- 

autocorrelation-functions obtain a constant value w ithin  a few surface 

correlation-lengths, and well w ithin the half pow er point of these two 

incident waves, this result is not entirely unexpected. To illustrate this 

point we present in figs. 4-5 and 4-6 the incoherent scattered pow er for a 

wave incident at an angle of 45° on a Gaussian rough surface w ith a RMS 

slope of 25° and a correlation-length of 0 81. The curve in the figures is 

com puted for an incident wave w ith a tapering param eter y  =121 and the 

dots are com puted for a y = 61. In fig. 4-5 the incident wave is vertically 

polarized, and in fig. 4*6 the incident wave is horizontally polarized, and it 

can be verified that in both  figures there is small difference betw een the 

two scattered powers.
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Fig. 4 5. The incoherent scattered power for a Gaussian rough surface with a 
RMS slope of 25® and a correlation-length of 0 81 illuminated by a 
horizontally polarized wave incident at an angle of 45®. The curve is for a 
tapering parameter of 121; and the dots are for a tapering parameter of 61.
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Fig. 4 6. The incoherent scattered power for a Gaussian rough surface with a 
RMS slope of 25® and a correlation-length of 0-8A, illuminated by a vertically 
polarized wave incident at an angle of 45®. The curve is for a tapering 
parameter of 12X; and the dots are for a tapering parameter of 6X.

For rough surfaces with small heights we have found cases where the 

scattering-autocorrelation-functions have a periodic com ponent over the 

entire leng th  of the footprint. An exam ple of th is phenom enon is 

presented in fig. 4-7. The figure shows the backscattering-autocorrelation- 

function for a norm ally incident wave, a RMS slope of 25°, a RMS height of 

0 131, and a correlation-length of 0 41. It can be easily verified from fig. 

4 7(B) that the backscattering-autocorrelation-function has a periodic 

com ponent over the entire range of the plot. We suspect that this 

phenom enon, w hich  we have found  to occur only in the vertical 

polarization case, is due to a wave propagating along the length of the 

surface. It is well known that a surface wave can be excited on a conducting 

rough surface illum inated by a vertically polarized wave. A surface wave is
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not excited in the horizontal polarization case, because the electric field is 

in the plane tangent to the surface boundary and is ''short-circuited" by the 

surface conductivity.
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Fig. 4-7. The backscattering-autocorrelation-functions for a Gaussian rough 
surface with a RMS slope of 25® and a correlation-length of 04A. illuminated 
by a wave incident at an angle of 0®. Curve (A) is for a horizontally polarized 
wave and curve (B) is for a vertically polarized wave.

The presence of a slowly decaying oscillatory com ponent to the 

autocorrelation-functionm ight appear to invalidate the assum ption that 

the random  component of the scattering function is wide-sense-stationary. 

However, the surface wave is a spatially deterministic event, and we can 

remove its effect from the stochastic process A(m: x) by m ultiplying (413) 

by a second complex exponential. For the case in fig. 4-7(B) the period of 

this exponential w ould be one wavelength. A more serious implication of 

a surface wave concerns the truncation of the MFIE and the scattered field 

integrals. The presence of a wave propagating along the length of the 

surface clearly complicates the issue of where to truncate these integrals.
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Nevertheless, for the surfaces we have considered we have found small 

change in the incoherent scattered power as the limits on the integrals are 

ch an g ed . To illustrate this point we present in fig. 4-8 the incoherent 

scattered powers for the case considered in fig. 4-7(B) com puted for the 

tapered incident wave w ith y = 6X. The curve in the figure is computed by 

truncating the integrals at ±25X, and the dots are com puted by truncating 

the integrals at ±12-51.
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Fig. 4 8. The bistatic, incoherent scattered power for a Gaussian rough surface 
with a RMS slope is 25® cind a correlation-length of 0-4X illuminated by a 
vertically polarized wave incident at an angle of 45®. The curve in the figure is 
computed by truncating the integrals at ±25A, ; and the dots are computed by 
truncating the integrals at ±12-5A,.

It can be verified from the figure that there is small difference between the 

tw o scattered pow ers. We suspect that for the very  rough  surfaces 

considered in  this study  the diffuse scattering of the surface wave is 

relatively small. Indeed, it is well know n that surface waves have their 

largest effect in the region of the param eter space "FP" of fig. 11 (Ishimaru
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and Chen, 1990 b), (Celli et al, 1985). Here, the incoherent scattered power 

is itself small and we suppose, therefore, that the diffuse scattering of the 

surface wave cannot be neglected.

4-5 Chapter summary.

To solve the MFIE numerically the integral in the equation m ust be 

truncated at some point. The scattering problem described by the truncated 

integral-equation is that of a wave scattered from a patch of surface. From a 

computational standpoint a small patch size is preferable. However, since 

it is hoped that the normalized incoherent scattered power com puted for 

an ensemble of rough surface patches will also apply to the infinite rough 

surface, the patch size m ust be large enough to accommodate the average 

scattering properties of the infinite surface. In this chapter, we have placed 

the point at which to truncate the MFIE into a mathematical context. The 

incoherent scattered pow er for an illum inated patch of surface was 

presented as the integral of the weighted autocorrelation-function of the 

random  component of the field scattered by each point of the surface. By 

representing the incoherent scattered pow er in this m anner, the factor 

determining the size of a patch was identified as the separation required for 

th is random  process to decorrelate . W e p resen ted  exam ples of 

backscattering-au tocorrelation-functions for a perfectly -conducting , 

G aussian rough  surface. In the horizon tal po lariza tion  case, the 

autocorrelation-functions obtain a constant value w ithin a few surface 

correlation-lengths. This is also true of m ost of the cases for vertical 

polarization. The exceptions occur when the RMS surface height is small. 

For these geometries the autocorrelation-functions have an oscillatory 

com ponent over the entire length of the footprint. We suspect this 

phenom enon is due to a surface wave. The presence of a surface wave
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clearly complicates the issue of where to truncate the MFIE. However, for 

the surfaces considered in this study we suspect that the diffuse scattering 

of the surface wave is relatively small.

In conclusion, the results presented in this section provide evidence 

that a relatively small patch size can accurately represent the second-order 

scattering properties of the infinite surface. This is possible because of the 

sm all correlation-length of the random  com ponent of the scattering 

function. In fact, we consider that the limit on the patch size relates more 

to the m ethod used to reduce the scattering from the patch edges. The 

tapered incident wave used in our numerical simulations, for example, is 

less consistent with the wave equation as the tapering is increased.
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5
Corrections to the Kirchhoff 
approximation.

The surface current induced on a perfectly-conducting, rough surface 

can be separated into two components; the Kirchhoff component; and the 

com ponent due to the integral in the m agnetic-field-integral-equation 

(MFIE). We refer to the scattered far-field obtained w ith  the Kirchhoff 

approxim ation as the Kirchhoff-field, and the far-field due the integral 

component of the surface current, we refer to as the integral-field. In the 

high-frequency limit the physical significance of these two components of 

the scattered field are understood. The Kirchhoff-field is due to single 

reflections of incom ing rays from the surface, including the fictitious 

reflections from those parts of the surface in shadow. The integral-field is 

required to account for shadowing, and multiple-reflections at the surface 

boundary. In this chapter we present a procedure for determining from the 

solution of the MFIE two corrections to the expected scattered power 

obtained w ith  the Kirchhoff approxim ation. One of these corrections is 

determ ined froih the linear-m ean-square estim ate of the integral-field in 

term s of the Kirchhoff-field. The error in  estim ate provides the second 

correction. We will justify that in the high frequency-limit the first of these 

two corrections is for shadowing, and the second is for multiple-reflections 

at the surface boundary.

5-1 The Kirchhoff approximation.

The central assum ption of the Kirchhoff approxim ation for a perfectly- 

conducting surface, is that the scattered m agnetic field is equal to the
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incident magnetic field in the plane tangent to the surface boundary. This 

assum ption is inappropriate for the rough surfaces considered in  this 

study, because we cannot neglect the field due the integral in  the MFIE. 

How ever, we discuss the Kirchhoff approxim ation for two reasons. An 

analytic solution for the expected scattered pow er obtained w ith  the 

Kirchhoff approxim ation is available. We use this to test the computations 

requ ired  in  the calculation of the scattered  pow er. The Kirchhoff 

approxim ation also provides a fram ework for some of the discussions in 

this chapter and in  Chapter 6.

The expected  sca tte red  pow er o b ta in ed  w ith  the K irchhoff 

approxim ation  for a perfectly conducting, tw o-dim ensional, G aussian 

rough surface illum inated by a plane wave, is the sum  of the incoherent 

and coherent scattering contributions (Thorsos, 1989),

/ i Q \2
1 + cos(8^+61

7CCOS0 V COsGV 0030^
Y (5.1)

9®) r  = P®(9\ 9®) exp (- % 2) (52)

Y . r
Jo

cos(kx(sin0^+ sin0 )̂ exp - exp dx (5*3)

%= ko (cos0^+ cos0\ (5-4)

Here, o k  is the expected scattered pow er obtained w ith  the Kirchhoff 

approxim ation, is the expected value of the Kirchhoff-field, o  is the 

RMS surface height, Ç is the surface correlation-length, 0S is the scattering 

angle, 0  ̂ is the angle of incidence, and PS is the pow er scattered from a flat 

surface. For the tapered  incident w ave (2 3) used  in our num erical 

sim ula tions
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ps(0i. e«) = exp (-k V ( s in e ^ s in e ^ ) ^ ) (5.5)
OT5l V 2 /2pi

w hen the incident wave is vertically polarized, and

pS(9i. e^) = î ^ e x p r " ^  '  cos2e\ (5 6)
2pi ' 2 /

w hen the incident wave is horizontally polarized. Here, y is the parameter 

that controls the tapering of the incident wave, and is the power incident 

on the surface. W hen ky »  1, the pow er scattered from a flat surface is 

small at scattering angles away from the specular direction. Moreover, 

there is sm all difference betw een (5-5) and  (5 6) w hen y »  X. The 

incoherent scattered power (51) is the same for both polarizations (Ulaby 

et a l  1982).

We present in figs. 5-1 - 5-8 the scattered powers obtained w ith the 

Kirchhoff approxim ation. The sm ooth curve in  the figures is determ ined 

from (51) - (5-5). The fluctuating curve is com puted using the Kirchhoff 

approxim ation for the surface current density,

JK(m: x) = 2H \m : x), (5-7)

in  the scattered far-field in tegral (4 1), for 60, 50 w avelength  long, 

uncorrelated, sections of a Gaussian rough surface. The results presented in 

this section are for a tapering param eter of 12X,. For the surfaces we have 

considered we have found small difference betw een the analytic solution 

for the incoherent scattered power (51), and the incoherent scattered power 

com puted w ith  (5 7), even though (51) is derived  for a plane wave 

illum inating a surface of infinite extent. H ow ever, this resu lt was not
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entirely unexpected, because of our findings in § 4 3. To illustrate this 

point, we present in figs. 5-1 and 5 2 the scattered powers for a wave 

normally incident on a Gaussian rough surface w ith a correlation-length of 

0-8X. The RMS surface slope is given by arctan(V2o /^ ) , and in fig. 5-1 the 

RMS slope is 25°, and in fig. 5*2 the RMS slope is 45°. The figures show how 

the numerically computed result for the average scattered power is close to 

its theoretical result. We consider that the differences, typically less than 

~ldB , are statistical in origin, and w ould  be reduced by taking more 

observations of the scattered power. The striking feature of the figures is 

the small dynamic range of the incoherent scattered power. In fig. 5*2, 

where the RMS surface slope is 45°, the dynamic range of the incoherent 

scattered power is less than 2dB.
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Fig. 5-1. The scattered powers obtained with the Kirchhoff approximation for 
a Gaussian rough surface with a RMS slope of 25® and a correlation-length of 
0-8X, illuminated by a wave incident at an angle of 0®.
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Fig. 5 2. The scattered powers obtained with the Kirchhoff approximation for 
a Gaussian rough surface with a RMS slope of 45® and a correlation-length of 
0-8X, illuminated by a wave incident at an angle of 0®.

The dynam ic range is larger for w aves incident aw ay from norm al 

incidence. In figs. 5*3 and 5-4 we present the expected scattered power for a 

wave incident at an angle of 70° on the geometries considered in figs. 5-1 

and 5-2. In fig. 5-3 there is a strong coherent com ponent to the expected 

scattered pow er. This can be recognized from the figure as the narrow  

angular distribution of power centred on the specular angle, 0S = -70°. The 

closeness of the numerical result in fig. 5-3 to its expected value shows how 

our scattered far-field com putation is accurate to w ithin a fraction of a 

decibel, even w hen the dynamic range of the expected scattered pow er is 

50dB. The error in a Gaussian quadrature used to approxim ate an integral 

over the integration interval Ax is (Abramowitz and Stegun, 1970),

2n+ l (2n!) '
(58)
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Fig. 5 3. The scattered powers obtained with the Kirchhoff approximation for 
a Gaussian rough surface with a RMS slope of 25® and a correlation-length of 
0-8X, illuminated by a wave incident at an angle of 70®.
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Fig. 5 4. The scattered powers obtained with the Kirchhoff approximation for 
a Gaussian rough surface with a RMS slope of 45® and a correlation-length of 
0-8X, illuminated by a wave incident at an angle of 70®.
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Here, n  is the order of the quadrature, and l(^^) is the derivative of the 

integrand of of the integral. W ith a n=3 and Ax=0-2X, the error (5-8) is -10”̂  

times the maximum value of the 6^^ derivative of the integrand. Since for a 

sm ooth surface we w ould expect the derivatives of the integrand of the 

scattered far-field integrals to be well behaved, the closeness of the 

numerical result to its theoretical value is not entirely unexpected.

5*2 A correction to the Kirchhoff method for shadowing.

In  com m on w ith  all shadow ing  theories (Beckm ann, 1965), 

(Brockelmann and Hagfors, 1966), the shadow ing theory developed by 

W agner (1967) uses rays to represent the incident and scattered waves, and 

the Kirchhoff approxim ation to describe the w ave scattered from  the 

illum ina ted  parts  of the surface. In sp ite  of these h igh-frequency 

approxim ations, the shadow-corrected Kirchhoff m ethod, as we will refer 

to it, has been successfully used for Gaussian rough surfaces in  the region 

"KA" of fig. 1*1 (Thorsos, 1988). It is significant that the surface-correlation 

leng th  in th is region of the param eter space is com parable to the 

electrom agnetic wavelength.

The correction for shadowing is applied to the expected scattered power 

obtained w ith  the Kirchhoff approxim ation by m ultiplying the incoherent 

scattered power (51) by the shadow-function S(8\ 8^),

ow K O le® ) = s(e le^ ) ( aK(e\e®) - 1 nK(e^e®) H  + I I ̂  (59)

Here, is the expected scattered pow er obtained w ith  the Kirchhoff 

approxim ation, and is the expected value of the Kirchhoff-field. The 

shadow-function derived by W agner is given in Appendix D.
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5-3 Two corrections to the Kirchhoff approximation from the 

solution of the magnetic-field-integral-equation.

The surface current induced on a perfectly-conducting, rough surface 

can be separated into two components; the Kirchhoff component; and the 

com ponent due to the integral in the m agnetic-field-integral-equation 

(MFIE). We refer to the scattered far-field obtained w ith the Kirchhoff 

approxim ation as the Kirchhoff-field, and the far-field due the integral 

component of the surface current as the integral-field. For the m^h surface 

realization, the scattered far-field ES(m: 6\ 8^) is the sum  of the integral- 

field Ej(m: 8^), and the Kirchhoff-field E^((m: 8\  8^),

ES(m: 8^) = EK(m: 8\  8 }̂ + Ei(m: 8\  8^). (518)

The expected scattered power in terms of the Kirchhoff and integral-fields 

is,

as(8i,8S) = aK(ele^) + oi(8i,8S) + 2Re (oK l(el8S)), (511)

w here,

0s = e [ |e S |2 ] ,  (512)

®K = e [ |E k |^ ] ,  (513)

oi = e [ |E i |2 ] ,  (514)

0KI = E [E kE i]. (515)

Here, GK(8\ 6^) is the expected scattered power obtained w ith the Kirchhoff 

approxim ation, o%(8 ,̂8^) is the expected scattered power obtained w ith  the
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integral-field, and c jk i(0 ,̂0^) is a m easure of the degree of coherence 

betw een the Kirchhoff and integral-fields: For the set of data u(m) and 

v(m), m  = 1, oo, (Papoulis, 1984),

M
E [ u , v ] =  1*"' ^  y  u(m ).v(m )». (516)

M -^ooM  ^
m =0

We can write dow n a similar equation for the coherent scattered power,

I Hg(8i,8S) 12 = 1 HK(e^eS) 12 + I Hi(0i,eS) 12 + 2Re (%(8i,8S) Hi»(el8S)) (517)

Hs = E [ e s ] (516)

1̂ K = E [ E k ] (519)

m  = E [E i ]  (528)

Here, is the expected value of the Kirchhoff-field, and pi(0i,0^) is

the expected value of the integral-field.

Regardless of w hat the electromagnetic wavelength is the integral-field 

is required to provide a complete description of the field scattered by a 

rough surface. In the following discussion we will consider wave scattering 

in the high frequency limit. In this limit the incoming and outgoing waves

can be represented as rays. Parts of the surface obstruct the path  of the rays

leaving areas of the surface in shadow. An outgoing ray originates from a 

point on an unshadow ed part of the surface, either by a single reflection of 

an incoming ray, or else after an incoming ray has been reflected from one 

or m ore other points on the surface boundary. The field due to single 

reflections is the Kirchhoff-field (Beckmann, 1965), (Kodis, 1966). However, 

the Kirchhoff-field also includes fictitious reflections from those parts of
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the surface in shadow (Beckmann, 1965), (Wagner, 1966). For this reason, 

and w hen the field due to m ultiple-reflections is small, the expected 

scattered pow er obtained w ith  Kirchhoff approxim ation is generally an 

overestimate of the expected scattered power Og (Beckmann, 1965). The 

only term in (511) that can reduce Og to a value less than  that obtained 

w ith the Kirchhoff approximation is the term aj^F This is easily recognized 

from (511) by the fact that a ^ l  is the only term  in the equation that can be 

negative. The integral-field in addition to providing the correction for 

shadow ing via includes the field due to multiple-reflections a t the 

surface boundary. To this end we describe the integral-field as the sum  of 

the field responsible for shadow ing Esl(m: 0^, 0^), and the field due to 

multiple-reflections Ejj^i(m: 0 ,̂ 0^), m = 1,..., ©o,

Ei(m: 0Î, 0S) = Eg%(m: 0 ,̂ 0^) + 6^). (5 21)

We know of no w ay of determ ining the fields Egj and E ^ ^  the 

solution of the MFIE. However, since we w ould expect the Kirchhoff-field 

and  the field responsible  for shadow ing to be correlated, it seem s 

appropriate, therefore, to make an estimate of the random  variable Egi(m) 

in  term s of the random  variable Ej^(m), m  = 1, ..., ©o. The optim ality 

criterion that we will use to determ ine this estim ate, is m inim izing the 

mean-square error. The linear mean-square estimate of Egj(m), m  = 1,..., ©©, 

in terms of the Kirchhoff-field is (Papoulis, 1984)

% l(m ) = (pE]^(m) + D), (5-22)

w here (5-23)
<TC-|hKp

and  v = Hsi-pHK- (5 24)
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Here, oksI = E [ E^Esi ], (5-25)

and HsI = E [ Egi ]. (5*26)

We cannot determine the constants (5 23) and (5 24) directly, because we do 

not know the expected value of Egj(m), or the covariance betw een Egj(m) 

and Ej^(m). However, we intend to show that

p . m i s i ,  (5.27)
< ^ - l w

and,

V = P I  - pPK- (5-28)

Unlike (5*23) and (5*24), (5*27) and (5 28) can be determ ined from  the 

solution of the MFIE.

In the high-frequency lim it the horizontal dim ension of the surface 

roughness is necessarily large. Consequently, the difference betw een the 

path-lengths of pairs of rays adopting different m ultiple-reflection paths 

will range over several electromagnetic wavelengths. Therefore, we can 

safely assume that the expected scattered power due to multiple-reflections 

is incoherent,

E [E m l]  (529)

Taking the expectation of (5*21) and using (5 29), the expected value of the 

integral-field is then equal to the expected value of the field responsible for 

shadowing.

Pi  = PsI (530)

Using (5 30), (5 28) is obtained from  (5-24) by substitution. A sim ilar 

relationship can be deduced for the coherence betw een the field due to
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single-reflections and the field due to multiple-reflections. The difference 

between the path-length of a single-reflection from a point on the surface at 

X and the path-length of a multiple-reflection escaping from the surface at 

X, will vary from point to point by several electromagnetic wavelengths. 

Therefore, we can safely assume that the field due to single-reflections and 

the field due to multiple-reflections are uncorrelated,

E [Ek  + Egi, Eml ] = E [Ek , Eml ] + E [Egi, E ^ I ] = 0. (531)

For precisely the same reasons that lead to (5 31), we can also assume that

E[EK /Em l] = 0, (532)

The equality

GKI = cqcsl / (533)

is obtained by substituting (5*21) into (5*15) and then applying (5*32). Finally, 

(5*27) is obtained from (5*23) using (5*33) and (5*30). Thus, based on the 

assum ption  that the coherence betw een  the field due to m ultip le- 

reflections and the field due to single-reflections is negligible, w e can 

determ ine the estim ate (5*22) from the solution of the MFIE. It can be 

recognized by comparing (5*23) w ith (5*27), and (5*24) with (5*28), that Egj is 

also the linear m ean-square estimate of the integral-field in  terms of the 

Kirchhoff-field. Therefore, the difference betw een the integral-field and the 

estimate Egj,

Eml(m) = Ej(m) - (pE^(m ) + D), (5*34)

is also the error in the estimate. We can show that Ejj^j(m) satisfies the 

properties of the field due to multiple-reflections. Taking the expectation of
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both sides of (5 34) we get

E [ ] =0, (5-35)

and the expectations

E[EK /Em l] = 0/ (5-36)

and E [EsI, E ^ i  ] = 0, (5-37)

can be verified from (5 34), (5-27) and (5*28), by substitution. In fact, the 

properties (5 35) - (5-37) are necessarily true of the error in the mean-square 

estimate (Papoulis, 1984).

We have in fact derived two corrections to the scattered field obtained 

w ith  the K irchhoff approxim ation. The estim ate of the shadow ing 

com ponent of the integral-field Egj provides the first correction. O n the 

assum ption that the coherence betw een the field due to single-reflections 

and the field due to m ultiple-reflections is negligible, Egj is also the 

estimate of the integral-field in term s of the Kirchhoff-field. The second 

correction to the Kirchhoff approxim ation is provided by the rem ainder of 

the integral-field E ^ j. The coherence properties of this contribution to the 

scattered field satisfy the properties that we associate w ith  the field due to 

multiple-reflections.

It only remains then for us to calculate the expected scattered powers. 

Since E^^j(m) is uncorrelated w ith  Ej^(m) and Egj(m), m  = 1, ©o, the

expected scattered power Og is the sum  of

E l |Ê m i n  = OmI = o i - | P l ^ O K - | v p - 2 R e ( p v H K  + v n i  + poKl), (5 38) 

and the expected scattered power due to Egj(m) plus Ej^(m),
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E [ I Esi + E k I ^ ] = asK = 11 + P |  ̂< ^  + 1 v P  + 2 Re ((l + p) v ) • (5 39)

The scattered powers (5-38) and (5*39) reduce to sim pler expressions w hen

the coherent scattered power is negligible; away from the specular angle, for 

example. W ith the coherent scattered powers

(540)

th en

®mI = <  ̂+ |p|^«TC/ (541)

®sK= |1 +  Pl^OK / (542)

and p (543)
OK

At lower frequencies wave scattering is complicated by diffraction. The 

significance of the scattered powers (5-38) and (5-39) at lower frequencies is 

investigated in the next chapter. Chapter 6.

5 4  Chapter summary.

The field scattered from a rough surface is the scattered field obtained 

w ith the Kirchhoff approxim ation plus the field due to the integral in the 

MFIE, which we call the integral-field. In the high frequency limit the role 

of the Kirchhoff and integral-fields are understood. In  this lim it wave 

scattering is not complicated by diffraction, which allows the incoming and 

outgoing rays to be represented as rays. The Kirchhoff-field is due to the 

single-reflections of incoming rays from the surface. W hile the integral- 

field is required to account for shadow ing of the surface, and  m ultiple- 

reflections at the surface boundary . In this chap ter we p resen ted  a
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procedure for obtaining from the solution of the MFIE two corrections to 

the Kirchhoff approxim ation. On the assum ption that the coherence 

between the field due to single reflections and the field due to multiple- 

reflections is negligible, a correction for shadow ing was obtained as the 

linear mean-square estimate of the integral-field in terms of the Kirchhoff- 

field. The error in the estimate, which provides the second correction to 

the Kirchhoff method, satisfies the coherence properties of the scattered 

field due to m ultiple-reflections. Finally, we w ould  note tha t the 

relationship  betw een the K irchhoff-field and the com ponent of the 

integral-field  responsible for shadow ing is likely to be non-linear. 

However, in cases where these two random  variables are jointly normal, 

the non-linear m ean-square estimate of the shadowing component of the 

integral-field is the same as the linear estimate, (see Papoulis, 1984).
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6
Numerical results for the far-field 
scattered power.

In this chapter we present the num erical results for the average 

scattered pow er for 60, uncorrelated, 50 w avelength long sections of a 

Gaussian rough surface (see § 4 2). Curves are presented for the estimate of 

the expected scattered power Og(8\  0^) and the estimate of GsK(^\ 0^) (5 39). 

The difference betw een these two scattered pow ers is the estim ate of 

am l(0^ 0^) (5-38), (see § 5 3). We have also compared our num erical results 

w ith  the expected scattered power obtained using the Kirchhoff m ethod 

both w ith, and w ithout the correction for shadow ing derived in (Wagner, 

1967). We will refer to the m ethod employing the shadowing correction as 

the shadow -corrected  K irchhoff m ethod. B&aring in m ind  th a t the 

com puted averages are estim ates of their expected values, the term  

"estimate" has been om itted from the following text.

To compute the Kirchhoff-field EK(na:0^,0^), m  = 1,..., M, the Kirchhoff 

approxim ation for the surface current is used in the scattered far-field 

integrals (41) and (4 2). Similarly, the integral-field E%(m), m  = 1,..., M, is 

computed using the surface current density,

Jl(m: 0 \  x) = J(m: 0 \  x) - 0 \  x).

Here, J(m: 0 \  x) is the solution of the MFIE for the m^h surface realization. 

The results presented in this chapter are grouped according to RMS surface 

slope and angle of incidence. In § 61  we present a sum m ary of the results 

for rough  surfaces w ith  m oderate slopes, and in § 6*4 we present a 

sum m ary of the results for rough surfaces w ith large slopes.
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6-1 A summary of the results for rough surfaces with moderate 

slopes.

In § 6-2 and § 6-3 we present the scattered powers for a Gaussian rough 

surface w ith  a RMS slope of 25° and a correlation-length of the same order 

as the electrom agnetic wavelength. For these surfaces, w e have found 

small difference between the average scattered power Og and the scattered 

power OgK- Physically we suspect that, because this difference is small, the 

scattered field due to the illum ination of the surface by waves scattered 

from other parts of the surface is small too. We suspect, therefore, that for a 

RMS slope of less than ^-25° the principal role of the integral-field is to 

correct the Kirchhoff-field for partial-shadowing and the diffraction by the 

surface of the incident and scattered waves. The results presented in  § 6*2 

and § 6*3 provide strong evidence that the polarization is an  im portant 

factor in determ ining the degree of shadowing at the surface boundary. We 

have found, for example, that the polarization of the incident w ave is a 

factor in determ ining the nature of the error in the Kirchhoff method. In 

the horizontal polarization case a better description of the average scattered 

pow er is obtained w ith  the Kirchhoff m ethod w hen it is used w ith  the 

correction for shadowing derived in (Wagner, 1967). The results for vertical 

polarization on the other hand, show how the Kirchhoff m ethod gives a 

better estim ate to the backw ard scattered pow er w hen the shadow ing 

correction is not used. We have also found that the polarization of the 

incident wave is an im portant factor in determ ining the coherent scattered 

power too. The results show how at large angles of incidence the coherent 

scattered pow er is larger for horizontal polarization than  for vertical 

polarization. In some cases the difference betw een the coherent scattered 

powers is as large as 6dB.

We have found that the correlation-length is a factor in determ ining 

the accuracy of the Kirchhoff method. In fact, we have found that in some
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cases the Kirchhoff m ethod overestim ates the average scattered pow er, 

even w hen the shadowing correction is not applied. We suspect that for 

the surfaces considered  in  th is s tu d y  the in terference  b e tw een  

neighbouring scatterers on the surface boundary, which is neglected by the 

Kirchhoff m ethod, is influential in  determ ining the pattern  of scattered 

radiation.

6*2 Results for moderate slopes and small incident angles.

In this section we present the scattered powers for waves incident at 

angles of 0° to 45° on a Gaussian rough surface with a RMS slope of 25° and 

a correlation-length of the same order as the electromagnetic wavelength. 

The striking feature of the results presented in this section is the small 

difference between the average scattered power Og and the scattered pow er 

GgK- The results also show how the polarization of the incident wave is an 

im portant factor in determ ining the nature of the difference betw een dgK 

and the expected scattered pow er obtained w ith the Kirchhoff method.

We present in figs. 6-1 - 6-3 the scattered powers for a horizontally 

polarized wave incident on a Gaussian rough surface w ith a RMS slope of 

25° and a correlation-length of 0 Curve (A) is the average scattered 

pow er Og; (B) is OgK; and  (C) is obtained w ith  the shadow -corrected 

Kirchhoff method. In all three figures the difference betw een Og and CgK Is 

less than  -Id B . We suspect tha t, because this difference is sm all, the 

scattered far-field due to m ultiple-scattering is small too. This point will be 

discussed in § 6 4. For a surface w ith a RMS slope of 25° there is little 

geometric shadow ing of incom ing rays at angles betw een -40° and  40°. 

Furtherm ore, for scattering angles betw een -40° and 40° there is little 

shadow ing of the outgoing rays too. In figs. 6-1 - 6-3 the value of OgK at 

scattering angles betw een -40° to 40° is described to w ithin IdB using the 

Kirchhoff approximation.
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Fig. 6*1. The scattered powers for a Gaussian surface with a RMS slope of 25® 
and a correlation-length of 0 8% illuminated by a horizontally polarized wave 
incident at 0®. Curve (A) is the average scattered power; (B) is Og ;̂ and (C) is 
obtained with the shadow-corrected Kirchhoff method.
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Fig. 6-2. The scattered powers for a Gaussian surface with a RMS slope of 25® 
and a correlation-length of 0 8% illuminated by a horizontally polarized wave 
incident at 30®. Curve (A) is the average scattered power; (B) is Ogp;; and (C) is 
obtained with the shadow-corrected Kirchhoff method.
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Fig. 6 3. The scattered powers for a Gaussian surface with a RMS slope of 25® 
and a correlation-length of 0-8A, illuminated by a horizontally polarized wave 
incident at 45®. Curve (A) is the average scattered power; (B) is Ogf̂ ; and (C) is 
obtained with the shadow-corrected Kirchhoff method.

H ow ever, a t larger scattering angles w here we w ould  anticipate the 

shadow ing effect to be greater, the shadow-corrected Kirchhoff m ethod 

overestimates OsK-

We have found the surface correlation-length to be an im portant factor 

in  determ ining  the accuracy of the Kirchhoff m ethod. This po in t is 

illustrated in figs. 6-4 and 6-5 where we present the scattered powers for a 

horizontally polarized wave incident on a Gaussian rough surface w ith  a 

RMS slope of 25° and a correlation-length of 0 4X. In fig. 6-4 the wave is 

normally incident on the surface, and in fig. 6-5 the wave is incident at an 

angle of 45°. It can be easily verified by comparing fig. 6-1 w ith fig. 6-4 and 

fig. 6-3 w ith fig. 6 5, that the difference between the average scattered power 

and the shadow -corrected Kirchhoff m ethod is significantly larger for a 

surface correlation-length of 0-4X, than for a correlation-length of 0-8X..
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Fig. 64. The scattered powers for a Gaussian surface with a RMS slope of 25® 
and a correlation-length of 0-4X illuminated by a horizontally polarized wave 
incident at 0®. Curve (A) is the average scattered power, (B) is OgK and (C) is 
obtained with the shadow-corrected Kirchhoff method.
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Fig. 6 5. The scattered powers for a Gaussian surface with a RMS slope of 25® 
and a correlation-length of 0-4X illuminated by a horizontally polarized wave 
incident at 45®. Curve (A) is the average scattered power; (B) is and (C) is 
obtained with the shadow-corrected Kirchhoff method.
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The polarization of the incident wave is also an im portant factor in  

determ ining the nature of the difference between average scattered pow er 

and the expected scattered power obtained w ith the Kirchhoff method. We 

present in figs. 6-6 and 6*7 the scattered powers for a vertically polarized 

wave incident on a Gaussian rough surface with a RMS slope of 25° and a 

correlation-length of 0-SX, In the figures curve (A) is the average scattered 

pow er Og; (B) is Og^; and (C) is obtained  w ith  the shadow -corrected 

Kirchhoff m ethod. It can be verified from  the figures that there is close 

agreem ent betw een the Kirchhoff m ethod and OgK at scattering angles 

betw een -40° and 40°. However, at larger scattering angles the shadow - 

corrected Kirchhoff m ethod underestim ates the value of OgK-
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Fig. 6-6. The scattered powers for a Gaussian surface with a RMS slope of 25® 
and a correlation-length of 0-8A, illuminated by a vertically polarized wave 
incident at 30®. Curve (A) is the average scattered power; (B) is Og ;̂ and (C) is 
obtained with the shadow-corrected Kirchhoff method.
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Fig. 6 7. The scattered powers for a Gaussian surface with a RMS slope of 25° 
and a correlation-length of 0-8X illuminated by a vertically polarized wave 
incident at 45°. Curve (A) is the average scattered power; (B) is and (C) is 
obtained with the shadow-corrected Kirchhoff method.

In fact, we have found for the cases in figs. 6 6 and 6 7 that the Kirchhoff 

m ethod gives a better estimate to the backward scattered pow er w hen the 

shadowing correction is not used. We illustrate this point in figs. 6-8 and 

6*9 where curve (A) is Og] ;̂ curve (B) is the scattered power obtained with 

the Kirchhoff approximation; and curve (C) is obtained with the shadow- 

corrected Kirchhoff method. At a scattering angle of 80°, for example, the 

shadow-corrected Kirchhoff method underestim ates the value of Og]^ by 

lOdB in fig. 6 9, and by 8dB in fig. 6 8. The error using the Kirchhoff method 

with no correction for shadowing is only IdB in fig. 6 9, and in fig. 6 8 the 

error is very small. However, in both figures a better description of the 

scattered power OgK at large forward scattering angles is obtained by 

including the shadowing correction.
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Fig. 68. The scattered powers for a Gaussian rough surface with a RMS slope of 
25® and a correlation-length of 0-BX, illuminated by a vertically polarized 
wave incident at 30®. Curve (A) is Ogp(; (B) is obtained with the Kirchhoff 
approximation; and (C) with the shadow-corrected Kirchhoff method.
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Fig. 6*9. The scattered powers for a Gaussian rough surface with a RMS slope of 
25® and a correlation-length of O-SX illuminated by a vertically polarized 
wave incident at 45®. Curve (A) is Ogĵ ; (B) is obtained with the Kirchhoff 
approximation; and (C) with the shadow-corrected Kirchhoff method.
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We have found that the correlation-length is an im portant factor in 

determ in ing  the accuracy of the K irchhoff m ethod in the vertical 

polarization case too. To illustrate this point we present in fig. 6*10 the 

scattered powers for a vertically polarized wave incident at an angle of 45° 

on a Gaussian rough surface w ith a RMS slope of 25° and a correlation- 

length of 0 4X. In fig. 610 curve (A) is OsK/ and curve (B) is obtained w ith 

the Kirchhoff m ethod w ithout using the shadow ing correction. The 

corresponding curves for a surface correlation-length of 0-8^ are presented 

in fig. 6-9. It can be easily verified that w here there is sm all difference 

betw een curves (A) and (B) in fig. 6 9, there is a large difference between 

curves (A) and (B) in fig. 640.
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Fig. 610. The scattered powers for a Gaussian rough surface with a RMS slope 
of 25® and a correlation-length of 0 4X illuminated by a vertically polarized 
wave incident at 45®. Curve (A) is OgK/* and (B) is obtained with the Kirchhoff 
approximation.
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Several points have been raised so far concerning the trends in  results 

for vertical and  horizontal polarization. These trends will be discussed 

further once we have presented the results for waves incident at large 

angles. The results for large incident angles are presented in  the next 

section.

6*3 Results for moderate slopes and large incident angles.

In this section, we present the scattered powers for a Gaussian rough 

surface w ith a RMS slope of 25° illum inated by waves incident at angles of 

60° and  70°. For these surfaces there is sm all difference betw een the 

scattered pow ers Og and Og^ w hen the incident wave is horizontally 

polarized. However, in the vertical polarization case there is a significant 

difference betw een these two scattered pow ers at large forw ard scattering 

angles. This difference is the scattered power o ^ p  Physically, we suspect 

the difference is due to the illum ination of the surface by w aves scattered 

from other parts of the surface. This point will be discussed in  § 6-5. A new 

feature of the results is the dependence of the coherent scattered power on 

the polarization of the incident wave. We have found that the coherent 

scattered pow er is greater for horizontal polarization than  for vertical 

polarization. We suspect that this effect is related  to the degree of 

shadow ing at the surface boundary, and the resulting distribution of the 

scattering sites along the surface. We will p resent contour-plots of the 

electromagnetic field in the vicinity of the surface boundary. The contour- 

plots for the vertical polarization case show how the scattering sites are 

distributed along the surface slopes. In the horizontal polarization case the 

contour-plots show how the scattering sites are located near to the surface 

peaks. We suspect it is for this reason that the apparent roughness of the 

surface is smaller for horizontal polarization than  for vertical polarization.
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We present in figs. 6-11 and 6-12, the scattered powers for a horizontally 

polarized wave incident on a Gaussian rough surface w ith a RMS slope of 

25° and a correlation-length of 0-8X. In the figures, curve (A) is the average 

scattered power Og; (B) is cJsk ; and (C) is obtained w ith the shadow-corrected 

Kirchhoff method. In fig. 6-11 the wave is incident at an angle of 60°, and in 

fig. 6*12 the wave is incident at an angle of 70°. It can be easily verified from 

fig. 612 that the difference between OgK and the scattered pow er obtained 

w ith  the Kirchhoff m ethod extends to scattering angles betw een -40° and 

40°. This is also true in fig. 611, although the difference is smaller. In as far 

as the ray model can be applied to our surfaces, figs. 611 and 612 could be 

interpreted to show how the correction for shadow ing derived by W agner 

(1967) underestim ates the degree of shadow ing of the inciden t wave; 

numerically at least the correction is too small.
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Fig. 611. The scattered powers for a Gaussian surface with a RMS slope of 25® 
and a correlation-length of 0-8X illuminated by a horizontally polarized wave 
incident at 60®. Curve (A) is the average scattered power; (B) is and (C) is 
obtained with the shadow-corrected Kirchhoff method.
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Fig. 6 12. The scattered powers for a Gaussicin surface witli a RMS slope of 25® 
and a correlation-length of 0-8X illuminated by a horizontally polarized wave 
incident at 70®. Curve (A) is the average scattered power; (B) is Og ;̂ and (C) is 
obtained with the shadow-corrected Kirchhoff method.

We have found  this in te rp re ta tio n  of the resu lts  for vertical 

polarization w ould lead to the opposite conclusion. In figs. 6-13 and 614 we 

present the scattered powers for a vertically polarized wave incident on a 

Gaussian rough surface w ith a RMS slope of 25° and a correlation-length of 

0-8A,. In the figures curve (A) is the average scattered power Og; (B) is ag ^ ; 

and (C) is obtained w ith the shadow-corrected Kirchhoff m ethod. In fig. 

6-13 the wave is incident at an angle of 60°, and in fig. 614 the wave is 

incident at an angle of 70°. It can be easily verified from figs. 613 and 614, 

that the shadow-corrected Kirchhoff m ethod underestim ates the value of 

GsK at scattering angles betw een -40° and 40°. Numerically, the correction 

for shadow ing is to large. In fact, we have found for the cases in  figs 613 

and fig. 614, that a better estim ate fccx>the backw ard scattered pow er is 

ob ta ined  by using  the K irchhoff m ethod  w ithou t a correction for 

shadowing.
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Fig. 613. The scattered powers for a Gaussian surface with a RMS slope of 25® 
and a correlation-length of 0-8A, illuminated by a vertically polarized wave 
incident at 60®. Curve (A) is the average scattered power; (B) is and (C) is 
obtained with the shadow-corrected Kirchhoff method.
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Fig. 614. The scattered powers for a Gaussian surface with a RMS slope of 25® 
and a correlation-length of 0 81 illuminated by a vertically polarized wave 
incident at 70®. Curve (A) is the average scattered power; (B) is Ogĵ ; and (C) is 
obtained with the shadow-corrected Kirchhoff method.
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This point is illustrated in fig. 6-15 where we present the scattered powers 

for a vertically polarized wave incident at an angle of 60°; curve (A) is c^sK/ 

curve (B) is the sca ttered  pow er o b ta in ed  w ith  the  K irchhoff 

approximation; and curve (C) is obtained w ith  shadow-corrected Kirchhoff 

m ethod. A t a scattering angle of 80°, for example, the shadow-corrected 

K irchho ff m e th o d  u n d e re s tim a te s  cJsK by 8dB. The K irchhoff 

approxim ation  on the other hand , underestim ates OsK by only IdB. 

Nevertheless, a better description of OsK at large forward scattering angles 

is obtained w ith the shadowing correction.
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Fig. 615. The scattered powers for a Gaussian rough surface with a RMS slope 
of 25® and a correlation-length of 0-8A, illuminated by a vertically polarized 
wave incident at 60®. Curve (A) is cjg}̂ ; (B) is obtained with the Kirchhoff 
approximation; and (C) with the shadow-corrected Kirchhoff method.

The results for rough surfaces w ith a correlation-length of 0-8A. presented 

in this and  the previous section show how  the Kirchhoff m ethod can 

provide a qualitative description of the angular distribution of scattered
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power, even when the surface correlation-length is of the same order as the 

electrom agnetic w avelength. In the horizontal po larization  case the 

shadowing correction in (Wagner, 1967) is required to describe the angular 

d istribu tion  of the scattered pow er. In the vertical polarization case, 

however, the Kirchhoff m ethod gives a better estim ate to the backw ard 

scattered power when the shadowing correction is not used.

So far we have discussed the behaviour of the incoherent scattering 

component. The coherent scattering component can be recognized in  the 

figures as the narrow  angular distribution of scattered power centred on the 

specular angle. We have found that the coherent scattered pow er is 

dependent upon  the polarization of the incident wave. In figs. 6*11 and 

612 , for exam ple, the Kirchhoff m ethod underestim ates the coherent 

scattered power. In fig. 613 and fig. 614 the opposite is true. Furthermore, it 

can be easily verified by comparing fig. 611 w ith fig. 6 1 3 , and fig. 6-12 w ith 

fig. 6'14, that the coherent scattered power is 6dB larger for horizontal 

polarization than for vertical polarization.

At finite frequencies shadowing cannot occur w ithout diffraction. For 

simple structures such as cylinders (Poggio and  Miller, 1973), and wedges 

(Ruck et al, 1970), it is well know n that a vertically polarized wave is to a 

greater extent diffracted around the target than a horizontally polarized 

wave. The contour-plots of the electromagnetic-field in the vicinity of the 

surface boundary provide some evidence that this is true for rough surfaces 

too. We present in fig. 616 the norm alized m odulus of the total magnetic 

field in  the vicinity of a Gaussian rough surface w ith  a RMS slope of 25°, 

and a correlation-length of 0-8A. illuminated by a vertically polarized wave. 

In the figure the bright areas on the surface boundary coincide w ith where 

the surface current is a maximum. It can be easily verified from the figure 

that the largest surface current occurs at (-11, 0 0). The surface current at 

(21, 0 0) is smaller, because this part of the surface is partially shadowed by 

the surface to its right.
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Fig. 6 16. The normalized modulus of the total magnetic field in the vicinity of a rough 
surface with a RMS slope of 25° and a correlation-length of 0-8X, when a vertically polarized 
wave is incident from the right with an incidence angle of 60°.
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Fig. 6 17. The normalized modulus of the total electric field in the vicinity of a rough surface 
with a RMS slope of 25° and a correlation-length of 0-8A., when a horizontally polarized 
wave is incident from the right with an incidence angle of 60°.
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There is evidence in the contour-plot of the diffraction by the surface of the 

incident wave. The surface current at (-0-5, 0-0), for example, appears to be 

due to the diffraction of the incident wave around the surface at (-1*5, 0 25).

In fig. 6-17 we present the normalized m odulus of the total electric field 

for a horizontally polarized w ave incident at angle of 60° on  the same 

section of surface illustrated in fig. 616. In the horizontal polarization case 

the largest surface currents coincide w ith where the rate of change of the 

total electric field along the direction of the vector norm al to the surface is 

largest. It can be verified from the figures that in fig. 617 the scattering sites 

have there centres at (-15, 0 25) and (175, 0-75), near to the surface peaks. 

This is in contrast to fig. 646 where the scattering sites are distributed along 

the slopes of the surface. Intuitively, we w ould expect such a difference 

between the location of the scattering sites if the degree of shadowing of the 

surface w as grea ter for horizon tal p o la riza tio n  th an  for vertical 

polarization.

64  A summary of the results for rough surfaces with large slopes.

In the next section, § 6 5, we present the results for a Gaussian rough 

surface w ith a RMS slope of 45° and a correlation-length of the same order 

as the electrom agnetic wavelength. In contrast to the results for a RMS 

slope of 25°, for a RMS slope of 45° the difference betw een the scattered 

powers Og and Ogj^ is not small. This difference is the scattered power 

The results p resen ted  in § 6*5 illustrate  the enhanced backscattering 

phenom enon reported in the literature (Mendez and O'Donnell, 1987). For 

the surfaces we have considered, enhanced backscattering occurs for 

vertically and  horizontally polarized waves incident at angles betw een 0° 

and 30°. We have found this is true, even w hen the surface correlation- 

length is as small as 0-4X. We have found that near to norm al incidence
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the angular d istribution of the enhanced backw ard scattered pow er is 

described w ith  and to a good approxim ation the shadow-corrected 

Kirchhoff m ethod describes the scattered pow er According to the ray 

p icture of scattering, the single-scatter of the incident w ave from  the 

surface is described w ith the Kirchhoff m ethod. The intuitive picture of 

scattering has also provided an explanation of enhanced backscattering as a 

m ultiple-scatter phenom enon (O'Donnell and M endez, 1987). Here, the 

term  "m ultiple-scatter" describes the scattering due to the illum ination of 

the surface by waves scattered from other parts of the surface. In as far as 

the intuitive picture of scattering can be applied to our surfaces, the results 

for rough surfaces w ith large slopes provide evidence that the scattered 

pow ers and describe the single and m ultiple-scatter from  the 

surface, respectively.

6*5 Results for large slopes.

In this section we present the scattered powers for a Gaussian rough 

surface w ith  a RMS slope of 45° and a correlation-length of the same order 

as the electromagnetic wavelength. The striking feature of the results for 

these surfaces is the large difference between the average scattered power Og 

and the scattered pow er Og^- For waves incident at angles of less than 30°, 

we have found that the average scattered pow er is largest in the backward 

scattering direction. M oreover, the angular d istribu tion  of backw ard 

scattered pow er is relatively narrow . We have found that this enhanced 

backscattering occurs even w hen the surface correlation-length is as small 

as 0-4X. The results for waves incident at angles of 0° and 15° show how the 

angular distribution of the backward scattered pow er is described by the 

angular distribution of o ^ p  and the angular distribution of OgK is to a good 

approxim ation described w ith the Kirchhoff m ethod. At the end of this
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section we present contour-plots of the total field in the vicinity of the 

surface boundary. The plots illustrate how m ultiple-scattering enhances 

the surface current density in the valleys of the rough surface.

We present in figs. 6*18 - 6-20 the scattered powers for a horizontally 

polarized wave incident at angles of 0°, 15° and 45° on a Gaussian rough 

surface w ith  a RMS slope of 45° and a correlation-length of 0 8A,. In the 

figures curve (A) is the average scattered power, and curve (B) is OgK, The 

sm ooth curve, curve (C), is the scattered power obtained w ith the shadow- 

corrected Kirchhoff method. In all three figures, the angular distribution of 

OsK is described to good approxim ation w ith  the shadow -corrected 

Kirchhoff method. However, the fluctuations in  the num erical results are 

large, and we suppose that considerably more averaging w ould have to be 

done to obtain a good estimate of their respective expected values.
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Fig. 618. The scattered powers for a Gaussian rough surface with a RMS slope 
of 45® and a correlation lengtli of 0-8X illuminated by a horizontally polarized 
wave incident at 0®. Curve (A) is the average scattered power; (B) is and 
(C) is obtained with the shadow-corrected Kirchhoff method.
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Fig. 6 19. The scattered powers for a Gaussian rough surface with a RMS slope 
of 45® and a correlation length of 0*8̂  illuminated by a horizontally polarized 
wave incident at 15®. Curve (A) is the average scattered power; (B) is Ogĵ ; and 
(C) is obtained with the shadow-corrected Kirchhoff method.
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Fig. 6-20. The scattered powers for a Gaussian rough surface with a RMS slope 
of 45® and a correlation length of O-SX illuminated by a horizontally polarized 
wave incident at 45®. Curve (A) is the average scattered power; (B) is and 
(C) is obtained with the shadow-corrected Kirchhoff method.

120



The striking feature of the figures is the large difference betw een the 

average scattered power and In all three figures the average scattered 

pow er is largest in the backward scattering direction. In two of the figures, 

figs. 6*18 and 6-19, this is due to the Oj^j contribution. In fig. 6-20 the tilt in 

the angular distribution of towards the backward scattering direction is 

equally responsible for the large backward scattered power.

We present in figs. 6-21 - 6 23 the scattered powers for a vertically 

polarized wave for the same cases in fig. 618 - 6-20. Figs. 6*21 and 6*22 also 

show how the angular d istribution  of the average backw ard scattered 

pow er is described by the angular distribution of o ^ p  We have found that 

the angular w idth  of the enhanced backward scattered power is narrow er 

for vertical polarization than for horizontal polarization.
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Fig. 6 21. The scattered powers for a Gaussian rough surface with a RMS slope 
of 45° and a correlation-length of 0-8A, illuminated by a vertically polarized 
wave incident at 0°. Curve (A) is the average scattered power; (B) is Cg^; and 
(C) is obtained with the shadow-corrected Kirchhoff method.
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Fig. 6 22. The scattered powers for a Gaussian rough surface with a RMS slope 
of 45® and a correlation-length of 0 8X illuminated by a vertically polarized 
wave incident at 15®. Curve (A) is the average scattered power; (B) is Qgĵ ; and 
(C) is obtained with the shadow-corrected Kirchhoff method.
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Fig. 6 23. The scattered powers for a Gaussian rough surface with a RMS slope 
of 45® and a correlation-length of 0-8X illuminated by a vertically polarized 
wave incident at 45®. Curve (A) is the average scattered power; (B) is agj ;̂ and 
(C) is obtained with the shadow-corrected Kirchhoff method.
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In fig. 6 21 the 3dB angular w idth  is '-15°, and in fig. 6 22 the 3dB angular 

w idth is '-30°. In the two corresponding figures for horizontal polarization, 

figs. 6-18 and 6-19, the 3dB angular w idth is '-30°, and '-45°, respectively. In 

fig. 6-23 the average scattered pow er is also largest in  the backw ard 

scattering direction, bu t this is due in part to the tilt of tow ards the 

backward scattering direction. However, the striking feature of fig. 6-23 is 

the large difference between curves (A) and (B) in the forw ard scattering 

direction. This feature is not present in the result for the sam e surface 

illum inated by horizontally polarized wave. We suspect that this difference 

betw een the vertical and horizontal polarization results is related to a 

difference in the degree of shadowing that takes place. We suspect that the 

large forward scattering contribution from which is present in  fig. 6*23 

but not in fig. 6-20, is because a vertically polarized wave is to greater extent 

diffracted around the surface, thereby illum inating more of the surface 

parallel to the incident wavefront. In this m anner, more of the surface acts 

to source a secondary illum ination of slopes capable of scattering in the 

forward direction. This feature is also present in figs. 6*13 and fig. 6-14.

We have found that enhanced backscattering occurs for a Gaussian- 

rough surface w ith a RMS surface slope of 45° and a correlation-length as 

small as 0-4A.. We present in figs. 6-24 and 6*25 the scattered powers for a 

wave incident at an angle of 15° on a Gaussian rough surface w ith a RMS 

slope of 45° and a correlation-length of 04^. In fig. 6*24 the incident wave is 

horizontally polarized, and in fig. 6 25 the incident wave is vertically 

polarized. The two corresponding figures for a surface correlation-length of 

O-SX are figs. 619 and figs. 6-22. It can be easily verified by comparing fig. 6*24 

with fig. 619, and fig. 6-25 with fig. 6-22, that the angular distribution of GsK 

is broader in the two figures for a surface correlation-length of 0 4A,.

123



1.25

L_
(D

O
CL

g 0.75 
0)
oü
” 0.5

0)
§ 0.25

0.0
9060300—90 —60 —30

scattering ongle
Fig. 624. The scattered powers for a Gaussian rough surface with a RMS slope 
of 45® and a correlation length of 0 4X illuminated by a horizontally polarized 
wave incident at 15®. Curve (A) is the average scattered power; (B) is and 
(C) is obtained with the shadow-corrected Kirchhoff method.
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Fig. 6 25. The scattered powers for a Gaussian rough surface with a RMS slope 
of 45® and a correlation-length of 0-4A, illuminated by a vertically polarized 
wave incident at 15®. Curve (A) is the average scattered power; (B) is Og ;̂ and 
(C) is obtained with the shadow-corrected Kirchhoff method.
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The intuitive explanation of enhanced backscattering leads to an inverse 

relationship between the angular w idth of the enhanced backward scattered 

pow er and the mean free-path of the double-scatter at the surface; the path 

CD in  fig. 1-3, for example. (O'Donnell and Mendez, 1987). The fact that the 

angular w idth  of the enhanced backward scattered power is smaller for a 

correlation-length of 0-8A, than for a correlation-length of 0-4X is consistent 

w ith  the in tuitive explanation of enhanced backscattering. Also, our 

observation that the angular d istribution  of the enhanced backw ard 

scattered power is narrow er in the vertical polarization case than in  the 

horizontal polarization case, would suggest that the m ean free-path of the 

double-scatter is larger for vertical polarization  than  for horizontal 

polarization. It is our suspicion that a vertically polarized wave is diffracted 

around the surface to a greater extent than a horizontally polarized wave. 

Intuitively, the diffraction of the scattered wave around the surface w ould 

indeed act to increase the mean free-path of the double-scatter.

The contour-plots of the electromagnetic field in the vicinity of the 

surface boundary illustrate how the surface current density is enhanced by 

multiple-scattering. We present in fig. 6-26 the normalized m odulus of the 

total magnetic field for a vertically polarized wave normally incident on a 

Gaussian rough surface w ith a RMS slope of 45° and a correlation-length of 

0'8k. We suspect that the pattern of interference centred at (-0*5, 0-5) is due 

to the interference between the incident wave, a wave scattered towards the 

upper-left hand corner of the plot, and a wave scattered towards the upper- 

right hand corner of the plot. It can be easily verified from the figure that 

the m agnitude of the total magnetic field at (-10, 0 0) and (0 0, 0 0) is large 

com pared to its value at (125, 0 5), w here the surface is not directly 

confron ted  by ano ther p a rt of the surface. We suspect th a t the 

enhancement of the magnetic-field in the region of (-0-5, 0-5), is due to the 

illumination of the surface by scattered waves.
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Fig. 6 26. The normalized modulus of the total magnetic field in the vicinity of a rough 
surface with a RMS slope of 45° and a correlation-length of 0 81, when a vertically polarized 
wave is normally incident on the surface.
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We present in fig. 6 27 the norm alized m odulus of the total electric 

field for a horizontally polarized wave for the same section of surface as 

illustrated in fig. 6 26. The enhancement of the field in the surfaces valleys 

evident in  fig. 6 26, is also evident in fig. 6 27.
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Fig. 6 27. The normalized modulus of the total electric field in the vicinity of a rough surface 
with a RMS slope of 45° and a correlation-length of 0-8X, when a horizontally polarized 
wave is normally incident on the surface.
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7
Discussion and Conclusions.

In this concluding chapter a review  of the m ain resu lts and 

conclusions is g iven, p rev ious w ork  in  the field  of num erical 

electromagnetics and rough surface scattering are examined in the light of 

the p resen t w ork, and the chapter is com pleted w ith  som e general 

conclusions.

7*1 Review of the present work.

The aim of this study was to investigate wave scattering from perfectly- 

conducting, two-dim ensional, Gaussian rough surfaces w here the RMS 

height and correlation-length of the surface are of the same order, and of 

the same order as the electrom agnetic w avelength. The investigation 

started w ith the two, uncoupled, magnetic-field-integral-equations (MFIEs), 

and the procedure used to approxim ate the continuous equation as a 

discrete equation. For the surfaces we have considered, the m atrices 

generated in  the discretization of the continuous equation are not ill- 

conditioned and can be solved exactly by LU decomposition. We chose to 

investigate the quality of the numerical solution by examining the degree 

to w hich the scattered field beneath the surface boundary cancelled the 

incident field. This established that the discrete approxim ation of the MFIE 

was a good one.

Once confident that the procedure used to discretize the MFIE gave 

good solutions to the field in the vicinity of the surface boundary, the study 

progressed onto iterative m ethods of solving the discrete equation. The 

convergence and rate of convergence of tw o iterative m ethods were 

examined. The Neum ann expansion used by Brown (1982), Holliday (1987),
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and Holliday et al (1988), appeared to be a natural candidate for an iterative 

solution of the discrete approximation of the MFIE. However, although the 

expansion provided a rapid numerical solution for small values of surface 

height and slope, w hen the surface structure was of the same order as the 

electromagnetic wavelength the expansion diverged rapidly. A step-by-step 

m ethod of identifying divergence was presented (Wingham and Devayya, 

1992). This allowed us to identify divergent expansions w ith in  a few 

iterations. To the extent that the numerical sim ulation is a good one, we 

also consider that our results provide strong evidence that the Neum ann 

expansion cannot be used w ithout qualification to provide a form al 

solution to the rough surface MFIE.

The conjugate-gradient m ethods are iterative m ethods of solving 

m atrix-equations whose convergence are in theory sure. In spite of the 

theoretical assurance of convergence, it is not uncom m on to find in  the 

literature references to the iteration diverging. We have ourselves found 

that applied to the discrete approximation of the MFIE, convergence is not 

sure. The divergence was identified as due to the effect of rounding errors 

on the theoretical orthogonality properties, which guarantee convergence. 

To overcome this problem  we modified the algorithm  to include explicit 

orthogonalization of the conjugate-vectors at each iteration. We called this 

algorithm  the Gram-Schmidt least-square-conjugate-gradient (GS-LSCG) 

method. In all the cases we have applied the GS-LSCG m ethod to, we have 

never experienced a problem  w ith  its convergence (Devayya and 

W ingham, subm itted in 1992)

The decision was m ade to run  w ith  the GS-LSCG m ethod and to 

exam ine its rate of convergence for various surface param eters and 

incident waves. We found that the rate of convergence of the GS-LSCG 

m ethod depends less upon a particular value of the RMS height and 

correlation-length, but more upon there ratio. This ratio is proportional to 

the RMS surface slope. We also found that the size of the surface, which
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determines the matrix size N, does not affect the rate of convergence. This 

im portant, because the advantages of the conjugate-gradient m ethod then 

grows with N.

The potential advantage of an iterative m ethod is that the iteration can 

be stopped once a "good solution" has been found. To establish the point at 

which to truncate the iteration, we examined the difference betw een the 

scattered far-field power com puted w ith  the iterated solution for the 

surface current density and the scattered far-field power computed w ith the 

so lu tion  ob tained  by LU decom position. For the surfaces we have 

considered, small errors in the surface current density are m apped to small 

errors in  the scattered far-field, even w hen the scattered pow er is small. 

The computational issues were investigated in the light of this result, by 

com paring the CPU-times required by the GS-LSCG m ethod and by LU 

decom position. We found that w hen the RMS surface slope is small, or 

w hen N  is very large, the GS-LSCG m ethod determines a good solution 

w ith an order of m agnitude reduction in the com putation required by LU 

decom position.

From the onset of the investigation our intention was to examine 

wave scattering for several incident fields. The major disadvantage of the 

GS-LSCG m ethod is that the m ethod is im plem ented for one incident field 

at a time. LU decomposition on the other hand, allows the solution for any 

incident field to be directly obtained. We have presented in this thesis a 

numerically robust conjugate-gradient m ethod for scattering problems that 

requ ire  solutions for several incident fields. The m ethod  uses the 

inform ation  obtained  in previous im plem entations to determ ine an 

initial-guess at the solution of the m atrix-equation for each additional 

incident field. Flowever, for the cases we have considered, the surface 

currents for different incident fields prove too distinct for the m ethod to 

provide any significant computational advantage over LU decomposition.
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Nevertheless, our w ork on the num erical solution of the MFIE by the 

conjugate-gradient m ethod, is relevant to scattering problems that require 

solutions for a few incident fields, or w hen the size of the matrix prohibits 

the use of direct solution methods.

To solve the MFIE numerically the integral m ust be truncated at some 

point. The scattering problem described by the truncated integral-equation 

is that of a wave scattered from a patch of surface. From a computational 

standpoint a small patch size is preferable. However, since it is hoped that 

the norm alized incoherent scattered power com puted for an ensemble of 

rough surface patches will apply to the infinite rough surface, the patch size 

m ust be large enough to accommodate the average scattering properties of 

the infinite surface. We have placed the point at w hich to truncate the 

MFIE into a mathematical context. The incoherent scattered power for an 

illum inated patch of surface was presented as the integral of the weighted 

autocorrelation-function of the random  component of the field scattered by 

each point of the surface. By representing the incoherent scattered power in 

this m anner, the factor determining the size of a patch was identified as the 

separation required for this random  process to decorrelate. We presented 

exam ples of backscattering-autocorrelation-functions for a perfectly- 

conducting, Gaussian rough surface. In the horizontal polarization case, 

the autocorrelation-functions obtain a constant value w ithin a few surface 

correlation-lengths. This is also true of m ost of the cases for vertical 

polarization. The exceptions occur w hen the RMS surface height is small. 

For these geometries the autocorrelation-functions have an oscillatory 

com ponent over the entire length  of the footprint. We suspect this 

phenom enon is due to a surface wave. The presence of a surface wave 

complicates the issue of where to truncate the MFIE. However, for the 

surfaces we have considered we suspect that the diffuse scattering of the 

surface wave is relatively small. The results presented in this study provide 

evidence that a relatively small patch size can accurately represent the
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second-order scattering properties of the infinite surface. This is possible 

because of the small correlation-length of the random  component of the 

scattering-function. In fact, we consider that the lim it on the patch size 

relates more to the m ethod used to reduce the scattering from the patch 

edges. The tapered incident wave used in our num erical simulations, for 

exam ple, is less consistent w ith  the w ave equation as the tapering is 

increased.

Our attention then centred on the scattered far-field and the expected 

value of the scattered power. The field scattered from a rough surface is the 

scattered field obtained w ith  the Kirchhoff approxim ation plus the field 

due to the integral in the MFIE, which we call the integral-field. In the high 

frequency limit wave scattering is not complicated by diffraction, and the 

role of the Kirchhoff and integral-fields are understood. In this limit, the 

Kirchhoff-field is due to the single-reflection of incoming rays from the 

surface. The integral-field is required to account for shadow ing of the 

surface, and multiple-reflections at the surface boundary. We presented a 

procedure for obtaining from the solution of the MFIE two physically 

distinct corrections to the Kirchhoff approxim ation. On the assum ption 

that the coherence between the field due to single reflections and the field 

due to m ultiple-reflections is negligible, a correction for shadow ing is 

determ ined from the linear m ean-square estim ate of the integral-field in 

terms of the Kirchhoff-field. The error in the estimate, which provides the 

second correction to the K irchhoff m ethod, satisfies the coherence 

properties of the scattered field due to multiple-reflections.

A rm ed w ith  these procedures we set about applying them  to our 

num erical sim ulations of wave scattering from Gaussian rough surfaces 

where the RMS height and correlation-length are of the same order, and of 

the order as the electromagnetic wavelength. We found that for a RMS 

slope of 25° there is small difference betw een the integral-field and the 

linear, mean-square estimate of the integral-field in terms of the Kirchhoff-
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field. Physically, we suspect that because this difference is small, the 

scattered field due to the illum ination of the surface by scattered, 

wavefronts is small too. We suspect that for these surfaces the correction to 

the Kirchhoff approxim ation provided by the integral in the MFIE is for 

partial-shadow ing and the diffraction by the surface of the incident and 

scattered waves. The discussions for surfaces w ith  moderate slopes centred 

on the relationship between the polarization of the incident wave, and the 

degree of shadowing at the surface. We consider that both the near and far- 

field results provide strong evidence that the degree of shadow ing is 

smaller for vertical polarization than for horizontal polarization. Contour- 

plots of the electromagnetic field in the vicinity of the surface boundary 

were used to illustrate this point in the near-field. In the far-field, we have 

found that the average scattered power in the horizontal polarization case 

is better described by the Kirchhoff m ethod w hen the correction for 

shadow ing derived in (Wagner, 1967) is used. The results for vertical 

polarization on the other hand, show how the Kirchhoff m ethod gives a 

better estim ate of the backw ard scattered pow er w hen the shadow ing 

correction is not used.

The results for G aussian rough  surfaces w ith  very large slopes 

illustrate the enhanced backscattering reported in  the literature (O'Donnell 

and Mendez, 1987). In contrast to the results for a RMS slope of 25°, for a 

RMS slope of 45° the difference between the integral-field and the estimate 

of the integral-field in terms of the Kirchhoff-field is not small. Physically, 

we suspect this difference is due to the illum ination of the surface by waves 

scattered from other parts of the surface.

7*2 Review of previous work.

O ur work on iterative methods of solving the magnetic-field-integral-
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equation has a m uch w ider scope of application. There is considerable 

in terest in  iterative m ethods w ith in  the electrom agnetic scattering 

com m unity (Sarkar et al, 1981), (Umashankar, 1988), (Marks, 1990). The 

procedures used to identify the divergence of the N eum ann expansion, for 

example, can be applied to Neum ann expansion of any Fredholm integral- 

equation (Baker, 1977) of the second-kind. Also, the work presented on the 

conjugate-gradient method, and in particular, avoiding rounding errors by 

using Gram -Schm idt orthogonalization should  be of in terest to those 

researchers w ho have found the initial convergence of the conjugate- 

gradient m ethod applied to there problem  to be rapid, bu t then diverges 

due to rounding errors.

In the numerical studies of rough surface scattering the point at which 

the integral-equations are truncated varies m arkedly from study to study. 

Given the problem  of choosing a patch size large enough to preserve the 

second-order scattering properties of the infinite surface, b u t at the same 

tim e sm all enough to lim it the com putational requirem ent, we have 

placed the point at which to truncate the integral into a m athem atical 

context. O ur sim ulations suggest that a relatively small patch size can 

describe the second-order scattering properties of the infinite surface. In 

fact, the lim it on the patch size appears to relate more to m ethod used to 

guard edge effects. The method we have used to guard against these effects 

is to taper the incident wave to negligible levels at the patch edges. This 

m ethod has also been used by Thorsos (1988), Thorsos and Jackson (1989), 

Broschat at at (1989) and most recently by Ishim aru and Chen (1991). It 

w ould have been useful, if we had had the time, to compare this approach 

w ith the m ethod for periodic gratings due to Jordan and Lang (1979). The 

integral-equation for a periodic grating is described along a closed contour 

over one period of the grating. The periodic nature of the surface is 

accom m odated into the Greens' function for the scattering problem . 

A pplied to the random , rough surface scattering problem , the random
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roughness is defined over one period  of the grating. A lthough the 

periodicity of the surface roughness m odulates the angular distribution of 

scattered pow er by a pattern of interference fringes, the m ethod of Jordan 

and Lang does not suffer from ''edge effects", because the integral-equation 

is bounded.

This thesis has compared wave scattering for both polarizations. The 

bulk of the literature on wave scattering is on the Dirichlet scattering 

problem, which in the context of this study is the horizontal polarization 

case. O ur results for horizontal polarization are consistent w ith the results 

presented  by Thorsos (1988). We have also found tha t the Kirchhoff 

approxim ation w hen used w ith the correction for shadow ing derived in 

(Wagner, 1967), gives a better description of the scattered pow er as the 

surface correlation-length approaches the electromagnetic wavelength. Our 

work has also dealt w ith  the vertical polarization case. Here, we have 

found that the backw ard scattered pow er is better described w ith  the 

Kirchhoff m ethod w hen the correction for shadowing is not used.

The results for a RMS slope of 25° show that there is small difference 

betw een the integral-field and the linear m ean-square estim ate of the 

integral-field in term s of the Kirchhoff-field. Analytic theories of wave 

scattering, w ith  the exception of the second-order K irchhoff-iteration 

(Ishim aru and Chen (1990 a, b), are appropriate w hen the RMS surface 

slope is less than 25°. We suspect that these theories operate in a region of 

the param eter space where the scattered field due to the illumination of the 

surface by scattered, wavefronts is small. The nature of the results for 

rough surfaces w ith  large slopes bare a striking resem blance to those 

presented by Ishim aru and Chen (1990 a, b), (1991) and Bruce and Dainty 

(1991). These authors have used the first two terms of a Kirchhoff iteration 

to describe wave scattering from very rough surfaces in the region "SKI" of 

fig. 1*3. The first term of the iteration gives the expected scattered power
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obtained w ith the shadow-corrected Kirchhoff method. The second term  is 

required to account for enhanced backscattering. We have presented a 

procedure for obtaining from the solution of the MFIE two corrections to 

the expected scattered power obtained w ith the Kirchhoff approximation. 

This procedure has allowed us to gain valuable insight into the scattering 

mechanisms that operate at the surface boundary. We have found that in 

m any cases the correction for shadow ing is close to the correction for 

shadow ing derived in (W agner, 1967). The second correction, w hich 

physically we suspect accounts for the illumination of the surface by waves 

scattered from other parts of the surface, for very rough surfaces is required 

to describe the angular distribution of the enhanced backw ard scattered 

power.

7-3 Conclusions.

The purpose of this study was primarily to investigate wave scattering 

from perfectly-conducting, tw o dim ensional G aussian rough  surfaces 

where the RMS height and correlation-length are of the same order, and of 

the order of the electromagnetic wavelength. Existing scattering theories do 

not apply to these geometries and at present there is little alternative bu t to 

solve the scattering equations numerically.

A suitable equation to solve is the m agnetic-field-integral-equation 

(MFIE). The principal problem  that emerges in the num erical solution of 

the MFIE is that very large matrices are generated, even for m oderately 

sized two-dimensional surfaces. Iterative m ethods were used to solve the 

discrete representation of the MFIE, w ith  the hope that good solutions 

could be ob tained  w ith in  a few itera tions, thereby  reducing  the 

com putational requirement. Two iterative m ethods were investigated; the 

N eum ann expansion, a m ethod that had been used to formally represent 

the solution of the rough surface scattering problem; and the conjugate-
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g rad ien t m ethod , an iterative  of solving m atrix  equations w hose 

convergence is in theory sure. The convergence of both  m ethods were 

found  to be in  question. The N eum ann  expansion  suffers from  

convergence difficulties in theory, as well as in practice. The divergence of 

the conjugate-gradient m ethod, how ever, w as iden tified  as due to 

rounding errors. A conjugate-gradient far less susceptible to rounding 

errors was presented, and this m ethod has been applied successfully to a 

num ber of scattering geometries.

Procedures were presented for determ ining from the solution of the 

MFIE, two corrections to the Kirchhoff method. The results presented in 

this thesis provide evidence that one of the corrections is for partial- 

shadowing, and the diffraction by the surface of the incident and scattered 

waves, and the other correction is for the illum ination of the surface by 

scattered, wavefronts. The increase from a RMS slope of 25° to a RMS slope 

of 45° m arks the transition into the region of the param eter space where 

enhanced backscattering occurs. Moreover, this transition is m arked by an 

increase in the degree of incoherence betw een the scattered field obtained 

w ith the Kirchhoff approximation and the scattered field obtained w ith the 

surface current due to the integral in the MFIE. Physically, we suspect that 

the increase in the degree of incoherence between these two fields, is due to 

a m arked increase in the illum ination of the surface by waves scattered 

from the other parts of the surface. It rem ains to be seen w hether the 

algorithms and procedures presented in this thesis will be adopted by the 

rough surface scattering community
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Appendix A. 
Derivation of the magnetic-field-integral-equation.

The integral form ulation of Maxwell's equations are dealt w ith  by, 

among others, Poggio and Miller (1973). In this appendix, we will derive 

the magnetic-field-integral-equation (MFIE) for the case of a horizontally 

polarized wave incident upon a two-dimensional (corrugated), surface. The 

derivation of this MFIE is not in the literature. For a two dim ensional 

surface, the general form of the MFIE is (Poggio and Miller, 1973)

J(x) = 2n(x) X H‘(x) + ^  n(x) x | J(x') x  V<I>(r, r')
{ dx

dx' (A-1)

Here, J is the surface current density, is the incident magnetic field at the 

surface, 0  is the Greens' function for the scattering problem, r  and r* are 

position vectors of the surface at x and x', (r - r' ) = (x -x') x + (z - z') z, and n 

is the unit vector norm al to the surface boundary at x'.

n(x) = - ZJix.dzZdx _  (A-2)
Vl + (dz/dxp

Here, the bold type face is used to indicate a vector, and the hat symbol 

denotes a unit vector. A suitable Greens function for the two-dimensional, 

scattering problem is (Poggio and Miller, 1973),

= (A3)

and taking the partial derivatives of the zero-order H ankel function 

(Abramowitz and Stegun, 1970),
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(2)
V O (r, r') = -ijtk (r - r') —  ̂ (A4)

In the horizontal polarization case, the surface current induced by the 

incident wave

H*(x) =H Î(x)(z cos e‘-x sine*), (A-5)

is the vector

J(x) = -J(x)y. (A-6)

W ith (A-2) and (A-5), the first term  on the right-hand-side (RHS) of (A-1)

n(x) XH‘(x) = Hi(x) (cos 9 d z /d x - s m B ) ^  (A-7)
V l + (dz/dx)^

While the vector cross-product in the second term  on the RHS of (A4) is

. .^ ^ _ ( x - x ') d z /d x - ( z - z ')  _  (A-8)

V l + (dz/dxŸ

Finally, substituting (A-6), (A-7) and (A-8) into the RHS of (A-1), we obtain 

the MFIE for the horizontal polarization case as

J(x)y = 2Hi(x)(^ ^ Q *-
V l + (dz/dx)^

- f y l  J(x') ( ( z  - z ')  - (X -  X ') dz /dx ) J  l ± (< k '/d x f "
2 V l+ { d z / d x f

(A-9)
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The MFIE for a vertically polarized wave is derived in  a similar 

fashion. For the incident wave

H \x)=  -HÎ(x)ÿ. (A40)

the surface current density is the vector

J(x) = J(x)p, ( A l l )

where,
p = x + z d z /d ^ .  (A12)

Vl +(dz/dxf

Using (A-2) and (A-10), the first term on the RHS of (A-1) is

n(x) X H \x ) = H \x )  p. (A-13)

While the vector cross-product in  the second term  on the RHS of (A-1) is

n(x) X ( p' X ( r - r' ) ) = • — ^   ( ( z - z' ) - (x - x') dz'/dx' ). (A-14)
V l+(dzV dx)^

Then, substituting (A l l) ,  (A-13) and (A-14) into the RHS of (A-1), we obtain 

the MFIE for a vertically polarized wave as

J(x)p = 2Hi(x)p - ^ P  f  J(x') ((z- z') - (x - x') dz'/dx) dx'
J - o o

(A-15)
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Appendix B. 
The variance in the estimate of the autocorrelation 
function of a Gaussian, rough surface.

To test w hether the autocorrelation function of a sam ple of the 

generated surface is consistent w ith that of a sample of a Gaussian rough 

surface, we need to have some idea of the error in  the estim ate of the 

theoretical autocorrelation function m ade from  a sam ple of a G aussian 

rough surface. The variance in the estimate of the autocorrelation function 

of a Gaussian, random  process made from a sample of length L is (Priestley, 

1987)

var (r(T)) = -J- | r^(m) + r(m + x) r(m - t) +

2r2(m) r2(x) + 4r(x) r(m) r(m - x) dm  (B-1)

Here, r(x) is the estimate of the norm alized autocorrelation m ade from a 

sam ple of length L and r(x) is the theoretical nom alized autocorrelation 

function of the Gaussian, random  process.

The autocorrelation function of a G aussian rough  surface is the 

G aussian

R(x) = exp (B-2)

and the norm alized autocorrelation function

r(x) = R(x)/R(0). (B.3)

142



W ith (B-3) substituted into the integral (B-1), the two following identities 

are then used to evaluate (B l), (Gradshteyn and Ryzhik, 1980),

0-q2m 2 _  Æ (B-4)

e-p2m2±qm dm = ^ e q V 4 p 2  p> o (B-5)

The integral is easily evaluated w ith knowledge of the identities (B-4) and 

(B-5);

var(r(x)) = - | - y | ^ 1 + 3  exp 2x‘ - 4 exp 3x- (B-6)

For X = 0, r(0) always equals 1. It can be easily verified from (B-6) that the 

variance in the estimate at x = 0 is correctly zero. The asymptotic value of

(B-6) is

var (r(oo)) - (B-7)

For m ost Gaussian, random  processes the error in the estim ate is a 

Gaussian, random  process too (Priestley, 1981). W ith the errors normally 

distributed, the 5% significance level for the estim ate is twice the square- 

root of the variance; i.e. in  95% of the autocorrelation functions made 

from a sample of a Gaussian rough surface w ith length L, the error in the 

estim ate will lie betw een plus and m inus twice the square-root of the 

variance (B-6). This significance level is illustrated in  fig. 2-2(B) for a 3000 

correlation-length sample of a Gaussian rough surface w ith a correlation- 

length of 0-4X.
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Appendix C- 
Derivation of the scattered field integrals.

In this appendix we will derive the scattered field integrals. We begin 

w ith the following integral equations for the scattered magnetic field, and 

the scattered electric field;

H®(R) = Y - I J(x') X V$(R, r') 
4tc dx

dx* (C l)

foo
ES(R) = . i k S l  J(x')<E>(R,r') z  + x ^  dx’. (02)

J-oo dx

Here, J is the surface current density, H® is the scattered magnetic field, is 

the scattered electric field, 0  is the Greens' function for the scattering 

problem, r' is a position vector of the surface a x', and  R is a position vector 

for a point off the surface boundary at (X , Z). A suitable Greens function for 

the two-dimensional scattering problem is (Poggio and Miller, 1973),

(2)

and V<&(R , r') = -k k  (R - r’) ^. (C-4)

In the horizontal polarization case, the surface current induced by the 

incident wave is

J(x) = -J(x)y. (05)
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Substituting (C-3) and (C*5) into the RHS of (C-2), the scattered electric field 

is then obtained from the integral

ES(X, Z )ÿ  = ^ y J(x') V l+ ( d z '/d x f  dx'. (06)
J - o o

For a vertically polarized wave the surface current density is

J(x) = J(x)p, (07)

where,

p = . x + .z d z /d x_ (08 )
Vl + (dz/dxŸ

In this case, the scattered magnetic field is perpendicular to the x-z plane. 

W ith (C-4), (C-7), and (C-8) substituted into the RHS of (C-1), the scattered 

magnetic field is obatined from the intgral

H®(X, Z) y = ÿ  [  J(x') «Z  - z') - (X - X ') dz '/dx ) dx'.
J-OO

(C-9)

W hen the observation point is distant form the surface boundary, 

I R- r ' l  = V(R COS0® - z )2  (R sine® - x)^

= R ( l- i ( z c o s 9 * + x s in 9 ® ) ) ,  (019)

the Green's function (C-3) can be replaced w ith  its asym ptotic value, 

(Abramowitz and Stegun, 1970)
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0(R  , r') = exp exp (-ikR) exp (ik (z cos0^+ x sin0^)), (O il)

and

V 0 (R , r') = exp | exp (-ikR) exp (ik (z cos0^+ x sin0^)). (C-12)

Using the Greens function (O il)  in (C*2),

ES(0®) = Z o y ^ ^ e x p | - ^ j e x p  (-ikR)

I J(x') exp (ik (z' cos6*+ x' sin0*)) V l + (dz’/dx)^ dx', (C13)
J-oo

and w ith (012) used in (C l),

HS(0®> = Z o y ^ ^ e x p | - ^ j e x p  (-ikR)

I  J(x') exp (ik (z' COS0®- x’ sin0*)) (cos0®- d z '/d x  sin0®)V 1 + (dz'/dxj^ dx'
J-OO

(C-14)
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Appendix D 
The Wagner shadow-function.

The Kirchhoff m ethod neglects the shadow ing by the surface of the 

incoming and outgoing waves. The correction for shadow ing derived in  

(W agner, 1967) assum es that the incom ing and outgoing w aves can be 

represented as rays. Physically the correction describes the area of surface 

geom etrically  v isib le to bo th  source and  observation  po in ts . The 

shadow ing correction is applied to the Kirchhoff result for the expected 

value of the scattered power, by multiplying the incoherent scattered power 

(D 'l) by the shadow-function S(0^,0^). Where

w here

s(e\e®) = s(e®) 90° < e®s e \  ( d - i)

s(e\e®) = s(e') 0* < e®g 0°, (d-2)

s(8\e®) = s(e\e®) -90° < e®< 0°, (d-3)

S(0®) = [ 1 + ( 1 2Bs)
4Bs

e-9v2/8 e-v2  [ i  + e r f (v j]
B s =  -  + -------------------------— — , (D-5)

(48t c v 2)2 (16j c v 2)2

V |COt Ef| (D6)
® 2 0 /S

o /g i _  [ erf (vi) + erf (vg)] ( 1 - e -2(Bs + Bi ))
 ̂ i (Bg + Bi)-----------------'
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The quantities S(0^), Bj and vj are obtained by substituting the angle of 

incidence 0̂  and the scattering angle 0^ in (D4) - (D-7). The geometric factor 

in the shadow-function occurs in the denom inator of (D*7). The ratio of the 

RMS surface height a  and the surface correlation-length Ç is proportional 

to the RMS surface slope.
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