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Abstract

We study the stability and phase behaviour of charged colloidal suspensions theoret­
ically, starting from fundamental thermodynamics and electrostatics. The linearised 
Poisson-Boltzmann equation is solved, subject to justifiable approximations, for a 
suspension containing a large number of identical spherical macroions under condi­
tions of constant surface charge. The electrostatic term in the Helmholtz free energy 
is cohesive, and this is opposed by a repulsive counterion ideal gas term. We argue 
that the stability and phase behaviour of a charged colloidal suspension result from 
competition between these two terms in the free energy, and that the DLVO theory 
is inappropriate for the description of these phenomena.

In a system containing no added salt, a van der Waals loop can appear in the 
pV  diagram, indicating phase coexistence between phases with different macroion 
densities. This occurs when the ratio of the macroion charge to the macroion radius 
is greater than a critical value. Theoretical phase diagrams for systems containing 
salt show phase separation when the macroion charge is high and the salt concentra­
tion is low, in agreement with experimental results. Calculation of the partition of 
salt between coexisting phases having different macroion densities reveals a ‘reverse 
Donnan effect’: at sufficiently high values of the macroion charge and mean salt 
concentration, the salt is densest in the macroion-rich region. We show that phase 
coexistence persists when the macroion charge is allowed to vary, using a simple 
model for the ion dissociation at the surfaces of the macroions.

The square gradient approximation is used to calculate the surface tension be­
tween two colloidal phases of differing density, and the results are compared with 
evidence from various colloidal systems. The nucléation rate of a colloidal liquid 
cluster from a metastable colloidal gas is estimated using a version of classical nu­
cléation theory. We explain the recently described ‘Swiss Cheese effect’ in terms of 
nucléation phenomena, and argue that it shows evidence both of homogeneous and 
of heterogeneous nucléation. Metastability is likely to be very important in colloidal 
systems, and therefore the consideration of nucléation rates is essential to the study 
of phase behaviour in such systems.
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Introduction

This thesis is concerned with suspensions of charged colloids. Colloidal systems are 
usually defined as systems which have inhomogeneity on a length scale of between 
approximately 10“  ̂ and 10“® m, consisting of matter of one phase dispersed in 
another, and whose components will therefore have a large surface area relative 
to their volume. Colloid science has both biological and industrial importance: 
for example, protein solutions, blood, inks, clays (as used in the manufacture of 
ceramics) and much food can be modelled as colloidal systems [1].

The suspensions in which we are interested here contain particles of colloidal 
dimensions (which might, for example, be composed of polystyrene latex) in a polar 
solvent such as water. We regard the colloidal particles as approximately spherical. 
Surface groups on the particles will tend to dissociate, resulting in a system com­
posed of colloidal spheres (also known as macroions or polyions) carrying multiple 
charge, and oppositely charged ions (microions or simple ions) known as counteri­
ons. Additional microions will be present in the suspension, in the form of added 
salt. Overall, the system will be charge neutral, so the number of coions (simple 
ions having the same charge sign as the macroions) will be equal to the number of 
counterions contributed by the added salt. The presence of the microions is believed 
to stabilise the suspension against the formation of an aggregate.

Experimental observations on suspensions under conditions of low added salt 
concentration have produced evidence of dense phases with solid- or liquidlike or­
dering coexisting with voids or rarefied (gaslike) phases [2]. This phenomenon is 
strongly reminiscent of the phase coexistence between liquid or solid and gas which 
is observed in molecular matter. Phase coexistence between a dense and a rarefied 
phase appears to conflict with the standard views on the stability of charged col­
loidal suspensions which are epitomised by the Deryagin-Landau-Verwey-Overbeek 
(DLVO) theory [3]. For this reason, the mechanism which leads to the phenomenon, 
and even its very existence, have remained controversial.

The first aim of this thesis is to determine theoretically the phase behaviour of 
the system, starting from fundamental electrostatics and thermodynamics. Only by



beginning from first principles can we hope to produce a satisfactory and consistent 
view of such a complex system, and to dispel some of the controversy. This will 
help us to answer the question of what mechanism underlies the stability and phase 
behaviour of charged colloidal suspensions. We consider homogeneous phase stabil­
ity for a variety of macroion and salt densities, and point out various inadequacies 
of earlier theories. Our main conclusion is that the traditional view of a colloidal 
suspension stabilised against aggregation by a purely repulsive electrostatic interac­
tion must be replaced by a view of colloidal stability as a competition between the 
repulsive effect of the counterion entropy and the cohesive effect of the electrostatic 
contribution to the free energy.

The second aim is to investigate, from a theoretical point of view, the interfaces 
between the observed phases. We have calculated interfacial free energies in a zero 
added salt system. This has apparently never been attempted before. The thermo­
dynamic properties of interfaces are extremely important in the formation of new 
phases by nucléation, and we have estimated rates of nucléation of droplets of the 
stable phase from the metastable phase. This allows us to interpret the fascinating 
nature of such non-equilibrium processes, which has been emphasised recently by 
the so-called ‘Swiss Cheese effect’ observed by Yoshida et al. [4].

We begin with an outline of equilibrium thermodynamics in chapter 1, and then 
describe the current situation of knowledge about charged colloidal suspensions in 
chapter 2. Chapter 3 details a calculation of the free energy of the system, beginning 
from fundamental thermodynamics; the results are applied to phase coexistence in 
colloidal systems under conditions of zero added salt in chapter 4, and to the calcu­
lation of phase diagrams in systems with added salt in chapter 5. In chapter 6, we 
investigate the effect of allowing the macroion surface charge to vary, by introducing 
a simple model for the dissociation reaction at the surfaces of the macroions. The 
classical theory of homogeneous nucléation is introduced in chapter 7, and example 
calculations, using data from simple molecular systems, illustrate how information 
on the thermodynamics of a nucleating cluster can be obtained from measured rates 
of nucléation. In chapter 8, we outline a method for the calculation of interfacial 
free energies, and apply it to the calculation of the surface tension in a colloidal sus­
pension; this enables nucléation rates to be estimated. We then discuss the ‘Swiss 
Cheese effect’ in the light of nucléation theory. The conclusions of the thesis are 
presented in chapter 9.

Throughout the thesis, the temperature will be assumed to be around room 
temperature (298 K).



Chapter 1 

Equilibrium thermodynamics

1.1 Introduction

Charged colloidal suspensions contain a large number of particles of various types: 
macroions, counterions, and added salt. The tools necessary to describe such large 
systems are provided by thermodynamics. Therefore, in this first chapter we shall 
outline the principles of equilibrium thermodynamics which will be used later in 
the thesis. We start by introducing the subject on the basis of the first and second 
laws of thermodynamics, and then proceed to discuss thermodynamic potentials and 
their minimisation to find the equilibrium state. Later, we introduce the concept of 
chemical potential and the features of a single-component fiuid system that indicate 
phase coexistence.

1.2 The first and second laws of thermodynamics

The thermodynamics on which the calculations in this volume are based follows 
from just two basic assumptions: (i) the concepts involved, such as energy, work, 
equilibrium and temperature, are meaningful and understood, and (ii) the first and 
second laws of thermodynamics are valid. The second assumption is justified by 
an appeal to the fact that the laws of thermodynamics are supported by years of 
experimental results in many different fields of research.

The first law of thermodynamics is a statement of the conservation of energy; it 
specifies the change dU in the internal energy U of any system during any process,

dU =  dQ — dW  4- dUmat- (1.1)

dQ is the heat transferred to the system from its surroundings, while dW  is the



work performed by the system on its surroundings; dUmat represents the energy 
transferred to a system from its surroundings due to the transfer of matter [5].

heat
Figure 1.1: The flow of heat between two subsystems I and II of an isolated system. 
The temperatures are Tj and Tjj, where Tj > Tjj.

Perhaps the most intuitively obvious statement of the second law of thermody­
namics is that heat flows spontaneously only from a hotter body to a colder one. 
Consider as an example the system illustrated in flgure 1.1, containing two compo­
nents I and II in thermal contact, at temperatures Tj and Tjj such that Tj > Tjj. 
Imagine that the system is isolated, and that no work is done on it, so that the 
only process which takes place is the flow of heat between the two components. 
During a given period of time, a quantity of heat dQ' will flow from component I to 
component II, leading to an increase in Tjj and a decrease in Tj. The change dS in 
the entropy 5  of an arbitrary system (for example, of one of the components of our 
example system) due to an inflnitesimal part of such a process (involving only the 
flow of heat), during which its temperature is T, is deflned as

dS =
dQ
T ’

(1.2)

where dQ is the quantity of heat which flows into the arbitrary system. The total 
entropy change of our example system, dS =  d5j -I- d5jj, where dSj and d5jj are 
the changes in the entropy of components I and II, respectively, is therefore given 
by

dQ'. (1.3)d S = ( ^ - à -
II I
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Since Tj > Tjj, equation (1.3) implies that dS > 0, which leads us to another 
statement of the second law: that the entropy of an isolated system can never 
decrease:

dS > 0. (1.4)

(The limit dS 0 corresponds to a reversible process, in which Tjj —> Tj.) The rule 
that the entropy of an isolated system can never decrease also applies to systems in 
which processes other than the flow of heat take place.

We can write the entropy of a system which is not isolated as a sum of two terms

[5].
dS = deS + diS, (1.5)

where d^S is the entropy change of a system due to the exchange of heat and/or 
matter with its surroundings and diS is the change due to internal processes (for 
example, a chemical reaction, or the flow of heat between two regions within the 
system). The term dgS can have any sign: a negative value of dgS in a system will 
always be balanced or outweighed by a positive value of deS in its surroundings or 
by diS. In the example of flgure 1.1, the change —dQ'/Ti in component I (now 
playing the role of ‘the system’) is outweighed by the change dQ'/Tjj in component 
II (‘the surroundings’); in this case, there are no internal processes either within I 
or within II, so diS =  0 in both components. If only heat, not matter, is exchanged,

deS = (1.6)

diS, on the other hand, must always be positive if there are any internal processes, 
since there occurs no change in the entropy of the surroundings which could outweigh 
a decrease in the entropy of the system. It is clear that diS must be zero in a 
reversible process.

In an isolated system deS = 0, and equations (1.4) and (1.5) then imply diS > 0: 
the equilibrium state is the state of maximum entropy. But only if we considered 
the entire universe could we imagine that we had a truly isolated system, and most 
systems of interest are not even approximately isolated. They may, for example be 
held at constant temperature by thermal contact with their surroundings. In such 
circumstances, the equilibrium state will correspond to the maximum value of the 
total entropy of the system and its surroundings. We need to calculate the behaviour 
of a non-isolated system without having to consider the rest of the universe, except 
to specify that the universe is large enough to act as a heat bath and hold the 
system at constant temperature (or to apply some other external constraint to the

11



system). The quantity that takes an extremal value within the system will be a 
thermodynamic potential such as the Helmholtz free energy.

1.3 The Helmholtz free energy

Consider a fluid system which is closed (that is, cannot exchange matter with its 
surroundings). Under these conditions, the first law of thermodynamics reduces to

dU = d Q -  dW. (1.7)

Assume further that the system is confined to a constant volume V  and held at 
a constant temperature T  by thermal contact with its surroundings, and that no
external field is applied. The system may contain surfaces, different phases, or more
than one species of particle. The Helmholtz free energy F  is deflned as

F  = U - T S .  (1.8)

Therefore, the differential dF, representing the change in F  due to an inflnitesimal 
process, is

dF = dU -  TdS -  SdT; (1.9)

recalling that the temperature is held constant (dT =  0) and inserting the first law 
of thermodynamics (1.7), equation (1.9) becomes

dF = d Q - d W -  TdS. (1.10)

If the only possible external work on a system is a pV  term (this is the reason for 
the prohibition on external flelds), we have dW  =  pdV, which is equal to zero since 
the volume is held constant (dV =  0). If we split the differential of the entropy into 
external and internal components, as in equation (1.5), dF now becomes

dF = d Q -  TdeS -  TdiS. (1.11)

Equation (1.6) implies that, in a closed system, dQ =  TdeS., so we flnd

dF  =  -TdiS .  (1.12)

12



We noted in the previous section that diS > 0 in any system, and so

dF < 0. (1.13)

This shows that a system under these conditions will always evolve towards a state 
of lower Helmholtz free energy. An equilibrium state can be found by setting

dF  =  0. (1.14)

For a stable equilibrium state to exist, F  must be a global minimum. If it is only 
a local minimum, the state is metastable: it is stable against small fluctuations but 
unstable against a larger fluctuation which can take the system over the ‘barrier’ 
into the global minimum of free energy or into another local minimum. Equation 
(1.14) will also be satisfied if the free energy is a local maximum: this corresponds
to a state of unstable equilibrium, where the system is unstable against arbitrarily
small fluctuations.

The closed nature of the system means only that no matter is exchanged with 
the surroundings; it does not imply that the number of particles in the system is 
held constant. Particles can be added or removed by means of internal chemical 
reactions without destroying the validity of equation (1.13). Similarly, the fact that 
no external field is applied does not mean that no flelds can be present internally: 
for example, an electrostatic field may occur due to the arrangement of charged 
particles in the system.

Another feature of the Helmholtz free energy F  is that the change of F  in a 
closed system during some isothermal (constant temperature) reversible process is 
equal to the work done on the system during the process. To see this, we combine 
(1.7) and (1.9), remembering that dT =  0, to give

dW = d Q - d F -  TdS. (1.15)

In a closed system dQ =  TdeS, and so

dW = - d F  -  TdiS, (1.16)

leading to dW = —dF for a reversible process.
Under different external constraints, different thermodynamic potentials must 

be minimised to find the equilibrium state, such as the internal energy U, enthalpy

13



if, Gibbs free energy G, or grand potential The Gibbs free energy is defined as

G = U - T S  + pV, (1.17)

where p is the pressure, and is used when the system is held at constant temperature 
and pressure, while the grand potential is given by

ü  = U - T S - ' £ , i t j N j .  (1.18)
3

where Nj is the number of particles of species j  and pj is their chemical potential, 
which will be introduced in the next section. The grand potential is used when the 
system is held at constant volume, temperature and chemical potential. In addition, 
the change in Q in an system open to matter exchange at constant chemical potential 
during an isothermal reversible process is equal to the work done on the system 
during the process. The grand potential plays the role in an open system that is 
played in a closed system by the Helmholtz free energy.

1.4 The chemical potential

Recall from the previous section that, in a closed system with no external fields, 
dQ = TdeS and dW  =  pdV during an infinitesimal process. Inserting these results 
into the first law, equation (1.7), gives

dU = TdeS -pdV .  (1.19)

If there are no internal processes generating entropy, we can use dS — deS, and so 
equation (1.19) becomes

dU = T d S - p d V .  (1.20)

The chemical potential p can be introduced as a means of extending equation (1.20) 
to a closed system in which there are internal processes, by adding extra terms to 
the differential of the internal energy,

dU = TdS - p d V  + Y ,  HdNj  (1.21)
3

= TdeS +  TdiS — pdV 4- ^2 (1.22)
3
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Here, Nj is the number of particles of species j ,  and fij is their chemical potential.
Comparison of (1.22) with (1.19) reveals that

jijdNj =  —TdiS. (1.23)
j

Here we have considered a system which is closed to matter exchange, but equation 
(1.22) and the chemical potential apply also to open systems.

Since U must be linear in the extensive variables 5, V  and {TV̂ }, we can write

[/(Â , Ay, {AA(,}) = AC/(5', y, {^V,}), (1.24)

where A is some constant. Differentiating (1.24) with respect to A allows the deriva­
tion of the Euler relation,

U =  T S - p V - { - Y l  (1.25)
j

this relation, together with the definition of the Gibbs free energy given in equation 
(1.17), can be used to interpret the chemical potential, in a system with these 
particular constraints, as the Gibbs free energy per particle:

G =  (1-26)
j

Equation (1.25) can also be used together with (1.18) to find an expression for the 
grand potential:

n  =  -pV.  (1.27)

Finally, taking the differential of (1.25) and substituting (1.21), we find the Gibbs- 
Duhem relation,

—SdT  — y  dp -|- ^ ] Njdpj =  0. (1.28)
j

1.5 Thermodynamic integration

Now consider dF as defined in equation (1.9). If we split dS into external and 
internal contributions, this is written

dF = dU -  TdeS -  TdiS -  SdT. (1.29)

15



Inserting equations (1.19) and (1.23) gives

dF = - S d T  - p d V  + Y l  (1.30)
3

Since the Helmholtz free energy is a state function, the difference between its values 
in two different states will be the same, irrespective of the thermodynamic path by 
which we travel between them, so to calculate F  we can start from an arbitrary 
reference state and integrate over any path in state space. This process is known 
as thermodynamic integration [6]. The simplest path is to integrate over T, V  and 
{A(̂ } in turn, so that each stage involves only a single integration variable. The 
result will be the Helmholtz free energy relative to the reference state. If we wish 
to compare F  for two states in order to find the equilibrium state of a system, the 
reference state must, of course, be the same for each calculation.

Equation (1.30) also makes it clear that

dF '

and
dF

N  =  (1-32)

These two relations, together with the condition that F  should be a minimum, imply 
that both the pressure and the chemical potential must be constant across a system 
if it is in a state of equilibrium. To illustrate this, consider a system divided into 
two phases a and /3 by a partition which is free to move and across which particles 
can be freely exchanged. The free energy change dFy of transferring volume dV 
from phase a to phase ^  (that is, of moving the partition) is given by

dF^ dF^

= ( f  -  / )  dV. (1.33)

If the two phases have different pressures, the system can always reduce its free 
energy by transferring volume from the phase with lower pressure to the phase with 
higher pressure. Similarly for the chemical potential: the free energy change dF^ of 
transferring dNj particles from phase a to phase /? is

dF^ dF^

16



= {-n'^ + H^,)dNj. (1.34)

If the two phases have different chemical potentials, the system can reduce its free 
energy by transferring matter from the phase with higher chemical potential to the 
phase with lower chemical potential. Only if the pressure and chemical potential 
are the same in each phase can the free energy be a minimum.

1.6 The ideal gas

The ideal gas is the theoretical noninteracting limit of a real gas; the equation of 
state is

pV = NkaT,  (1.35)

where N  is the number of particles and ks  is Boltzmann’s constant. The free energy 
Fid of an ideal gas containing Nj of each species j  can be calculated using statistical 
mechanical methods to be

Fi, = UbT  Y: Nj (in -  l )  , (1.36)

where
(  h'  ̂ \

=  \2i ,mjkBT)

is the thermal wavelength of species j. Here, rrij is the mass of a particle, and h is 
Planck’s constant. Fid can also be written as

Fid = ^  Nj 2^bT  + ksT  ^In . (1.38)

The first term inside the square brackets represents the energy; the second is the 
Sackur-Tetrode entropy, multiplied by —T. This makes the link with the definition 
of the Helmholtz free energy in (1.8).

Equation (1.36) can be extended to an inhomogeneous ideal gas with density 
distributions Tij{r). We represent the system as a collection of small regions, in each 
of which the density is approximately homogeneous. The total ideal gas free energy 
of the system is then given by a sum of terms of the form (1.36), and as the size of 
a region tends to zero the sum becomes an integral:

Fid = ksT  j  ̂ ^rrij(r) [ln nj(r)A^ -  l] . (1.39)

17



However, such a system requires a field to hold the particles in their inhomogeneous 
distribution; the ideal gas free energy, is then only one component of the total free 
energy of the system. Equation (1.32) allows us to calculate the chemical potentials 
/ij, again ignoring the contribution of the field,

— /csTlnnj(r)A |. (1.40)

The activity aj = exp{fij/kT) is equal to A|rij(r).

1.7 Chemical potential in the presence of fields

The concept of chemical potential, as explored earlier in this chapter, can be used 
to take account of the effect of a field, for example an electrostatic field acting 
on charged particles in the system. However, in these circumstances the ideal gas 
chemical potential as defined in equation (1.40) clearly will not be constant across 
the system as required by (1.32); it is necessary to extend the definition by adding 
terms which take account of the field. There will be a density gradient, the result of a 
competition between energetic effects, which push the system towards inhomogeneity 
in the presence of a field, and entropie effects, which oppose this inhomogeneity. If 
the equilibrium state is to be calculated by minimising the Helmholtz free energy, 
only fields resulting from the internal arrangement of the system can be present, but 
in general the chemical potential can also incorporate external fields.

To extend the chemical potential to take account of a field, we add a term 
representing the energy Hj{r) of a particle due to the field,

%(r) =  iij(T) +  (1.41)

where /ij(r) is the chemical potential of a hypothetical system, with the same particle 
density, in the absence of the field. Equation (1.41) is a natural extension of the 
concept of chemical potential, since (1.25) permits an interpretation of the chemical 
potential as a contribution to the energy. When the extra contribution has been
added, p>j{r) = dpF{r)/dnj{T), where P f (j ) is the free energy density, and so pj is
constant across the system. We can use p,j whenever the chemical potential appears 
in the equations of thermodynamics. If the particles, in the absence of the field, 
behave as an ideal gas, equations (1.40) and (1.41) together lead to

nj(r) =  (1.42)
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where Ujq =  exp /A |. This is the Boltzmann distribution.
For ions of charge ZjC in an electrostatic field V (̂r), we have i/j(r) =  Zje'ip{r), and 

J1 is often then called the electrochemical potential. Putting this i/j(r) into (1.42) 
and substituting the resulting p, for in equation (1.30) for the differential of F, we 
find

dF =  —SdT — pdV +  Ç  (//j(r) +  Zje'ip(r)) dNj. (1.43)
j

The term involving the electrochemical potential term can be separated into ideal 
gas and electrostatic contributions. Since these contributions individually are not 
constant across the system, they must be written in terms of local particle densities 
rather than total particle numbers, and dF becomes

dF = - S d T  -  pdV +  5^ /  d^r [/2j(r)dnj(r)] +  [zje'ip{T)dnj{r)]. (1.44)
j j

1.8 Phase coexistence in a single-component fluid 
system

Separation into a dense and a rarefied phase in a single-component fluid can occur if 
the graph of the free energy /  per particle as a function of the volume v per particle 
contains a region where there is an upward bulge (where d'^fjdv^ becomes negative)
[7]. This allows a common tangent to be drawn across the bulge, as illustrated in 
figure 1.2. A hypothetical homogeneous state at some point B  on the bulge can 
reduce its free energy by separating into a mixture of states A  and C; this mixture 
can be visualised as a point on the tangent. At equilibrium, the proportion ttx of 
the particles that will be found in state X, where X  represents A, B  or C, is given

where vx  is the volume per particle in state X.
The common tangent construction stems from the requirement that the pressure 

and chemical potential be equal in the two coexisting phases A  and C; that is. 
Pa  =  P c  and p a  — P c-  The pressure is given by p =  - d F j d V  — -d f jd v ^  so 
equality of the pressures implies that the tangent to the /(u) curve must have the 
same gradient at C as at A. Equation (1.17) allows us to express the chemical 
potential as p =  /  +  pu, since in this system it is equal to the Gibbs free energy per
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Figure 1.2: Example of an upward bulge in the graph of the free energy per particle 
as a function of volume per particle, which leads to phase coexistence.

particle, so /i^ =  jic implies

(1.46)

where f x  is the free energy per particle in state X .  Equation (1.46) means that the 
tangents to the f (v)  curve at A  and C must have the same intercept on the /-axis. 
The two conditions together imply a common tangent.

It is illuminating to plot a pV  diagram; that is, a plot of p =  —d f /d v  against v. 
The presence of the upward bulge in the f{v) curve leads to a so-called van der Waals 
loop in the pV  diagram, as shown in figure 1.3. (The van der Waals equation of 
state for a nonideal gas produces this type of phenomenon, which can be interpreted 
as the result of competition between an attractive and a repulsive contribution to 
the free energy.) Homogeneous states on the curve between A  and C  will separate 
into a mixture represented by some point on the line AC, which is drawn according 
to Maxwell’s equal area construction: it is horizontal and its pressure po is such that 
the areas enclosed by AC  and the analytical pressure p{v) above and below AC  (the 
areas denoted I and II in figure 1.3) are equal.

The horizontal nature of AC is clearly a consequence of the condition pa = Pb -
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Figure 1.3: Example of a pV diagram illustrating phase coexistence. 

Equality of the chemical potentials leads to

f c -  I a + Po {vc - va) = 0

r J c  r v c
=> / df-^po dv = 0 

J / a  J v a

fvc d f  r c
=> / — dv+pQ / du = 0 

J va  J va

fvc
/ {po - p ) d v  = 0, 
Jva

(1.47)

which is the condition for equal areas above and below AC.
Varying a third parameter may allow us to produce a series of pV  curves. Figure

1.4 shows the result for a simple fluid, where the third parameter is the temperature 
T. The binodal (marked as b) is the locus of the coexisting states at different 
temperatures. The spinodal (marked as s) links the local maxima and minima of 
the p{v) curves. At the critical temperature, T = Tc, the binodal and spinodal 
each have a maximum and are tangential to one another; above this temperature 
no phase separation will occur. States within the spinodal are unstable and will 
always phase separate, since arbitrarily small density fluctuations will reduce the
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Figure 1.4: Example of a pV  diagram for a simple fluid, showing phase coexistence.

free energy. States between the spinodal and binodal are metastable: a density 
fluctuation of flnite size is required in order to reduce the free energy of the state, 
while smaller fluctuations will increase it. The result is that there is a free energy 
barrier against phase separation, which in the simple fluid system corresponds to 
the free energy cost of creating a surface between liquid and gaseous states. The 
barrier slows the phase separation, allowing the metastable state to persist for a 
finite time; some systems may not attain equilibrium on any observable timescale. 
Charged colloidal suspensions are an example of a metastable state, since the true 
equilibrium state would have the particles packed together as an aggregate, held by 
van der Waals forces, rather than in suspension. The suspension persists because of 
a free energy barrier.

The common tangent construction can also be used on a graph of free energy 
density pp against particle density n, as illustrated in flgure 1.5. Equality of the 
pressures implies

\ d v  J , \ d v  I ^

d l ^ \
_dndv)^

d f  dn \  
p n d v ) ^

(1.48)
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Figure 1.5: Example of an upward bulge in the graph of the free energy density 
against the particle density, leading to phase coexistence.

Since n = \ / v  and /  =  this leads to

dpp\  (  dpp\ (1.49)

which means that the tangents to the pp(p) curve at A  and C cross the pf -axis at 
the same point. The condition for equality of the chemical potentials is

f dv = i f - V dv

/  +  n
a n /,

dpp\  _  I 9p f \  
. 9 n ) ^ ~  \ d n ) c

(1.50)

SO the tangents to the PF(n) curve at A  and C must have the same gradient. Whereas 
in the f{v) diagram the equality of pressures fixes the gradient and the equality of 
chemical potentials fixes the /-intercept, in the diagram the gradient is fixed
by equality of chemical potentials and the p/^-intercept by equality of pressures.
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Chapter 2 

What has gone before

2.1 Beginnings

Colloidal dispersions were first studied in the 1840s. The behaviour of solutions 
was well documented by then, but it was noticed that some substances (such as 
silver chloride and gold chloride, the latter famously studied by Faraday), formed 
solutions whose behaviour was different to that of ordinary solutions, notably in 
having a slower diffusion rate and in being unable to diffuse through a membrane
[8]. Such substances were termed colloids by Graham, and it was hypothesised that 
the dispersed particles in a colloidal dispersion, although too small to be visible 
through a normal microscope, were much larger than those in an ordinary solution, 
and therefore much larger than the solvent molecules [9].

The invention at the turn of the twentieth century of ultramicroscopic techniques, 
which allow such small particles to be detected from their diffraction patterns, led 
to the confirmation of this hypothesis [9]. The term colloid is applied today to sub­
stances which are inhomogeneous on a length scale of approximately between 1 nm 
and 1 /im, consisting of matter of one phase (called the disperse phase), distributed 
in another phase (the dispersion medium). As well as the original solid-in-liquid 
colloids (known as sols or dispersions), this definition includes solid- and liquid-in- 
gas colloids (aerosols), liquid-in-liquid colloids (emulsions) and gas-in-liquid colloids 
(foams). There are also solid-, liquid- and gas-in-solid colloids, known respectively 
as solid dispersions, solid emulsions and solid foams [1]. This thesis concerns itself 
with solid-in-liquid colloids.

Two factors can lead to the particles of the disperse phase having colloidal dimen­
sions. One possibility is that the material is dispersed as a polymolecular aggregate. 
This is the case with silver chloride and with gold chloride, and also with associa­
tion colloids such as soap molecules in water, where the molecules in solution may
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group together to form structures of colloidal size known as micelles (however, the 
term micelle was originally applied to any polymolecular aggregate which has an 
internal crystalline structure [9]). Alternatively, the molecules may themselves be 
macromolecules, large enough to fall into the colloidal range of length scales. This 
is the case with protein solutions.

2.2 Colloidal stability

Colloidal dispersions can be divided into two loose categories on the basis of their 
thermodynamic status. Lyophilic (‘solvent-loving’) colloids are formed spontaneously 
due to the interactions between the solute and the solvent; the dispersion is thus 
thermodynamically stable with respect to the undispersed phase. Macromolecules 
often fall into this category. Lyophobic (‘solvent-hating’) colloids, on the other hand, 
will not be dispersed spontaneously, but if dispersed by some means they can remain 
in a dispersed state for some time. The equilibrium state (state of lowest free energy) 
is the undispersed phase, but the dispersion is metastable because of a stabilisation 
mechanism which creates a thermodynamic barrier to aggregation. A physical or 
chemical process that removes or reduces this barrier will lead to aggregation due 
to, for example, the van der Waals forces between the molecules in the colloidal 
particles.

An alternative terminology, preferred by Kruyt [9], describes lyophilic colloids 
as reversible and lyophobic colloids as irreversible. The terms are not being used 
here in the sense in which they are used in thermodynamics, but refer in a direct 
way to the nature of the process of aggregation. For example, if a lyophobic colloid 
is caused to aggregate by some means, a return to the previous conditions will not 
redisperse the system: the aggregation is irreversible. Lyophilic colloids can only be 
aggregated by removing the solvent, and adding the solvent to the resulting state 
will lead to redispersion; hence the process is described as reversible.

Two of the mechanisms by which lyophobic colloids can be stabilised are steric 
and electrostatic stabilisation. Steric (or polymeric) stabilisation is caused by large 
chain molecules attached to the surfaces of the colloidal particles. Due to the 
lyophilic nature of these molecules, they repel one another, and two colloidal par­
ticles are prevented from approaching one another by the repulsions between their 
respective attached molecules. Electrostatic stabilisation occurs when surface groups 
on the colloidal particles dissociate from the surface, resulting in a system containing 
charged colloidal particles and oppositely charged simple ions. This provides sta­
bility against coagulation (as aggregation of the colloidal particles is termed in this
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system). Both these stabilisation mechanisms result from surface phenomena, and 
this highlights one of the main features of colloidal systems: the effects of interfaces 
are significant.

The study of electrostatically stabilised colloids forms the subject of this thesis. 
The mechanism which leads to stability in these systems has been the subject of some 
controversy. The mechanism which leads to the dissolution of simple electrolytes 
is clear: although from an energetic point of view, the separation of positively 
and negatively charged ions in a solution is unfavourable, the entropie benefit of 
dispersing the ions outweighs this, and leads to a reduction in the free energy. As 
for the stabilisation of charged colloidal suspensions, a consensus was reached in the 
middle of the twentieth century which was based on the DLVO theory of colloidal 
interactions, and therefore implied a very different mechanism for stability from that 
in simple electrolytes.

2.3 DLVO theory

The DLVO (Deryagin-Landau-Verwey-Overbeek) theory [3, 10] was introduced in 
the 1940s and became established as the standard description of interactions and 
of stability in charged colloidal suspensions. In many ways it is based on the ear­
lier Debye-Hückel theory [11, 12] for simple electrolytes, which uses the linearised 
Poisson-Boltzmann equation and thermodynamic integration to determine the ac­
tivity and other characteristics of electrolyte solutions in the limit of low concentra­
tion. The Poisson-Boltzmann equation assumes a model in which the microions are 
point particles responding to a mean field force; their equilibrium arrangement is 
then given by a balance, described by a Boltzmann factor, between the electrostatic 
potential governed by Poisson’s equation, and the chemical potential.

The Debye-Hiickel theory predicts that around every ion there will be found, 
averaged over time, an excess of ions of opposite sign. These counterions can be 
viewed as forming an atmosphere around the first ion, screening its interactions 
with other ions outside the atmosphere. The electrostatic potential due to the 
first ion as a function of distance r  takes the form of a screened Coulomb or Yukawa 
potential j r  instead of the 1 /r dependence in the potential which is found around 
unscreened ions (a similar mechanism operates in metals, where the free electrons 
screen the charges of the nuclei). The parameter /c, which will be defined in equation 
(3.32), depends on the charges and concentrations of all the species of ion in the 
solution, and is equal to the inverse of the screening length, which is regarded as the 
range of the screened interaction: due to its rapid decay with distance, a Yukawa
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interaction is considered to operate only over a finite range, unlike the Coulomb 
interaction whose range is viewed as infinite.

DLVO theory uses the same techniques and physical assumptions as Debye- 
Hiickel theory, but applies them to the interactions in colloidal systems. It expresses 
the electrostatic contribution to the free energy of a suspension as a sum over the 
pair potentials Vmn between every pair of colloidal particles m  and n in the system; 
these pair interactions are usually approximated as

^ 2 g 2  /  gKO \  2  g —K R m n

V m n = Aire \ l - \ - K a J  Rmn

where e is the absolute permittivity of the solvent and Rmn is the distance be­
tween two colloidal particles m  and n, of charge Ze and radius a. Here, the inverse 
screening length k has contributions only from the microions; because the colloidal 
particles are so much larger, their motion is regarded separately from that of the 
microions, in the sense that the Poisson-Boltzmann equation is used to find the mi­
croion distribution about a fixed pair of colloidal ions. In the Debye-Hiickel theory 
of electrolytes, on the other hand, all ions were treated on an equal footing. As in 
the simple electrolyte system, Vmn is a screened Coulomb potential, and it carries 
with it the same concept of a counterion atmosphere. A point which will prove to 
be of great importance is that k is still regarded as a constant in the DLVO theory, 
independent of the separations of the colloidal particles. The form of the DLVO pair 
potential is shown in figure 2.1.

The DLVO theory thus asserts that stability against coagulation is provided 
by repulsive electrostatic forces. The theory also takes account of the short range 
attractive van der Waals forces between the colloidal particles; it is these forces 
that are responsible for coagulation into the primary minimum of the potential 
if the electrostatic barrier can be overcome. At high added salt concentrations 
(large k), the range of the screened Coulomb repulsion is reduced so much that it 
is shorter than that of the van der Waals forces, leading to a secondary minimum 
in the interaction potential (see figure 2.1). This secondary minimum is taken to be 
responsible for the phenomenon of fiocculation, in which colloidal particles form a 
low density, easily dispersed aggregate. The ability of added salt to cause fiocculation 
is strongly dependent on the valence of the ions added (the Schulze-Hardy rule [1]); 
this is explained by the fact, easily seen from equation (3.32), that the contribution 
to /c of a particular ion species is proportional to the square of the valence but only 
linearly dependent on the concentration.

The success of the DLVO theory in qualitatively describing known aspects of col-

27



o>

0
Flocculation

Figure 2.1: Representation of DLVO pair potential V as a function of particle sep­
aration r. Solid line: low added salt concentration; dashed line: high added salt 
concentration. After reference [13].

loidal stability led to its adoption as the standard theory of interactions in charged 
colloidal dispersions [Ij. Exact quantitative description would not be expected, due 
to the various approximations in the physical model and to the linearisation of the 
Poisson-Boltzmann equation, although Verwey and Overbeek showed [3] by com­
parison with numerical results that, for spherical colloidal particles, the linearised 
approximation produces good results even outside its region of strict validity.

There exists experimental evidence that the interaction between two otherwise 
isolated particles or surfaces in an aqueous solution takes the DLVO form. Experi­
ments have used surfaces such as sapphire [14], as well as dispersions of polystyrene 
latex [15] and polystyrene sulphate [16] particles. ^

2.4 Experimental evidence for the phase behaviour

The existence of ordered structures in charged colloidal dispersion was known at least 
as early as the 1950s [17]. Kose et al later produced optical images of such ordered 
dispersions [18], showing the presence of defects and dislocations, and Hachisu et al
[19] showed that ordered and disordered (solid- and liquidlike) regions can coexist;
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the phase diagram was later investigated systematically by Monovoukas and Cast
[20]. The existence of an ordered (crystalline or solidlike) state and even its coexis­
tence under some conditions with a dense disordered (liquidlike) state are compatible 
in principle with a repulsive effective electrostatic pair potential, as simulations have 
shown [21, 22, 23].

However, in 1979 Ise et al. found evidence, from small-angle X-ray scattering 
(SAXS) experiments on dilute solutions of sodium polyacrylate, of an ordered struc­
ture in which the particle separation 2Dexp was much smaller than the value 2Dq 
which it would have taken if the structure had filled the available space homoge­
neously [24, 25]. This was interpreted as evidence that the solidlike structure was 
coexisting with a void or with a much less dense (gaslike) structure. The phe­
nomenon occurred away from the range of densities in which flocculation due to 
the secondary minimum in DLVO theory would be expected, and it was therefore 
suggested that an attractive effective electrostatic interaction was required to ex­
plain the results. The same effect was seen with highly charged latex particles [26]; 
it appeared that the phenomenon occurred only for colloidal particles of high sur­
face charge density and at low salt concentrations. At low surface charge density, 
and at high salt concentrations with particles of high charge density, 2Dexp ~  2Do, 
implying a single phase.

Subsequent studies produced images of metastable crystallites [27] and of voids 
in liquidlike phases [28, 29, 30]; these voids may, of course, be gaslike phases contain­
ing particles at very low concentrations, and evidence of liquid-gas phase separation, 
reentrant with respect to salt concentration at fixed macroion charge in the sense 
that higher or lower salt concentrations led to a homogeneous suspension, was re­
ported [31, 32]. This latter claim was disputed [33], and there have been other studies 
which have found no evidence of phase separation into a dense and a rarefied phase
[34]. Ise et al argue that the phenomenon will occur only if the macroion surface 
charge density is sufficiently high [2], and that this explains negative results. How­
ever, the existence of the phase separation phenomenon is not universally accepted
[35] because it conflicts with the established theory of colloidal stability.

Experiments by Yoshida et al have investigated and imaged the process of
formation both of voids [36] and of crystals [4, 37] from an initial liquidlike homo­
geneous state. The latter is the so-called ‘Swiss Cheese effect’, illustrated in figure 
2.2; space-filling crystals form from the initial state on a timescale of seconds to 
minutes, and then gaslike regions form, on a timescale of minutes to hours, both 
within the crystals and at the interfaces between them.Two other interesting effects 
studied in the 1990s should be mentioned here. Matsuoka et al investigated the
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nearest neighbour macroion separation 2Dexp as a function of salt concentration, 
and found that it first increased (the crystal became less dense) with increasing salt 
concentration, then decreased after passing through a maximum (that is, the crystal 
density passed through a minimum) [38, 39]. Yamanaka et al found a solid-liquid 
phase transition which was reentrant with respect to the macroion surface charge at 
fixed salt concentration and macroion density [40, 41[.

Figure 2.2: The ‘Swiss Cheese effect’ discovered by Yoshida et ai White represents 
solidlike (ordered) states, while black represents liquidlike and gaslike (disordered) 
states. A solidlike state nucleates (a) from the initial liquidlike state on a timescale 
of seconds to minutes, to produce space filling crystals (b). Then a gaslike state 
forms within the crystals and at their interfaces (c), on a timescale of minutes to 
hours.

2.5 Theoretical scene

Phase coexistence between a dense and a rarefied phase cannot be explained by a 
free energy expression that consists only of a sum over repulsive pair potentials. 
Therefore, experimental evidence for this phenomenon provided a challenge to the 
DLVO theory. There are three main strands of thought on the theoretical explana­
tion: (1) DLVO theory is an incorrect or incomplete description of the behaviour 
of the Poisson-Boltzmann model, and a corrected version would predict the phase 
behaviour on the basis of this model; (2) effective attractive electrostatic interac­
tions between macroions are induced by phenomena which are not covered by the 
Poisson-Boltzmann model, and which the DLVO theory therefore does not pretend
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to consider; or (3) the electrostatic interaction between macroions is always purely 
repulsive, and the experimental results suggesting otherwise are spurious or have 
been misinterpreted.

2.5.1 Modified Poisson-Boltzmann theories

First we shall consider theories which are based on the same physical assumptions 
as DLVO; the microions are described throughout as point ions in a mean field 
treatment. The first attempt at explaining the observation of voids or gaslike phases 
was the theory of Sogami [42] and of Sogami and Ise [43]. These authors argued 
that experimental conditions approximated most closely to a system at constant 
pressure (due to the effects of the ion distribution and of atmospheric pressure on 
the volume of the suspension) rather than constant volume, and therefore that the 
Gibbs free energy G was the appropriate thermodynamic potential to be minimised. 
Starting from a linearised Poisson-Boltzmann model, they derived a pair potential 
for the Helmholtz free energy F, which was repulsive and took a similar form to the 
DLVO potential. They went on to derive a pair potential for the Gibbs free energy, 
which was substantially different: it combined a short-ranged electrostatic repulsion 
with a long-ranged electrostatic attraction to form a secondary minimum in the pair 
potential, caused not by van der Waals forces but by electrostatic effects. Thus, 
in contrast to DLVO, Sogami and Ise regarded the electrostatic free energy to be 
responsible both for cohesion and for stability against coagulation. The theory was 
extended to the one-dimensional system, applicable to clay plates, by Smalley [44].

A number of criticisms were raised against the Sogami-Ise theory. Overbeek 
argued that the difference between F  and G should be small in a condensed system, 
and suggested that the difference between the two as calculated by Sogami and Ise 
resulted from their failure to take into account a contribution from the solvent in the 
derivation of G [45]. It was later pointed out [44] that the suggestion of a solvent 
contribution violates fundamental thermodynamics and disagrees with the DLVO 
theory. Woodward also criticised the Sogami-Ise derivation, on the grounds that it 
required the thermodynamic potentials to be first order homogeneous functions of 
the extensive variables, a condition that is not satisfied in inhomogeneous systems
[46]. The argument that F  % G is indeed compelling, and the question of the 
correctness of the Sogami-Ise derivation of the Gibbs free energy remains open; the 
resolution of this question has perhaps been hampered by the heat of controversy 
over the issue. A similar attractive pair potential has been derived by Tokuyama
[47] using the theory of diffusion. Other treatments have predicted a repulsive pair
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potential between two otherwise isolated macroions [48, 49] and between a macroion 
and a surrounding ‘cage’ of fixed macroions [50].

Van Roij and co-workers [51, 52, 53, 54] developed an expression for the Helmholtz 
free energy using classical density functional theory, where the free energy functional 
to be minimised was based on the linearised Poisson-Boltzmann theory. The result 
contains a sum over pair potentials identical to those of the DLVO theory, together 
with a serious of additional ‘volume’ terms, which depend on the density of the 
macroions in the suspension but not on the structure (the actual macroion posi­
tions). The calculated phase diagrams display solid-, liquid- and gaslike phases, 
and at low salt concentrations permit coexistence between a dense and a rarefied 
phase, for which the volume terms are regarded as being responsible. The existence 
of these volume terms had been pointed out earlier [55, 56], and has been further 
emphasised by other authors [57, 58, 59]. It has been argued that theories which 
include the volume terms may in fact be equivalent to the Sogami-Ise theory [60].

The theory of RDH differed from the DLVO and Sogami-Ise theories in that it 
permitted the inverse screening length ac, which depends on the microion density, 
to vary as a function of macroion density in order to maintain charge neutrality in 
a given phase. This « variation had been suggested earlier by Beresford-Smith et 
al. [61], who did not include some of the free energy contributions of the microions 
and therefore did not produce phase diagrams. Other theories have calculated F, 
taking account of the dependence of « on the macroion density, and have showed 
the existence of phase separation. Warren used a development [62] of Debye-Hiickel 
theory, and concluded that the phase separation is driven by the cohesive nature 
of the electrostatic free energy and opposed by the counterion entropy. Knott and 
Ford showed that phase coexistence in a system with no added salt results from the 
direct solution of the linearised Poisson-Boltzmann equation [63]; this work forms a 
part of this thesis. Chan et al have also found phase coexistence in the zero salt 
system [64], using a version of Debye-Hiickel theory extended for finite ion sizes.

It is has been shown that, if k is held constant, the electrostatic part of the 
interaction in a system of more than two macroions is purely repulsive [61, 66, 67]. 
This can be seen as an extension of the DLVO conditions to a many-body system, 
which would not be expected to predict phase coexistence. However, Linse and 
Lobaskin also failed to find phase coexistence in Monte Carlo simulations [68, 69] 
which used fundamental electrostatic interactions.

It is interesting to note that the interpretation of the interaction as a sum of 
an attractive electrostatic component and an entropie repulsion was also arrived at 
by Sogami et al on the basis of calculations of the interaction between two highly
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charged plates (the one-dimensional system) in an electrolyte [70, 71]. These found 
an attractive effect from the Helmholtz, rather than the Gibbs, free energy, although 
the results have been disputed [72, 73].

2.5.2 Outside the Poisson-Boltzmann model

By introducing approximations, the Poisson-Boltzmann model of the microion dis­
tribution can potentially fail to describe some aspects of the system. The mean field 
approximation, which describes the microions as a continuous fiuid of variable den­
sity rather than as individual particles, fails to take into account microion-microion 
correlations. In addition, the DLVO theory and most others are based on the lin­
earised form of the Poisson-Boltzmann model, and therefore are not valid if the 
potential varies too much. It is in the region of the macroion surfaces that the po­
tential takes its most extreme value and the linearised theory is most likely to be 
incorrect; since this is the location of highest microion density, correlations will also 
be most important in this region.

There are two main approaches to correcting the theory for these inadequacies. 
The first is to consider microions that are close to the surface to be, in a sense, 
part of the macroion: they are ‘condensed’ on to the surface. This eliminates the 
problem of describing high potentials and microion correlations at the surface with 
the Poisson-Boltzmann equation. Then the effective interactions between macroions 
are described [74, 75, 76, 77] using the DLVO potential with a reduced or ‘renor­
malised’ effective charge [78, 79] rather than the ‘bare’ charge. It has recently been 
claimed on the basis of another extended Debye-Hiickel theory that, although the 
electrostatic contribution to the free energy is attractive, counterion condensation 
stabilises suspensions against the phase separation which occurs in the linearised 
theory [80, 81].

The second approach is explicitly to correct the theory to take account of mi­
croion correlations [82, 83]. This can introduce attractive effects in the electrostatic 
free energy (for a review, see [35]). However, the attractions are short-ranged, and 
could not explain the presence of the voids. It has been suggested that the voids are 
not caused by electrostatic interactions at all, but by depletion interactions involving 
impurities [35].

Another mechanism for phase coexistence that has been proposed is charge inver­
sion or overcharging, in which a macroion is bound to enough counterions to change 
its sign. Neighbouring macroions might then have charges of opposite sign, leading 
to long-range electrostatic attraction [84]. However, it will be shown in this thesis
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that it is not necessary to go beyond the linearised Poisson-Boltzmann model to find 
phase separation, because the phase separation behaviour is actually inherent even 
in such a simplified approach, so long as the parameters are introduced correctly.
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Chapter 3 

Calculation of the thermodynamics 
of a charged colloidal suspension

3.1 Introduction

In this chapter, we derive expressions for the free energy of a colloidal suspension, 
on the basis of the principles of thermodynamics which were set out in chapter 1. 
The technique used draws on the work of Sogami and Ise [43], who provided the 
backbone of a method for the solution of the linearised Poisson-Boltzmann equation 
for a large suspension. One problem with the method is that it permits microions 
to penetrate the interiors of the macroions [53], but here we eliminate this difficulty, 
enabling the Helmholtz free energy of a colloidal suspension, as well as the surface 
potential of a macroion in such a suspension, to be found analytically. This requires 
us to make a small number of justifiable approximations, based around the idea that 
the environments of all the macroions in a given phase are approximately identical 
and spherically symmetric.

Much of the contents of this chapter and the next has been published in Physical 
Review E [63].

3.2 The model

The theoretical model to be considered treats a large constant number, N m , of 
identical spherical macroions of radius a, each of which has a constant charge Ze, 
where \Z\ 1, distributed uniformly over its surface (e is the elementary charge).
Associated with the macroions are a constant number Ni of each species i of mi­
croions, which are regarded as point charges of value The system overall is
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charge neutral, so that Nm Z  +  JZi = 0- The ions are suspended in a solvent 
which is maintained at constant volume V  and constant temperature T and which 
is described as a continuum with permittivity e =  6̂ (0, which is unaffected by the 
ions. Here, €q is the permittivity of the vacuum, and the relative permittivity; we 
regard the solvent as being water, which has a relative permittivity of around 80.

We consider the behaviour of the macroions to be adiabatically separated from 
that of the microions, since the macroions are much larger; the microions will be al­
lowed to take up their equilibrium configuration about a ‘fixed’ system of macroions, 
and only then will the eflfect on the macroions be considered. We ignore correlations 
between the microions, so that they do not interact directly with one another; they 
behave like an ideal gas except that they interact with a mean field electrostatic po­
tential. These last two simplifications make possible a Poisson-Boltzmann treatment 
of the electrostatics of the system.

There are three external constraints on the system: the temperature is constant, 
the volume of the solvent (that is, the total volume available to the suspension) is 
constant, and no exchange of ions is permitted with the surroundings. Therefore, 
the equilibrium state will be the state that minimises the Helmholtz free energy F. 
This is found by thermodynamic integration of equation (1.44), which expresses the 
differential of F  as

dF = - S d T  -  pdV +  ^  (/ii(r)dni(r)) + ^  f  d h  (V'(r)dpj(r)) (3.1)
i j

where S  is the entropy of the microions, p is the pressure and V  the volume. The 
third term, involving chemical potentials pi(r) and densities ?%%(r), contains an in­
tegral over an inhomogeneous system and a summation over the microion species i. 
The fourth term represents the electrostatic contribution; ^ (r) is the electrostatic 
potential, defined so that its mean value is zero, and pj{r) = Zjenj{t) is the charge 
density of species j .  Here, the sufiix j  runs over all the microion species i, together 
with the macroions. We start from a fixed initial state and integrate over n*(r), T, 
V  and pj{r) in turn, keeping the other integration variables constant at each stage.

Equation (3.1) can be written as

dF = dFo +  dFei, (3.2)

where dFo, containing the first three terms on the right hand side of equation (3.1), 
is the non-electrostatic part of the differential of the free energy, and dF^i is the 
electrostatic part. An additional contribution to dFo comes from the free energy of
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the colloidal particles in the absence of charge. If the particles are regarded as hard 
spheres, this entropie term can be calculated using the Carnahan-Starling equation 
of state [85, 86]; however, it is small in comparison with the other terms, and we 
shall ignore it. Therefore, the non-electrostatic free energy Fq will come only from 
hypothetical uncharged microions.

3.3 The electrostatic free energy and the Poisson- 
Boltzmann equation

3.3.1 The thermodynamic integration

We calculate the electrostatic part of the free energy using its differential

dFa = Y ^ (  d h  {ip{i)dpj{T)). (3.3)
i

The charge density of microions of species i is pi{r) = Zini(r)e. The charge density 
on the surface of a macroion must also be proportional to the elementary charge e, 
as the total charge on a macroion is Ze. We shall introduce a charge number density 
p'(r), defined by p j { r )  = Pj(r)e; for microion species i, pj(r) =  In order to
change pj(r) in equation (3.3) during the thermodynamic integration, it is necessary 
to change e (theoretically) rather than pj(r), since the latter would also introduce 
changes in free energy which will be dealt with in other stages of the thermodynamic 
integration. The equation can be rewritten as

dFei = (V^(r)p'(r)de') , (3.4)
3

where de' represents an infinitesimal change in e. The electrostatic energy Uei is 
defined as Uei = ^ E j I  A ^ (r)p j( r ) , so that

dFe, = (3.5)

For convenience later we substitute de^12e' for de', to give the expression which 
we will use for the electrostatic part of the Helmholtz free energy in terms of the 
electrostatic energy
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where e' is being taken from zero to its physical value e. This leads to the following 
well known expression for the total free energy

F  = Fo+ r  (3.7)Jo

This is Debye’s charging equation; to use it, we need to calculate Uei. The standard 
expression, in terms of the total charge density p(r) =  P;(r), is

=  ^  /  V’(r)p(r)d^r. (3.8)

Combining this with Poisson’s equation =  —p/e gives

Uei =  - |  /  V (r)V "V (r)A , (3.9)

and with some vector manipulation and the use of the divergence theorem, we find

Ua = \ I v  (3-10)

where surface S  envelopes volume V. But the second term, as a surface term,
becomes negligible in a large system, and so the result is the familiar expression for
the electrostatic energy

t/ei =  |/^[V V >(r)pdy. (3.11)

It can be seen that equation (3.11) depends only on the gradient of the potential, 
while equation (3.8) depends on its absolute value. Consider a redefinition of the 
zero of potential, so that a constant A?/? is added to the potential at each point: 
the value of the energy given by equation (3.11) would not change. It might appear 
that the energy given by equation (3.8) would change. However, since the system is 
neutral overall, the energy increase of the positive charges in the system would be 
exactly balanced by the energy decrease of the negative charges.

3.3.2 Mean field theory for the microions

The adiabatic separation of the macroions from the microions and the neglect of 
microion-microion correlations permit the use of a mean field Poisson-Boltzmann 
description of the microion distribution. This means that the microions are modelled 
as a continuous fiuid of charge (of varying density) rather than as a collection of 
discrete particles. To simplify the following discussion about the interpretation of 
the Boltzmann factor, we shall temporarily ignore the macroions altogether. The
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phase space probability density p^(r, p) for each microion of species i is given by the 
canonical distribution,

Pi(r,P) =

where r  and p are the position and momentum, respectively, i/j(r, p) is the Hamil­
tonian, and p = l/&gT, where is the Boltzmann constant and T the absolute 
temperature. The integral is performed over the phase space O. We make the 
assumption that the Hamiltonian Hi of a microion of species i is a sum of two in­
dependent terms: a term HJ (r) which depends only on the position r, and a term 
Hf{p) which depends only on the momentum p. Then equation (3.12) becomes

g-^^rr(r)g-^/ff(p)

^  /d F e -^ « rW /d p e -W p )’

where the volume integral is taken over the whole available volume and the momen­
tum integral is taken over the whole space of possible momenta. The probability 
density as a function of position is found by integrating out the momentum con­
tributions: Pi{r)  =  / dppi(r,p). Only the top right hand exponential of equation 
(3.13) depends on p, and when integrated this cancels with the bottom right hand 
integral, to leave

Assume that there are Ni identical ions in the space; their number density will be 
given by a Boltzmann factor.

where riio = This is a statistical mechanical justification for the expres­
sion (1.42) which was derived from thermodynamics in the chapter 1. The Hamil­
tonian is taken to be Hi{r) = z*e^(r), where î/j(r) is the electrostatic potential.

3.3.3 Interpretation of the Boltzmann factor

The microion number density is

nj(r) =  (3.16)
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It is clear that if rijo is replaced by some different value + An*o, the same ion 
distribution can still be produced, provided that ^(r) is also shifted by the appro­
priate constant amount. There is no physical significance in such a constant shift in 
ÿ;(r), since the physics depends only on the gradient of the potential; the potential 
has no natural zero value, and its absolute value is of no importance. Consider

n'iir) = {mo + Amo) (3.17)

This will be the same density distribution as n*(r), provided that

AV,(r) =  ^ l n ( l  +  ^ ) ,  (3.18)

which is independent of r  and therefore represents a constant shift A^p.
This shifting of the electrostatic potential is a little like a gauge transformation 

[87], with the ‘gauge condition’ being a condition on an integral of the potential.

/  =  — , (3.19)
J

which can be satisfied by setting the potential zero to the appropriate value. As an 
example of a ‘gauge’, consider that in which riio is equal to nï, the mean density of 
ions of species i. This requires the zero of the potential to be set so that

J  = V. (3.20)

Note that, since the ion density can be represented in the n*o =  rïï gauge as

m{T) = (3.21)

it can also be represented as

ni(r) =  (3.22)

where mo =  Cjîîj, with q  =  for any Ai/>. This means that, whatever gauge is
being used, n*o is some constant multiple of the mean ion density. This is significant 
for the consideration of colloidal suspensions: in the present model, the total number 
of microions is a constant, and therefore so is their mean density. Consequently, in 
a given fixed gauge, n̂ o is also a constant.

In systems containing several species of microion it is impossible, in any given
gauge, to have cj = c* unless zj = z*. That is, equation (3.19) can only be satisfied
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simultaneously for ion species having unequal charges if we interpret njo differently 
for each species. For example, we could define the potential zero so as to make 
the UiQ associated with ions of charge Z{ equal to the mean density nï, but then 
the rijo associated with ions of charge Zj ^  Z{ would not be equal to nj. This 
point would need to be taken into account in the application of solutions to the full 
Poisson-Boltzmann equation.

3.3.4 The linearised Poisson-Boltzmann equation

Poisson’s equation for the electrostatic potential states that

V'V(r) =  -  Jp(r), (3.23)

where p(r) is the charge density. If we consider a system in which the only charges 
are those on the microions, this charge density is

p(r) =  ^  Zieni{r) = (3.24)
i i

Inserting this into Poisson’s equation gives the Poisson-Boltzmann equation for the 
electrostatic potential in an ionic system,

V^V(r) =  - -  E  (3.25)
^  i

The full Poisson-Boltzmann equation is, unfortunately, too difficult to solve ana­
lytically for any but the simplest geometries. However, we can expand the exponen­
tial as a power series, and if we assume that the potential is everywhere sufficiently 
close to zero for the conditions |^z*e^(r)| <C 1 to be met (the Debye-Hiickel approx­
imation), we can keep only the first two terms, leading to the linearised Poisson- 
Boltzmann equation,

= - - Y l  *̂671̂ 0 (1 -  /^Zie'ipir) ) . (3.26)
^ i

It is clear that the extent to which this linearised equation is a good approximation 
to the original depends not only on the gradient of the potential, but also on the 
gauge. The equivalence between gauges that exists in the full equation is lost: it is 
no longer true that an arbitrary change Ariio can be compensated for by a constant 
shift Ajp in ip(r). The best gauge to use, if we wish to convert to the linearised 
equation, is one which keeps ^(r) as close as possible to zero in as much of the
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system as possible. The one mentioned above, in which n*o =  n*, seems to be quite 
a good candidate: if we integrate the density (using a linearised Boltzmann factor),

^ i  = Jd V u iir )  =  riioV -  pZieUio JdVtp(T), (3.27)

we see that this gauge correponds to the condition /  dVip( t )  =  0 , or ^  =  0 .
Now it can be seen that this linearised system possesses an advantage to set 

against the disadvantage of the restriction on our choice of potential zero. It is 
possible to write n%o =  cnj, where c is the same for every species of microion, 
provided that the gauge used is i/; =  0 (so Uio = nï and c =  1). This means that 
we can put the same interpretation on n*o for each ion species, irrespective of their 
charge.

There is a third, and conclusive, reason for choosing ^  =  0 in the linearised 
system (and this also applies, in fact, to the nonlinear system). We wish to calculate 
the Helmholtz free energy of a colloidal system from the electrostatic energy using 
equation (3.7), Debye’s charging equation. This involves integrating the elementary 
charge e from zero to its physical value. Therefore, we should consider the behaviour 
of a system of ions described by a Boltzmann factor as e is changed. The ion density 
at some charge is given by the linearised Boltzmann factor as

nf^(r) =  (l -  . (3.28)

There is no reason to expect the density distribution to remain the same as e changes 
to however, we require the total number of ions to stay the same.

( y  -  I = nlo’ ( f  -  J . (3.29)

During the e-integration, we wish to keep Uio constant, that is, applying
this condition and considering the situation when ê )̂ is equal to zero, we see that 
equation (3.29) can only be satisfied if ip̂ ^̂  =  ip̂ ^̂  =  0. It appears that Debye’s 
charging-up theorem only makes sense if ^  =  0 , so we shall assume this gauge in 
the remainder of the paper.

3.3.5 Representation of the macroions

Before we can model a colloidal suspension, we must add the macroions. The total 
surface charge density pAf(r) is given [43] by a sum over a set of spherical delta
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functions of radius a, the nth of which represents a macroion centred on R„,

Pm W =  l]P n (r)  =  5 Z T ^ < ^ ( |r -R n | -  a)- (3.30)
n n

The next step is to modify the available volume (and hence the phase space) to 
exclude microions from the interior of the macroions. We encode this exclusion by 
multiplying the Boltzmann factor by a product of Heaviside step functions f i n  =

I l n  ^ ( k  — R » |  — û ))

n*(r) =  n*o (1 -  /)z*e^(r)) JJ  (3.31)
n

This change requires the volume integrals mentioned above to be taken over all space 
except the interiors of the macroions.

Introducing a constant quantity defined, in the same way as the square of
the inverse screening length in Debye-Hiickel theory, to be

(3.32)
 ̂ i

allows the linearised Poisson-Boltzmann equation, taking the macroions into ac­
count, to be written as

( v ^  — ^ (r) =  —  ^ P n ( r )  y^^ZjeriiQ 9n- (3.33)
V n J   ̂ n  ̂ i n

The dielectric constant of the macroion interiors will obviously be different from that 
of the solution, but in these regions the charge density, and therefore will be
zero, so the difference in the dielectric constants will have no effect on our results.
Consequently, we use for e its value in the solution.

3.4 Solution of the Poisson-Boltzmann equation

3.4.1 A shifted potential

The first step is to simplify equation (3.33) by changing variables to a new potential 
ÿ(r), which is given by

0(r) =  ^(r) -  ^  Z ) (3.34)

so that
<̂ (r) — — ^ p „ ( r ) .  (3.35)

\  n /   ̂ n
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Since the shift is a constant, the gradient of ÿ(r) is equal to that of ^(r). This shift 
in the potential is not the same as the ‘gauge transformation’ introduced earlier in 
the chapter. There, we shifted the potential in order to describe the system with 
the same form of equation, but with a different value for uiq. Here, we shift the 
potential in order to describe the system with a different, simpler, form of equation, 
but with the same value for niQ.

What is the interpretation of this shifted potential ÿ(r)? The value of ^(r) at 
some (possibly hypothetical) location far from any macroions can be found from the 
condition of local charge neutrality,

=  0; (3.36)
i

we substitute (3.31) into (3.36), remembering that H„0„ =  1 outside the macroions, 
to give

^  ZiTliO (1 -  ẐiBil^oo) =  0, (3.37)
i

and therefore

So 0(r) =  ■0(r) — ■0C»; that is, (^(r) is the potential relative to a zero point located at 
some point far outside the system of macroions. This is the potential zero used by 
Verwey and Overbeek [3]; however, the n%o in the definition of the which appears
in equation (3.35) is still to be interpreted as the mean microion density. The
above interpretation of ÿ(r) is not correct when only a single species of microion is 
present, because in these circumstances (3.36) implies n* =  0, which can be satisfied 
in the true nonlinear Poisson-Boltzmann regime only by an infinite potential: the 
linearisation approximation (which we used to justify the interpretation) cannot 
then be valid in a region of the system where (3.36) is satisfied.

3.4.2 Solving for the potential in Fourier space

In order to solve equation (3.35), we follow Sogami and Ise [43] in Fourier trans­
forming it; our convention for the Fourier transform .F[ck(r)] of a function a(r) is

M \3/2 (3.39)(27t ) j

where the volume integral is to be taken over the whole of the system. The term 
involving is easily dealt with using J^[V^<^(r)j =  — A:̂ 0 (k), where the meaning of
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the tilde is that 5(k) =  ^[a(r)]. For the second term in equation (3.35), we use the 
fact that On is zero inside macroions and unity outside to write

(3.40)

where the integral is over the interiors of all the macroions. To perform this in­
tegration, we introduce an approximation by assuming that the field surrounding 
each macroion is spherically symmetric. Then the potential inside the macroions 
will be constant, and will in fact be equal to the surface potential ÿg. If we also 
write r  =  R„ +  r', the integral can be rewritten as

f  dyÿ(r)e-'"  '  ÿ, T e - 'k  R" T  (3.41)
Jint ^ V|r'|=0

The integral on the right hand side of equation (3.41) is identical for each macroion, 
and can be evaluated by elementary methods, yielding

n  On^{r)
sin ka a cos ka ik’Rfi

k^
(3.42)

To find the Fourier transform of the right hand side of equation (3.35), we once again 
introduce r  =  +  r', resulting in an integral which is the same for each macroion.
After we integrate over the angular coordinates of r', a delta function picks out the 
value r' = a in the K-integration, with the result.

Pn(k) =
1 Zesinka ik'Rn (3.43)

Collecting equations (3.35), (3.42) and (3.43) leads to the result for the Fourier 
transform of the potential.

ÿ(k) = 9{k)Y^e
n

— tk'Rn
(27r) /̂  ̂ e k!̂  -\-K

where, to lighten the equations, we have defined g{k) by

\ sin ka ( sin ka a cos ka9\k) = —  h

(3.44)

ka Ze k^
(3.45)
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3.4.3 The potential around a single macroion

Before considering a large suspension, it is instructive to apply the results derived 
above to the calculation of the electrostatic field around a single isolated spherical 
macroion, although this can, of course, be calculated more simply [3]. The assump­
tion that the field surrounding the particle is spherically symmetric will be exactly 
true for a single macroion. Without loss of generality, we can assume that the centre 
of the macroion is at R  =  0, so that, from equation (3.44),

A") -  <=‘«'

Now we use the inverse Fourier transform,

^(r) =  f  (3.47)
(ZTTj •'

substituting equation (3.46) into this and integrating over the angular part of k 
gives

= i f  r  (3.48)

This integral can be evaluated by contour integration in the complex plane. We 
rewrite it as a sum of two separate contour integrals, of which one contains terms of 
the form where C is a positive constant, while the other contains terms of the 
form The former must be integrated around the upper half plane, the latter
around the lower. However, the group into which a given term falls depends on 
the relative values of a and r, with the result that equation (3.48) has two different 
solutions: one valid for r  < a (that is, inside the macroion),

0r<a(r) =  0, +  +  “) )  (3.49)

which results from poles at zero and -\-iK in the upper half plane and at zero and 
—iK in the lower half plane, and one for r  > a (outside the macroion),

ÿr>o(r) =  sinh na +  a(f>8 cosh (3.50)

which results from poles at +i/c in the upper half plane and at —i K  in the lower 
half plane. To make the link between the two solutions, we consider the boundary
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condition on the second solution, at the surface,

(f>r>a{p̂  — 4̂ S‘ (3.51)

This leads to the condition

=  <i>s ; (3.52)
Ze

47re/ca

applied to the first solution, this condition produces, as expected, a constant poten­
tial (j)r<a = ÿg, while applied to the second solution it produces

e ~ K r

<i>r>a{r) = (3.53)

which is the potential derived by Verwey and Overbeek [3]. It is also worth noting 
that the boundary condition is equivalent to

=  ^ a lh r a '

allowing for differences in the electromagnetic units, this is Verwey’s and Overbeek's 
relation between the surface potential (j)a and the surface charge Ze.

3.4.4 The surface potential in a suspension

Now we wish to consider the surface potential of a macroion in a suspension of 
identical macroions. The main motivation for doing this is to provide an approximate 
expression for (j)s which can be used in calculations of the free energy of such a 
system. The inverse Fourier transform is applied to equation (3.44), but now with 
many macroions. This leads to

(3.55)

which is a sum of potentials, the nth of which has the same form of equation as the 
single macroion potential in equation (3.48), but centred on rather than on zero. 
Thus, we can use the results derived in the previous section to express the solutions 
for the potential in real space as sums of the single macroion solutions, as follows: 
inside macroion m, we have a sum of the internal solution for macroion m  and the
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external solutions for all the other macroions,

sinh K |r -  R „ |
| r - R ^ |

f f  Z e  (f)s\ \  g-«k-Rn|
+ I  ------------ - I sinh Ka +  a(j)s cosh Ka ) Y] r, (3.56)

VV47reKa k J

while, outside all macroions, we have a sum over the external solutions for all the 
macroions,

f  f  Ze (f)a\ \  g-K|r-R,.|
<l>ext{r) =  -1---------------- sinh Ka +  a(j)a cosh Ka T j  --------------------- (3.57)

W A n e K a  k J

In this system, the assumption that the field around each macroion is spheri­
cally symmetric is only an approximation. Consequently, the potential inside the 
macroions will not be exactly constant, and nor will the surface potential (j)a be con­
stant over the surface. However, in the present approximate treatment we assume 
that it is constant, and consider the value taken at the surface of one particular 
macroion m  by the external solution for the potential. We introduce the further 
approximation that the effect of the other macroions on the potential at this surface 
is the same as it is at the centre (that is, |r — R^l % |Rn — Rm| for all n; this ap­
proximation can be justified by noting that the effect of a macroion located on one 
side of macroion m being nearer to an element of the surface of m than it is to the 
centre of m  will be partially cancelled by the effect of a macroion on the opposite 
side being further from the surface than it is from the centre). The result is

(i>s =  i i T —  ------- — ^  sinh Ka +  aèg  cosh /ca')  --------------------, (3.58)
\\47re/ca  k  J y a

where is the sum over the Yukawa potentials,

  f) — I^Rmn __  £}—
=   : (3.59)

n#m n^m

here, Rmn = |Rm — Rn|, and Smn = Rmn/O' ÎS a dimensionless separation between 
the centres of macroions m  and n. Equation (3.58) can be rearranged to yield a 
simple expression for the surface potential,

.  e - " "  +

 ̂ 47rea (1 +  Ka) e~*^ -\-{l — Ka coth Ka) *
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It is easy to see that in the limit of a single macroion (E^ =  0), this expression for 
<f>a reduces to equation (3.54), as expected.

We can also introduce a dimensionless surface potential which is the ratio of 
the surface potential to that of an isolated macroion with the same charge,

then equation (3.60) takes the form

(1 +  Ko) (e-"“ +  E '')
(1 +  Ko) +  (1 — Ka coth Ka) S ' ' ’ (3.62)

while equation (3.45) becomes

... sinka fs inka  acoska\  _
=  —  + l ô T W   Â F -J  •

3.4.5 The electrostatic free energy of a suspension

Now we are in a position to find the electrostatic energy using the gradient of the 
potential and equation (3.11). This is given by an inverse Fourier transform,

V<6(r) =  (3.64)
[Ztt) •'

using equation (3.44) and given that Ĵ [V(I>{t)] = zkÿ(k), this can be written explic­
itly as

which leads, through equation (3.11), to

xg{k)g{k')e‘̂ '̂ -+*̂>'’ (e"*  **-) . (3.66)

Performing the integral over r, we get a delta function which picks out k' =  — k in 
the integral over k', giving, since g{k) is an even function.
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For the range of parameters in which we will be interested (the low salt concentration 
regime), the term in g(k) in equation (3.63) which depends on appears to be well 
approximated by

A k  ̂+ B, (3.68)
a (1 +  Ko)

where ^  =  lnu/9a and B  =  712va^. Now Uei/e^ depends on the elementary charge 
e only through Recalling that /«̂  =  f  I]* zfe^riio, we can perform the integral in 
equation (3.7), with the result

+2 (X  -  k^Y) In ^1 +  p  j  -  1 j  j  (3.69)

where

and

 ̂^  /sin /ûG a cos ka \^  ^sin ka f  sin ka acoska\

y  =  (3.71)

The electrostatic part of the free energy in equation (3.69) can be split into two sets 
of terms: terms where m ^  n (pair free energy) and terms where m = n (self free 
energy),

Fel = Fpair +  Fself- (3.72)

After the angular integration, Fpair can conveniently be rewritten as

2

* * ‘ j ,  “  ( I  + p ) “ ')
While the second integral must be evaluated numerically, the first can be evaluated 
by contour integration; since we do not wish the macroions to be able to interpen­
etrate one another, we can assume Rmn > 2a, and take into account only a pole at 
+m. Assuming all macroions to have identical environments, the pair free energy
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per macroion, fpair, can be written

. Z ‘̂e  ̂ ( (smh.Ka . sinh /ca\\^  y
fpair =  %    +  1— ------- c o sh /C O ------------------------- 2 ^87rea \ \  /ca 1 K,a \  Ka J J

where is to be calculated from equation (3.62), and

7 Inu
2u (kaŸ 9

I(k) = ( 2  — I (sin ka — ka cos kaŸ  +  sin ka (sin ka — ka cos ka) . (3.75)

These results can be compared with the equivalent result of Sogami and Ise [43],

the exclusion of the microions from the interiors of the macroions has introduced 
additional terms.

In Faeif, Rm = Rm, and so the exponential in equation (3.69) goes to unity. 
The result is a spherically symmetric function in /c-space, which is identical for each 
macroion; after the angular integration, we find

F _  1J 'ae lf  - (2, ) .  2.  Ç

Once again, the second integral has to be evaluated numerically, while the first can 
be evaluated using contour integration. We split this first integral into three separate 
integrals, of which the first (containing no complex exponential terms) involves a 
pole at +Î/Î, the second (containing a positive complex exponential) involves poles 
at and zero, and the third (containing a negative complex exponential) involves 
poles at —iK and zero. The result for the self free energy per macroion is
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The role of the macroion surface potential is twofold. Firstly, it provides a 
boundary condition to link the potential in the two regions (inside and outside 
macroions), in the same way as it did in the treatment of a single, isolated macroion. 
Secondly, it introduces many-body interactions. The linearised Poisson-Boltzmann 
equation is often considered to lead only to pairwise interactions, and to ignore many- 
body effects; however, while Fpair looks rather like a sum of pairwise interactions, 
it actually takes account, through 0^, of the positions of all the macroions in the 
suspension (as does F̂ eif', in this sense, the distinction we have made between Fpair 
and Fsei/  is rather artificial, and is largely a consequence of the form of the equations 
rather than of any physical feature of the system).

We should also consider the role of the parameter k defined in equation (3.32). 
Although this is defined in the same way as the inverse screening length in Debye- 
Hiickel theory, it has no physical meaning at any particular point in this inhomoge- 
neous system, since it depends on the mean microion densities n*o rather than on 
the local densities. In a sense, it is a ‘mean inverse screening length’, k is related 
to the number of microions, and therefore, because of the overall neutrality of the 
system, to the total charge on the macroions, but it is also related to the choice of 
gauge. Changing the value of k at constant macroion density can thus represent 
two possible situations. If accompanied by the appropriate change in the value of 
Z, it represents a change in the charge on the macroions, and therefore in the total 
number of microions. If k is varied without changing Z, it represents a change of 
gauge, and the resulting alteration in the results is not an indication of any physi­
cal change in the system, but of an alteration in the extent to which the linearised 
Poisson-Boltzmann equation is a good approximation to the full version. However, 
changing the gauge away from 'ip = 0 invalidates results for the free energy obtained 
using equation (3.7).

3.5 The microion ideal gas

In the absence of electrostatic effects, the microions are described as an ideal gas. 
The free energy of an inhomogeneous mixture of ideal gases with densities n*(r) is 
given by

Fid = k s T Ç  J n*(r) (inn*(r)A? -  l)  dh,  (3.79)

where A* =  {h^/2'irmikBTŸ^^ is the thermal wavelength of species i; note that this 
depends on the masses and therefore on the chemical nature, of the microions, h 
is Planck’s constant. Expanding the free energy in the inhomogeneities in microion
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density An* = ni — rïï, where nï is the mean microion density, we find that the first 
order term vanishes because of the condition f  Auid^r = 0; we can conclude that 
the free energy of the inhomogeneous ideal gas differs from that of the homogeneous 
ideal gas of the same mean density only to the second and higher orders of the 
inhomogeneities [53]. Since we shall calculate the electrostatic energy using the 
linearised version of the Poisson-Boltzmann equation, we are effectively assuming 
that inhomogeneities are small, and it is consistent with this approximation to write

=  kgT Z  Ni (in -  l )  , (3.80)

where Ni is the total number of microions of species i. We are approximating the 
free energy of an inhomogeneous ideal gas by the free energy of a homogeneous ideal 
gas.

A few words should be added in defence of this procedure. It appears that the ion 
distribution obtained from the linearised Poisson-Boltzmann equation can also be 
derived using classical density functional theory (DFT), if the microion ideal gas free 
energy is expanded to second order. It might be argued that it is consistent to expand 
the ideal gas free energy to second (rather than first) order if the electrostatic free 
energy is calculated using the linearised Poisson-Boltzmann equation, and therefore 
that the present treatment is inconsistent.

This argument would be incorrect. A DFT treatment requires the ideal gas free 
energy to be expanded to second order because an expansion to first order does not 
depend on the detail of the microion distribution around a macroion, and therefore 
would provide no entropie term to prevent the collapse of the counterion atmosphere 
on to the surface of the macroion. There are no grounds to believe that this level of 
approximation is somehow uniquely ‘consistent’: the DFT calculation combines an 
almost exact calculation of the electrostatic free energy of a system which conforms 
to the linearised Poisson-Boltzmann theory, and an approximate (to second order) 
calculation of the ideal gas free energy of the same system. By way of comparison, 
the present treatment combines a (presumably equivalent) almost exact calculation 
of the electrostatic free energy of the linearised system and an approximate (to first 
order) calculation of the ideal gas free energy of the same system. The degrees of 
approximation are different, but neither degree of approximation can be described 
as the ‘consistent’ one.

Equation (3.80) gives the free energy of a homogeneous ideal gas in state {Ni, 
V, T), given that we already have Ni microions of each species i. Now let us 
establish the change in free energy due to creating such a gas of microions from a
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suitable source. The free energy Fq associated with the microions is calculated by 
thermodynamic integration of its differential

dFo =  —SdT  — pdV  +  pidNi^ (3.81)
i

where S  is the entropy associated with the microions (now regarded as spatially 
homogeneous) and pi is the chemical potential of microions of species i (ignoring 
electrostatic effects). We integrate from an initial state {Nf =  0, T°) to the
physical state (AT*, V, T), by integrating first across TV* with V  and T held constant, 
then across T  with TV* and V  held constant, and finally across V  with TV* and T held 
constant. For the first integral, we take the chemical potential to be

m ,  in j .
(  Ni/V^ \

(3.82)

where , F°,T°) is the chemical potential in some reference state (the
density of which we shall not need to specify). After all three integrals have been 
performed, the result for the microion free energy is

Fo — ^  TV* Ui + k sT  ^In — 1^ (3.83)

here, u* =  — |A:bT°, where is the energy required to create a microion of
species i at temperature T°. This result contains a new term in addition to the 
density dependent term in equation (3.80); this is because we have taken account of 
the free energy cost of forming the microions in the first place. Equation (3.83) can 
also be written, less concisely but more illuminatingly, as

Fo =  Ç  TV* +  - k s  {T — +  ksT  ^In -j^Af — , (3.84)

where the first term is the energy required to create the microions at temperature 
T°, the second is the energy required to increase their temperature from T° to T, 
and the third is the Sackur-Tetrode entropy multiplied by —T.

We shall now consider the interpretation of u*. A microion formed at temperature 
will automatically possess kinetic energy |A:bT°, so the energy cost of creating 

the microion is which is equal to u*. Therefore, we regard u* as the
temperature-independent energy cost of forming a microion of species i. Finally, 
using the ideal gas equation and the definition of the Gibbs free energy, we find that
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Ui is related to the reference chemical potential according to

m = - k B T ^ \ n ^ { h f f , (3.85)

where is the thermal wavelength of species i at temperature T°.
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Chapter 4 

An idealised system: the zero salt 
limit

4.1 The free energy

We wish to specify the thermodynamics of a region which is in a single phase (that 
is, homogeneous with respect to the macroion density), in order to investigate the 
possibility that two such regions, with different macroion densities, might coexist. 
Before we can calculate the Helmholtz free energy using equations (3.59), (3.62),
(3.74), (3.75), (3.78) and (3.83), it is necessary to do two things: first, to relate the 
microion densities to the macroion density, and second, to choose an approximate 
distribution for the macroions around any given macroion, in order to calculate 
in equation (3.59). The task of relating the microion density to the macroion density 
is simplest if the system contains only one species of microion, which we take to be 
a monovalent counterion. The absence of coions implies that the system contains no 
added salt. In this chapter, we shall investigate the phase behaviour of this idealised 
zero salt system, which has important implications for our view of the mechanism 
of phase separation in charged colloidal suspensions.

Each region (phase) of the system should be charge neutral, and this require­
ment will be satisfied if the number of microions in a given region is equal to |Z| 
multiplied by the number of macroions: we consider the microion density to behave 
as though each microion were associated with a particular macroion, and confined 
to the region in which that macroion is located. That is, we consider each region to 
be approximately equivalent to a hypothetical system comprising an identical region 
surrounded by an impenetrable wall, which confines the microions to that region.

Why is this local charge neutrality assumption necessary? Whatever method is 
used for the calculation of the free energy of a charged colloidal suspension, it appears

56



necessary to simplify the calculation by considering only a region which is in a single 
phase, and ignoring any surrounding regions which are in a different phase with a 
different macroion density. (If we wish to consider two coexisting phases, we simply 
repeat the calculation at two different densities.) But the free energy calculation 
for a given single-phase region requires knowledge of the counterion density in that 
region, which can only be determined precisely if we take account of any other 
regions in which the macroion density is different, for example by minimising the 
total free energy with respect to the movement of counterions between regions.

Some simplifying assumption is required in order to escape from this trap. The 
charge neutrality assumption is based on the idea that, if this minimisation were 
performed, the number of counterions in each region of the system would be such as 
to produce charge neutrality; any significant departure from this distribution would 
create a macroscopic electrostatic field, and would be energetically unfavourable.

In the zero salt system, the charge neutrality assumption allows us to write the 
mean microion density n as n =  |Z| /F ,  where V  is equal to the volume available 
to the microions associated with one macroion: that is, the total volume in a re­
gion available to the microions, divided by the number of macroions in the region. 
Substituting this n for n*o in the definition of /ĉ , equation (3.32), we find that the 
parameter Ka,  which appears frequently in the expressions for the electrostatic free 
energy, varies with V  according to

This dependence of Ka on the density of the macroions has an important effect on 
the form of the electrostatic free energy expressed in equations (3.74) and (3.78).

We can introduce a dimensionless volume v per macroion, expressed in units 
of the volume of one macroion, (4/3) this dimensionless volume is given by 
V = ^3V/47ra^^ +  1 and is equal to 1/rj, where rj is the colloid volume fraction. 
Equation (4.1) then becomes

The presence here of (î; — 1) instead of v accounts for the exclusion of the microions 
from the interiors of the macroions.
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The microion ideal gas free energy per macroion, from equation (3.83), is

/o =  |Z| « +  f c B T n n 0 A « - l (4.3)

where u is the energy of formation of a microion and A is the thermal wavelength. 
In terms of this gives

/o — \Z\ { ^ +  ksT l n ^ ( - ) * - I n ( n - l ) - l
Att \ a j

(4.4)

Most of the parameters in the expression for the ideal gas free energy are constants; 
we can simplify the calculations and avoid having to consider the chemical nature 
of the microions by taking only the u-dependent part A /q:

Afo = - \ Z \ k B T \ n { v - l ) .  (4.5)

The second prerequisite for the calculation of the free energy is an approximate 
form for the distribution of macroions around a particular macroion. This is to 
enable the calculation of in equation (3.59). The relation between v and the 
dimensionless nearest neighbour macroion separation S  (in units of the macroion 
radius a) depends on the structure. We shall regard a face centred cubic structure 
as an approximate model of both solidlike and fluidlike phases of different densities; 
for this structure,

5  =  '  . (4.6)

4.2 Phase coexistence

The total electrostatic free energy per macroion can now be calculated as fei =  
f s e i f ,  and the total free energy per macroion as /  =  /ez +  A /q .  Our investigation of 
the dependence of the free energy on |Z| and a is made simpler by the observation 
that, at constant u,

f { C \Z \ ,C a ) = C f{ \Z \ ,a ) ,  (4.7)

where C is a constant. This is made plausible by consideration of the expressions for 
/ .  The electrostatic terms fpair and fsdf  both consist largely (though not entirely) 
of a function of Ka multiplied by Z^/a; equation (4.2) shows that the parameter 
KÜ can be expressed, at constant u, as a function of \Z\/a. Meanwhile, A /o  is 
equal to a constant (at constant u) multiplied by \Z\. The fact that equation (4.7)
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appears to be exactly true, according to our numerical results, suggests that all 
the contributions to the electrostatic free energy, written in units of could be 
expressed (at constant v )  as functions of Ka,  even if this is not apparent from the 
form in which they are written.
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Figure 4.1: The electrostatic part fei of the free energy per macroion in units of 
Z^e^/87T€a.

The relation in equation (4.7) makes the various components of the free energy, if 
they are expressed in units of Z^e^/STrea, dependent only on a parameter (  = \Z\ /a 
(we use a expressed in nm in the definition of C) and not on Z  and a separately. 
The dependence on |Z| and a reduces to ^-dependence. Figure 4.1 shows fei as a 
function of v  for two different values of C, which has units of nm“ .̂ The results show 
clearly that this part of the free energy increases monotonically with increasing v  

(decreasing macroion density), and therefore that it makes a cohesive contribution 
to the total Helmholtz free energy of the system. This is opposed by the free energy 
A/o of the microion ideal gas, which becomes more negative logarithmically as the 
volume increases.

In the theory of the phase behaviour of molecular fluids associated with van der 
Waals, the free energy contains two terms: an intermolecular interaction which is 
attractive at long distances and has a repulsive hard core, and the ideal gas term, 
which is always repulsive. At sufficiently low temperatures, so that the ideal gas
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term does not overwhelm the intermolecular interaction, the graph of the total free 
energy F  as a function of V may develop an upward bulge, where becomes
negative; since the pressure is given by p =  —dF/dV,  this leads to a so-called van der 
Waals loop in the pV  diagram [7]. A horizontal line drawn across the loop ensures 
mechanical stability (the two phases, at the end points of the horizontal line, are at 
the same pressure); drawing this line according to Maxwell’s equal area construction 
ensures that the free energy is globally minimised (the two phases have the same 
chemical potential). This situation was introduced in chapter 1 and illustrated in 
figures 1.2 and 1.3.
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Figure 4.2: The free energy /  per macroion in units of Z^e^/47rea, for various values 
of (. Compare with figure 1.2 .

In the present two-component system, the free energy per macroion /  contains 
two important terms, f^i and A /o ,  which take similar forms and similar roles to the 
the intermolecular interaction and the ideal gas term, respectively, in a molecular 
fluid. At low densities A / q dominates, while for certain values of (, the cohesive 
nature of fei strongly influences the shape of f(v)  at high densities. The result is that 
an upward bulge appears in the graph of /  as a function of v. The corresponding 
pV diagram shows a van der Waals loop, which indicates coexistence between two 
phases with different densities.
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We are lead, then, towards Warren’s conclusion [62] that the electrostatic free en­
ergy has a destabilising effect, tending to push a suspension towards inhomogeneity, 
while stability against phase separation or aggregation is provided by the counterion 
entropy. Indeed, the value of the theoretical zero salt system is that it permits us to 
use this analogy with molecular fluids, making very clear the mechanism by which 
competition between the electrostatic and ideal gas contributions to the free energy 
results in phase coexistence.

*10
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Figure 4.3: pV  diagram, showing van der Waals loops, for various values of Ç. The 
pressure has units of 3Z^e^/327r^m^. Compare with figures 1.3 and 1.4.

Figure 4.2 shows the dependence of f  = A/o + /e/ on v for various different values 
of C, while the pV  diagram is plotted in figure 4.3. The binodal is marked 6, the 
spinodal s, and the critical point c. Because of the relation (4.7), the values of v at 
the binodal and spinodal in a system with given \Z\ and a depend only on (, not 
on \Z\ and a separately. The value of Ç at the critical point is Çc = 21.41 nm“ ;̂ 
at each value of the macroion radius a, phase coexistence between a dense and a 
rarefied region emerges as the charge is increased above a critical value Zc = Cc«- 
These results agree with other theoretical treatments [43, 53, 62, 64] in predicting 
on the basis of linearised Poisson-Boltzmann theory that dense and rarefied phases 
can coexist in a colloidal suspension. However, a notable unexplained difference is 
that the phenomenon has been shown to occur in the limit of zero added salt; two
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recent treatments [53, 62] found that the phase coexistence vanishes in this limit, 
although a third [64] agreed with the present results in predicting phase coexistence 
at zero salt.
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Chapter 5 

Added salt: the Donnan effect and 
the phase diagram

5.1 Introduction

The previous chapter considered the phase behaviour of a suspension which con­
tained only one species of microion. While this restriction simplifies theoretical 
investigation of the system, it must be lifted in a more realistic model, since real 
colloidal systems contain added salt. The salt concentration is, in fact, the most 
easily varied experimental parameter in such a system, and the phase behaviour 
is most usefully expressed as a function of colloid density and salt concentration. 
The present chapter will concentrate on the role of added salt in charged colloidal 
suspensions. The aims are, first to consider two coexisting regions (phases) with 
differing colloid densities and to determine theoretically how added salt will be par­
titioned between the regions (as seen, for example, in the Donnan effect) and second 
to produce phase diagrams as a function of the densities of the macroions and the 
salt. Finally, we shall discuss the implications which our results have for theories 
describing interactions in colloidal suspensions.

5.2 Expressions for the free energy

As in the zero salt system, we have a large number Nm of colloidal particles of radius 
a and constant charge Ze. These are balanced by Nc = \Z\ N m point univalent 
counterions (with charge where \zc\ =  1). We take the macroions to be negative 
(that is, Z < 0 ) and the counterions to be positive, but it makes no difference to the 
results if the signs are interchanged. The system now also contains Ns pairs of added
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salt ions, each pair consisting of a point univalent counterion and a point univalent 
coion (a microion carrying charge of the same sign as that of the macroions). All 
the counterions are taken to be identical; the system contains in total Nc +  Ns 
counterions and Ng coions.

Calculations of the free energy of this added salt system can proceed in much the 
same way as in the zero salt system; that is, using equations (3.59), (3.62), (3.74), 
(3.75), (3.78) and (3.83). However, the task of relating the microion densities to the 
macroion density is more complicated thcin it is in the zero salt system. Recall that 
the microion densities enter the formalism in two places: in the definition of the 
parameter Ka,  and in the microion ideal gas contribution to the free energy. If the 
system divides into two regions having different macroion densities, the densities of 
the various species of microions will gilso be different in the two phases. The charge 
neutrality assumption, requiring that each region of the system should be neutral, 
leads t o  \Z\-\-Ns counterions and Ng coions being associated with each macroion. Ns 
is just the number of pairs of salt ions associated with each macroion. The charge 
neutrality assumption does not provide us with a simple way of fixing this number, 
which is why added salt makes the calculations more complicated.

The parameter Ka varies, through its dependence on the mean microion densities 
rïi, as a function of the dimensionless volume v

(5.1)Ka  =
AirekBTa v — 1

This is the equivalent, in a system with added salt, of equation (4.2). Prom equation 
(3.83), the ideal gas part of the free energy per macroion can be expressed as

u_ +  keT  (in ^ A i  -  1fo =  {\Z\ +  N,) u+ +  ksT  [ i n ' I t  +N,

(5.2)
where A+ and A_ are the thermal wavelengths of counterions and coions, respec­
tively, and and are their energies of formation. Both the thermal wavelengths 
and the energies of formation depend on the chemical nature of the microion species. 
The free energy can be rewritten as

/o  =  {\Z\ +  % )  keT In +  N,keT In ( ^ j

+ \Z\ +  kÿT  ^In A^ — l^j +  Ns ^In A^Al — 2^j . (5.3)
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The third term in equation (5.3) is a constant for constant Z  and T, and therefore 
it can be ignored in the determination of the thermodynamics. The fourth term de­
pends on the number of salt pairs per macroion. However, the contribution of this 
term to the ideal gas free energy of the whole system is Ng (in A^Ai — 2^j,
which is a constant. It is, of course, the free energy of the whole system which we 
wish to calculate and minimise: the free energy per macroion is merely a convenient 
route to this. Therefore, the fourth term makes no contribution to the thermody­
namics of the system, and can be ignored. This is convenient, as it means we do not 
have to consider the chemical nature of any of the microions. We can consider only 
the V- and Æg-dependent part A / o  of the ideal gas free energy,

A / o  =  {\Z\ + N,)  keTln ( W \ . (5.4)

Expressed in terms of the dimensionless volume v per macroion, this becomes

A / o  =  kgT  [ ( | Z |  +  N,)  In (\Z\ +  N,)  +  N. InN, +  (\Z\ +  2N,)  In ■

(5.5)

As in the previous chapter, the relation between v and the macroion nearest neigh­
bour separation S  is expressed by equation (4.6).

5.3 Salt partition: The Donnan equilibrium

Given two coexisting phases a  and ^  of colloidal particles, at different densities, 
how is the added salt distributed between the two phases? This is equivalent to the 
problem of two suspensions separated by a membrane through which the microions 
can pass but the macroions cannot. Let phase X  contain macroions, coun­
terions and coions, and let the total Helmholtz free energy be F. To maintain 
charge neutrality, counterions and coions cannot cross the membrane individually, 
but only in counterion-coion pairs. The condition for equilibrium is for the total 
Helmholtz free energy of the system to be a minimum with respect to the passage 
of these pairs across the membrane,

(  dF d F \  (  dF d F \  ^ 
d m )  ~ d M )  ~

or in terms of the chemical potentials and of the counterions and coions,

//+ + /i“ = /i+ +  (5.7)
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If we regard the microions as an ideal gas, and ignore the consequences of electro­
static effects for their distribution between the two phases, the chemical potential 
of microion species i in phase X  is given by =  //J +  /c^Tlnrif, and so

rf^rfL =  (5.8)

which looks like a law of mass action. The electroneutrality condition in phase X, 
recalling that Z < 0, is \Z\-\- or

substituting this into equation (5.8) and noticing that is equal to the mean 
density of salt pairs, we find

Rearranging gives

-  w ) = +
Using the electroneutrality condition (5.9), we find

1 /  1 1 \  _  1 1 , .
n f - n ? W “ V^J ~  1̂ 1 nfÛ “ '

Finally, we introduce the volume fraction 77̂  =  l /u ^ , where =  (4/3) Trâ  — 1̂  
is approximated by »  (4/3) the approximation is reasonable provided
that ^  1. The result is

All the variables in equation (5.13) are positive, which means that the sign of 
(nf — must be the same as the sign of (77“ — 77̂ ). That is, the salt density 
will be higher in the phase where the macroion density is lower: if the system sepa­
rates into phases of different macroion density, there will be a macroion-rich and a 
salt-rich phase. This ‘repulsion’ of the salt by the macroions is the Donnan effect.

However, the above calculation is based on the assumption that the microions 
behave as an ideal gas. We expect the result to change if we take electrostatic
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Figure 5.1: The variation of the mean Helmholtz free energy per macroion A / in a 
two phase system, relative to its minimum, as a function of the ratio of the mean salt 
density n f  in the rarefied (gas) colloidal phase to the mean salt density nf in the 
dense (liquid) colloidal phase. Macroions have radius a =  50 nm. Mean number of 
salt pairs per macroion =  100. Mean rj =  0.05, dense phase has 77 =  0.1, rarefied 
phase has 77 =  0.002. Solid line: \Z\ = 1500; dashed line: \Z\ = 1250; dotted line: 
|Z| =  1000.

effects into consideration, as correlations between positive and negative charges 
lead to a reduction in the free energy. The correlations in question are not the 
microscopic correlations between microions, which are neglected in the mean-field 
Poisson-Boltzmann treatment, but the mesoscopic correlations represented by the 
tendency of counterions to congregate in an atmosphere around a macroion. These 
electrostatic effects will tend to push salt towards the macroion-rich phase. Figures 
5.1 and 5.2 show how the Helmholtz free energy depends on the ratio 7if /n f ' of the 
salt densities in the two phases (n f  is the mean salt density in the rarefied colloidal 
phase and is the mean salt density in the dense colloidal phase), when other vari­
ables such as the macroion densities are held constant. For low \Z\, the minimum of 
A / is at /n^  > 1, but as |Z| increases, the minimum moves to nfjrig < 1. The 
resulting salt partition, obtained by minimising the free energy with respect to the 
transfer of salt between the two phases, is shown in figure 5.3. It can be seen that, 
for sufilciently high values of the macroion charge \Z\ and of the mean number of
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salt pairs per macroion N s/N m , the electrostatic effects can overcome the entropie 
effects and lead to the salt density being higher in the macroion-rich phase: a kind 
of ‘reverse Donnan effect’. In principle, this could be observed experimentally.
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Figure 5.2: The variation of the mean Helmholtz free energy per macroion A / in a 
two phase system, relative to its minimum, as a function of the ratio of the mean 
salt density n f  in the rarefied (gas) phase to the mean salt density n f in the dense 
(liquid) phase. Macroions have radius a =  50 nm and \Z\ =  1500. Mean rj =  0.05, 
dense phase has r] =  0.1, rarefied phase has rj =  0.002. Solid line: mean number of 
salt pairs per macroion Ng =  500; dashed line: Ns =  100; dotted line: Ng =  50.

The technique of minimising the free energy with respect to the passage of salt 
between the phases is used in the calculations leading to the phase diagrams, detailed 
in the following section, in order to find how the salt is partitioned.

5.4 Phase diagrams

5.4.1 Free energy curves and phase separation

Chapter 4 showed that an analogy can be drawn between the phase behaviour of a 
molecular fluid and that of a charged colloidal suspension in the zero salt regime. 
In both systems, the graph of the Helmholtz free energy expressed as a function of
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Figure 5.3: Ratio of the mean salt density n f  in the rarefied phase to the mean 
salt density in the dense phase, as a function of the mean number of salt pairs 
Na per macroion. Macroions have radius a =  50 nm. Mean rj = 0.05, dense phase 
has rj = 0.1, rarefied phase has t] =  0.002. Solid line: \Z\ = 1500; dashed line: 
\Z\ =  1250; dotted line: \Z\ = 1000.

the volume per particle shows, under certain conditions, an upward bulge in which 
its second derivative becomes negative, leading to a van der Waals loop in the pV 
diagram. This type of situation was illustrated schematically in figure 1.2.

However, the situation is more complicated when the system contains added 
salt. In addition to having the same pressure and macroion chemical potential, 
the coexisting states must also have the same salt chemical potential if they are to 
coexist in equilibrium. The nearest approach at nonzero salt to the graphically neat 
situation which exists at zero salt would be to replace the Helmholtz free energy 
with the semigrand potential

U -  f  -  PaNa (5.14)

suggested by van Roij, Dijkstra and Hansen (RDH) [53]. This fixes the salt chemical 
potential pa externally. The total number of salt pairs will then depend on the 
chemical potential and on the proportions of the total number of macroions that are 
in each of the two phases. However, we consider the explicit phase separation of a 
fixed amount of material in a closed system. This model requires the total number
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of salt pairs, rather than their chemical potential, to be fixed. So with uj as the 
dependent variable in figure 1.2, a homogeneous system at B  will not, in general, 
phase separate into a mixture of A  and C, since that would involve changing the 
total amount of salt, and therefore, effectively, changing into a different system. 
Instead, a system starting at B  would conserve the amount of salt, and separate (if 
at all) into states A  and with a different salt chemical potential / i '. This means 
that figure 1.2 only provides us with a pair of states A  and C which can coexist. It 
does not immediately tell us which unstable or metastable homogeneous states B  
will separate into A  and C. Thus, the graphical interpretation of phase coexistence 
phenomena is more complicated if added salt is present, and the simple analogy 
with the van der Waals theory of molecular fluids is lost.

5.4.2 Calculation of the phase diagrams

The method used here to establish the phase diagram was to choose a point with 
some ria and rj, the mean salt density and colloid volume fraction of the system, 
and to minimise the total Helmholtz free energy with respect to two variables 
and A“. These are, respectively, the dimensionless volume per macroion in phase a 
and the proportion of the total number of macroions which are in phase a. This 
two-dimensional minimisation was performed using the downhill simplex method 
[88]. The free energy per macroion, /  =  /«/ +  A/o, was calculated using equations
(3.74), (3.78) and (5.5), and required the salt distribution to be found as explained 
in the previous section. Calculations for an appropriately chosen line of such points 
allow the boundary of a region of phase coexistence to be established.

The phase diagrams produced by this method demonstrate that, at certain values 
of the macroion charge Z  and radius a, there is a region of coexistence between 
phases of different density. Figures 5.4, 5.5 and 5.6 show how the boundary of this 
region changes with Z, for macroions of radius 50 nm. The phase diagrams are 
displayed as a function of mean colloid volume fraction rj and salt density the 
salt density is expressed as the number of pairs of salt ions in a volume equivalent 
to the volume (4/3) of one macroion, and therefore has the same units as rj. 
Note that 1 unit of corresponds to about 3.2 fiM (3.2 x 10~® moles per litre). 
The thick lines represent the phase coexistence boundary, and the thinner lines are 
the tie lines, which join points on the boundary which can coexist. The tie lines 
must be straight in order to conserve the total number of colloidal particles and 
salt ions. A hypothetical homogeneous system within the coexistence region would 
phase separate into the two states at either end of the tie line on which it lay. The

70



40 -

30 -

co
c
Q)

"O

CO
CO

0.0 0.1 0.150.05

Volume fraction r )

Figure 5.4: Phase diagram for macroions of radius a =  50 nm and \Z\ =  1500, as 
a function of volume fraction and salt density. The salt density is expressed as the 
number of pairs of salt ions in a volume equivalent to the volume (4/3) 7râ  of one 
macroion, and therefore is in the same units as the volume fraction.

phase coexistence region increases in size with increasing \Z\. For \Z\ > 1070, it 
has an upper critical point but the bottom of the region sits on the line of zero salt. 
As |Z| falls below 1070, the region rises away from the zero salt line, and a lower 
critical point appears; the two critical points merge as the phase coexistence region 
vanishes when \Z\ is just below 1000.

We should consider the possibility that the result (4.7), mentioned in the context 
of a zero salt suspension in chapter 4, also holds when the suspension contains added 
salt. This would have the consequence that increasing both \Z\ and a by some 
constant factor C would leave the phase diagram, expressed as a function of rj and 
rifg, unchanged; this is approximately true (compare figure 5.7 with 5.5). Figures 
5.4, 5.5 and 5.6 could then be regarded as phase diagrams for C =  30, C =  25 and 
C =  20, respectively, with the two critical points merging slightly below C =  20. 
The validity of (4.7) begins to break down as the concentration of salt is increased, 
although this could be a consequence of the approximation in equation (3.68), which 
becomes progressively less valid as the salt concentration is increased.

How do these predictions compare with other experimental evidence? The phase
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Figure 5.5: Phase diagram for macroions of radius a =  50 nm and \Z\ = 1250.

separation is predicted only above a certain critical macroion charge, and only in 
the low salt regime. These characteristics are in agreement with experiment. The 
parameter whose value governs the occurrence or non-occurrence of the phase sep­
aration appears to be C =  |Z| /o, rather than the macroion surface charge density 
(proportional to |Z| /a^) which was suggested by Ise et al. [26, 2). The critical value 
C =  20 is of a reasonable order of magnitude, but experimental data in reference [2] 
suggest that phase coexistence can be observed in the region of (  =  9 to =  10. 
The reentrant phase coexistence with respect to added salt [31, 32] can perhaps be 
represented as vertical movement across the coexistence region in a phase diagram 
like that in figure 5.6, or across the right hand side of the coexistence region in a 
phase diagram like those in figures 5.4, 5.5 and 5.7.

We can also compare our theoretical results with the those of RDH [53] and of 
Wairren [62]. Qualitatively, the behaviour is the same: a region of phase coexistence 
appears when the macroion charge is higher than a certain critical value, increases in 
size as the macroion charge is increased, and decreases in size as the macroion radius 
is increased. The differences in the actual values of parameters such as the critical 
charge (which is significantly lower in the other two treatments) are perhaps of only 
limited significance, since neither the present treatment nor the others are exact. The
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Figure 5.6: Phase diagram for macroions of radius a =  50 nm and \Z\ =  1000.

volume fractions and salt concentrations of the phase coexistence region are similar 
in the different treatments. Broadly, then, these results confirm the conclusions 
of other authors. However, there are two important differences which should be 
pointed out. First, the phase diagrams presented here, together with the results of 
the previous chapter, suggest, as mentioned there, that phase coexistence can occur 
even in the limit of zero added salt, whereas the earlier treatments require at least 
some salt to be present in the system. The second difference concerns the way that 
the salt is partitioned between the two coexisting phases. The earlier treatments 
show only phase diagrams in which the salt density is higher in the macroion-poor 
phase, whereas the phase diagrams in the present volume indicate that, at higher salt 
concentration and higher macroion charge, the electrostatic interactions involving 
the salt ions are sufficient to reverse the Donnan effect and cause the salt density 
to be higher in the macroion-rich phase. This ‘reverse Donnan effect’ should, in 
principle, be observable.

73



40 -

30 -

co
c
m
"O

CO
CO

0.0 0.05 0.1 0.15

Volume fraction 77

Figure 5.7: Phase diagram for macroions of radius a =  60 nm and |Z| =  1500.

5.5 The theory of interactions in colloidal suspen­
sions

We might ask, what are the implications of these results for our view of the inter­
actions and free energy of this type of system? A good place to start is with the 
DLVO theory, which describes the electrostatic part of the Helmholtz free energy as 
a sum of pair interactions of the form

Vmrt. — 47re ( — )\ 1 K,Qj J
2 Q—KRmr,

(5.15)

where Rmn is the separation of macroions m  and n. According to the DLVO theory, 
the pair interactions are repulsive; they provide for stability against coagulation, 
although this stability is lost when the interaction is weakened by large amounts of 
added salt, allowing the attractive van der Waals force to draw the colloidal particles 
together.

The theoretical treatment of the thermodynamics of colloidal suspensions which 
has been presented in this thesis makes it clear that there is a problem with the 
DLVO theory as describe above: if two parts of a system have different colloid
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densities, they must also have different microion densities in order to maintain charge 
neutrality in each part. The parameter « will then change as a function of the colloid 
density, through its dependence on the microion densities as in equation (4.2). (This 
change was first applied to the calculation of phase diagrams by van Roij and Hansen 
[51], although it had been pointed out somewhat earlier [61].)

Equation (5.15) is quite similar in form to the pair contribution fpair to the 
electrostatic free energy, equation (3.74). Figure 5.8 compares the two at various 
salt concentrations, taking into account the macroion density dependence of k, for 
macroions of radius a =  50 nm and charge jZj =  1150. The DLVO free energy 
I d l v o  per macroion is here given by

>72̂ 2 /  \ ^

where the extra factor of 1/2 relative to equation (5.15) is inserted because each pair 
interaction Vmn is ‘divided’ between two macroions. At high salt concentrations, we 
cannot use the full equation (3.74) to calculate fpair̂  since an approximation used in 
its derivation is only valid at low salt. Instead, we use the corresponding expression 
from Sogami and Ise [43],

which differs from (3.74) in that it permits microions to penetrate the interiors of 
the macroions. The two expressions (3.74) and (5.17) should be equivalent for high 
values of v. The u-dependence of « is calculated as in equation (5.1); we use here 
the approximation that the system of macroions and counterions exists against a 
background of salt of constant density.

Figure 5.8 suggests that the DLVO potential should be interpreted as an approxi­
mation to the pair contribution to the electrostatic free energy. When the macroion 
density dependence of « is taken into account, the form of the expression is, of 
course, very different from the Yukawa repulsion traditionally associated with the 
theory. In addition, the DLVO theory ignores the two other contributions to the free 
energy: the self free energy fseif and the ideal gas contribution /q. This problem, 
too, is caused by the failure to allow k to vary: equations (3.78) and (3.83) make it 
clear that /o would be a constant, and fsei/ nearly so, if the microion density were 
a constant. Figure 5.9 illustrates that fei = fpair +  fseij is cohesive, not only at zero 
salt as mentioned in the previous chapter, but even when salt is present. Here, the 
components fpair and fseif of the free energy are approximated by the corresponding

2
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Figure 5.8: Comparison of foLvo (dashed lines) and (solid lines), in units of 
Z'^e^/Snea. Macroions have radius a =  50 nm and charge \Z\ =  1150. Salt density 
is held constant; the numbers refer to the number of pairs of salt ions per macroion 
when V — 500.

and in a simplified system where the microions are not excluded from the 
macroion interiors [43]:

fseif —
^2g2 /  g «®sinh/ta
S T r e a  V Ka

(5.18)

The pair contribution is in fact considerably less important numerically than the self 
free energy, which always mcikes a cohesive contribution to the total electrostatic 
free energy fei (compare magnitudes in figures 5.8 and 5.9).

It would be tempting to think that DLVO theory is approximately valid at high 
added salt concentrations, because the dependence of /ca on the macroion density 
becomes weaker as the salt concentration is increased. Then fseif and /o would 
become constants at high salt concentrations, while fpair would take the form of 
a Yukawa potential. However, this conclusion would be incorrect. The parameter 
Ka only becomes a constant in the limit of infinite salt concentration, and in this 
limit both fpair and faeif tend to zero. Figure 5.9 shows how fei changes as the salt 
concentration is increased.
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Figure 5.9: Electrostatic free energy fei in units of Z^e^fSirea, for macroions of 
radius a =  50 nm and charge \Z\ =  1150. Salt density is held constant; the numbers 
indicate the number of pairs of salt ions per macroion when v =  500.

We are forced to conclude that, as a description of colloidal stability and phase 
behaviour, DLVO theory is wrong not just at low salt but in all suspensions. Essen­
tially, its failure to take into account the link between the microion and macroion 
densities causes it to ignore two of the contributions to the free energy of the system 
and to predict incorrectly the form of the one contribution which it does not ignore. 
Any correlations between the DLVO theory and experimental results on colloidal 
stability must be regarded as coincidence; the theory was originally arrived at from 
theoretical considerations, and we have shown from theoretical considerations, based 
on the same physical assumptions, that it is incorrect.

In place of the traditional view of charged colloidal suspensions stabilised by re­
pulsive effective electrostatic interactions, we have a view of cohesive effective elec­
trostatic interactions in a system stabilised by the ideal gas free energy of the coun­
terions. The physical interpretation of the cohesive nature of the electrostatic free 
energy is that increasing the macroion density brings the counterions closer to the 
(oppositely charged) macroions, resulting in a lower electrostatic energy. This can 
be seen from a thought experiment involving point microions and cubic macroions 
with charged surfaces: the lowest level of electrostatic energy would be achieved by
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packing the macroions together so that all the positive and negative charges were 
confined to the surfaces. Prom a mesoscopic point of view, the system would then 
contain no charge density and therefore no electric fields at all.

The fact that DLVO theory is incorrect when applied to colloidal stability does 
not make it inappropriate for the description of other phenomena. If the counterion 
density is taken to be constant, fseif and /o are also constants, while fpair takes 
the repulsive form traditionally ascribed to it by DLVO theory. One can draw a 
distinction between phenomena that involve density changes in the whole system, 
and phenomena which involve only the motion of particular macroions relative to 
one another. The former require the effects of changes in the counterion density 
to be taken into account, while the latter do not. The separation of a system into 
a dense and a rarefied phase is a phenomenon of the former type, and cannot be 
described by the DLVO theory. On the other hand, when we come to consider 
phenomena of the second type, such as separation into phases of equal or near-equal 
density but different symmetry, or the motion of macroions in a crystal phase about 
their equilibrium positions, or the interaction between an isolated pair of macroions, 
it seems likely that we should regard k as approximately constant. This leaves us 
with a pair contribution which approaches the DLVO form, and also allows us to 
neglect the self and ideal gas terms. Experimental results show that the effective 
interaction between a pair of otherwise isolated colloidal particles is repulsive [16,15]. 
Calculations using the nonlinear Poisson-Boltzmann theory of the force experienced 
by a single colloidal particle in a suspension when it is moved independently of its 
neighbours also support these conclusions [50].

The new stabilisation mechanism, like the old one, will be destroyed by high 
concentrations of added salt, since the changes in counterion density caused by 
changes in macroion density will have progressively less effect on /o as the salt 
density is increased. Thus, the view of interactions in colloidal suspensions set 
out here appears to be capable of describing phenomena which DLVO theory can 
describe, in addition to permitting phase separation between dense and rarefied 
phases at low added salt, which is observed experimentally and which DLVO theory 
does not permit.

The ideal gas part of the free energy should not be regarded as entirely non­
electrostatic, since its dependence on macroion density is a consequence of the vari­
ations in the counterion density that are required to maintain charge neutrality. It 
is also probable that the division of phenomena into those involving bulk density 
changes and those involving the motion of individual macroions is a simplification; 
presumably, these two types represent hypothetical extremes, while real phenomena
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will involve a combination of the two.
Finally, we shall consider the implications of this discussion for two theories of 

colloidal interactions: the theory of van Roij, Dijkstra and Hansen (RDH) [53], 
and that of Sogami and Ise (SI) [43]. The expression for the free energy derived 
by RDH contains DLVO pair interactions together with a density-dependent, but 
structure-independent, volume term. There, the pair interactions are interpreted 
as repulsive, but as the macroion density dependence of /c is correctly taken into 
account, this is probably not the correct interpretation. It should be noted that 
the misinterpretation does not affect either the mathematical results or the phase 
diagrams derived by RDH. The volume term would correspond to the two terms 
which in the present volume are called fseif and /q.

The form of expression derived by SI for the Helmholtz free energy is clearly 
justified on thermodynamic grounds; it was used earlier in the present discussion, 
and the methods underlying it have been of great importance to the results of this 
chapter and the previous two. However, the SI theory, like the DLVO theory, does 
not take into account the dependence of the microion densities on the macroion 
density, and therefore ignores two of the contributions to the free energy. Therefore, 
our conclusions probably do not support the argument that the attractive tail in the 
Gibbs pair potential derived from the SI theory is equivalent [60] to the volume terms 
in other theories; however, we have not considered the question of the SI calculation 
of the Gibbs free energy. The SI expressions for the Helmholtz free energy (5.17) 
and (5.18) lead to the electrostatic contribution being cohesive, as shown above, if 
they are correctly applied.
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Chapter 6 

The effect of density-dependent 
macroion charge

6.1 Introduction

The treatment of the thermodynamics of a colloidal suspension which is set out in 
chapters 3-5 makes the simplifying assumption that the surface charge on a macroion 
is independent of the macroion density. Other approaches to the problem have also 
made this assumption. However, since the macroion charge is caused by dissocia­
tion of surface groups, its value should depend on the surroundings, and a faithful 
representation of the system would reflect this. It is therefore pertinent to ask how 
good the constant charge assumption is, and what additional effects on the pre­
dicted behaviour of the suspension might arise from allowing the charge to vary. It 
would also be reassuring if we could confirm that the phase behaviour predicted by 
the theoretical treatments mentioned above is genuine and not an artefact of the 
constant charge assumption.

The issue here is variation in the actual bare surface charge on the macroion; 
this is conceptually distinct from the ideas of counterion condensation and charge 
renormalisation [78, 79]. Problems involving the variation of a surface charge in 
contact with a liquid have generally been addressed using the concept of a charge 
regulating surface [89]. In this chapter we take a different approach. At a given 
macroion density, we minimise the free energy with respect to the surface charge Z  
to find the physical value of Z  at that density, and finally this physical value of the 
surface charge can be used to calculate the free energy as a function of the density, so 
that the phase behaviour can be investigated. In the process, we demonstrate how 
the usual equation for the charge regulating surface can be derived by minimising 
the free energy which results from our simple but physically plausible model for the
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system.

6.2 Calculation of the free energy

6.2.1 The model

The theoretical system to be considered here contains a constant number of colloidal 
particles of radius a, each of which has Zq surface groups which can, in principle, 
be ionised. The number of surface groups which are actually ionised is |Z|, and 
there are also \Z\ oppositely charged monovalent point microions associated with 
each macroion. The key difference between this model and the models used in 
previous chapters is that Z  is permitted to depend on the density of the macroions. 
The surface boundary condition which constrains the behaviour of the system is 
therefore not the charge density, but the dissociation constant of the reaction at the 
surface. This reaction is of the form

M X # M + + X -  (6.1)

where represents a microion, X“ a surface ion, and MX an undissociated surface 
group (but it makes no difference to the model if instead the microions are negative 
and the surface ions positive). The X~ and MX are taken to be homogeneously 
distributed over the surface of each macroion. We regard the dissociation process 
and the electrostatic field which results from its products as making separate con­
tributions to the thermodynamics, although in fact the bond in the MX group may 
be largely electrostatic in origin. The system contains no added salt.

In this system, it is necessary for the calculation of the thermodynamics to 
take into account the existence of the X~ and MX, instead of just regarding the 
macroion surfaces as shells of charge. This requires a number of changes in equation
(3.1) for the differential of the Helmholtz free energy: an additional term adA must 
be added, where a and A are the surface tension and area of the macroion-solvent 
interfaces; the entropy must include contributions both from the microions and from 
the macroion surfaces; and the summations over species must cover the M"*", X“ and 
MX. Equation (3.1) becomes

dF = —SdT -  pdV +  adA f  (//*(r)d?2;(r)) + Y 2  f  W^^aW) • (6.2)
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This can be written as
dF =  dF-^+ +  dFei +  dFaurf- (6.3)

The first term in equation (6.3) is the differential of the microion ideal gas free 
energy,

(<%+ =  ' (6 4)

where S-^+, fi-^+ and n^+ (r) are the entropy, chemical potential and density, re­
spectively, of the microions. The second term is the differential of the electrostatic 
free energy,

dFei = ' ^  [  d h  (V^(r)dpi(r)). (6.5)
i

The third term is the differential of the non-electrostatic free energy of the surface 
species X“ and MX,

dFsurf — —SaurfdT +  adA +  fi-^-dN-^- +  A^MX^^MX) (6.6)

where Saurf is the entropy of the surface species, and iii and N{ are the chemical 
potenticil and total particle number of the surface species i. The volume integral 
in the third and fourth terms on the right hand side of equation (6.6) has been 
performed implicitly, because the X“ and MX are confined to the surfaces, where 
their densities are homogeneous.

Now, dF-^+ is identical to the dFo which is defined in equation (3.2), if dFo is 
specialised to a system containing only one species of microion. In addition, dF î 
is the same as in chapter 3. This means that two of the three components in the 
Helmholtz free energy can be calculated using expressions derived earlier. The free 
energy /  per macroion can be written as

/  =  fy[+ +  fei +  faurf, (6.7)

where fei is calculated using equations (3.59), (3.62), (3.74), (3.75) and (3.78), while 
is found from equation (3.80) to be

/ m + -1^1 «M+ + ^bT  (in -  1 (6.8)

where u-^+ is the temperature-independent energy cost of formation of a microion
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and Ajyj+ is the thermal wavelength. In terms of the dimensionless volume u, this is

/m+ =  1̂ 1 ' In 3 |Z| I
47T

— In (u — 1) — 1 (6.9)

Equation (6.9) is effectively identical to equation (4.4); however, an important dif­
ference between the present system and the same system with constant Z  is that 
here it is impossible to ignore any of the terms in the free energy of the microion 
ideal gas. This makes it necessary to specify the chemical nature of the microions 
through the values chosen for and A^+.

Just as in the constant Z  system, the parameter Ka varies with v according to 
equation (4.2), while the relation between v and the nearest neighbour macroion 
separation S  is given by equation (4.6).

6.2.2 The free energy of the surface groups

Now we must calculate fsurf^ We consider the surface of each macroion to contain 
Z q discrete locations, of which AT^- =  \Z\ contain a surface ion X~, while the 
remaining =  { Z q — \ Z \ )  contain an undissociated surface group MX. The
ions do not interact with one another except through the mean electrostatic field; 
this electrostatic contribution is included in feu and so the energy to be included 
in the calculation of f^urf is just \Z\ where and are the
temperature-independent energy costs of creating one X~ or one MX. Therefore the 
canonical partition function Qi for the surface groups on a single macroion is

Qi — ^exp [- \Z\ (6 .10)

The number of states (each with the same energy) in the phase space ÎÎ is equal to 
the number of ways of distributing \Z\ indistinguishable objects between Zq boxes, 
so that

Qi  = Zr\\
Z\{Zo- \z\ÿ. (“x -  " "Mx) Î bT] , (6.11)

and, using faurf =  —kTlnQi  and Stirling’s approximation, we find

fsurf ~  \Z\ ('î^x" “  ^M x) ~ in Zq — \Z\ In \Z\ — {Zq — \Z\) In (Zq — |Z|)]
(6 .12)

for the surface contribution to the free energy per macroion. This calculation is 
equivalent to the performance of the thermodynamic integration of dFsurf in equa-
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tion (6 .6). The integration would be performed along a path from (jV^- =  0, 
^MX = Zq, A = As, T  =  T°) to =  \Z\, = Zq -  \Z\, A  =  As, T):
note that the adA term makes no contribution, since the surface area remains fixed 
at As during the integration. Equation (6.12) allows the chemical potential, in the 
absence of electrostatic effects, to be calculated as

/ij =  +  UqT  (1 +  In ATj), (6.13)

where i represents X“ or MX.

6.2.3 The total free energy

The total free energy per macroion, collecting equations (6.7), (6.9) and (6.12), is

f  = fei + \Z\{u° + ^ k e T j  + \Z\ keT  In
47t \ a I V — 1

+ k B T  [ { Z q -  \ Z \ )  In { Z q - \ Z \ )  + |Z| In |Z| -  Zq In Z q] , (6.14)

where — |A:T° is a temperature-independent parameter
which depends on the chemical nature of the macroions and microions and which 
must be defined externally; it is actually equal to the energy cost of the dissociation 
reaction (6.1). For the purpose of inserting tabulated chemical data, we could assume 

=  AG, where the dissociation free energy per molecule AG is related to the 
dissociation constant K  by

K  =  (6.15)

The second term on the right hand side of equation (6.14) is the non-electrostatic 
energy, while the third and fourth terms come from the entropy associated with the 
microion ideal gas and the macroion surface, respectively.

If the charge Z on a macroion is regarded as a constant, equation (6.14) reduces 
to the results of chapter 4; we can ignore the terms which do not depend on the 
volume, and consider only a free energy A /, given by

A / == fei -  |Z| UbT Ih (u -  1). (6.16)

However, in this chapter we wish to consider the variation of Z  with macroion
density, and so the extra contributions to the free energy must be taken into account.
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6.3 Minimisation of the free energy

6.3.1 Macroion surface charge as a function of density

The next step is to find the state of the system at fixed v: that is, to find the value 
which Z  will take when the macroions are imagined as held at a given fixed density. 
This is accomplished by minimising the Helmholtz free energy given in equation
(6.14) with respect to Z, holding v constant. The fixed parameter expressing the 
nature of the macroion surface is here vP rather than Z. The minimisation process 
gives df/dZ  = 0, and so it is equivalent to

=  0. (6.17)
aiVĵ + d N -^ -

This provides the expected condition on the electrochemical potentials of the 
different species: p,ŷ + +  p,ŷ ~ — “  0. At the surface, the contributions of
the electrostatic field to the electrochemical potentials of the M"*" and X“ will be 
equal and opposite and will cancel one another, while its contribution to the electro­
chemical potential of the uncharged MX will clearly be zero everywhere (equation
(1.41)). Therefore we have the following condition on the chemical potentials 
at the surface:

+  ^X~ “  ^MX ^

Using equations (3.82), (3.85) and (6.13), we find

_  - n O / k e T  / g

^M X ~   ̂ ^

where is the density of microions at the macroion surface. This makes the link 
with the charge regulating surface treatment of this type of equilibrium [89]. An 
expression of this form can be derived from the dissociation equilibrium

A ... =  K  (6.20)
®MX

(where Oy- and are the activities of surface ions and undissociated surface 
groups and is the activity of the microions at the surface) by assuming that 
the activities of the various species at the surface are proportional to their concen­
trations; here we have shown that this is compatible with our simple model of the 
system. The thermal wavelength A^+ maintains the correct dimensions on the left
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hand side of equation (6.19); its presence results from the ideal gas characteristics 
of the microions in our model, since an ideal gas has activity a =  A^n.

1 5 0 0 “
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X =3
1000-
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X = 6 .7 8
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Figure 6.1: Macroion surface charge Z as a function of dimensionless volume v for 
a =  50 nm, Zq =  10000 and various values of A.

At fixed a and u, we find that \Z\ does not depend on or m  (the mass of a mi­
croion) separately, but only on a parameter A which we define by A =  {vP — u°) /kT .  
The energy is defined only up to an additive constant; for o =  50 nm we choose

Ug =  6.67 4- -  In 
 ̂ 2

(6 .21)

where rrip is the mass of a proton. The reason for the choice of 6.67 as the additive 
constant will be explained in the next section. Figure 6.1 shows the dependence of 
|Z| on u for macroions of radius 50 nm and Z q = 10000. For these calculations, we 
ignore those parts of equations (3.74) and (3.78) which require a numerical integral 
to be performed, since the effect on the results is small and the cadculational cost 
large. Figure 6.2 is a larger scale view of the high macroion density ends of the 
curves shown in figure 6.1. For small values of v the \Z\(v) curves fall into two 
groups according to the value of A. For the regime with A > 6.78, the surface charge 
increases monotonically with increasing v (decreasing macroion density). However, 
for A < 6.78, it displays a different behaviour: as v increases, the charge initially
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Figure 6.2: Macroion surface charge Z as a function of dimensionless volume v for 
a =  50 nm, Z q = 10000 and various values of A (larger scale view of high macroion
density end of graph in figure 6.1).

increases, then decreases, then finally begins to increase once more. There is a 
crossover in the behaviour in the region with A % 6.78, in which Z  is broadly 
constant over a wide range of values of it is in this region that the constant
charge approximation would be most valid.

The behaviour of Z  results from the competition between terms in the free 
energy which become more positive with increasing \Z\, and therefore act against 
the formation of microions {fei and the non-electrostatic energy), and the entropie 
terms, which become more negative with increasing \Z\ for relevant values of the 
parameters. For large values of and therefore of A, the u^\Z\ term dominates; as 

decreases, the entropie terms come to dominate, initially at intermediate densities.
The large v (low macroion density) behaviour of Z  is more uniform across the 

range of values of A: it shows a slow increase in |Z| with increasing v. In fact, Z  is 
not expected to level off (saturate) as ?; —>■ oo, except eventually at |%| =  Zo. This 
is because taking the v —>■ oo limit in a zero salt system is equivalent to putting 
it in contact with an infinite microion reservoir of zero density, so that a microion 
density profile described by a Boltzmann distribution will never reach equilibrium: 
microions will be dissipated into the reservoir until the surface saturates [90].
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6.3 .2  Free energy as a  function  o f density: th e  phase d iagram

Having found the physical value of the macroion surface charge at a given macroion 
density, we can then specify the Helmholtz free energy at that density, and produce 
a plot of the free energy per macroion against the volume per macroion, as in figure 
6.3. As was the case with |Z|, we find that /  does not depend on and m  separately, 
but only on A.
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-11000—

- 12000- 1=0
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1 5 0 0 20000 5 0 0 1000
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Figure 6.3: Free energy /  per macroion, in units of /j^T, as a function of dimension­
less volume u for a =  50 nm, Zq — 10000 and various values of A.

For A > 0, the free energy /  per macroion decreases monotonically with increas­
ing V (decreasing macroion density), while the second derivative of /  with respect 
to V remains positive. Systems with these values of A will expand to fill all the 
available space: their interaction will be observed to be repulsive, and no phase 
coexistence will occur. On the other hand, if A < 0 a region appears in which the 
second derivative of the free energy becomes negative (deepening to a local minimum 
as A is decreased further); as for a molecular fluid, this is the sign of coexistence 
between a dense and a rarefied phase. Therefore, we can interpret uj as the critical 
dissociation energy at a given a and m: phase separation is possible only if 
This is the reason for our choice of the additive constant in equation (6 .21) which 
defines uS.
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If a pressure p = —d f /d v  is plotted against u, as shown in figure 6.4, a van 
der Waals loop is observed for A < 0. Maxwell’s equal area construction allows the 
physical ‘isotherm’ (in this case, curve of constant dissociation energy and microion 
mass) to be plotted across this loop; parts of the pressure curve which lie away from 
the physical isotherm represent metastable or unstable states. A system will phase 
separate if its mean macroion density lies within the range of values covered by the 
loop. As A decreases below zero, the difference in density between the two phases 
rapidly becomes very large; it is only in the immediate vicinity of the critical point 
that two phases of comparable density are predicted.

1.0 -
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A=00 . 5 -
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0 .0 -

- 0 .5

0 5 0 0 1000 1 5 0 0 2000

V

Figure 6.4: pV  diagram for a =  50 nm, Zq = 10000 and various values of A.

The value of depends on the mass of the microions, and the values we choose 
for the mass depend upon whether we consider a bare microion or include up to six 
water molecules from a hydration shell. H"*" ions have a mass m/mp =  1, if we take 
a bare ion, or m/rrip =  109, if we include six water molecules. The corresponding 
values of can be calculated, using equation (6.21), as 6.67ksT and 13.71A:gT. 
Potassium (K'*') ions have a mass of m/nip = 39 (unhydrated) or m/rrip =  147 (hy­
drated); the critical dissociation energies are 12.17A:gT and I4 .I6/C5 T, respectively. 
These values for are reasonable for dissociation energies in aqueous solution.

To summarise: these results predict that the variation of the surface charge with
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macroion density should have an effect on the phase behaviour of charged colloidal 
suspensions. However, we find the same qualitative behaviour as with the constant 
charge assumption: a van der Waals loop appears when the value of the parameter 
A falls below the critical value of zero. Hence we would expect colloidal gas-liquid 
coexistence, provided that a real experimental system can be found for which A < 0. 
This is an important conclusion, as it shows that the recent theoretical predictions 
of phase coexistence are not merely an artefact of the constant charge assumption. 
The results also emphasise the point that, when two phases coexist in this manner, 
the surface charges on the macroions may be significantly different in the two phases.
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Chapter 7 

Homogeneous nucléation theory

7.1 Introduction

As mentioned in chapter 1, a homogeneous fluid which is metastable with respect 
to another phase or mixture of phases may persist temporarily. This is because of 
the free energy barrier associated with the formation of a surface: before a large 
region of the new phase can exist, a small droplet must nucleate, and this droplet 
will have a large surface area relative to its volume. As a result, the free energy cost 
of forming the surface of a small droplet outweighs the free energy gain of forming 
the bulk of the droplet, and the droplet is unstable with respect to the surrounding 
metastable phase.

Consider a small liquidlike cluster containing i particles, surrounded by its vapour. 
We wish to consider the work A W  required to form such a cluster from the vapour. 
Recall from chapter 1 that, in a system whose constraints (constant temperature 
and volume, and no exchange of matter with the surroundings) are such as to make 
the Helmholtz free energy F  a minimum at equilibrium, the work A W  required to 
cause a reversible process to happen is equal to the change A F  in the Helmholtz 
free energy during the process. With a view to applying the results to the colloidal 
system discussed in previous chapters, we will consider nucléation under these ex­
ternal constraints, and so A W  =  AF. This makes the assumption that the states 
before and after the formation of the cluster can be joined by a reversible path.

We make the assumptions of classical nucléation theory: that is, the cluster can 
be described as a very small spherical droplet of liquid of radius R, which behaves in 
the same way as a macroscopic spherical drop in the sense that it has a well-defined 
surface whose area, because of the geometry of the sphere, is proportional to 
The surface tension a and density rii are regarded as equal to those of a macroscopic 
quantity of liquid under the same conditions. We shall see that, if the cluster is
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sufficiently small that its formation from the vapour produces a negligible change 
in the density of the vapour, the free energy cost of forming the cluster from the 
vapour can be expressed as

A F =  A ft i  +  fsi2/3 (7.1)

where A /t is the free energy cost of transferring one particle from the vapour to the 
liquid phase, and fs is a parameter proportional to the free energy cost of creating 
unit area of surface, fa is positive while, if the vapour is metastable, A /t will be 
negative.

AF*

0 I

Figure 7.1: Illustration of the dependence of the free energy cost of forming a cluster 
from the vapour, AF, on the cluster size i.

The shape of AF(i) is shown in figure 7.1; it possesses a peak at a critical cluster 
size i*. Clusters larger than i* will tend to grow, but a cluster can only reach this 
size by means of random fiuctuations: clusters smaller than i* are unstable with 
respect to the vapour. The formation probability of a critical cluster is proportional 
to the exponential of the negative of the work of formation AF* of the critical 
cluster, and since a cluster which exceeds the critical size will tend to grow into a 
macroscopic droplet, we consider the probability of formation of a droplet also to be 
proportional to this. The Becker-Doring equations relate the nucléation rate J  (the
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rate of formation of droplets) to the formation probability [91], giving, to a good 
approximation,

J  =  J o e x p ( -A F * /A :B T ) ,  (7.2)

where the prefactor Jo emerges from a detailed consideration of the condensation 
rate of monomers on to a cluster and their evaporation rate from a cluster. Jq is only 
weakly dependent on the cluster size, for a given substance under given conditions.

In this chapter, we outline the classical theory of nucléation, in preparation for 
its application to colloidal systems in chapter 8 . We first show how the free en­
ergy change can be calculated using thermodynamics, in order to justify the form of 
equation (7.1). The second part of the chapter explains how the characteristics of 
the critical cluster can be determined from physically measurable quantities in nu­
cléation experiments. Calculations involving simple fluids are used to illustrate this; 
although there do not yet appear to have been any experiments directed specifically 
at investigating nucléation phenomena in colloidal suspensions, the results of this 
chapter will be relevant for any future experiments.

7.2 The thermodynamic model

N , V

Figure 7.2: Schematic of the process of formation of a liquid droplet from a 
metastable vapour.

Now we wish to justify equation (7.1) on the basis of thermodynamics. Figure
7.2 illustrates schematically the process of formation of an arbitrary droplet or clus­
ter (not necessarily the critical cluster). The initial state consists of a homogeneous 
metastable vapour of N  particles in volume V. The final state comprises a spherical 
liquid cluster of radius R  and volume Vi, containing Ni = i particles at constant
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density ijVu and a vapour of volume I4 , containing particles at constant density 
=  NylVy. This is the Gibbsian view of the structure of a cluster. The tempera­

ture T, the total number of particles N  and the total volume V  are held constant 
throughout the process. Using equation (1.25) and the definition F = U — TS, the 
free energy of the initial homogeneous state can be written as

Fh =  —PhV (7.3)

where ph and p,h are, respectively, the pressure and chemical potential in the ho­
mogeneous metastable vapour. The free energy after the formation of the cluster is 
F  = Fi-\-Fv~\-Fs, where the bulk free energy of the liquid cluster is Fi =  -piVi-^-fiiNi 
{pi is the pressure in the liquid and pi the chemical potential) and that of the re­
maining vapour is Fy =  —pyVy 4- PyNy [py and p,y are the pressure and chemical 
potential in the vapour). The free energy Fg of the (theoretically infinitesimally 
thin) interface is given by

Fs =  a As +  Ps^s, (7.4)

where cr is the surface tension. As the surface area of the cluster, ps the chemical 
potential in the surface, and Ns the number of particles associated with the surface. 
(This does not mean that Ns particles are actually located within the infinitesimally 
thin interface: see below.) The crAs term has been added to the energy, and therefore 
to the Helmholtz free energy, in place of a —pV  term.

We define the excess of a quantity such as the energy or Helmholtz free energy 
to be the difference between the actual value of that quantity and the value which 
is calculated if we ignore the contributions of interfaces. Thus, the excess value F® 
of the free energy after the cluster has formed is Fs. The choice of the position of 
the theoretical dividing surface between the phases is arbitrary: a general dividing 
surface that separates a volume of vapour Vy and a volume of liquid V;, where 
Vy + Vi = V^ will lead to values of Ny = UyVy and Ni = niVi that do not add up to 
N. The shortfall is the excess number of particles Ns. From the point of view of 
our theoretical model of the surface, these particles have no spatial location, but we 
regard them as associated with the interface, whose position determines how many 
of them there are. If we choose the interface to correspond to the so-called Gibbs 
dividing surface (which is defined by Ni + Ny = N) the excess number of particles 
Ns is zero, and Fs = a As. This allows the parameter fs which was introduced in 
equation (7.1) to be expressed as

fs = (367r)'/' (7.5)
ni'
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Here, of course, we have made the classical assumption that the surface tension is 
independent of the size of the cluster.

Since d(AF) =  0 at i =  i*, the critical cluster is in equilibrium with its vapour. 
This is an unstable equilibrium: the system is unstable against arbitrarily small 
changes in the size of the cluster. Now we shall show that the critical cluster is 
equally likely to grow or to decay. The rate of change with respect to time t of the 
number Ni of clusters of size i can be written as [91]

=  Ci-iNi-i — E{Ni — CiNi 4- Ei+iNi+i, (7.6)

where Cj and Ej are, respectively, the rate of condensation of monomers on to a 
cluster of arbitrary size j  and the rate of evaporation of monomers from a cluster 
of the same size. If the populations Ni of clusters of various sizes are in thermal 
equilibrium (denoted iVf^), we can be assured of microscopic reversibility between 
all ‘nearest neighbour’ transitions i i- \- \  and i + 1 —>• i:

=  EiN f^.  (7.7)

(Note that dN f /dt = 0: the cluster size distribution remains constant over time, 
which is of course a feature of thermal equilibrium). Equation (7.7) implies that 
Ei = (Nf3i/Nf^^ Ci-i and, since the number of clusters of a given size in thermal 
equilibrium at temperature T will be proportional to the exponential of the negative 
of the work of formation, as in the justification for equation (7.2), we find

=  exp [ -  (AFi_i -  AFj) / k e T ] , (7.8)
Ci-i

where AFj is the work of formation of a cluster of size j .  From the shape of the 
nucléation barrier in figure 7.1, it can be seen that if i < i* then Ei > Q_i; if 
2 1 (so that we can approximate i — 1 «  i) this can be interpreted as meaning
that the cluster is more likely to decay than to grow. Similarly, \i i > i* we have 
Ei < Ci-i, and the cluster is more likely to grow than to decay. Around i = i*, the 
condensation and evaporation rates are equal, and so the critical cluster is equally 
likely to grow or to decay.

We can now consider the pressure and chemical potential when the cluster is at 
the critical size. Using the facts that V/ +  K  =  U and Ni + Ny =  N, we can write the 
total free energy of a system containing an arbitrary cluster (not necessarily critical) 
as

F = — (pi — py) Vi + {pi — pv) Ni — pyV +  pyN  +  (jA s. (7.9)
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Requiring the unstable equilibrium condition dF/dNi =  0 to hold, we find that the 
critical cluster corresponds to equality of the chemical potentials: =  /ij. However,
the same is not true of the pressure. Since the surface area As depends on Vi,

^  =  (7.10)

and because, from the geometry of the sphere, dAajdVi = 2 /R, setting dFfdVi =  0 
leads to the Laplace relation,

P*-P*v = - ^ '  (7-11)

This shows that the pressures of the two components are not equal at equilibrium. 
This conclusion (although not the precise form of equation (7.11)) holds for any sit­
uation in which the area of the interface depends on the volumes of the components.

7.3 The free energy of formation of a liquid cluster: 
classical theory

Subtracting equation (7.3) from (7.9), the free energy cost of forming an arbitrary 
spherical cluster can be expressed as

A F  =  — {pi — Pv)  Vi F  {fii — fJ>v) — {Pv — Ph)  y  +  (Pv  — P h)  ^  4- (j A s . (7.12)

The metastable vapour can reasonably be treated as an ideal gas, both before and 
after the formation of the cluster. Thus we can use equation (1.40) to write

= fefiTln ( ^ \  = kBT]n b  +  ■ (7.13)

Provided the cluster is small enough that the perturbations to the vapour due to 
its formation are small (that is, Pv «  ph), we can take only the first term in the 
expansion of ln(l +  x) in powers of x, to give

Pv — P h ^  k sT  ~  (Pw “  Ph) ^ 5  (7.14)

where the second step follows from the ideal gas equation of state, (1.35). Thus, the 
third and fourth terms of equation (7.12) cancel one another, and we are left with

A F  = — {pi — Pv) y  F {pi — Pv) Ni +  (jA s- (7.15)
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The pressure pi and chemical potential jii of the liquid cluster will not have the 
same values as the pressure and chemical potential in the bulk equilibrium liquid 
(the liquid that would eventually appear in the final, mixed equilibrium state), which 
we will denote by pf^  and respectively. However, a relation between the two 
states can be found, in order to eliminate explicit reference to pi and pi. We rewrite
(7.15) as

A F =  — {pi — Pi^^ Vi — (̂ Pi ^ — Pv  ̂Vi {pi — Pv) Ni +  gA^. (7.16)

Thermodynamic integration of the Gibbs-Duhem relation (1.28) between the bulk 
equilibrium liquid state and the state of the liquid in the cluster, under the con­
straints that the temperature T and volume per particle vi are held constant (the 
latter constraint implies that the liquid is incompressible, which is clearly an ap­
proximation), leads to the relation

Vi =  (7.17)

where we have used the fact that vi = 1/ni. Inserting (7.17) into (7.16), recalling 
that TiiVi = iV/, and making the assumption that the vapour is perturbed only 
slightly by the formation of the cluster (p„ % ph, and pv w Ph), we find

A F =  — (p/ ^ — Ph) ^  +  (p/ ^ — Ph) Ni 4- gA s. (7.18)

Using the relation /  =  p — pv, which results from the definitions of the Helmholtz
free energy and the chemical potential, equation (7.18) can be rewritten as

A F =  [// ^ “  fh +P/i {vi — 'U/i)] Ni -t- GAg. (7.19)

Equation (7.19), together with (7.5), justifies the form for A F given in (7.1), with

A/fc =  / f  ̂  -  fh-^Ph [vi -  Vh) • (7.20)

Figure 7.3 illustrates on an f{v) diagram the physical plausibility of the above 
expression for Afi,. The line BD  is tangential to the analytic free energy curve at 
%. The length of line A E  is equal to — //i, while the length of D E  is equal to 
—Ph {vi — Vh) since ph is —d ffd v  evaluated at B. So

AA =  \AE\ -  \D E\ . (7.21)
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If an upward bulge, indicating phase coexistence, is present, Afb will clearly be 
negative; its magnitude will be the length of the line AD. The maximum value of 
the magnitude of Afb corresponds to the locally most negative value for d f  jdv  (the 
local maximum of p), which is located at the spinodal. As B  approaches C (the 
binodal), Afb will diminish; when B  and C coincide (% = the tangents BD  
and AC  will coincide, and Afb = 0. For > Vv^, Afb is positive, corresponding 
to a single phase equilibrium state. Finally, BD  and AC will coincide also at the 
critical point, where the analytic free energy curve between A and C becomes a 
straight line. Afb is zero here, and becomes negative the other side of the critical 
point, where the equilibrium state is a single phase.

r

A
r

V

Figure 7.3: Graph of the free energy /  per particle against the volume v per particle, 
illustrating the qualitative correctness of equation (7.20) for Afb.

Having justified the form of equation (7.1), we can use it to calculate the critical 
cluster size and work of formation within the classical approximation. The critical 
cluster is located at the maximum of AF(i), so

(7.22)
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which leads to

=  - § r  (À)
(recall that A/j, is negative if the vapour is metastable) and therefore

27 (AA)' 2
A f  =  (7.24)

Inserting equation (7.5) produces 

and

7.4 The link with other formulations

A number of other expressions are used in the literature to calculate the critical 
work of formation. Therefore, it is important to compare the expression given in 
equations (7.18) and (7.19) for the Helmholtz free energy of formation of the cluster 
with an analogous expression using the grand potential, and also to consider the 
form of both these expressions when the homogeneous metastable vapour is close to 
the binodal {ph «  Pv^ and ph ^  Using equation (1.25) and the definition of
the grand potential Q = U — T S  — pN, we find, by an argument analogous to that 
applied to the Helmholtz free energy in the previous section,

AQ =  — (pi — Pv) Vi — {Pv — Ph) y  +  crAg. (7.27)

Following a similar line of development to that which produced (7.18) from (7.15), 
we find

AQ = — {pi^ — Ph) ^  +  (a*/^ ~ Pi) Af — {pv — Ph) y  +  (^Ag. (7.28)

These expressions have been calculated using the assumption that the total grand 
potential of a system is the sum of the grand potentials of the components of that 
system. As pointed out by Abraham [91], this assumption is only true of thermo­
dynamic potentials if the intensive parameter which must be held constant in order 
for the thermodynamic potential to be a minimum at equilibrium, is constant across
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the system. For the grand potential, this thermodynamic parameter is the chemical 
potential. This means that, unlike its analogue (7.18), equation (7.28) is only true 
for the critical cluster or other equilibrium situation. Remembering that under these 
conditions fii =  /i^, and assuming once again that % ///i, we find

Aft* — — — ph^ V* 4- — ph) +  (Pv — Ph) y  + (7.29)

where the star denotes a value associated with the system containing a critical 
cluster.

The grand potential of formation is a valid expression for the work of formation 
only if the external chemical potential is held constant. Since the vapour is modelled 
as an ideal gas, this leads to the external pressure being held constant, so p„ = Ph- 
The result is that, for a critical cluster, equation (7.29) takes exactly the same form 
as equation (7.18). So, in the limit that negligible perturbation of the vapour results 
from the formation of the critical cluster in a closed system, either the Helmholtz 
free energy or the grand potential can be used to calculate the critical work of 
formation. That is to say, in this limit the closed system is equivalent to the open 
system, and either thermodynamic approach might be justified as an approximation 
to experimental conditions. However, the derivation of the equation for A F  assumes 
only that the perturbation in the vapour is small, not that it is negligible. Since 
F  >> V/, a small value for py — ph might still have a significant effect on the value 
of AQ, given by (7.29), if it is applied to a closed system. This means that the limit 
in which the two approaches are equivalent might not exist in reality. Therefore, we 
shall use the Helmholtz free energy rather than the grand potential to calculate the 
work of formation.

Now consider equation (7.18) in the limit that the initial homogeneous metastable 
vapour is close to the binodal. Since =  p«^ and we have

A F  =  — [p^^ — p/i) Vi +  — p/i) Ni +  (jAg. (7.30)

Of course, both p?^ — ph and p«^ — ph go to zero at the binodal. Using the char­
acteristics of an ideal gas expressed by equations (1.35) and (1.40), we can rewrite 
this as

A F
knT

100



rih \ rih
Vi crAg (7.31)

(where in the second stage we have used the fact that Ni =  riiVi). For small x, 
ln(l 4-;c) 23 a:; so near the binodal (7.31) becomes

A F ^  +  crAs; (7.32)
y nh J

since rii '> rih, this leads to the disappearance of the term derived from the pV  term 
in (7.30), and

A F % — Ph^ + O'Ag. (7.33)

A similar development applied to (7.29) produces an expression for Afi* which 
looks identical to that for A F provided that the vapour is negligibly perturbed by 
the formation of the critical cluster {py = Ph)-

Expressions of the form (7.33) for the work of formation are often given in the 
literature [92, 93], which is why it is important to discuss the link between (7.33) and 
the expression for A F derived in the previous section. It is important to remember 
that (7.33) requires approximations which hold only close to the binodal; thus it 
can only be justified thermodynamically when the metastable vapour is close to 
the binodal. Deeper into the coexistence region, it leads to significant, though not 
catastrophic, errors in calculations for a colloidal system; however, the errors are 
generally assumed to be insignificant for simple molecular fiuids, because pV  terms 
are usually small in such condensed phases.

7.5 Calculation of excess energies from experimen­
tal data

In the next chapter, we shall introduce a method for calculating surface tension, and 
apply it to a colloidal system. First, however, we look at how the thermodynamic 
properties of the surface can be estimated using experimental results for the nuclé­
ation rate. In the absence of data for colloidal systems, we use nucléation data for 
simple fiuids as an example: n-pentanol and dibutylphthalate (DBF). Such data are 
generally presented in terms of the supersaturation S  =  Ph/Pv^^ which is the ratio 
of the pressure of the metastable (supersaturated) vapour to that of the saturated 
(binodal) vapour.

These results have been published in the Journal of Chemical Physics [94, 95].
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7.5.1 Nucléation theorems

The method for extracting details of the critical cluster from experimental data 
on the nucléation rate makes use of the two nucléation theorems, which relate the 
derivatives of the nucléation rate, with respect to supersaturation and temperature, 
to the size and excess energy, respectively, of the critical cluster. The first nucléation 
theorem [93] was introduced originally by Kashchiev; according to a more recent 
statistical mechanical derivation by Ford [96], it reads

[dlnSjj . + i \  (7.34)

while the second nucléation theorem, which was derived by Ford [97, 96], is

where L  is the latent heat of condensation per molecule, and Ex{i*) is the excess 
energy of the critical cluster. The nucléation theorems in this form assume that the 
vapour can be described as an ideal gas. Corrections for nonideal effects have been 
derived [94], but their effect appears to be small.

7.5.2 Fitting the data

The two nucléation theorems allow us to calculate the size and excess energy of a 
critical cluster if we know the dependence of the nucléation rate on temperature 
and supersaturation. The most effective way to obtain this dependence from the 
experimental data is to fit a function J{S,T)  to the data. Then the derivatives 
(d\nJ/d\iiS)rj, and {d\nJ/dT)g  can be used, in conjunction with the nucléation 
theorems, to produce expressions for i*, the number of molecules in the critical 
cluster, and £'*, its excess energy; a relation between i* and E* follows from these 
expressions. We write E* as shorthand for Ex{i*), the excess energy evaluated at 
size i*.

We chose to fit the data with a function of the form

where a, b and c are fitting parameters. This fitting function was motivated by the 
work of Hale [98, 99], who found that a phenomenological expression which took a 
form similar to this was surprisingly effective in correlating nucléation rates for a
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variety of substances. We use it since it permits a better fit to the experimental 
data than other functions which we tried; in fact, given the scatter in the available 
data, a fitting function which is definitively better than this one seems unlikely to 
be identified.

Luijten e t al. 

260  K. /
4 0 -

3 5 -
271 K 240  K

3 0 - 242  K

Hruby e t al.2 5 -
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320 K
1 5 - . f  2 6 0 K
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Zdimal an d  Smolik, 
R udek  e t al.5 -

1.0 1.5 2.0 2 .5 3.0

InS

Figure 7.4: Comparison of experimental data for n-pentanol with the functions 
fitted to them. Dots: experimental data; lines: predictions for the fitting functions 
for In J  along isothermal lines corresponding to the experimental data. J  has units 
of m~^s“ .̂

Three sets of experimental data on the nucléation of n-pentanol were used. The 
data of Zdimal and Smolik [100] and of Rudek et al. [101] (which we regard as one 
set) were obtained using thermal diffusion cloud chambers, the data of Hruby et al. 
[102] were collected using an expansion cloud chamber, and the data of Luijten et 
al. [103, 104] were gathered using the pulse expansion method. Collectively the sets 
of data cover a range of temperatures from 240 K to 320 K, supersaturations from
3.3 to 27, and resultant nucléation rates (in m~^s“ )̂ from 10  ̂ to 10^ .̂ Table 7.1 
shows the values oî a, b and c for the three sets of data. Figure 7.4 demonstrates 
that equation (7.36), with the parameters as in table 7.1, provides a good fit to the 
data; the limitations of the fitting function are revealed by the fact that the fit is 
not perfect.

The data for DBF are from Mikheev et al. [95], and were obtained using a
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Reference a b c(K)
Hruby et al [102] 68.5 101 591

Zdfmal and Smolik, Rudek et al [100, 101] 54.4 16.1 830
Luijten et al [103, 104] 76.5 394 485

Mikheev et al (DBF) [95] 67.4 5730 490

Table 7.1: Values of the fitting parameters a, b and c for the sets of data on n- 
pentanol and DBF.

laminar flow tube reactor. The fitting parameters for this data are also shown in 
table 7.1; fig. 7.5 demonstrates that the resulting function fits the data well.

2 6 -

2 4 -

20 -

1 8 -

2 6 2 81 6 1 8 20 22 2 4

Experimental InJ

Figure 7.5: Evaluation of the success of the fitting function for DBF. The dots denote 
the experimental and fitted values of In J . The dashed line represents a perfect fit 
to the data. J  has units of m~^s~^.

7.5.3 The energetics of critical clusters in n-pentanol and 
D BF

By finding the derivatives of equation (7.36) with respect to In S  and T  and applying 
the two nucléation theorems, one can derive the following expressions for E* and i* 
in terms of S  and T:

,, 26 (c/T -  i f
I =

(Ins')- - 1, (7.37)
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El =  - E  + knT. (7.38)

We use these expressions to find a relation between i* and E*. Since both of these 
quantities are functions of S  and T, there will not be a unique relation between 
them: we can write

E l = f { S ,T , ' i ) ( l  + i y - L  + UbT, (7.39)

and the relation between the critical cluster size and excess energy will depend on 
7 , which can take any value. However, since the excess energy is analogous to the 
surface energy of a macroscopic system, we expect ex in the limit of a large 
critical cluster. Therefore we set 7  =  2/3, which yields the expression

(1 +  ~ ^  + ^bT. (7.40)

The latent heat of condensation per molecule, L, can be calculated using the 
Clausius-Clapeyron equation, together with an empirical expression for the satu­
ration vapour pressure Ps as a function of temperature. For n-pentanol, we use 
[105]

Ps =  133.324 exp(90.08 -  9788/T -  9.90 In T), (7.41)

where the pressure is expressed in Pa and the temperature T in K; therefore the
latent heat is given by

L  =  9788A;g -  (7.42)

The equivalent empirical expression for DBF is [95]

L = 3836A:gT +  2522000A:g/T. (7.43)

Figures 7.6 and 7.7 show the curves of jF* as a function of i* (in units of /c^To,
where To =  273.15 K) which were produced from each of the sets of data. It should 
be noted that these E*{i*) curves are not very sensitive to small changes in the 
fitting function.

A comparison is also made with the results of classical nucléation theory, for 
which we use the following formula for the nucléation rate, based on the original 
classical rate modified [96] by a factor of ni/n  to take account of the positional
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Figure 7.6: The excess energy of critical clusters of n-pentanol as a function of 
critical cluster size. Solid lines: calculations from the experimental data, each valid 
within the range of (5, T) values covered by its respective data set. Dashed lines: 
predictions of classical nucléation theory.

entropy of a cluster,

In Jqi — In
IGtt2cr S p s

n m k B T j  3 {k g T f  {InS)
(7.44)

where a is the surface tension, m  the mass of a molecule, and Pa the saturated 
vapour pressure (the vapour pressure at the binodal). Combining this with the two 
nucléation theorems and the Clausius-Clapeyron equation, we find

E l .  =  ksT^
1 da 

~^~dT
(367t) 1/3 3 da 

a dT
2 dni 
Til dT f

a
ksTrii2/3

:*2/3 (7.45)

where represents the classical excess energy evaluated at the classical critical 
size For the temperature dependence of a (in Jm“ )̂ and of the liquid molecular 
density ni (in m“^), we use the following correlations for n-pentanol [101]:

a = IQ-^ [26.85469 -  0.07889 (T -  273.15)], (7.46)
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Figure 7.7: The excess energy of critical clusters of DBF as a function of critical 
cluster size. Solid line: calculations from the experimental data, valid within the 
range of (5, T) values covered by the data set. Dashed lines: predictions of classical 
nucléation theory.

ni = 10^Na (3.06 +  21.90Z^/^ -  95.467^/® +  218.1Z -  210.5Z^/^ +  74.37Z®/^) ,
(7.47)

where N a is Avogadro’s number and Z  — \ — T/Tc\ the critical temperature Tc is 
taken to be 588.15 K. The equivalent correlations for DBF are [95]:

cr =  0.03393 -  0.0000894 (T -  293.15),

n, =  [1.0492 -  0.00067 (T -  293.15)],
278

(7.48)

(7.49)

where we have used the fact that the molecular mass number of DBF is 278.
The critical clusters in DBF are remarkably small, containing as few as six 

molecules, and there is no reason to expect them to be described by classical nuclé­
ation theory. It appears that the excess energies of the clusters can be well described 
by regarding the latent heat L as resulting from bonds between nearest neighbours 
and estimating how many dangling bonds are present at the surface of the cluster 
[95].

Figures 7.8 and 7.9 show the critical cluster size and the excess energy as func­
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tions of S  and T, calculated from the n-pentanol data of Zdimal and Smolik and 
of Rudek et al. and covering the region of the (5, T) plane investigated by them. 
Similar plots could be produced for the other sets of data.

Figure 7.8: The critical cluster size as a function of temperature and supersaturation, 
calculated from the data of Zdimal and Smolik and of Rudek et al. and valid within 
the (5,T) range covered by those data.

It is notable that equation (7.36), unlike an arbitrary function J(5, T), leads 
to a situation where, if we set 7 equal to 2/3 on the physical grounds mentioned 
above, the first and most significant term in equation (7.39) does not depend on 
the supersaturation or temperature other than through i*; that is, /(5 , T, 2/3) is 
actually independent of S  and T. This means that, if the less significant —L 4- ksT  
term is disregarded, there is a one to one correspondence between the number of 
molecules in a critical cluster and its excess energy. A given i* will always be 
associated with the same E*, irrespective of the values of S  and T  which produced 
it. If 7 were set to a different value, this would still be true, but the point would 
be obscured by the appearance of explicit T- and 5-dependence in E*. (It is useful 
to bear in mind that we are seeking information on the excess energy Ex{Tj 5, i) for 
a general cluster size i, given data on El(T, S)) for a T- and 5-dependent
critical size i*. The value of 7 determines how much of the T- and 5-dependence is 
explicitly present in the expression for E*, and how much is locked up in i*.)
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Figure 7.9: The excess energy as a function of temperature and supersaturation, 
calculated from the data of Zdimal and Smolik and of Rudek et al and valid within 
the (5,T) range covered by those data.

The fact that the Hale function can be made to fit the experimental data shows 
that, over the small region of the (5,T) plane which is covered by a single set of 
experimental measurements, this one to one correspondence between i* and E* is 
approximately correct. From a physical point of view, too, we would expect this 
to be the case, since the excess energy is closely related to the number of dangling 
bonds on the surface of a cluster. This depends on the number of molecules in the 
cluster, but not strongly on the temperature or pressure (provided the cluster is 
compact, which it is at temperatures well below the critical temperature).

In general, however, the correspondence does not hold. This is demonstrated by 
the inconsistency between the three different curves in figure 7.6, which use
sets of data from different regions of the (5',T) plane.

These excess energy curves, then, should be regarded as approximations which 
are valid on restricted regions of the (5,T) plane. Without such an approximation, it 
would be hard to produce a graph such as figure 7.5. Introducing the approximation 
enables us to gain insight into the energetics of the critical cluster.
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Chapter 8 

Interfaces and nucléation in charged 
colloidal suspensions

8.1 Introduction

In this chapter, we apply the principles of nucléation which were detailed in chapter 
7 to phase transitions in the type of colloidal system that was introduced in earlier 
chapters. There are a number of reasons for doing this. Experiments by Yoshida et 
al. [4] have investigated the evolution of a suspension from an initial homogeneous 
state to a phase separated final state. It should be possible to explain the result­
ing ‘Swiss Cheese’ structure in terms of surface free energies and nucléation; it is 
clear, then, that the thermodynamic effects of phase boundaries in these systems 
can be observed and are therefore worthy of theoretical investigation. There is also 
the possibility that insights gained from the consideration of nucléation events in 
colloidal systems could benefit the study of nucléation processes in general, and of 
nucléation processes in molecular systems in particular. It has often been pointed 
out that colloidal crystals provide a good model system for atomic matter, as similar 
processes take place at larger length scales and longer time scales. Nucléation in 
colloidal systems happens more slowly and on a larger length scale than in molec­
ular systems, where the fast rate of the phase transition and the unobservable size 
of the critical cluster make the phenomenon very difficult to investigate accurately, 
either by experiment or by theory. Another problem with the study of homogeneous 
nucléation in molecular systems is that it may be preempted by heterogeneous nu­
cléation, the process by which the new phase nucleates around foreign bodies or on 
the walls of the container. The larger length scales in colloidal systems should make 
heterogeneous nucléation less of a problem: sufficiently large impurities are unlikely 
to be present in the bulk of a suspension, while the container walls may or may not

110



act as sites for heterogeneous nucléation (depending on whether the free energy of 
the interface between the metastable phase and the wall is smaller or larger than 
that of the interface between the metastable phase and the nucleating phase).

The next section of the current chapter will introduce a simple approximate 
method by which the free energy of an interface can be calculated. Then we shall 
set out the results of applying the method to calculate the surface tension in a 
charged colloidal suspension under conditions of zero added salt, and the nucléation 
rate of a liquid cluster from a metastable vapour in the same system. The final part 
of the chapter discusses the ‘Swiss Cheese effect’ in the context of nucléation theory.

8.2 The square gradient approximation

We shall now outline a method by which the free energy cost of forming a surface 
between two phases of a fluid can be calculated, if we know the characteristics of 
the fluid and the phases, using the ideas of density functional theory. Known as the 
square gradient approximation [106], the method originated with van der Waals and 
was rederived by Cahn and Hilliard [107]. Along with more sophisticated density 
functional theories [108], it has often been applied to molecular systems, and recently 
it has been applied by Brader and Evans [109] to a colloid-polymer mixture.

Consider a system containing two phases a  and separated by an interface. The 
system has total Helmholtz free energy F; the volumes of the phases are expressed 
as and and the free energy densities as pp and pPp. The excess free energy F® 
is defined as the difference between the free energy of a system and the value which 
the free energy would take if the system contained the two homogeneous phases and 
an idealised, inflnitesimally thin boundary with no free energy of its own:

F ‘ =  F -  -  f/p V ^  (8.1)

If we use the Gibbs dividing surface, F® = a As, where As is the area of the surface. 
The surface tension a can be found by

/oo
pp{z)dz, (8.2)

-oo

where p^{z) is the density in space of the excess Helmholtz free energy and z is 
the distance measured perpendicular to the surface, which is considered here to be 
planar and to be homogeneous except in the z-direction.

The basic idea of classical density functional theory (DFT), as applied to this 
problem, is to choose a physically plausible form for the excess free energy density
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Pp[n(z)] as a functional of the particle density profile n{z) and then to minimise the 
total excess free energy density for given a and /3, with
respect to n(z) to find the ‘true’ physical particle density profile riphys{z) between 
phases a  and (3. The ‘true’ excess free energy density will then be ppl'fT'physiz)]. The 
accuracy of the results depends, of course, on the form of the excess free energy 
density being well chosen.

n,n
n

Figure 8.1: Graph of free energy density pp against particle density n, illustrating the 
components of the free energy density in the point thermodynamic approximation.

Here, the main aim is to calculate the surface tension rather than the details of 
the interfacial structure. A form for ffp{z) needs to be chosen. A first approximation 
might be that the free energy density pp(z) at a point in the interfacial region where 
the particle density is n’ is the same as that in a homogeneous phase of density n'. 
This is known as the local density or point-thermodynamic approximation, and 
amounts to assuming that local inhomogeneities have no effect on the free energy, 
which is therefore a function only of the local density. It leads to

(8.3)

where p^p(z) is the free energy density calculated by analytic extension of the pp(n) 
curve into the metastable region and p^^ is the free energy density resulting from
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the mixture of homogeneous states a  and ignoring the effects of the interface. 
Figure 8.1 illustrates the situation on the ppip) diagram: pj” is on the upward 
bulge, while is on the tie line. Unfortunately, if the two phases are separated 
by a step function interface the local density approximation gives zero excess free 
energy (since the width of the interface can be taken to zero while pp remains finite 
despite the fact that \dnjdz\ —>• oo, as does not depend on the gradient), and this 
is the result which will be produced by the minimisation procedure. Equation (8.3) 
is clearly an unphysical form for Pp{z): a term needs to be added to take account 
of the effects of the local inhomogeneity.

Van der Waals added a term proportional to the square of the density gradient:

=  pT{^) ~ Pf^ +  j ■ (8-4

The extra term is to be regarded as the next in an expansion in terms of the deriva­
tives of the density; (8.4) is thus strictly valid only for small gradients. The param­
eter C  should be independent of dnjdz  and higher derivatives.

In this square gradient approximation, the total free energy density Pf {z) =  
ffp{z) H- pŸ  is given by

PF{z) = PT{^) + C { n ) ( ^ ' \  . (8.5)

Consequently, if Pf (z) and p^[z)  can be calculated, we can find C(n) using

The Euler-Lagrange equation which minimises the integral in equation (8.2), where 
Pf {z) is given by (8.4), is

of which a first integral is

p^{z) -  pp'^ — C(n) • (8 8)
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Substituting (8.8) and (8.4) into equation (8.2) for a gives

/oo
C{n)

-oo
dn 2

dz

rn  ̂ Qn
=  2 /  C { n )^ d n  

dz

rn̂
2 /

Jn°‘

dz  

dn
dn

1/2

dn. (8.9)
dz J

Further application of equation (8 .8) to (8.9) results in

<7 =  2 r  [C(n) { p f  -  p'p^) ] dn. (8 .10)

The value of equation (8.10) is that it permits calculation of the surface tension 
without explicit calculation or consideration of the particle density profile, or even 
of the density gradient, in the interface [106]. All we need is the coefficient C{n) in 
the gradient expansion (8.4).

8.3 Application to colloidal suspensions

In order to calculate the surface tension in a colloidal suspension, we first calculate 
C{n) at different densities, using equation (8 .6). At each density n', this requires the 
calculation of Pi?(n') and of p^{n'). The analytic free energy density p*p is simply 
the free energy density in a homogeneous phase of particle density n'; therefore it 
can be evaluated with equations (3.74) and (3.78). The procedure for the evaluation 
of the total free energy pp is more complicated: equations (3.74) and (3.78) must 
be applied in a modified way.

The results produced by these equations depend both on the microion density 
through the parameter Ka (and hence on the macroion density by the charge neu­
trality principle) and on the macroion separations Smn- In the homogeneous system, 
we approximate the macroion distribution by a crystalline structure (simple cubic 
for the calculations in the current chapter), and the separations between nearest 
neighbours, next nearest neighbours, and so on, can easily be related to «a. All 
macroions are regarded as equivalent, in the sense that the macroion density is a 
constant throughout the region; figure 8.2 illustrates this situation schematically. 
The procedure for calculating the electrostatic free energy per macroion is to choose 
one macroion (marked m) and sum over the contributions from its neighbours. Every
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the macroion configuration used

calculation of the electrostatic free energy of the homogeneous system.

macroion in the phase can then be regarded as equivalent to this ‘test’ macroion.
For the inhomogeneous system, we consider a lattice as in figure 8.3, with the 

particle separation varying in one direction notated as z, where z is to be interpreted 
as perpendicular to the surface. This is not intended to be a realistic representation 
of the interface: it is simply a device to enable us to evaluate the effect of a density 
gradient on the free energy of the test macroion m. The macroion separations are 
determined by considering each macroion n to lie at the centre of a cuboidal cell, 
and to associate a density =  1/Vn with the macroion, where Vn is the volume of 
the cell. Let the length of those sides of cell n that lie parallel to z be equal to 5„. 
Other sides of the cell have length where Sm is the side length of the cubic cell 
around the test macroion m. The density at n can then be expressed as

Tin =   . (8 .11)

The density gradient enters the model as a constant K. This does not mean that 
the density gradient is constant throughout the interface, only that it is possible to 
define a density gradient which is valid in the vicinity of macroion m. The density 
as a function of distance z perpendicular to the interface is thus given by

n(z) = r i n  + K { z -  Z n ) ,  (8.12)

where Zn is the value of z at some macroion n. This density has physical meaning 
only at the points occupied by the macroions, and we write

Tlq — Tlfi +  IC (Zg Zn) , (8.13)
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Figure 8.3: Schematic of the macroion configuration used in the calculation of the 
electrostatic free energy of the inhomogeneous system.

where Zq is the z-coordinate of macroion q. Recalling that Uq =  1/ we rewrite
(8.13) to give

Hn-\- K  ( Z q  —  Z n )  g   =  0. (8.14)

If q and n are next door neighbours in the z-direction, their separation can be 
found using (8.14). There are two possible cases here. If ç =  n +  1, that is z, >
corresponding to Uq >  U n  for R" >  0, we have z „ + i  — z „  =  (5„ +  s „ + i )  / 2, which
leads to s „ + i  =  2 ( z „ + i  — z „ )  — s„. Then (8.14) is transformed into

T i n  + KZn,n+l ~
^n)

=  0, (8.15)

where Zn,n+i = Zn+i — Zn. This leads on to a quadratic for Zn,n+i in terms of the 
densities and the gradient:

2  I 2 2  _  m  I ^  rn
I AT 2n„ K (8.16)

Here, we have used equation (8.11) to find Sm =  1/n^^ and s„ =  jun. The 
physically significant solution of (8.16) is

•2^n,n+l
r i n ^

1 +  %  '2 n „
(8.17)

The second case is ç =  n — 1, that is Zq < z„, which corresponds to Uq < rin for 
K  > 0. Then z„,n-i =  -  («n +  ^n-i) /2 and 5„_i =  -2z„,„_i -  s„. The quadratic
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equation in Zn,n-i is

the physically significant solution of which is

Z n ,n -l -  ~ 2 K  \
, rin^\ 4»^/»

2iTln K
(8.19)

We can calculate the macroion separations which satisfy equations (8.11) and
(8.13) by starting from the ‘test’ macroion m and moving outward, repeatedly ap­
plying (8.17) or (8.19) depending on the direction in which we are travelling. This 
allows us to find macroion separations Smn for the inhomogeneous system, and 
these separations can be used in equations (3.74) and (3.78), which involve sums 
over macroions n, to estimate the electrostatic free energy per macroion in an inho­
mogeneous system. The local microion density, which is required for the calculation 
of «a, is assumed to take the same value as it would in a homogeneous system of the 
same macroion density. One consequence of this assumption is that the only change 
which the inhomogeneous system requires in the calculation of fei is in the macroion 
separations Smn- As the density gradients are required to be small for the square 
gradient approximation to be valid, we take the ideal gas contribution /o to the free 
energy, as given by equation (4.5) to have the same value in the inhomogeneous 
system as in a homogeneous system.

An alternative choice for the local microion density, in those parts of the free 
energy which depend on the separation Smn of pairs of macroions, would be the 
mean of the densities at m  and n. It is not clear, in the context of this simple 
model, whether this alternative choice would be better or worse. However, it would 
be slightly more complicated: it would require two different values for /ca, because 
contributions to the free energy which do not depend on Smn would still require na 
to be defined as described above. Therefore, we do not choose this alternative.

The difference which appears in the numerator of equation (8 .6) for C can be 
expressed as a difference in electrostatic free energy contributions:

pF{n) -  p^”(n) =  n {fei{n, K ) -  feP{n) ) , (8.20)

where fei is the electrostatic free energy per macroion in the inhomogeneous system, 
calculated using equations (3.74) and (3.78) as detailed above, and is the elec-
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trostatic free energy per macroion in a homogeneous system at the same density. 
According to the square gradient approximation, the calculated value of C should 
be a function of the density n, but should not depend on the density gradient dnjdz  
at a given value of n. Of course, this is only true for small dnjdz^ as the square 
gradient approximation is not expected to be valid in a system with a large density 
gradient.

Having calculated C numerically as a function of density, we can insert it into 
equation (8.10); the integral can then be performed numerically in order to evaluate 
the surface tension. This procedure also requires the calculation of which can 
be found using the geometry of figure 8 .1. Since the state on the bulge and the state 
on the tie line have the same macroion density, the ideal gas contributions to the 
free energy of the two states can be regarded as equal. Therefore,

(8 .21)

where and are the electrostatic free energies per macroion in homogeneous 
systems of densities and .

8.4 The surface tension

We find that the following relation holds for the surface tensions calculated under 
conditions of zero added salt:

c (C \Z \ ,C a ) ^ ^ a ( \Z \ ,a ) ,  (8 .22)

where C  is an arbitrary constant. This means that <j, if expressed in units propor­
tional to |Z| ja^, depends only on the ratio f  =  \Z \ja  (we use a expressed in nm 
for the purpose of the definition of f) and not on \Z\ or a individually. Figure 8.4 
shows the calculated surface tension <%, as a function of volume fraction ??, for an in­
terface around a liquid drop whose density is equal to that of the equilibrium liquid 
and which is surrounded by metastable vapour. The surface tension is expressed 
in units of |Z| /jgT/lOOOn^. The domain of the calculations spans the metastable 
region between the binodal (low rj) and the spinodal (high rj)] the surface tension of 
the interface between the liquid and the equilibrium vapour is at the binodal end of 
the lines. Because of equation (4.7), the end points of the lines depend only on 

The dependence of a on rj is weak; the vapour is always much less dense than the 
liquid, so that small changes in the vapour density have little effect on the difference
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Figure 8.4: Surface tension a, expressed in units of |Z|/i^T/lOOOa^, as a function 
of the volume fraction r} of the metastable vapour, for various values of C under 
conditions of zero added salt. The range of values of r} spans the binodal-spinodal 
range.

in density between the two phases, and therefore little effect on the nature of the 
interface. Figure 8.4 makes it clear that, at fixed colloid radius, the surface tension 
increases with charge Z, and therefore diminishes as the critical point is approached, 
and that a increases with decreasing macroion radius at fixed charge.

If the macroions have a radius of 50 nm, the actual values of the surface tension 
are of the order of 10“  ̂ Jm~^, which is several orders of magnitude smaller than 
the surface tensions encountered in molecular fluids 10“  ̂ Jm"^), but closer to, 
although somewhat larger than, the figures calculated for colloid-polymer mixtures 
by Brader and Evans [109] 10“® — 10“® Jm“^). Experimental and theoretical
results [110] for solid-liquid interfaces in hard sphere systems suggest a figure of 
around 10“  ̂ Jm“  ̂ for hard spheres of diameter 100 nm. Larsen and Grier [27] 
used their observations of metastable colloidal crystallites to estimate a lower limit 
of ~  10“® Jm“  ̂ for charged colloidal particles of radius 326 nm. Our results for 
C =  22.0 suggest a figure of around 5 x 10“  ̂ Jm“  ̂ for macroions of this radius, 
so the Larsen and Grier experiments may have been undertaken very close to the 
critical point (( < 22).
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8.5 Modification of classical nucléation theory

Examination of the classical expressions for i* and AF* given in equation (7.24) 
reveals a problem: since both Afb and i* are nonzero at the spinodal, AF* will 
also be nonzero here, which disagrees with results from density functional theory 
[111, 112]. Intuitively, also, AF* should go to zero at the spinodal, since the vapour 
at this point should be unstable against arbitrarily small density fluctuations. It 
is not surprising that classical nucléation theory is unreliable, since a liquid cluster 
containing only a small number of particles does not really resemble a macroscopic 
droplet with a well-deflned surface. We shall apply a simple phenomenological cor­
rection which is due to McGraw and Laaksonen [113] and to Talanquer [?]. This 
assumes that, while i* continues to be expressed by equation (7.23), AF* contains 
a correction term which depends only on the temperature:

AF* =  -^ A /ii*  +  D(T). (8.23)

The correction term D{T) is evaluated by requiring that AF* vanishes at the spin­
odal, which gives

D(T) = (8.24)

where and are equal to A ft  and the critical cluster size, respectively,
evaluated at the spinodal. Thus, the corrected expression for the critical work of 
formation is

AF* =  - i ( A A r - A / j * V " ’). (8.25)

In the next section we shall use (8.25) to calculate some nucléation rates in colloidal 
systems.

8.6 Nucléation in colloidal systems

When the dependence of the surface tension on the densities of the phases is known, 
we can calculate the critical size of a liquidlike cluster using equation (7.23) and the 
work of formation of the critical cluster using (8.25). Figures 8.5 and 8.6 show the 
variation of the critical size as a function of colloid volume fraction (and therefore 
of ‘distance’ into the metastable region) for macroions of radius a =  50 nm and 
various surface charges. Figure 8.6 is a magniflcation of flgure 8.5. The critical size
is infinite at the binodal, and falls rapidly as we move further into the metastable
region. The critical size also increases as the macroion charge decreases towards the
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Figure 8.5: Critical cluster size i* as a function of the volume fraction of the 
metastable vapour, for colloidal particles of radius a =  50 nm under conditions 
of zero added salt.

critical point [\Z\ = 1070). This is in line with the results of a recent investigation 
of the critical size at the approach to the spinodal in molecular systems by Anisimov 
et al. [115].

Figures 8.7 and 8.8 show the barrier to nucléation of the critical cluster (figure 
8.8 is a magnification of figure 8.7). The barrier is infinite at the binodal, and falls 
steeply as we move further into the metastable region, reaching zero at the spinodal. 
Of course, we have modified classical nucléation theory to ensure that the barrier is 
zero at the spinodal; otherwise, it could easily be of the order 10  ̂— 10  ̂ ksT .

The calculated nucléation rate (number of critical clusters formed per second) 
is illustrated in figure 8.9. This uses the nucléation rate from equation (7.2), where 
AF* is given by equation (8.25) and the prefactor Jo comes from classical nucléation 
theory [116]:

where and rii are the number densities of particles in the homogeneous metastable 
vapour and the liquid state, respectively, and the mass m of a particle is calculated 
by assuming the colloidal particles to have the same density as water. Like the
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Figure 8.6: Critical cluster size i* as a function of the volume fraction of the 
metastable vapour, for colloidal particles of radius a =  50 nm under conditions 
of zero added salt.

work of formation, the homogeneous nucléation rate depends very steeply on the 
location within the metastable region of the homogeneous system prior to phase 
separation. In most of the metastable region, the nucléation rate is so small that the 
process would not occur on an observable timescale. It is only in a small region that 
nucléation rates are in the vicinity of In J  =  0, allowing the progress of the nucléation 
process to be observed as it was (for crystals nucleating from a metastable fluid and 
voids nucleating from a metastable crystal) by Yoshida et al. For \Z\ =  1100 the 
critical cluster size when In J  «  0 is of the order of 10 ,̂ which is large enough for the 
assumptions underlying classical nucléation theory to be reasonable. For \Z\ =  1200, 
this critical cluster size is of the order of 50, and classical nucléation theory begins 
to appear implausible. If the macroion surface charge were larger than this, there 
would be no reason to think that an observed homogeneous nucléation process could 
be described using the classical theory, since it would involve critical clusters too 
small to be regarded as liquidlike droplets with surfaces.

The upper limit of the nucléation rate would be limited by the rate at which 
colloidal particles can diffuse, and would not be well described by classical nucléation 
theory.
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Figure 8.7: Nucléation barrier AF* of the critical cluster as a function of the volume 
fraction 77 of the metastable vapour, for colloidal particles of radius a =  50 nm and 
various charges, under conditions of zero added salt. The range of values of 77 spans 
the binodal-spinodal range.

8.7 The Swiss Cheese effect

Finally, we shall discuss the ‘Swiss cheese effect’ (see figure 2.2) with reference 
to nucléation theory. The initial disordered state is metastable with respect to a 
solidlike state, which is itself metastable with respect to the final phase separated 
state comprising a solidlike state of slightly higher density together with voids or a 
gaslike state. The initial state lies in a region of the phase diagram where the most 
thermodynamically favourable single phase is solidlike, and this solidlike phase can 
nucleate fairly quickly (on a timescale of seconds to minutes): the initial liquidlike 
phase and the nucleating solidlike phase have similar densities and therefore the 
surface tension of their interface is small. The fact that the metastable crystallites 
appear to grow from clusters in the bulk of the suspension demonstrates that the 
process of homogeneous nucléation is taking place.

The nucléation of the voids or gaslike regions within the metastable solidlike 
phase is a much slower process, because the large difference in the densities of 
the two phases leads to a relatively large surface tension, and therefore to a large
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Figure 8.8: Nucléation barrier AF* of the critical cluster as a function of the volume 
fraction of the metastable vapour, for colloidal particles of radius a =  50 nm under 
conditions of zero added salt.

barrier to nucléation. There is evidence of both homogeneous (in the interiors of 
the crystals) and heterogeneous nucléation here: the heterogeneous nucléation takes 
place at the interfaces between crystals and is the cause of the gaps which form 
between them. This process happens because particles at the interface are already 
thermodynamically ‘disadvantaged’ by the presence of the interface, and so the 
additional free energy required to form the surface of a void is smaller them it is 
in the bulk. However, the heterogeneous micleation is not so much more favoured 
that it preempts homogeneous nucléation and prevents it from being observed; if 
this were the case, the ‘cheese’ would have no holes in it.

There is another mechanism that could contribute to the appearance of the 
gaslike regions at the interfaces of the crystals: small ‘bubbles’ of gaslike phase, 
formed by homogeneous nucléation, could diffuse to an interface from the body of 
a crystal. This process is thermodynamically favourable since it reduces the surface 
area of the crystal. However, we cannot attribute the formation of the gaslike regions 
at the interfaces entirely to this mechanism; if homogeneous nucléation occurs in the 
interior of the crystals, heterogeneous nucléation at the interfaces seems inevitable, 
since it is by definition a faster process than homogeneous nucléation.
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Figure 8.9: Natural logarithm In J  of the nucléation rate, as a function of volume 
fraction, for colloidal particles of radius a =  50 nm under conditions of zero added 
salt. J  has units of m“^s“ .̂

It can be seen from figure 8.9 that the rate of homogeneous nucléation is vanish­
ingly small in most of the metastable region, so that in practice the process would 
only be observed in a small part of the region. This is not just a feature of colloidal 
systems: it results from the exponential dependence of the nucléation rate on the 
work of formation of the critical cluster, and applies also to simple fiuids. However, 
in simple fluids the process of homogeneous nucléation is usually preempted by het­
erogeneous nucléation (because the roughness on the molecular scale of the surfaces 
of impurities and of the walls of the container provides highly advantageous sites 
for heterogeneous nucléation), so that a metastable state is unlikely to endure for 
long. It was argued, in the introduction to this chapter, that this should not be the 
case for colloidal systems, and the experimental results of Yoshida et al. support 
this conclusion.

Unless heterogeneous nucléation were much faster than homogeneous nucléation 
in a particular colloidal suspension, metastable states in most of the metastable 
region would, to all intents and purposes, be stable: phase separation would not 
be seen to occur on any experimentally accessible timescale. Thus, consideration 
of surfaces and non-equilibrium processes would be essential to the study of these
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systems. Even an exact calculation of the equilibrium phase diagram would be an 
incomplete description of the phase behaviour: only a calculation of the nucléation 
rates could tell us which phase separated states would be observed in practice. These 
conclusions suggest that the simulations of Linse and Lobaskin [68, 69], who failed 
to find phase separation in a charged colloidal system, are not conclusive. In most 
parts of the metastable region, simulations would have to run for an extremely long 
time before evidence of phase separation was detected.

However, the Yoshida experiments suggest a mechanism by which phase separa­
tion could occur even if direct homogeneous nucléation were too slow a process to be 
observable, even if there were no possibility of heterogeneous nucléation at the walls 
of the container. If the system is in a region of the phase diagram where the most 
stable state of homogeneous density is solidlike rather than disordered, an initially 
disordered state will tend to change to the solidlike state, and this will happen much 
more easily than the phase separation into a dense and a rarefied phase. The com­
peting crystals which result from this first nucléation process will leave interfaces at 
which heterogeneous nucléation might take place, although in this particular system 
the process is not significantly faster than homogeneous nucléation.
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Chapter 9

Conclusions

9.1 Colloidal stability

It has been shown in this thesis that an expression for the Helmholtz free energy, 
calculated by direct solution of the linearised Poisson-Boltzmann equation for a 
system containing a large number of macroions, leads to a prediction of phase sep­
aration into a dense and a rarefied phase for certain values of the macroion charge 
and radius. It has become clear from the work presented in this thesis and from 
the work of other authors [53, 62] that the theory of the stability of charged col­
loids needs revision, and that the DLVO picture of this phenomenon is no longer 
tenable. The picture that is emerging involves cohesive electrostatic effects and re­
pulsive counterion entropy effects: the electrostatic contribution to the free energy 
pushes the system towards coagulation, while the counterion entropy is responsible 
for its stability. This permits an interpretation equivalent to that applied to the 
same phenomenon in simple fluids. The situation is complicated, however, since the 
dependence of the counterion density, and hence entropy, on the macroion density is 
a result of requiring that each part of the system be charge neutral - in other words, 
a result of electrostatic effects.

While the prediction of electrostatic cohesion and phase coexistence on the ba­
sis of the mean field Poisson-Boltzmann theory does not actually prove that the 
phenomena are genuine and are not merely a result of the effect of impurities, it 
strengthens the case for phase coexistence. The theoretical predictions are in qualita­
tive agreement with experiment, notably in the fact that coexistence between dense 
and rarefied phases appears only at low salt concentrations and at high macroion 
charges. Disagreement with theory (that is, with the DLVO theory) is probably the 
strongest factor in any reluctance to accept these experimental results at face value. 
But the present work and other recent theoretical treatments suggest that, if such
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phenomena had not been observed, they should be predicted and sought after on 
the basis of theory.

Indeed, in some ways it is unnecessary to do these calculations in order to make 
this prediction. Physical insight should tell us that the lowest energy configuration 
for the electrostatic fields will occur when the particles are aggregated. Of course, 
the existence of an electrostatic attraction does not automatically imply phase co­
existence. Theories that apply the linearised model do so in the belief that the 
qualitative behaviour they predict would carry through to the nonlinear model. But 
it is at least conceivable that the repulsive effect of counterion entropy would always 
outweigh the electrostatic attraction in the nonlinear system, as it does below a cer­
tain macroion charge in the linear system. Therefore, the development of nonlinear 
approaches to these systems will be essential in the future.

A number of new predictions have been introduced by the present theoretical 
treatment. The occurrence or non-occurrence of phase coexistence is shown to de­
pend approximately on the ratio of the macroion charge to the macroion radius, 
with coexistence appearing above a critical value of this ratio. This conclusion 
is similar, although not identical, to that of Ise et al. [2], who suggested that the 
macroion surface charge density was the important parameter. The liquid-gas phase 
coexistence is predicted to persist at zero salt, and a ‘reverse Donnan effect’ is pre­
dicted, with the added salt being denser in the macroion-rich phase under some 
conditions. All of these predictions could be tested experimentally. We have also 
shown that the predicted phase coexistence is not simply an artefact of assuming 
constant macroion charge, as it persists when a simple model for the dissociation at 
the macroion surfaces is introduced.

Where does this leave DLVO theory? These conclusions were reached within 
linearised Poisson-Boltzmann theory, which is a mean field theory and makes the 
same physical assumptions as the DLVO theory. We conclude that, when applied to 
colloidal stability, the DLVO theory is incorrect: its failure to take into account the 
link between the macroion and counterion densities leads to the neglect of important 
contributions to the free energy and the misinterpretation of the pair term as a 
repulsive potential. Any agreement with experimental results on colloidal stability 
must be ascribed to coincidence: DLVO theory was derived theoretically [3] on the 
basis of electrostatics and thermodynamics, and it is now clear that this derivation 
cannot be justified.

However, it is important to realise that, although it should not be applied to sta­
bility against coagulation, DLVO theory is correct for a wide variety of phenomena 
in colloidal systems. It is theoretically justifiable, and supported by experimental
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[16, 15] and simulation [48] results, for the interaction between an isolated pair of 
colloidal particles or surfaces. In dispersions containing a large number of particles, 
it predicts the existence of solid and liquid phases of similar density [22], and sim­
ulation results have shown that a colloidal particle surrounded by fixed particles in 
a suspension will experience forces that are described well by DLVO theory [50]. 
In fact, the theory fails only in the description of phenomena that involve density 
changes in the whole of a dispersion: that is, in the description of stability against 
coagulation or solid- or liquid-gas phase coexistence. This is clearly a significant 
failure, as DLVO theory was originally created to explain colloidal stability (which 
is also the main subject of this thesis). However, DLVO theory can still safely and 
profitably be applied to many other phenomena.

Similarly, the Sogami-Ise theory is in error due to its failure to allow the counte­
rion density to vary with the macroion density. But the expressions derived for the 
Helmholtz free energy are valuable, as is the insight that the electrostatic interac­
tions are attractive rather than repulsive.

9 .2  Interfaces and nucléation

This thesis includes the first theoretical estimates of surface tension in charged col­
loidal suspensions, calculated using density functional theory in the square gradient 
approximation. The calculated values are of a reasonable order of magnitude, and 
approach zero, as expected, as the critical macroion surface charge is approached. 
Knowledge of the surface tension allows the characteristics of the critical cluster, 
and therefore also the rate of homogeneous nucléation, to be calculated, at least 
within classical nucléation theory. The results emphasise the fact that the homo­
geneous nucléation rate depends very steeply on the conditions, so that, in large 
parts of the metastable region, homogeneous nucléation would not be observed on 
any practical timescale. Physical arguments and experimental evidence suggest that 
heterogeneous nucléation is not significantly faster than homogeneous nucléation in 
many colloidal systems; in this case, phase separation might never occur in large 
parts of the metastable region, and the calculation of nucléation rates would then 
be as important as equilibrium calculations in the theoretical prediction of phase 
coexistence. Therefore, simulations which fail to find evidence of phase separation 
are inconclusive.

The ‘Swiss Cheese effect’ observed by Yoshida et al. [4] can be explained qual­
itatively in the context of nucléation theory. The initial formation of competing 
metastable crystals from a metastable liquidlike phase is evidence of homogeneous
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nucléation, while the subsequent formation of gaslike regions shows signs of both 
homogeneous and heterogeneous nucléation. The possibility of heterogeneous nuclé­
ation at the boundaries of metastable crystals suggests a mechanism by which phase 
separated states which are inaccessible by homogeneous nucléation might nonethe­
less be observed, even in the absence of other heterogeneous nucléation sites.
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