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Abstract

A numerical investigation into electromagnetic wave scattering from
perfectly-conducting, two-dimensional, Gaussian, rough surfaces is
conducted. The rough surfaces considered have a root-mean-square surface
height and a correlation-length of the same order, and of the order of the
incident wavelength. These surfaces are beyond the range of application of
existing scattering theories.

The scattering problem is . solved by determining the solution of the
magnetic-field-integral-equation. The convergence and the rate of
convergence of two iterative methods applied to the numerical solution of
the magnetic-field-integral-equation are investigated; the Neumann
expansion, which has been used to formally represent the solution of the
rough surface scattering problem; and the conjugate-gradient method, an
iterative method of solving matrix equations whose convergence is in
theory sure. However, applied to the solution of scattering from very
rough surfaces, both methods have been found to diverge. Presented in
this thesis is a step-by-step procedure for identifying divergent Neumann
expansions, and a numerically robust conjugate-gradient method that has
been successfully applied to the solution of the scattering problem.

This study provides a comparative investigation of vertical and
horizontal polarization wave scattering. Results are presented for both the
field in the vicinity of the surface boundary, and the average value of the
power scattered from an ensemble of rough surface realizations.

A procedure is presented for obtaining from the solution of the
magnetic-field-integral-equation, two explicit corrections to the Kirchhoff
method. In the high-frequency limit one of the corrections accounts for
shadowing, and the other accounts for multiple-reflections at the randomly
rough, surface boundary. The significance of the two corrections at lower

frequencies is investiagted. It is concluded that at lower frequencies the



former correction accounts for the partial-shadowing and diffraction of the
incident and scattered waves, and the latter correction accounts for the
illumination of the surface by waves scattered from other parts of the

surface.



Table of contents

Chapter 1

Introduction.

11
1.2

The rough surface scattering problem.

The present work.

Chapter 2

Numerical simulation of rough surface scattering.

21 Magnetic-field-integral-equations for a two-dimensional surface.

2:2
23
24
2:5

Generating a Gaussian rough surface.
The discrete equation.
The scattered field near to the rough surface boundary.

Chapter summary.

Chapter 3

Iterative solution of the magnetic-field-integral-equation.

31

32

33

34

35

3-6
37

The numerical calculation of rough surface scattering by

the Neumann expansion.

The conjugate-gradient method, and avoiding rounding errors
by using Gram-Schmidt orthogonalization.

The conjugate-gradient method for scattering problems that
require solutions for several incident fields.

The numerical calculation of rough surface scattering by the
conjugate-gradient method.

Errors in the scattered far-field.

Computational issues.

Chapter summary.

18

21
23

32

33

33

39

50

52

58

61
63



Chapter 4
The expected scattered power for a patch of rough surface.
4-1 The scattered far-field.
4-2 The expected scattered power.
4-3 The size of a patch.
4-4 Examples of scattering-autocorrelation-functions.

4.5 Chapter summary.

Chapter 5
Corrections to the Kirchhoff approximation.
51 The Kirchhoff approximation.
52 A correction to the Kirchhoff method for shadowing.
53 Two corrections to the Kirchhoff approximation from the
solution of the magnetic-field-integral-equation.

54 Chapter summary.

Chapter 6
Numerical results for the far-field scattered power.
6-1 A summary of the results for rough surfaces with moderate
slopes.
6-2 Results for moderate slopes and small incident angles.
6-3 Results for moderate slopes and large incident angles.
6-4 A summary of the results for rough surfaces with large slopes

6-5 Results for large slopes

Chapter 7

Discussions and conclusions.
7-1 Review of the present work.
7-2 Review of previous work.

7-3 Conclusions.

65
65
67
70
74
82

84
84
90

91
97

99

100
101
109
117
118

129
129
135
137



Appendix A. Derivation of the magnetic-field-integral-equation.
Appendix B. The variance in the estimate of the autocorrelation
function of a Gaussian rough surface.

Appendix C. Derivation of the scattered field integrals.

Appendix B. The Wagner shadow-function.

References.

139

142

144

147

149



1
Introduction.

A plane wave incident upon an infinite plane interface between two
media is scattered according to the Fresnel laws of reflection and
transmission. However, when the boundary is not plane but rough the
precise manner in which the wave is scattered is in many cases unclear.
The most observable difference between the behaviour of a plane and a
rough surface, is that a plane surface will reflect the wave in the specular
direction. A rough surface on the other hand, scatters the wave in all
directions, albeit that the scattered power is greater in some directions than
in others.

A quantitative description of the scattering of electromagnetic waves
from rough surfaces is required in many areas of science and technology,
(Marcuse, 1982), (Ulaby et al, 1982). The scattering problem is formally
solved once the electromagnetic field at the surface boundary is known
(Stratton and Chu, 1939). The field at the surface boundary is the solution
of the field-integral-equations (Poggio and Miller, 1973). However, exact
solutions to these equations are only available for simple geometries
(Poggio and Miller, 1973). This study is concerned with the scattering of an
electromagnetic wave from a perfectly-conducting, Gaussian rough surface.
In § 1-1, we discuss the analytic methods that have been used to describe
this scattering problem. Particular attention is paid to the geometric range
where each theory is available. In § 1.2 we provide an overview of the

work presented in Chapters 2 to 7.

1-1 The rough surface scattering problem.

The two principal analytic tools for describing rough surface



scattering are the Kirchhoff approximation (Beckmann and Spizzichino,
1963) and the field-perturbation method (Valenzuela, 1967). For a perfect-
conductor the central assumption of the Kirchhoff approximation is that
the scattered magnetic field in the plane tangent to the surface boundary is
equal to the incident magnetic field. This is a high frequency assumption,
which also requires small shadowing by the surface of the incoming and
outgoing waves. The geometric range of the Kirchhoff approximation has
recently been examined at lower frequencies. Thorsos (1988) compared the
expected scattered power obtained with the Kirchhoff approximation with
numerical simulations of the scattering of an acoustic wave from a two-
dimensional (corrugated), Gaussian rough surface with a Dirichlet
boundary condition. In the context of this study, this scattering problem is
analogous to the scattering of a horizontally polarized electromagnetic
wave from a perfectly-conducting, two-dimensional, Gaussian rough
surface. The shaded region “KA” in fig. 1.1 is where the Kirchhoff
approximation is successful for incident and scattered grazing angles larger
than twice the root-mean-square (RMS) surface slope. Furthermore, in this
region the Kirchhoff approximation plus a geometric shadowing correction
(Wagner, 1967) is successful at large backward scattering angles too.

There has been considerable effort devoted to finding analytic
approaches that lift the central assumption of the Kirchhoff approximation.
The field-perturbation method (Valenzuela, 1967) provides a method for
small surface height and slope. Numerical simulations of the acoustic
scattering problem described above have been compared with the field-
perturbation solutions to the scattering problem (Thorsos and Jackson,
1989). The geometric range of the first two terms of the perturbation series
is illustrated by the shaded region “FP” in fig. 1.1. It is no surprise that
surface height should restrict the methods range of application; the surface
height is the small parameter in the perturbation expansion. However, the

fact that the surface correlation-length must be small too, is less obvious.
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Fig. 1-1. The range of validity of the Kirchhoff approximation (KA)
(Thorsos, 1988) and the field-perturbation method (FP) (Thorsos and Jackson,
1989) for a perfectly-conducting, two-dimensional, Gaussian rough surface. In
the figure a is the RMS surface height, » is the surface correlation-length and
Xis the incident wavelength.



The influence of the surface correlation-length on the range of validity of
the field-perturbation method is discussed in (Thorsos and Jackson, 1989).

The results of Thorsos (1988) and Thorsos and Jackson (1989)
demonstrate that the Kirchhoff approximation and the field-perturbation
method operate in separate regions of the parameter space. Up-until 1985
the issue of a common region of application was a matter of controversy.
The controversy was resolved by Holliday (1985), who by using the first two
terms of the Neumann series expansion (Kreysig, 1978) of the magnetic-
field-integral-equation (MFIE) (Poggio and Miller 1973), showed that with
the Kirchhoff approximation as the first term in the expansion, the second
term was required to derive the first-order field-perturbation result for a
rough surface surface with small heights and slopes.

Up until the late 1970's the Kirchhoff approximation and the field-
perturbation method were the only analytic tools for describing rough
surface scattering. The situation today is very different; the last decade has
spawned phase-perturbation expansions (Shen and Marududin,1980),
(Winebrenner and Ishimaru, 1985 a, b), momentum-transfer expansions
(Rodriguez, 1989), unified-perturbation expansions (Rodriguez and Y. K.
Kim, submitted in 1990), full wave theories (Bahar, 1981) and magnetic-
field-integral iterations (Brown, 1982), (Holliday et al, 1987), (Fung and
Pan, 1987). However, in spite of the host of approximate theories to choose
from the accuracy of each theory is uncertain. We have found it very
difficult to locate most of these methods within the parameter space of fig.
1-1. The phase-perturbation-method, however, has been compared with
numerical simulations of the acoustic scattering problem described above
(Broschat et al, 1989), and its range of validity is the shaded region “PP” in
fig. 1-2. We suspect that the region “PP” is representative of the progress
made by the analytic methods of the last decade. To the best of our

knowledge, the methods referred to above are unproven or else fail for
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Fig. 12. The range of validity of the phase-perturbation method (PP) for a
perfectly-conducting, two-dimensional, Gaussian rough surface. The
illustration is taken from (Ishimaru and Chen, 1990 b). In the figure a is the
RMS surface height, * is the surface correlation-length and X is the incident
wavelength. The RMS slope is given by arctan (V2a/*) and the surfaces below
the diagonal line have a RMS slope of less than 25®



a Gaussian rough surface with a correlation-length of the same order as the
electromagnetic wavelength and a RMS slope as large as 25°.

An understanding of wave scattering from rough surfaces with large
slopes is of considerable theoretical interest, and is required in optics
applications. Much of the recent interest in wave scattering from very
rough surfaces was stimulated by the experiments of O'Donnell and
Mendez (1987). These authors observed that the average value of the power
scattered from very rough, Gaussian, surfaces was largest in the
backscattering direction. Furthermore, they noted that the angular width of
the backward scattered power was relatively narrow. This phenomenon is
called enhanced backscattering and prior to their observations had only
been seen in volume scattering materials.

The oval “EB” in fig. 1-3 is the region of the parameter space where
enhanced backscattering has been experimentally observed (O' Donnell and
Mendez, 1987), (M. J. Kim et al, 1990), or numerically simulated (Nieto-
Vesperinas and Soto-Crespo, 1987), (Soto-Crespo and Nieto-Vesperinas,
1989), (Saillard and Maystre, 1990), (Ishimaru and Chen, 1990 a). The ray
picture of scattering has provided an intuitive explanation of enhanced
backscattering. The following explanation is due to O'Donnell and Mendez
(1987). In fig. 1-4 we illustrate a scattering path that may occur in the valley
of a rough surface. In the figure the incoming ray is reflected from point B
onto point C, where it escapes from the surface in the direction of the
scattering angle 65. If Ar is the vector from point C to point D, then for a
rough surface with substantially varying Ar the phase difference between
all such double-scatter paths will wash out any mutual interference terms.
Consequently, the field from each double-scatter path will contribute on an
intensity basis to the mean intensity. However, some of the incoming rays
will follow the reversed path DCBA, and also contribute to the scattered
field in the direction of 85. The amplitude of the fields from paired double-
scatter paths, ABCD and DCBA, for example, will add constructively,

6
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Fig. 1-3. The enhanced backscattering region (EB) and the region where the
modified second-order Kirchhoff iteration (SKI) has described wave
scattering from a Gaussian rough surface. In the figure a is the RMS surface
height, 4 is the surface correlation-length and X is the incident wavelength.



thereby providing a strong contribution to the mean intensity. It is in this

manner that the mean backscattered intensity is enhanced.

Fig. 14. A possible double-scattering path.

In the high-frequency limit, single and multiple-scattering does have a
geometric interpretation, which allows these scattering contributions to be
considered separately. It is not clear to us that the high-frequency, ray
picture of scattering can be extended to lower frequencies. Nevertheless,
key in the development of models for very rough, random surfaces is the
separation of the scattered field into a "single-scattering" and "multiple-
scattering" contributions (Liszka and McCoy, 1982), (Stoddart, 1992). The
single-scattering contribution is obtained with the Kirchhoff method. Each
higher-order scattering contribution corresponds to a term in an iterative
expansion of a field-integral-equation. Ishimaru and Chen (1990 a, b),
(1991), for example, have used the first two terms of a Kirchhoff iteration to
describe some aspects of wave scattering in the region "SKI" of fig. 14. In
particular these authors have found that the second-iteration is required to
account for enhanced backscattering.

To obtain a description of wave scattering from rough surfaces with
large slopes and a roughness structure of the same order as the incident

wavelength, there seems little alternative at present but to solve the



scattering problem numerically. Numerical studies of rough surface
scattering have been done by, among others, Chan and Fung (1978), Axline
and Fung (1978), Nieto-Vesperinas and Soto-Crespo (1987), Macaskill and
Kachoyan (1987), Thorsos (1988), Thorsos and Jackson (1989), Broschat et al
(1989), Ishimaru and Chen (1990 a), and Saillard and Maystre (1990). It is
important to recognize that the solutions obtained by solving the field-
integral-equations numerically are not exact. However, the results obtained
by these authors suggest that good solutions to the scattering problem can

be obtained numerically, and for a wide range of rough surface geometries.

1-2 The present work.

This study is an investigation into wave scattering from perfectly-
conducting, two-dimensional (corrugated), Gaussian rough surfaces where
the RMS height and correlation-length are of the same order, and of the
same order as the electromagnetic wavelength. The surfaces we will
consider occupy the darker of the shaded regions in fig. 1-5. Wave
scattering from the surfaces in the lighter shaded regions of the figure is
described with varying success by the scattering theories reviewed in § 1-1.

The rough surface scattering problem is formally solved once the
electromagnetic field at the surface boundary is known. In the case of a
perfectly-conducting surface, only the component of the magnetic-field in
the plane tangent to the surface boundary is required (Poggio and Miller,
1973). The magnetic field in the plane tangent to the surface boundary is
the surface current density J, and a suitable equation to solve for J is the
magnetic-field-integral-equation (MFIE) (Poggio and Miller, 1973). The
MFIE for a time-harmonic el®t wave incident on a two-dimensional

surface is
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Fig. 15. The region of the parameter space that we will consider is the
darker shaded region of the figure. Wave scattering from geometries in the
lighter shaded area of the figure is described with varying success by
existing scattering theories.
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J(x) = 28(x) x Hi(x) + g; n(x) xj_w J(x') X V®(r, 1) IE + f%il—l dx' 1-1)

Here, J is the surface current density, Hi is the incident magnetic field at the
surface, @ is the Greens' function for the scattering problem, r and r' are
position vectors of the surface at x and x', and n is the unit vector normal
to the surface boundary. The first term on the right-hand-side (RHS) of (1-1)
is the Kirchhoff approximation. The integral in (1.1) gives the contribution
to J from the rest of the surface. This contribution provides the multiple-
scattering correction to the Kirchhoff approximation, and the term
“multiple-scattering” will be used by us to indicate this fact.

The integral-equations that we solve are simpler than the one in (1-1).
For a two-dimensional surface the surface current vectors for vertical and
horizontal polarization are perpendicular to each another. This permits the
MFIE (1-1) to be replaced by two uncoupled, scalar integral-equations. In
Chapter 2 we present the scalar MFIEs for the two-dimensional scattering
problem. We then proceed to how we generated the Gaussian rough
surfaces used in our numerical simulations, and the procedures used to
validate the height distribution and the autocorrelation function of the
generated surfaces.

The starting-point for the numerical solution of the MFIE, is the
approximation of the continuous equation by a discrete equation of the

form

, N-1
2HY(xp) =J(xn) + D, K(xnXm)(Xm)- (1-2)
m=0

Here, K(xp,xm) is the weighted value of the kernel of (1-1), J is the surface

current density , and Hi is the first term on the RHS of the MFIE at the
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sample points x, n = 0, ..., N-1. A preferred method of solving non-
singular, complex matrix-equations is LU decomposition (Wilkinson and
Rheinsch, 1971). We have found that the solution obtained by factorizing
(1-2) into its LU form solves the discrete equation to within the numerical
accuracy of the double-precision, floating-point arithmetic used in its
computation. Although we have found that we can solve (1-2) exactly,
there is no guarantee that the numerical solution for J will be a good
solution to the MFIE, even at the sample points. Moreover, increasing the
density of the sample points does not guarantee that the numerical
solution will be closer to the true solution of the MFIE (Sarkar, 1983),
(Reddy, 1986). It seems to us a very difficult matter to determine the error
in the surface current density directly, so we have not attempted to do this.
We take the view that the degree to which we can zero the total field
beneath the perfect-conductor is the best way of determining both the
quality of the numerical solution for the surface current density, and the
scattered field. We have found that the scattered field beneath the perfect-
conductor computed with our numerical solution for the surface current
density closely equals minus the incident field. We will illustrate this in
Chapter 2 with contour-plots of the modulus of the total field in the
vicinity of the surface boundary.

The principal problem that emerges in the numerical solution of the
MFIE is that very large matrices are generated, even for moderately sized
two-dimensional surfaces. Direct methods of solving these matrix-
equations can consume substantial computer resources. For this reason,
there is considerable interest in solving these matrix-equations by iterative
methods that one hopes will give a good estimate of the solution in
relatively few iterations, thereby reducing the computational requirement.
In Chapter 3 we examine the convergence and the rate of convergence of
two iterative methods of solving the discrete approximation of the MFIE;

the Neumann expansion (Kreysig, 1978), which has been used to formally
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represent the solution of the continuous MFIE (Brown, 1982); and the
conjugate-gradient method (Hestenes, 1980), an iterative method of solving
matrix-equations whose convergence is in theory sure.

The Neumann expansion used by Holliday (1985) and Holliday et al
(1987) is a natural candidate for an iterative solution of (1-2). However,
although the expansion has been used to formally represent the solution of
the MFIE (Brown, 1982), there is no proof that the expansion either of the
continuous equation or its discrete representation converges. We have
found that the expansion may provide a rapid numerical solution for
small values of surface height and slope. However, when the roughness
structure is of the same order as the electromagnetic wavelength the series
diverges rapidly. We present in Chapter 3, step-by-step methods of
identifying divergent Neumann expansions. This has allowed us to
recognize divergent expansions within a few iterations. Furthermore, to
the extent that our numerical simulation is a good one, we consider that
the results presented in Chapter 3 provide strong evidence that the
Neumann expansion cannot be used without qualification to provide a
formal solution to the rough surface MFIE (Wingham and Devayya, 1992).

The conjugate-gradient methods (Hestenes, 1980) are iterative methods
of solving matrix-equations whose convergence are in theory sure. A
conjugate-gradient method suitable for electromagnetic scattering problems
is given by Hestenes (1980; eqn. 12-7(a) - (d), p. 297). We refer to this method
as the least-square, conjugate-gradient (LSCG) method. In spite of the
theoretical assurance of convergence, it is not uncommon to find
references in the literature to the iteration diverging (Sarkar ef al, 1988),
(Peterson and Mittra, 1985). We have ourselves found that applied to the
large matrix-equations generated in the discretization of the rough surface
MFIE, convergence is not sure. The LSCG method proceeds by generating at

each iteration a conjugate-vector that has some orthogonality properties in

13



theory. Convergence is sure by virtue of these properties. However, due to
rounding errors the conjugate-vectors may fail to satisfy the theoretical
orthogonality properties. We present in Chapter 3 a numerically robust
form of the LSCG method that uses Gram-Schmidt orthogonalization to
correct for rounding errors at each iteration. For obvious reasons we call
this algorithm the Gram-Schmidt, least-square, conjugate-gradient (GS-
LSCG) method (Devayya and Wingham, submitted 1992). In all the cases
that we have applied the GS-LSCG method to, we have never experienced
a problem with its convergence.

We examine in Chapter 3 the rate of convergence of the GS-LSCG
method for various values of RMS surface height, surface correlation-
length and incidence angle. We have found that the rate of convergence
depends less upon particular values of RMS surface height and surface
correlation-length, but more upon there ratio. This ratio is proportional to
the RMS surface slope. We have found that the rate of convergence is
largely unaffected by the angle of incidence of the incident wave, or its
polarization. We have also found that the size of the surface, which
determines the matrix size N, does not effect the rate of convergence of the
GS-LSCG method. This last point is important, because the advantages of
the GS-LSCG method then grow with N.

The potential advantage of an iterative method is that the iteration can
be stopped once a good estimate to the solution of the discrete equation has
been found. To establish the point at which to stop the iteration we have
compared the scattered far-field power computed with the iterated solution
for the surface current density, and the scattered far-field power computed
with the exact solution of (1-2). For the cases we have considered, we have
found that when normalized error between the iterated and exact solutions
is less than 0-01 there is small difference between the scattered powers. We
have found this to be true, even when the dynamic range of the scattered

power is as large as 50dB. We have found that when the size of the matrix
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is very large, or when the surface slope is small, the GS-LSCG method
obtains a good solution to the discrete equation with an order of magnitude
reduction in the computation required by LU decomposition (Devayya and
Wingham, 1992).

The disadvantage of the conjugate-gradient method is that it is
implemented for one incident field at a time. LU decomposition on the
other hand, is a method that allows solutions for any incident field to be
directly obtained. In Chapter 3, we present a numerically robust conjugate-
gradient method for electromagnetic scattering problems that require
solutions for several incident fields. The method uses the information
obtained in previous implementations to determine an initial-guess at the
solution of the matrix-equation for additional incident fields. However, for
the cases we have considered, the surface currents for different incident
fields prove too distinct for the method to provide any significant
computational advantage over LU decomposition. This disappointing
result concludes Chapter 3.

We neglected to mention that to solve the MFIE numerically the
integral in (1-1) must be truncated at some point. The scattering problem
described by the truncated integral-equation is that of a wave scattered
from a patch of surface. To guard against scattering from the patch edges
the amplitude of the incident wave is chosen to fall off smoothly to
negligible levels at the ends of the patch. In this study, we obtain an
estimate of the expected scattered power for a random rough surface by
solving the MFIEs for a number of uncorrelated, rough surface patches and
thén averaging the power scattered from each patch. From a
computational standpoint a small patch size is preferable. However, since
it is hoped that the normalized incoherent scattered power computed from
an ensemble of rough surface patches will apply to the infinite surface, the
patch size must be large enough to accommodate the average scattering

properties of the infinite surface. In Chapter 4, we investigate the influence
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of the patch size on the value of the incoherent scattered power. We have
found that a relatively small patch size can accurately represent the
second-order scattering properties of the infinite surface. In fact, for the
surfaces we have considered the limit on the patch size depends more
upon the method used to guard against edge effects. The tapered incident
wave used in our numerical simulation, for example, becomes less
consistent with the wave equation as the tapering on the incident wave is
increased.

Chapter 5 starts with a discussion on the Kirchhoff approximation. The
Kirchhoff approximation is used to test the computations in the
calculation of the scattered far-field, and also provides a framework for
some of the discussions in Chapters 5 and 6. The scattered far-field
obtained with the Kirchhoff approximation is referred to as the Kirchhoff-
field. It can be recognized from the MFIE (1-1), that the scattered far-field is
the Kirchhoff-field plus the far-field obtained with the surface current due
to the integral in (1-1), which we refer to as the integral-field. We present a
procedure in Chapter 5 for determining from the solution of the MFIE, two
corrections to the expected scattered power obtained with the Kirchhoff
approximation. The corrections are discussed with a view to scattering in
the high frequency limit. In this limit wave scattering is not complicated by
diffraction, and the roles of the Kirchhoff and integral-fields are intuitively
understood. A correction to the Kirchhoff method for shadowing, is
determined from the linear-mean square estimate of the integral-field in
terms of the Kirchhoff-field. We will show that the error in the estimate,
which provides the second correction to the Kirchhoff method, then
satisfies the coherence properties of the scattered field due to multiple-
reflections. The significance of these two corrections at lower frequencies is
investigated in Chapter 6.

In Chapter 6 we present the bistatic average scattered powers computed

16



from our numerical simulations of rough surface scattering. Results are
presented for Gaussian rough surfaces with moderate to large slopes and a
correlation-length of the same order as the electromagnetic wavelength.
We have compared our numerical results for the average scattered power
with the expected scattered power obtained with the Kirchhoff method.
The results presented in Chapter 6 provide strong evidence that the degree
of shadowing at the surface boundary is greater for horizontal polarization
than for vertical polarization. This point is illustrated in the near-field of
the surface with contour-plots of the electromagnetic field in the vicinity
of the surface boundary. In the far-field, we have found that the Kirchhoff
method can provide a qualitative description of the average scattered
power, even when the surface correlation-length is comparable to the
electromagnetic wavelength. In the horizontal polarization case, this
description is obtained by using the Kirchhoff approximation with the
correction for shadowing derived in (Wagner, 1967). In the vertical
polarization case on the other hand, the Kirchhoff method often gives a
better estimate to the backward scattered power when the shadowing
correction is not used.

The results for Gaussian rough surfaces with very large slopes
illustrate the enhanced backscattering reported in the literature (O'Donnell
and Mendez, 1987). The results for these surfaces also show how the
correction for shadowing presented in Chapter 5 is close to the correction
for shadowing derived in (Wagner, 1967). Whereas the correction
presented in Chapter 5 for multiple-reflections, at lower frequencies
describes the angular distribution of the enhanced backward scattered
power.

In the concluding chapter, Chapter 7, the main results of this study are
presented, the previous literature is reviewed in the light of the present

findings, and the thesis concluded with a general discussion of the work.
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2
Numerical simulation of rough

surface scattering.

In this chapter we present the magnetic-field-integral-equations
(MFIEs) for a two-dimensional surface. This is followed by a discussion of
the method of generating the Gaussian rough surfaces used in our
numerical simulations of rough surface scattering, and the procedures used
to validate the height distribution and autocorrelation function of the
generated surfaces. The starting-point for the numerical solution of the
MFIE is the approximation of the continuous equation by a matrix-
equation. We use the extinction theorem to verify that our discrete
approximation of the MFIE is a good one. Contour-plots of the total
electromagnetic field in the vicinity of the surface boundary show how our
numerical solution for the scattered field beneath the perfect conductor
closely equals minus the incident field, a property of the exact solution of

the MFIE.

2-1 The magnetic-field-integral-equations for a two-dimensional

surface.

Two forms of the two-dimensional, magnetic-field-integral-equation
(MFIE) are used in this study. One of them, equation (2-1), is appropriate
when the incident wave is vertically polarized (Poggio and Miller, 1973; pp.
173 - 176);

(= =]

. Dl -
I = 2o - ik f joc) T

lr-r'l

((z-2") - (x-x")dz'/dx) dx', (2:1)

-00
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and the other, equation (2-2), is appropriate when the incident wave is

horizontally polarized;

Ix) = coseM z/dx)
M + (dz/ax¥
14 {dzVdxY .
NANTS ((z-2')- (x-x) dz/dx) SRR TS
J-00 1+{dZ/dXY

22)

Here, z and dz/dx are the height and slope of the surface at x, r and r' are
position vectors of the surface at x and x%  is the incident magnetic field
at the surface, Hj(*) is the first-order Hankel function of the second-kind
(Abramowitz and Stegun, 1970), k is the electromagnetic wavenumber for
the medium above the surface boundary, (0"is the angle of incidence of the

incident wave and J is the surface current density.

X' X
Fig. 21. The geometry of the rough surface scattering problem.
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The geometry of the problem is illustrated in fig. 2-1. In the figure the
subscripts “v” and “h” denote vertical and horizontal polarization.

The first term on the right-hand-side (RHS) of (2-1) and (2-2) is the
Kirchhoff approximation. Only the component of the magnetic field in the
plane tangent to the surface contributes to J, and this is why in (2:2) the
Kirchhoff approximation is a function of the surface slope. The second
term on the RHS of the MFIE describes the contribution to the surface
current from the rest of the surface. When the curvature at every point on
the surface boundary is very small, the geometric term in the integrand of
the MFIE makes this contribution to J of second-order importance (Poggio
and Miller, 1973). For the surfaces we have considered this contribution is
not of second-order importance and the MFIE must be solved.

We cannot numerically solve the MFIE for an infinite length of
surface; the integral in (1-1) must be truncated at some point. The solution
of the truncated integral-equation is the surface current induced on a
isolated, patch of surface. To guard against scattering from the patch edges
the amplitude of the; incident wave is chosen to fall off smoothly to
negligible levels at the ends of the patch. In our simulations the incident

wave is tapered according to (Thorsos, 1988)

Hi(x, z)=Hj e-w(x, z) eik(xsinei + zcos6l).(1 - o),

where,
) iy2
w(x, 2) = (x~-ztanb") ,
Y’Z
(k'ycosel) 2

The taper is a Gaussian with a decay determined by the parameter v. The

phase term a introduces a curvature to the phase-front of the incident
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wave, which ensures that to order 1/ (kycosei)2 the incident wave is
consistent with the Helmholtz wave equation (Thorsos, 1988). In our
simulations, the integral is truncated at L = +25\ and a y = 12A is used. For

this value of y the wave equation is satisfied to order 103 when ol = 70°.

2-2 Generating a Gaussian rough surface.

In this study “Gaussian rough surface” refers to a statistically
stationary, random surface with a Gaussian spectrum and surface heights
normally distributed about zero. To generate a Gaussian rough surface with
a known correlation-length and height distribution at the sample points,
we generated a white, Gaussian, series and filtered it to obtain a regularly
sampled surface with the correct correlation-length £ and RMS height ¢
(Axline and Fung, 1978). A Gaussian rough surface with a RMS height of
0-2A and a correlation-length of 0-4A was generated by filtering
approximately 10,000 noise samples to acquire the height of the surface at
each sample point. Rough surfaces with a RMS height and a correlation-
length different from this one, were obtained by scaling the vertical and

horizontal dimensions of the generated surface.

In fig. 2-2, we present the height distribution (Papoulis, 1984) of a 3000
correlation-length long section of rough surface generated by this
procedure for a RMS height of 0-2A and a correlation-length of 0-4A. In the
figure, the curve is the distribution function of a Gaussian rough surface,
and the dots are the height distribution computed from a 3000 correlation-
length long section of the generated surface. A quantitative measure of the
error in the height distribution of the generated surface, was obtained using
the Chi-squared goodness of fit test (Bendat and Piersol, 1986). The height
distribution of the rough surfaces used in our numerical simulations of

rough surface scattering are consistent at the 5% significance level (Bendat
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and Piersol, 1986), (Priestley, 1987) with the height distribution of a

Gaussian rough surface .

1.0

surface height distribution
o
3y

0.0— | T T T T T 1
-3.0 -1.5 0.0 1.5 3.0

normalized surface height

Fig. 2-2. The height distribution of a Gaussian. rough surface. In the figure the
curve is the distribution function of a Gaussian rough surface; the dots are the
height distribution computed from a 3000 correlation-length long section of
generated surface.

We present in fig. 2.3 the autocorrelation function of a Gaussian rough
surface, and the computed correlation coefficients for a 3000 correlation-
length long section of the generated surface. The dots in the figure are the
correlation coefficients of the generated surfaces, curve (A) is the Gaussian
autocorrelation function, and curve (B) is twice the RMS error in the
estimate (Priestley, 1987) for a 3000 correlation-length long sample of a
Gaussian rough surface (Appendix B). The autocorrelation function of the
surfaces used in our numerical simulations of rough surface scattering are
consistent at the 5% significance level with the autocorrelation function of

a sample of a Gaussian rough surface. In fig. 2.3, for example, it can be easily
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verified that the difference between the correlation coefficients of the
generated surface and their theoretical values, curve (A), is less than the

error in the estimate, curve (B).
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Fig. 2.3. The autocorrelation function of a Gaussian. rough surface. In the figure
curve (A) is a Gaussian autocorrelation function, (B) is the error in the
estimate; the dots are the computed correlation coefficients for a 3000
correlation-length long section of generated surface.

2-3 The discrete equation.

The starting-point for the numerical solution of the MFIE (1-1) is the
approximation of the continuous equation by a discrete equation. We
approximate the MFIE at sample points x, n =0, 1, ..., N-1, by a 3-point,
Gaussian quadrature (Abramowitz and Stegun, 1970) over subsections Ax
along the x-axis (Baker, 1977). In this manner, the MFIE is replaced by an

equation of the form
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N-1
2H~(xn) - J(*n) + A(An/*m)J(*m)- 24)
m=0

Here, K(%ri,x") 1s the weighted value of the kernel of (1*1), J is the surface
current density, and is the value of the first term on the RHS of the
MFIE at the sample points. A Ax with a variable length is used. The length
of Ax is determined by requiring subsections along the surface contour Al to
be fixed, (see fig. 2-4). This ensures that, even when the surface is very
rough, the incident field at the surface boundary and the integral in the

MFIE are sufficiently sampled along the surface contour.

el 103 B
Fig. 24 Locating the sample points.

We may be able to solve the discrete equation (24) exactly, but there is
no guarantee that solution to (24) will be a good solution to the MFIE (11).
There are at least three sources of error. By projecting the integrand of (14)
onto a finite basis we introduce error in the quadrature. Also, the left-
hand-side (LHS) of (14) is approximated in (24) with its value at a discrete
number of points. Finally, we commit further numerical errors in the
evaluation of (24). We seek to minimise the first error by using a Gaussian
quadrature to approximate the integrals in (14); the first two errors by
having dense sampling; and we minimize the third by evaluating the

sums in double-precision.
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Aside from the errors incurred in the discretization of the continuous
equation, is the accuracy with which we can numerically solve the matrix-
equation (2-4). One hopes that when the error in the numerical values of
the incident field is small, the error in the solution of (2-4) will be small
too. This is sure when the condition-number of the matrix in (2-4) is small
(Wilkinson, 1963). The matrix condition-number is equal to the square-
root of the ratio of its maximum and minimum singular values. We chose
to solve the MFIE, because of the distribution of the matrix singular values
of the operator (I + K). We could, for example, have chosen to solve the
electric-field-integral-equation (EFIE), since this too would give J (Poggio
and Miller, 1973). However, the undesirable property of the EFIE is that the
accumulation point (Kreysig, 1978) of its matrix singular values is zero
(Jones, 1979). The accumulation point of the singular values of (2-4) on the
other hand is unity (Jones, 1979). Therefore, given a choice of integral
equations to solve, we consider the MFIE a better bet than the EFIE (Marks,
1986), (Baker, 1977).

The length of Al will be an important factor in determining the
accuracy of (2-4). However, since there is no guarantee that increasing the
density of the sample points will reduce the error between the numerical
solution for J and the solution of the MFIE (Sarkar, 1983), (Reddy, 1986), it
seems to us a very difficult matter to determine the error in the surface
current density directly, so we have not attempted to do this. We take the
view that the degree to which we can zero the total field beneath the
surface boundary is the best way of determining the quality of both the
numerical solution for the surface current density and the scattered field.
We have found that a Al of 0-2A gives a good approximation to the
scattered field beneath the conductor for rough surfaces with a RMS slope
as large as 45° and for angles of incidence from 0° to 70°. With a Al of 0-2A
the sample points along the surface contour are spaced approximately 0-06A

apart.
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In § 2-2 we described how we generated a regularly-sampled surface. To
obtain the surface at the quadrature points, a cubic-spline (Wilkinson and
Rheinsch, 1971) was interpolated through the regularly-sampled surface.

The surface slope was found by differentiating the spline polynomial.

2.4 The scattered field near to the rough surface boundary.

At a perfectly-conducting boundary the total electric field in the plane

tangent to the surface is zero (Kong, 1986),
A(r) x ( ES(r) + E(r) ) = 0. 2:5)

Here, n is the vector normal to the surface, ES is the scattered electric field,
El is the incident electric field, and r is a position vector of the surface. The

magnetic field on the other hand, satisfies the boundary condition
J(x) + (r) x ( HS(r) + Hi(r) ) =0. (2:6)

However, for a two-dimensional surface the polarization of the scattered
and incident fields are the same and the boundary conditions (2:5) and (2:6)
reduce to scalar equations. In the horizontal polarization case, the electric
field lines are perpendicular to the x-z plane of fig. 2-1 and the boundary

condition (2-5) reduces to the scalar equation
ES(x) + Ei(x) = 0. (27)

This is the scalar Dirichlet boundary condition. In the vertical polarization
case, the magnetic field lines are perpendicular to the x-z plane and (2-6)

reduces to the scalar equation
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J(x) - Hi(x) + HS(x) = 0. (2:8)

A more often quoted boundary condition for the vertical polarization case

is the scalar Neumann boundary condition,

d(Bs +HiR) _

i (2:9)

Here, d/dn =n.V. The boundary condition (2:9) is derived in the following
manner. For a vertically polarized wave the electric field above the surface

boundary is from Maxwell's equations

1 [ 9H(R) <. JH(R) Al

E(R) =
®R) ineg dz ox

(2-10)

The boundary condition (2:9) is obtained by substituting (2-10) into the
electric field boundary condition (2-5).

The scattered field beneath the boundary of an infinite, perfectly-
conducting, surface is equal to minus the incident field, a result known as
the extinction theorem (Kong, 1986). We have used the extinction theorem
to check our numerical solution of the MFIE. We consider that examining
the degree to which the scattered field cancels the incident field beneath the
surface boundary gives the best indication to the quality of the numerical
solution of the MFIE. We have found that the solutions for the surface
current density give a good approximation to the scattered field beneath the
perfect-conductor for rough surfaces with a RMS slope as large as 45° and
for angles of incidence from 0° to 70°. This will be illustrated in this section
with contour plots of the total field in the vicinity of the surface boundary.
The contour plots also show how the field at the surface boundary is in

agreement with the Dirichlet boundary condition in the horizontal
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polarization case, and the Neumann boundary condition in the vertical
polarization case.

The electric-field scattered by a perfectly-conducting, two-dimensional,
rough surface illuminated by a horizontally polarized wave is obtained

from the integral (Poggio and Miller, 1973), (see Appendix C),

B®) = 220 ()

-00

HOKIR-r1]
IR-1'l

| z-x—% | dx. 2-11)

Here, ] is the solution of the MFIE (2-2), z' and dz'/dx are the height and
slope of the surface at x', r’ is position vector of the surface at x’, R is the
vector to a point at (X, Z) above or below the surface boundary, ng) is the
zero-order Hankel function of the second-kind (Abramowitz and Stegun,
1970), Zg is the characteristic impedance of free space, k is the
electromagnetic wavenumber and ol is the angle of incidence. In the
vertical polarization case, the scattered magnetic field is computed from the

integral (Poggio and Miller, 1973),

HSR) =K | J(x)

-co

HOKIR-r1]
IR-r'l

(Z-2)-(X-X) %%') dx'. (2:12)

Here, ng) is the first-order Hankel function of the second-kind
(Abramowitz and Stegun, 1970) and ] is the solution of the MFIE (2-1).

The quadrature used to approximate the MFIE is also used to
approximate the scattered field integrals. For example, the integral (2-11) is

approximated with the sum

N-1
ESR)= Y, K(R, xm)J(Xm), (2-13)
m=0
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where K(R,xpy,) is the weighted value of the kernel of (2-11). The scattered
fields were computed with the solution for surface current density obtained
by LU decomposition. For the geometries we have considered, the discrete
approximation of the MFIE is not ill-conditioned, and ] solves the discrete
equation to within the numerical accuracy of the double-precision,
floating-point arithmetic used in its computation.

In fig. 2-5 we show one example of a grey scale plot of the normalized

modulus of the total electric field,

IES + Ei|

5 (2-14)

for a horizontally polarized wave incident at an angle of 45° on a Gaussian
rough surface with a RMS slope of 45° and a correlation-length § of 0-8A.
The white line in the plot is the surface boundary. It can be easily verified
from fig. 2.5 that the total electric field beneath the perfect-conductor is zero
to within the resolution of the plot of 0.1/Eg|. Furthermore, to a good
approximation the total electric field just above the surface boundary is
correctly zero

In fig. 2-6 we show one example of a grey scale plot of the normalized

modulus of the total magnetic field,

i
IHS + H!| ’ (2.15)
Hp
for the same surface considered in fig. 2.5 illuminated by a vertically
polarized wave. Here, the total magnetic field beneath the perfect-

conductor is zero to within the resolution of the plot of 0.11Hgl. Near to

the perfect-conductor
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co

Fig. 2 5. The normalized modulus of the total electric field in the vicinity of a rough surface
with a RMS slope of 45° and a correlation-length of 0-8X, when a horizontally polarized
wave is incident from the right with an incidence angle of 45°.
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Fig. 2 6. The normalized modulus of the total magnetic field in the vicinity of a rough surface
with a RMS slope of 45° and a correlation-length of 0 8X, when a vertically polarized wave
is incident from the right with an incidence angle of 45°.
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the Neumann boundary condition requires the total magnetic field to have
the same value at points along the vector normal to the surface. It can be
verified from fig. 2-6 that the contours intersecting the perfect-conductor

are correctly perpendicular to the surface boundary.

2:5 Chapter Summary.

In this chapter we presented the numerical method used to solve
magnetic-field-integral-equation for a two-dimensional, Gaussian rough
surface. A quadrature that accommodates rough surfaces with large slopes
is used to represent the continuous equation as a matrix-equation. For the
surfaces we have considered, the matrices generated in the discretization of
the continuous equation are not ill-conditioned, and we have found that
LU decomposition solves the discrete equation to within the numerical
accuracy of the double-precision, floating-point-arithmetic used in its
computation. Contour-plots of the total electromagnetic field in the
vicinity of the surface boundary were used to show how our numerical
solution for the scattered field closely equals minus the incident field
beneath the perfect-conductor. We consider that the closeness of the
scattered field to minus the incident field, a property of the exact solution
of the MFIE, is strong evidence that our discrete approximation of the MFIE

is a good one.
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3
Iterative solution of the

magnetic-field-integral-equation

The principal problem in the numerical solution of the
electromagnetic-field integral equations is that very large matrices are
generated, even for moderately sized two-dimensional surfaces. Direct-
methods of solving large matrix-equations can consume substantial
computer resources, and there is considerable interest in using iterative-
methods to solve these equations that one hopes will give a good estimate
of the solution in relatively few iterations, thereby reducing the
computational requirement.

In this chapter we examine two iterative methods of solving the
magnetic-field-integral-equation (MFIE); the Neumann expansion, which
has been used to formally represent the solution to the continuous MFIE;
and the conjugate-gradient method, a procedure for solving matrix-

equation whose convergence is in theory sure.

3-1 The numerical calculation of rough surface scattering by the

Neumann expansion.

A natural candidate for an iterative solution of the discrete
representation of the MFIE is the Neumann expansion used by Holliday
(1985), and Holliday et al (1987). However, although the expansion has
been used to formally represent the solution to the MFIE (Brown, 1982),
there is no proof that the expansion, either of the MFIE or its discrete
representation converges. The convergence or otherwise of the discrete

case cannot prove the convergence or otherwise of the continuous case
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and vice versa. On the other hand, the failure of the discrete case to
converge would provide strong evidence that the convergence of the
continuous case was not generally true. Moreover, if the convergence of
the discrete case is unsure, it would be better in numerical work to replace
it with an iteration whose convergence was certain. We have examined
the convergence and rate of convergence of the Neumann expansion
applied to the discrete representation of the MFIEs for Gaussian, rough
surfaces. We have found that when the surface structure is of the same
dimensions as the electromagnetic wavelength, the series diverges rapidly.

To solve the MFIE numerically, (1-1) is approximated with the discrete

equation
_ N-1
2H(xp) = Jxn) + >, K(xn.Xm) JXm)- (3-1)
m=0

The matrix K is bounded, so for every J there is a positive constant a such

that (Stakgold, 1979),

N-1 | N-1 2] 1/2 N-1 1/2
[Z Y, K(xnXm) J(*m) J sa[ Y 1 Jxm) 12] ,
n=0 I m=0 m=0

= IKJlI<al ]I, (3-2)

In the Neumann expansion the solution J(xp) of the matrix-equation (3-1)

is the limit of the sequence Jk, k = 0, 1, ..., e, obtained from the iteration

_ N-1
Jk+1(xn) = 2HYxp) - Y, K(xn.Xm) Jk(Xm) (3-3)
m=0

The iteration converges if a < 1. This is true for arbitrary J, (Kreysig, p. 375,
1978). Furthermore,

K
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Therefore, a norm of K less than unity is a sufficient condition for
convergence. The only algorithmic method we are aware of to determine
the norm of K directly is to determine its singular values, (K is not
Hermitian symmetric), (Schilling and Lee, 1988), (Wilkinson and
Rheinsch, 1978). Numerically, this requires essentially the same effort as
computing the inverse of K; if it was easy to determine a-priori the norm
of K we would not require an iterative solution to (3-1).

We need a step-by-step method of identifying divergence. At each

iteration we substitute J; in (3-3) to generate the quantity

) N-1
2H} (xn) =Jk(xn) + 2, K(XnXm) Tk(Xm)- (35)
m=0

We then form the normalized error

o= IHlk-'Hlkll 36)

DAl

We will show that ) satisfies the inequality
g < ok €y (3-7)

and if the iteration (3-5) is initialised by setting J, = 2Hi, g, satisfies the
inequality

gypsa. (3-8)

The inequalities (3-7) and (3-8) provide sufficient step-by-step tests for
divergence. If &, > g, or g5 > 1, then a > 1 and the iteration diverges. The
inequalities (3-7) and (3-8) are obtained as follows. From (3:6), (3-3) and (3-5)

we have
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i i
o = HHTL 39)

HE
But, from (3-3)
g -Ji 1= TR =T ) 1!
<ol -Teq !

o 11 K(y ;-J ) !

e SOK I =T 1, (3-10)

and (3-7) then follows by reusing (3-9). We have from (3-9) and (3-3) that if
Jo =281

T -Jo! |
eo=111-J0
21 1H' |

_l | 2H1 + Jo+ KJo! |
21 1HiI]

i
_ it 311)
HE

and (3-8) follows using (3-2). From (3-9) it is also apparent that & does not
measure the closeness of Jj to the solution J(xn). However, gx — 0 when Ji
— J(xpn), and we take the smallness of g to indicate that J; is close to the

solution of (3-1)
In fig. 3-1 we show the normalized error g, generated by the Neumann

expansion at each iteration, for a vertically polarized, electromagnetic

wave (2-3), normally incident on a Gaussian rough surface. The figure
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shows four cases with the same correlation-length of 0-4A, but with
different RMS heights. The RMS slope of the surface is given by
arctan(N26/£); and (A) illustrates a RMS slope of 20°, (B) a RMS slope of
25°, (C) a RMS slope of 35°, and (D) a RMS slope of 45°.

10.05
1 o
1/ c
- A AAALYV
e 1.0 - N \/ V v
s AV V\WWAWVWY
ge! ] B
q’ -
N
S i
£
S 0.1 v\
i A
0.01 1 1 1 1 1 1 { ] ] 1 1 1
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Fig. 3-1. The convergence of the Neumann expansion. The graph shows the
normalized error ek with the number of iterations k. The correlation-length is
04 wavelengths and (A) the RMS slope is 20°; (B) the RMS slope is 25°; (C)
the RMS slope is 35°; and (D) the RMS slope is 45°.

Three curves, (B), (C) and (D) clearly diverge. With & < 1 one of the cases,
curve (B), satisfies the inequality (3-8), but fails at the second iteration to
satisfy the inequality (3-7), the remaining two fail to satisfy both the
inequality (3-7) and (3-8). One of the cases curve (A) does apparently
converge. Moreover the convergence is rapid; the normalized error is less

than 0.01 within 13 iterations.
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The RMS slope is clearly a factor in determining whether the
expansion diverges, but we have found that the rate of divergence depends
upon the surface correlation-length too. In fig. 3-2 we show four cases with
a correlation-length of 0-8A. The RMS slope of curves (A) - (D) in fig. 3-2 is
the same as curves (A) - (D) in fig. 3-1.
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Fig. 3-2. The convergence of the Neumann expansion. The graph shows the
normalized error ek with the number of iterations k. The correlation-length is
0-8 wavelengths and (A) the RMS slope is 20°; (B) the RMS slope is 25°; (C)
the RMS slope is 35° and (D) the RMS slope is 45°

In fig. 3-2 two of the curves, (C) and(D) clearly diverge, but at a rate which is
marginally slower than curves (C) and (D) in fig. 3-1. The apparent
convergence of curve (A) in fig. 3-2 is rapid, and marginally faster than
curve (A) in fig. 3-1. The expansion also apparently converges in fig. 3-2(B),
whereas in fig. 3-1(B) it does not. However, since fig. 3-2(B) marginally fails

at the second step to satisfy the inequality (3-7) with & < 1, we suspect that it
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would diverge if we took sufficient iterations.

We have shown that when the surface structure is of the same
dimensions as the electromagnetic wavelength, the Neumann series may
diverge rapidly. The restriction normally placed on the Neumann
expansion, i.e. 6/A << 1 and 6/§ << 1, are limitations that permit us to
ignore all but the first two terms. In our work here, we have concentrated
on cases where the RMS height and correlation length are of the same
order, and of the same order of the electromagnetic wavelength, because
we anticipated that this would be a region of the parameter space where
the Neumann expansion may have difficulties converging. We have
found that the expansion may provide a rapid numerical solution for
small values of 6/€.and c. To the extent that the numerical representation
is a good approximation to the MFIE (1-1), we also consider that our results
provide strong evidence that the Neumann expansion cannot be used
without qualification to provide a formal solution to the rough surface

MFIE.

3-2 The conjugate-gradient method, and avoiding rounding errors

by using Gram-Schmidt orthogonalization.

The conjugate-gradient methods (Hestenes, 1980), (Sarkar et al, 1988)
are iterative methods of solving matrix-equations whose convergence are
in theory sure. There are many different conjugate-gradient methods to
choose from. Some conjugate-gradient methods require the matrix in the
equation to be positive-definite. The matrices in electromagnetic scattering
problems are not positive-definite, and for the non-positive-definite case a
suitable conjugate-gradient method to use is given in (Hestenes, 1980, eqn.
12.7(a) - (d), p. 297). We will refer to this method as the least-square-
conjugate-gradient (LSCG) method.
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In spite of the theoretical assurance of convergence, it is not
uncommon to find in the literature references to the iteration diverging
(Peterson and Mittra, 1984), (Peterson and Mittra, 1985), (Sarkar ef al, 1988).
We have ourselves been applying the LSCG method to the problem of
scattering from rough surfaces, and have found that for large surfaces
convergence is not sure. The LSCG method proceeds by generating at each
iteration a conjugate-vector that satisfies some orthogonality properties in
theory. The convergence is sure by virtue of these properties. However, the
conjugate-vectors are generated recursively, and as a consequence of
rounding errors, may fail to satisfy their theoretical properties (Scott and
Peterson, 1988). In this section we use Gram-Schmidt orthogonalization to
enforce the orthogonality properties at each iteration. In fact, a Gram-
Schmidt conjugate-gradient method for the positive-definite case was
given sometime ago by Hestenes (1980), and we have adapted this
procedure for the non-positive-definite case. We call this modified LSCG
method the Gram-Schmidt, least-square, conjugate-gradient (GS-LSCG)
method. We will show that in the absence of rounding errors, the GS-LSCG
method and the LSCG method will determine the same sequence of
conjugate-vectors. In this respect the GS-LSCG method is not a new
conjugate-gradient method. However, in the presence of rounding errors
we have found the GS-LSCG method to be very much less susceptible to
rounding errors than the LSCG method.

The LSCG and the GS-LSCG methods are applied to solving the matrix-
equation

Lu=f. (3-12)

In this study we shall only consider the case where the operator L is an N
by N, non-singular matrix. The conjugate-gradient methods are iterative
methods of solving the matrix-equation (3-12). At the kth iteration, the

methods determine a conjugate-vector py in the domain of L, and a vector
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Lpk in the range of L. The estimate uy to the solution of the matrix-

equation is determined as an expansion of the vectors pj,j =0, ..., k-1,

k-1
u =, 3j Pj (3-13)
j=0

The coefficients 3j, j =0, .., k-1, of the expansion (3-13) are calculated to

force the error

rx = f-Luk, (3-14)
between f and Lug orthogonal to the vectors ij,j =0,.. k-1, ie.
<rk, ij >=0,forj=0,.., k1. (3-15)

This is the natural criterion to choose for determining the coefficients aj, j
=0, ..., k-1, for the following reason. Any set of N, linearly independent
vectors in the range R(L) of L are a basis spanning R(L) (Kreysig, 1978). At
the Nth iteration of the conjugate-gradiénf method, the N vectors Lpj, j =
0, ..., N-1, in the range of L will have been determined. Moreover, as we
will show later these vectors are linearly independent, and, therefore, span
R(L). At the Nth iteration, the estimate up; to the solution of the matrix-
equation (3-12), the difference between the vectors f and Luyj is the error
rN. With the coefficients of the expansion determined according to (3-15),
the error ry; is either orthogonal to the space spanned by Lpj, j =0, ..., N-1,
else it is zero. However, since the vectors ij, j=0, .. N-1, span R(L), the
only vector in R(L) that can satisfy (3-15) is the zero vector. With zero on
the left-hand-side (LHS) of (3-14), uN solves the matrix-equation (3-12)
uniquely for non-singular L. In this manner, the conjugate-gradient
method determines the exact solution of the matrix-equation in at most N

iterations.
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The condition (3-15) can be written in terms of the coefficients aj, i =0,
..., k-1, by substituting the right-hand-side (RHS) of (3-14) into the LHS of
(3-15),
<ry, ij> = <f, ij> - <Luy, ij>

k-1
= <f, LPJ> - Z aj <Lpi, ij>.= 01 fOI'j = Ol ooy k-1. (3‘16)
i=0

The second line of (3:-16) is obtained from the first line by using the
expansion (3-13) for the solution uk. As (3-16) stands, the coefficients aj, j =
0, ..., k-1, are themselves the solution of a system of linear equations.
However, the vectors pj, j = 0, ..., k-1, determined by the conjugate-gradient
method are termed “conjugate-vectors”, because they satisfy the
orthogonality property

<Lpj, Lpj>=0, fori#j. (3-17)

This property diagonalizes (3-16). It also guarantees that the vectors Lpj.j=
0, ..., k-1, are linearly independent, as we had required earlier. Applying the
property (3:17) to the RHS of (3-16), the coefficients aj,j =0, .., k-1, are

determined according to
<1y, Lp;>=<f,Lpp>-aj | | Lp; | 12=0, forj <k. (3-18)

The solution

q=<fLpj>/ 1 Lpjl12 forj<k, (3-19)
solves (3-18), as may be verified by substitution. An important fact to

recognize from (3-19) is that only the vector py is used to compute ay.

Therefore, if we have already generated the sequence of vectors pj,j =0, ...,
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k-2, and by some means generate a new vector pj._1, we need only deduce

the coefficient ap_1 to augment the solution (3-13) according to

uk = uk-1+ ak-1 Pk-1- (3-20)

Thus we have an iterative method of solving (3-12). Similarly, the error ry

is determined recursively

rg =f-Lug.1 - ak-1 Lpk-1

= rk-1 - ak-1Lpk-1. (3-21)

The first line of (3-21) is obtained by substituting the RHS of (3-20) into the
LHS of (3-14). The second line follows from the definition of the error
vector ri.1. We will make use of (3-21) below. The conjugate-gradient
method starts with an initial guess ug at the solution to (3-12), and

determines the first conjugate-vector as
Po = L (3-22)

Here, L2 is the complex-conjugate transpose of L.
The difference between the LSCG and the GS-LSCG algorithms is the
manner in which the conjugate-vectors Pjj=1 ..,n<Nare determined.

At the kth jteration, the GS-LSCG method determines the conjugate-vector

Pk as
k-1
Pk =Ltk - . % Pj (3-23)
j=0
k-2
=121 - Tk-1 Pi1 - 2 Pj-- (3-24)
j=0
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The coefficients Yjs j =0, .., k-1, in (3:23) are determined to force Lp)
orthogonal to Lpj, j = 0, ..., k-1. This guarantees that the vector py satisfies
the orthogonality property (3-17). The property (3-17) in terms of the

coefficients v,j =0, ..., k-1, is

k-1
<Lp, Lpj>= <LLr, Lp;>- 2. %i<Lpj Lpj>, forj=0,.., k-1 (3:25)
i=0

The RHS of (3-25) is obtained by operating on both sides of (3-:23) with L,
and then forming the innerproduct on the LHS of (3-25). However, if, by
| assumption, the vectors Lpj, j = 0, ..., k-1, having been determined by the

GS-LSCG prior to the kth jteration, satisfy the orthogonality property (3-17),
then

<Lpk, Lpp> =<LLAr, Lpj>-v | 1 Lpj | | 2=0,forj=0,... k-1.  (3:26)
The RHS of (3:26) is obtained by applying the property (3-17) to the
argument of the sum in (3-25). From (3-26), the orthogonality property

(3-17) is guaranteed by determining the coefficients according to

<LL3r), ij>

V] o forj=0,.., k-1. (3-27)
! | LpJ | |

Thus, if (3-17) is true for the vectors ij, j =0, ..., k-1, then by determining
the coefficients 'yj,j =0, ..., k-1, according to (3-27), it is also true for ij,j =0,
... k. But, fork=1,

< LL%ry, Lpg>
11 Lpg |12

<Lpy, Lpy> = <LL3r;, Lpy> - 11 Lpg112=0, (328)



and thus by induction (3:25), and hence (3-17) is true for all k. In fact, the
vector Lpy is the component of LL?r} orthogonal to the orthogonal vectors
ij, j=0, .., k-1, (Schilling and Lee, 1985). This is a special case of Gram-
Schmidt orthogonalization, where the Gram-matrix for the vectors ij,j =
0, ..., k-1, is diagonalized by virtue of the orthogonality property (3-17).

In the case of the LSCG method, the conjugate-vector py is determined
from the first two terms on the RHS of (3-24) with yk-1 computed according
to (3-27). The only difference between the LSCG method and the GS-LSCG
method is due to the last term on the RHS of (3-:24). However, we will

show that this term is in theory zero, because the coefficients
Y= 0,forj=0,..., k-2. (3-29)

In other words we will now show that the GS-LSCG method and the LSCG
method are in theory the same. From (3:21), the vector ij in terms of the

error vectors rj41 and r1j is
Lpj = ( Ij - G+l )/ aj. (3-30)

With (3:30) substituted into (3-27),the coefficients 'yj,j =0, .., k-1, are

determined according to

< LLark, (rJ - rj+1)>
Y=

. . 112
aJIILlel

< Lary, Larj+1> -< L3y, Larj>

(3:31)
aj |1 Lp; 112
From (3-23),
j-1
L= pj+ ‘Z‘E) Yi Pi » (3-32)
i=
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and using (3-32), the innerproduct

j-1
< Lark, p] + 2 Yipi>
i=0
j-1
=<rk,ij> + 2 Yi <y, Lpj>
i=0

= 0, for j<k. (3-33)

The last line of (3-33) is a consequence of (3-15). Finally, applying (3-33) to
the innerproducts on the RHS of (3-31), we have (3-29).

The subtlety of the LSCG method is it is only necessary to determine the
one coefficient yx_1 to guarantee the orthogonality property (3-17). This
property of the conjugate-gradient methods was proved some time ago by
Hestenes (1980). Hestenes considered a general form of the conjugate-
gradient algorithm, and derived many of the results in a general Way using
a geometric interpretation of the iteration. The algebraic proof presented
here, although less general than the one in (Hestenes, 1980), allows us to
contrast the methods explicitly. Whilst the LSCG method and the GS-LSCG
method are in theory the same, we have found that in practice the GS-
LSCG method is less susceptible to rounding errors than the LSCG method.
This point will be illustrated later on in this section.

The solution of the matrix-equation (3-12) will not be known. So the
best guide we have to the rate of convergence of the LSCG method is to

compute at each iteration the normalized error,

_LIf-Lugl |

L1£1] (3-34)
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The normalized error £ does not measure the closeness of up to the
solution u. However, ex — 0 when uy — u, and we take the smallness of
the error gy to indicate that uy is close to the solution of (3-12). This point
was discussed in § 3-1. In theory, the LSCG method guarantees that the

normalized error satisfies the inequality (Sarkar, et al, 1981)

& <Er1. (3 '35).

Furthermore, in the absence of rounding errors the solution of (3-12) is

obtained in at most N iterations,

en=0. (3:36)

We have applied the LSCG algorithm to the discrete approximation of
the magnetic-field-integral-equation (MFIE) for a Gaussian rough surface
where the RMS height and correlation-length are of the same order, and
are of the same order as the electromagnetic wavelength. The procedure
used to represent the MFIE as a matrix-equation is described in § 2-3. In the
following examples, the rough surface was 50 electromagnetic wavelengths
long and the matrix size N ~ 800 - 1000. In fig. 3-3 we show the normalized
error €}, generated at each iteration. The figure shows four cases with the
same correlation-length & of 0-6 electromagnetic wavelengths, but with
different RMS height 6. The RMS surface slope is given by arctan(N2c/&)
and curve (A) illustrates a RMS slope of 20°; (B) a RMS slope of 25° (C) a
RMS slope of 35° and (D) a RMS slope of 45°. For the first 16 iterations the
normalized error satisfies the inequality (3-35). However, by the 21st
iteration the normalized error has failed the inequality (3-35) in all four

cases.
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Fig. 3-3. The convergence of the least-square-conjugate-gradient method. The
graph shows the normalized error g} with the number of iterations k. The

correlation-length is 0-6 wavelengths and (A) the RMS slope is 20°; (B) the
RMS slope is 25°; (C) the RMS slope is 35° and (D) the RMS slope is 45°

In fig. 3-4 we show the normalized error &) generated by the GS-LSCG
algorithm applied to the same four cases shown in fig. 3-3. For the first 16
iterations the error in fig. 3-4(A) - (D) is the same as the error in fig. 3-3(A) -
(D). However, in contrast to fig. 3-3 the normalized error in fig. 3-4
converges in all cases. In fact, in all the cases we have considered, we have
never experienced any difficulties in the convergence of the GS-LSCG
method. Furthermore, we have always found the GS-LSCG method to
reduce the normalized error at each iteration, a theoretical property of the
LSCG method. We have found that wusing Gram-Schmidt
orthogonalization to determine the conjugate-vectors ensures, at least

when N ~ 1000, the innerproduct (3-17) is nominally zero to 15 decimal
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places, the numerical accuracy of the double-precision, floating-point

arithmetic used in the computations

1.0
5 . N \
© ] D
(D)
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Fig. 3-4. The convergence of the Gram-Schmidt, least-square, conjugate-
gradient method. The graph shows the normalized error gy with the number of

iterations k. The correlation-length is 0-6 wavelengths and (A) the RMS slope
is 20°; (B) the RMS slope is 25° (C) the RMS slope is 35° and (D) the RMS
slope is 45°

The GS-LSCG method does require nN floating-point-operations per
iteration more than the LSCG method, where n is the number of
conjugate-vectors determined up to that point, because there are n of the
coefficients ¥j to calculate. The storage requirement is larger too, because
the vectors ij,j =0, .., n-1and Pjs j =0, .. n-1, must be stored. This may
prove to be a problem when the number of iterations required to obtain a
good solution to (3-12) is of the order of the matrix size N. However, in

these situations direct solution methods would be more appropriate.
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A second problem associated with the convergence of the conjugate-
gradient method is the problem of the iteration stagnating, (Peterson and
Mittra, 1985). Although rounding errors may apriori be suspected as
causing the iteration to stagnate, we have found that the effect of rounding
errors is to initiate divergence, rather than stagnation. For the cases we
have considered we have not experienced the problem of stagnation. We
suspect that the nature of the scattering problem, and the method used to
approximate the continuous equation by a matrix-equation are the factors

that determine whether or not the iteration will stagnate.

3-3 The conjugate-gradient method for scattering problems

that require solutions for several incident fields.

In many electromagnetic scattering problems the solutions to the field-
integral-equation for a surface with a particular geometry are required for
several incident fields. LU decomposition is a method that" allows the
numerical solution for any incident field to be directly obtained. Also once
N iterations of the LSCG method have been implemented for a particular
incident field, the solution for an arbitrary incident field can also be directly
obtained (Sarkar, 1983). However, the conjugate-gradient method is
advantageous when a good solution is obtained in n << N iterations. So, in
practice the method is implemented for each incident field in turn in the
hope that the total number of iterations will still be much less than N.

In this section we describe how the conjugate-gradient method is
applied to scattering problems where solutions are required for several
incident-fields (Smith et al, 1989). In the following discussion we will
assume that the Gram-Schmidt, least-square, conjugate-gradient method
(GS-LSCG) method, or, in the absence of rounding errors, the least-square,

conjugate-gradient (LSCG) method has been applied to the matrix-equation
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Lu=f, (3-37)

for a vector f = f;. In determining a solution to (3-37) for f;, we determine a
basis Pj1- i=0, .. q spanning a subspace of the domain of L, and an
orthogonal basis Lpjq, i =0, ..., q, spanning a subspace of the range of L. The
best linear estimate (Papoulis, 1984) in terms of the conjugate-vectors p;,, i
=0, ..., q, to the solution of (3-37) for f = f5, is the vector uy, that forces the

error
Ip2 = f2 - Lqu, (3'38)

orthogonal to the subspace spanned by Lpj;,i=0, ..., q,
<rgp, Lpi1>=0,fori=0,..,q. (3-39)

As was discussed in § 3-2, the condition (3-39) is true for the initial-guess

determined according to

q-1
ug= . aj1 Pj1s
j=0
ajl =< fZ’ijl >/ 11 ijll |2. (340)

In solving for f; we have determined the inverse of L on the basis Lpjy, i =
0, ..., q. If f occupies the subspace spanned by this basis, then ug, is the
unique solution of (3-37) for non-singular L. In the likely event of this
being not the case, there is some solace from the fact that the search for
other vectors pjp, j = 0, .., n, can be confined to those that satisfy the

orthogonality property

< Lpi1, Lpj2>=0, fori=0,..,q,andj=0,..,n (3-41)
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Initialized with the initial-guess (3-40), the vectors Pj2/ j =0, .., n,
determined by the LSCG method will in theory satisfy (3-41), (Smith ef al,
1989). However, due to the effect of rounding errors, we have found it
necessary to use Gram-Schmidt orthogonalization to guarantee (3-41). The
algorithm that results is the GS-LSCG method initialized with uy,. In this
case, Gram-Schmidt orthogonalization is used to force the vector Lpy,
orthogonal to the vectors Lpj;,i=0, ..., q, and Lszr j =0, .. k-1. In this
manner the GS-LSCG method is applied to solving the matrix-equation
(3-37) for each additional incident field.

We have applied this method to solving the rough surface scatter
problem for six waves incident at angles from 0° to 70°. The method
provides a moderate improvement in the rate of convergence with each
additional incident field. However, this is offset by the increase in the

storage and computation requirement discussed at the end of § 3-2.

3-4 The numerical calculation of rough surface scattering by the

conjugate-gradient method.

The LSCG method has been used to solve the matrix-equations that
represent the scattering of waves from thin wire antennae (Sarkar and Rao,
1984) and conducting and dielectric cylinders (Peterson and Mittra, 1984).
For some of these structures they have shown rapid convergence, but there
is no wide understanding of the range of geometries for which this is true,
(Sarkar et al, 1981), (Peterson and Mittra, 1985). This section is concerned
with the rate of convergence of the GS-LSCG method applied to the discrete
approximation of the MFIE for a Gaussian rough surface where
correlation-length and RMS surface height are of the same order, and of
the same order as the electromagnetic wavelength. For the surfaces we

have considered, N is typically 800 - 1000, and good solutions may be
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obtained within 20 to 40 iterations. We have observed that the rate of
convergence depends less upon the particular value of the RMS height and
correlation-length of the surface, but more upon their ratio. This ratio is
proportional to the RMS surface slope. We suppose that the reduction in
the rate of convergence with increasing RMS surface slope is related to the
degree of multiple-scattering at the surface boundary. We have found that

the size of the surface, which determines the matrix size N, does not affect

>
the rate of convergence. This"important, because the advantages of the the

GS-LSCG method then grows with N. The GS-LSCG method generates a
solution at the kth iteration. To determine the closeness of the iterative
solution to the solution of the matrix-equation (31), we calculate the

normalized error

N-1 1/2
X IJ(xm)-Jk(xm)

N-1

X Em)r
m=0

_ 11J-Jk (342)
I

Here, J 1s the solution of the matrix-equation obtained by LU
decomposition. The matrix (I + K) in (31) is not ill-conditioned and we
have found that LU decomposition solves the matrix-equation to within
the numerical accuracy of the double-precision, floating-point arithmetic
used in its computation. In this section, we present the behaviour of the
average value of the normalized error ek (3*42). The average error is
computed from a sample size of 20.

We present in fig. 3 5 and 3-6 the average error for a vertically polarized
wave incident at an angle of 45°. In all, six cases are shown. The three cases

in fig. 35 have a correlation-length of 0 4X and the three cases in fig. 3-6
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have a correlation-length of 0-8\. The RMS slope is given by arctan(N2c/&)
and curve (A) is for a RMS slope of 25°, (B) a RMS slope of 35° and (C) a
RMS slope of 45°. The figures show how the iteration yields an average
error of less than 0-01 within 35 iterations. The figures also show how the
RMS surface slope is a dominant factor in determining the rate of
convergence of the GS-LSCG method. The rate of convergence of the GS-
LSCG method is related to the conditioning of the matrix (I + K), (Sarkar
and Arvas, 1985). Physically, we consider that the degree of ill conditioning

is related to the degree of multiple-scattering at the surface boundary.
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Fig. 3-5. The convergence of the conjugate-gradient method. The graph shows
the normalized error gy with the number of iterations k for a vertically
polarized wave incident at 45°. The correlation-length is 04 wavelengths and
(A) the RMS slope is 25° (B) the RMS slope is 35°% and (C) the RMS slope is
45°.
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Fig. 3-6. The convergence of the conjugate-gradient method. The graph shows
the normalized error e(k) with the number of iterations k for a vertically
polarized wave incident at 45°. The correlation-length is 0-8 wavelengths and
(A) the RMS slope is 25° (B) the RMS slope is 35°; and (C) the RMS slope is

45°,

We have found that the polarization of the incident wave does not
significantly effect the rate of convergence. We illustrate this point in fig,
3-7 where we present the average normalized error for a horizontally
polarized wave incident at an angle of 45°. The three cases in fig. 3-7 have
the same geometries as the three cases in fig. 3-5. It can be easily verified by
comparing fig. 3-7 with fig. 3.5, that in cases (A) - (C) the error at each
iteration is marginally smaller in the horizontal polarization case than in

the vertical polarization case. However, after the 10th jteration the rate of

convergence is about the same for both polarizations.

55



1.0

o
—

0.01

11 1 ttit
prd

average normalized error in J
!
m

!
>

0.001 U 1 1 1 | 1 1 I 1 I 1 T ! I I 1
0 10 20 30 40

number of iterations

Fig. 3.7. The convergence of the conjugate-gradient method. The graph shows
the average normalized error gy with the number of iterations k for a

horizontally polarized wave incident at 45°. The correlation-length is 0-8
wavelengths and (A) the RMS slope is 25° (B) the RMS slope is 35° and (C)
the RMS slope is 45°.

We have applied the GS-LSCG method to the discrete approximation of
the MFIE for waves incident at angles from 0° to 70°. We have found that
the angle of incidence does not significantly affect the rate of convergence.
In fig. 3-8 we present three cases of the average normalized error for a
vertically polarized wave, normally incident on a Gaussian rough surface
with a correlation-length of 0-8A. Curve (A) is for a RMS slope of 25° (B) a
RMS slope of 35° and (C) a RMS slope of 45°. The same three cases for a
wave incident at an angle of 70° are presented in fig. 3-9 and the three cases
for a wave incident at an angle of 45° are shown in fig. 3-6. It can be easily
verified by comparing fig. 3-6, fig. 3-8 and fig. 3-9, that the average

normalized error at each iteration is similar to all three angles of incidence.
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We have applied the GS-LSCG method to surfaces where N is as large
as 1800. We have found that the rate of convergence is largely unaffected by
the size of the matrix. Figure 3-6(B), for example, shows the average error
for a Gaussian rough surface with a correlation-length of 0-8A and a RMS
slope of 35°, illuminated by a vertically polarized wave incident at an angle
of 45°. For the case in fig. 3-6(B) the matrix size N is on average ~800, and
the average normalized error is less than 0-01 after 26 iterations. We found
that when the GS-LSCG method was applied to the MFIE for the same RMS

slope, but with N = 1755 the normalized error was reduced to less than 0-01

within 30 iterations.
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Fig. 3-8. The convergence of the conjugate-gradient method. The graph shows
the average normalized error £ with the number of iterations k for a
vertically polarized wave incident at 0°. The correlation-length is 0-8
wavelengths and (A) the RMS slope is 25° (B) the RMS slope is 35°% and (C)
the RMS slope is 45°.
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Fig. 3-9. The convergence of the conjugate-gradient method. The graph shows
the average normalized error €(k) with the number of iterations k for a
horizontally polarized wave incident at 70°. The correlation-length is 0-8
wavelengths and (A) the RMS slope is 25°; (B) the RMS slope is 35° and (C)
the RMS slope is 45°.

The fact that the rate of convergence does not depend on the matrix size N,
but only upon the surface geometry, is important because the advantages of
the conjugate-gradient method then grows with N.However, before
discussing the computational advantages of the GS-LSCG method it
necessary to first establish what is a “good solution”. This is the subject of

the next section.

3-5 Errors in the scattered far-field.

The principal quantity of interest to us, is the far-field scattered power.

The calculation of the scattered far-field is described in Chapter 4.
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Although the differences between our iterated solution to the discrete
equation and its exact solution are small, it is possible that these differences
may result in large errors in the scattered far-field, particularly when the
scattered far-field is small. However, we have found that when the
normalized error between these currents is less than 0-01, the difference
between the scattered powers is small, even when the dynamic range of the
scattered power is as large as 50dB.

We present in figs. 3-10 the scattered power for a horizontally polarized
wave incident at angle of 45° on a Gaussian rough surface with a

correlation-length of 0-8\ and a RMS slope of 25°.
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Fig. 3-10. The scattered powers for a Gaussian, rough surface with a correlation
length of 0-8 wavelengths and a RMS slope of 25° illuminated by a
horizontally polarized wave incident at an angle of 45°. The curve is computed
using the solution for ] obtained by LU decomposition, and the dots are
computed using the solution J12 obtained by the GS-LSCG method.
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The curve in the figure is the scattered power computed using the exact
solution to the matrix-equation (3-1) obtained by LU decomposition, and
the dots show the scattered power computed with the solution J;, obtained
by the GS-LSCG method. In this case the normalized error g, is
approximately 0-05. It can be verified from fig. 3-10, that when the scattered
power is above -20dB there is small difference between the scattered powers
computed with the exact and iterated solutions. However, below -20dB
there is a clear difference between the scattered powers.

In fig. 3-11 we present the scattered power for the same surface,

computed with the solution J20.
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Fig. 3-11. The scattered powers for a Gaussian, rough surface with a correlation
length of 0-8 wavelengths and a RMS slope of 25° illuminated by a
horizontally polarized wave incident at at an angle of 45°. The curve is
computed using the solution for ] obtained by LU decomposition, and the dots
are computed using the solution J20 obtained by the GS-LSCG method.
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The normalized error e,, is approximately 0-01. It can be easily verified
from fig. 3-11 that with this value of error there is small difference between
the two scattered powers, even though the dynamic range of the scattered
power is as large as 50dB. It would appear from this result that small errors
in J are mapped to small errors in the scattered field at each and every

scattering angle.

3-6 Computational issues.

When the GS-LSCG method is used in practice, we do not know the
exact solution to the matrix-equation. The best guide we have to the rate of
convergence is the error in the incident field at the sample points. For the
cases we have considered, when the average normalized error in J is less
than 0-01 the average normalized error in the incident field at the sample
points is less than 0-002. Although the error in J lags behind the error in the
incident field at the surface, when one of these errors is small the other is
too.

The computations were done on a Sun Sparcstation IPC. In fig. 3-12 we
present the CPU seconds to (A) compute the N2 elements of the matrix; (B)
perform one iteration of the GS-LSCG method; and (C) factorize the matrix
into its LU form. The CPU-time is roughly proportional to the number of
floating-point-operations required by each task. One iteration of the GS-
LSCG method requires approximately 2N2 floating-point-operations; LU
decomposition requires N3 /3. We have found that the rate of convergence
of the GS-LSCG method applied to solving the MFIEs for Gaussian, rough
surfaces depends upon the RMS surface slope. For the surfaces we have
considered good solutions are obtained in 20 - 30 iterations. It can be
verified from fig. 3-12 that when N ~ 800 - 1000 the GS-LSCG method
requires ~1/5 of the CPU-time required by LU-decomposition. We have

found that the size of the surface, which determines N, does not effect the
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rate of convergence. This is important, because the advantage of the GS-
LSCG method then grows with N. With N ~ 2000, the GS-LSCG requires
~1/10 of the CPU-time required by LU decomposition.

10* /
e

3 -

cpu seconds
o

o
102 : /“
./'/ 8
o
500 1000 2000

N

Fig. 3-12. The CPU-seconds required to (A) compute the N2 elements of the
matrix, (B) perform one iteration of the GS-LSCG method and (C) factorize
the matrix into its LU form.

The CPU-time does not include the seconds spent swapping data
between the hard-disc and the random-access-memory (RAM). When the
RAM is large enough to accommodate the computational task, the time
taken to do the computation is about the same as the CPU-time. The RAM
available on the Sun Sparcstation was 24 mega-bytes. This was large
enough for the computations on the matrices with N < 1000 to be done in
real time. However, with N ~ 2000, ~95% of the time was spent swapping
data to disc. With the GS-LSCG method the storage requirement can be
reduced by not storing the matrix. Instead, the rows of the matrix are

recomputed as the algorithm requires them. We have applied this
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approach to solving the matrix-equations with N ~ 2000. We found that
due to the reduction in the time spent swapping to disc, recomputing the
matrix at each iteration made little difference to the time taken to obtain a

solution, in spite of a 20 fold increase in the CPU-time used.

3.7 Chapter summary.

The numerical solution of the MFIE for rough surface scattering
problems generates large matrices. We have found that the Neumann
expansion applied to the discrete representation of the MFIE for Gaussian,
rough surfaces with moderate slopes may provide a rapid numerical
solution. It however fails to converge for rough surfaces in general. To the
extent that the numerical representation is a good one, we also consider
that our results provide strong evidence that the Neumann expansion
cannot be used without qualification to provide a formal solution to the
rough surface MFIE.

The least-square-conjugate-gradient (LSCG) method is an iterative
method of solving matrix-equations whose convergence is in theory sure.
We have applied the LSCG method to the problem of scattering from
Gaussian, rough surfaces and have found that, due to rounding errors,
convergence is not sure. In this chapter we presented a numerically robust
form of the LSCG method, which we call the Gram-Schmidt, least-square,
conjugate-gradient (GS-LSCG) method. In all the cases that we have
considered, we have never experienced a problem with the convergence of
the GS-LSCG method. We have found that the rate of convergence of the
GS-LSCG method depends upon the RMS surface slope. Moreover, the size
of the surface, which determines the matrix size N, does not significantly
affect the rate of convergence. This is important, because the advantages of

the GS-LSCG method then grows with N. When N is very large, or when
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the slope of the surface is small, good solutions are obtained with an order
of magnitude reduction in the computation required by LU decomposition.

In Chapters 4 and 6 we consider the scattering of waves incident at six
angles between 0° and 70°. The disadvantage of the GS-LSCG method is
that it is implemented for one incident field at a time. LU decomposition is
a method that allows the solution for any incident field to be directly
obtained. We have presented in this chapter a numerically robust
conjugate-gradient method for scattering problems that require solutions
for several incident fields. However, for the cases we have considered the
solution for the surface current for each of the incident fields are too
distinct for the method to provide any significant gain over LU
decomposition. For this reason the solutions for the surface current used in
Chapters 4 and 6 were obtained by LU decomposition. We consider that the
work presented in this chapter, is relevant to the numerical solution of
wave scattering from rough surfaces when solutions are required for a few
incident fields, or when the size of the matrices generated in the
discretization of the continuous equation prohibit the use of direct solution

methods.



4
The expected scattered power for a

patch of rough surface.

To solve the MFIE numerically the integral in (1-1) must be truncated
at some point. The scattering problem described by the truncated integral-
equation is that of a wave scattered from a patch of surface. The point at
which the integral is truncated is important, because it is one of the factors
that determines the size of the matrix used to approximate the MFIE, and
hence the computation required to obtain the surface current density.
From a computational standpoint a small patch size is preferable.
However, since it is hoped that the normalized incoherent scattered power
computed for an ensemble of rough surface patches will apply to the
infinite surface too, the patch size must be large enough to accommodate
the average scattering properties of the infinite surface. In the chapter, we
investigate how the patch size effects the value of the normalized

incoherent scattered power.

4.1 The scattered far-field.

When the length of surface illuminated by the incident wave is much
larger than the distance from the surface to the observation point R, the

scattered field is obtained from the integrals (Fung and Chen, 1985);
ES(0%) = Zoa/-K— exp[-iZ i
©7) = Zoa/5g R exp( &) exp (4kR)

f J(x") exp (ik (z' cosf5- x' sines)) (coses- dz'/dx sinGS)V 1 +(dz'/ dx)2 dx'

00

(41)
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and

ES(0®) = Zo exp |- 1" exp (-ikR)

J(x') exp (ik (z’ cos6®+ x' sinG¥)) V1 + {dz/dx)" dx' (4 2)

The integral (41) is appropriate when the incident wave is vertically
polarized, and the integral (4-2) is appropriate when the incident wave is
horizontally polarized. Here, ES(9", 0") is the scattered far-field in the
direction of the scattering angle 0" for a wave incident at 0\ z' and dz'/dx
are the height and slope of the surface at x', J is the surface current density,
Z0 is the characteristic impedance of free space, and k is the electromagnetic
wavenumber. The geometry of the scattering problem is illustrated in fig.

44,

Fig. 4 1 The geometry of the scattering problem.
In this study the scattered powers are normalized with respect to the power

incident on the surface. The normalized power scattered from the

surface realization, for example, is.
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| ES(m: 65, 6) |2

og(m: 6%, Gi) = —
Zo PY0Y

(4-3)

Here, ES(m: OS,Oi), m = 1, .., M, is the far-field scattered from the mth surface
realization, and Pi(ei) is power incident on the surface. For the incident

wave used our numerical simulations (Thorsos, 1988)

f . 2qi .
Pi(e) = H} Zo\/%—y .00 +2 = O) | cosol . 4-4)
(kycosel)

Here, y is the parameter that controls the tapering of the incident wave. To
simplify the notation used in the following text, we will assume that the
scattered field computed with the integrals (4:1) and (4-2), have been
multiplied by the factor V(R/ZgP;(61)).

4-2 The expected scattered power.

A description of the scattering behaviour of a randomly, rough surface
involves associating some expected property to an ensemble of surface

realizations. We are interested in the expected value of the scattered power,

ox(e*, 6 = | | B(6%, [ |. (45)

There are two components to the angular pattern of radiation scattered
from an ensemble of randomly, rough surfaces, a coherent component and

an incoherent component. The coherent scattered power is defined as

|ns(e®, 6| =| €[ Es(e®, oy ]| (6)

Here, E [ u ] is the mean value of the random variable u(m), m = 1, ..., oo,
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and is read as the expected u. The coherent component contributes to the
angular radiation pattern over a range of scattering angles centred on the
specular angle. Its angular width is dependent upon the size of the
illuminated surface, and in the limit of a plane wave illuminating a
surface of infinite extent reduces to a delta function.

The incoherent or diffuse scattering component is defined as

- . . 2
085, 6) = (6%, 6%) -| (8, 01| 7)

As the term diffuse would suggest, the incoherent scattered power
contributes to the radiation pattern in all directions, albeit that the diffuse
scattering is greater in some directions than in others. In the following text,
the dependence of the scattered far-field on the angle of incidence and the
scattering angle has been omitted. We have also normalized the scattered
powers with respect to the power incident on the surface.

We compute the average power scattered from M, uncorrelated,

sections of a Gaussian rough surface,
M
~ _ _L S 2 .
°'s~M21|E(m)| 48)
m=

Here, ES(m) m = 1, ..., M, is the field scattered from the mth surface
realization. In this manner, we obtain the estimate o5 of the expected
scattered power (4-5). The number of observations of the scattered power
will be an important factor in determining the closeness of the estimate to
its expected value. To determine the error in the estimate, let Gs(j : M), j=
1,..., oo, denote the random variable of estimates of the expected scattered
power each made from M, independent, observations. It is well known that
irrespective of the distribution of | ES(m) | 2 m=1,.., e, the mean-square-

error in the estimate is (Priestley, 1987)
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E[( SstM)- o5 )] =E[('ESL;'°5)2]- (49)

When the surface illuminated by the incident wave is- many surface-
correlation-lengths long the random variable | Eg(m) | 2 m=1,.. 0, is
Ricean distributed (Beckmann and Spizzichino, 1963). However, when the
coherent component of the scattered power is small |Eg(m) |2, m = 1, ..., oo,
is exponentially distributed (Rice, 1951), (Macaskill and Kachoyan, 1988),

and

e[ |ES|%- 05 )] -1 (4-10)
o%

Using (4:10) in (4-9), the normalized RMS error in the estimate of the

expected scattered power is

{E Koﬁ' 05)2 —_1
- 4 = . 4-11
52 — ( )

This is an unfortunate, but hardly unexpected result.'By increasing the
sample size by a factor of four, the error in the estimate is only reduced by a
factor of two.

In this study we average the scattered powers for 60, uncorrelated, 50
wavelength long sections of a Gaussian rough surface. Waves incident at
angles from 0° to 70° are considered. For normal incidence, the estimate of
the average scattered power is determined from 60 independent
observations. Away from normal incidence, we compute for each surface
realization the scattered power at 6% for a wave incident at Oi, and the
scattered power at -8° for a wave incident at -Gi; in total 120 independent
observations are averaged. Assuming that the random variable of scattered

powers is exponentially distributed, the normalized error in the estimate is
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~0-13 for 60 independent observations, and ~0-1 for 120 independent
observations. We would obviously like to average a larger number of
observations, and thereby reduce the error in the estimate. However, time

has prevented us from doing so.

4-3 The size of a patch.

To solve the MFIE numerically the integral in (1-1) must be truncated
at some point. The scattering problem described by the truncated integral-
equation is that of a wave scattered from a patch of surface. The point at
which the integral is truncated is important, because it is one of the factors
that determines the size of the matrix used to represent the MFIE, and
hence the computation required to determine the surface current density.
From a computational standpoint a small patch size is preferable.
However, since it is hoped that the normalized incoherent scattered power
computed for an ensemble of rough surface patches will apply to the
infinite surface too, the patch size must be large enough to accommodate
the second-order scattering properties of the infinite surface.

The scattered far-field is obtained by integrating the field scattered by
each point on the surface boundary. We will refer to the function
describing the spatial distribution of scattered fields along the infinite
surface as the scattering-function. Furthermore, we will use the term
“scattering-function” to refer to the specific case of the infinite surface
illuminated by a uniform plane wave. In this section, we present an
equation for the incoherent power scattered from a wide-sense-stationary,
randomly, rough surface as a function of the size of the illuminated area.
We will show that the separation required for the random component of
the scattering-function to decorrelate, is the factor determining the size of a

patch.

The field scattered from an infinite surface illuminated by a uniform,
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plane wave is obtained from the integral

ES(m: 61,6%) = f Jm: 6, x) K(m: 6%, x') dx. (4-12)

o0

Here, ES(m: Gi, 05) is the scattered field in the direction of 65, for a uniform
plane wave incident at oi, K(m: x') is the kernel of the scattered far-field
integral (4-1), or (4-2), and J(m: x') is the surface current density. The
integrand of (4:12) is the field scattered from the surface at x'. This will be
represented by the function ES(m: x'), which we refer to as the scattering-
function. The dependence of the scattering-function on the angle of
incidence and the scattering angle has been omitted from the notation. We
shall also take for granted that the scattered power has been normalized
with respect to the power incident on the surface.

The scattering-function

ES(m: x) = A(m: x) eikx(sinel + sines). (4-13)

is the product of a stochastic process and a deterministic process (Ulaby et
al, 1982). The deterministic process, which is the complex-exponential in
(4-13), is due to the periodic phase modulation of the incident wave along
the x-axis. The random component A(m: x), m = 1, ..., e, describes the phase
and amplitude modulation of the scattering-function by the random
surface profile. The objective of this section is to determine the incoherent

scattered power for an incident wave
Hi(x) - W(x)eik(xsin9i+ ZCOSGi)l (4-14)

in terms of the random process A(m: x). In (4-14), W(x) is the footprint of

the incident wave on a flat surface. We shall assume that the affect of the
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footprint W(x) is to linearly weight the scattering-function along the x-axis.
Based on this assumption, the far-field scattered from a surface illuminated

by the tapered wave (4-14), is

ES(m) = I W(x') ES(m: x') dx' (4-15)

o o]

We will examine the validity of this assumption later. We will also make
the assumption that for wide-sense stationary, random rough surface the
random process A(m: x), m = 1, ..., e, is wide-sense stationary too (Ulaby et
al, 1982). On this assumption, the expected scattered power in terms of the

scattering function is (see Papoulis, 1984)

og = I Rw(t) R(1) ei1<(si1r19i+sines)T dt (4-16)
where,
R() =E[ A+ 1), A*(x') ], 4-17)
and
Rw(t) = I W'+ 7) W(x') dx' . (4-18)

Here, R(7) is the autocorrelation-function of the stochastic process A(m: x'),
m = 1, ..., oo, which we will call the scattering-autocorrelation-function.

A similar expression for the coherent scattered power

TREE f Rw(7) | pa |2 eik(sin®" + sind®) 1 dr, (4-19)

00
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is derived using (4-15). Here, pa is E[A(x), which for a wide-sense-
stationary process is by definition constant for all x (Papoulis, 1984). Finally,
the incoherent scattered power (4-7) is obtained by subtracting (4-19) from

(4'16)/

o= f Rw (1) (R(r)-|uA|2)eik(sin9i+sin95)'c dr. (4-20)

OO

It can be recognized from (4-20) that the effect of the footprint W(x) on the
incoherent scattered power is to weight ( R(t) -|pa |2 ) by the function
Ryy (7). Furthermore, for non-pathological, wide-sense-stationary, random

processes (Papoulis, 1984)
R(1) 5> pA asT— oo (4-21)

If follows from (4-21) that if the scattering-autocorrelation-function (4-17)
obtains its asymptotic value within a separation very much smaller than
the width of the illumination, the finite width of the footprint will have
small affect on the incoherent scattered power. The separation required for
the scattering-autocorrelation-function to obtain its asymptotic value, is by
definition the separation required for the the random component of the
scattering-function to decorrelate.

A result that is immediately available, is the incoherent scattered
power obtained with the Kirchhoff approximation for a Gaussian rough
surface illuminated by a tapered incident wave. The scattering-
autocorrelation-function obtained with the Kirchhoff approximation is

derived in (Ulaby et al, 1982),

Rk () = Rk(0) exp [-02k2 (cosei-l- coses) 2 (1- c('t))], (4-22)
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o(t) = exp [ %} . (4-23)
Here, ¢ is the RMS surface height, € is the surface correlation-length and
c(t) is the normalized autocorrelation-function of the surface. The
asymptotic value of R(7) is obtained by setting c(t) to zero, (with c(t) = 0,
Rk (7) is the rough surface reflection coefficient discussed in § 5-1). It can be
easily recognized from (4-22), that R (t) obtains its asymptotic value after
about two surface correlation-lengths. For an incident wave with a

Gaussian, footprint,

W) = X2/ 7, (4-24)

and

Ryy (1) = Ry (0) e/ 21", (425)

The function Ryy obtains its half power point for t© ~ 0-8y. Therefore, the
the footprint (4-24) will have small affect on the normalized incoherent
scattered power provided the tapering parameter Y is several surface
correlation-lengths long.

For the surfaces we have considered, the Kirchhoff approximation is
inappropriate and the MFIE must be solved. In the next section we will
present examples of the scattering-autocorrelation-functions computed

from our numerical solutions of the MFIE.

4-4 Examples of scattering-autocorrelation-functions.

In this section we present examples of the backscattering-
autocorrelation-functions computed from our numerical simulations of

rough surface scattering. The estimates of the scattering-autocorrelation-
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functions (4-17) were obtained in the following manner. Using the
numerical solution for the surface current density, the scattering-function
was computed according to (4-12), and the stochastic process A(m: xp)
determined by multiplyinzg the scattering-function by the conjugate of the
complex exponential in (4-13). The autocorrelation-function of A(m: x;)

was determined for each surface realization according to,

z A(m: xp4r) A*(m: Xn) - (4-26)

Finally, the estimate of the scattering-autocorrelation-function was -
.obtained by averaging the autocorrelations (4-26) computed for a number of

surface realizations (see. § 4-2),

M

R(r) = Rm:r) . (4-27)
=1

1

M
m
In most of the cases we have considered the scattering-autocorrelation-
function (4-27) obtains a constant value within a few surface correlation-
lengths, and well within the half power point of the incident wave used in
our numerical simulations. We consider that the results presented in this
section provide evidence that a relatively small patch size can accurately
represent the second-order scattering properties of the infinite surface. This
is possible because of the small correlation-length of the random
component of the scattering function. The assumption that the footprint of
the incident wave linearly weights the scattering-function, which was used
to obtain equation (4-15), is examined by comparing the normalized,
incoherent scattered power computed for two tapered waves, one with a

tapering parameter of 12 wavelengths, and the other with a tapering

parameter of 6 wavelengths. For the surfaces we have considered we have
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found small difference between these two incoherent scattered powers.

To illustrate these remarks, we present in figs. 42 - 4.4 the
backscattering-autocorrelation-functions for a Gaussian rough surface with
a RMS slope of ~25° and a correlation-length of 0-8A. The Gaussian, tapered
incident wave (2-3) was used in the numerical simulations. In the
following examples the tapering parameter was 12A, and unless otherwise
stated the integral in the MFIE was truncated at +25A. In the figures curve
(A) is for a horizontally polarized wave, and curve (B) is for a vertically-
polarized wave. The figures show how the backscattering-autocorrelation-
functions decay to an approximately constant value within a few surface
correlation-lengths. In three cases, figs. 4-2(A), 4-2(B) and 4-3(B), the
autocorrelation-functions decay to zero. In the remaining three cases the

autocorrelation-functions decay to a non-zero value within the range of

the plot.
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Fig. 4-2. The backscattering-autocorrelation-functions for a Gaussian rough
surface with a RMS slope of 25° and a correlation-length of 0-8\ illuminated
by a wave incident at an angle of 0°. Curve (A) is for a horizontally polarlzed
wave and curve (B) is for a vertically polarized wave.
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Fig. 4-3. The backscattering-autocorrelation-functions for a Gaussian rough
surface with a RMS slope of 25° and a correlation-length of 0-8A illuminated
by a wave incident at an angle of 45°. Curve (A) is for a horizontally polarized
wave and curve (B) is for a vertically polarized wave.
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Fig. 4-4. The backscattering-autocorrelation-functions for a Gaussian rough
surface with a RMS slope of 25° and a correlation-length of 0-8A illuminated

by a wave incident at an angle of 70°. Curve (A) is for a horizontally polarized
wave and curve (B) is for a vertically polarized wave.
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We have found small difference between the incoherent scattered
power computed for the incident wave (2-3) with a tapering parameter of
122 and with a tapering parameter of 6A. Given that the scattering-
autocorrelation-functions obtain a constant value within a few surface
correlation-lengths, and well within the half power point of these two
incident waves, this result is not entirely unexpected. To illustrate this
point we present in figs. 4-5 and 4-6 the incoherent scattered power for a
wave incident at an angle of 45° on a Gaussian rough surface with a RMS
slope of 25° and a correlation-length of 0-8A. The curve in the figures is
computed for an incident wave with a tapering parameter y =12A and the
dots are computed for a y = 6A. In fig. 4-5 the incident wave is vertically
polarized, and in fig. 4-6 the incident wave is horizontally polarized, and it
can be verified that in both figures there is small difference between the

two scattered powers.
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Fig. 4-5. The incoherent scattered power for a Gaussian rough surface with a
RMS slope of 25° and a correlation-length of 0-8\ illuminated by a
horizontally polarized wave incident at an angle of 45°. The curve is for a
tapering parameter of 12A; and the dots are for a tapering parameter of 6A.
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Fig. 4-6. The incoherent scattered power for a Gaussian rough surface with a
RMS slope of 25° and a correlation-length of 0-8A illuminated by a vertically
polarized wave incident at an angle of 45°. The curve is for a tapering
parameter of 12A; and the dots are for a tapering parameter of 6.

For rough surfaces with small heights we have found cases where the
scattering-autocorrelation-functions have a periodic component over the
entire length of the footprint. An example of this phenomenon is
presented in fig. 4-7. The figure shows the backscattering-autocorrelation-
function for a normally incident wave, a RMS slope of 25°, a RMS height of
0-13A, and a correlation-length of 0-4A. It can be easily verified from fig.
4.7(B) that the backscattering-autocorrelation-function has a periodic
component over the entire range of the plot. We suspect that this
phenomenon, which we have found to occur only in the vertical
polarization case, is due to a wave propagating along the length of the
surface. It is well known that a surface wave can be excited on a conducting

rough surface illuminated by a vertically polarized wave. A surface wave is
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not excited in the horizontal polarization case, because the electric field is
in the plane tangent to the surface boundary and is “short-circuited” by the

surface conductivity.
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Fig. 4-7. The backscattering-autocorrelation-functions for a Gaussian rough
surface with a RMS slope of 25° and a correlation-length of 0-4A illuminated
by a wave incident at an angle of 0°. Curve (A) is for a horizontally polarized
wave and curve (B) is for a vertically polarized wave.

The presence of a slowly decaying oscillatory component to the
autocorrelation-functionmight appear to invalidate the assumption that
the random component of the scattering function is wide-sense-stationary.
However, the surface wave is a spatially deterministic event, and we can
remove its effect from the stochastic process A(m: x) by multiplying (4-13)
by a second complex exponential. For the case in fig. 4-7(B) the period of
this exponential would be one wavelength. A more serious implication of
a surface wave concerns the truncation of the MFIE and the scattered field
integrals. The presence of a wave propagating along the length of the

~ surface clearly complicates the issue of where to truncate these integrals.
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Nevertheless, for the surfaces we have considered we have found small
change in the incoherent scattered power as the limits on the integrals are
changed. To illustrate this point we present in fig. 4-8 the incoherent
scattered powers for the case considered in fig. 4-7(B) computed for the
tapered incident wave with y = 6A. The curve in the figure is computed by
truncating the integrals at +25A, and the dots are computed by truncating
the integrals at +12-5A.

10.0

o
o

-10.0
g

-20.0

-30.0

incoherent scattered power in dB

—40.0 T T T T T T
—-90 -60 =30 0 30 60 90

scattering angle

Fig. 4-8. The bistatic, incoherent scattered power for a Gaussian rough surface
with a RMS slope is 25° and a correlation-length of 0-4A illuminated by a
vertically polarized wave incident at an angle of 45°. The curve in the figure is
computed by truncating the integrals at +25) ; and the dots are computed by
truncating the integrals at +12-5A .

It can be verified from the figure that there is small difference between the
two scattered powers. We suspect that for the very rough surfaces
considered in this study the diffuse scattering of the surface wave is
relatively small. Indeed, it is well known that surface waves have their

largest effect in the region of the parameter space “FP” of fig. 1-1 (Ishimaru
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and Chen, 1990 b), (Celli et al, 1985). Here, the incoherent scattered power
is itself small and we suppose, therefore, that the diffuse scattering of the

surface wave cannot be neglected.

4.5 Chapter summary.

To solve the MFIE numerically the integral in the equation must be
truncated at some point. The scattering problem described by the truncated
integral-equation is that of a wave scattered from a patch of surface. From a
computational standpoint a small patch size is preferable. However, since
it is hoped that the normalized incoherent scattered power computed for
an ensemble of rough surface patches will also apply to the infinite rough
surface, the patch size must be large enough to accommodate the average
scattering properties of the infinite surface. In this chapter, we have placed
the point at which to truncate the MFIE into a mathematical context. The
incoherent scattered power for an illuminated patch of surface was
presented as the integral of the weighted autocorrelation-function of the
random component of the field scattered by each point of the surface. By
representing the incoherent scattered power in this manner, the factor
determining the size of a patch was identified as the separation required for
this random process to decorrelate. We presented examples of
backscattering-autocorrelation-functions for a perfectly-conducting,
Gaussian rough surface. In the horizontal polarization case, the
autocorrelation-functions obtain a constant value within a few surface
correlation-lengths. This is also true of most of the cases for vertical
polarization. The exceptions occur when the RMS surface height is small.
For these geometries the autocorrelation-functions have an oscillatory
component over the entire length of the footprint. We suspect this

phenomenon is due to a surface wave. The presence of a surface wave
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clearly complicates the issue of where to truncate the MFIE. However, for
the surfaces considered in this study we suspect that the diffuse scattering
of the surface wave is relatively small.

In conclusion, the results presented in this section provide evidence
that a relatively small patch size can accurately represent the second-order
scattering properties of the infinite surface. This is possible because of the
small correlation-length of the random component of the scattering
function. In fact, we consider that the limit on the patch size relates more
to the method used to reduce the scattering from the patch edges. The
tapered incident wave used in our numerical simulations, for example, is

less consistent with the wave equation as the tapering is increased.



5
Corrections to the Kirchhoff

approximation.

The surface current induced on a perfectly-conducting, rough surface
can be separated into two components; the Kirchhoff component; and the
component due to the integral in the magnetic-field-integral-equation
(MFIE). We refer to the scattered far-field obtained with the Kirchhoff
approximation as the Kirchhoff-field, and the far-field due the integral
component of the surface current, we refer to as the integral-field. In the
high-frequency limit the physical significance of these two components of
the scattered field are understood. The Kirchhoff-field is due to single
reflections of incoming rays from the surface, including the fictitious
reflections from those parts of the surface in shadow. The integral-field is
required to account for shadowing, and multiple-reflections at the surface
boundary. In this chapter we present a procedure for determining from the
solution of the MFIE two corrections to the expected scattered power
obtained with the Kirchhoff approximation. One of these corrections is
determined from the linear-mean-square estimate of the integral-field in
terms of the Kirchhoff-field. The error in estimate provides the second
correction. We will justify that in the high frequency-limit the first of these
two corrections is for shadowing, and the second is for multiple-reflections

at the surface boundary.

5-1 The Kirchhoff approximation.

The central assumption of the Kirchhoff approximation for a perfectly-

conducting surface, is that the scattered magnetic field is equal to the
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incident magnetic field in the plane tangent to the surface boundary. This
assumption is inappropriate for the rough surfaces considered in this
study, because we cannot neglect the field due the integral in the MFIE.
However, we discuss the Kirchhoff approximation for two reasons. An
analytic solution for the expected scattered power obtained with the
Kirchhoff approximation is available. We use this to test the computations
required in the calculation of the scattered power. The Kirchhoff
approximation also provides a framework for some of the discussions in
this chapter and in Chapter 6.

The expected scattered power obtained with the Kirchhoff
approximation for a perfectly conducting, two-dimensional, Gaussian
rough surface illuminated by a plane wave, is the sum of the incoherent

and coherent scattering contributions (Thorsos, 1989),

. . 2
ox(@!, 6% - |uxel, 6% *= —k

- ¥ (5-1)
ncos6’

: 2
(1 + cos(61+95)

coso'+ cos@’

| uK(Bi, 0°) | g Ps(6', 6%) exp %) (5-2)

Y= [ cos(kx(sin6i+ sines) (exp [-xz {1 - exp (_x%)” - exp -xz) dx (5-3)
0 g

x= ko (coses+ cosei). (5-4)

Here, o is the expected scattered power obtained with the Kirchhoff
approximation, py is the expected value of the Kirchhoff-field, ¢ is the
RMS surface height, § is the surface correlation-length, 65 is the scattering
angle, 61 is the angle of incidence, and PS is the power scattered from a flat
surface. For the tapered incident wave (2-:3) used in our numerical

simulations
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pS( Gi 0%) = H% ky2 exp (-kzy2 (sin61+ sinGS) 2
’ . 2

pow ) cos26° (5:5)

when the incident wave is vertically polarized, and

. 2 1222 (cinOls cingS) 2 .
ps(ol, 65 = Hj klyz exp( k%y? (sme2 +5in6°) ) cos26t (56)
2P

when the incident wave is horizontally polarized. Here, y is the parameter
that controls the tapering of the incident wave, and Pl s the power incident
on the surface. When ky >> 1, the power scattered from a flat surface is
small at scattering angles away from the specular direction. Moreover,
there is small difference between (5-5) and (5-6) when y >> A. The
incoherent scattered power (5-1) is the same for both polarizations (Ulaby
et al, 1982).

We present in figs. 5-1 - 5-8 the scattered powers obtained with the
Kirchhoff approximation. The smooth curve in the figures is determined
from (5-1) - (5-5). The fluctuating curve is computed using the Kirchhoff

approximation for the surface current density,
Ji(m: x) = 2Hi(m: ), (57)

in the scattered far-field integral (4-1), for 60, 50 wavelength long,
uncorrelated, sections of a Gaussian rough surface. The results presented in
this section are for a tapering parameter of 12A. For the surfaces we have
considered we have found small difference between the analytic solution
for the incoherent scattered power (5-1), and the incoherent scattered power
computed with (5-7), even though (5-1) is derived for a plane wave

illuminating a surface of infinite extent. However, this result was not
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entirely unexpected, because of our findings in § 4-3. To illustrate this
point, we present in figs. 5-1 and 52 the scattered powers for a wave
normally incident on a Gaussian rough surface with a correlation-length of
0-8\. The RMS surface slope is given by arctan(N2¢/£), and in fig. 5-1 the
RMS slope is 25° and in fig. 5-2 the RMS slope is 45°. The figures show how
the numerically computed result for the average scattered power is close to
its theoretical result. We consider that the differences, typically less than
~1dB, are statistical in origin, and would be reduced by taking more
observations of the scattered power. The striking feature of the figures is
the small dynamic range of the incoherent scattered power. In fig. 5-2,
where the RMS surface slope is 45°, the dynamic range of the incoherent

scattered power is less than 2dB.

10.0
m i
©
.c 0.0
o) A=A,
% ] pr™] TV“""&M\
Q 100 NS
-
Q) -
g
*g —20.0
n
o ]
S
5 -30.0
>
(@) -

_’400 T T T T T T

-90 -60 -30 O 30 60 90
scattering angle

Fig. 5-1. The scattered powers obtained with the Kirchhoff approximation for
a Gaussian rough surface with a RMS slope of 25° and a correlation-length of
0-84, illuminated by a wave incident at an angle of 0°.
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Fig. 5-2. The scattered powers obtained with the Kirchhoff approximation for
a Gaussian rough surface with a RMS slope of 45° and a correlation-length of
0-82, illuminated by a wave incident at an angle of 0°.

The dynamic range is larger for waves incident away from normal
incidence. In figs. 5-3 and 5-4 we present the expected scattered power for a
wave incident at an angle of 70° on the geometries considered in figs. 5-1
and 5-2. In fig. 53 there is a strong coherent component to the expected
scattered power. This can be recognized from the figure as the narrow
angular distribution of power centred on the specular angle, 85 = -70°. The
closeness of the numerical result in fig. 5-3 to its expected value shows how
our scattered far-field computation is accurate to within a fraction of a
decibel, even when the dynamic range of the expected scattered power is
50dB. The error in a Gaussian quadrature .used to approximate an integral

over the integration interval Ax is (Abramowitz and Stegun, 1970),

en(X) _( ) (n ) 2 2n+1 I(Zn)(X) X - A__ < x < <X+ L (5'8)
2n+1 (2n) 3
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Fig. 5-3. The scattered powers obtained with the Kirchhoff approximation for
a Gaussian rough surface with a RMS slope of 25° and a correlation-length of
0-82, illuminated by a wave incident at an angle of 70°.
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Fig. 5-4. The scattered powers obtained with the Kirchhoff approximation for
a Gaussian rough surface with a RMS slope of 45° and a correlation-length of
0-82, illuminated by a wave incident at an angle of 70°.
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Here, n is the order of the quadrature, and I(2n) is the 2nth derivative of the
integrand of of the integral. With a n=3 and Ax=0-2A, the error (5-8) is ~1079
times the maximum value of the 61 derivative of the integrand. Since for a
smooth surface we would expect the derivatives of the integrand of the
scattered far-field integrals to be well behaved, the closeness of the

numerical result to its theoretical value is not entirely unexpected.

5.2 A correction to the Kirchhoff method for shadowing.

In common with all shadowing theories (Beckmann, 1965),
(Brockelmann and Hagfors, 1966), the shadowing theory developed by
Wagner (1967) uses rays to represent the incident and scattered waves, and
the Kirchhoff approximation to describe the wave scattered from the
illuminated parts of the surface. In spite of these high-frequency
approximations, the shadow-corrected Kirchhoff method, as we will refer
to it, has been successfully used for Gaussian rough surfaces in the region
"KA" of fig. 1-1 (Thorsos, 1988). It is significant that the surface-correlation
length in this region of the parameter space is comparable to the
electromagnetic wavelength.

The correction for shadowing is applied to the expected scattered power
obtained with the Kirchhoff approximation by multiplying the incoherent
scattered power (5-1) by the shadow-function S(Gi,es),

w046 = 5(646% | oxce.6% -| 669 |* )+ [uxcceien|” 69

Here, oy is the expected scattered power obtained with the Kirchhoff
approximation, and My is the expected value of the Kirchhoff-field. The

shadow-function derived by Wagner is given in Appendix D.
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5-3 Two corrections to the Kirchhoff approximation from the

solution of the magnetic-field-integral-equation.

The surface current induced on a perfectly-conducting, rough surface
can be separated into two components; the Kirchhoff component; and the
component due to the integral in the magnetic-field-integral-equation
(MFIE). We refer to the scattered far-field obtained with the Kirchhoff
approximation as the Kirchhoff-field, and the far-field due the integral
component of the surface current as the integral-field. For the mth surface
realization, the scattered far-field ES(m: ei,eS) is the sum of the integral-

field Ey(m: o, 65), and the Kirchhoff-field Ex(m: o, 69),
ES(m: 61, 65) = Exc(m: 61, 65) + Ep(m: 61, 65). (5-10)

The expected scattered power in terms of the Kirchhoff and integral-fields

is,
o5(6,65) = o (61,65) + o1(61,65) + 2Re (ox1(61,69)), (5-11)
where,
os=E[ [E3]2], (5-12)
ox =E[ [Ex|?], (513)
or=E[ |E1|2], (5-14)
oK1 = E[ EKEr ] (5-15)

Here, oK(Oi,OS) is the expected scattered power obtained with the Kirchhoff

approximation, oy(61,65) is the expected scattered power obtained with the

91



integral-field, and cKI(ei,eS) is a measure of the degree of coherence
between the Kirchhoff and integral-fields: For the set of data u(m) and
v(m), m = 1, ..., oo, (Papoulis, 1984),

M
E[uv]= lim L Z u(m).v(m)*. (516)

M e M
m:

We can write down a similar equation for the coherent scattered power,

Is(6L,65)12 = (11 (61,65) 12 + 111y(61,09) 12 + 2Re (uc(61,6%) np*(646%) (517)

us=E[ES] (5-18)
uK = E[Ex] (5-19)
ur=E[Eq] (5-20)

Here, 1 (61,69) is the expected value of the Kirchhoff-field, and uI(Bi,GS) is
the expected value of the integral-field.

Regardless of what the electromagnetic wavelength is the integral-field
is required to provide a complete description of the field scattered by a
rough surface. In the following discussion we will consider wave scattering
in the high frequency limit. In this limit the incoming and outgoing waves
can be represented as rays. Parts of the surface obstruct the path of the rays
leaving areas of the surface in shadow. An outgoing ray originates from a
point on an unshadowed part of the surface, either by a single reflection of
an incoming ray, or else after an incoming ray has been reflected from one
or more other points on the surface boundary. The field due to single
reflections is the Kirchhoff-field (Beckmann, 1965), (Kodis, 1966). However,

the Kirchhoff-field also includes fictitious reflections from those parts of
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the surface in shadow (Beckmann, 1965), (Wagner, 1966). For this reason,
and when the field due to multiple-reflections is small, the expected
scattered power obtained with Kirchhoff approximation is generally an
overestimate of the expected scattered power og (Beckmann, 1965). The
only term in (5-11) that can reduce og to a value less than that obtained
with the Kirchhoff approximation is the term okj. This is easily recognized
from (5-11) by the fact that oky is the only term in the equation that can be
negative. The integral-field in addition to providing the correction for
shadowing via oy, includes the field due to multiple-reflections at the
surface boundary. To this end we describe the integral-field as the sum of
the field responsible for shadowing EsI(m: Bi, 05), and the field due to

multiple-reflections Epj(m: 61,05, m=1, ..., e,
Ep(m: 61, 65) = Egp(m: 61, 65) + Epyp(m: 61, 69). (5-21)

We know of no way of determining the fields Egy and Ej 1 from the
solution of the MFIE. However, since we would expect the Kirchhoff-field
and the field responsible for shadowing to be correlated, it seems
appropriate, therefore, to make an estimate of the random variable Egj(m)
in terms of the random variable Ex(m), m = 1, ..., «. The optimality
criterion that we will use to determine this estimate, is minimizing the
mean-square error. The linear mean-square estimate of Egf(m), m =1, ..., o,

in terms of the Kirchhoff-field is (Papoulis, 1984)

Egy(m) = (PExc(m) + V), (5-22)
} %
where p= %I—m;ﬂ, (5-23)
OK - LK
and V = lig] - PUK- (5-24)
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Here, oksI = E[ ExEg1 ) (5-25)

and usr = E[ Egr)- (5-26)

We cannot determine the constants (5-23) and (5-24) directly, because we do
not know the expected value of Egy(m), or the covariance between Egy(m)

and Ex(m). However, we intend to show that

*
_ OKI - HKHp .
- j 2 I4 (5 27)
OK - |rKd
and,
V =] - UK. (5:28)

Unlike (5-23) and (5-24), (5-27) and (5-28) can be determined from the
solution of the MFIE.

In the high-frequency limit the horizontal dimension of the surface
roughness is necessarily large. Consequently, the difference between the
path-lengths of pairs of rays adopting different multiple-reflection paths
will range over several electromagnetic wavelengths. Therefore, we can
safely assume that the expected scattered power due to multiple-reflections

is incoherent,

E[Emi] =#m1=0. (529)

Taking the expectation of (5:21) and using (5-29), the expected value of the
integral-field is then equal to the expected value of the field responsible for

shadowing,

K1 = Hg (5-30)

Using (5-30), (5-28) is obtained from (5-24) by substitution. A similar

relationship can be deduced for the coherence between the field due to
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single-reflections and the field due to multiple-reflections. The difference
between the path-length of a single-reflection from a point on the surface at
x and the path-length of a multiple-reflection escaping from the surface at
x, will vary from point to point by several electromagnetic wavelengths.
Therefore, we can safely assume that the field due to single-reflections and

the field due to multiple-reflections are uncorrelated,
E[Ex + EsL, Em1] = E[EK, Em1] + E[EsL, Em1] =0. (5:31)
For precisely the same reasons that lead to (5-31), we can also assume that
E[Ex, Em1]=0, (5:32)

The equality
OKI = OKsl - (5:33)

is obtained by substituting (5-21) into (5-15) and then applying (5-32). Finally,
(5-27) is obtained from (5-23) using (5-33) and (5-30). Thus, based on the
assumption that the coherence between the field due to multiple-
reflections and the field due to single-reflections is negligible, we can
determine the estimate (5-22) from the solution of the MFIE. It can be
recognized by comparing (5-23) with (5:27), and (5-24) with (5-28), that Egy is
also the linear mean-square estimate of the integral-field in terms of the
Kirchhoff-field. Therefore, the difference between the integral-field and the
estimate ﬁsll

~

Emi(m) = Ef(m) - (PEg(m) +v), (5-34)

is also the error in the estimate. We can show that ﬁmI(m) satisfies the

properties of the field due to multiple-reflections. Taking the expectation of
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both sides of (5-34) we get

E[Emi] =0, (535)

and the expectations
E [EK, EmI ] =0, (5-36)
and E(Egp Bz =0, (5:37)

can be verified from (5-34), (5-27) and (5-28), by substitution. In fact, the
properties (5-35) - (5-37) are necessarily true of the error in the mean-square
estimate (Papoulis, 1984).

We have in fact derived two corrections to the scattered field obtained
with the Kirchhoff approximation. The estimate of the shadowing
component of the integral-field EsI provides the first correction. On the
assumption that the coherence between the field due to single-reflections
and the field due to multiple-reflections is negligible, ﬁsl is also the
estimate of the integral-field in terms of the Kirchhoff-field. The second
correction to the Kirchhoff approximation is provided by the remainder of
the integral-field Eml- The coherence properties of this contribution to the
scattered field satisfy the properties that we associate with the field due to
multiple-reflections.

It only remains then for us to calculate the expected scattered powers.
Since Eml(m) is uncorrelated with Eyx(m) and ﬁsl(m), m =1, ..., «, the

expected scattered power oy is the sum of

~ 2
E[ | Emil ]EﬁmI=GI-IPI26K—IVI2—2Re(pvuK+vu1+pGKI), (5-38)

and the expected scattered power due to Esl(m) plus EK(m),
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~ 2
E[ |E51+EK| ]EO'SK= |1+p|%0g+|v|2+2Re((1+p)vEK). (539)

The scattered powers (5-:38) and (5-39) reduce to simpler expressions when
the coherent scattered power is negligible; away from the specular angle, for

example. With the coherent scattered powers

ur=pg =0, (540)

then
omr=or+|p|? oK, (5-41)
csK=|1+p|20'K, (5-42)
and =KL 5.43
P oK (6-43)

At lower frequencies wave scattering is complicated by diffraction. The
significance of the scattered powers (5-38) and (5-39) at lower frequencies is

investigated in the next chapter, Chapter 6.

5-4 Chapter summary.

The field scattered from a rough surface is the scattered field obtained
with the Kirchhoff approximation plus the field due to the integral in the
MFIE, which we call the integral-field. In the high frequency limit the role
of the Kirchhoff and integral-fields are understood. In this limit wave
scattering is not complicated by diffraction, which allows the incoming and
outgoing rays to be represented as rays. The Kirchhoff-field is due to the
single-reflections of incoming rays -from the surface. While the integral-
field is required to account for shadowing of the surface, and multiple-

reflections at the surface boundary. In this chapter we presented a
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procedure for obtaining from the solution of the MFIE two corrections to
the Kirchhoff approximation. On the assumption that the coherence
between the field due to single reflections and the field due to multiple-
reflections is negligible, a correction for shadowing was obtained as the
linear mean-square estimate of the integral-field in terms of the Kirchhoff-
field. The error in the estimate, which provides the second correction to
the Kirchhoff method, satisfies the coherence properties of the scattered
field due to multiple-reflections. Finally, we would note that the
relationship between the Kirchhoff-field and the component of the
integral-field responsible for shadowing is likely to be non-linear.
However, in cases where these two random variables are jointly normal,
the non-linear mean-square estimate of the shadowing component of the

integral-field is the same as the linear estimate, (see Papoulis, 1984).
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6
Numerical results for the far-field

scattered power.

In this chapter we present the numerical results for the average
scattered power for 60, uncorrelated, 50 wavelength long sections of a
Gaussian rough surface (see § 4-2). Curves are presented for the estimate of
the expected scattered power cs(ei, 65) and the estimate of O'SK(Qi, 05) (5-39).
The difference between these two scattered powers is the estimate of
omI(Bi, 05) (5-38), (see § 5-3). We have also compared our numerical results
with the expected scattered power obtained using the Kirchhoff method
both with, and without the correction for shadowing derived in (Wagner,
1967). We will refer to the method employing the shadowing correction as
the shadow-corrected Kirchhoff method.Bearing in mind that the
computed averages are estimates of their expected values, the term
“estimate” has been omitted from the following text.

To compute the Kirchhoff-field EK(m:Bi,OS), m = 1, ..., M, the Kirchhoff
approximation for the surface current is used in the scattered far-field
integrals (4-1) and (4-2). Similarly, the integral-field Ej(m), m = 1,..., M, is

computed using the surface current density,
Ji(m: 6F, x) = J(m: 6%, x) - Ji(m: 6%, x).

Here, J(m: ol, x) is the solution of the MFIE for the mth surface realization.
The results presented in this chapter are grouped according to RMS surface
slope and angle of incidence. In § 6:-1 we present a summary of the results
for rough surfaces with moderate slopes, and in § 64 we present a

summary of the results for rough surfaces with large slopes.
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6-1 A summary of the results for rough surfaces with moderate

slopes.

In § 6-2 and § 6-3 we present the scattered powers for a Gaussian rough
surface with a RMS slope of 25° and a correlation-length of the same order
as the electromagnetic wavelength. For these surfaces, we have found
small difference between the average scattered power cg and the scattered
power ogK. Physically we suspect that, because this difference is small, the
scattered field due to the illumination of the surface by waves scattered
from other parts of the surface is small too. We suspect, therefore, that for a
RMS slope of less than ~25° the principal role of the integral-field is to
correct the Kirchhoff-field for partial-shadowing and the diffraction by the
surface of the incident and scattered waves. The results presented in § 6-2
and § 6-3 provide strong evidence that the polarization is an important
factor in determining the degree of shadowing at the surface boundary. We
have found, for example, that the polarization of the incident wave is a
factor in determining the nature of the error in the Kirchhoff'method. In
the horizontal polarization case a better description of the average scattered
power is obtained with the Kirchhoff method when it is used with the
correction for shadowing derived in (Wagner, 1967). The results for vertical
polarization on the other hand, show how the Kirchhoff method gives a
better estimate to the backward scattered power when the shadowing
correction is not used. We have also found that the polarization of the
incident wave is an important factor in determining the coherent scattered
power too. The results show how at large aﬁgles of incidence the coherent
scattered power is larger for horizontal polarization than for vertical
polarization. In some cases the difference between the coherent scattered
powers is as large as 6dB.

We have found that the correlation-length is a factor in determining

the accuracy of the Kirchhoff method. In fact, we have found that in some
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cases the Kirchhoff method overestimates the average scattered power,
even when the shadowing correction is not applied. We suspect that for
the surfaces considered in this study the interference between
neighbouring scatterers on the surface boundary, which is neglected by the
Kirchhoff method, is influential in determining the pattern of scattered

radiation.

6-2 Results for moderate slopes and small incident angles.

In this section we present the scattered powers for waves incident at
angles of 0° to 45° on a Gaussian rough surface with a RMS slope of 25° and
a correlation-length of the same order as the electromagnetic wavelength.
The striking feature of the results presented in this section is the small
difference between the average scattered power o and the scattered power
osK- The results also show how the polarization of the incident wave is an
important factor in determining the nature of the difference between osK
and the expected scattered power obtained with' the Kirchhoff method.

We present in figs. 6-1 - 6-3 the scattered powers for a horizontally
polarized wave incident on a Gaussian rough surface with a RMS slope of
25° and a correlation-length of 0-8A. Curve (A) is the average scattered
power Og; (B) is ogk;and (C) is obtained with the shadow-corrected
Kirchhoff method. In all three figures the difference between og and oK is
less than ~1dB. We suspect that, because this difference is small, the
scattered far-field due to multiple-scattering is small too. This point will be
discussed in § 6-4. For a surface with a RMS slope of 25° there is little
geometric shadowing of incoming rays at angles between -40° and 40°.
Furthermore, for scattering angles between -40° and 40° there is little
shadowing of the outgoing rays too. In figs. 6-1 - 6:3 the value of o5k at
scattering angles between -40° to 40° is described to within 1dB using the

Kirchhoff approximation.
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Fig. 6-1. The scattered powers for a Gaussian surface with a RMS slope of 25°
and a correlation-length of 0-8A illuminated by a horizontally polarized wave
incident at 0°. Curve (A) is the average scattered power; (B) is ogk; and (C) is
obtained with the shadow-corrected Kirchhoff method.
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Fig. 6-2. The scattered powers for a Gaussian surface with a RMS slope of 25°
and a correlation-length of 0-8A illuminated by a horizontally polarized wave
incident at 30°. Curve (A) is the average scattered power; (B) is ogk; and (C) is
obtained with the shadow-corrected Kirchhoff method.
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Fig. 6-3. The scattered powers for a Gaussian surface with a RMS slope of 25°
and a correlation-length of 0-8A illuminated by a horizontally polarized wave
incident at 45°, Curve (A) is the average scattered power; (B) is ogk; and (C) is
obtained with the shadow-corrected Kirchhoff method.

However, at larger scattering angles where we would anticipate the
shadowing effect to be greater, the shadow-corrected Kirchhoff method
overestimates oK.

We have found the surface correlation-length to be an important factor
in determining the accuracy of the Kirchhoff method. This point is
illustrated in figs. 6-4 and 6-5 where we present the scattered powers for a
horizontally polarized wave incident on a Gaussian rough surface with a
RMS slope of 25° and a correlation-length of 0-4A. In fig. 6-4 the wave is
normally incident on the surface, and in fig. 6-5 the wave is incident at an
angle of 45°. It can be easily verified by comparing fig. 6-1 with fig. 6-4 and
fig. 6:3 with fig. 6-5, that the difference between the average scattered power
and the shadow-corrected Kirchhoff method is significantly larger for a

surface correlation-length of 0-4A than for a correlation-length of 0-8A.
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Fig. 6-4. The scattered powers for a Gaussian surface with a RMS slope of 25°
and a correlation-length of 0-4A illuminated by a horizontally polarized wave
incident at 0°. Curve (A) is the average scattered power, (B) is ogg and (C) is
obtained with the shadow-corrected Kirchhoff method.
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Fig. 6-5. The scattered powers for a Gaussian surface with a RMS slope of 25°
and a correlation-length of 0-4A illuminated by a horizontally polarized wave
incident at 45°. Curve (A) is the average scattered power; (B) is ogk; and (C) is
obtained with the shadow-corrected Kirchhoff method.
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The polarization of the incident wave is also an important factor in
determining the nature of the difference between average scattered power
and the expected scattered power obtained with the Kirchhoff method. We
present in figs. 6-6 and 6-7 the scattered powers for a vertically polarized
wave incident on a Gaussian rough surface with a RMS slope of 25° and a
correlation-length of 0-8A. In the figures curve (A) is the average scattered
power og; (B) is ogk; and (C) is obtained with the shadow-corrected
Kirchhoff method. It can be verified from the figures that there is close
agreement between the Kirchhoff method and ogk at scattering angles
between -40° and 40°. However, at larger scattering angles the shadow-

corrected Kirchhoff method underestimates the value of ogk.

10.0

I
N
o
o

|
™
o
o

average scattered power in dB

~40.0-— . 1 —— -
90 -60 -30 O 30 60 90

scattering angle

Fig. 6-6. The scattered powers for a Gaussian surface with a RMS slope of 25°
and a correlation-length of 0-8A illuminated by a vertically polarized wave
incident at 30°. Curve (A) is the average scattered power; (B) is ogk; and (C) is

obtained with the shadow-corrected Kirchhoff method.
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Fig. 6-7. The scattered powers for a Gaussian surface with a RMS slope of 25°
and a correlation-length of 0-8\ illuminated by a vertically polarized wave
incident at 45°. Curve (A) is the average scattered power; (B) is ogi; and (C) is

obtained with the shadow-corrected Kirchhoff method.

In fact, we have found for the cases in figs. 6-6 and 6-7 that the Kirchhoff
method gives a better estimate to the backward scattered power when the
shadowing correction is not used. We illustrate this point in figs. 6-8 and
6-9 where curve (A) is ogk; curve (B) is the scattered power obtained with
the Kirchhoff approximation; and curve (C) is obtained with the shadow-
corrected Kirchhoff method. At a scattering angle of 80°, for example, the
shadow-corrected Kirchhoff method underestimates the value of ogk by
10dB in fig. 6-9, and by 8dB in fig. 6-8. The error using the Kirchhoff method
with no correction for shadowing is only 1dB in fig. 6-9, and in fig. 6-8 the
error is very small. However, in both figures a better description of the
scattered power ogk at large forward scattering angles is obtained by

including the shadowing correction.
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Fig. 6-8. The scattered powers for a Gaussian rough surface with a RMS slope of
25° and a correlation-length of 0-8A illuminated by a vertically polarized
wave incident at 30°. Curve (A) is ogk; (B) is obtained with the Kirchhoff

approximation; and (C) with the shadow-corrected Kirchhoff method.
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Fig. 69. The scattered powers for a Gaussian rough surface with a RMS slope of
25° and a correlation-length of 0-8A illuminated by a vertically polarized
wave incident at 45°. Curve (A) is ogk; (B) is obtained with the Kirchhoff

approximation; and (C) with the shadow-corrected Kirchhoff method.
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We have found that the correlation-length is an important factor in
determining the accuracy of the Kirchhoff method in the vertical
polarization case too. To illustrate this point we present in fig. 6-10 the
scattered powers for a vertically polarized wave incident at an angle of 45°
on a Gaussian rough surface with a RMS slope of 25° and a correlation-
length of 0-4A. In fig. 6:10 curve (A) is ogK; and curve (B) is obtained with
the Kirchhoff method without using the shadowing correction. The
corresponding curves for a surface correlation-length of 0-8A are presented
in fig. 6:9. It can be easily verified that where there is small difference
between curves (A) and (B) in fig. 6-9, there is a large difference between

curves (A) and (B) in fig. 6-10.
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Fig. 6-10. The scattered powers for a Gaussian rough surface with a RMS slope
of 25° and a correlation-length of 0-4) illuminated by a vertically polarized
wave incident at 45°. Curve (A) is ogk; and (B) is obtained with the Kirchhoff
approximation.
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Several points have been raised so far concerning the trends in results
for vertical and horizontal polarization. These trends will be discussed
further once we have presented the results for waves incident at large
angles. The results for large incident angles are presented in the next

section.

6-3 Results for moderate slopes and large incident angles.

In this section, we present the scattered powers for a Gaussian rough
surface with a RMS slope of 25° illuminated by waves incident at angles of
60° and 70°. For these surfaces there is small difference between the
scattered powers og and ogx when the incident wave is horizontally
polarized. However, in the vertical polarization case there is a significant
difference between these two scattered powers at large forward scattering
angles. This difference is the scattered power o, 1. Physically, we suspect
the difference is due to the illumination of the surface by waves scattered
from other parts of the surface. This point will be discussed in § 6-5. A new
feature of the results is the dependence of the coherent scattered power on
the polarization of the incident wave. We have found that the coherent
scattered power is greater for horizontal polarization than for vertical
polarization. We suspect that this effect is related to the degree of
shadowing at the surface boundary, and the resulting distribution of the
scattering sites along the surface. We will present contour-plots of the
electromagnetic field in the vicinity of the surface boundary. The contour-
plots for the vertical polarization case show how the scattering sites are
distributed along the surface slopes. In the horizontal polarization case the
contour-plots show how the scattering sites are located near to the surface
peaks. We suspect it is for this reason that the apparent roughness of the

surface is smaller for horizontal polarization than for vertical polarization.
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We present in figs. 6-11 and 6-12, the scattered powers for a horizontally
polarized wave incident on a Gaussian rough surface with a RMS slope of
25° and a correlation-length of 0-8\. In the figures, curve (A) is the average
scattered power og; (B) is ogk; and (C) is obtained with the shadow-corrected
Kirchhoff method. In fig. 6-11 the wave is incident at an angle of 60°, and in
fig. 6-12 the wave is incident at an angle of 70°. It can be easily verified from
fig. 6-12 that the difference between ogkx and the scattered power obtained
with the Kirchhoff method extends to scattering angles between -40° and
40°. This is also true in fig. 6-11, although the difference is smaller. In as far
as the ray model can be applied to our surfaces, figs. 6-11 and 6-12 could be
interpreted to show how the correction for shadowing derived by Wagner
(1967) underestimates the degree of shadowing of the incident wave;

numerically at least the correction is too small.
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Fig. 6-11. The scattered powers for a Gaussian surface with a RMS slope of 25°
and a correlation-length of 0-8) illuminated by a horizontally polarized wave
incident at 60°. Curve (A) is the average scattered power; (B) is ogk; and (C) is

obtained with the shadow-corrected Kirchhoff method.
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Fig. 6-12. The scattered powers for a Gaussian surface with a RMS slope of 25°
and a correlation-length of 0-8A illuminated by a horizontally polarized wave
incident at 70°. Curve (A) is the average scattered power; (B) is ogk; and (C) is
obtained with the shadow-corrected Kirchhoff method.

We have found this interpretation of the results for vertical
polarization would lead to the opposite conclusion. In figs. 6-13 and 6-14 we
present the scattered powers for a vertically polarized wave incident on a
Gaussian rough surface with a RMS slope of 25° and a correlation-length of
0-8A. In the figures curve (A) is the average scattered power og; (B) is ogk;
and (C) is obtained with the shadow-corrected Kirchhoff method. In fig.
6-13 the wave is incident at an angle of 60°, and in fig. 6-14 the wave is
incident at an angle of 70°. It can be easily verified from figs. 6-13 and 6-14,
that the shadow-corrected Kirchhoff method underestimates the value of
OgK at scattering angles between -40° and 40°. Numerically, the correction
for shadowing is to large. In fact, we have found for the cases in figs 6-13
and fig. 6-14, that a better estimate kcothe backward scattered power is
obtained by using the Kirchhoff method without a correction for

shadowing.
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Fig. 6-13. The scattered powers for a Gaussian surface with a RMS slope of 25°
and a correlation-length of 0-8) illuminated by a vertically polarized wave
incident at 60°. Curve (A) is the average scattered power; (B) is ogk; and (C) is
obtained with the shadow-corrected Kirchhoff method.
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Fig. 6:14. The scattered powers for a Gaussian surface with a RMS slope of 25°
and a correlation-length of 0-8A illuminated by a vertically polarized wave
incident at 70°. Curve (A) is the average scattered power; (B) is ogk; and (C) is
obtained with the shadow-corrected Kirchhoff method.
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This point is illustrated in fig. 615 where we present the scattered powers

for a vertically polarized wave incident at an angle of 60°; curve (A) is ogK;

curve (B) is the scattered power obtained with the Kirchhoff

approximation; and curve (C) is obtained with shadow-corrected Kirchhoff

method. At a scattering angle of 80°, for example, the shadow-corrected

Kirchhoff method underestimates ogx by 8dB. The Kirchhoff

approximation on the other hand, underestimates ogg by only 1dB.

Nevertheless, a better description of ogk at large forward scattering angles

is obtained with the shadowing correction.
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Fig. 6-15. The scattered powers for a Gaussian rough surface with a RMS slope
of 25° and a correlation-length of 0-8A illuminated by a vertically polarized
wave incident at 60°. Curve (A) is ogk; (B) is obtained with the Kirchhoff

approximation; and (C) with the shadow-corrected Kirchhoff method.

The results for rough surfaces with a correlation-length of 0-8\ presented

in this and the previous section show how the Kirchhoff method can

provide a qualitative description of the angular distribution of scattered
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power, even when the surface correlation-length is of the same order as the
electromagnetic wavelength. In the horizontal polarization case the
shadowing correction in (Wagner, 1967) is required to describe the angular
distribution of the scattered power. In the vertical polarization case,
however, the Kirchhoff method gives a better estimate to the backward
scattered power when the shadowing correction is not used.

So far we have discussed the behaviour of the incoherent scattering
component. The coherent scattering component can be recognized in the
figures as the narrow angular distribution of scattered power centred on the
specular angle. We have found that the coherent scattered power is
dependent upon the polarization of the incident wave. In figs. 6:-11 and
6:12, for example, the Kirchhoff method underestimates the coherent
scattered power. In fig. 6:13 and fig. 6-14 the opposite is true. Furthermore, it
can be easily verified by comparing fig. 6-11 with fig. 6-13 , and fig. 6-12 with
fig. 6-14, that the coherent scattered power is 6dB larger for horizontal
polarization than for vertical polarization.

At finite frequencies shadowing cannot occur without diffraction. For
simple structures such as cylinders (Poggio and Miller, 1973), and wedges
(Ruck et al, 1970), it is well known that a vertically polarized wave is to a
greater extent diffracted around the target than a horizontally polarized
wave. The contour-plots of the electromagnetic-field in the vicinity of the
surface boundary provide some evidence that this is true for rough surfaces
too. We present in fig. 6-16 the normalized modulus of the total magnetic
field in the vicinity of a Gaussian rough surface with a RMS slope of 25°,
and a correlation-length of 0-8A illuminated by a vertically polarized wave.
In the figure the bright areas on the surface boundary coincide with where
the surface current is a maximum. It can be easily verified from the figure
that the largest surface current occurs at (-1-1, 0-0). The surface current at
(21, 0-0) is smaller, because this part of the surface is partially shadowed by

the surface to its right.
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Fig. 6 16. The normalized modulus of the total magnetic field in the vicinity of a rough
surface with a RMS slope of 25° and a correlation-length of 0-8X, when a vertically polarized
wave is incident from the right with an incidence angle of 60°.
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Fig. 6 17. The normalized modulus of the total electric field in the vicinity of a rough surface
with a RMS slope of 25° and a correlation-length of 0-8A., when a horizontally polarized
wave is incident from the right with an incidence angle of 60°.
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There is evidence in the contour-plot of the diffraction by the surface of the
incident wave. The surface current at (-0-5, 0-0), for example, appears to be
due to the diffraction of the incident wave around the surface at (-1-5, 0-25).

In fig. 6-17 we present the normalized modulus of the total electric field
for a horizontally polarized wave incident at angle of 60° on the same
section of surface illustrated in fig. 6-16. In the horizontal polarization case
the largest surface currents coincide with where the rate of change of the
total electric field along the direction of the vector normal to the surface is
largest. It can be verified from the figures that in fig. 6-17 the scattering sites
have there centres at (-1-5, 0-25) and (1-75, 0-75), near to the surface peaks.
This is in contrast to fig. 616 where the scattering sites are distributed along
the slopes of the surface. Intuitively, we would expect such a difference
between the location of the scattering sites if the degree of shadowing of the
surface was greater for horizontal polarization than for vertical

polarization.

6-4 A summary of the results for rough surfaces with large slopes.

In the next section, § 65, we present the results for a Gaussian rough
surface with a RMS slope of 45° and a correlation-length of the same order
as the electromagnetic wavelength. In contrast to the results for a RMS
slope of 25°, for a RMS slope of 45° the difference between the scattered
powers g and ok is not small. This difference is the scattered power oy1.
The results presented in § 6-5 illustrate the enhanced backscattering
phenomenon reported in the literature (Mendez and O'Donnell, 1987). For
the surfaces we have considered, enhanced backscattering occurs for
vertically and horizontally polarized waves incident at angles between 0°
and 30°. We have found this is true, even when the surface correlation-

length is as small as 0-4A. We have found that near to normal incidence

117



the angular distribution of the enhanced backward scattered power is
described with 6,1, and to a good approximation the shadow-corrected
Kirchhoff method describes the scattered power ogx. According to the ray
picture of scattering, the single-scatter of the incident wave from the
surface is described with the Kirchhoff method. The intuitive picture of
scattering has also provided an explanation of enhanced backscattering as a
multiple-scatter phenomenon (O'Donnell and Mendez, 1987). Here, the
term “multiple-scatter” describes the scattering due to the illumination of
the surface by waves scattered from other parts of the surface. In as far as
the intuitive picture of scattering can be applied to our surfaces, the results
for rough surfaces with large slopes provide evidence that the scattered
powers ook and o1 describe the single and multiple-scatter from the

surface, respectively.

6-5 Results for large slopes.

In this section we present the scattered powers for a Gaussian rough
surface with a RMS slope of 45° and a correlation-length of the same order
as the electromagnetic wavelength. The striking feature of the results for
these surfaces is the large difference between the average scattered power og
and the scattered power ogk. For waves incident at angles of less than 30°,
we have found that the average scattered power is largest in the backward
scattering direction. Moreover, the angular distribution of backward
scattered power is relatively narrow. We have found that this enhanced
backscattering occurs even when the surface correlation-length is as small
as 0-4A. The results for waves incident at angles of 0° and 15° show how the
angular distribution of the backward scattered power is described by the
angular distribution of 6,1, and the angular distribution of o5 is to a good

approximation described with the Kirchhoff method. At the end of this
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section we present contour-plots of the total field in the vicinity of the
surface boundary. The plots illustrate how multiple-scattering enhances
the surface current density in the valleys of the rough surface.

We present in figs. 6-18 - 6-20 the scattered powers for a horizontally
polarized wave incident at angles of 0°, 15° and 45° on a Gaussian rough
surface with a RMS slope of 45° and a correlation-length of 0-8A. In the
figures curve (A) is the average scattered power, and curve (B) is ogk, The
smooth curve, curve (C), is the scattered power obtained with the shadow-
corrected Kirchhoff method. In all three figures, the angular distribution of
ogK is described to good approximation with the shadow-corrected
Kirchhoff method. However, the fluctuations in the numerical results are
large, and we suppose that considerably more averaging would have to be

done to obtain a good estimate of their respective expected values.
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Fig. 6-18. The scattered powers for a Gaussian rough surface with a RMS slope
of 45° and a correlation length of 0-8A illuminated by a horizontally polarized
wave incident at 0°. Curve (A) is the average scattered power; (B) is ogk; and
(C) is obtained with the shadow-corrected Kirchhoff method.
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Fig. 6-19. The scattered powers for a Gaussian rough surface with a RMS slope
of 45° and a correlation length of 0-8A illuminated by a horizontally polarized
wave incident at 15°. Curve (A) is the average scattered power; (B) is ogk; and
(C) is obtained with the shadow-corrected Kirchhoff method.
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Fig. 6-20. The scattered powers for a Gaussian rough surface with a RMS slope
of 45° and a correlation length of 0-8A illuminated by a horizontally polarized
wave incident at 45°. Curve (A) is the average scattered power; (B) is ogk; and

(C) is obtained with the shadow-corrected Kirchhoff method.
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The striking feature of the figures is the large difference between the
average scattered power and Gg. In all three figures the average scattered
power is largest in the backward scattering direction. In two of the figures,
figs. 618 and 6-19, this is due to the o, contribution. In fig. 6-20 the tilt in
the angular distribution of o towards the backward scattering direction is
equally responsible for the large backward scattered power.

We present in figs. 6-21 - 6:23 the scattered powers for a vertically
polarized wave for the same cases in fig. 6-18 - 6-20. Figs. 6-21 and 6-22 also
show how the angular distribution of the average backward scattered
power is described by the angular distribution of o,1. We have found that
the angular width of the enhanced backward scattered power is narrower

for vertical polarization than for horizontal polarization.
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Fig; 6-21. The scattered powers for a Gaussian rough surface with a RMS slope
of 45° and a correlation-length of 0-8A illuminated by a vertically polarized
wave incident at 0°. Curve (A) is the average scattered power; (B) is ogk; and

(C) is obtained with the shadow-corrected Kirchhoff method.
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Fig. 6-22. The scattered powers for a Gaussian rough surface with a RMS slope
of 45° and a correlation-length of 0-8) illuminated by a vertically polarized
wave incident at 15°. Curve (A) is the average scattered power; (B) is ogK; and

(C) is obtained with the shadow-corrected Kirchhoff method.
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Fig. 6-23. The scattered powers for a Gaussian rough surface with a RMS slope
of 45° and a correlation-length of 0-8) illuminated by a vertically polarized
wave incident at 45°. Curve (A) is the average scattered power; (B) is ogk; and

(C) is obtained with the shadow-corrected Kirchhoff method.
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In fig. 6-21 the 3dB angular width is ~15° and in fig. 6-22 the 3dB angular
width is ~30°. In the two corresponding figures for horizontal polarization,
figs. 618 and 6-19, the 3dB angular width is ~30°, and ~45°, respectively. In
fig. 6:23 the average scattered power is also largest in the backward
scattering direction, but this is due in part to the tilt of ogx towards the
backward scattering direction. However, the striking feature of fig. 6:23 is
the large difference between curves (A) and (B) in the forward scattering
direction. This feature is not present in the result for the same surface
illuminated by horizontally polarized wave. We suspect that this difference
between the vertical and horizontal polarization results is related to a
difference in the degree of shadowing that takes place. We suspect that the
large forward scattering contribution from ¢,1, which is present in fig. 6-23
but not in fig. 6-20, is because a vertically polarized wave is to greater extent
diffracted around the surface, thereby illuminating more of the surface
parallel to the incident wavefront. In this manner, more of the surface acts
to source a secondary illumination of slopes capable of scattering in the
forward direction. This feature is also present in figs. 6-13 and fig. 6-14.

We have found that enhanced backscattering occurs for a Gaussian-
rough surface with a RMS surface slope of 45° and a correlation-length as
small as 0-4A. We present in figs. 624 and 6-25 the scattered powers for a
wave incident at an angle of 15° on a Gaussian rough surface with a RMS
slope of 45° and a correlation-length of 0-4A. In fig. 6-24 the incident wave is
horizontally polarized, and in fig. 6-25 the incident wave is vertically
polarized. The two corresponding figures for a surface correlation-length of
0-8A are figs. 6-19 and figs. 6-22. It can be easily verified by comparing fig. 6-24
with fig. 6-19, and fig. 6-25 with fig. 622, that the angular distribution of gk

is broader in the two figures for a surface correlation-length of 0-4A.
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Fig. 6-24. The scattered powers for a Gaussian rough surface with a RMS slope
of 45° and a correlation length of 0-4A illuminated by a horizontally polarized
wave incident at 15°. Curve (A) is the average scattered power; (B) is ogk; and

(C) is obtained with the shadow-corrected Kirchhoff method.
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Fig. 6-25. The scattered powers for a Gaussian rough surface with a RMS slope
of 45° and a correlation-length of 0-4A illuminated by a vertically polarized
wave incident at 15°. Curve (A) is the average scattered power; (B) is ogk; and

(C) is obtained with the shadow-corrected Kirchhoff method.
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The intuitive explanation of enhanced backscattering leads to an inverse
relationship between the angular width of the enhanced backward scattered
power and the mean free-path of the double-scatter at the surface; the path
CD in fig. 1-3, for example. (O'Donnell and Mendez, 1987). The fact that the
angular width of the enhanced backward scattered power is smaller for a
correlation-length of 0-8A than for a correlation-length of 0-4A is consistent
with the intuitive explanation of enhanced backscattering. Also, our
observation that the angular distribution of the enhanced backward
scattered power is narrower in the vertical polarization case than in the
horizontal polarization case, would suggest that the mean free-path of the
double-scatter is larger for vertical polarization than for horizontal
polarization. It is our suspicion that a vertically polarized wave is diffracted
around the surface to a greater extent than a horizontally polarized wave.
Intuitively, the diffraction of the scattered wave around the surface would
indeed act to increase the mean free-path of the double-scatter.

The contour-plots of the electromagnetic field in the vicinity of the
surface boundary illustrate how the surface current density is enhanced by
multiple-scattering. We present in fig. 6:26 the normalized modulus of the
total magnetic field for a vertically polarized wave normally incident on a
Gaussian rough surface with a RMS slope of 45° and a correlation-length of
0-8A. We suspect that the pattern of interference centred at (-0-5, 0-5) is due
to the interference between the incident wave, a wave scattered towards the
upper-left hand corner of the plot, and a wave scattered towards the upper-
right hand corner of the plot. It can be easily verified from the figure that
the magnitude of the total magnetic field at (-1-0, 0-0) and (0.0, 0-0) is large
compared to its value at (1-25, 0-5), where the surface is not directly
confronted by another part of the surface. We suspect that the
enhancement of the magnetic-field in the region of (-0-5, 0-5), is due to the

illumination of the surface by scattered waves.
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Fig. 6 26. The normalized modulus of the total magnetic field in the vicinity of a rough
surface with a RMS slope of 45° and a correlation-length of 0 81, when a vertically polarized
wave is normally incident on the surface.
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We present in fig. 6-27 the normalized modulus of the total electric
field for a horizontally polarized wave for the same section of surface as
illustrated in fig. 6-26. The enhancement of the field in the surfaces valleys

evident in fig. 6:26, is also evident in fig. 6-27.
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Fig. 6 27. The normalized modulus of the total electric field in the vicinity of a rough surface
with a RMS slope of 45° and a correlation-length of 0-8X, when a horizontally polarized
wave is normally incident on the surface.
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7
Discussion and Conclusions.

In this concluding chapter a review of the main results and
conclusions is given, previous work in the field of numerical
electromagnetics and rough surface scattering are examined in the light of
the present work, and the chapter is completed with some general

conclusions.

7-1 Review of the present work.

The aim of this study was to investigate wave scattering from perfectly-
conducting, two-dimensional, Gaussian rough surfaces where the RMS
height and correlation-length of the surface are of the same order, and of
the same order as the electromagnetic wavelength. The investigation
started with the two, uncoupled, magnetic-field-integral-equations (MFIEs),
and the procedure used to approximate the continuous equation as a
discrete equation. For the surfaces we have considered, the matrices
generated in the discretization of the continuous equation are not ill-
conditioned and can be solved exactly by LU decomposition. We chose to
investigate the quality of the numerical solution by examining the degree
to which the scattered field beneath the surface boundary cancelled the
incident field. This established that the discrete approximation of the MFIE
was a good one.

Once confident that the procedure used to discretize the MFIE gave
good solutions to the field in the vicinity of the surface boundary, the study
progressed onto iterative methods of solving the discrete equation. The
convergence and rate of convergence of two iterative methods were

examined. The Neumann expansion used by Brown (1982), Holliday (1987),
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and Holliday et al (1988), appeared to be a natural candidate for an iterative
solution of the discrete approximation of the MFIE. However, although the
expansion provided a rapid numerical solution for small values of surface
height and slope, when the surface structure was of the same order as the
electromagnetic wavelength the expansion diverged rapidly. A step-by-step
method of identifying divergence was presented (Wingham and Devayya,
1992). This allowed us to identify divergent expansions within a few
iterations. To the extent that the numerical simulation is a good one, we
also consider that our results provide strong evidence that the Neumann
expansion cannot be used without qualification to provide a formal
solution to the rough surface MFIE.

The conjugate-gradient methods are iterative methods of solving
matrix-equations whose convergence are in theory sure. In spite of the
theoretical assurance of convergence, it is not uncommon to find in the
literature references to the iteration diverging. We have ourselves found
that applied to the discrete approximation of the MFIE, convergence is not
sure. The divergence was identified as due to the effect of rounding errors
on the theoretical orthogonality properties, which guarantee convergence.
To overcome this problem we modified the algorithm to include explicit
orthogonalization of the conjugate-vectors at each iteration. We called this
algorithm the Gram-Schmidt least-square-conjugate-gradient (GS-LSCG)
method. In all the cases we have applied the GS-LSCG method to, we have
never experienced a problem with its convergence (Devayya and
Wingham, submitted in 1992)

The decision was made to run with the GS-LSCG method and to
examine its rate of convergence for various surface parameters and
incident waves. We found that the rate of convergence of the GS-LSCG
method depends less upon a particular value of the RMS height and
correlation-length, but more upon there ratio. This ratio is proportional to

the RMS surface slope. We also found that the size of the surface, which
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determines the matrix size N, does not affect the rate of convergence. This
important, because the advantages of the conjugate-gradient method then
grows with N.

The potential advantage of an iterative method is that the iteration can
be stopped once a “good solution” has been found. To establish the point at
which to truncate the iteration, we examined the difference between the
scattered far-field power computed with the iterated solution for the
surface current density and the scattered far-field power computed with the
solution obtained by LU decomposition. For the surfaces we have
considered, small errors in the surface current density are mapped to small
errors in the scattered far-field, even when the scattered power is small.
The computational issues were investigated in the light of this result, by
comparing the CPU-times required by the GS-LSCG method and by LU
decomposition. We found that when the RMS surface slope is small, or
when N is very large, the GS-LSCG method determines a good solution
with an order of magnitude reduction in the computation required by LU
decomposition. '

From the onset of the investigation our intention was to examine
wave scattering for several incident fields. The major disadvantage of the
GS-LSCG method is that the method is implemented for one incident field
at a time. LU decomposition on the other hand, allows the solution for any
incident field to be directly obtained. We have presented in this thesis a
numerically robust conjugate-gradient method for scattering problems that
require solutions for several incident fields. The method uses the
information obtained in previous implementations to determine an
initial-guess at the solution of the matrix-equation for each additional
incident field. However, for the cases we have considered, the surface
currents for different incident fields prove too distinct for the method to

provide any significant computational advantage over LU decomposition.
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Nevertheless, our work on the numerical solution of the MFIE by the
conjugate-gradient method, is relevant to scattering problems that require
solutions for a few incident fields, or when the size of the matrix prohibits
the use of direct solution methods.

To solve the MFIE numerically the integral must be truncated at some
point. The scattering problem described by the truncated integral-equation
is that of a wave scattered from a patch of surface. From a computational
standpoint a small patch size is preferable. However, since it is hoped that
the normalized incoherent scattered power computed for an ensemble of
rough surface patches will apply to the infinite rough surface, the patch size
must be large enough to accommodate the average scattering properties of
the infinite surface. We have placed the point at which to truncate the
MFIE into a mathematical context. The incoherent scattered power for an
illuminated patch of surface was presented as the integral of the weighted
autocorrelation-function of the random component of the field scattered by
each point of the surface. By representing the incoherent scattered power in
this manner, the factor determining the size of a patch was identified as the
separation required for this random process to decorrelate. We presented
examples of backscattering-autocorrelation-functions for a perfectly-
conducting, Gaussian rough surface. In the horizontal polarization case,
the autocorrelation-functions obtain a constant value within a few surface
correlation-lengths. This is also true of most of the cases for vertical
polarization. The exceptions occur when the RMS surface height is small.
For these geometries the autocorrelation-functions have an oscillatory
component over the entire length of the footprint. We suspect this
phenomenon is due to a surface wave. The presence of a surface wave
complicates the issue of where to truncate the MFIE. However, for the
surfaces we have considered we suspect that the diffuse scattering of the
surface wave is relatively small. The results presented in this study provide

evidence that a relatively small patch size can accurately represent the
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second-order scattering properties of the infinite surface. This is possible
because of the small correlation-length of the random component of the
scattering-function. In fact, we consider that the limit on the patch size
relates more to the method used to reduce the scattering from the patch
edges. The tapered incident wave used in our numerical simulations, for
example, is less consistent with the wave equation as the tapering is
increased.

Our attention then centred on the scattered far-field and the expected
value of the scattered power. The field scattered from a rough surface is the
scattered field obtained with the Kirchhoff approximation plus the field
due to the integral in the MFIE, which we call the integral-field. In the high
frequency limit wave scattering is not complicated by diffraction, and the
role of the Kirchhoff and integral-fields are understood. In this limit, the
Kirchhoff-field is due to the single-reflection of incoming rays from the
surface. The integral-field is required to account for shadowing of the
surface, and multiple-reflections at the surface boundary. We presented a
procedure for obtaining from the solution of the MFIE two physically
distinct corrections to the Kirchhoff approximation. On the assumption
that the coherence between the field due to single reflections and the field
due to multiple-reflections is negligible, a correction for shadowing is
determined from the linear mean-square estimate of the integral-field in
terms of the Kirchhoff-field. The error in the estimate, which provides the
second correction to the Kirchhoff method, satisfies the coherence
properties of the scattered field due to multiple-reflections.

Armed with these procedures we set about applying them to our
numerical simulations of wave scattering from Gaussian rough surfaces
where the RMS height and correlation-length are of the same order, and of
the order as the electromagnetic wavelength. We found that for a RMS
slope of 25° there is small difference between the integral-field and the

linear, mean-square estimate of the integral-field in terms of the Kirchhoff-
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field. Physically, we suspect that because this difference is small, the
scattered field due to the illumination of the surface by scattered,
wavefronts is small too. We suspect that for these surfaces the correction to
the Kirchhoff approximation provided by the integral in the MFIE is for
partial-shadowing and the diffraction by the surface of the incident and
scattered waves. The discussions for surfaces with moderate slopes centred
on the relationship between the polarization of the incident wave, and the
degree of shadowing at the surface. We consider that both the near and far-
field results provide strong evidence that the degree of shadowing is
smaller for vertical polarization than for horizontal polarization. Contour-
plots of the electromagnetic field in the vicinity of the surface boundary
were used to illustrate this point in the near-field. In the far-field, we have
found that the average scattered power in the horizontal polarization case
is better described by the Kirchhoff method when the correction for
shadowing derived in (Wagner, 1967) is used. The results for vertical
polarization on the other hand, show how the Kirchhoff method gives a
better estimate of the backward scattered power when the shadowing
correction is not used.

The results for Gaussian rough surfaces with very large slopes
illustrate the enhanced backscattering reported in the literature (O'Donnell
and Mendez, 1987). In contrast to the results for a RMS slope of 25°, for a
RMS slope of 45° the difference between the integral-field and the estimate
of the integral-field in terms of the Kirchhoff-field is not small. Physically,
we suspect this difference is due to the illumination of the surface by waves

scattered from other parts of the surface.

7-2 Review of previous work.

Our work on iterative methods of solving the magnetic-field-integral-
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equation has a much wider scope of application. There is considerable
interest in iterative methods within the electromagnetic scattering
community (Sarkar et al, 1981), (Umashankar, 1988), (Marks, 1990). The
procedures used to identify the divergence of the Neumann expansion, for
example, can be applied to Neumann expansion of any Fredholm integral-
equation (Baker, 1977) of the second-kind. Also, the work presented on the
conjugate-gradient method, and in particular, avoiding rounding errors by
using Gram-Schmidt orthogonalization should be of interest to those
researchers who have found the initial convergence of the conjugate-
gradient method applied to there problem to be rapid, but then diverges
due to rounding errors.

In the numerical studies of rough surface scattering the point at which
the integral-equations are truncated varies markedly from study to study.
Given the problem of choosing a patch size large enough to preserve the
second-order scattering properties of the infinite surface, but at the same
time small enough to limit the computational requirement, we have
placed the point at which to truncate the integral into a mathematical
context. Our simulations suggest that a relatively small patch size can
describe the second-order scattering properties of the infinite surface. In
fact, the limit on the patch size appears to relate more to method used to
guard edge effects. The method we have used to guard against these effects
is to taper the incident wave to negligible levels at the patch edges. This
method has also been used by Thorsos (1988), Thorsos and Jackson (1989),
Broschat et al (1989) and most recently by Ishimaru and Chen (1991). It
would have been useful, if we had had the time, to compare this approach
with the method for periodic gratings due to Jordan and Lang (1979). The
integral-equation for a periodic grating is described along a closed contour
over one period of the grating. The periodic nature of the surface is
accommodated into the Greens' function for the scattering problem.

Applied to the random, rough surface scattering problem, the random
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roughness is defined over one period of the grating. Although the
periodicity of the surface roughness modulates the angular distribution of
scattered power by a pattern of interference fringes, the method of Jordan
and Lang does not suffer from “edge effects”, because the integral-equation
is bounded.

This thesis has compared wave scattering for both polarizations. The
bulk of the literature on wave scattering is on the Dirichlet scattering
problem, which in the context of this study is the horizontal polarization
case. Our results for horizontal polarization are consistent with the results
presented by Thorsos (1988). We have also found that the Kirchhoff
approximation when used with the correction for shadowing derived in
(Wagner, 1967), gives a better description of the scattered power as the
surface correlation-length approaches the electromagnetic wavelength. Our
work has also dealt with the vertical polarization case. Here, we have
found that the backward scattered power is better described with the
Kirchhoff method when the correction for shadowing is not used.

The results for a RMS slope of 25° show that there is small difference
between the integral-field and the linear mean-square estimate of the
integral-field in terms of the Kirchhoff-field. Analytic theories of wave
scattering, with the exception of the second-order Kirchhoff-iteration
(Ishimaru and Chen (1990 a, b), are appropriate when the RMS surface
slope is less than 25°. We suspect that these theories operate in a region of
the parameter space where the scattered field due to the illumination of the
surface by scattered, wavefronts is small. The nature of the results for
rough surfaces with large slopes bare a striking resemblance to those
presented by Ishimaru and Chen (1990 a, b), (1991) and Bruce and Dainty
(1991). These authors have used the first two terms of a Kirchhoff iteration
to describe wave scattering from very rough surfaces in the region “SKI” of

fig. 1-3. The first term of the iteration gives the expected scattered power
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obtained with the shadow-corrected Kirchhoff method. The second term is
required to account for enhanced backscattering. We have presented a
procedure for obtaining from the solution of the MFIE two corrections to
the expected scattered power obtained with the Kirchhoff approximation.
This procedure has allowed us to gain valuable insight into the scattering
mechanisms that operate at the surface boundary. We have found that in
many cases the correction for shadowing is close to the correction for
shadowing derived in (Wagner, 1967). The second correction, which
physically we suspect accounts for the illumination of the surface by waves
scattered from other parts of the surface, for very rough surfaces is required
to describe the angular distribution of the enhanced backward scattered

power.

7-3 Conclusions.

The purpose of this study was primarily to investigate wave scattering
from perfectly-conducting, two dimensional Gaussian rough surfaces
where the RMS height and correlation-length are of the same order, and of
the order of the electromagnetic wavelength. Existing scattering theories do
not apply to these geometries and at present there is little alternative but to
solve the scattering equations numerically.

A suitable equation to solve is the magnetic-field-integral-equation
(MFIE). The principal problem that emerges in the numerical solution of
the MFIE is that very large matrices are generated, even for moderately
sized two-dimensional surfaces. Iterative methods were used to solve the
discrete representation of the MFIE, with the hope that good solutions
could be obtained within a few iterations, thereby reducing the
computational requirement. Two iterative methods were investigated; the
Neumann expansion, a method that had been used to formally represent

the solution of the rough surface scattering problem; and the conjugate-
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gradient method, an iterative of solving matrix equations whose
convergence is in theory sure. The convergence of both methods were
found to be in question. The Neumann expansion suffers from
convergence difficulties in theory, as well as in practice. The divergence of
the conjugate-gradient method, however, was identified as due to
rounding errors. A conjugate-gradient far less susceptible to rounding
errors was presented, and this method has been applied successfully to a
number of scattering geometries.

Procedures were presented for determining from the solution of the
MEFIE, two corrections to the Kirchhoff method. The results presented in
this thesis provide evidence that one of the corrections is for partial-
shadowing, and the diffraction by the surface of the incident and scattered
waves, and the other correction is for the illumination of the surface by
scattered, wavefronts. The increase from a RMS slope of 25° to a RMS slope
of 45° marks the transition into the region of the parameter space where
enhanced backscattering occurs. Moreover, this transition is marked by an
increase in the degree of incoherence between the scattered field obtained
with the Kirchhoff approximation and the scattered field obtained with the
surface current due to the integral in the MFIE. Physically, we suspect that
the increase in the degree of incoherence between these two fields, is due to
a marked increase in the illumination of the surface by waves scattered
from the other parts of the surface. It remains to be seen whether the
algorithms and procedures presented in this thesis will be adopted by the

rough surface scattering community
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Appendix A.

Derivation of the magnetic-field-integral-equation.

The integral formulation of Maxwell's equations are dealt with by,
among others, Poggio and Miller (1973). In this appendix, we will derive
the magnetic-field-integral-equation (MFIE) for the case of a horizontally
polarized wave incident upon a two-dimensional (corrugated), surface. The
derivation of this MFIE is not in the literature. For a two dimensional

surface, the general form of the MFIE is (Poggio and Miller, 1973)

J(x) = 20(x) x Hi(x) + 51; n(x) XL” J(x") x VO(r, ') IE + ?%l dx' (A-1)

Here, ] is the surface current density, Hi is the incident magnetic field at the
surface, @ is the Greens' function for the scattering problem, r and r' are
position vectors of the surface at x and x', (r-r') = (x X)X + (z- 2') Z, and 0

is the unit vector normal to the surface boundary at x',

A(x) = z -xdz/dx (A-2)

Here, the bold type face is used to indicate a vector, and the hat symbol
denotes a unit vector. A suitable Greens function for the two-dimensional,

scattering problem is (Poggio and Miller, 1973),
O(r, ') = -in HO[k I - r'1], (A3)

and taking the partial derivatives of the zero-order Hankel function

(Abramowitz and Stegun, 1970),
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HP [k e -r'1)

Vo(r, t') =-ink (r-r') e o]

(A-4)

In the horizontal polarization case, the surface current induced by the

incident wave

Hi(x) = Hi(x) Z cos 6! - X sin 6Y), (A-5)

is the vector

J(x)=-JX)¥. (A-6)

With (A-2) and (A-5), the first term on the right-hand-side (RHS) of (A-1)

( cos Oidz/dx-sinei)?

V1 + (dz/dx)

fi(x) x Hi(x) = Hi(x) (A7)

While the vector cross-product in the second term on the RHS of (A-1) is

. )=(x-x')dz/dx-(z-z') .

n(x)X(-yx(r-r') m
+

(A-8)

Finally, substituting (A-6), (A-7) and (A-8) into the RHS of (A-1), we obtain

the MFIE for the horizontal polarization case as

(sin 6! - cosOidz/dx)S;_

V1 + (dz/dx)P

JX)F = 2Hi(x)

[ H® .
-%?f j6¢) ST (-2 - - x)&/d)V1+(a/my
oo -r'l 1 +(dz/dxf

(A9)
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The MFIE for a vertically polarized wave is derived in a similar

fashion. For the incident wave
Hi(x)= - HiX)F.

the surface current density is the vector

where,
5o X+ Zda/dx_
V1 + (dz/dx)?

" Using (A-2) and (A-10), the first term on the RHS of (A-1) is

fi(x) x Hi(x) = Hi(x) p.

(A-10)

(A-11)

(A-12)

(A-13)

While the vector cross-product in the second term on the RHS of (A-1) is

-~

AX) X (P x(r-r))= P ((z-2')-(x-x)dz'/dx'). (A-14)

V1 +(dz'/dxP

Then, substituting (A-11), (A-13) and (A-14) into the RHS of (A-1), we obtain

the MFIE for a vertically polarized wave as

oo

: . ) o
].(X)i; = 2H1(x)i; - %ﬁf ](X') Hl [kll' r l]

lr-r'l
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Appendix B.

The variance in the estimate of the autocorrelation
function of a Gaussian, rough surface.

To test whether the autocorrelation function of a sample of the
generated surface is consistent with that of a sample of a Gaussian rough
surface, we need to have some idea of the error in the estimate of the
theoretical autocorrelation function made from a sample of a Gaussian
rough surface. The variance in the estimate of the autocorrelation function
of a Gaussian, random process made from a sample of length L is (Priestley,

1987)

oo

var (1(1)) = LL f r2(m) + r(m + 7) r(m - t) +

-©0

2r2(m) r2(t) + 4r(t) rf(m) r(m -ty dm (B-1)

Here, 1(t) is the estimate of the normalized autocorrelation made from a
sample of length L and r(t) is the theoretical nomalized autocorrelation
function of the Gaussian, random process.

The autocorrelation function of a Gaussian rough surface is the

Gaussian

R(1) = o2 exp [ -;L‘:] (B-2)

and the normalized autocorrelation function

r(t) = R(t) / R(0). (B-3)
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With (B-3) substituted into the integral (B-1), the two following identities
are then used to evaluate (B-1), (Gradshteyn and Ryzhik, 1980),

J e-q’m? gm = % (B-4)
f e-p’m?tqm gm = 1P@ eq?/4p? p>0 (B-5)

The integral is easily evaluated with knowledge of the identities (B-4) and
(B-5);

var (1)) = % \/% (1 +3exp [ Zié] -dexp [ ;3—?] ) (B-6)

For © = 0, (0) always equals 1. It can be easily verified from (B-6) that the
variance in the estimate at T = 0 is correctly zero. The asymptotic value of

(B-6) is

var (t(co)) =_§f 12L (B7)

For most Gaussian, random processes the error in the estimate is a
Gaussian, random process too (Priestley, 1981). With the errors normally
distributed, the 5% significance level for the estimate is twice the square-
root of the variance; i.e. in 95% of the autocorrelation functions made
from a sample of a Gaussian rough surface with length L, the error in the
estimate will lie between plus and minus twice the square-root of the
variance (B-6). This significance level is illustrated in fig. 2-2(B) for a 3000
correlation-length sample of a Gaussian rough surface with a correlation-

length of 0-4A.
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Appendix C-

Derivation of the scattered field integrals.

In this appendix we will derive the scattered field integrals. We begin
with the following integral equations for the scattered magnetic field, and

the scattered electric field;

HS(R)=$ j J(x') x VO(R, r)|z+ %?I dx' (C1)
ES(R):-%%Q[ J(x') B(R, r)|z+xd2-| dx'. (C2)

Here, J is the surface current density, HS is the scattered magnetic field, ES is
the scattered electric field, ® is the Greens' function for the scattering
problem, r' is a position vector of the surface a x', and R is a position vector
for a point off the surface boundary at (X , Z). A suitable Greens function for
the two-dimensional scattering problem is (Poggio and Miller, 1973),

O, r') = -in HIKIR - 1], (C3)

HOKIR -]
IR-¢I

and VOR, ') = -ink (R -r") (C-4)

In the horizontal polarization case, the surface current induced by the

incident wave is

J)=-J(x)¥- (C5)
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Substituting (C-3) and (C-5) into the RHS of (C-2), the scattered electric field

is then obtained from the integral

ES(X,Z)§ = £4_09 f J) HPKIR -]V + (dz/dxP dx.  (C6)

For a vertically polarized wave the surface current density is

J() =J(X)P, (C7)
where,

_ _X+zdz/dx (C-8)

V1 +(dz/axfP

jav})

In this case, the scattered magnetic field is perpendicular to the x-z plane.
With (C-4), (C-7), and (C-8) substituted into the RHS of (C-1), the scattered

magnetic field is obatined from the intgral

HS(X,2)§ = %?Yf J6<) H(Z)“"R 1 (Z-2) - (X-x) dz/dx) dx.
(C9)
When the observation point is distant form the surface boundary,
IR -1'l =V(R cos8® - 2)2 (R sind® - x)2
=R(1- ﬁ- (z cosBS+ x sind®) ), (C-10)

the Green's function (C:3) can be replaced with its asymptotic value,

(Abramowitz and Stegun, 1970)
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DR, 1) =4 /—é— exp (- %) exp (-ikR) exp (ik (z cos0%+ x sin6®%)), (C-11)
and

VO, ') = 2_17;k_ exp ( lg—) exp (-ikR) exp (ik (z c0s6%+ x sinb%)). (C12)
Using the Greens function (C-11) in (C-2),

ES(0°) = Z exp( ”") exp (-ikR)
j J(x') exp (ik (z' cos8+ x' sin6%)) V1 + (dz'/dx)? dx’, (C-13)

and with (C-12) used in (C-1),

H5(6%) = Z exp( —’1) exp (-ikR)

f J(x') exp (ik (z' cos®®- x' sin%)) (cos®’- dz'/dx sin65yV1 + (dz'/dx)? dx'

o0

(C-14)

146



Appendix D
The Wagner shadow-function.

The Kirchhoff method neglects the shadowing by the surface of the
incoming and outgoing waves. The correction for shadowing derived in
(Wagner, 1967) assumes that the incoming and outgoing waves can be
represented as rays. Physically the correction describes the area of surface
geometrically visible to both source and observation points. The
shadowing correction is applied to the Kirchhoff result for the expected
value of the scattered power, by multiplying the incoherent scattered power

(D-1) by the shadow-function S(61,61). Where

5(6%,65) = S(6%) 90° < 85< 6, (D-1)
s(el,05 =sel) ol <p5<0°, (D-2)
5(6',6%) = 5(61,6%) -90° < 65< 0°, (D3)
where
5(0%) = L1rerf (vs)l (1- e2Bs) (D4)

4By

9y 2 v?2
eVg /8 eVs [1+ erf(vs)]
+ -

BS = 1 1 4 ’ (DS)
(48117V52)2 { 16mv 52)2
| cot 6° |

= , D-6

Vs 20/€ (©6)

[ erf (v;) + erf (vg)] (1 - e “2(Bs + By ))

i .S
S(6%,67) = ,

(D7)
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The quantities S(61), B; and v; are obtained by substituting the angle of
incidence 61 and the scattering angle 65 in (D-4) - (D-7). The geometric factor
in the shadow-function occurs in the denominator of (D-7). The ratio of the
RMS surface height 6 and the surface correlation-length § is proportional

to the RMS surface slope.
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