
Self-Motivated Planning in Autonomous Agents

Alexandra Margrit Coddington

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of the

University of London.

Department of Computer Science

University College London

2001

ProQuest Number: U643309

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U643309

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

This thesis describes research which is concerned principally with the design of a plan­

ning/execution architecture to be used within an autonomous motivated agent situated

within a real world environment. To further its aims, such an agent is capable of generat­

ing its own goals and of planning and acting to achieve those goals in real or simulated

time. Research in planning tends to assume that goals are externally generated by a

human operator and that planning is complete once all outstanding goals have been

achieved. Because our agent is able to continually generate its own goals, planning may

never be complete which means planning and execution are ongoing activities. In addi­

tion, constraints upon time may mean it is not possible for the agent to achieve all goals.

The agent must therefore be able to both reason about time (in particular the durations of

actions) and prioritise its goals.

A prototype planning/execution architecture designed to address these issues is

described. The proposed architecture extends the classical planning framework to take

into account both the context of the agent (where context may be interpreted as a func­

tion of both the perceived external environment and the internal state of the agent), and

problems associated with planning and acting in real time. We argue that context, cap­

tured by modelling the motivations of an agent situated within an environment, plays an

important role in the generation of goals and enables the agent to determine the impor­

tance of such goals. A crucial component of the planning/execution architecture is a tem­

poral manager which enables the agent to reason about whether or not there is sufficient

time available to execute all of the actions within a partial plan and to calculate deadlines

for actions and outstanding goals. The importance and deadlines associated with goals

enables the agent to prioritise those goals so that should there be insufficient time to

achieve all goals, the agent can abandon some goals in favour of others. The architecture

also demonstrates how modelling the motivations of an agent provides an effective

means for evaluating and selecting partial plans. Finally, the architecture enables the

agent to “execute” actions and to cope with unpredictable changes that may occur within

its environment.

Acknowledgements

I would like to thank my supervisor, Maria Fox, for her support and encouragement. In

addition, I thank Michael Luck, for his friendship and support, inspiration, and for the

many hours spent discussing this thesis.

My close friends, Paul Archbold, Bridget Carey and Simon Webster, my sister-in-

law, Kathryn, my brother, Peter, my nephews, Sebastian and Conor, and my parents,

Alan and Marianne, have provided much love and friendship over the years.

Finally I would like to thank Jay Smith for his love and for helping me meet the

deadline for this thesis.

This research was carried out with the help of a Science and Engineering Research

Council studentship.

Contents

Chapter 1

Introduction 13

1.1 Introduction ...13

1.2 P lanning ... 15

1.2.1 What is planning?.. 15

1.2.2 An exam ple...17

1.2.3 Recent developments in planning...17

1.3 Weaknesses of Current Planning Technology.. 19

1.4 Aims and M otivation..20

1.5 The A gent...20

1.5.1 Capability.. 20

1.5.2 The agent and the environment...22

1.5.3 Tim e...23

1.5.4 Context .. 24

1.5.5 Plan failure and recovery... 25

1.5.6 Sum m ary.. 25

1.6 Contributions of this T hesis... 26

1.7 Thesis Overview .. 26

Chapter 2

An Overview of the Architecture 28

2.1 Introduction ...28

2.2 The Planning Architecture... 30

2.2.1 Components of the system... 30

2.2.2 Interaction of components... 31

2.2.3 M otivations.. 33

2.2.4 Generating and updating goals...35

2.2.5 Choosing whether to plan or execute.. 38

2.2.6 Planning to achieve goals...38

2.3 Summary ...47

Chapter 3

The Control of the System 48

3.1 Introduction 48

3.2 The Control of the System ... 48

3.2.1 What causes motivations to change?.. 48

3.2.2 Generating/updating goals ...51

3.2.3 When to update the motivations and generate/update g o a ls 51

3.3 Interleaving Planning and Execution...56

3.4 The Control Implementation ... 57

3.5 Other Related W o rk .. 59

3.5.1 S ag e ...59

3.5.2 The Remote Agent architecture...61

3.6 Summary ...63

Chapter 4

Choosing Whether to Plan or to Execute 65

4.1 Introduction .. .-........................65

4.2 Representations .. 65

4.2.1 Introduction.. 65

4.2.2 M otivations.. 67

4.2.3 Actions...67

4.2.4 G o a ls ...68

4.2.5 N odes...69

4.2.6 Plans...70

4.3 The Domain Description Language...71

4.3.1 Operator schemas (action templates).. 71

4.3.2 M otivations.. 72

4.3.3 G o a ls ...72

4.3.4 The partial p la n ..72

4.3.5 Look-up tables.. 72

4.3.6 The current tim e..73

4.3.7 Discussion.. 73

4.4 The Truck World Domain ... 73

4.4.1 A description of the initial state of the truck world dom ain75

4.4.2 A description of the g o a l..76

4.4.3 The operator schemas/action templates...76

4.4.4 The agent’s motivations..77

4.4.5 Values indicating duration..77

4.4.6 Values indicating the degree of support...78

4.4.7 Sum m ary...79

4.5 Choosing to Plan or to Execute ..79

4.5.1 Importance...80

4.5.2 E ffo rt... 82

4.5.3 The importance and effort of actions and subgoals..............................82

4.5.4 Importance and urgency..84

4.5.5 Deadlines...84

4.5.6 Choosing whether to plan or execute - the algorithm 84

4.6 E xam ple...85

4.6.1 An exam ple.. 85

4.7 Discussion ...86

4.8 Summary ...87

Chapter 5

Planning to Achieve a Goal - Part 1 88

5.1 Introduction ...88

5.2 Achieving a G o a l .. 91

5.2.1 Introduction...91

5.2.2 Estimating duration.. 93

5.2.3 Estimating the degree of support... 95

5.2.4 Maintaining a record of the goals to which an action contributes 96

5.2.5 Calculating the importance of actions...98

5.2.6 Calculating effort.. 98

5.2.7 Step addition.. 99

5.2.8 Simple establishment..103

5.3 Conflict Resolution .. 108

5.3.1 Updating the value effort associated with g o a ls108

5.3.2 Updating the values pros, cons and duration.. 108

5.4 A Truck World Example .. 108

5.4.1 Achieving a g o a l .. 108

5.4.2 Another example of achieving a g o a l ...112

5.5 Summary ... 117

Chapter 6

Planning to Achieve a Goal - Part 2 118

6.1 Introduction ... 118

6.2 Estimating the Deadlines of A ctions... 118

6.2.1 Introduction...118

6.2.2 An algorithm that enables deadlines to be assigned to actions 120

6.2.3 Problems with the algorithm... 124

6.2.4 An exam ple...125

6.2.5 A truck-world domain example... 131

6.2.6 Another truck-world domain example...132

6.2.7 Implementing DEVISER window compression routines.....................133

6.2.8 Other related w ork.. 134

6.3 Editing a Partial P la n .. 134

6.3.1 Introduction...134

6.3.2 An exam ple...137

6.3.3 A truck world domain example... 137

6.3.4 Discussion...138

6.4 Evaluating Partial P la n s .. 138

6.4.1 Introduction...138

6.4.2 Evaluating partial p lans..139

6.4.3 Examples of the degree to which actions support motivations 141

6.4.4 The algorithm used to evaluate partial p lans..142

6.4.5 A truck world example..144

6.4.6 Discussion...146

6.5 Summary ... 147

Chapter 7

Execution and Recovery 148

7.1 Introduction ...148

7.2 Executing an action .. 151

7.2.1 Updating the agent’s model of the environment....................................151

7.2.2 Updating the time.. 151

7.2.3 Updating the set of actions... 152

7.2.4 Updating binding, temporal and persistence constraints.......................152

7.2.5 Removing goals which have been achieved..153

7.2.6 Updating the search space of partial plans.. 153

7.2.7 A truck world domain example... 155

7.3 The Recovery Component..157

7.3.1 An example of execution failure - the parcel fails to load.....................158

7.3.2 Another example - execution takes longer than expected.....................161

7.3.3 Discussion...164

7.4 Updating the Motivations.. 165

7.5 Generate/Update Goals .. 166

7.6 Summary ... 168

Chapter 8

Conclusions 169

8.1 Introduction ...169

8.2 Evaluation ... 169

8.2.1 Introduction...169

8.2.2 Efficiency...170

8.2.3 Rationality...171

8.2.4 Generality...172

8.3 Limitations... 173

8.3.1 A situated agent.. 173

8.3.2 Why use SNLP?.. 173

8.4 Contributions...175

8.4.1 A prototype rational system... 175

8.4.2 Reflective evaluation..179

8.5 Future W o rk ...180

8.6 Conclusions ...180

Bibliography 182

List of Figures

L IA Warehouse Environment.. 13

1.2 A Blocks World Problem .. 16

2.1 The Planning/Execution System... 31

2.2 The Goal Achievement Process..39

3.1 An Alternative Control Strategy..52

4.1 The Truck World Domain..74

5.1 A Partial P la n ... 97

5.2 A Partial Plan following Step A ddition.. 101

5.3 A Partial Plan following Simple Establishment..105

7.1 Executing an A ction...149

10

List of Tables
1.1 Operator schem as...15

1.2 A plan to achieve a g o a l.. 17

3.1 The planning/execution architecture ..58

3.2 Sage - algorithm for planning and execution.. 60

3.3 Top-level execution loop for the NMRA architecture..63

4.1 The initial state of the truck world domain ... 75

4.2 The initial p la n ...75

4.3 The first goal ... 76

4.4 Action templates/operator schemas for the truck world dom ain76

4.5 The truck-driver’s motivations..77

4.6 Values indicating duration..77

4.7 Values indicating the degree of support of each ac tio n ..78

4.8 Choosing whether to plan or to execute... 85

4.9 The goal and action ...86

5.1 Planning to achieve a goal/subgoal ..90

5.2 Assigning durations to actions..94

5.3 Assigning pros and cons to actions ..95

5.4 Extensions to the step addition procedure... 100

5.5 Extensions to the simple establishment procedure .. 103

5.6 Actions used to achieve the goal at(package c ity 5).. 109

5.7 Actions used to achieve the goal at(package c ity 5).. 110

5.8 Actions used to achieve the goal at(package c ity 5).. 110

5.9 Plan which achieves the goal at(package city5)...I l l

5.10 Plan 2 - following execution of drive-truck(truck city3 city4) 112

5.11 Initial action for Plan 2 .. 113

5.12 The second g o a l ...113

5.13 Actions for Plan 3 ...114

5.14 Actions for Plan 3 ...114

11

5.15 Actions for Plan 3 ...115

5.16 Plan 3 which achieves the goal at(parcel c ity5)...116

6.1 Estimating the deadlines associated with actions their preconditions.................121

6.2 Algorithm A ..122

6.3 Algorithm B ..123

6.4 Ordering constraints...125

6.5 Goals and their deadlines.. 126

6.6 Actions and their durations .. 126

6.7 Deadlines assigned to actions .. 131

6.8 Deadlines are assigned to actions................................... 132

6.9 Deadlines are assigned to actions..132

6.10 The partial plan editing algorithm ..135

6.11 A partial plan prior to editing.. 136

6.12 The partial plan following ed itin g ..137

6.13 Evaluating partial plans .. 143

6.14 Plans to achieve at(package city5)..145

7.1 Executing an action ...150

7.2 Plan 4 following execution of drive-truck(truck city4 city2) 154

7.3 Initial action for Plan 4, time = 8 ..155

7.4 Initial action for Plan 5, time = 9 ..155

7.5 Plan 5 - load-truck(parcel truck city2) goes as expected, time=9 156

7.6 Initial action for Plan 6, time = 9 (fail to load p arce l).. 159

7.7 New action for Plan 6 ...159

7.8 Plan 6 - load-truck(parcel truck city2) fa i ls ...160

7.9 Deadlines are assigned to actions..161

7.10 Initial action for Plan 7, time = 1 1 ..161

7.11 Plan 7 - load-truck(parcel truck city2) has been executed..................................162

7.12 Plan 8 - load-truck(parcel truck city2) takes longer than expected163

7.13 Deadlines are assigned to actions..164

7.14 Updating the motivations.. 166

12

Chapter 1

Introduction

1.1 Introduction

There are many aspects to intelligent behaviour. Of these aspects, perhaps the most

important is the ability to reason about the world in such a way that allows intelligent

agents to take actions that achieve their chosen aims or goals. This problem of designing

and following sequences of actions is the focus of a major branch of Artificial Intelli­

gence (AI) known as planning.

Room A
Capacity: 20
Env: Frozen

Room B
Capacity: 20
Env: Frozen

Room D
Capacity: 50
Env: Refrigerated

Loading Bay
Capacity: 50
Env: Room Temperature

Recharge I I
1 Point 1__ 1

O ffice^

Order I I
Book 1— 1

Room C
Capacity: 50
Env: Refrigerated

Room E
Capacity: 50
Env: Room Temperature

Disposal 1 1
Point 1— 1

Room F
Capacity: 100
Env: Room Temperature

Figure 1.1 A Warehouse Environment

The most vivid example of planning is the HSTS/Remote Agent planner [Muscettola 94]

which was used to generate plans during the Remote Agent Experiment [Muscettola et al

98] onboard the NASA Deep Space One spacecraft. This planner successfully generated

complex plans that included turns, observations, navigation, and other spacecraft opera-

13

tions, while taking into account limited resources, task durations and time limits. Figure

1.1 illustrates a simple warehouse environment developed by [Norman 97] which is

inhabited by two or more warehouse agents.

The warehouse environment consists of a number of rooms with doors between

those rooms. Each room has two characteristics: capacity - which determines how many

units of stock can be stored in the room; and the type of storage environment that the

room provides - this may be either frozen, refrigerated or at room temperature.

The type of storage environment governs the type of commodity that can be stored in

the room. For example. Room A can hold 20 units of stock and is kept at a temperature a

few degrees below freezing which makes it suitable for the storage of frozen goods such

as frozen peas but unsuitable for the storage of commodities such as vegetables. The

delivery of goods from suppliers and the collection of orders by customers is done

through the loading bay, which is used for the temporary storage of delivered goods

(from suppliers) and for the preparation of orders that are to be collected by customers.

The office contains an order book and a recharge point used by the warehouse agents to

recharge their batteries. The warehouse also contains a disposal point (in Room F) which

is used to dispose of commodities that are past their sell-by date.

The warehouse agents are responsible for running and maintaining the warehouse

which involves performing the following tasks.

1. Preparing orders for customers. Customers send requests for orders (indicating

which types of commodity, the amount required, together with a deadline indicat­

ing when they wish to receive their order) via the order book. Preparing an order

involves fetching the appropriate commodities from the storage rooms and placing

them in the loading bay in time for collection by the customer.

2. Restocking the warehouse - the warehouse agents must ensure there is sufficient

stock available in the warehouse. This task involves ordering new stock from sup­

pliers, and, when that stock is delivered to the loading bay, moving the stock into

the appropriate storage environment.

3. Disposing of old stock - if stock is not sold before its sell-by date, the warehouse

agents must dispose of that stock at the disposal point in Room F.

4. Recharging batteries - the warehouse agents consume battery power as they move

around the warehouse environment and must therefore periodically recharge their

batteries.

14

It can be seen that in order to run the warehouse efficiently, the warehouse agents

need to be able to plan a sequence of activities. For example, the warehouse agents need

to plan to ensure they have sufficient battery power in order to prepare orders or to stock

shelves, and that there is enough stock in the warehouse to satisfy orders. The design of a

planning component suitable for use by agents such as the warehouse agents is the focus

of research addressed in this thesis.

1.2 Planning

1.2.1 What is planning?

Table 1.1 Operator schemas

name: stack(?x ?y)

precondition: holding(?x) &
clear(?y)

delete: holding(?x) &
clear(?y)

add: on(?x ?y) &
armempty

name: unstack(?x ?y)

precondition: on(?x ?y) &
clear(?x) &
armempty

delete: on(?x ?y) &
armempty

add: holding(?x) &
clear(?y)

name: putdown(?x)

precondition: holding(?x)

delete: holding(?x)

add: ontable(?x) &
armempty

name: pickup(?x)

precondition: ontable(?x) &
clear(?x) &
armempty

delete: ontable(?x) &
armempty

add: holding(?x)

In essence, planning is the process of formulating a sequence of actions that, when exe­

cuted, will achieve a goal. Any planning agent will be able to perform a certain set of

actions within its competence. For example, a robot may be able to pick things up or put

things down, move forwards, turn, and so on. These are the actions which it must organ­

ise into a plan for achieving some state of the world or goal, such as moving and stacking

crates in one comer of a warehouse. A goal is simply a description of some state of the

world that is to be achieved. A simple formulation of the planning process requires three

inputs [Weld 99].

15

1. A description of the initial state of the world.

2. A description of the agent’s goal.

3. A description of the possible actions that can be performed by the agent.

^arm

armempty &
on (B A) &
ontable(A) &
ontable(C) &
ontable(D) &
clear(B) &
clear(C) &
clear(D)

on(C A) &
on(B D)

^arm

B

D

B

D

(a) Initial State (b) Goal

Figure 1.2 A Blocks World Problem

The planner’s output is a sequence of actions which, when executed in any world sat­

isfying the initial state description, will achieve the goal. A variety of languages such as

prepositional logic or first order predicate calculus may be used to describe/represent the

initial state of the world, the goal and the possible actions. Many planning algorithms use

the representation developed for use by STRIPS [Pikes & Nilsson 71] (STanford

Research Institute Problem Solver), an influential planner built in the 1970s to control a

mobile robot. In the representation used by STRIPS, the initial state of the world is

described as a complete set of ground literals while the agent’s goal is described as a

prepositional conjunction. Each possible action is described using a conjunctive precon­

dition, representing the facts which must be true in the current state of the world in order

to execute the action, and a conjunctive ejfect, which represents facts which are no longer

true (a conjunction of propositions known as delete propositions) as well as facts which

become true (a conjunction of propositions known as add propositions) once the action

has been executed. Each action therefore describes a transition function mapping one

state or world to another - an action can be executed in any state/world s satisfying its

precondition while the resulting state/world (i.e. the state/world that arises once the

action has been executed) is described by removing/deleting the action’s delete proposi-

16

tions from s and adding the action’s add propositions to s. For example, in order to per­

form the activity of stacking some block ?x onto some block ?y (see stack(?x ?y) in table

1.1), the agent must be holding ?x and ?y must be clear (this is the precondition). Once

the action has been executed, the agent is no longer holding ?x and ?y is no longer clear

(these are the delete effects), ?x is now on ?y and the agent’s arm is empty (these are the

add effects).

1.2.2 An example

A typical toy planning problem, related to the the warehouse example above, involves

the manipulation of toy blocks on a tabletop. Figure 1.2 shows the current or initial state

on the left, and the desired goal state on the right. The planning agent is capable of per­

forming four types of action shown in table 1.1 (these are known as operator schemas or

action templates) which involve stacking some block ?x onto some block ?y, unstacking

some block ?x from some block ?y, putting some block ?x onto the table, and picking up

some block ?x off the table {?x and ?y are variables). The task of the planner is to con­

struct a plan using these operator schemas/action templates to achieve the goal of figure

1.2. Such a plan is shown in table 1.2. The planning problem is precisely this task of con­

structing such plans.

Table 1.2 A plan to achieve a goal

order: 1 2 3 4

name: unstack(B A) stack(B D) pickupi C) stack(C A)

precondition: on(B A) &
clear(B) &
armempty

holding(B) &
clear(D)

ontable(C) &
clear(C) &
armempty

holdingi C) &
clear(A)

delete: on(B A) &
armempty

holding(B) &
clear(D)

ontable(C) &
armempty

holdingi C) &
clear(A)

add: holding(B) &
clear(A)

on(B D) &
armempty

holding(C) on(C A &
armempty

1.2.3 Recent developments in planning

In 1995 Graphplan [Blum & Furst 97] was developed - this planner was significantly

more efficient than earlier classical planners such as STRIPS [Fikes & Nilsson 71],

NOAH [Sacerdoti 75], NONLIN [Tate 77], TWEAK [Chapman 87], SNLP [McAllester

17

& Rosenblitt 91] and UCPOP[Penberthy & Weld 92], which could only solve simple

problems containing a small number of actions. Since Graphplan, there have been a

number of significant developments in planning which we summarise in the following

sections.

The AIPS planning competitions

In 1998, the first planning competition was held at AIPS 98 (the 4th International Con­

ference on Artificial Intelligence Planning Systems) in which five planners competed to

determine how quickly and how optimally they could solve various benchmark prob­

lems. These planners were Blackbox [Kautz & Selman 99], IPP [Koeh]er et al 97], HSP

[Bonet & Geffner 99], STAN [Long & Fox 99] and SGP [Weld et al 98]. Three of these

planners, IPP, STAN and SGP, extended Graphplan in various ways to further increase

efficiency.

In 2000, AIPS 2000 held the second planning competition in which fifteen planners,

including improved versions of STAN and HSP (HSP-2), competed. The most notable

planners in this competition were FF ([Hoffmann & Nebel 00], [Hoffman 00]), TALplan-

ner [Doherty & Kvamstrom 99], and the improved version of STAN. FF is a domain-

independent, forward-chaining state space planner which uses several heuristic tech­

niques to guide its search - the main heuristic principle behind FF was originally devel­

oped for the HSP system which also took part in the AIPS competition. TALplanner is

based on ideas developed by Bacchus and Kabanza [Bacchus & Kabanza 98] in which

temporal logics were used to express search control knowledge for planning (these ideas

were implemented in the TLplan system [Bacchus & Kabanza 98]). TALplanner is

domain-dependent, however, which means that its performance relies upon hand-crafted

control rules.

Decision-theoretic planning

A large body of work has been undertaken by researchers investigating the problem of

planning under uncertainty. Many planning problems of interest to researchers in this

field have been modelled as Markov Decision Processes (MDPs) or as Partial Order

Markov Decision Processes (POMDPs). [Boutilier et al 99], and [Blythe 99] present a

detailed overview of work undertaken in this area.

18

1.3 Weaknesses of Current Planning Technology

A large body of work in planning (such as that described in the previous section) has

been concerned with developing fast, efficient algorithms which solve user-supplied

planning problems in an optimal manner. However, these planners still ignore many of

the issues which must be addressed for effective real-world planning, and which are ite­

mised below.

• Situatedness. Goals are independently posed to the planner by an external agent

(such as a user) and the planner is not situated within a real environment (i.e. the plan­

ner is computer-based). This means that there is no information available to the plan­

ner as to the circumstances that caused those goals to be generated. Such information

is potentially very valuable in constraining plan formulation which can be combina­

toric. [Brooks 86].

• Unpredictability. Classical planning assumes complete (or at least sufficient) knowl­

edge of the domain, and that changes in the world are brought about only by the plan­

ning agent. Moreover, it assumes perfect execution of plans, so that when the agent

executes actions within the plan, the outcome of those actions will be as intended.

These restrictions will not necessarily hold in real-world environments, where actions

may not result in the intended outcome and where other agents may change the world

unexpectedly. Classical planners are therefore brittle - the plans they produce cannot

easily adapt to unforeseen changes in the world or to unexpected outcome of action.

• Planning and Execution. Typically, once a plan is generated, one or more agents

must execute that plan to completion. However, if the world changes during either

planning or execution, the plan or parts of the plan may fail. In addition, with separate

planning and execution, all goals are presented simultaneously to the planner prior to

the start of plan construction, and no new goals may be incorporated into the plan

after that point.

• Execution Time. Classical planning has no notion of real time. It assumes that the

execution of an action is a function that instantaneously maps one state to the next.

However, in the real world actions take time to execute, and this may cause problems

for goals which must be achieved by some deadline.

• Embodiment. Heuristics governing the selection of partial plans for further refine­

ment take into account such factors as the number of outstanding goals, the number of

19

actions and the number of goals already achieved. However, the desires and prefer­

ences of the planning agent are not considered, but these may provide additional con­

straints that allow a better selection of the actions available to achieve a goal. This

relates strongly to the concerns of Brooks, for example, who argues that embodiment

is necessary for effective functioning in the real world [Brooks 86], [Brooks 91]. As a

consequence, all goals are treated with equal priority so that there is no notion of one

goal being more important than another.

1.4 Aims and Motivation

In response to the weaknesses of current planning technology identified above, this

research is concerned with the design of a planning/execution component to be incorpo­

rated onboard an autonomous motivated planning agent. We propose an architecture that

extends the classical planning framework to take into account the context of the agent

(where context may be interpreted as being a function of both the external environment

and the internal state of the agent), problems associated with planning and acting in real

time and problems associated with interleaving planning and execution within an unpre­

dictable environment. We argue that context, captured by modelling the motivations of an

agent situated within an environment, plays in important role in defining optimal plans.

In the following section we describe the properties required of a planning agent

(such as the warehouse agent) in order that it can act within its environment to achieve its

aims.

1.5 The Agent

1.5.1 Capability

Planning

The most important requirement of an agent is that it must be able to reason about its

environment in such a way that allows it to take action to achieve its chosen aims. To do

this, the agent must be able to generate and execute plans - this is the focus of the

research described in this thesis. For example, in the warehouse domain, the warehouse

agent must be able to generate and execute plans to enable it to satisfy order requests

from customers, to restock the warehouse, to recharge its batteries, and so on.

20

Sensors

The agent requires sensors in order to reason and act effectively within its environment.

It is assumed that the agent’s environment is accessible [Russell & Norvig 95] - this

means that the agent’s sensors are perfect (i.e. the sensors deliver data which is accurate)

and that they enable the agent to construct a sufficient (i.e. the sensors detect all aspects

of the environment that are relevant to the choice of action), accurate, symbolic represen­

tation of the agent’s environment. The agent’s sensors may, in addition, enable the agent

to perceive aspects of its own internal state (for example, the warehouse agent may be

able to monitor battery charge). However, the agent’s sensors only allow it to detect the

external state of objects or other agents within the environment. For example, a ware­

house agent can only perceive the external features of commodities such as frozen peas

or of other agents, and cannot perceive the internal workings of other agents.

Actuators

The agent must be capable of acting within its environment in such a way as to enable it

to achieve its goals. For example, the warehouse agent must be able to perform actions

such as picking stock up off shelves, placing stock on shelves, moving stock from one

location (such as the loading bay) to another location (such as Room B), recharging its

battery, disposing of out-of-date stock, and so on. When planning to achieve a set of

goals or aims, it is assumed that the agent’s actions are deterministic (i.e. that the out­

come of each action is known). For example, when the warehouse agent plans to pick up

some commodity, it is assumed that as a consequence of picking up that commodity, the

agent will be holding that commodity. However, when executing an action (as opposed to

when creating a plan which contains that action) such as picking up some commodity,

the actual outcome may not be the same as the predicted outcome. For example, the

warehouse agent may drop the commodity whilst picking it up off the shelf, or the time

taken to pick up the commodity may be longer or shorter than anticipated.

In addition, the work addressed in this thesis assumes that the agent cannot execute

more than one action in parallel.

Goal Autonomy

In order to further its aims, the agent should be able to generate goals in response to

immediate changes in the environment as well as to predictions about future changes that

21

may occur (the ability to plan gives the agent the means to predict what might happen in

the future as a consequence of executing that plan). Such goals may be generated to

enable the agent to prevent undesirable situations from occurring or to take advantage of

opportunities presented by the current situation or by future predicted situations. For

example, as a consequence of creating a plan which involves satisfying various order

requests, the agent can predict that at some point in the future the warehouse will run out

of some commodity. In response to this prediction, the warehouse agent might generate

the goal of restocking the warehouse with that commodity. If the agent perceives that

certain items of stock have become out-of-date, it might generate the goal of disposing of

such stock items.

Because the environment is constantly changing, the agent must continually generate

goals (the warehouse agent is continually generating goals in response to requests from

customers for example). Planning is therefore ongoing which means that planning and

acting must be interleaved.

In order to be effective, the agent must, in addition, be able to direct its attention to

goals that are most appropriate for action at any given moment. The agent may have mul­

tiple conflicting goals. For example, the warehouse agent must conserve battery power

whilst preparing an order in time for a customer. To deal with such conflicts, the agent

must be able to prioritise goals. As the environment changes, goals and their priorities

change which means that the agent must be able to alter its focus of attention (i.e. by

changing which goal it is presently acting on). If battery power is extremely low, it

becomes more important that the warehouse agent acts to recharge its battery. If battery

power is less low and the customer is important, it becomes more important that the

warehouse agent acts to prepare the customer’s order.

1.5.2 The agent and the environment

Situatedness

The agent must be situated within an environment. The warehouse agent is situated

within the warehouse environment - it interacts with that environment through sensors

and actuators and, to successfully achieve its aims, must respond to that environment in a

timely fashion.

22

Embodiment

The agent is grounded within an environment - it experiences that environment directly

through sensors and is capable of acting within that environment using its actuators. The

actions taken by the agent are part of a dynamic between the agent and its environment

and have immediate feedback on the agent’s sensations.

Unpredictability

The environment is not predictable to the agent. This may be due to various factors.

1. When executing an action, the actual outcome may differ from the predicted out­

come (as discussed above).

2. Other agents act in the environment - because the agent in question has only access

to the external state of other agents acting within the environment, the agent is una­

ble to predict the consequences of the activities of other agents. For example, there

may be several other agents of differing capabilities acting within the environment,

but because the agent does not have knowledge of the capabilities of these agents, it

will be unable to predict how they might act and change the environment. In the

warehouse domain, another warehouse agent might be occupying the battery

recharge point, thereby causing it to be unavailable.

3. Physical processes occurring within the environment may cause changes to that

environment (for example, an ice cube will melt if it is exposed to a temperature

greater than 0° Celcius) - the agent can only predict the consequences of physical

processes if it has knowledge of such processes.

1.5.3 Time

The agent should plan and act in real or simulated time. Time passes (and the environ­

ment may change) while the agent both deliberates and acts. Constrained by passing

time, it may not be possible for the agent to achieve all of its goals within the time avail­

able. In order to be effective, the agent must be able to prioritise goals. For example, the

warehouse agent may have two goals which involve preparing two orders for two differ­

ent customers. Due to time constraints, it may not be possible to prepare both orders in

time to meet their deadlines. One customer may be a long-valued customer whilst the

other may be unreliable (i.e. they may not yet have paid for a previous order) in which

case the first customer’s order may take priority.

23

1.5.4 Context

The context of the agent is important as it constrains the goals that the agent might gener­

ate, enables the agent to prioritise those goals, and constrains the plan selection process.

Depending on context, the agent may wish to prioritise goals and allocate its resources

accordingly (more resources are likely to be devoted to the achievement of high priority

goals). The context of an agent is determined by the following factors.

• The agent’s capabilities - this includes the actions the agent is capable of performing.

• The environment in which the agent is placed - this includes the current state of the

environment (including the agent’s internal state) as perceived by the agent as well as

predicted future states of the environment.

• The agent’s desires or preferences which are captured by modelling the agent’s moti­

vations. A motivation is any desire or preference which affects the outcome of a given

reasoning task [Kunda 90] (motivations will be discussed further in chapter 2, section

2.2.3).

For example, the context of the warehouse agent constrains which goals the agent

might generate. Firstly, the warehouse agent will generate goals it is capable of achieving

- these are goals which require actions that it is capable of performing (there is no point

generating a goal which involves flying if the agent cannot fly). Secondly, goals may be

generated in response to changes within the environment - for example, if the warehouse

agent perceives certain commodities to be past their sell-by date, it may generate the goal

of disposing of such commodities. In addition, goals may be generated in response to

predicted future states of the environment - for example, if the agent predicts (on the

basis of customer orders) that in the future it will run out of certain commodities, it will

generate the goal of replenishing such commodities. Finally, goals may be generated

partly in order to fulfil the warehouse agent’s desires - for example, the warehouse agent

may desire to satisfy as many order requests as possible in order to maximise profits.

In addition, context enables the agent to prioritise goals. The warehouse agent may

attach a higher priority to fulfilling one customer’s order request than another, simply

because it might prefer the first customer, the first customer is a long-standing regular

customer, or the first customer is more reliable (these constitute the warehouse agent’s

preferences). Changes in the environment, such as changes in the agent’s power supply,

might cause the agent to attach a high (or low) priority to the goal of recharging its bat-

24

tery.

Finally, context constrains which plan the agent chooses to follow. For example, the

warehouse agent might choose one plan in favour of another as it contains actions which

conserve battery power, and which satisfy a large number of high priority orders.

1.5.5 Plan failure and recovery

Whilst acting within an environment, an agent may fail to achieve some of its goals or

objectives. This may occur simply because there is insufficient time available or as a con­

sequence of the environment being unpredictable. When executing an action, the out­

come of execution may not be as predicted - the action may take longer to execute than

expected, or may result in unintended effects. In addition, other agents or physical pro­

cesses may cause unforeseen changes. Such unpredicted changes may undermine the

agent’s attempts to achieve its goals. An unforeseen change to the environment may

mean that the agent is no longer able to achieve one or more of its goals simply because

there is not enough time.

The agent should have the ability to detect when unforeseen changes to the environ­

ment may undermine its attempts to achieve its objectives, and to recover from such

changes by replanning. If there is insufficient time available to achieve one or more

goals, the agent should have the ability to recover by abandoning these goals and focus­

sing attention on its remaining goals.

1.5.6 Summary

The agent should be able to generate and prioritise goals and generate plans to achieve

those goals. However, because the agent is able to prioritise goals, it may devote more

resources to ensuring the achievement of goals of higher priority which means there is a

greater chance that such goals will be achieved. Nevertheless, due to time constraints, the

agent cannot be guaranteed to achieve even high priority goals, and will therefore not be

very effective within safety-critical domains or within any domain where it is essential

that goals are achieved. In addition, because planning and acting are interleaved we can­

not guarantee the agent will come up with optimal solutions when achieving goals. In

order to guarantee optimal solutions to planning problems it is essential the planning

component is presented at the outset of planning with the goals it must achieve. The

agent we propose might begin planning to achieve a goal, and, whilst planning, be pre­

25

sen ted with new goals. We are principally concerned with the design of an ongoing plan­

ning and execution mechanism and not with the design of a planning mechanism that

produces optimal plans.

1.6 Contributions of this Thesis

This thesis is concerned with the design and implementation of a planning/execution

component for the class of agents with the properties described above in section 1.5. The

planning component is designed to be domain-independent as well as agent-independent

so long as the agent has the properties described above. The underlying problem being

addressed is the use of motivation to direct problem solving behaviour in realistic envi­

ronments when time is a critical resource. The specific aims and contributions of this

research are described below.

• Context. The use of context to generate and prioritise goals as well as to act as a heu­

ristic in the selection of plans. Good plans take into account the context of the agent

and maximise goal achievement. Context is partially represented by modelling the

motivations of the agent.

• Planning and acting in real or simulated time. Time constraints affect which goals

can be achieved - goals have deadlines and actions take time to execute.

• Interleaving planning and execution. Planning and execution are ongoing activities

as the agent continually generates new goals. This means that planning and execution

must be interleaved.

• Planning and acting within an unpredictable environment. The planning/execu­

tion system must be able to cope with unforeseen changes that may occur within the

environment.

The planning/execution architecture is implemented as a computer program which

means that the agent and its sensors and actuators are modelled and are not real.

1.7 Thesis Overview

The architecture of the planning/execution component is presented in chapter 2 with a

brief description of the purpose and function of each component. In chapter 3, the control

of the planning/execution system is discussed, and comparisons are made with other sys-

26

terns. The representations used for the various data structures used by the planning/exe­

cution system are presented in chapter 4. We then describe an example domain, the truck

world domain, which is used to demonstrate the behaviour of components in the remain­

der of the thesis. Finally in chapter 4 we describe the component reponsible for deciding

whether to plan to achieve a goal or whether to execute. In chapters 5 and 6 the processes

involved in planning to achieve a goal are described while chapter 7 focusses upon exe­

cution and plan recovery. Finally, in chapter 8 the work is evaluated and further work is

discussed.

27

Chapter 2

An Overview of the Architecture

2.1 Introduction

Currently the focus of much work in Artificial Intelligence is on “agent” designs in

which previously isolated processes such as planning, scheduling, learning, etc., are inte­

grated [Wooldridge & Jennings 95]. The objective of the work presented in this thesis is

to present a planning/execution architecture capable of being used within an agent which

is situated within an environment [Brooks 86], [Brooks 91] and which is capable both of

generating goals to further its aims (such an agent displays goal autonomy) and of

achieving those goals by acting within that environment. Context, a function of the

agent's internal state and the perceived current and predicted future states of the environ­

ment, plays a vital role in enabling the agent to generate goals. Such goals may allow the

agent to avoid undesirable situations or to take advantage of opportunities. It will be

more important for the agent to achieve some goals rather than others - context also

enables the agent to therefore prioritise its goals. The context of the agent (which may be

captured by modelling the motivations of the agent) not only enables the agent to gener­

ate and prioritise goals but enables the agent to choose amongst the plans developed to

achieve such goals. In addition, because the agent is acting in real time there will not

always be sufficient time for it to achieve all of its outstanding goals. The agent therefore

tries to achieve as many of its more important goals as it can within the time available.

The agent’s domain is unpredictable to the agent - the outcome of execution may not be

as predicted while other agents may be acting to change the environment in unforeseen

ways. Finally, while acting within its environment, the agent may fail to achieve some of

its goals due to time constraints as well as to the unpredictability of the environment. The

agent must be capable of detecting and of recovering from such failure in certain situa­

tions.

28

In this chapter we present the design of a planning/execution component to be used

by an agent with the attributes described above. The focus of much work in planning is

primarily concerned with developing planners that are efficient and which produce plans

that are both sound and complete ([Chapman 87], [Penberthy & Weld 92], [Blum &

Furst 97]). However, such planners tend not to be situated within an environment (i.e.

they are mainly computer-based) and so do not display goal autonomy - goals are pre­

sented to these planners by an external agent (a user). Planning ceases once all goals

have been achieved - there is no facility for the achievement of new goals that are pre­

sented to the planner once the planner has begun to plan. In addition, these planners are

primarily concerned with generating plans rather than executing those plans - once the

planner has created a plan to achieve the goals posed by a user, planning ceases and the

plan remains unexecuted. Many planners do not take into account time - in the real

world, goals may have deadlines and actions take time to execute. Such time constraints

may mean it is not possible to generate a plan to achieve all goals within the time avail­

able - many planners will simply report that they have failed to return a plan. Such plan­

ners are also unable to prioritise amongst goals - either a complete plan is generated

which achieves all goals or the planner fails to return a plan. Finally, because many plan­

ners are not situated within an environment, context cannot be used as a search heuristic

to aid in the selection of partial plans.

We present the architecture of a planning/execution component which extends the

classical planning framework to take into account the agent requirements described ear­

lier. To summarise, the planning/execution component has the following capabilities.

1. Planning and execution are ongoing activities - because the agent is capable of con­

tinually generating new goals, planning is never complete. This requires a planning

algorithm which supports the interleaving of planning and execution.

2. The planner must be capable of accepting new goals generated by the agent at any

point during the planning process.

3. The agent plans and executes in real time (time passes while the agent acts) which

means the planner must be able to reason about time.

4. Time constraints mean the planner may be unable to achieve all goals within the

time available - in order to be effective the planner must therefore be able to priori­

tise amongst its set of outstanding goals. In addition, once it has become apparent

the planner cannot achieve one or more goals within the time available it must be

29

able to remove such goals together with their associated actions and constraints

from the partial plan.

5. The planner must aim to achieve as many of its goals (preferably ones with high

priority) as possible.

6. The context of the agent, captured by modelling the motivations of that agent, plays

an important role in the planning process in that it enables the agent to generate

goals, to prioritise amongst goals as well as to select the best plan to achieve such

goals.

7. The environment is unpredictable - actions performed by the agent may not result

in the intended outcome and other agents or physical processes may make unfore­

seen changes to the environment. This requires the agent to have the ability to

recover from situations in which unforeseen changes to the environment adversely

affect the agent’s plan.

In the following sections we begin by presenting and describing a planning/execu­

tion architecture designed to meet the requirements listed above. Each component of the

architecture is presented in turn beginning with a description of how the motivations of

the agent are modelled and how such motivations influence the generation of goals. The

process used to enable the planner to choose between achieving a goal and executing an

action is described. Finally, the main component of the architecture, the goal achieve­

ment module, is described, followed by the execution and recovery components.

2.2 The Planning Architecture

In this section we present a high-level architecture of the planning/execution require­

ments for an agent with the attributes described in chapter 1. We describe the processes

involved in achieving goals before discussing the purpose and function of each compo­

nent within the architecture.

2.2.1 Components of the system

The system architecture is illustrated in figure 2.1.

Solid rectangular boxes represent the various processes within the planning/execu­

tion architecture that are the focus of this research. These processes have been imple­

mented using Allegro Common Lisp. The dashed boxes represent two components

30

responsible for updating the agent’s motivations and for generating/updating goals, two

necessary components of any agent architecture, but which will not be addressed in the

present work. These components have not been implemented.

The oval boxes represent knowledge sources. These include a partial plan which is

passed between the various processes as well as the motivations of the planning agent.

The partial plan representation includes a model of the agent's perception of the current

and future states of the environment which are required by the reasoning processes. Thin

arrows indicate the flow of data between knowledge sources and processes. For example

the motivations are used by both the goal generation (“Generate/update goals”) and the

goal achievement (“Plan to achieve goal”) components. All components require the

knowledge encapsulated within a partial plan. Finally, thick arrows represent the flow of

control between the various components of the system.

Motivations

Partial Partial

Select best
partial plan

Partia
Plan

Partial
Plan Select goal

or action

Plan to achieve
goal

goal

Partial
Plan

action Partial

Partial

Generate/ '
1" update I

goals I
L — — _ — J

Partial
Plan

execution
notas

Execute expected

action
f PartiaR
I Plan j

execution
as expected

Partial

Recovery

Figure 2.1 The Planning/Execution System

2.2.2 Interaction of components

This architecture can be viewed as a dynamic system in which the planning/execution

31

agent continually generates goals in response to the perceived current and predicted

future states of the environment (encapsulated within a partial plan) as well as in

response to its motivations. These newly generated goals, created by the component

“Generate/update goals”, are added to a partial plan together with deadlines for their

achievement and values indicating their importance. The process, “Select goal or action”,

determines whether to achieve one of the goals/subgoals within a partial plan or whether

to execute an action.

When a decision is made to achieve a goal/subgoal, a partial plan is passed to a non­

linear goal achievement component (“Plan to achieve goal”). A new or existing action is

selected by this component (using a set of operator schemas/action templates to represent

the agent's capabilities which are not shown in the diagram) to achieve the goal/subgoal

when executed, and constraints are posted. More than one new partial plan may be cre­

ated by the “Plan to achieve goal” process as there may be more than one way of achiev­

ing the goal. In addition, new subgoals may be created (these are the preconditions of

newly selected actions), as well as a new action, binding and temporal constraints, all of

which are placed within each newly generated partial plan. The agent's motivations are

used as a heuristic to evaluate each newly generated partial plan. The best partial plan is

chosen from the search space of partial plans for subsequent refinement - this partial plan

is passed back to the “Select goal or action” component which again determines whether

to achieve one of the goals/subgoals within the partial plan or whether to execute an

action.

When a decision is made to execute an action, the “Execute action” component “exe­

cutes” the action by updating the partial plan to reflect any changes which have occurred

within the environment following execution. An important part of this process involves

determining whether or not the actual state of the environment following execution dif­

fers from the predicted state of the environment (this might occur if execution does not

result in the intended outcome or if other agents have made unforeseen changes to the

environment), and, if so, whether the actual state of the environment has an adverse

effect on the newly updated partial plan. If the plan has been adversely affected by unpre­

dicted changes occurring within the environment, the recovery component, “Recovery”,

may try to repair the partial plan. (This may involve adding goals which are to be

reachieved to the partial plan.) The newly updated partial plan is then passed to the com­

ponent “Update motivations” which is responsible for updating the agent’s motivations

32

to reflect the changes that have been made to the environment following execution. The

component “Generate/update goals” may then generate new goals in response to the

changes in the environment as well as to changes in the agent’s motivations. Finally, the

cycle is repeated - the partial plan is passed to the “Select goal or action” component

which decides whether to achieve a goal/subgoal or whether to execute an action.

The following sections describe the components of the architecture in more detail.

2.2.3 Motivations

Human, real world problem-solving involves both objective and subjective elements.

Researchers such as [Picard 97] and [Bates et al 92] have been investigating how emo­

tions affect human problem-solving. One of the main aims of this research is to examine

how the context of an agent affects its problem-solving capabilities. To do this we must

ensure that the planning component of an autonomous agent takes into account the con­

text of that agent. We take context to be comprised of the following factors.

1. The current and predicted future states of the environment (this includes the current

and predicted future physical states of the agent) which are encapsulated within a

partial plan.

2. The current and predicted future desires and preferences of the agent - these are

represented by modelling the motivations of the planning agent as discussed below.

This section discusses how context, in particular, how the agent’s desires and prefer­

ences which are represented by modelling the motivations of a planning agent situated

within an environment, affects the planning process.

When planning to achieve the same goal, two agents may create very different plans

to achieve that goal [Luck 93], even though their external environment is the same. The

different plans may be seen to arise as a result of differences in the internal states of those

agents. These differences can be said to be due to the motivations of each agent.

An agent may be modelled as having a set of motivations or, in human terms, a set of

basic needs and desires. For example, in animals these motivations might be such

attributes as hunger, curiosity or fear. Different kinds of agent will have different motiva­

tions - while biological agents have the motivation, hunger, an agent concerned with the

control of an aeroplane might have the motivation, conserve fuel. Associated with each

motivation is a measure of strength which varies with changing circumstances and repre­

sents the driving force that directs action to satisfy the motivation. For example, the value

33

indicating the measure of strength associated with the motivation hunger might be low

just after a creature has eaten but will gradually increase over time until the creature has

its next meal. The creature will only act to satisfy the motivation hunger when the

strength associated with hunger is sufficiently high. No creature will be sufficiently moti­

vated to act to satisfy the hunger motivation at all times.

The value indicating the strength associated with each motivation, also known as the

motivational value, will vary in relation to the following factors.

• The feedback of information from the agent's environment. For example, the strength

associated with the motivation, self-preservation will normally be low. However,

should the agent perceive immediate danger in some form, the strength associated

with self-preservation will increase to a high level causing the agent to act in order to

preserve its life. A direct relation can exist between what the agent perceives within

its environment and the agent's motivational values.

• The internal workings of the agent. Some motivational values can be directly derived

from the internal workings of an agent - for example the motivational values associ­

ated with the motivations hunger, and rest.

Motivations directly affect the generation of goals - by achieving a goal an agent is

able to satisfy the motivations that led to the generation of that goal. If the motivational

value associated with hunger is high, the goal, have food, might be generated. Once that

goal is satisfied, the strength associated with hunger is reduced. In addition, the strength

associated with the motivations of an agent is directly related to the relative importance

of the various goals generated. If a motivation is high in strength any goal generated to

satisfy that motivation will also be high in importance. In the warehouse domain (see

chapter 1, section 1.1), a warehouse agent may have two motivations; tidy - a motivation

which causes the agent to keep the warehouse tidy; and make-profit - a motivation which

may cause the agent to satisfy as many customer order requests as possible. If, at a cer­

tain point, the motivational value associated with make-profit is higher than that associ­

ated with tidy, then goals concerned with satisfying customer orders will have a higher

priority than goals concerned with keeping the warehouse tidy. Because motivations

change in strength in response to changes in the environment, the priority or importance

associated with goals that are generated to mitigate certain motivations may also change

in value.

Motivations also enable an agent to evaluate the plans generated to achieve its vari-

34

ous goals. For example, if a human agent executes a plan which includes walking down a

dark alley in order to achieve some goal, they might experience a small rise in their level

of fear. By being able to predict the fact that walking down a dark alley will cause their

level of fear to rise, the human agent might choose an alternative plan (for example one

that involves driving to their destination) - a plan which will not cause their level of fear

to rise - when evaluating the possible alternatives. Should one sequence of actions that

achieve a goal conflict with the motivations of an agent (for example by causing the

strength associated with a motivation such Sisfear to increase), the agent may choose an

alternative solution.

In summary, an autonomous planning agent can be modelled as having a set of moti­

vations which affect the planning process in the following ways.

1. They enable goals to be generated (the goals are generated in order to satisfy the

agent's motivations).

2. They affect the importance of various goals - this enables the planner to prioritise

goals.

3. They serve as a heuristic enabling the planner to determine the best partial plan for

subsequent plan refinement. The partial plan containing the set of actions that best

support the motivations of the agent is preferred (see section 2.2.6 “Evaluating par­

tial plans” below).

In this thesis, we make the above assumptions concerning motivations - we do not

address the process of updating motivations to reflect changes within the environment,

nor do we address the problem of generating and prioritising goals in response to

changes in the motivations. Such issues are addressed by [Norman 97] and are beyond

the scope of this work.

2.2.4 Generating and updating goals

Within the planning/execution architecture (see figure 2.1) presented in this thesis, goals

are generated by three distinct mechanisms.

1. The process “Generate/update goals” in figure 2.1 both creates and updates goals in

response to the agent’s current and predicted future motivational values and beliefs

(beliefs are encapsulated within the partial plan and consist of the perceived current

and future states, the goals the agent wishes to achieve and the actions the agent is

35

intending to execute).

2. The goal achievement component (“Plan to achieve goals” in figure 2.1) generates

subgoals in order to satisfy the preconditions of actions within the partial plan.

3. The recovery component (“Recovery”) specifies goals or subgoals which are to be

reachieved in order to repair a partial plan when actual changes to the environment

are not the same as the predicted changes to the environment.

In this section we briefly consider the first of these, goal generation in response to

the agent’s motivations and beliefs. An important feature of an autonomous agent is its

ability to generate goals, and to do so for a variety of reasons. Such goals may be gener­

ated both to further the aims of the agent, to take advantage of opportunities that arise, or

to prevent undesirable situations from occurring. The context of the agent (captured

partly by modelling the motivations of that agent) is important in order to effectively

generate goals. The following factors directly influence the generation of goals.

1. The current state of the environment.

2. The current strength of the agent’s motivations.

3. Predicted future states of the environment.

4. The predicted future strength associated with the agent’s motivations.

The agent's perception of its immediate environment may directly affect the strength

associated with its motivations in such a way as to lead to the generation of goals. For

example, the sudden, unexpected appearance of an angry lion may cause a sudden

increase in a motivation concerned with self-preservation, which in turn may lead the

agent to generate the goal of preserving its life. As well as being generated in response to

the immediate environment, goals may be generated in response to future predicted

states of the environment. For example, if a human agent plans to visit Canada to attend a

conference, the prediction that they will be in Canada at some stage, together with a pre­

diction of the future strength of the agent’s motivations (this is directly related to the pre­

diction that the agent will be in Canada) may cause such goals to be generated as to visit

an old college friend or to view the Niagara Falls. These goals would probably not have

been generated if the agent were not already planning to attend the conference. An agent

may have a motivation to maintain the widget stock in a warehouse [Norman 97]. As

widgets are sold, or when the quantity of widgets is below some threshold, the stock

must be replenished by ordering new widgets from a supplier. However, if the agent

36

waited until the actual quantity of widgets was below this threshold before generating the

goal to acquire more widgets, the time delay which might occur between ordering and

receiving the widgets could be such that the warehouse might run out of widgets. The

agent decides when to order new widgets on the basis of its beliefs about future states of

the environment. If the agent plans to sell widgets, it can predict that in the future the

quantity of widgets will be reduced. In addition, it can predict that the future strength

associated with the motivation to maintain the widget stock will increase as a direct

response to the predicted reduction in the quantity of widgets. On the basis of this predic­

tion, the agent might generate the goal to replenish the widgets.

In some contexts it may be impossible to achieve certain goals. For example, whilst

travelling by train, although it is possible to pursue such activities as reading or eating, it

is impossible to pursue many other activities such as going to a bank or rowing a boat. It

is vital the “Generate/update goal” component has knowledge of which goals may be

achieved within which contexts.

In the previous section we discussed how changes in an agent’s motivations might

cause a change in the priority or importance of goals that were previously generated to

mitigate those motivations. In addition to generating goals, the “Generate/update goals”

component is responsible for updating existing goals in response to changes both in the

agent’s motivations and that occur within the environment.

This research is not concerned with the details of generating or updating goals. A

detailed account concerning goal generation in response to the agent’s motivations and

beliefs can be found in [Norman 97] in which two distinct classes of goal generator are

identified: D-Goals - goals which the agent has decided to generate as a consequence of

deliberating about its beliefs; and R-Goals - goals that recur periodically, or at particular

times of the day or week (known as replenishment goals).

For the purpose of this work, we assume that goals are generated in response to the

motivations and beliefs of an agent and that such goals have an associated goal proposi­

tion, a deadline (generated through the agent’s knowledge of the environment) and a

value indicating the goal’s importance (determined by the strength associated with the

motivations which caused the goal to be generated). Goals thus generated are provided to

the system described in this thesis. This demarcates the limits of the work, and the inter­

face with the other components within the architecture. To facilitate further discussion,

goals are produced by the “Generate/update goals” component (or goal generator), while

37

subgoals are generated by the goal achievement component (“Plan to achieve goal”).

2.2.5 Choosing whether to plan or execute

In section 2.2.4 above we described how goals/subgoals are generated by the “Generate/

update goals” process (goals); the goal achievement component, “Plan to achieve goal”

(subgoals); the recovery component, “Recovery”. Once created, such goals/subgoals are

added to a set of outstanding goals/subgoals belonging within the partial plan. In addi­

tion, during the goal achievement process (“Plan to achieve goal”), actions are selected

and added to the partial plan. The planning architecture therefore requires a procedure

which is responsible for choosing whether to achieve a goal/subgoal or whether to exe­

cute an action (see “Select goal or action” in figure 2.1).

Choosing whether to achieve a goal/subgoal or whether to execute an action involves

determining whether any of the actions within the partial plan are ready for execution (an

action may be executed if its preconditions are true within the current state and if it is

first in the sequence of actions). If no actions are ready for execution the “Select goal or

action” procedure decides which the “best” goal/subgoal is to achieve. This is deter­

mined by taking into account such factors as the importance and deadline associated with

each outstanding goal or subgoal. If one or more actions are ready to be executed, the

“Select goal or action” procedure decides (taking into account the importance and dead­

line associated with each goal, subgoal and executable action) the best goal, subgoal or

executable action. As a general rule, goals, subgoals or executable actions of high impor­

tance and imminent deadlines are chosen in favour of goals, subgoals or executable

actions of low importance and whose deadlines are far into the future. This procedure

(“Select goal or action”) is discussed in detail in chapter 4, section 4.5.

2.2.6 Planning to achieve goals

In this section we describe the main focus of this research, the goal achievement compo­

nent, which corresponds to the process “Plan to achieve goal” in figure 2.1. An extension

of the goal achievement process used in the nonlinear planner SNLP (see [McAllester &

Rosenblitt 91]) is used which takes into account the fact that goals have deadlines and

actions have durations. The goal achievement algorithm, illustrated in figure 2.2, takes

the best outstanding goal or subgoal and achieves that goal/subgoal by selecting a new or

existing action (a set of action templates is used to enable a new action to be selected)

38

and by posting new temporal and binding constraints (see “Achieve goal” in figure 2.2).

goal

Partial
Plan

Plan to achieve goal

Partial
Plan ,

Evaluate
partial plans

Achieve
goal

Estimate
deadlines

Edit the
partial plan

Figure 2.2 The Goal Achievement Process

In addition, further temporal and binding constraints may be posted to ensure that

the achievement of the goal/subgoal does not conflict with goals/subgoals which have

already been achieved (this process is known as conflict resolution). Once the goal/sub­

goal has been achieved a procedure is called which estimates the deadlines for each

action and subgoal (subgoals are derived from the preconditions of actions) within the

partial plan (“Estimate deadlines” in figure 2.2). If this process fails it means there is

insufficient time available to achieve all of the goals within the partial plan. In this case,

an editing process, “Edit the partial plan” removes goals together with their associated

39

actions and constraints from the partial plan. A number of alternative partial plans will

have been generated by the processes described above. The motivations of the agent are

therefore used as a heuristic to evaluate and rank each partial plan (see “Evaluate partial

plan”) prior to adding them to an ordered search space of partial plans (the “best” partial

plan is the head of this ordered search space). In the following sections we describe each

component in more detail.

Achieving a goal

Goals generated by the “Generate/update goal” component of figure 2.1 have an associ­

ated deadline and a value indicating their importance, while actions have duration. To

take these factors into account, an extended version of the goal achievement algorithm

used by the nonlinear planner SNLP is used. The nonlinear planning goal achievement

algorithm, “Achieve goal”, consists of two stages: selecting a new or selecting an exist­

ing action to achieve the goal (known as step addition and simple establishment respec­

tively); and ensuring that there are no conflicts (known as conflict resolution). The

algorithm therefore consists of three main processes.

1. Step addition - this involves creating a new action (by selecting and instantiating an

action template) and adding that action together with new binding and temporal

constraints to the partial plan. (The “Achieve goal” process therefore has access to

a set of action templates which collectively represent the agent’s execution capabil­

ities.)

2. Simple establishment - new temporal and binding constraints are posted to ensure

the goal or subgoal is achieved by an action currently within the partial plan.

3. Conflict resolution - new temporal and binding constraints are posted to ensure that

the action selected to achieve the goal/subgoal does not conflict with goals/sub­

goals that have already been achieved and that actions currently within the partial

plan do not conflict with the newly achieved goal/subgoal.

In order to reason about goals with deadlines and actions with duration the following

extensions have been made to the goal achievement algorithm described above.

40

Estimating the duration of actions

To determine the latest time by which an action should be executed in order to achieve

some goal by its deadline, it is necessary to estimate how long it will take the agent to

execute that action. The duration of each action is estimated when the action is both cre­

ated (step addition) and further instantiated (simple establishment). Durations are

assigned to actions by using a look-up table which stores the estimated amount of time

required to execute each action. This process is described further in chapter 5, section

5.2.2.

Assigning importance to actions

Each goal generated by the “Generate/update goals” component has an associated dead­

line and a value indicating its importance. When the goal achievement process selects a

new action a, (using step addition) to achieve a newly generated goal Uj assumes the

same value of importance as that associated with g,. In fact, all actions that contribute

towards the achievement only of g, (for example the actions that are selected to achieve

the preconditions of ai) assume the same value of importance as that associated with g,.

However, if a, is later selected to achieve the newly generated goal gz (using simple

establishment), it becomes more important, as executing a, contributes to the achieve­

ment of two goals, g, and gg. The new value indicating the increased importance of is

the sum of the values indicating the importance of the two goals g, and g2. In addition, the

importance value associated with all actions that contribute towards the achievement of

the preconditions of a, also increases. A mechanism has been developed to propagate

such changes in the value of importance associated with actions.

Estimating the deadlines of actions and subgoals

The planning/execution architecture presented in this thesis assumes that goals generated

by the “Generate/update goals” component have deadlines and actions have duration. A

temporal constraint manager capable of reasoning about actions with duration and goals

with deadlines is required (such as [Vere 83], [Dean et al 87]).

An important part of planning to achieve goals with deadlines is to be able to deter­

mine whether or not those deadlines can be met. To achieve a goal by its deadline, there

41

must be sufficient time to both create a sequence of actions to achieve the goal and to

execute that sequence of actions. This means that all actions which contribute towards

the achievement of the goal must be executed by their own earlier deadlines. Such dead­

lines are determined by reasoning about the deadline associated with goals generated by

the “Generate/update goals” component, the temporal constraints within the partial plan

(which constrain the ordering of actions) as well as the duration associated with each

action. An algorithm has been developed which estimates the deadlines associated with

actions and subgoals (the preconditions of actions). The deadline of an action is defined

to be the latest possible time by which execution of that action should commence in

order to ensure that the goal to which the action contributes is achieved by its associated

deadline. By implication, the preconditions of an action must be true by the action’s

deadline. This enables us to assign deadlines to subgoals as well as to actions within the

partial plan. We require a mechanism that estimates the deadlines of actions and subgoals

for the following reasons.

1. To enable the “Select goal or action” mechanism to select which goal/subgoal is to

be achieved next or which action is to be executed.

2. To enable the planner to reason about whether or not there is sufficient time availa­

ble to achieve all goals generated by the “Generate/update goals” component prior

to their deadlines.

The algorithm developed for estimating the deadlines associated with actions and

subgoals adopts a pessimistic approach (in contrast to DEVISER, [Vere 83]) - when

actions are only partially ordered with respect to each other those actions are assigned

the earliest possible deadline. For example, three actions a„ Uz and each with a dura­

tion of 3 minutes, remain unordered with respect to each other. These actions were

selected to achieve preconditions of the action with the deadline 5pm. The algorithm

estimates the deadline for the actions and â , to be 4.51pm (i.e. 5pm - (3 mins + 3

mins + 3 mins)) because, in the absence of further information, any of the three actions

could be executed first. This means that during the early stages of plan refinement, the

deadlines estimated for actions and subgoals are likely to be too early.

In addition to estimating the deadlines associated with actions and subgoals, the

algorithm indicates when there is insufficient time available to achieve all of the goals

generated by the “Generate/update goals” component. The algorithm is able to determine

both whether there is insufficient time available to achieve individual goals by their dead-

42

lines and whether there is insufficient time available to achieve all goals collectively by

their deadline. When there is insufficient time available to achieve one or more of the

goals generated by the “Generate/update goals” component, extra time is created by

removing such goals from the partial plan (this is the responsibility of the plan editing

process, “Edit the partial plan”, described in the next section).

Editing partial plans

Plan editing is an essential part of the goal achievement process. The intention is to try to

capture the way humans abandon the achievement of certain goals when there is insuffi­

cient time. If the deadline estimation process (described in the previous section) fails, it

does so because there is insufficient time available to collectively achieve the goals gen­

erated by the goal generation component, “Generate/update goals”.

When there is insufficient time to collectively achieve the goals generated by the

“Generate/update goals” component, the plan editing process first removes a single goal

together with its associated actions, temporal and binding constraints. The deadline esti­

mation algorithm, “Estimate deadlines” is then invoked to reestimate the deadlines of the

remaining actions and subgoals. If this fails (indicating there is still insufficient time to

achieve all of the goals), the plan editing process, “Edit the partial plan”, removes

another goal (together with its associated actions, temporal and binding constraints).

This cycle is repeated until the deadline estimation process successfully assigns dead­

lines to the remaining actions and subgoals.

Evaluating partial plans

When achieving a goal, the goal achievement algorithm, “Achieve goal”, described

above (see “Plan to achieve goal” illustrated in figure 2.2) generates a number of new

partial plans. The “Estimate deadlines” process then assigns deadlines to actions and

subgoals within each newly generated partial plan. If the “Estimate deadlines” process

fails, the plan editing procedure, “Edit the partial plan”, may then remove goals from

each newly generated partial plan^. Once this process is complete each newly generated

partial plan is added to a search space of partial plans. A partial plan evaluation proce­

dure, “Evaluate partial plans”, is required to rank each partial plan so that it is possible to

select the best partial plan for further refinement.

2. Note: A filtering mechanism is used to ensure that duplicate partial plans are not generated as a consequence of the plan editing process.

43

The heuristic employed by the “Evaluate partial plans” process favours plans which

maximise the number of achieved goals, which contain actions of short duration, and

which contain actions that best support the agent’s motivations. The action representa­

tion has been extended so that each action has two sets known as pros and cons which

contain values that are used to provide a crude prediction of the degree to which the

action, when executed, will support or undermine the agent’s motivations. In order to

determine the degree to which a partial plan will support or undermine the agent’s moti­

vations, the “Evaluate partial plans” process examines the degree to which the set of

motivations will be supported or undermined by each action within that plan following

execution. For example, a human agent needs to satisfy the goal of being in Edinburgh

by 2pm. The options available for achieving this goal include actions that enable the

agent to travel by aeroplane, travel by train, travel by car or travel by coach. The agent

has the motivations save money and feel alert. Travelling by aeroplane undermines the

motivation save money, travelling by train supports both save money and feel alert, while

travelling by car or travelling by coach undermines the m o t i v a t i o n alert. The plan

which best supports the agent’s motivations might be one which includes the action of

travelling by train. Each partial plan is thus evaluated to determine the extent to which it

will support or undermine the motivations of the agent.

When a new action is both created (step addition) and further instantiated (simple

establishment), the pros and cons fields associated with that action need to be instanti­

ated. This is currently achieved by using domain knowledge represented in the form of a

look-up table - this is a similar process to that used in estimating the duration of actions

(see section “Estimating the duration of actions” above). For example, to achieve the

goal of having eaten in a restaurant the action (eat-at ?x) is selected where ?x is a vari­

able. The values assigned to the fields pros and cons associated with the action will

depend upon how ?x is instantiated (this is explained in more detail in chapter 5, section

5.2.3).

Executing actions

When an action is executed, the execution component is responsible for updating the par­

tial plan (see “Execute action” in figure 2.1). An action may only be executed if it is fully

instantiated, its preconditions are true, and it is possibly first within the partial order of

actions. When the action is executed a number of changes occur which require the partial

44

plan to be updated.

1. The “initial world model” within the partial plan must be updated to reflect the fact

that by executing the action, the agent has made changes to the environment. In

addition, the “initial world model” is also updated to reflect any changes that are

made to the environment by the activities of other agents or by physical processes.

This reflects the fact that in real world environments, the environment may change

unpredictably. Such changes will directly affect the motivations of the agent which

in turn might lead to the generation of new goals.

2. The action which has been executed, together with its associated temporal and

binding constraints must be removed from the partial plan.

3. All persistence constraints that maintain the truth of the action’s preconditions can

be removed from the partial plan. (Persistence constraints represent goals/subgoals

which have been achieved.)

4. The search space of previously generated partial plans must be deleted. When the

“Plan to achieve goal” process achieves a goal, new partial plans are generated and

added to a search space of partial plans. Each partial plan contains the same “initial

world model” representing the current state of the environment. However, each par­

tial plan contains a different set of actions which reflects the fact that there are

alternative ways of achieving goals. While the environment remains unchanged

(i.e. during cycles when the “Select goal or action” process chooses to achieve a

goal/subgoal as opposed to execute an action), the “Plan to achieve goal” process

achieves a goal/subgoal, each time increasing the search space of partial plans.

However, when an action is executed the world changes, which means the “initial

world model” of previously generated partial plans no longer corresponds to the

actual state of the environment. It is no longer possible for the “Evaluate partial

plans” process to backtrack or select such previously generated partial plans. Once

an action has been executed, all previously generated partial plans must be deleted

(with the exception of the current partial plan). To continue planning, a new search

space of partial plans containing the new “initial world model” must be generated.

45

Updating the world model

The planning/execution architecture illustrated in figure 2.1 makes the assumption that

changes do not occur to the environment whilst the agent is planning to achieve goals or

subgoals. This is a simplification as it is possible that changes occur within the environ­

ment (due to the activities of other agents and physical processes) whilst the agent is

planning. A part of the “Execute action” component is responsible for initiating the

appropriate sensing activities in order that the agent can update its world model to reflect

changes that have been made to the environment, as a consequence of the agent execut­

ing an action, other agents acting and physical processes occurring within the environ­

ment. (Because we do not model sensors in our implementation of the planning/

execution architecture, we capture all sensing activities by asking a user to input a

description of the state of the environment as well as the time following execution.) The

intention is to emulate what happens when humans plan - whilst planning humans may

assume that their world model is correct even though other agents or physical processes

may have caused changes in the environment. When executing, or carrying out plans,

humans monitor the environment and update their plans accordingly if adverse changes

have occurred.

Recovering from unexpected situations

Once an action has been executed, the actual state of the environment may differ to what

was predicted. This may be due to the following reasons.

1. Executing the action may not produce the intended outcome (for example an agent,

whilst picking up a block may accidentally drop that block).

2. The environment may change in unforeseen ways due to the activities of other

agents.

Unexpected and unforeseen changes in the environment can affect the validity of the

partial plan. For example such changes may violate some of the persistence constraints

within the partial plan (persistence constraints ensure that goals or subgoals remain true

over a period of time) which means that some of the preconditions of later actions may

no longer hold. A persistence constraint may be violated in one of two ways. Firstly, the

action may have been selected in order to achieve some goal (for example to satisfy the

precondition of some later action) but when that action is executed, the goal proposition

46

(an effect of the action) does not become true. Secondly, the action may unexpectedly

deny or undo the goal proposition of a persistence constraint. For example, an action Uj is

selected to achieve the precondition g, associated with the action aj is executed and

achieves gi. However, when the action aj is executed (following aj but prior to it

unexpectedly undoes or denies the proposition gj.

When a persistence constraint is violated due to unexpected and unforeseen changes

within the environment, the recovery component adds the goal proposition associated

with the constraint to the set of outstanding goals so that it can be reachieved by the

“Plan to achieve goal” process^.

The recovery component is also required if the time taken to execute an action is

longer than expected. Because the action was selected to contribute towards the achieve­

ment of some goal, it may be difficult or impossible to achieve that goal by its deadline.

In such cases the recovery component may decide to abandon the achievement of the

goal. When execution takes longer than expected, the “Estimate deadlines” process is

called to determine whether or not it is still possible to achieve all goals by their dead­

lines. If not, the “Edit the partial plan” procedure is then required to remove any

unachievable goals, together with their associated actions, temporal and binding con­

straints, from the partial plan.

2.3 Summary

The architecture of a planning/execution system to be used by an autonomous agent has

been described in this chapter. The architecture makes an important contribution to plan­

ning research in that it addresses the idea of continual planning (i.e. where goals are con­

tinually generated while the agent acts within an environment), which requires the

interleaving of planning and execution, as well as the idea that context (partly captured

by modelling the motivations of the agent) plays an important role in enabling the agent

to choose between alternative partial plans.

This chapter presents and summarises the components of the architecture. In the fol­

lowing chapters we describe in detail each of the components.

3. If a precondition of an action is no longer true because some persistence constraint has been violated, it may not always be efficient sim­
ply to reachieve that precondition. For example, the three actions, aj , ag and Oj are selected in order to achieve the goal g j generated by
the goal generator. When aj is executed, the persistence constraint protecting the subgoal % is violated where sgj is a precondition of
the action «2- Instead of simply replanning to achieve sg^ it may be more efficient to replan to achieve the goal gj.

47

Chapter 3

The Control of the System

3.1 Introduction

The planning/execution architecture described in this thesis was illustrated in chapter 2,

figure 2.1 - in this chapter we discuss some of the issues that led to the decision to adopt

this architecture. In particular we begin by describing which factors cause both the

agent’s motivations to change in strength and goals to be generated/updated. We then dis­

cuss how frequently it is necessary to update the motivations and generate/update goals

and present an alternative control strategy, describing why we decided to adopt the archi­

tecture presented in chapter 2, figure 2.1. The issue of how much planning is undertaken

by the “Plan to achieve goal” process each time it is called is discussed and two alterna­

tive control strategies for this component are described. The algorithm used to imple­

ment the control strategy of the planning/execution architecture is then outlined. Finally,

we present two other planning systems in which planning and execution are interleaved,

and compare these with the work presented in this thesis.

3.2 The Control of the System

3.2.1 What causes motivations to change?

In chapter 2, section 2.2.3, we discussed how the basic needs, desires and preferences of

an agent may be represented by modelling the motivations of that agent. Associated with

each motivation is a measure of strength, or motivational value, which varies with

changing circumstances. In this section we discuss which factors lead to a change in the

strength associated with an agent’s motivations.

The motivations of an agent change in response to the following changes in an

agent’s beliefs.

48

1. The agent perceives changes have occurred within itself (i.e. changes in its physical

state) and/or within its environment. These changes may have been brought about

by the agent executing an action, by the activities of other agents, or by physical

processes occurring within the agent/environment. Such changes are reflected by

updating the agent’s model of the environment.

2. Changes occur in what the agent believes will happen in the future. Such changes

encompass beliefs about which actions the agent intends to execute; the goals the

agent believes it will achieve by executing those actions; the goals the agent would

like to achieve (the set of outstanding goals). Once an action has been selected to

achieve a goal (by the component “Plan to achieve goal”) the agent believes that

after it has executed that action the goal will become true at some point in the

future. This constitutes a new belief - the agent believes this in addition to what it

believed prior to planning to achieve that goal.

The main factor affecting the strength associated with an agent’s motivations is

achieving goals that were generated in order to mitigate some motivation(s). Goals are

achieved by executing some set of actions. For example, if the strength associated with

the motivation hunger is high, a goal to have eaten some food is generated. A plan (or

sequence of actions) which achieves this goal is then created. Once this plan has been

executed, the goal is achieved and so the strength associated with hunger drops. Like­

wise, if the strength associated with a warehouse agent’s motivation tidy (this motivates

the warehouse agent to tidy the warehouse by disposing of commodities that are beyond

their sell-by date) is high, a goal to tidy the warehouse is generated. Again, once the

warehouse is tidy, the strength associated with the motivation tidy drops. Satisfying a

goal which was generated in order to mitigate certain motivations leads to a decrease in

the strength associated with those motivations. Such goals may not necessarily be satis­

fied as a consequence of the agent executing some action, however. For example, the

warehouse may be tidied by another agent. As long as such goals are achieved (either by

the agent or opportunistically by some other agent), the strength associated with the

motivations that led to the generation of such goals drops.

Changes to an agent’s motivations are also brought about by changes occurring

within the environment - such changes may be brought about directly by the agent

through executing actions. All actions, when executed, will support or undermine a sub­

set of the agent’s motivations to some degree. The plan to achieve the goal of having

49

eaten some food may contain the action of purchasing food - executing this action will

undermine a motivation concerned with obtaining or with saving money. The plan may

also contain an action concerned with walking down a dark alley - executing such an

action may undermine or cause an increase in the strength associated with a motivation

concerned with self-preservation. Actions which were selected as part of a plan to

achieve some goal may actually conflict with the motivation(s) that caused the goal to be

generated. For example, through executing some of the actions that were selected in

order to mitigate the motivation hunger, the agent may make itself more hungry (for

example if the agent has to walk a long way in order to acquire food). Because each

action supports or undermines a subset of the agent’s motivation to some degree, it is

possible, given a plan containing actions, to crudely predict the future state (i.e. strength)

of the agent’s motivations. This facility is used as part of a heuristic to evaluate and rank

partial plans and is addressed in detail in chapter 6, section 6.4. In addition, changes to

the environment caused by other agents or physical processes may support or undermine

the agent’s motivations. The sudden, unexpected appearance of an angry lion may lead to

a sudden increase in a motivation concerned with self-preservation, for example. Being

given a large sum of money will lead to a decrease in a motivation concerned with

obtaining or with saving money. In the warehouse domain described in chapter 1, section

1.1, perceiving that a number of commodities are beyond their sell-by date increases the

strength associated with the motivation to keep the warehouse tidy.

Finally, the strength associated with certain motivations may change in response to

changes in the agent’s internal state, i.e. in response to changes made to a partial plan by

planning to achieve some goal. For example, the strength associated with a motivation

concerned with keeping the agent as busy as possible might change as a consequence of

adding a new action to the partial plan in order to achieve some goal - the motivational

value will decrease because the agent will have one extra action to execute which means

it will be busier.

The changes outlined above directly affect the motivations of the agent by causing

changes in the strength associated with each motivation. The agent’s motivations should

change once during each plan/execute cycle, either in response to changes in the agent’s

plan (as a consequence of planning to achieve some goal) or in response to changes that

have occurred within the environment (as a consequence of the agent executing actions

or due to the activities of other agents or physical processes). In turn, such changes in the

50

agent’s motivations may cause goals to be generated. In the following sections we con­

sider how the mechanism responsible for determining changes in an agent’s motivations,

“Update motivations” (see chapter 2, figure 2.1), fits within our planning/execution

architecture.

3.2.2 Generating/updating goals

In chapter 2, section 2.2.4, we described how goals are generated in response to the cur­

rent state of the environment, the current strength of the agent’s motivations (which are

directly influenced by the current state of the environment), predicted future states of the

environment, and the predicted future strength associated with the agent’s motivations

(again, this is directly influenced by predicted future states of the environment). In addi­

tion, we also saw that changes in the agent’s motivations directly affect the priority or

importance of goals that were generated to mitigate those motivations. The process of

generating and updating goals (“Generate/update goals”) should occur once every plan/

execute cycle for the following reasons.

• Goals might be generated or their priority updated in response to changes in the

agent’s motivations. In the previous section we saw that the agent’s motivations

change either in response to changes in the agent’s plan (as a consequence of planning

to achieve some goal) or in response to changes that have occurred within the environ­

ment (as a consequence of the agent executing some action, or due to the activities of

other agents or physical processes). If the motivations change once every plan/execute

cycle, then new goals might be generated or changes might occur to existing goals

once every plan/execute cycle.

• Goals might be generated in response to changes in the agent’s plan as a consequence

of planning to achieve some goal. If an agent changes a plan it means it also changes

what it predicts will happen in the future (i.e. changes will occur in predicted future

states both of the environment and of motivational values). This implies that new

goals might be generated or existing goals updated each time a goal is achieved

through planning.

3.2.3 When to update the motivations and generate/update goals

In sections 3.2.1 and 3.2.2 above we described the various factors that cause motivations

to change and goals to be generated/updated. To reflect any changes that occur to both

51

the plan (as a consequence of planning to achieve some goal or subgoal), as well as to the

environment (as a consequence of executing some action, the activities of other agents

and physical processes), it was seen that motivations should be updated and goals gener­

ated/updated once every plan/execute cycle. This suggests that the overall control of the

system should be that of figure 3.1 below.

Select best
partial plan

Partial
Plan

Parti a
Plan

Partial
Plan

Partial
Plan

I Generate/ I
4 update I
I goals I

I Generate/ I
I update I
I goals I

1

Select goal
or action

Partial
Plan

Parti a
Plan

goal

Update
motivations Partial

Plan

L __

Partia
Plan

/P artia
I Plan

Plan to achieve
goal

Partia
Plan

 ̂Partial \ I t t j I,pian j Update ,
motivations

I I
Partial

Partial

Recoveryexecution
as expectedPartial

Partial

Execute
action

execution
not as
expected

Figure 3.1 An Alternative Control Strategy

In figure 3.1, when the “Select goal or action” component decides to achieve a goal/

subgoal, a partial plan is passed to a nonlinear goal achievement component (“Plan to

achieve goal”). One or more new partial plans are generated in order to achieve the goal/

subgoal - each new partial plan is generated by selecting a new or existing action (using a

set of operator schemas/action templates to represent the agent's capabilities which are

not shown in the diagram) to achieve the goal/subgoal when executed, and by posting

various constraints. Once a new partial plan has been generated, the agent’s beliefs about

52

the future will have changed which will cause changes to occur in the agent’s motiva­

tions. The motivations therefore need to be updated (“Update motivations”) to reflect

these changes. In addition, such changes in the agent’s beliefs and motivations means

that goals might be generated and/or updated (“Generate/update goals”). More than one

new partial plan may be created by the “Plan to achieve goal” component as there may be

more than one way of achieving the goal/subgoal. The newly updated motivations and

newly updated set of outstanding goals are used as part of a heuristic to evaluate and rank

each newly generated partial plan. The best partial plan is chosen from the search space

of partial plans for subsequent refinement - this partial plan is passed back to the “Select

goal or action” component which again determines whether to achieve one of the goals

within the partial plan or whether to execute an action.

When a decision is made to execute an action, the flow of control is the same as that

in chapter 2, figure 2.1.

The advantages of the architecture illustrated in figure 3.1 are as follows.

1. Motivations are updated to reflect changes that are made to the partial plan as a

consequence of planning to achieve some goal or subgoal. This is in addition to

updating motivations to reflect changes that have occurred within the environment.

2. Goals are generated/updated to reflect changes that are made to the motivations as

well as to partial plans as a consequence of planning to achieve some goal or sub­

goal (this is in response to changes in predicted future states of the environment

and motivations).

3. Newly generated partial plans that are generated as a consequence of planning to

achieve some goal or subgoal, are evaluated with respect to the newly updated

motivations and newly generated or updated goals.

It could therefore be argued that figure 3.1 is a better control strategy than chapter 2,

figure 2.1. However, the control system shown in figure 3.1 has several disadvantages.

The main disadvantage of this approach is that motivations have to be updated, and

goals generated/updated for each newly generated partial plan thereby increasing the

computational load. A part of this requirement is that each plan must have an associated

set of motivations - if motivations change to reflect the current plan, then the motivations

associated with each newly generated partial plan will differ because each partial plan is

different. One way to capture changing motivations is to incorporate them within the par­

tial plan representation.

53

plan == (motivations, actions, timings, bindings, unachieved_goals,
pers_constraints)

In this representation, each partial plan in the search space of partial plans has an

associated set of motivations whose current strength directly reflects the contents of the

partial plan - i.e. the initial world model (representing what the agent perceives to be cur­

rently true in the world), the set of unachieved goals (goals the agent will plan to

achieve), persistence constraints (representing the goals the agent has planned to

achieve) and the set of actions (the actions the agent intends to execute). The motivations

associated with a plan are a particular strength because the agent believes it will achieve

the goals in that plan by executing the actions in that plan and that it intends to achieve

the set of outstanding goals in that plan. This representation enables the motivations to be

updated once during each plan/execute cycle to reflect the changes made within the par­

tial plan as a consequence of planning to achieve some goal. In turn, the changes in moti­

vations directly determine the goals that will be generated by the “Generate/update

goals” component. Once changes to the motivations have been made, new goals may be

generated - because the motivations differ within each partial plan, goals may be gener­

ated/updated differently within each partial plan. In addition, once goals have been gen­

erated/updated, the partial plan is evaluated/ranked with respect to its associated set of

motivations - because each partial plan has a different associated set of motivations, the

ranking of each partial plan is done with respect to different sets of motivations.

It could also be argued that the changes made to a partial plan as a consequence of

planning to achieve some goal/subgoal are too minor to significantly affect both the

strength associated with motivations and the generation/update of goals. It might not be

worthwhile adopting this strategy in view of the required increased computational load.

A Separate set of Motivations

An alternative way to capture changing motivations is to have a single separate set of

motivations (as opposed to one set of motivations per partial plan). With this approach it

is no longer possible to capture the idea of motivations changing solely in response to

changes in the agent’s beliefs (i.e. as a consequence of planning to achieve some goal/

subgoal). For example, when the “Plan to achieve goal” process plans to achieve a goal

by selecting an action and posting new constraints, several new partial plans are gener­

54

ated, one for each action capable of achieving the goal. Each new partial plan encapsu­

lates a different belief as to the way that goal might be achieved. If there is only a single

set of motivations, this set cannot be simultaneously updated in different ways to reflect

the alternative ways there are of achieving the goal.

In order to overcome this problem, the algorithm illustrated in chapter 2, figure 2.1,

can be used. Instead of the set of motivations being updated each time a goal/subgoal is

achieved, the set of motivations is only updated once the agent has executed an action.

When an action is executed, the current partial plan’s “initial world model” is updated to

reflect all changes that have occurred within the environment (changes brought about as

a consequence of execution, the activities of other agents, and physical processes) and all

other partial plans in the search space are deleted as their “initial world model” no longer

corresponds to the newly perceived state of the environment. If the agent’s motivations

are only updated after the agent has executed some action, then, while the agent is not

acting (i.e. during cycles when the agent is planning to achieve goals/subgoals) the moti­

vations remain unchanged. This means all partial plans in the search space are evaluated

with respect to the same set of motivations (unlike the approach described in figure 3.1

above). When the motivations are updated, not only are they updated to take into account

the perceived changes within the environment, they are also updated to take into account

the changes in the agent’s beliefs (i.e. a new belief represents the way a particular goal/

subgoal is achieved - a number of goals/subgoals may have been achieved prior to the

agent executing some action which means that the agent may have a number of new

beliefs since the motivations were last updated). Once the motivations have been

updated, goals are generated/updated in order to reflect the changes to the motivations as

well as the changes to the agent’s plan. The advantage of this approach is that the set of

motivations is updated and goals are generated/updated less (i.e. only once the agent has

executed some action during the execute cycle, and only in response to changes in one

partial plan), leading to a reduced computational load. In addition, only a single set of

motivations is required which remains independent of the partial plan representation.

Disadvantages include the fact that motivations no longer accurately reflect changes in

the agent’s beliefs (i.e. the more goals achieved prior to executing an action, the less

accurately the motivations reflect the agent’s current beliefs). This algorithm can be seen

in chapter 2, figure 2.1, and is the approach adopted as the control strategy for the plan­

ning/execution architecture described in this thesis.

55

3.3 Interleaving Planning and Execution

Another issue that arose when designing the control strategy for the planning/execution

system, was how much planning should occur during each planning cycle - i.e. how

much planning should the “Plan to achieve goal” component undertake once the “Select

goal or action” component of chapter 2, figure 2.1 chooses to plan to achieve a goal? Two

alternative control structures were devised for the “Plan to achieve goal” component.

1. The “Select goal or action” component chooses either to plan to achieve a goal (i.e.

a newly generated or updated goal created by the “Generate/update goals” compo­

nent), or to execute an action. If a goal is chosen, the “Plan to achieve goal” compo­

nent generates a complete plan which achieves that goal (i.e. not only does the

“Plan to achieve goal” component achieve the goal, it achieves all subgoals/open

conditions that are created as part of the planning process - planning is complete

when there are no outstanding subgoals/open conditions and when all conflicts

have been resolved). As part of this process, the “Estimate deadlines” procedure

assigns deadlines to actions belonging within each partial plan generated, and, if

there is insufficient time available to achieve all of the goals in a plan (i.e. the “Esti­

mate deadlines” process fails to assign deadlines to actions), that plan may be

edited (by the “Edit the partial plan” process). Alternatively, once a complete plan

has been generated, deadlines are estimated for each action in that plan, and, if

there is insufficient time available to achieve all of the goals within that plan, either

the original plan is returned or the plan may be edited.

2. The “Select goal or action” component chooses either to plan to achieve a goal/sub­

goal (i.e. a newly generated/updated goal created by the “Generate/update goals”

component or a subgoal/open condition created by the “Plan to achieve goal” com­

ponent), or whether to execute an action. If a goal or subgoal is chosen, the “Plan to

achieve goal” component performs only one cycle of goal achievement (i.e. the

“Plan to achieve goal” component achieves only the selected goal/subgoal by

choosing a new or existing action and by posting constraints to resolve conflicts).

More than one new partial plan may be generated in which the goal or subgoal has

been achieved. Deadlines are estimated for the actions and subgoals within each

newly generated plan, and, if there is insufficient time available to achieve all goals

within a plan, that plan may be edited. Finally, each newly generated partial plan is

56

evaluated/ranked and added/merged with the ordered search space of partial plans.

The first strategy makes fewer calls to the “Plan to achieve goal” procedure. How­

ever, each time the “Plan to achieve goal” process is called, more planning is undertaken

(which requires more time) as a complete plan is generated to achieve the goal. The main

drawback with this approach is that the planning/execution architecture is unable to

change which goal it is focussing upon whilst planning. For example, the “Generate/

update goals” component generates two new goals, g, and If the “Select goal or

action” procedure decides that the goal gi should be achieved, the “Plan to achieve goal”

component creates a complete plan to achieve g, leaving the goal g2 to be achieved at a

later stage (i.e. during a later cycle, when the “Select goal or action” decides that the goal

g2 should be achieved). This strategy does not allow the agent to change its focus of

attention whilst planning - for example, whilst planning to achieve gj, the agent is unable

to switch its attention to plan to achieve g2 instead. (Whilst planning to achieve gj, the

importance associated with may increase, which may cause the agent to change its

focus of attention.) This strategy does not require a global search space of partial plans as

the search space is generated only during the planning process - once a complete plan is

generated to achieve a goal, the search space is no longer required. The advantage of this

strategy is that optimal plans are generated to achieve each goal individually which

means it performs well on problems in which goals interact (such as Sussman’s anom­

aly).

In contrast, the second strategy performs much less planning each time the “Plan to

achieve goal” process is called, but, as a consequence, this process is called much more

frequently. The main advantage of this strategy is that it enables the agent to change its

focus of attention by changing which goal it is focussing upon at any particular time.

This resembles the ability humans have of changing their focus of attention to deal with

more important or urgent tasks, and of changing which plan they currently prefer. The

disadvantage of this strategy is that it does not produce good plans when goals interact

with each other (i.e. it cannot produce an optimal plan to solve Sussman’s anomaly).

Both strategies have been implemented as alternative control strategies of the “Plan

to achieve goal” component which is described in more detail in chapters 5 and 6.

3.4 The Control Implementation

In this section we describe the algorithm used to determine the flow of control between

57

components of the planning/execution architecture shown in chapter 2, figure 2.1. A sin-

Table 3.1 The planning/execution architecture

1. Choose the best partial plan (this is the plan at the head of the search space of partial
plans which contains a set of (plan, value) tuples ordered on the basis of value).

2. Select whether to achieve a goal/subgoal or execute an action. This process involves
determining which actions are both first (i.e. in the partial order of actions) and ready to
execute (i.e. their preconditions must be true in the current state). Outstanding goals/
subgoals and actions that are both first and ready to be executed are evaluated on the
basis of their importance, deadlines and the amount of effort currently expended in
achieving their associated goals. This algorithm is described in further detail in chapter
4, section 4.5.

(a) If a decision is made to achieve a goal/subgoal, new partial plans are generated
using the following procedures: a new or existing action is chosen and constraints
are posted to achieve the goal/subgoal - more than one new partial plan is gener­
ated; the deadlines associated with actions in each newly generated partial plan are
estimated; each newly generated partial plan may be edited (if the deadline estima­
tion process fails); each newly generated partial plan is evaluated/ranked with
respect to the agent’s motivations. Finally, the newly generated partial plans are
sorted and then merged based on their ranking with the (ordered) search space of
partial plans. This algorithm was discussed in section 3.3 above and is described in
further detail in chapters 5 and 6.

(b) Else, if it is decided to execute an action the following procedures are invoked.
These are described in further detail in chapter 7.

i. The user is asked to key in the actual outcome following execution - both the
state of the environment and the time. The plan is then updated to reflect the
outcome - this includes monitoring the post execution state of the environment
to determine whether any achieved goals/subgoals (i.e. persistence constraints)
have been clobbered/undone (this may happen if execution does not result in
the expected outcome). When execution does not go as expected, the clobbered
goals/subgoals are converted into goals/subgoals to be reachieved which are
added to the newly updated partial plan.

ii. If execution takes longer than expected (i.e. the actual time following execu­
tion is later than the predicted time), the deadlines associated with actions in
the partial plan are reestimated and, if there is insufficient time available, the
partial plan may be edited.

iii. The motivations are updated to reflect the changes in the partial plan (brought
about as a consequence of planning) as well as changes to the world that are
brought about as a consequences of execution, of the activities of other agents,
and of physical processes (in this implementation, the user is asked to key in
the new strength associated with each motivation).

iv. New goals are generated and existing goals updated (in this implementation
the user is asked to key in new goals and update existing goals).

V. All previous partial plans in the search space are deleted as their “initial world”
model no longer corresponds to the current (i.e. post execution) state of the
world. The newly updated partial plan (updated as a consequence of execution)
is evaluated with respect to the (newly updated) motivations, and forms the
sole plan in the search space.

gle set of motivations is used (see section 3.2.3) - the motivations are updated and new

goals are generated and/or existing goals updated only after an action has been executed.

This algorithm has been used for the following reasons.

58

1. It is assumed that changes made to a partial plan as a consequence of planning to

achieve some goal/subgoal will be too small to significantly affect both the strength

associated with motivations and the generation/update of goals. Motivations are

therefore updated and goals generated/updated only after an action has been exe­

cuted.

2. Less computation is required as a consequence - motivations are only updated and

new goals are generated only once an action has been executed instead of once for

each newly generated partial plan per plan/execute cycle.

3. A single set of motivations is used which means less memory is required.

The algorithm is illustrated in chapter 2, figure 2.1 and is described in table 3.1.

3.5 Other Related Work

In this section we examine two planning systems, Sage ([Knoblock 95], [Knoblock 96])

and the HSTS planner used as part of the Remote Agent architecture [Muscettola et al

98], which interleave planning and execution.

3.5.1 Sage

The most closely related work is the planner Sage ([Knoblock 95], [Knoblock 96]) - an

extension of the partial-order planner UCPOP [Penberthy & Weld 92], which supports

simultaneous action execution and which tightly integrates planning and execution. Sage

served as the underlying query-planning component for early versions of the SIMS infor­

mation mediator - the overall goal of the SIMS project was to provide integrated access

to information distributed over multiple, heterogeneous sources such as databases,

knowledge bases, flat files, Web pages and programs [Ambite et al 97]. In Sage, UCPOP

has been modified to include two extra flaws (in addition to open conditions and threats):

an unexecuted action flaw and an executing action flaw. The Sage algorithm, which is

illustrated in table 3.2 below, is designed so that execution only occurs if there are no

threats or open conditions (i.e. once a complete plan has been generated).

The planner starts with an initial plan, where the goals are the open conditions - ini­

tially, the set of current plans (i.e. the search space) contains only this initial plan. The

planner repeats the algorithm until it produces a plan in which every action has been exe­

cuted. In each cycle, the planner selects a plan from the search space of current plans.

59

Whenever an action is executed, an action terminates, or a new goal is added, the set of

current plans is replaced by a new set containing only this plan. The first two conditions

in this algorithm ensure that the planner finds a plan with no open conditions or threats

before it commits to a plan and initiates any actions.

This algorithm supports simultaneous planning and execution (unlike the work pre­

sented in this thesis). Before the system initiates execution of any action, it constructs an

initially complete plan. However, once execution starts, an action could fail, a new goal

could arise, or the system may require additional information (sensing) to continue plan­

ning. In any of these cases, once the new open condition has been added to the list of

flaws, the system can augment the executing plan to achieve these conditions while it

continues executing any actions that have already been initiated.

Table 3.2 Sage - algorithm for planning and execution

Remove a plan from the set of current plans and apply the first applicable condition:
1. If there are any threats, these are resolved by adding additional constraints to the plan.

The possible refinements are added to the set current plans (i.e. this contains the search
space of partial plans).

2. If there are any open conditions, additional actions or ordering links are added to
achieve them. The possible refinements are added to the set current plans.

3. If any executing actions have completed.

(a) If an action is executed successfully the results are recorded and the plan is
updated. The set current plans is replaced with the newly updated plan.

(b) If the action fails, the failed portion of the plan is removed, the model is updated
and the set current plans is replaced with this new plan.

4. If there are any new goals to solve, they are added to the open conditions and the set
current plans is replaced with the (newly updated) plan.

5. If any unexecuted actions are now executable, create a process to execute them and
replace the set current plans with the plan.

Sage also handles action failures and replanning - the planner aims to replan the

failed portion of the plan, while maintaining as much of the executing plan as possible.

This is currently supported by requiring the designer of a domain to define a set of

domain-specific handlers. When a failure occurs, the failure handler is called with the

action that failed and the type of failure, and the failure handler is expected to remove the

failed portion of the plan and update the model to avoid the same failure when the failed

actions are replanned.

Like the work presented in this thesis. Sage can handle new goals whilst it is in the

midst of executing a plan that achieves some other goal(s). However, when a new goal is

presented to Sage (by a user), a complete plan is generated which achieves that goal

60

before execution can continue (in the same way as was described in the first strategy of

section 3.3 above). Sage is unable to change its focus of attention from one goal to

another whilst planning to achieve those goals. The domain description language used by

Sage is more expressive than that used in this thesis, as it is based on UCPOP which sup­

ports ADL [Pednault 89]. Sage does not reason about time and so cannot plan to achieve

goals with an associated deadline. Likewise, Sage does not provide a domain-indepen­

dent mechanism that enables it to take into account its context. Finally, unlike the work

presented in this thesis. Sage incorporates sensing actions by supporting run-time vari­

ables (an idea proposed in earlier work on sensing in planning, [Ambros-Ingerson 87],

[Etzioni et al 92]) which allow it to reason about the sensed information.

3.5.2 The Remote Agent architecture

The NMRA (New Millenium Remote Agent - [Pell et al 96a], [Pell et al 96b], [Muscet­

tola et al 98]) architecture is the first AI system to control an actual spacecraft and the

first system to integrate closed-loop planning and execution of concurrent temporal

plans. The key technology demonstrated is spacecraft autonomy, including onboard plan­

ning and plan execution - the spacecraft spends long periods of time without the possibil­

ity of communication with ground operations staff, and plans when it needs to

communicate back to Earth. It must maintain its safety and achieve high-level goals,

when possible, even in the presence of hardware faults and other unexpected events. The

spacecraft domain presents many challenges for planning and execution.

1. Many devices and systems must be controlled, leading to multiple threads of com­

plex activity - these concurrent processes must be coordinated to control for nega­

tive interactions.

2. Activities may have real-time constraints, such as taking a picture of an asteroid

during a narrow window of observability.

3. Plans must express compatibilities among activities, and the plan execution system

must synchronise these activities at run-time.

4. The planner and plan execution system must reason about and interact with exter­

nal agents and processes - these external agents can provide information at plan

time, and achieve tasks and provide more information at runtime, but are never

fully controllable or predictable.

61

5. Resources are limited and carefully budgeted - some resources are constant but

limited, others are finite and must be budgeted across the entire mission. The plan­

ner reasons about resource usage and resource constraints must be enforced as part

of plan execution. (Planning is also a limited resource.)

6. The spacecraft domain requires tracking of complex goals through time, thus the

execution system must communicate the outcomes of commanded activities that

affect those goals to the planning system, and the planner must use this information

to update current goals and influence future planning.

It is impossible to plan an entire mission at the lowest level of detail due to the

extended duration of missions as well as the unpredictability of actions [Muscettola et al

98]. The Remote Agent architecture therefore performs periodic planning, i.e. planning

occurs at infrequent intervals and has a restricted horizon - the generation of a plan is

explicitly represented in the plan as a task. A Mission Manager formulates short-term

planning problems for the planner using a mission profile which lists all goals that are to

be achieved during the mission. To overcome the problem of activities in one planning

horizon compromising activities later in the mission, when the Mission Manager extracts

goals for the next round of planning it also extracts constraints from the mission profile

and presents both goals and constraints to the planner. The Remote Agent architecture

has a reactive plan execution system which executes plans by decomposing high-level

plan activities into commands to the real-time system. The executive component uses a

procedural language ESL [Gat 96], to define alternate methods for decomposing activi­

ties. The granularity therefore differs between the planning and execution systems - plan­

ning occurs at a more abstract level. In addition, goals cannot usually be achieved with

the level of satisfaction required - the planner has to trade off the level of goal satisfac­

tion with respect to the long term “mission success” and within resource limitations. The

top-level execution loop is presented in table 3.3.

Plans consist of temporal sequences of activities, or tokens - each activity has an ear­

liest start time, a latest start time, an earliest end time, and latest end time. From the point

of view of the executive, a plan is a set of timelines, each of which consists of a linear

sequence of tokens. The planner used in the Remote Agent architecture consists of a heu­

ristic search engine operating on a temporal database (provided by the HSTS system.

62

[Muscettola 94]).

Table 3.3 Top-level execution loop for the NMRA architecture

1. Begin waiting for signals of plan failure - if this occurs at any time in the current
sequence, abort the currently executing plan and go to step 2.

2. Begin executing a standby plan to establish a stable state.

3. Invoke the planner to generate a new plan (for the next planning horizon), using the
current state as the initial state for planning.

4. Continue executing the current plan while waiting for the new one.

5. Upon receipt of the new plan: merge the new plan into the current plan.

6. Upon reaching a new planning goal, repeat from step 3.

The Remote Agent architecture is domain specific which means that the context of

the agent is captured through the use of domain specific search control rules. High-level

goals are specified prior to the start of a mission through means of the mission profile -

the Remote Agent architecture does not have a component responsible for generating

high-level goals. The architecture doesn’t choose whether to plan or whether to execute -

planning for the next horizon is one of the tasks in the current plan. The planner is able to

reason about both time and resources in a far more sophisticated way than the work

addressed in this thesis. The executive component has the facility to repair the current

plan in the event of unforeseen adverse events occurring, and, if it is unable to execute or

repair the curent plan, it aborts the plan and puts the system into a stable safe state. Once

a safe state has been entered, the executive component provides the Mission Manager

with details of the current state and requests a new plan from the planner. Planning and

execution occur simultaneously. In addition, execution occurs in parallel, as many sepa­

rate devices execute simultaneously - unlike the work addressed in this thesis which

assumes only one execution agent and that activities must be executed sequentially.

3.6 Summary

In this chapter we discussed in detail which factors cause an agent’s motivations to

change in strength as well as which factors cause new goals to be generated and existing

goals to be updated. Taking these factors into account, we then discussed how often it is

necessary to both update the agent’s motivations and generate/update goals. We

described an alternative control strategy which could be used in the planning/execution

architecture presented in this thesis (see section 3.2.3, figure 3.1) and justified our deci­

sion to adopt the control strategy presented in chapter 2, figure 2.1. In section 3.3 we

63

introduced two alternative control strategies implemented as part of the “Plan to achieve

goal” component - these strategies differ in the degree to which they allow planning and

execution to be interleaved. The algorithm used to implement the control strategy of the

planning/execution system was presented in table 3.1. Finally, we described two other

planning systems that enable planning and execution to be interleaved (Sage, and the

Remote Agent architecture) and compared and contrasted these systems with the system

described in this thesis.

64

Chapter 4

Choosing Whether to Plan or to Execute

4.1 Introduction

In this chapter we begin by describing the data structures used to represent information

required by the planning/execution architecture shown in chapter 2, section 2.2.1, figure

2.1, as well as the domain description language required by a user to specify problems

that are to be solved by the system. We then introduce the truck world domain - a domain

in which a truck-driver agent collects packages and parcels from various cities and deliv­

ers them to other cities. Finally, we describe in detail how the agent chooses whether to

plan to achieve a goal or whether to execute an action - this corresponds to the compo­

nent “Select goal or action” of the planning/execution architecture illustrated chapter 2,

section 2.2.1, figure 2.1.

4.2 Representations

4.2.1 Introduction

In this section we describe the data structures used to represent the information required

by the planning/execution algorithm illustrated in chapter 2, section 2.2.1, figure 2.1.

This architecture extends the planning algorithm used in the planner SNLP [McAllester

& Rosenblitt 91] to take into account the requirements described in chapter 1, sections

1.5 and 1.6. Whereas SNLP uses standard STRIPS representations for actions and goals,

the planning/execution algorithm described in this thesis requires extensions to the stan­

dard STRIPS representations in order to enable the architecture to satisfy the above

requirements. In this section we describe which particular requirements of the architec­

ture merit extensions to the standard STRIPS representations. We then present the data

structures required by the planning/execution algorithm in the following sections.

65

Context

The context of the agent, captured partly by modelling the motivations of that agent,

plays an important role in the planning process in that it enables the agent to generate

goals, to prioritise amongst goals as well as to select the best plan to achieve such goals.

To support this we need to be able to represent the agent’s m o t iv a t io n s . In addition,

the representations used for goals and actions have been extended to include the field

im p o r ta n c e , a value indicating how important it is to achieve the goal or to execute

the action. Finally, the action representation has been extended to include the fields

p r o s and c o n s - p ro s /c o n s store a set of values indicating the degree to which the

action, when executed, supports/undermines some subset of the agent’s motivations

(these are used as part of the partial plan evaluation/ranking heuristic which is described

in detail in chapter 6, section 6.4).

Planning and acting in real or simulated time

Time passes while the agent both plans to achieve goals and executes actions. Goals that

are generated by the "Generate/update goals” component have an associated d e a d l i n e

by which they must be achieved and d u r a t i o n indicating how long they must remain

true. It is assumed that deadlines associated with goals are hard (i.e. if the goal cannot be

achieved by that deadline, the agent has effectively failed to achieve that goal). Actions

also have an associated d e a d l i n e indicating the latest time by which execution must

commence, and d u r a t i o n (indicating an estimate of how long it will take to execute

the action).

In addition, it may not always be possible to achieve all goals in the time available, in

which case it is necessary to edit the plan to remove goals that cannot be achieved,

together with their associated actions and constraints (see chapter 6, section 6.3 for fur­

ther details). To facilitate this, the action representation has the associated field g o a l s

which contains a list of the goals to which the action contributes.

Interleaving planning and execution

Planning and execution are ongoing activities - because the agent is capable of continu­

ally generating new goals, planning is never complete which means that planning and

execution must be interleaved. To support this requirement, the “Select goal or action”

component decides, once each cycle, whether to plan to achieve a goal/subgoal or

66

whether to execute an action. The representation of goals and actions has therefore been

extended to include the fields im p o r ta n c e , e f f o r t and d e a d l in e , where im p o r­

ta n c e and d e a d l i n e have already been described, and e f f o r t is a value indicating

the amount of effort which has currently been expended in planning to achieve the goal

or, for actions, the amount of effort which has currently been expended in planning to

achieve the set of goals to which the action contributes.

4.2.2 Motivations

The data structure m o t iv a t io n is used to represent each motivation. It consists of two

fields:

• name - this specifies the name of the motivation (for example hunger).

• s t r e n g t h - this specifies the strength associated with the motivation (a real

number). The value s t r e n g t h associated with each motivation changes depending

upon the external environment. For example, the value s t r e n g t h associated with

the motivation whose name is hunger will be low if the agent has just eaten but high

if the agent has not eaten for a long time.

4.2.3 Actions

Actions are represented using the data structure a c t i o n , which has the following fields.

• i d - this is the unique identifier associated with the action.

• ty p e - this specifies whether an action or an event is being represented (events are

described by [Vere 83] and are not discussed in this thesis).

• name - this specifies the action’s name and parameters, for example (puton ?x ?y).

• p r e c o n d - the action’s preconditions are represented as a set of predicates indicating

which facts must be true in the world in order that the action may be executed.

• a d d - a set of predicates representing facts which become true as a consequence of

executing the action.

• d e l e t e - a set of predicates representing facts which were true in the world prior to

executing the action but which are no longer true once the action has been executed.

• p r o s - a set of (name s t r e n g t h) tuples indicating the degree to which executing

the action supports the agent’s motivations, name indicates the motivation which is

supported as a consequence of executing the action, while s t r e n g t h is a numerical

67

value indicating a prediction of the degree to which executing the action will support

the motivation. For example, the action (eat) may have the p r o s tuple (hunger 0.9)

which indicates that the action (eat), once executed, supports the motivation with the

name hunger - the value s t r e n g t h , 0.9, is a prediction of the degree to which the

action (eat), once executed, reduces the value s t r e n g t h associated with the motiva­

tion hunger.

• c o n s - a set of (name s t r e n g t h) tuples indicating the degree to which executing

the action undermines the agent’s motivations, name indicates the motivation which

is undermined as a consequence of executing the action, while s t r e n g t h is a

numerical value indicating a prediction of the degree to which executing the action

undermines the motivation. For example, the action (drive cityl city2) may have the

c o n s tuple (conserve-fuel 0.5) which indicates that the action (drive cityl cityl),

once executed, undermines the motivation with the name conserve-fuel - the value

s t r e n g t h , 0.5, is a prediction of the degree to which the action (drive cityl cityl),

once executed, increases the value s t r e n g t h associated with the motivation con­

serve-fuel.

• g o a l s - a set of (the unique identifiers associated with) goals generated by the “Gen­

erate/update goal” component, towards which executing the action contributes. This

enables the planner to keep a track of dependencies so that goals with their supporting

actions may be removed from the plan.

In addition, each action has an associated data structure known as a n o d e (see sec­

tion 4.2.5) which contains extra information such as the amount of effort expended in

achieving the goals (which are represented by the set g o a l s) towards which the action

contributes, the action’s importance, the action’s deadline, and the action’s duration.

4.2.4 Goals

Goals which are generated by the “Generate/update goals” component and subgoals/

open conditions which are generated by the “Plan to achieve goal” component are repre­

sented using the data structure g o a l , which has the following fields.

• i d - the (unique) identifier associated with the goal. This is unique and newly gener­

ated for goals created by the “Generate/update goals” component. However, for sub­

goals/open conditions that are derived from actions (i.e. derived from the

preconditions of an action), the identifier is the same as that of the action from which

68

the open condition was derived.

• ty p e - this is used to indicate whether the goal was created by the “Generate/update

goals” component or whether the goal was derived from the preconditions of an

action (i.e. ty p e can have the values igoal or : subgoal).

• c o n d i t i o n - a predicate representing the goal/open condition.

Each goal has an associated data structure known as a n o d e (see section 4.2.5)

which contains extra information such as the amount of effort expended in achieving the

goal, the goal’s importance, the goal’s deadline and the goal’s duration.

4.2.5 Nodes

Each action and goal has an associated node which stores information such as how

important the action or goal is, the amount of effort expended by the planner in achieving

the goals towards which the action or goal contributes, the earliest/latest start time and

duration associated with the action or goal.

• i d - the node’s identifier. This is the same as the unique identifier associated with the

node’s corresponding action or goal.

• ty p e - this is one of three values, :goal, : action or : event depending upon whether the

node corresponds to an action, goal or event (events are not discussed in this thesis).

• im p o r ta n c e - this is a value indicating the importance of the node’s corresponding

action or goal.

• e f f o r t - if the node corresponds to a goal, the value e f f o r t indicates the amount

of work expended by the planner in achieving that goal (i.e. through selecting actions

and constraints that, once executed, achieve the goal). If the node corresponds to a

subgoal, action or event, the value e f f o r t indicates the amount of work expended

by the planner in achieving the goals towards which the subgoal, action or event con­

tributes.

• w indow - this indicates the earliest and latest (i.e. the deadline) start times associated

with the node. These are the times (earliest and latest) by which execution of the

node’s corresponding action/goal must commence. (The earliest and latest start times

associated with a goal indicate the time window in which the goal must be achieved,

whereas the earliest and latest start times associated with an action or event indicate

the time window during which execution of the action or event must commence.)

69

• d u r a t i o n - an indication of how long the node’s associated goal or action must

remain true or takes to execute. If the node corresponds to a goal, the duration indi­

cates how long the goal must remain true, whereas if the node corresponds to an

action or event, the duration indicates how long the action or event takes to execute.

4.2.6 Plans

Partial plans are represented using the data structure p la n :

• s t e p s - the set of actions or steps contained in the plan.

• l i n k s - a set of tuples of the form (e s t a b l i s h e r - i d g o a l) representing goals

or subgoals which have been achieved by the “Plan to achieve goal” component (i.e.

an action has been selected to achieve the goal or subgoal), e s t a b l i s h e r - i d is

the unique identifier of the establishing action or step, g o a l (see section 4.2.4

above) represents the goal or subgoal which has been achieved.

• u n s a f e - a set of tuples of the form (l i n k c l o b b e r - i d c l o b b e r - b i n d) .

l i n k , which is represented as the tuple (e s t a b l i s h e r - i d g o a l), is an unsafe

link which may potentially be clobbered/undermined by the action whose unique

identifier is equal to c l o b b e r - i d if any variables are instantiated using the bindings

belonging to the set c lo b b e r - b in d . All potential conflicts represented by the set

u n s a f e must be resolved as part of the “Achieve goal” process described in chapter

2, section 2.2.6, figure 2.2 and in chapter 5, section 5.3.

• o p en - a set of open conditions or goals or subgoals which are to be achieved. Each

open condition is represented using the data structure g o a l .

• o r d e r i n g - a set of tuples of the form (i d l id 2) representing the ordering of

actions and goals - i d l and id 2 are the unique identifiers associated with actions or

goals and indicate that the action/goal with the unique identifier i d l occurs prior to

the action/goal with the unique identifier id 2 .

• b in d in g s - a set of elements representing the bindings and non-bindings of varia­

bles and constants. A binding is represented using the data structure v a r s e t (used in

the implementation of SNLP and UCPOP) which includes the following fields:

c o n s t - a unique constant; c d - s e t - the set of variables that bind/codesignate with

the constant c o n s t ; n c d - s e t - the set of variables that must not bind/codesignate

with the constant c o n s t (and which must therefore also not bind/codesignate with

70

any of the variables belonging to the set c d - s e t) .

• g o a l s - a set of goals that have been generated by the “Generate/update goals” com­

ponent. These are represented using the data structure g o a l (see section 4.2.4 above).

• n o d e s - a set of nodes which correspond to actions and goals. Nodes are used to rep­

resent the importance, effort, deadlines and durations associated with actions and

goals (see section 4.2.5 above).

• h ig h - s t e p - an integer used to generate unique identifiers for actions and goals.

4.3 The Domain Description Language

In this section, the domain description language is described. This constitutes the infor­

mation that must be supplied by a user (or other components of the agent architecture

such as “Update motivations”, “Generate/update goals”) in order that the planning/exe­

cution architecture of chapter 2, figure 2.1 can create plans to achieve goals.

4.3.1 Operator schemas (action templates)

The agent’s capabilities are represented using operator schemas - each operator schema

represents a particular class of actions. For example, chapter 1, table 1.1 represents four

classes of actions: stacking some block ?x onto some block ?y\ unstacking some block ?x

from some block ?y\ picking up some block ?x off the table; putting down some block ?x

onto the table {?x and ?y are variables). The variables within each operator schema are

instantiated during the process of planning to achieve some goal or subgoal, thereby cre­

ating an action instance. Operator schemas have the following fields.

• name - this specifies the action’s name and parameters, for example (stack ?x ?y).

• p r e c o n d - the operator schema’s preconditions are represented as a set of predicates

indicating which facts must be true in the world in order that the operator schema may

be executed.

• d e l e t e - a set of predicates representing facts which were true in the world prior to

executing the operator schema but which are no longer true once the operator schema

has been executed.

• a d d - a set of predicates representing facts which become true as a consequence of

executing the operator schema.

71

• b in d in g s - a set of bindings indicating which variables may not codesignate or bind

with other variables.

4.3.2 Motivations

The domain designer must specify and initialise the agent’s set of motivations. The archi­

tecture contains the component “Update motivations” which, once implemented, is

responsible for updating the motivations in response to both changes in the environment

and changes in the agent’s partial plan. In the current implementation, a user is responsi­

ble for updating the strength associated with the motivations via an interface.

4.3.3 Goals

The domain designer must initially specify a set of goals for the “Plan to achieve goal”

component to achieve. Each goal requires information concerning its condition, impor­

tance, deadline and duration. The architecture contains the component “Generate/update

goals” which, once implemented, is responsible for generating/updating goals to reflect

changes which occur to the environment, the agent’s partial plan as well as the motiva­

tions. In the current implementation, a user is responsible for creating and updating goals

via an interface.

4.3.4 The partial plan

In order to begin planning, the architecture requires a partial plan (to be specified by the

domain designer) containing an action representing the initial state of the environment

(this has the unique identifier 0, null precondition and delete lists), together with its asso­

ciated node.

4.3.5 Look-up tables

The planner requires two look-up tables, one containing estimates of the duration (i.e.

the time it takes to execute an action) of each action (this enables the planner to instanti­

ate the field d u r a t i o n when creating or further instantiating actions - see chapter 5,

section 5.2.2 for further details), the other containing an estimate of the degree to which

each action supports or undermines the agent’s motivations (this enables the planner to

instantiate the fields p r o s and c o n s when creating or further instantiating actions - see

chapter 5, section 5.2.3 for further details). The look-up tables are accessed by the

72

action’s name and parameters, for example (stack A B). The look-up tables require

domain and agent specific knowledge - in an extended agent architecture the information

contained in these tables could be learnt using some sort of learning component.

4.3.6 The current time

The domain designer needs to specify the current time.

4.3.7 Discussion

Other planners that reason about time such as DEVISER [Vere 83], Zeno [Penberthy &

Weld 94] and IxTeT [Laborie & Ghallab 95] encapsulate information specifying the

duration of activities within operator schemas. The disadvantage of this approach is that

it may make the assumption that each action instance has the same duration regardless of

how that action is instantiated. For example, an operator schema used to represent the

activity of flying an aeroplane from an initial location to a destination location may

assume that the length of time taken to execute this action is the same regardless of the

type of aeroplane. This is clearly not the case, as an aeroplane such as Concorde will fly

between locations much quicker than a Boeing 747. In order to overcome this, two oper­

ator schemas are required, one dealing with each type of aeroplane. This approach may

lead to a proliferation of operator schemas - Zeno has two flying operator schemas, one

responsible for flying quickly, another for flying slowly. The approach adopted in this

thesis is to keep information concerning the duration of actions within a look-up table as

opposed to within operator schemas. It is the responsibility of the planner to estimate the

duration of each action instance as part of the process of instantiating operator schemas/

action instances.

4.4 The Truck World Domain

In order to illustrate the workings of each of the components used within the planning/

execution architecture presented in this thesis (see chapter 2, figure 2.1), in this section

we describe the truck world domain - a domain in which a truck-driver transports parcels

and packages from one city to another.

73

cityl

city2

cityS

cityS
city4

Figure 4.1 The Truck World Domain

Figure 4.1 shows the topology of the truck world domain which consists of five cities

connected by roads. The numbers illustrate the units of time it takes to drive from one

city to another - for example, to drive from cityl to city4 takes 2 units of time. In this

domain, it is the duty of a single truck-driver to transport packages or parcels from one

city to another by some deadline. At any point in time, the truck-driver may receive an

instruction to pick up some package from one city, and to transport that package to

another city. The truck-driver is an agent acting within this domain and requires the plan­

ning and execution architecture described in this thesis so that it can act to achieve its

goals in an intelligent, timely fashion. In order to do this, the planning and execution

architecture requires the following information (i.e. this information is described in sec­

tion 4.3 above as the domain description language) which is described in detail later in

this section.

1. A description of the initial state which is encapsulated within an initial plan.

2. A description of the goal state.

3. A set of operator schemas/action templates - these represent the capabilities of the

truck-driver.

4. The truck-driver’s current motivations.

5. A look-up table specifying the amount of time it takes the truck-driver to execute

each action.

6. A look-up table specifying the degree to which executing each action will support

or undermine the truck-driver’s motivations.

7. The current time.

74

4.4.1 A description of the initial state of the truck world domain

Table 4.1 describes the initial state of the truck world domain. The truck (and truck-

driver) and package are at cityl. Various predicates are used to represent static features

within the domain (i.e. invariants) such as which cities are connected to which other cit­

ies. In this example, it is assumed that the truck always has fuel. Changing features in

this environment include the truck and the package, which can both be moved from one

city to another. The initial state of the truck world domain is encapsulated within an ini-

Table 4.1 The initial state of the truck world domain

invariants variants

connects(cityl city2) & connects(city2 cityl) &
connects(cityl city3) & connects(city3 cityl) &
connects(city2 city4) & connects(city4 city2) &
connects(city2 city5) & connects(city5 city2) &
connects(city3 city4) & connects(city4 city3) &
connects(city4 city5) & connects(city5 city4) &
has-fuel(truck)

at(truck cityl) &
at(package cityl)

tial partial plan which is shown in table 4.2 below. The representation of the initial state

of table 4.1 is encapsulated within the add field of a dummy action whose name field is

assigned the value initial. The initial plan also contains a newly generated goal at(pack-

age city5) which is described in the next section.

Tahle 4.2 The initial plan

actions: id: name: add:

0 initial connectsicityl city2) & connects(city2 cityl) &
connects(cityl city3) & connects(city3 cityl) &
connectsicity2 city4) & connects(city4 city2) &
connectsi city2 city 5) & connectsi city 5 city2) &
connectsi city 3 city4) & connectsi city4 city 3) &
connectsicity4 city5) & connectsicityS city4) &
has-fuelitruck) & atitruck cityl) &
atipackage cityl)

links nil

open: nil

unsafe: nil

ordering: nil

bindings: nil

goals: id: conditions: deadline: importance:

1 at(package city5) 20 6

75

4.4.2 A description of the goal

Initially, the desired goal is as illustrated in table 4.3 - the package must be delivered to

cityS by 20 units of time. The importance associated with this goal is assigned the value

6 and the goal must remain true for 0 units of time. In a complete implementation of the

Table 4.3 The first goal

id: 1

condition: at(package city5)

importance: 6

deadline: 20

duration: 0

planning/execution architecture described in chapter 2, figure 2.1, this goal would be

generated by the “Generate/update goals” component.

4.4.3 The operator schemas/action templates

Table 4.4 Action templates/operator schemas for the truck world domain

name: drive-truck (?truck ?from ?to)

precondition: at (?truck ?from) &
has-fuel(?truck) &
connectsi?from ?to)

delete: at(?truck ?from)

add: at(?truck ?to)

bindings: (not(?from ?to)) &
(not(?from ? truck)) &
(not(?to ? truck))

name: unload(?ob ? truck ?loc)

precondition: at(?truck ?loc) &
in(?ob ?truck)

delete: in(?ob ? truck)

add: at(?ob ?loc)

bindings: (not(?ob ?truck)) &
(not(?ob ?loc)) &
(not(?truck ?loc))

load(?ob ? truck ?loc)

at{?truck ?loc) &
at(?ob ?loc)

at(?ob ?loc)

in(?ob ?truck)

(not(?ob ? truck)) &
(not(?ob ?loc)) &
(not(?truck ?loc))

Table 4.4 contains three operator schemas/action templates which represent the capabili-

76

ties of the truck-driver agent - for example, the truck-driver can drive from one city to

another provided the truck has fuel and that the cities are connected, and it can load and

unload objects such as packages and parcels into or out of the truck at various locations.

4.4.4 The agent’s motivations

In this example the agent has three motivations which are shown in table 4.5. The first is

concerned with maximising pleasure, the second with conserving fuel and the third with

conserving tyres. Each motivation is initialised so that its motivational value is 0.

Table 4.5 The truck-driver’s motivations

Motivations

name: pleasure conserve-fuel conserve-tyres

strength: 0.0 0.0 0.0

4.4.5 Values indicating duration

The planning/execution architecture requires access to a look-up table which stores val­

ues indicating the duration associated with actions. The look-up table, shown table 4.6, is

accessed using the action’s name field as the key. The duration associated with the action

drive-truck(truck cityl cityl) is the same as that associated with drive-truck(truck cityl

cityl) - this applies to the other instantiations of the drive-truck action. In addition, the

Table 4.6 Values indicating duration

action name duration

drive-truck(truck cityl cityl) 3

drive-truck(truck cityl city3) 1

drive-truck(truck cityl city4) 1

drive-truck(truck cityl city5) 4

drive-truck(truck city3 city4) 3

drive-truck(truck city4 city5) 3

drive-truck 4

unload-truck 1

load-truck 1

duration associated with incomplete instantiations of the action drive-truck assume the

worst case value 4. The actions unload-truck and load-truck take the same amount of

77

time regardless of how they are instantiated.

4.4.6 Values indicating the degree of support

Table 4.7 Values indicating the degree of support of each action

action name pros cons

name strength name strength

drive-truck(truck cityl city2) pleasure 0.1 conserve-fuel 1.2
conserve-tyres 1.0

drive-truck(truck cityl city3) pleasure 1.9 conserve-fuel 0.3
conserve-tyres 0.1

drive-truck(truck city2 city4) pleasure 1.2 conserve-fuel 0.3
conserve-tyres 0.2

drive-truck(truck city2 city5) pleasure 0.2 conserve-fuel 1.0
conserve-tyres 0.9

drive-truck(truck city3 city4) pleasure 1.2 conserve-fuel 0.3
conserve-tyres 0.4

drive-truck(truck city4 city5) pleasure 1.8 conserve-fuel 0.3
conserve-tyres 0.4

drive-truck pleasure 0.0 conserve-fuel 0.0
conserve-tyres 0.0

unload-truck pleasure 0.0 conserve-fuel 0.0
conserve-tyres 0.0

load-truck pleasure 0.0 conserve-fuel 0.0
conserve-tyres 0.0

A look-up table is required which stores values indicating the degree to which actions in

the truck world domain support the truck-driver’s motivations. This table, shown in table

4.7, is accessed using the action’s name field as the key. For example, the action drive-

truck(truck citylcity2) supports the motivation pleasure (the strength, 0.1, indicates the

degree to which the truck-driver finds the route between cityl and city2 pleasurable to

drive along) and undermines the motivations conserve-fuel (the value 1.2 means that the

truck consumes a lot of fuel when driving between cityl and city2) and conserve-tyres

(the value 1.0 means that the road between cityl and city2 is bad for the truck’s tyres).

The degree to which the action drive-truck(truck city2 cityl) supports or undermines the

truck-driver’s motivations is the same as that associated with drive-truck(truck cityl

city2) - this applies to the other instantiations of the drive-truck action. Incomplete

instantiations of the actions drive-truck, unload-truck and load-truck have no effect upon

78

the truck-driver’s motivations.

4.4.7 Summary

The truck world domain will be used in the remainder of this thesis to illustrate the work­

ings of each of the components. Because the components “Update motivations” and

“Generate/update goals” have not been implemented, it is not possible to give a complete

demonstration of the overall performance of the planning/execution system in this

domain. For example, future work could involve extending this domain to demonstrate

how using up fuel and wearing down the truck’s tyres alters the strength of the agent’s

motivations which in turn causes goals to be generated that involve obtaining fuel and

replacing the tyres. At present such mechanisms are not implemented.

4.5 Choosing to Plan or to Execute

In the following sections we describe in detail how the agent chooses whether to plan to

achieve a goal/subgoal or whether to execute an action - this corresponds to the compo­

nent “Select goal or action” of the planning/execution architecture illustrated in chapter

2, section 2.2.1, figure 2.1. The first part of the process involves determining which, if

any, actions are ready to be executed: an action is ready to be executed if its precondi­

tions are established in the current state and if the current time is before or equal to the

action’s execution deadline. Once the set of actions that are ready to be executed has

been determined, the set of open conditions (consisting of both goals and subgoals) and

ready to be executed actions are evaluated to determine the “best” goal/subgoal or action.

Goals/subgoals and actions are evaluated on the basis of values indicating their impor­

tance, effort and deadline (see sections 4.2.3 , 4.2.4 and 4.2.5 which describe how

actions and goals/subgoals are represented).

1. importance is a value indicating the importance of the action/goal/subgoal - the

higher the value, the more important the action/goal/subgoal. Each goal generated

by the “Generate/update goals” component has assigned to it a value indicating its

importance. The importance associated with an action or subgoal however, is

determined by the importance associated with the goals towards which the action

or subgoal contributes. Actions/goals/subgoals with a high value of importance are

favoured.

79

2. ejfort is a value indicating the amount of effort which has already been expended

by the “Plan to achieve goal” component - the higher the value, the greater the

amount of effort that has already been expended. The value ejfort associated with a

goal generated by the “Generate/update goals” component is the amount of effort

expended by the “Plan to achieve goal” component in achieving that goal. The

value ejfort associated with an action or subgoal is determined by the effort

expended in achieving the goals to which the action/open condition contributes

(this will be explained further in section 4.5.3 below). Actions/goals/subgoals with

a high value of ejfort are favoured.

3. deadline is a value indicating the time by which the action/goal/subgoal must be

executed/true (an action must be executed by this deadline whereas a goal or sub­

goal must be established by this time) - the lower the value, the earlier the deadline.

Actions/open condition with a low value of deadline are favoured.

Once evaluation has taken place, the best action/goal/subgoal is returned - if it is an

action, that action is executed, while if it is a goal or subgoal, that goal or subgoal is

achieved. In the following sections we describe the parameters importance, ejfort and

deadline in more detail.

4.5.1 Importance

Earlier, in chapter 2, sections 2.2.3 and 2.2.4, we saw that motivations cause goals to be

generated - by achieving such goals an agent is able to satisfy the motivations that caused

those goals to be generated. If the strength of a motivation such as hunger is high, the

goal, have-food, might be generated. Once that goal is satisfied, the strength associated

with hunger is reduced. In addition, the strength associated with the motivations of an

agent directly determines the importance of any goals generated in order to mitigate

those motivations. If a motivation is high in strength, any goal generated to satisfy that

motivation will also be high in importance. The external environment constantly changes

as a result of either the agent acting to satisfy its goals (this also includes physical inter­

nal changes that take place within the planning/execution agent) or due to the activities

of other autonomous agents or physical processes. In addition, the agent’s internal plan

changes as a consequence of the agent planning to achieve some goal. Both changes

cause the motivations of the agent to change in strength which in turn may affect the

importance of the goals generated previously to mitigate those motivations. The impor-

80

tance of a goal may therefore change while the agent plans and acts.

For example, an agent might receive an e-mail message informing them that a talk is

to be given during the afternoon of the following day. The e-mail message contains the

title of the talk together with the time, venue and the name of the person delivering the

talk. Because the title sounds relevant to the agent’s current research interests, the agent

may decide to attend this talk. Attending the talk can be viewed as being a goal generated

by the “Generate/update goals” component in response to the agent receiving the new

information, which has a fairly high value of importance (determined by the estimated

relevance of the talk to the agent’s research interests). Subsequently, the agent may

receive a further e-mail communication which includes an abstract describing in more

detail what the talk will cover. After reading this e-mail, the agent may realise that the

talk is not as relevant to their current research interests as the previous message led them

to believe. In view of this newly acquired information it may no longer be as important

that the agent attends the talk.

Another example involves an agent perceiving that a kitchen tap is leaking, which

leads the agent to generate a goal to repair the tap. Initially the importance associated

with this goal might not be high. However, if the leak suddenly gets a lot worse, the

importance of repairing the tap increases significantly as a consequence of a severe leak

might involve costly repairs.

The importance of the agent’s goals might therefore change whilst the agent is plan­

ning and acting within its environment. The design of a mechanism which demonstrates

how changes in the agent’s motivations directly affect the importance of the agent’s goals

is beyond the scope of this work. However, it is assumed that the importance of the

agent’s goals can change in response to the agent’s motivations. For the purpose of this

thesis however, it is assumed that the importance associated with goals generated by the

“Generate/update goals” component is fixed.

Finally, because goals are assigned a value indicating their importance, it is also pos­

sible to assign a value indicating the importance of each action (and its preconditions or

subgoals) that is selected to achieve such goals. The value indicating the importance of

an action and its preconditions or subgoals is determined by summing the values indicat­

ing the importance associated with each goal to which the action and its preconditions

contributes. In section 4.5.3 we describe how actions and subgoals are assigned a value

indicating their importance. In the “Select goal or action” procedure, actions/goals/sub-

81

goals with a high associated value indicating their importance are preferred.

4.5.2 Effort

In addition to having a value indicating importance, each goal that is generated by the

“Generate/update goals” component has a value indicating the amount of ejfort which

has currently been expended by the planner in achieving that goal. Each time an action is

selected by the “Plan to achieve goal” component to contribute towards the achievement

of a goal g (generated by the “Generate/update goals” component), the value ejfort asso­

ciated with g is incremented. As with importance, it is also possible to calculate a value

indicating the ejfort associated with each action and subgoal within the partial plan (this

process is described in section 4.5.3 below). Actions/goals/subgoals with a high associ­

ated value for ejfort are preferred. (It could be argued however, that once the value ejfort

associated with a goal has exceeded a certain threshold, the selection strategy should no

longer continue to try achieving that goal as the “Plan to achieve goal” component has

invested too much time in achieving the goal.)

4.5.3 The importance and effort of actions and subgoals

The role of the “Generate/update goals” component is to generate and update goals in

response to the agent’s current motivations, predicted future motivations, the current

state of the world and predicted future states of the world (see chapter 2, section 2.2.4).

As mentioned in previous sections (see section 4.5.1 and 4.5.2), associated with each

goal generated by this component is a value indicating its importance (this value is deter­

mined by the strength associated with each motivation that led to the generation of the

goal) and a value indicating the amount of ejfort expended by the “Plan to achieve goal”

component in achieving that goal (this value is initially 0). Each goal generated by the

“Generate/update goals” component is subsequently presented to the “Plan to achieve

goal” component which generates a sequence of actions that, once executed, achieves the

goal. It is therefore possible to calculate values indicating the importance and ejfort asso­

ciated with each action and subgoal (i.e. the preconditions of actions) within the partial

plan.

For example, the “Generate/update goals” process generates two goals, gi and gi,

which have the values 6 and 4 respectively indicating their importance. Initially, both

goals have the value 0 indicating ejfort as no planning has yet taken place. The “Select

82

goal or action” process chooses to achieve the goal gj. A newly created action a, is then

selected by the “Plan to achieve goal” process to achieve the goal g, - the value indicating

the importance of executing a, is equal to the value indicating the importance associated

with the goal gi (the value 6). The value ejfort associated with g,is incremented to 1 by

the “Plan to achieve goal” procedure to reflect the effort expended by that procedure in

achieving gi - the value effort assigned to the newly generated action a, is equal to the

newly generated value effort associated with gj (the value 1). Likewise, the values impor­

tance and ejfort associated with each subgoal that is derived from the preconditions of a,

are equal to the values importance and ejfort associated with the goal gi (the values 6 and

1 respectively). In fact, all actions that contribute towards the achievement only of gi (for

example the actions that are selected to achieve the preconditions of a, and their precon­

ditions) assume the same values of importance and ejfort (the values 6 and 1) as those

associated with g,.

Later, the “Select goal or action” procedure chooses to achieve the goal gg. The

action a, is selected by the “Plan to achieve goal” process to achieve the goal As a

consequence of this decision a, becomes more important, as executing a, now contributes

to the achievement of two goals, gi and The new value indicating the increased impor­

tance of a2 is the sum of the values indicating the importance associated with the two

goals g, and g2 (i.e. the value 10). In addition, the value importance associated with each

subgoal derived from the preconditions associated with a, and the value importance asso­

ciated with all actions and subgoals that contribute towards the achievement of the goals

g, and also increases. Likewise, the value ejfort associated with the goal is incre­

mented to 1 to reflect the extra effort expended by the “Plan to achieve goal” component

in achieving this goal. The new value effort associated with ai and with the subgoals that

are derived from the preconditions of a, (and all actions that contribute towards the

achievement of the goals g, and gj) is the sum of the values indicating the amount of

effort expended in achieving gi and (the value 2). The process of assigning values indi­

cating the importance and effort of actions and subgoals is described in further detail in

chapter 5, sections 5.2.5 and 5.2.6).

If the importance associated with goals that are generated by the ''Generate/update

goals” component changes whilst such goals are being achieved by the “Plan to achieve

goal” component, such changes propagate changes in the value of importance associated

with actions and subgoals within the partial plan. A mechanism has been developed to

83

propagate such changes in the value of importance and associated with actions.

4.5.4 Importance and urgency

In this section we consider how importance and urgency differ. Urgency is directly

related to the passing of time. As the time approaches the point by which a sequence of

actions must be executed in order to achieve a goal by some deadline, urgency increases.

For example, if the intention is to submit a paper to a conference, the goal of having writ­

ten the paper is less urgent if the deadline is far in the future. As time approaches the sub­

mission deadline, it becomes more and more urgent to achieve the goal of having written

the paper. This notion of urgency is rather similar to an increase in importance. Urgency,

like importance, is a factor that causes the agent to focus more or less on a goal. Impor­

tance however, is independent of time. Urgency is represented by reasoning about the

deadlines associated with actions and open conditions which is discussed in the follow­

ing section.

4.5.5 Deadlines

Goals that are generated by the “Generate/update goals” process also have an associated

deadline. Using ordering constraints, it is possible to estimate deadlines for each action

and subgoal within a partial plan. The process of estimating the deadline for actions and

their associated open conditions (derived from their preconditions) is described in more

detail in chapter 6, section 6.2. Actions/goals/subgoals with imminent deadlines are pre­

ferred.

4.5.6 Choosing whether to plan or execute - the algorithm

In this section we describe the algorithm used by the “Select goal or action” component

to determine whether a goal/subgoal should be achieved or whether an action should be

executed. This process requires the set of outstanding goals belonging within a partial

plan as well as the set of actions that are ready to be executed.

An action is ready to be executed if it is possibly first, its preconditions are true in the

current state and the current time is prior or equal to its execution deadline. It may be the

case that there are no actions that are ready for execution, in which case the algorithm

chooses to achieve the best outstanding goal or subgoal.

Once the set of actions that are ready to be executed has been determined, each open

84

condition (i.e. goals or subgoals) and action (which is ready to be executed) is evaluated

on the basis of its associated values importance, ejfort and deadline. The evaluation func­

tion prefers (i.e. assigns higher values to) actions/goals/subgoals with high values of

importance and effort and with imminent deadlines. The evaluation function first deter­

mines the latest deadline associated with the set of ready-to-execute actions and out­

standing goals. For each ready-to-execute action and outstanding goal, the evaluation

function first subtracts the deadline associated with the ready-to-execute action or out­

standing goal from the value indicating the latest deadline, and then adds the result to the

values importance and effort.

Note: more than one open condition may have the same value as a result of evalua­

tion. This is because one or more open conditions may be derived from the preconditions

of a single action which means they have the same values for importance, effort and

deadline. In this case, the first of such open conditions belonging within the set of open

conditions is returned. The algorithm is described in table 4.8.

Table 4.8 Choosing whether to plan or to execute

1. Let gls be the set of outstanding goals (containing goals and subgoals) belonging to the par­
tial plan p.

2. Let readyacts be the set of actions that are ready to be executed. (An action is ready to exe­
cute if it is possibly first, its preconditions are true in the current state, and the current time
is prior or equal to the action’s deadline. The algorithm only returns a set of actions pro­
vided that the preconditions of all possibly first actions are true in the current state.)

3. Let best be the best goal/subgoal or action - each goal/subgoal or action belonging to the
sets gls and readyacts is evaluated on the basis of its associated values importance, effort
and deadline.
(a) If best is one of the actions that are ready to be executed, return two values: the value

.action-, (the unique identifier associated with) the best action.
(b) Else, - best represents one or more subgoals (subgoals are derived from the precondi­

tions of actions which means more than one subgoal may have the same associated
importance, effort and deadline), return two values: the value :goal and the first sub­
goal belonging to the set of open conditions which corresponds to best (i.e. the first
subgoal whose unique identifier is equal to the unique identifier associated with best).

(c) Else, there are no outstanding goals/subgoals and no actions that are ready to execute.
In this case, the system waits until new goals are generated.

4.6 Example

4.6.1 An example

In chapter 5, section 5.4.1, table 5.9 we illustrate how the planning/execution architec­

ture generates a partial plan to achieve the goal at(package city5) by its deadline of 20

85

units (this goal is shown in section 4.4.2, table 4.3). During the process of executing the

sequence of actions to achieve this goal, the partial plan shown in chapter 5, section

5.4.2, table 5.10 is generated. This partial plan contains one action that is ready to exe­

cute, drive-truck(truck city4 city5), (see chapter 5, section 5.4.2, table 5.14 - it can be

seen that the preconditions of this action are true in the current state which is shown in

chapter 5, section 5.4.2, table 5.11) and one newly generated goal, at(parcel city5),

which is shown in chapter 5, section 5.4.2, table 5.12. The “Select goal or action” com­

ponent takes into account the importance, effort and deadline associated with the action

and the goal. Table 4.9 shows values for each of these fields. The algorithm described in

Table 4.9 The goal and action

Goal

id: 7

condition: at(parcel city5)

importance: 20

effort: 0

deadline 16

Action

id: 4

name: drive-truck(truck city4 city5)

importance: 6

effort: 14

deadline: 16

section 4.5.6 assigns the value 20 to both the goal and the action - because goals take

time to achieve (i.e. they require planning which may result in a sequence of more than

one action which takes time to execute), the “Select goal or action” component decides

to achieve the goal at(parcel city5).

4.7 Discussion

The algorithm described above is used in the implementation of the “Select goal or

action” component presented in this thesis and is not necessarily the best algorithm. A

better algorithm might take into account an estimate of the amount of time required to

achieve each outstanding goal by their deadline, and use this estimate to determine

whether a goal should be achieved or whether an action should be executed.

The purpose of the “Select goal or action” component is to enable an agent to reflec­

tively evaluate what course of action to take (i.e. whether to plan or to execute) and to

utilise its resources accordingly.

86

4.8 Summary

In this chapter we described the data structures used to represent information required by

the planning/execution architecture shown in chapter 2, section 2.2.1, figure 2.1, in order

to support the requirements outlined in chapter 1, sections 1.5 and 1.6. We also described

the domain description language required by a user in order to specify problems that are

to be solved by the planning/execution system. We then introduce the truck world

domain - a domain in which a truck-driver agent collects packages and parcels from var­

ious cities and delivers them to other cities. The truck-driver requires the planning/execu­

tion system described in this thesis in order to perform tasks within the truck world

domain in a timely manner. Finally, we described in detail how the agent chooses

whether to plan to achieve a goal or whether to execute an action - this corresponds to the

component “Select goal or action” of the planning/execution architecture illustrated

chapter 2, section 2.2.1, figure 2.1 - and present an example of the truck-driver agent

choosing whether to achieve a goal or execute an action.

87

Chapter 5

Planning to Achieve a Goal - Part 1

5.1 Introduction

In this and the following chapter we describe the main focus of the research in this thesis,

the “Plan to achieve goal” process shown in chapter 2, section 2.2.1, figure 2.1. This pro­

cess, illustrated in more detail in chapter 2, section 2.2.6, figure 2.2 and summarised in

table 5.1, takes a goal or subgoal chosen by the “Select goal or action” component and

generates several new partial plans which achieve that goal or subgoal.

First, the “Achieve goal” process takes the best outstanding goal/subgoal (chosen by

the “Select goal or action” component of chapter 2, section 2.2.1, figure 2.1) and gener­

ates a new partial plan which achieves that goal/subgoal by selecting a new or existing

action (a set of operator schemas/action templates is used to enable a new action to be

created) and by posting temporal and binding constraints. In addition, to ensure that the

achievement of the goal/subgoal does not conflict with goals/subgoals which have

already been achieved, further temporal and binding constraints may be posted (this pro­

cess is known as conflict resolution). The “Estimate deadlines” component then esti­

mates the deadlines associated with each action and subgoal (subgoals are derived from

the preconditions of actions) within the newly generated partial plan. If this process fails

it means there is insufficient time available to achieve all of the goals within that partial

plan, in which case, the “Edit the partial plan” process removes a goal together with its

associated actions and constraints. Once the partial plan has been edited, the “Estimate

deadlines” process reestimates the deadlines associated with actions and subgoals -

again, if there is insufficient time available, the “Edit the partial plan” process removes

another goal together with its associated actions and constraints. This process is repeated

until the “Estimate deadlines” procedure is able to successfully assign deadlines to the

remaining actions and subgoals (this means there is sufficient time available to achieve

all of the goals in the partial plan). A number of alternative partial plans will be gener­

ated by the “Achieve goal” process, representing the alternative ways there are of achiev­

ing the goal/subgoal. Once deadlines have been successfully assigned to the actions and

subgoals within each partial plan, the “Evaluate partial plans” process evaluates/ranks

each partial plan with respect to the current motivations of the agent (this determines the

degree to which each partial plan supports/undermines the agent’s motivations). Finally,

each newly generated partial plan is sorted and merged (on the basis of its ranking) with

the ordered search space of partial plans.

The algorithm used within the “Plan to achieve goal” component has been designed

to support the following requirements of the overall planning/execution architecture.

• Context. The context of the agent (captured partly by modelling the motivations of

that agent) plays an important role in enabling the agent to generate goals, to prioritise

amongst actions and goals as well as to select the best partial plan in which such goals

are achieved. The implementation of this requirement is supported by the “Achieve

goal” component which assigns values indicating the importance associated with

actions and their preconditions, and the degree to which actions support or undermine

the agent’s motivations. In addition, the “Evaluate partial plans” process evaluates and

ranks each partial plan by calculating the degree to which a plan supports or under­

mines the agent’s motivations.

• Planning and acting in real or simulated time. Time passes while the agent exe­

cutes actions. Goals that are generated by the “Generate/update goals” component

have an associated deadline by which they must be achieved, and duration indicating

how long they must remain true. It is assumed that deadlines associated with goals are

hard (i.e. if the goal cannot be achieved by its deadline, the agent has effectively failed

to achieve that goal). Actions also have duration. It is important that the agent ensures

that it can achieve goals by their deadline, if possible. If there is insufficient time

available to achieve all of the goals within the partial plan by their deadlines, it is nec­

essary to create extra time by abandoning the achievement of one or more goals (i.e.

by editing the partial plan to remove such goals). To support these requirements, the

“Achieve goal” process both estimates how long it takes to execute each action (i.e. it

assigns a value indicating the duration of each action) and keeps track of which goals

each action contributes towards (to facilitate plan editing). The “Estimate deadlines”

process estimates the deadlines associated with actions and subgoals belonging within

89

each partial plan. Finally, the “Edit the partial plan” process edits the plan by remov­

ing one or more goals and their associated actions and constraints.

Table 5.1 Planning to achieve a goal/subgoal

The “Select goal or action” process selects the best goal/subgoal which is then passed to the “Plan
to achieve goal” component.

1. A set of new partial plans are generated in which the goal/subgoal is achieved. Such plans
achieve the goal/subgoal by using new actions (step addition) or by using existing actions
(simple establishment). Conflict resolution is performed on all newly generated partial plans.
The algorithms used are an extension of the goal achievement procedures used in SNLP.

2. The deadlines for actions and goals within each newly generated partial plan are estimated.
(a) If the deadline estimation process fails this indicates that there is not enough time to

achieve all of the goals within the plan. The plan is therefore edited to remove one goal
together with its associated actions and constraints. Once editing is complete the dead­
lines for the actions and subgoals within that plan are reestimated (i.e. back to stage 2).

(b) Else, if the deadline estimation process succeeds, the partial plan is evaluated with
respect to the agent’s motivations.

3. The set of newly generated plans together with their values (see 2. (b)) are sorted and merged
with the (ordered) search space of partial plans.

• Interleaving planning and execution. Planning and execution are ongoing activities

- because the agent is capable of continually generating new goals, planning is never

complete which means that planning and execution must be interleaved. To support

this requirement, the “Select goal or action” component of chapter 2, section 2.2.1,

figure 2.1, decides, once each cycle, whether to plan to achieve a goal/subgoal or

whether to execute an action. In order to do this, goals/subgoals and actions are evalu­

ated on the basis of values indicating their importance, deadlines and effort (for goals,

the value effort represents the amount of effort previously expended by the planner in

achieving those goals, while for actions and their associated preconditions, the value

effort represents the amount of effort previously expended by the planner in achieving

the set of goals to which each action and its preconditions contributes). The “Plan to

achieve goal” component is responsible for assigning values indicating the impor­

tance, effort and deadline to each action and its preconditions - the “Achieve goal”

process assigns values indicating the importance, effort and duration associated with

each action and its preconditions, while the “Estimate deadlines” process assigns

deadlines to each action and its preconditions (using the values indicating the duration

of each action).

In this and the following chapter we describe the four processes that comprise the

“Plan to achieve goal” component in further detail. The remainder of this chapter will

focus upon the “Achieve goal” procedure while the following chapter, chapter 6 will

90

describe the remaining three procedures, “Estimate deadlines”, “Edit the partial plan”

and “Evaluate the partial plan”.

5.2 Achieving a Goal

5.2.1 Introduction

In the remainder of this chapter we describe in detail the process “Achieve goal” shown

in chapter 2, section 2.2.6, figure 2.2, which takes as input a goal or subgoal (chosen by

the “Select goal or action” process) and generates a number of new partial plans which

achieve that goal or subgoal. In order to implement this process, the goal achievement

algorithm used in the nonlinear planner SNLP (MeAllester & Rosenblitt 91] has been

extended to take into account the three requirements listed in the previous section: con­

text; planning and acting in real or simulated time; interleaving planning and execution.

In chapter 4, section 4.2 we described how the basic STRIPS representations which are

used by SNLP have been extended to meet these requirements. In particular, the action

representation has extra fields indicating its duration, importance, effort, deadline, pros

and cons (these latter two fields contain values that indicate the degree to which execut­

ing that action supports or undermines the agent’s motivations), see chapter 4, sections

4.2.3 and 4.2.5 for a description of each field. The extensions made to the goal achieve­

ment algorithm used by SNLP involve instantiating (i.e. assigning values to) each of

these fields as part of the process of achieving a goal/subgoal.

The goal achievement algorithm used in SNLP consists of two stages: selecting a

new or selecting an existing action to achieve the goal (known as step addition and sim­

ple establishment respectively); and ensuring that there are no conflicts (known as con­

flict resolution). The algorithm therefore consists of three main processes.

1. Step addition - this involves achieving the goal or subgoal by creating a new action

(by selecting and instantiating an operator schema/action template) and adding that

action together with new binding and temporal constraints to the partial plan. (The

goal achievement algorithm therefore has access to a set of operator schemas/

action templates which collectively represent the agent’s execution capabilities.)

2. Simple establishment - new temporal and binding constraints are posted to ensure

the goal or subgoal is achieved by an action currently within the partial plan.

3. Conflict resolution - new temporal and binding constraints are posted to ensure that

91

the action selected to achieve the goal/subgoal does not conflict with goals/sub­

goals that have already been achieved and that actions currently within the partial

plan do not conflict with the newly achieved goal/subgoal.

The goal achievement algorithm (in particular, the step addition and simple estab­

lishment processes) used in SNLP has been extended to incorporate the following fea­

tures.

1. Actions have duration (i.e. they take time to execute) - one of the tasks of the

“Achieve goal” component is to assign a value indicating the estimated duration

associated with each action. This information is required by the “Estimate dead­

lines” process in order to assign deadlines to each action and subgoal. In turn, the

deadlines of actions and subgoals are required by the “Select goal or action” com­

ponent.

2. It is necessary to be able to determine the degree to which each action supports the

agent’s motivations. The “Achieve goal” component assigns values to each action

which indicate the estimated degree to which that action, once executed, supports

or undermines the agent’s motivations. These values are required by the “Evaluate

partial plans” component.

3. The “Achieve goal” component determines which goals each action contributes

towards. This information is required by the “Achieve goal” component to calculate

values indicating the importance and effort associated with actions and subgoals

(see below). In addition, this information is required by the “Edit the partial plan”

process to enable goals and their associated actions and constraints to be removed

from a partial plan.

4. The “Achieve goal” component estimates the importance associated with actions

and subgoals. These values are required by the “Select goal or action” component.

5. The “Achieve goal” component calculates the effort invested in planning to achieve

each goal as well as the effort associated with actions and subgoals. These values

are required by the “Select goal or action” component.

In the following sections, we describe in detail the extensions made to incorporate

the above features.

92

5.2.2 Estimating duration

To determine the latest time by which actions should be executed in order to achieve one

or more goals by their deadlines, it is necessary to estimate the duration of each action

(i.e. to estimate how long it will take the agent to execute each action). An estimate of an

action’s duration is made initially when that action is created (during the step addition

process). When any variables belonging to that action are further instantiated (during the

simple establishment process) the duration associated with that action is reestimated.

(Note: variables belonging to an action may also be further instantiated during conflict

resolution, which means that the duration associated with that action should be reesti­

mated as part of the conflict resolution process. However, this is not currently imple­

mented.)

In some cases, if the action is not fully instantiated when it is created and added to

the partial plan, it may not be possible to accurately determine how long it will take to

execute that action. For example, the operator schema/action template (travel ?x ?y) rep­

resents the activity of travelling from location ?x to location ?y, where ?x and ?y are vari­

ables - (travel ?x ?y) is the name of the operator schema (see chapter 4, section 4.2.3 for

a detailed description of the representation used for actions), (travel ?x ?y) has the pre­

condition (at ?x) meaning that prior to executing (travel ?x ?y) the agent must be at some

initial location ?x, and the postcondition (and (not (at ?x)) (at ?y)) meaning that once

(travel ?x ?y) has been executed the agent is no longer at location ?x but is at some other

location ?y. When the “Achieve goal” process achieves the goal or subgoal (at shop)

using step addition, a new action (travel ?x shop) is created using the operator schema/

action template (travel ?x ?y) with the variable ?y instantiated to shop. The variable ?x

remains uninstantiated until the partial plan is further refined - which means that at this

initial stage it is not possible to accurately estimate the duration of the action. This prob­

lem is overcome by using domain knowledge in the form of a domain-designer supplied

look-up table (see chapter 4, section 4.3.5 for a description of the look-up table) to assign

a worst estimate (i.e. the longest period of time) of the time it will take to execute the

action. For example, if the domain is a small town, we may know that it will take at most

20 minutes to travel the longest distance between two locations within that town. In this

case, all incomplete instantiations of the action template (travel ?x ?y) such as (travel ?x

shop) will be assigned the duration 20 minutes. (This is in contrast to DEVISER [Vere

83] where an action whose duration has not yet been determined is assigned a default

93

duration of 0.)

The look-up table stores estimates of the duration for different action instantiations -

different variable bindings will affect the value assigned to the field duration associated

with each action. For example, as we saw earlier, the value duration associated with the

operator schema/action template (travel ?x ?y) will depend upon the variable bindings

for ?x and ?y - the action (travel home shop) will have a different associated duration

than the action (travel post-office shop). The duration associated with each existing

action must therefore be reestimated whenever that action is further instantiated (follow­

ing simple establishment). In our earlier example, the duration associated with the action

(travel ?x shop) was a worst estimate of 20 minutes as initially we did not know how the

variable ?x would be instantiated. The look-up table will contain estimates for different

instantiations of ?x - for example, the instantiation (travel garage shop) may have the

estimated duration 15 minutes while the instantiation (travel home shop) may have the

estimated duration 5 minutes. Once the action (travel ?x shop) is further instantiated fol­

lowing simple establishment to become the action (travel garage shop), the value dura­

tion is reestimated to be 15 minutes using the look-up table (the predicate frrave/ garage

shop) - the action’s name - is used as a key for the look-up table to determine the value

duration).

The algorithm required for this extension is described in table 5.2 and is used as part

of both the step addition and simple establishment procedures. This algorithm assumes

that the name field associated with actions contains parameters (which may be variables

or constants) (for example (stack ?x ?y)).

Table 5.2 Assigning durations to actions

1. Let g be the goal/subgoal belonging to a partial plan p which is to be achieved.

2. Let establisher be a new or existing action (step addition and simple establishment respec­
tively) chosen to achieve g. This action contains a predicate belonging to its associated set
add which unifies with g with respect to the bindings belonging to the partial plan p.

3. Let new-bindings be the new set of bindings created during step addition/simple establish­
ment (when the add predicate of the action establisher unifies successfully with the goal/
subgoal g with respect to the bindings currently within the partial plan p, the resulting
bindings are added to the set bindings currently belonging to p).

4. Instantiate the name field associated with the action establisher using the bindings new-
bindings generated in stage 3. above.

5. The newly instantiated name field is used as a key to search for the value duration to be
assigned to the action establisher (which is stored in a hashtable).

94

5.2.3 Estimating the degree of support

When an action is selected to achieve a goal or subgoal, it is necessary to estimate the

degree to which that action, when executed, will support the agent’s motivations. The

degree to which each action supports the agent’s motivations forms part of the “Evaluate

partial plans” heuristic (described in more detail in chapter 6, section 6.4) which is used

to evaluate and rank partial plans.

When creating a new action (as part of the step addition process), the fields pros and

cons must be assigned (see chapter 4, section 4.2.3 for a descripton of the representation

used for actions). These indicate an estimate of the degree to which executing the new

action will support the agent’s motivations (pros) and the degree to which executing the

new action will undermine the agent’s motivations (cons). Currently, values for these

fields are determined by examining a domain-designer supplied look-up table (see chap­

ter 4, section 4.3.5), which contains pros and cons values corresponding to the name field

associated with each new action (the name of the action is the key which is used to

search the look-up table for corresponding values for pros and cons). For example, for an

action with the name (pickup ? object), the pros and cons entry corresponding to the key

(pickup ?object) is retrieved from the look-up table.

Table 5.3 Assigning pros and cons to actions

1. Let g be the goal/subgoal belonging to a partial plan p which is to be achieved.
2. Let establisher be a new or existing action (step addition and simple establishment respec­

tively) chosen to achieve g. This action contains a predicate belonging to its associated set
add which unifies with g with respect to the bindings belonging to the partial plan p.

3. Let new-bindings be the new set of bindings created during step addition/simple establish­
ment (when the add predicate of the action establisher unifies successfully with the goal/
subgoal g with respect to the bindings currently within the partial plan p, the resulting
bindings are added to the set bindings currently belonging to p).

4. Instantiate the name field associated with the action establisher using the bindings new-
bindings generated in stage 3. above.

5. The newly instantiated name field is used as a key to search for the values pros and cons to
be assigned to the action establisher (which is stored in a hashtable).

In section 5.2.2 above we saw how the value duration assigned to an action

depended upon how that action was instantiated - the action (travel ?x shop) was esti­

mated to take 20 minutes to execute. Once that action was further instantiated (binding

the variable ?x to the value garage) to become (travel garage shop), it was assigned a

different estimate of the value duration - the value 15 minutes. In the same way, the val­

ues pros and cons assigned to an action depend upon how that action is instantiated. For

95

example, the action (dine ? restaurant) which involves eating in some restaurant where

?restaurant is a variable, may support or undermine an agent’s motivations differently

depending upon in which restaurant the agent may be eating. A look-up table stores esti­

mates of the values for pros and cons for different variable instantiations. For example,

the look-up table will store an estimate of the degree to which executing (dine ? restau­

rant) supports/undermines the agent’s motivations. When the action is further instanti­

ated as a consequence of simple establishment, the values pros and cons are reestimated

to reflect the instantiation - for example, if the variable ?restaurant is later bound to the

value tandoorijcitchen, the values pros and cons are updated (the predicate (dine

tandoorijcitchen) - the action’s name - is used as a key).

The algorithm required for this extension is described in table 5.3 and is used as part

of both the step addition and simple establishment procedures. Again, this algorithm

assumes that the name field associated with actions contains parameters (which may be

variables or constants) (for example (puton ?x ?y)).

5.2.4 Maintaining a record of the goals to which an action contributes

An important part of both the step addition and simple establishment algorithms is con­

cerned with maintaining a record of which goals each action contributes towards. This

both enables the values importance and effort associated with actions to be determined

and, should there be insufficient time available to achieve one or more goals, facilitates

the removal of goals and their associated actions and constraints (this is the responsibil­

ity of the “Edit the partial plan” component). In this section we describe some of the

mechanisms used to keep track of the relationship between actions and goals. These pro­

cedures play a key role in both step addition and simple establishment.

Figure 5.1 illustrates a partial plan consisting of actions that have been selected to

achieve the goals g l, g2 and g3 which have been created by the “Generate/update goals”

process. There are six actions, al,...a6. The arrows between actions indicate partial

orderings - for example, the action a4 occurs prior to the action al. The action a l was

selected by step addition to achieve the goal g l (i.e. one of the effects of executing al is

to establish the goal gl), while the action a4 was selected by step addition to achieve the

subgoal/precondition p l l associated with al. The action a3 was selected by step addi­

tion to achieve the goal g3, while the action a6 was selected by step addition to achieve

the subgoal/precondition p31 associated with a3. Finally, the action a2 was selected by

96

step addition to achieve the goal g2, the action a5 was selected by step addition to

achieve the subgoal/precondition p21 associated with a2, while the action a6 was

selected by simple establishment to achieve the subgoal/precondition p22 associated

with a2. Each action must maintain a record of the goals to which it contributes. For

example, the actions al and a4 both only contribute towards the achievement of the goal

gl, the action a3 only contributes towards the achievement of the goal g3, actions a2 and

a5 both only contribute towards the achievement of the goal g2, while the action a6 con­

tributes towards both the achievement of the goals g2 and g3. Should there be insufficient

time available to achieve the goal gl, the plan may be edited to remove the goal gl,

together with its associated actions a l and a4.
importance 6 importance 10 importance 7

gl gl g3

gl

al

p l l pl2

pll

a4

p41 p42

p21 p22 p31

p21 p22 p31

p51 p61 p62

Key
effects

action name

preconditions

Figure 5.1 A Partial Plan

The “Achieve goal” process extends both the step addition and simple establishment

97

procedures used by SNLP in order to maintain a record of the goals to which each action

contributes. Sections 5.2.7 and 5.2.8 describe this process in more detail.

5.2.5 Calculating the importance of actions

Maintaining a record of the goals to which each action contributes also enables us to cal­

culate the importance of executing each action, as well as the amount of ejfort associated

with each action. When goals are generated by the “Generate/update goals” procedure,

they are assigned a value which indicates how important it is to achieve them. In figure

5.1, g i has the associated importance 6, g2, the value 10, and g3 the value 7. In order to

calculate how important it is to execute an action, it is necessary to take into account the

values indicating the importance of achieving each goal to which that action contributes.

The value indicating the importance of executing an action is obtained by summing the

values indicating the importance of each goal to which that action contributes. For exam­

ple, in figure 5.1, the value indicating the importance of action a l is 6, i.e. the same value

as that assigned to the goal g l which is the only goal to which a l contributes. The value

indicating the importance assigned to the action a6 however, is 17, the value obtained by

adding 10 and 7 (the values indicating the importance of the goals g2 and g3 respectively

- the goals to which a6 contributes).

The “Achieve goal” process extends both the step addition and simple establishment

procedures used by SNLP in order to calculate the importance of actions and their pre­

conditions. Sections 5.2.7 and 5.2.8 describe this process in more detail.

5.2.6 Calculating effort

Each goal has an associated value indicating the amount of ejfort which has been

expended by the “Achieve goal” process in achieving that goal. For example, in figure

5.1, the amount of effort expended by the planner in achieving the goal g7 is 2 - indicat­

ing that two goal achievement cycles have been invoked: the action a l was selected by

step addition to achieve the goal gl\ the action a4 was selected by step addition to

achieve the subgoal/precondition p l l of the action al (as we saw earlier, the actions al

and a4 only contribute towards the achievement of the goal gl). The amount of effort

expended by the planner in achieving the goal g3 is also 2: the action a3 was selected by

step addition to achieve the goal g3\ the action a6 was selected by step addition to

achieve the subgoal/precondition p31 of the action a3. Finally, the amount of effort

98

expended by the planner in achieving the goal g2 is 3: the action a2 was selected by step

addition to achieve the goal g2\ the action a5 was selected by step addition to achieve the

subgoal/precondition p21 of the action a2\ the action a6 was selected by simple estab­

lishment to achieve the subgoal/precondition p22 of the action a2.

In order to determine the value ejfort associated with each action and its precondi­

tions, it is necessary to take into account the amount of effort expended in achieving each

goal to which the action contributes - the value effort assigned to an action is determined

by summing the values effort associated with each goal to which the action contributes.

For example, the value effort assigned to both the actions a l and a4 in figure 5.1 is 2 as

both actions contribute only towards the goal gl. The value effort assigned to the action

a3 is 2 as a3 only contributes towards the goal g3. The value effort assigned to the

actions a2 and a5 is 3 as both actions only contribute towards the goal g2. However, the

value effort assigned to the action a6 is 5 as a6 contributes towards two goals, g2 and g3.

The “Achieve goal” process extends both the step addition and simple establishment

procedures used by SNLP in order to calculate the effort associated with goals, actions

and their preconditions. Sections 5.2.7 and 5.2.8 describe this process in more detail.

5.2.7 Step addition

The step addition process has been extended as illustrated in table 5.4. Note that the algo­

rithm presented in table 5.4 lists extensions to the step addition process used by SNLP

(i.e. the SNLP step addition procedures are not described in this algorithm). In the fol­

lowing sections we describe some of these extensions in greater detail.

Maintaining a record of the goals to which an action contributes

When creating a new action to achieve a goal/subgoal g, a part of the process involves

determining which goals the new action contributes towards (see section 5.2.4 above and

stage 3 in table 5.4). Once constraints have been posted to ensure that a newly created

action new act achieves a goal/subgoal g, the new action newact contributes towards or

establishes g as well as all goals to which achieving g contributes. For example, figure

5.2 illustrates the partial plan that arises through adding a new action a? to the partial

plan featured in figure 5.1 in order to achieve the subgoal p61 (a precondition belonging

to the action a6). In figure 5.2 we see that achieving the subgoal p61 will contribute

towards the achievement of the goals g2 and g3 (executing the action a6 will contribute

99

towards the achievement of g2 and g3 so, as p61 is a precondition of a6, achieving p61

also contributes towards the achievement of g2 and g3). This means that the new action

Table 5.4 Extensions to the step addition procedure

1. Let g be a goal/subgoal belonging to a partial plan p which is to be achieved by step addi­
tion (this is chosen by the “Select goal or action” procedure).

2. Let bindings be the set of new bindings. These are created by first successfully unifying
an add predicate belonging to an operator schema/action template tempi with the goal/
subgoal g (with respect to the bindings currently belonging to p), and then adding the
resulting bindings to the plan bindings currently belonging to p.

3. Let new goals be the set o f goals to which achieving the goal/subgoal g contributes (see
section 5.2.7, “Maintaining a record of the goals to which an action contributes”).

4. Update the set o f goals belonging within the partial plan p. The value effort associated
with each goal belonging to the set newgoals needs updating to reflect the fact that the
planner has expended extra effort in achieving these goals (see section 5.2.7, “Updating
the value effort associated with goals”).

5. Create a new action newact (using the operator schema/action template tempt) to achieve
g - using the following procedures.

(a) Create the fields name, precond, delete and add associated with newact (by using
bindings to instantiate the corresponding fields belonging to the action template
tempi) - this is part of the SNLP step addition process.

(b) Use bindings to estimate the value duration associated with newact (as described in
section 5.2.2).

(c) Use bindings to estimate the values pros and cons associated with newact (as
described in section 5.2.3).

(d) The goals field associated with the newly created action newact is assigned the value
newgoals.

(e) The value importance associated with the newly created action newact, is determined
by adding together the values indicating the importance associated with each goal
belonging to the set newgoals (see section 5.2.7, “Estimating the importance associ­
ated with the newly created action”).

(f) The value effort associated with the newly created action newact, is determined by
adding together the newly generated values effort associated with each goal (see
stage 4.) belonging to the set newgoals (see section 5.2.7, “Assigning the value effort
to the newly created action”).

6. Update the set of actions belonging within the partial plan p. First, add the newly created
action newact to the set of actions belonging to p. Then, the value effort associated with
each action that contributes towards the achievement of any of the goals belonging to the
set newgoals needs to be updated to reflect the fact that the “Achieve goal” process has
expended extra effort in achieving these goals (this is described in section 5.2.7, “Reesti­
mating the value effort associated with existing actions”).

a7, when executed, also contributes towards achieving the goals g2 and g3 because the

goal p61 is achieved by executing a7. The field goals associated with the new action a7

is therefore assigned a set containing the goals g2 and g3. For further discussion, the set

of goals to which a newly created action contributes is referred to as the set newgoals.

100

importance 6

g l

▲

importance 10 importance 7

g2
i

g3

i

gl g2 g3

a l a2 a3

p l l pl2 p21 p22 p31

p l l p21 p22 p31

a4 a5 a6

p41 p42 p51 p61 p62

i i

Key
effects p61

action name a7

preconditions p71 p72

Figure 5.2 A Partial Plan following Step Addition

Updating the value effort associated with goals

Once a new action has been selected to achieve a goal/subgoal g, the value ejfort associ­

ated with each goal to which achieving g contributes (i.e. each goal belonging to the set

newgoals), must be incremented to reflect the extra effort expended by the “Achieve

goal” component in achieving those goals). For example, figure 5.1 shows that prior to

adding the newly created action a7 to the partial plan, the value indicating the effort

expended in achieving the goal g2 was 3 while the value indicating the effort expended in

achieving g3 was 2. Following step addition, the value indicating the ejfort expended in

achieving g2 is 4 while the value indicating the ejfort expended in achieving g3 is 3.

101

Estimating the importance associated with the newly created action

The value importance that is assigned to the newly created action newact is the sum of

the values indicating the importance of achieving each goal to which newact contributes.

In the example, the value indicating the importance of executing a7 is 17 - the value

obtained by adding 10 (the value indicating the importance of achieving g2) and 7 (the

value indicating the importance of achieving g3).

Assigning the value effort to the newly created action

The value ejfort that is assigned to the newly created action newact is the sum of the val­

ues indicating the ejfort expended in achieving each goal to which newact contributes

(i.e. the sum of the values indicating the ejfort expended in achieving each goal belong­

ing to the set newgoals). For example, in figure 5.2, the newly created action a7 contrib­

utes towards the achievement of the goals g l and g3. The value ejfort assigned to a7 is 7

- the value obtained by adding 4 (the ejfort expended in achieving g l) and 3 (the ejfort

expended in achieving g3).

Reestimating the value effort associated with existing actions

Following step addition, the value indicating the ejfort expended in achieving each goal

belonging to the set newgoals is incremented to reflect the extra work undertaken by the

“Achieve goal” component. This means that the value indicating the ejfort associated

with each existing action that already contributes towards one or more goals belonging to

the set newgoals must be reestimated. For example, prior to step addition, in figure 5.1

the value ejfort associated with both a l and «5 is 3 - following step addition (see figure

5.2), the ejfort associated with both a l and a5 is now 4 (the value indicating the ejfort

expended in achieving gl, the goal to which they both contribute, has been incremented)

which reflects the fact that a new action a7 has been added to the plan (a7 contributes

towards the goals g l and g3). Likewise, the value indicating the ejfort associated with a3

is now 3 (the value indicating the ejfort expended in achieving g3, the goal to which a3

contributes, has been incremented) and the value indicating the ejfort associated with a6

is now 7 (obtained by adding 4, the new value ejfort associated with g l, to 3, the new

value ejfort associated with g3).

102

5.2.8 Simple establishment

The simple establishment process has been extended as shown in table 5.5. The algo­

rithm presented in table 5.5 lists extensions to the simple establishment process used by

SNLP (i.e. the SNLP simple establishment procedures are not described in this table). In

the following sections we describe some of these extensions in greater detail.

Table 5.5 Extensions to the simple establishment procedure

1. Let g be a goal/subgoal belonging to a partial plan p which is to be achieved by simple
establishment (g is chosen by the “Select goal or action” procedure).

2. Let bindings be the set of new bindings. These are created by first successfully unifying
an add predicate associated with an action act (which belongs to p) with the goal/subgoal
g (with respect to the bindings currently belonging to p), and then adding the resulting
bindings to the plan bindings currently belonging to p.

3. Let newgoals be the set of goals to which achieving the goal/subgoal g contributes (see
“Maintaining a record of the goals to which each action contributes” in section 5.2.8).

4. Let newestablishers be the set of actions that, as a consequence of simple establishment,
newly contribute towards the set of goals newgoals (see “Determining the actions which
newly establish goals” in section 5.2.8).

5. Update the set of goals belonging within p. The value effort associated with each goal
belonging to the set newgoals needs updating to reflect the fact that the planner has
expended extra effort in achieving these goals (see “Updating the value effort associated
with goals” in section 5.2.8).

6. Update the set of actions belonging within the partial plan p - using the following proce­
dures.
(a) Use bindings to further instantiate the fields name, precond, delete and add associ­

ated with each action - this is part of the SNLP simple establishment process.
(b) Use bindings to reestimate the value duration associated with each action (as

described in section 5.2.2).

(c) Use bindings to reestimate the values pros and cons associated with each action (as
described in section 5.2.3).

(d) The goals field associated with each action belonging to the set newestablishers is
updated to reflect the fact that these actions also now contribute towards the goals
belonging to the set newgoals (see “Updating the set of goals associated with
actions” in section 5.2.8).

(e) The value importance associated with each action belonging to the set newestablish­
ers is reevaluated to reflect the fact that these actions now also contribute towards the
achievement of each goal belonging to the set newgoals (see “Reevaluating the
importance of actions” in section 5.2.8).

(f) The value effort associated with each action belonging to the set newestablishers is
recalculated to reflect the fact that these actions now also contribute towards the
achievement of each goal belonging to the set newgoals (see “Reevaluating the value
effort associated with actions” in section 5.2.8).

(g) The value effort associated with each action that contributes towards the achievement
of one or more of the goals belonging to the set newgoals (but which is not a member
of the set newestablishers) needs to be updated to reflect the fact that the planner has
expended extra effort in achieving these goals (see “Reevaluating the value effort
associated with actions” in section 5.2.8).

103

Maintaining a record of the goals to which each action contributes

As with step addition, an important part of the simple establishment algorithm is con­

cerned with maintaining a record of which goals (created by the “Generate/update goals”

component) each action contributes towards. This enables values indicating the impor­

tance and ejfort associated with actions to be recalculated and facilitates the removal of

goals and their associated constraints should there be insufficient time (this is the respon­

sibility of the “Edit the partial plan” procedure).

When selecting an existing action act to achieve a goal/subgoal g (simple establish­

ment), a part of the process involves determining which new/extra goals the existing

action act will contribute towards. Once constraints have been posted to ensure that the

existing action act achieves the goal/subgoal g, the action act newly contributes towards

or establishes g as well as all goals to which achieving g contributes. For example, figure

5.3 illustrates the partial plan that arises through adding constraints to the partial plan of

figure 5.2 so that the existing action a2 (belonging to the partial plan featured in figure

5.2) achieves the subgoal p l2 (a precondition belonging to the action al). In figure 5.2

we see that prior to adding the constraints, the action a2 contributed solely towards the

achievement of the goal g2. Following simple establishment, in figure 5.3 it can be seen

that the action a2 newly contributes towards achieving the goal g l (executing the action

a2 will achieve the precondition p l2 which contributes towards the achievement of gl).

Determining the set of goals to which the existing action act newly contributes is a part

of the simple establishment process (see table 5.5, stage 3). For further discussion, the set

of goals to which the existing establisher/action act newly contributes is referred to as the

set newgoals.

Determining the actions which newly establish goals

In addition to the existing action act newly contributing towards the achievement of the

set of goals newgoals (as described in the previous section) each existing action that con­

tributes towards the achievement of the preconditions of act now also newly contributes

towards the set of goals newgoals. For example, as we saw in figure 5.3, following sim­

ple establishment, the existing action a2 newly contributes towards the goal gl. In addi­

tion, the actions a5, a6 and a7, as well as a2, newly contribute towards the goal g l (a5

establishes the precondition p21 of the action a2, a6 establishes the precondition p22 of

a2 and a7 establishes the precondition p61 of the action a6). An important part of the

104

simple establishment process involves determining the set of actions that newly contrib­

ute towards the goals belonging to the set newgoals. For further discussion we refer to

this set of actions (which includes the establisher/action act) as the set newestablishers.

In our example, the set newestablishers contains the actions a2, a5, a6 and a7.

importance 6

gl
importance 10

g2
importance 7

g3

p l2g2

p l l pl2 p21 p22 p31

p21 p22 p31p l l

p41 p42 p51 p61 p62

p61effects
Key

action name

preconditions p71 p72

Figure 5.3 A Partial Plan following Simple Establishment

Updating the value effort associated with goals

Once an existing action act has been selected to achieve a goal/subgoal g, the value ejfort

associated with each goal to which achieving g contributes (i.e. each goal belonging to

the set newgoals), must be incremented to reflect the extra effort expended by the

“Achieve goal” component). For example, figure 5.2 shows that prior to adding con-

105

straints to ensure the existing action a2 will achieve the precondition pl2 , the effort

expended in achieving the goal gl is 2. Following simple establishment, the effort

expended in achieving gl is now 3.

Updating the set of goals associated with each action

The goals field associated with each new establisher (i.e. each action belonging to the set

newestablishers) needs to be updated to reflect the fact that the new establisher/action

now newly contributes towards the achievement of the set of goals newgoals. The new

value assigned to goals is the union of the original set goals with the set newgoals. For

example, in figure 5.2 the action a2 originally contributed towards the goal g2 (i.e. the set

goals associated with a2 contained the goal g2). Following simple establishment, a2

newly contributes towards the goal gl {newgoals is a set containing the goal gl). The

field goals assigned to a2 following simple establishment is a set containing the goals g l

and g2 (this value is also assigned to the field goals associated with the action a5).

Reevaluating the importance of actions

When the simple establishment process posts constraints to ensure that an existing action

act will achieve a goal g, the importance associated with act, as well as the importance

associated with all actions that newly contribute towards or establish g (i.e. the impor­

tance associated with each action belonging to the set newestablishers) changes and so

must be reevaluated. The example in the previous section may be used to illustrated this

change. Prior to simple establishment (i.e. figure 5.2) the actions a2 and a5 contribute

towards the achievement of the goal g2 while the actions a6 and a? contribute towards

the achievement of the goals g2 and g3. If g2 has the importance value 10 and g3 has the

importance value 7, then actions a2 and a5 have the importance value 10 while actions

a6 and a7 have the importance value 17. Following simple establishment, actions a2, a5,

a6 and a7 also establish or newly contribute towards the achievement of the goal gl.

Their associated value indicating their importance therefore changes - in fact it increases

to reflect the fact that they now also establish or contribute towards the achievement of

the goal gl. If g l has the importance 6 then the actions a2 and a5 now have the impor­

tance value 16 - the total obtained by adding the importance associated with the goals gl

and g2. Actions a6 and a7 now have the importance value 23 - the total obtained by add­

ing the importance values associated with the goals g l, g2 and g3. The simple establish-

106

ment process has been extended to reevaluate the importance associated with all actions

that newly establish or contribute towards the achievement of the goal gl.

Reevaluating the value effort associated with actions

When a goal or subgoal g is achieved by simple establishment, the value ejfort associated

with all goals to which g contributes (i.e. all goals belonging to the set newgoals) is

updated (incremented). For example, in figure 5.3 we see that achieving the subgoal p l2

contributes towards the achievement of the goal gl. Following simple establishment the

value ejfort associated with g l is incremented to reflect the fact that extra effort has been

expended in planning to achieve this goal. (Prior to simple establishment, the value ejfort

associated with g l was 2 - once simple establishment has taken place, the value ejfort

associated with g l is incremented to become 3).

In addition, the value ejfort associated with each action that newly (i.e. following

simple establishment) contributes (i.e. each action belonging to the set newestablishers)

towards the achievement of (or which newly establishes) g, and the value ejfort associ­

ated with each action that already (i.e. prior to simple establishment) contributes towards

the achievement of one or more goals belonging to the set newgoals (these are action that

do not belong to the set newestablishers), needs to be updated. For example, prior to sim­

ple establishment (i.e. figure 5.2) the actions a2 and a5 contribute towards the achieve­

ment of the goal g2 while the actions a6 and a7 contribute towards the achievement of

the goals g2 and g3. g2 has the effort value 4 prior to simple establishment while g3 has

the effort value 3, which means that actions a2 and a5 have the effort value 4 while

actions a6 and a7 have the effort value 7 (in section 5.2.6 we saw that the value effort

associated with an action is the total obtained by adding the effort values associated with

each goal to which the action contributes). Following simple establishment, actions a2,

a5, a6 and a7 also establish or newly contribute towards the achievement of the goal gl

(these actions belong to the set newestablishers). Their associated value for effort there­

fore changes - it increases to reflect the fact that extra effort has been expended by the

planner in achieving the goal gl. Following simple establishment, g l has the value 3 for

effort which means the actions a2 and a5 now have the value 7 for effort - the total

obtained by adding the values for effort associated with the goals g l and g2. Actions a6

and a7 now have the value 10 for effort - the total obtained by adding the values for effort

associated with the goals g l, g2 and g3. In addition, the actions al and a4 already con­

107

tributed towards the achievement of the goal gl prior to simple establishment and had the

value 2 for ejfort. The value effort associated with al and a4 must also be recalculated

following simple establishment - the resulting value for effort associated with actions al

and a4 is 3 (both actions contribute solely towards the achievement of the goal g l, whose

value effort was incremented during simple establishment).

5.3 Conflict Resolution

The algorithms used to test for unsafe links and to resolve conflicts are those used by the

planner SNLP - no further extensions have been implemented. In the following sections

we describe two possible extensions.

5.3.1 Updating the value effort associated with goals

A goal/subgoal g is achieved by calling step addition and simple establishment proce­

dures. A part of the “Achieve goal” procedure involves resolving any potential conflicts

by posting constraints to protect any unsafe links within each newly generated plan (this

is known as conflict resolution). Currently, the extra work involved in protecting such

links is not reflected in the value effort associated with the goal/subgoal g's correspond­

ing goals (these are the goals to which achieving g contributes - i.e. the set newgoals).

The conflict resolution procedure could be extended so that the value effort associated

with each of the goal/subgoal g ’s goals (i.e. each goal belonging to the set newgoals) is

incremented for each unsafe link requiring protection.

5.3.2 Updating the values pros, cons and duration

During the separation process, new bindings (in the form of both codesignation and non­

codesignation constraints) are added to the partial plan. These bindings may be used to

further instantiate the name field associated with each action which may mean that each

action’s associated pros, cons and duration fields should be updated to reflect this further

instantiation. This feature is not currently implemented.

5.4 A Truck World Example

5.4.1 Achieving a goal

In this section we describe how the planning/execution architecture achieves a goal in the

108

truck world domain described in chapter 4, section 4.4. In order to achieve a goal, the fol­

lowing information is required which was described in detail in chapter 4, section 4.4.

1. A description of the initial state which is encapsulated within an initial plan (see

chapter 4, section 4.4.1, tables 4.1 and 4.2)

2. A description of the goal state (see chapter 4, section 4.4.2, table 4.3).

3. A set of operator schemas/action templates - these represent the capabilities of the

truck-driver (see chapter 4, section 4.4.3, table 4.4).

4. A look-up table specifying the amount of time it takes the truck-driver to execute

each action (see chapter 4, section 4.4.5, table 4.6).

5. A look-up table specifying the degree to which executing each action will support

or undermine the truck-driver’s motivations (see chapter 4, section 4.4.6, table 4.7).

Table 5.6 Actions used to achieve the goal at(package city5)

id: 3

name: load-truck(package truck cityl)

precondition: at(truck cityl) &
at(package cityl)

delete: at(package cityl)

add: in(package truck)

goals: (1)

pros: nil

cons: nil

duration: 1

importance: 6

effort: 14

drive-truck(truck cityl city3)

at (truck cityl) &
has-fuel(truck) &
connects(cityl cityS)

at(truck cityl)

at(truck city3)

(1)

(pleasure 1.9)

(conserve-fuel 0.3) &
(conserve-tyres 0.1)

14

Given the initial plan shown in chapter 4, section 4.4.1, table 4.2, and the goal at(package

city5) shown in chapter 4, section 4.4.2, table 4.3, the “Select goal or action” component

chooses to achieve the goal at(package city5) as there are no executable actions in the

initial plan and no other goals. Tables 5.6, 5.7 and 5.8 illustrate the actions which are

selected (using step addition, simple establishment and conflict resolution) to achieve the

goal at(package city5) by its deadline 20 (see chapter 4, section 4.4.2 table 4.3), assum­

ing the current time is 0, while table 5.9 shows the resulting partial plan which contains

109

these actions. The “Achieve goal” component requires the initial plan which is shown in

Table 5.7 Actions used to achieve the goal at(package city5)

id: 5

name: drive-truck(truck city3 city4)

precondition: at(truck city3) &
has-juel(truck) &
connects(city3 city4)

delete: at(truck city3)

add: at(truck city4)

goals: (1)

pros: (pleasure 1.2)

cons: (conserve-fuel 0.3) &
(conserve-tyres 0.4)

duration: 3

importance: 6

effort: 14

drive-truck(truck city4 city5)

at(truck city4) &
has-fuel(truck) &
connects(city4 city5)

at(truck city4)

at(truck city5)

(1)

(pleasure 1.8)

(conserve-fuel 0.3) &
(conserve-tyres 0.4)

14

chapter 4, section 4.4.1, table 4.2 as well as the operator schemas/action templates which

are shown in chapter 4, section 4.4.3, table 4.4. The step addition and simple establish-

Table 5.8 Actions used to achieve the goal
at(package cityS)

id: 2

name: unload-truck(package truck city5)

precondition: at(truck city5) &
in(package truck)

delete: in(package truck)

add: at(package truck)

goals: (1)

pros: nil

cons: nil

duration: 1

importance: 6

effort: 14

ment procedures require the two look-up tables shown in chapter 4, section 4.4.5, table

4.6 and chapter 4, section 4.4.6, table 4.7 which store values estimating how long it takes

110

to execute various actions, and values indicating the degree to which each action may

support or undermine the agent’s motivations, respectively. These tables, which are

Table 5.9 Plan which achieves the goal at(package city5)

actions: id: name:

3
6
5
4
2

load-truck(package truck cityl)
drive-truck(truck cityl city3)
drive-truck(truck city3 city4)
drive-truck(truck city4 city5
unload-truck(package truck city5)

links establisher: condition: consumer:

6 at(truck city3) 5
5 at(truck city4) 4
4 at(truck city5) 2
3 in(package truck) 2
2 at(package city5) 1
0 at(package cityl) 3
0 at(truck cityl) 3
0 connects(city4 cityS) 4
0 has-fuel(truck) 4
0 connects(city3 city4) 5
0 has-fuel(truck) 5
0 connects(cityl city3) 6
0 has-Juel(truck) 6
0 at(truck cityl) 6

open: nil

insafe: nil

ordering: load-truck(package truck cityl) -> drive-truck(truck city l city3) ->
drive-truck(truck city3 city4) > drive-truck(truck city4 city5 >
unload-truck(package truck city5)
(3 -> 6 -> 5 - > 4 - > 2 > I)

Mndings: Kvarset f(?from6 ?loc3 cityl)} = cityl not(?to6 ?truck6 ?ob3 ?truck3)>

<varset ((?truck5 truck ?truck2 ?truck3 ?truck4 ?truck6)j = truck not(?from5
?to5 ?ob2 ?loc2 ?loc3 ?ob3 ?to4 ?from4 ?to6 ?from6)>

<varset {(city3 ?from5 ?to6)} = city3 not(?truck5 ?to5 ?truck6 ?from6)>
<varset {(city4 ?from4 ?to5)} = city4 not(?truck4 ?to4 ?truck5 ?from5)>
<varset f(?loc2 city5 ?to4)J = city5 not(?ob2 ?truck2 ?truck4 ?from4)>
<varset {(?ob2 package ?ob3)J = package not(?truck2 ?loc2 ?loc3 ?truck3)>

joals: id: conditions: deadline: importance:

1 at(package city5) 20 6

accessed using an action’s name field, are used in order to assign values to the fields pros,

cms and duration associated with each action as shown in tables 5.6, 5.7 and 5.8. In

aldition, the step addition and simple establishment procedures assign values to the

fiîlds importance and ejfort associated with each action. In this example, only the goal

111

at(package cityS) has been achieved which has the value 6 indicating its importance. All

actions in the plan (see tables 5.6, 5.7 and 5.8) contribute only towards this goal (the field

goals assigned to each action contains the unique identifier, 1, associated with the goal

at(package city5)) and are therefore assigned the value 6 indicating their importance. The

value ejfort indicates how many “Achieve goal” cycles have occurred in order to achieve

the goal at(package city5) - i.e. this value indicates the number of goals and subgoals that

have been achieved (see the plan links shown in table 5.9) using either step addition or

simple establishment. The sequence of actions selected in order to achieve at(package

city5) are in the order load(package truck cityl), drive-truck(truck cityl city3), drive-

true^ truck city3 city4), drive-truck(truck city4 city5) and unload(package truck city5) as

shown in table 5.9.

5.4.2 Another example of achieving a goal

Table 5.10 Plan 2 - following execution of drive-truck(truck cityS city4)

actions: id: name:

0
4
2

initial
drive-truck(truck city4 city5)
unload-truck(package truck city5)

links establisher: condition: consumer:

0 at(truck city4) 4
4 at(truck city5} 2
0 in(package truck) 2
2 at(package city5) 1
0 connects(city4 city5) 4
0 has-fuel(truck) 4

open: nil

unsafe: nil

ordering: drive-truck(truck city4 city5 > unload-truck(package truck city5)
(4 -> 2 -> 1)

bindings: <varset {(truck ?truck2 ?truck4)j = truck not(?ob2 ?loc2 ?to4 ?from4)>
<varset ((city4 ?from4)j = city4 not(?truck4 ?to4)>
Kvarset { (?loc2 city5 ?to4)j = city5 not(?ob2 ?truck2 ?truck4 ?from4)>
<varset {(?ob2 package)} = package not(?truck2 ?loc2)>

goals: id: conditions: deadline: importance:

1 at(package city5) 20 6
7 at(parcel city5) 16 20

Once the actions load-truck(package truck cityl), drive-truck(truck cityl city3) and

drive-truck(truck city3 city4), (see tables 5.6 and 5.7) which belong to the plan illustrated

112

in table 5.9 have been executed, the resulting partial plan is shown in table 5.10. Execu-

Table 5.11 Initial action for Plan 2

id: name: add:

0 initial connects(cityl city2) & connects(city2 cityl) &
connects(cityl city3) & connects(city3 cityl) &
connects(city2 city4) & connects(city4 city2) &
connects(city2 city5) & connects(city5 city2) &
connects(city3 city4) & connects(city4 city3) &
connects(city4 city5) & connects(city5 city4) &
has-fuel(truck) &
at(truck city4) &
in(package truck) &
at(parcel city2)

tion has resulted in the expected outcome which means that the current time is now 6.

The current state which was keyed in by a user, and which is encapsulated within the

action initial, is shown in table 5.11. Following execution, the truck-driver receives a

request to satisfy a new goal, at(parcel city5) by the deadline 16 units, shown in table

5.12.

Table 5.12 The second goal

id: 7

condition: at(parcel city5)

importance: 20

deadline: 16

duration: 0

In addition, the truck-driver is informed that the parcel is currently located at cityl -

this extra information is incorporated into the truck-driver’s model of the current envi­

ronment, at(parcel cityl), as shown in the action initial shown in table 5.11. The “Select

goal or action” takes the plan illustrated in table 5.10 which contains the new goal,

at(parcel city5) (see table 5.12), and chooses to plan to achieve this new goal as opposed

to executing the action drive-truck(truck city4 city5). Tables 5.13,5.14 and 5.15 illustrate

the actions which are selected (using step addition, simple establishment and conflict res­

olution) to achieve the goal at(parcel city5) by its deadline 16 (see table 5.12), assuming

the current time is 6, while table 5.16 shows the resulting partial plan which contains

113

these actions. The “Achieve goal” component requires the initial plan shown in table

Table 5.13 Actions for Plan 3

id; 10

name: drive-truck(truck city4 city2)

precondition: at (truck city4) &
has-fuel(truck) &
connects(city4 city2)

delete: at(truck city4)

add: at(truck city2)

goals: (17)

pros: (pleasure 1.2)

cons: (conserve-fuel 0.3) dc
(conserve-tyres 0.2)

duration: 2

importance: 26

effort: 35

load-truck(parcel truck city2)

at(truck city2) &
at(parcel city2)

at(parcel city2)

in(parcel truck)

(7)

nil

nil

20

14

5.10, as well as the operator schemas/action templates which are shown in chapter 4, sec­

tion 4.4.3, table 4.4. Again, the step addition and simple establishment procedures

Table 5.14 Actions for Plan 3

id: 11

name: drive-truck(truck city2 city4)

precondition: at(truck city2) &
has-fuel(truck) &
connects(city2 city4)

delete: at(truck city2)

add: at(truck city4)

gods: (17)

pres: (pleasure 1.2)

cons: (conserve-fuel 0.3) &
(conserve-tyres 0.2)

duration: 2

importance: 26

effort: 35

drive-truck(truck city4 city5)

at(truck city4) &
has-fuel(truck) &
connects(city4 city5)

at(truck city4)

at(truck city5)

(17)

(pleasure 1.8)

(conserve-fuel 0.3) &
(conserve-tyres 0.4)

26

35

require the two look-up tables shown in chapter 4, tables 4.6 and 4.7 which store values

114

estimating how long it takes to execute various actions, and values indicating the degree

to which each action may support or undermine the agent’s motivations, respectively. In

Table 5.15 Actions for Plan 3

id: 8

name: unload-truck(parcel truck city5)

precondition: at(truck city5) <Sc
in(parcel truck)

delete: in(parcel truck)

add: at(parcel city5)

goals: (7)

pros: nil

cons: nil

duration: I

importance: 20

effort: 14

unload-truck(package truck city5)

at(truck city5) &
in(package truck)

in(package truck)

at(package city5)

(1)

nil

nil

21

addition, the step addition and simple establishment procedures must assign values to the

fields importance and ejfort associated with each action. In this example, two goals, the

goal at(package city5) and the goal at(parcel city5), have been achieved which have the

values 6 and 20 respectively indicating their importance. The action drive-truck(truck

city4 city5) now contributes to the new goal at(parcel city5) in addition to the original

goal at(package city5) - the goals, importance and effort fields associated with this action

are therefore updated to become the values (1 7), 26 and 35 respectively (see table 5.14).

All actions that contribute towards the preconditions of the action drive-truck(truck city4

city5), namely drive-truck(truck city4 city2) and drive-truck(truck city2 city4), also con­

tribute towards the achievement of the two goals at(package cityS) and at(parcel city5)

which means their associated goals, importance and effort fields are assigned the same

values as shown above, namely (1 7), 26 and 35 respectively. The new actions load-

truck(parcel truck city2) and unload-truck(parcel truck city5) (see tables 5.13 and 5.15)

only contribute towards the achievement of the new goal at(parcel city5) which means

their associated goals, importance and effort fields are assigned the values (7), 20 and 14

115

(this value means that 14 goal achievement cycles were performed to achieve each goal/

Table 5.16 Plan 3 which achieves the goal at(parcel cityS)

actions; id: name:

10
9
11
4
8
2

drive-tru ck(tru ck c ity 4 c ity2)
load -tru ck(parcel truck c ity2)
drive-tru ck(tru ck c ity2 c ity4)
drive-tru ck(tru ck c ity 4 c ity5)
u n load-truck(parcel tru ck c ity5)
u n load-truck(package truck c ity 5)

links establisher: condition: consumer:

11 at(tru ck c ity4) 4
10 at(tru ck c ity2) 9
9 in (parcel truck) 8
8 a t(p a rce l c ity5) 7
2 at(package c ity 5) 1
4 a t(truck c ityS) 2
0 a t(p a rce l c ity2) 9
0 co n n ects(c ity4 c ity2) 10
0 has-fuel(truck) 10
0 at(tru ck c ity4) 10
4 at(tru ck c ity5) 8
0 con n ects(c ity2 c ity4) 11
0 has-fuel(truck) 11
10 at(tru ck c ity2) 11
0 in (package truck) 2
0 con n ects(c ity4 c ity 5) 4
0 has-fuel(truck) 4

open: nil

unsafe: nil

ordering: drive-tru ck (tru ck c ity4 c ity2) -> lo a d -tru ck (p a rce l truck c ity 2) >
d rive-tru ck(tru ck c ity4 c ity2) > drive-tru ck(tru ck c ity 4 c ity5) >

un load-truck(parcel truck c ity5),
u n load-truck(package truck c ity5)
(1 0 -> 9 -> 11 - > 4 - > 8 -> 7) & (4 - > 2 - > 1)

bindings: K v a rse t { (? fro m l 1 c ity2 ? loc9 ? to lO)} = c ity2 n o t (? to l l ? tru c k ll ?truck9 ?ob9 ?trucklO
?from lO)>

K v a rse t {(? tru ck4 ?truck2 truck ?truck9 ?truck8 ? trucklO ? tr u c k l l) } = tru ck n ot(?from 4
?to4 ?loc2 ?ob2 ?ob9 ? loc9 ? loc8 ?ob8 ? to lO ?from lO ? t o l l ? f r o m ll)>

K va rse t {(? from 4 c ity4 ?from lO ? to l l) } = c ity 4 n o t(? to 4 ?truck4 ? trucklO ? to lO ? tru c k ll
? f r o m ll)>

K v a rse t { (? o b 8 p a r c e l ?ob 9)) = p a rc e l n o t(? tru ck8 ? loc8 ? loc9 ? tru ck9)>

K v a rse t { (? to 4 c ityS ?loc2 ? lo c8)j = c ity 5 n o t(?from 4 ?truck4 ?truck2 ?ob2 ?truck8 ?ob8)>

K v a rse t {(? o b 2 p a ck a g e)} = p a ck a g e no t(? tru ck2 ? loc2)>

goals: id: conditions: deadline: effort: importance:

1 a t(package c ity5) 20 21 6
7 a t(p a rce l c ity5) 16 14 2 0

subgoal contributing towards the new goal at(parcel city5)). The action unload-

116

truck(package truck city5) remains unchanged.

5.5 Summary

In this chapter we described in detail the “Achieve goal” component which is a part of

the “Plan to achieve goal” process. The aims and motivations of the work presented in

this thesis were to develop a planning/execution architecture to be used by a self-moti­

vated autonomous agent in order to achieve its goals. A key component of this architec­

ture is the “Achieve goal” or planning component, which, given a goal or subgoal, finds

an action that will achieve that goal or subgoal. In this chapter we described how the goal

achievement process used by SNLP was extended to deal with three features required by

an autonomous agent: the ability to take into account the context of that agent; the ability

to interleave planning and execution; as well as the ability to plan and act in real/simu­

lated time.

117

Chapter 6

Planning to Achieve a Goal - Part 2

6.1 Introduction

In this chapter we describe the remaining components of the “Plan to achieve goal” pro­

cess shown in chapter 2, section 2.2.6, figure 2.2: the “Estimate deadlines”, “Edit the par­

tial plan” and “Evaluate partial plans” components.

6.2 Estimating the Deadlines of Actions

6.2.1 Introduction

This section introduces an algorithm developed to estimate the deadlines for actions and

their associated subgoals or preconditions. The “Plan to achieve goal” component

described in this and the previous chapter (illustrated in chapter 2, section 2.2.6, figure

2.2) extends the classical nonlinear planning algorithm by introducing time - goals have

deadlines and actions have duration. By introducing deadlines and duration, it is neces­

sary for an agent to be able to reason about whether or not it can meet those deadlines.

Part of meeting a deadline involves ensuring that planning and execution take place early

enough - for a goal to be achieved by its deadline, all actions that contribute towards the

achievement of that goal must be executed by their own (earlier) deadlines which are

determined by their position within the overall sequence of actions as well as by their

duration. We define the deadline of an action to be the latest possible time by which exe­

cution of that action should commence in order to ensure that the goal(s) towards which

the action contributes is achieved by its/their associated deadline(s). By implication, the

preconditions of an action must be true by the action's deadline. This enables deadlines

to be assigned to subgoals as well as to actions within the partial plan. A mechanism is

required which estimates the deadlines of actions and subgoals for the following reasons.

118

1. To enable the “Select goal or action” process (see chapter 4, section 4.5) to select

which goal/subgoal or action is to be achieved/executed.

2. To enable the agent to reason about whether or not there is sufficient time available

to achieve its goals prior to their deadlines. If not, the plan is edited to remove a

goal and its associated actions and constraints (this is the responsibility of the “Edit

the partial plan” component) to create sufficient time for the agent to achieve its

remaining goals.

Using information about the deadlines of goals (these are goals which are created by

the “Generate/update goals” procedure), the ordering (encapsulated using temporal con­

straints) and duration of actions (estimated by the “Achieve goal” process described in

chapter 5, section 5.2), it is possible to estimate deadlines for actions and their associated

subgoals (or preconditions). Each time a new temporal constraint is added to a partial

plan (by the “Achieve goal” procedures step addition, simple establishment and conflict

resolution), the ordering between actions is further constrained. This means that each

time a new temporal constraint is added to a partial plan, more information is acquired

concerning the ordering of actions within that partial plan which in turn means that the

deadline associated with each action can be estimated more accurately. It is only when

actions are totally ordered that deadlines can accurately be assigned to those actions.

In estimating the deadlines of actions a pessimistic approach is adopted - when

actions are only partially ordered with respect to each other, those actions are assigned

the earliest likely deadline. For example, three actions a l, a2 and a3 each with a duration

of 3 minutes (i.e. it takes 3 minutes to execute each action) remain unordered with

respect to each other. These actions were selected to achieve the goal g which has the

deadline 5pm. We estimate the deadline for each action to be 4.51pm (5pm - (3mins +

3mins + 3mins)). This is because in the absence of further information, any of the three

actions could be executed first. This means that the deadlines estimated for actions

within a partial plan are likely to be too early in the early stages of plan refinement. How­

ever, this approach prevents the situation occurring whereby a goal cannot be achieved

because the deadlines that were estimated for its contributory actions were too late. If

there is insufficient time to achieve all of the goals, the deadline estimation process fails.

The deadline estimation procedure is not a reliable indicator as to whether or not there is

sufficient time available to achieve all of the goals in a plan. In some situations it esti­

mates deadlines for all actions even though there is insufficient time available. However,

119

as a plan becomes more refined the deadline estimation process more reliably fails when

there is insufficient time. When the deadline estimation procedure does fail however, it

means that there really isn't enough time available to achieve all of the goals.

6.2.2 An algorithm that enables deadlines to be assigned to actions

In this section we describe the algorithm used to estimate deadlines for actions and sub­

goals within a partial plan (see table 6.1). This algorithm assumes that the deadlines

associated with goals created by the “Generate/update goals” component are hard or

fixed and that if the “Plan to achieve goal” cannot achieve a goal by its deadline, it has

failed to achieve that goal. In addition, the algorithm assumes that all actions are exe­

cuted sequentially by some agent with the properties described in chapter I, section 1.5 -

it is assumed that such an agent cannot execute more than one action simultaneously.

The algorithm considers each goal created by the “Generate/update goals” compo­

nent in turn as these have fixed deadlines. When estimating the deadlines for each of the

actions within the partial plan, the algorithm begins by taking the goal with the earliest

deadline, the goal g. The deadlines for all actions that are or that are possibly constrained

to be executed prior to g are estimated. A part of this process involves determining

whether it is possible to execute these actions within the time interval associated with g -

the time interval associated with the goal g (which has the earliest deadline) begins at the

current time NOW and ends at a time equal to the deadline associated with g. If it is not

possible to achieve all actions that are constrained to be executed prior to g in this time

interval, the value Tail is returned. If it is not possible to achieve one or more of the

actions that are possibly constrained to be executed prior to g in this time interval, the

deadlines associated with such actions are assigned within the next time interval - the

time interval associated with the goal with the next earliest deadline, the goal g+L The

algorithm then takes the goal with the next earliest deadline, the goal g+1, and estimates

the deadlines for all remaining actions (i.e. actions whose deadlines have not yet been

estimated including any actions that were possibly constrained to be executed prior to the

previous goal g whose deadlines could not be estimated) that are or that are possibly con­

strained to be executed before that goal. The time interval associated with the goal g+7

begins at a time equal to the previous goal g’s latest point (this time is determined by

adding the duration associated with g to the deadline associated with g) and ends at a

120

time equal to the deadline associated with the current goal g+L The algorithm continues

Table 6.1 Estimating the deadlines associated with actions their preconditions

1. Let the set unestacts contain all actions whose deadlines have not yet been estimated. This set
is initialised to contain all actions belonging within a partial plan p.

2. Let begin be the current time {begin marks the beginning of the current time interval which
ends with the deadline of the first goal to be considered).

3. For each goal g, (beginning with the goal with the earliest deadline):
(a) Let the set defprior contain all actions which both belong to the set unestacts and which

are constrained to be executed prior to g.
(b) Let the set possprior contain all actions which both belong to the set unestacts and which

may be executed prior to g (these are actions that are currently unordered with respect to
8)-

(c) If the sets defprior and possprior are empty, continue with the goal with the next earliest
deadline belonging to the partial plan (i.e. the goal ^+7) from step 3. above.

(d) Else, calculate where possible the deadlines of all actions belonging to the sets defprior
and possprior as follows.
i. Subtract the sum of the durations of all actions belonging to the set defprior from the

deadline associated with g.
ii. If the result is prior to the time begin, there is insufficient time available to execute

all of the actions constrained to be executed prior to g. Return two values, :fail and a
set containing the goal g.

iii. Else, let deadline be the value obtained by subtracting the sum of the durations of all
actions within the sets defprior and possprior from the deadline associated with g.
A. If deadline is later than or equal to the time begin, provisionally set the deadlines

of all actions belonging to the sets defprior and possprior to be this value. Using
the value deadline, calculate the deadlines of all actions belonging to the sets
defprior and possprior (see Algorithm A outlined in table 6.2). Once the dead­
line of an action has been calculated remove the action from the set unestacts.

B. Else, if deadline is earlier than the time begin, let the provisional deadline asso­
ciated with each action belonging to the sets defprior and possprior be the time
begin.
I. Using the time begin and the set defprior, calculate the deadlines for all

actions belonging to the set defprior (see Algorithm A outlined in table
6.2). Once the deadline of an action has been estimated, remove that action
from the set unestacts.

II. Using the time begin and the sets defprior and possprior, calculate (if possi­
ble) the deadlines for all actions belonging to the set possprior (see Algo­
rithm B in table 6.3). Once the deadline of an action has been estimated,
remove the action from the set unestacts. (There may not be enough time to
execute all of the actions belonging to the set possprior prior to the deadline
associated with g. If this is the case, the deadlines of those actions that can­
not be executed prior to g will be estimated within the next time interval -
the time interval associated with the goal g+1.)

(e) Set begin to be the value obtained by adding the duration associated with g to the dead­
line associated with g (this marks the beginning of the next time interval).

(f) Continue from step 3. above with the goal g+1 - i.e. the goal with the next earliest dead­
line.

in this manner until the deadlines for all actions have been estimated with respect to each

of the goals.

121

The algorithm terminates under the following conditions: there is insufficient time

available to achieve some goal by its deadline - in this case the values :fail and a set con­

taining only the goal which cannot be achieved is returned; the deadlines have been esti­

mated for all actions belonging within the plan - in this case a plan containing a set of

actions with newly estimated deadlines is returned. In the following two sections the

algorithms used to estimate the deadlines of actions are described in detail - the first is

used in stages 3. (d) iii. A. and 3. (d) iii. B. I. in table 6.1 while the second is used in

stages 3. (d) iii. B. II. in table 6.1.

Algorithm A

This algorithm (see table 6.2) is used to estimate the deadlines of the set of actions

actions belonging to a partial plan p that are definitely constrained or that are possibly

constrained to be executed prior to some goal g (see stages 3. (d) iii. A. and 3. (d) iii. B.

I. in table 6.1). This algorithm assumes that there is sufficient time available to achieve

Table 6.2 Algorithm A

1. Let actions be the set of actions belonging to a partial plan p whose deadlines are to
be estimated. These actions are definitely constrained or are possibly constrained to
be executed prior to some goal g.

2. Let deadline be a provisional deadline by which execution of the set actions must
commence in order to achieve g by its deadline.

3. For each action act belonging to the set actions.

(a) Provisionally set the deadline of act to be the value deadline.
(b) Are any of the actions in the set actions constrained to be executed prior to act

(this is determined by examining the temporal contraints belonging within the
partial plan p) l

i. If yes, add the sum of the durations associated with each action (in the set
actions) constrained to be executed prior to act to the provisional deadline
associated with act (i.e. the value deadline). The result is the estimated
deadline for the action act.

ii. Else, if no, the deadline of the action act is the value deadline.

the goal g by its deadline by executing the sequence of actions actions. Each action is

provisionally assigned the value deadline which is the time by which the sequence of

actions actions must commence execution in order to achieve the goal g by its deadline

(i.e. it assumes initially that each action is possibly the first in the sequence of actions).

In order to estimate the deadline associated with an action act belonging to actions, the

sum of the durations of each action (belonging to the set actions) that is constrained to be

executed prior to act (this is determined by examining the temporal constraints belonging

122

to the partial plan p), is added to the value deadline (the provisional deadline associated

with act). The algorithm adopts a pessimistic approach in that the estimated deadlines of

actions and their associated subgoals are likely to be too early if the partial plan is in an

early stage of refinement (the ordering of actions will not be specified which means it is

assumed that each action is possibly first in the sequence of actions). This algorithm also

assumes that the durations of all of the actions within the partial plan are known.

Algorithm B

This algorithm (see table 6.3) is used to estimate deadlines for the set of actions possp­

rior that are possibly constrained to be executed prior to some goal g (see stage 3. (d) iii.

B. II. in table 6.1). The algorithm assumes firstly that there is sufficient time available to

achieve all actions that are definitely constrained to be executed prior to g (the set defp­

rior) and secondly that there isn’t enough time available to execute all of the actions

belonging to the set possprior prior to the deadline associated with g. In addition, this

algorithm also assumes that the durations of all of the actions within the partial plan are

known and that actions must be executed sequentially.

Table 6.3 Algorithm B

1. Let defprior be the set of actions belonging to a partial plan p that are definitely
constrained to be executed prior to some goal g.

2. Let possprior be the set of actions belonging to a partial plan p whose deadlines are
possibly constrained to be executed prior to some goal g. These are the actions
whose deadlines are to be estimated.

3. Let deadline be a provisional deadline by which execution of the sets defprior and
possprior must commence in order to possibly achieve g by its deadline.

4. For each action act belonging to the set possprior.

(a) Provisionally set the deadline of act to be the value deadline.
(b) Add the sum of the durations associated with act and with each action belong­

ing either to the set defprior or to the set possprior which is constrained to be
executed prior to act (this is determined by examining the temporal contraints
belonging within the partial plan p), to the provisional deadline deadline. The
result becomes the new provisional deadline associated with the action act.

i. If the result is later than the deadline associated with g, there is insuffi­
cient time available to execute act before the deadline associated with g. It
is impossible to assign a deadline to act. Continue with the next action
(i.e. from stage 4. above).

ii. Else, if the result is before or equal to the deadline associated with g, the
estimated deadline associated with the action act is the provisional dead­
line obtained in stage 4. (b) above.

Each action (in the set possprior) is provisionally assigned the value deadline which

is the beginning of the time interval during which the set of actions defprior is to be exe-

123

cuted to achieve g and during which some of the actions belonging to the set possprior

are to be executed, if possible. In order to estimate the deadline associated with an action

act belonging to the set possprior, the sum of both the duration of act and the durations

of each action (belonging to either the set defprior or to the set possprior) that is con­

strained to be executed prior to act (this is determined by examining the temporal con­

straints belonging to the partial plan p), is added to the value deadline (the provisional

deadline associated with act). If the result is later than the deadline associated with g, it is

impossible to assign a deadline to the action act as it is impossible to execute act prior to

the deadline associated with g. If the result is earlier or equal to the deadline associated

with g, then this result becomes the estimated deadline associated with act. The algo­

rithm adopts a pessimistic approach in that the estimated deadlines of actions and their

associated subgoals are likely to be too early if the partial plan is in an early stage of

refinement (the ordering of actions will not be specified which means it is assumed that

each action is possibly first in the sequence of actions).

6.2.3 Problems with the algorithm

There is a problem concerning the amount of reasoning required to determine whether or

not there is sufficient time available to execute all of the actions within the partial plan,

taking into account the deadlines associated with goals. The time available to the agent

falls into various free time intervals: the first time interval begins with the current time

and ends with the time marking the deadline associated with the earliest goal; the second

time interval begins with the deadline associated with the earliest goal and ends with the

deadline associated with the next earliest goal, etc. Because actions take up “blocks" of

time to execute, it is not easy to fit actions into time intervals in an optimal manner. For

example, if we have two actions, where one takes 30 minutes to execute whilst the other

takes 10 minutes to execute, and we have a time interval of 35 minutes we cannot exe­

cute both actions within this time interval. If we choose to execute the first action within

this time interval we potentially “waste" 5 minutes of the time interval, while if we

choose to execute the second action within this time interval we could “waste" 25 min­

utes. Indeed, to estimate whether or not we can fit all actions into existing time intervals,

we might need to consider every possible alternative ordering of actions. For a large

number of actions and time intervals this will be extremely expensive. The algorithm we

adopt to estimate deadlines is more likely to indicate failure as the number of temporal

124

constraints increases (this reduces the number of alternative orderings). The prime objec­

tive of the “Estimate deadlines” component is to estimate the earliest possible deadline

associated with each action and its preconditions. The “Estimate deadlines” component

will indicate failure when there is insufficient time to execute all actions within the con­

straints imposed by goals and their deadlines. However, it is not guaranteed to indicate

failure in all circumstances, especially those in which actions remain unordered with

respect to each other.

6.2.4 An example

Figure 5.3 in chapter 5, section 5.2.8, illustrates a partial plan containing three goals, gl,

g2 and g3, with seven actions, al, a2, a3, a4, a5, a6 and a7. Arrows indicate ordering

Table 6.4 Ordering constraints

goals/actions
definitely prior

actions
possibly prior

actions

g l a l a2 a4 a5 a6 a? a3

g2 a2 a5 a6 a? a l a3 a4

g3 a3 a6 a? a l a2 a4 a5

a l a2 a4 a5 a6 a? a3

o2 a5 a6 a.7 a3 a4

a3 a6 a? a l a2 a4 a5

a4 a2 a3 a5 a6 a l

a5 a3 a4 a6 a l

a6 a l a4 a5

a7 a4 a5

constraints between actions - for example the action a7 is prior to a6 which is prior to a3,

etc.,. In order to illustrate the deadline estimation procedure described above, we will

describe how deadlines are assigned to each of the actions in this plan. Table 6.4 shows

how the actions and goals are ordered with respect to each other - for example, chapter 5,

section 5.2.8, figure 5.3 shows that the actions a5, a6 and a7 are ordered to occur prior to

a2, while the actions a3 and a4 are possibly prior to a2 (i.e. there are no constraints spec­

ifying the ordering of a2 and a3, or of a2 and a4). Table 6.5 illustrates the deadlines

125

associated with the goals gl, g2 and g3 while table 6.6 illustrates the duration of (i.e. the

Table 6.5 Goals and their deadlines

goals deadlines

g l 25

g2 18

g3 11

estimated amount of time it will take to execute) each action. Below we illustrate, using

Table 6.6 Actions and their durations

actions duration

a l 5

o2 3

a3 4

a4 2

a5 3

a6 4

a? 2

the algorithms described above in table 6.1, how deadlines are assigned to each action.

1. The set of actions unestacts whose deadlines are not yet estimated includes all of

the actions al-a7 (see table 6.1, stage 1.).

2. The time begin marking the beginning of the current time interval is 0.

3. Take the goal with the earliest deadline, g3. The task is to estimate the deadlines for

all actions that are both definitely prior to (the set defprior, containing actions a3,

a6 and a7 - see table 6.1, stage 3. (a)) and (if possible) possibly prior to (the set

possprior, containing actions a l, a2, a4 and a5 - see table 6.1, stage 3. (b)) g3.

(a) Estimate the earliest deadline required to execute each of the actions that are

definitely constrained to occur prior to g3 (a3, a6 and a7) - see table 6.1, stage

3. (d) i. This deadline is 1 (obtained by subtracting the sum of the durations of

actions a3, a6 and a7 from the deadline associated with g3). The result 1 is

later than begin, the current time 0.
11 - (4 + 4 + 2) = 1

(b) Estimate the earliest deadline required to execute the actions that are both defi-

126

nitely constrained to occur prior to g3 (actions a3, a6 and a7) and that may pos­

sibly occur prior to g3 {al, a2, a4 and a5). This deadline is -12 (obtained by

subtracting the sum of the durations associated with each action from the dead­

line associated with g3) - see table 6.1, stage 3. (d) iii. The result, -12, is earlier

than the current time 0.
l l - (4 + 4 + 2 + 5 + 3 + 2 + 3) = -12

i. Let the provisional deadline associated with each action belonging to the

sets defprior and posspriorhe, the time begin (i.e. 0) - see table 6.1, stage 3.

(d) iii. B.

ii. Estimate the deadlines for the actions belonging to the set defprior (i.e. that

are definitely constrained to occur prior to g3) - see table 6.1, stage 3. (d) iii.

B. I. and Algorithm A in table 6.2.

A. Estimate the deadline for a3.

I. The actions belonging to the set unestacts which are definitely con­

strained to occur prior to a3 (see table 6.4) are a6 and a 7. The dead­

line associated with a3 is obtained by adding the durations

associated with a6 and a? to the provisional deadline 0 and is the

value 6.
0 + 4 + 2 = 6

B. Estimate the deadline for a6.

I. The action belonging to the set unestacts which is definitely con­

strained to occur prior to a6 (see table 6.4) is a7. The deadline asso­

ciated with a6 is obtained by adding the duration associated with a7

to the provisional deadline 0 which gives the value 2.
0 + 2 = 2

C. Estimate the deadline for a7.

I. There are no actions belonging to the set unestacts that are defi­

nitely constrained to occur prior to a7 (see table 6.4). The deadline

associated with a7 is therefore 0.

iii. Estimate the deadlines for the actions belonging to the set possprior (i.e.

that may possibly occur prior to g3) - see table 6.1 stage 3. (d) iii. B. II. and

Algorithm B in table 6.3.

127

A. Estimate the deadline for «7.

I. The actions belonging to the set unestacts which are definitely con­

strained to occur prior to al (see table 6.4) are a2, a4, a5, a6 and a7.

The deadline associated with a l is obtained by adding the durations

associated with a2, a4, a5, a6, a l, as well as al, to the provisional

deadline 0 and is the value 19. This is later than the deadline associ­

ated with g3 so it is not possible to assign a deadline to al at this

point.
0 + 3 + 2 + 3 + 4 + 2 + 5 = 19

B. Estimate the deadline for a2.

I. The actions belonging to the set unestacts which are definitely con­

strained to occur prior to a2 (see table 6.4) are a5, a6 and al. The

deadline associated with a2 is obtained by adding the durations

associated with a5, a6, a l, as well as a2, to the provisional deadline

0 which gives the value 12. This is later than the deadline associated

with g3 so it is not possible to assign a deadline to a2 at this point.
0 + 3 + 4 + 2 + 3 = 12

C. Estimate the deadline for a4.

I. There are no actions belonging to the set unestact that are definitely

constrained to occur prior to a4 (see table 6.4). The deadline

assigned to «4 is therefore 0.

D. Estimate the deadline for a5.

I. There are no actions belonging to the set unestact that are definitely

constrained to occur prior to a5 (see table 6.4). The deadline

assigned to a5 is therefore 0.

iv. Remove the actions whose deadlines have been estimated (i.e. the actions

a3, a6, a l, a4 and a5) from the set unestacts. unestacts now includes only

the actions al and a2 - see table 6.1, stage 3. (d) iii. B. II.

V. Set the time begin (which now marks the beginning of the next current time

interval) t o l l (this is obtained by adding the duration associated with g3,0,

to the deadline associated with g3,l 1) - see table 6.1, stage 3. (e).

4. Take the goal with the next earliest deadline, g2. The task is to estimate the dead­

128

lines for all actions remaining within the set unestacts that are definitely prior to

(the set defprior, containing the action a2) and (if possible) possibly prior to (the

set possprior, containing the action a l) g2 - see table 6.1, stage 3.

(a) Estimate the earliest deadline required to execute all actions which are defi­

nitely constrained to occur prior to g2 (in this case the action a2). This deadline

is 15 (obtained by subtracting the sum of the durations of actions that are defi­

nitely constrained to occur prior to g2 - i.e. a2 - from the deadline associated

with g2). The result 15 is later than the time marking the beginning of the time

interval, 11 (see table 6.1, stage 3. (d) i.).
18 + 3 = 15

(b) Estimate the earliest deadline required to execute the actions that are both defi­

nitely constrained to occur prior to g2 (the action a2) and possibly constrained

to occur prior to g2 (the action al). This deadline is 10 (obtained by subtracting

the sum of the durations associated with each action from the deadline associ­

ated with g2). The result 10 is earlier than the time marking the beginning of

the time interval, 11 (see table 6.1, stage 3. (d) iii.).
1 8 -(3 + 5) = 10

i. Let the provisional deadline associated with each action belonging to the

sets defprior and possprior be the time begin (i.e. 11)- see table 6.1, stage

3. (d) iii. B.

ii. Estimate the deadlines for the actions belonging to the set unestacts (i.e. the

actions al and a2) that are definitely constrained to occur prior to g2 - in

this case the action a2 (see table 6.1, stage 3. (d) iii. B. I. and Algorithm A

in table 6.2).

A. Estimate the deadline for a2.

I. There are no actions belonging to the set unestacts which are defi­

nitely constrained to occur prior to a2 (see table 6.4). The deadline

assigned to a2 is therefore 11.

iii. Estimate the deadlines for the actions belonging to the set unestacts that

may possibly occur prior to g2 (i.e. the action a l) - see table 6.1, stage 3. (d)

iii. B. II. and Algorithm B in table 6.3.

A. Estimate the deadline for al.

129

L The action belonging to the set unestacts which is definitely con­

strained to occur prior to al (see table 6.4) is a2. The deadline

assigned to al is obtained by adding the duration associated with

a2, and with al, to the provisional deadline 11 and is the value 19.

This is later than the deadline associated with g2 so it is not possible

to assign a deadline to al at this point.
11 + 3 + 5 = 19

(c) Remove the actions whose deadlines have been estimated (i.e. the action a2)

from the set unestacts. unestacts now contains only the action a l - see table 6.1,

stage 3. (d) iii. B. II.

(d) Set the time begin (which now marks the beginning of the next current time

interval) to 18 (this is obtained by adding the duration associated with g2, 0, to

the deadline associated with g2,18) - see table 6.1, stage 3. (e).

5. Take the goal with the next earliest deadline, gl. The task is to estimate the dead­

lines for all actions belonging to the set unestacts that are definitely prior to (the

action al) and (if possible) possibly prior to (in this case there are actions that are

possibly prior) to gl - see table 6.1, stage 3.

(a) Estimate the earliest deadline required to execute all actions that are definitely

constrained to occur prior to gl (in this case the action a l). This deadline is 20

(obtained by subtracting the sum of the durations of actions that are definitely

constrained to occur prior to gl - i.e. the action a l - from the deadline associ­

ated with gl). The result 20 is later than the time marking the beginning of the

time interval, 18 (see table 6.1, stage 3. (d) i.).
25 - 5 = 20

(b) Estimate the earliest deadline required to execute the actions that are both defi­

nitely constrained to occur prior to g l (the action al) and that may possibly

occur prior to gl (this is an empty set). This deadline is 20 (obtained by sub­

tracting the sum of the durations associated with each action from the deadline

associated with gl). The result (the value deadline), 20 is later than the time

marking the beginning of the time interval, 18 (see table 6.1, stage 3. (d) iii.).
25 - 5 = 20

i. Using the value deadline (the provisional deadline, 20), estimate the dead-

130

lines for the actions belonging to the set unestacts that are definitely con­

strained (i.e. the action al) to occur prior to g l - see table 6.1, stage 3. (d)

iii. A. and Algorithm A in table 6.2.

A. Estimate the deadline for al.

I. There are no actions belonging to the set unestacts which are defi­

nitely constrained to occur prior to a l (see table 6.4). The deadline

assigned to al is therefore 20.

(c) Remove the actions whose deadlines have been estimated (i.e. the action al)

from the set unestacts. unestacts is now empty which means that deadlines have

been assigned to each action in the partial plan.

Table 6.7 illustrates the deadlines assigned to the actions al-a7 hy the deadline esti­

mation process.

Table 6.7 Deadlines assigned to actions

actions
estimated
deadline

a l 20

a l 11

a3 6

a4 0

a5 0

a6 2

a? 0

6.2.5 A truck-world domain example

In chapter 5, section 5.4.1, table 5.9 illustrates a partial plan which was generated to

achieve the goal at(package city5) (see chapter 4, section 4.4.2, table 4.3) by its deadline

20. The “Estimate deadlines” component is responsible for assigning deadlines to each

of the actions within this plan, which are shown in chapter 5, section 5.4.1, tables 5.6,5.7

and 5.8. In order to do this, the “Estimate deadlines components requires the following

information.

1. The goals belonging within the partial plan (in particular, their associated deadlines

and duration), see the partial plan field goals in chapter 5, section 5.4.1, table 5.9.

131

2. The set of ordering constraints, see the partial plan field ordering in chapter 5, sec­

tion 5.4.1, table 5.9.

3. The actions belonging within the partial plan (in particular, their associated dura­

tion), see the partial plan field actions in chapter 5, section 5.4.1, table 5.9.

4. The current time.

The deadlines assigned to each action belonging to the plan shown in chapter 5, sec­

tion 5.4.1, table 5.9, by the “Estimate deadlines” component where the current time is 0,

is illustrated in table 6.8. This example is simple as there is only one goal, at(package

city5), prior to which each action is constrained.

Table 6.8 Deadlines are assigned to actions

id: type: name: duration: deadline:

3 .'action load-truck(package truck cityl) 1 10

6 : action drive-truck(truck city 1 city3) 2 11

5 .'action drive-truck(truck city3 city4) 3 13

4 .'action drive-truck(truck city4 city5) 3 16

2 : action unload-truck(package truck city5) 1 19

1 :goal at(package city5) 0 20

6.2.6 Another truck-world domain example

Table 6.9 shows the deadlines that have been assigned by the “Estimate deadlines” com­

ponent to the partial plan shown in chapter 5, section 5.4.2, table 5.16 with the current

time 6. The actions belonging to this partial plan can be seen in chapter 5, section 5.4.2,

tables 5.13, 5.14 and 5.15. By examining the ordering constraints ordering belonging to

Table 6.9 Deadlines are assigned to actions

id: type: name: duration: deadline:

10 .'action drive-truck(truck city4 city2) 2 6

9 .action load-truck(parcel truck city2) 1 8

11 : action drive-truck(truck city2 city4) 2 9

4 : action drive-truck(truck city4 city5) 3 11

8 : action unload-truck(parcel truck city5) 1 14

2 .'action unload-truck(package truck city5) 1 14

1 .'goal at(package city5) 0 20

7 .'goal at(parcel city5) 0 16

132

the partial plan shown in chapter 5, section 5.4.2, table 5.16, it can be seen that the

actions unload-truck(parcel truck city5) and unload-truck(package truck city5) remain

unordered with respect to each other, and that unload-truck(parcel truck city5) remains

unordered with respect to the goal at(package truck city5) and unload-truck(package

truck city5) remains unordered with respect to the goal at(parcel truck city5). Because of

this, each action is assigned a deadline that is too early - in particular this deadline

assignment is based on the assumption that the action unload-truck(package truck city5)

might later be constrained to occur both prior to the action unload-truck(parcel truck

city5) and prior to the goal with the earlier deadine at(parcel city5).

6.2.7 Implementing DEVISER window compression routines

An alternative way of implementing a procedure to estimate the deadlines of actions is to

use the window compression routines developed as part of DEVISER [Vere 83]. Each

time a new temporal constraint is added to a partial plan, DEVISER calls various win­

dow compression routines which compress the execution windows (an execution win­

dow consists of an earliest start time, a latest start time, an earliest finishing time and a

latest finishing time, together with a duration) associated with actions. If, during the win­

dow compression propagation routines, an execution window is compressed such that the

earliest execution time is later than the latest execution time (or the latest execution time

is earlier than the earliest execution time), DEVISER fails - a plan cannot be found. Once

compressed however, a window can never be decompressed. In the planning/execution

architecture described in this thesis, a part of the planning process involves removing

actions and goals if there is insufficient time available to achieve them (this is the respon­

sibility of the “Edit the partial plans” component, see section 6.3). Once a goal and its

associated constraints have been removed, the deadline estimation process must reesti­

mate the deadlines associated with each action. This means we need to backtrack - i.e.

previously compressed windows need to be decompressed. To accommodate this

requirement, instead of compressing windows each time a temporal constraint is added

during plan refinement, we first refine the plan, and run the window compression rou­

tines from scratch, taking each temporal constraint in turn. This is more costly, as it

involves much duplication. In addition, the latest start times associated with actions

(when assigned by the DEVISER window compression routines) are often too late, if

three actions remain unordered with respect to each other and each have the duration 3

133

minutes, the latest start time assigned to each action will be 3 minutes earlier than the

deadline associated with the goal to which they contribute - this may be too late.

DEVISER assumes that actions may be executed in parallel. One possible solution might

be to estimate the deadline by taking the mid point between the earliest start time and the

latest start time.

6.2.8 Other related work

[Smith et al 00] identified a number of planners that extend the partial order, causal link

(POOL) planning algorithm to reason about time. This approach, described by [Smith et

al 00] as the Constraint-Based Interval (CBI) approach, has been used in many planning

systems such as DEVISER [Vere 83], TRAINS-95 [Ferguson et al 96], Zeno [Penberthy

& Weld 94], IxTeT [Ghallab & Lamelle 94], HSTS, [Muscettola 94] and parcPLAN

([Lever & Richards 94], [El-Kholy & Richards 96]). These planning systems have com­

bined ideas from POCL planning with an interval representation for actions and proposi­

tions (first introduced by [Allen 84]) using constraint-satisfaction techniques to manage

the relationship between intervals.

Such planners, because of their ability to reason about time, could have been used as

the basis of the “Plan to achieve goals” component described in this and the previous

chapter. However, as with DEVISER, one limitation with the CBI approach is that once

temporal constraints have been posted, it is not easy to backtrack or unpost those con­

straints. If new constraints are incompatible with current constraints, such planners may

fail. In the planning/execution architecture described in the thesis, should there be insuf­

ficient time available to achieve some goal, we require that goal together with its associ­

ated actions and constraints to be removed from the partial plan. A CBI planning system

would therefore have to be modified in order to meet this requirement.

6.3 Editing a Partial Plan

6.3.1 Introduction

When a human generates and executes a plan to achieve their aims or goals, they might

find that there will be insufficient time available to achieve all of those goals. Instead of

abandoning their plan, they may choose instead to abandon achieving one of their goals

or aims, thereby freeing time which can be used to fulfil their other aims. One of the

134

objectives of this research is to model this behaviour by giving the planning/execution

architecture the facility to edit partial plans. Plan editing is therefore an essential part of

the “Plan to achieve goal” process (see chapter 2, section 2.2.1, figure 2.1). Once either a

Table 6.10 The partial plan editing algorithm

1. Let redundantacts be the set of actions that contribute only towards the achievement of
the goal g. (This set is determined by examining the set goals associated with each action
- chapter 4, section 4.2.3 describes the representation used for actions. If the goal g is the
only member of the set goals, then the action contributes only towards the achievement
off.)

2. Let contributoracts be the set of actions that contribute towards the achievement of the
goal g in addition to other goals. An action contributes towards the achievement of the
goal g if g is a member (but not the only member) of the action’s set goals.

3. The set of actions belonging to the plan is updated as follows.

(a) All actions which contribute only towards the achievement of the goal g (i.e. actions
which belong to the set redundantacts) must be removed from the partial plan.

(b) All actions belonging to the set contributoracts must be updated to reflect the fact
that such actions no longer contribute to the goal g. This involves removing the goal
g from the action’s set goals, and updating the values importance and effort (both
decrease in value) associated with the action.

4. The set of temporal constraints is updated. All temporal constraints associated with both
the goal g and with actions belonging to the set redundantacts must be removed from the
partial plan.

5. The set of open conditions/unachieved goals is updated. All unachieved goals/subgoals
that are derived either from the goal g or from actions which belong to the set redundan­
tacts must be removed from the partial plan.

6. The set o f achieved goals/subgoals (persistence constraints) is updated. All persistence
constraints containing (as an establisher or consumer) either the goal g or actions
belonging to the set redundantacts must be removed from the partial plan.

7. The set of binding constraints is updated. All codesignation and noncodesignation con­
straints containing variables associated with actions belonging to the set redundantacts
must be removed from the partial plan.

8. The set of goals is updated by removing the goal g.

9. Once actions contributing to the goal g are removed from a partial plan extra free time
becomes available. This means that the deadlines of the actions remaining within the
partial plan must be re-estimated.

goal or a subgoal has been achieved, the “Estimate deadlines” component (described in

the previous section) attempts to assign deadlines to each of the actions within the result­

ing partial plans. If there is insufficient time available to achieve all of the goals within a

plan, the “Edit the partial plan” procedure is called to remove each goal that cannot be

achieved together with its associated actions and constraints. In addition, when an action

is executed, the actual execution time may be longer than the estimated execution time

(this is described in detail in chapter 7, section 7.3). In this situation, the “Estimate dead­

lines” process is called to reassign deadlines to the remaining actions in the plan. It may

135

be that as a consequence of the extra time required for execution, there is insufficient

time available to achieve all of the goals belonging within the partial plan. In this case,

the “Edit the partial plan” procedure edits the partial plan. To summarise, a partial plan

must be edited under the circumstances outlined below.

1. There may be insufficient time available to achieve one or more goals by their asso­

ciated deadlines. This scenario occurs when the “Estimate deadlines” component

(described in section 6.2) fails to estimate deadlines for each of the actions within a

partial plan. In this case, by removing the actions (together with their associated

unachieved subgoals, codesignation, temporal and persistence constraints) which

contribute only towards the achievement of the goals that cannot be achieved

within the time available, it may be possible to create sufficient time to achieve the

remaining goals by their associated deadlines.

2. If an action takes longer to execute than anticipated, there may no longer be suffi­

cient time available to achieve the goals to which that action contributes. In this

case, the “Edit the partial plan” procedure is called to remove such goals together

with their associated actions and constraints.

The algorithm used to implement the “Edit the partial plan” component is shown in

Table 6.11 A partial plan prior to editing

actions id importance effort goals

a l 6 3 g l

a2 16 7 g l

a3 7 3 g3

a4 6 3 g l

a5 16 7 g l g2

a6 23 10 g l g3

a? 23 10 g l g2 g3

temporal con­
straints

(a l g l) (a4 a l) (a2 a!) (a2 g2) (a5 a2) (a6 a2) (a? a6)
(a6 a3) (a3 g3)

open
conditions

p4I p42 p5I p62 p71 p72

persistence
constraints

{a l g l g l) (a 2 g2 g2) (a3 g3 g3) (a4 p i 1 a l) (a2 p 12 a l)
(a7 p61 a6) (a5 p21 a2) (a6 p22 a2) (a6 p31 a3)

goals g l g3

table 6.10.

136

6.3.2 An example

Chapter 5, section 5.2.8, figure 5.3 illustrates a partial plan containing three goals, g l, g2

and g3. In this section we demonstrate how this partial plan is edited to remove the goal

g l (we assume that the “Estimate deadlines” process has indicated that there is insuffi­

cient time available to achieve g l by its associated deadline - this would be the case if gl

had the associated deadline 20 in the deadline estimation example of section 6.2.4

above). Table 6.11 illustrates the components of the partial plan prior to editing. As we

can see from chapter 5, section 5.2.8, figure 5.3 the actions which only contribute

towards the achievement of g l (the set redundantacts) are a l and a4. Actions which con­

tribute to the goal g l in addition to other goals (the set contributoracts) include a2, a5,

a6 and a7. Table 6.12 illustrates the components of the partial plan once editing has

taken place. The goal g l and the actions al and a4 have been removed from the plan, as

have their associated temporal constraints, open conditions and persistence constraints

(and binding constraints which we do not include in tables 6.11 and 6.12). The fields

Table 6.12 The partial plan following editing

actions id importance effort goals

a2 10 4 g2

a3 7 3 g l

a5 10 4 g2

a6 17 7 g2 g3

a? 17 7 g2 g3

temporal con­
straints

(a2 g2) (a5 a2) (a6 a2) (a? a6) (a6 a3) (a3 g3)

open
conditions

p51 p62 p71 p72

persistence
constraints

(a2 g2 g2) (a3 g3 g3) (a7p61 a6) (a5 p21 a2) (a6 p22 a2) (a6 p31
a3)

goals g3

importance, effort and goals associated with actions a2, a5, a6 and a7 have been updated

to reflect the fact that these actions no longer contribute towards gl.

6.3.3 A truck world domain example

When the “Select goal or action” component chooses to execute the action load-

truck(parcel truck city2) shown in chapter 7, section 7.3.1, table 7.8, the “Execute

137

action” component updates the partial plan to reflect the outcome of execution, resulting

in the partial plan shown in chapter 7, section 7.3.2, table 7.11. However, when executed,

the action, load-truck(parcel truck city2) takes longer to execute than anticipated which

means that the actual time following execution is later than the predicted time. The “Esti­

mate deadlines” procedure is therefore called to reassign deadlines to each of the actions

belonging within the updated partial plan of chapter 7, section 7.3.2, table 7.11. Because

there is insufficient time available to achieve the goal at(parcel city5) by its deadline 16,

the “Edit the partial plan” component edits the updated partial plan of chapter 7, section

7.3.2, table 7.11, to remove the goal at(parcel city5) together with its associated actions

and constraints. The edited partial plan is shown in chapter 7, section 7.3.2, table 7.12.

6.3.4 Discussion

The “Edit the partial plan” component is designed (in conjunction with the “Estimate

deadlines” component) to emulate the way humans abandon the achievement of some of

their goals if they discover they do not have enough time to meet all of their objectives.

Editing partial plans as part of the “Plan to achieve goal” procedure leads to two prob­

lems.

1. Various temporal constraint propagation techniques that undertake temporal rea­

soning are not easy to use when partial plans are edited as it is difficult to backtrack

if goals are removed.

2. Editing partial plans may lead to duplicate partial plans in the search space. Various

checks must be made to ensure this does not happen. Once one or more new partial

plans have been generated by the “Plan to achieve goal” component, each new plan

should be checked to ensure they are not duplicated. Alternatively, the search space

could be implemented as a directed graph structure.

6.4 Evaluating Partial Plans

6.4.1 Introduction

Each time a goal or subgoal is achieved (by the “Achieve goal” procedure), several new

partial plans are generated - one or more new partial plan for each new or for each exist­

ing action capable of achieving that goal or subgoal. The “Estimate deadlines” compo­

nent then assigns deadlines to the actions belonging to each newly generated partial plan.

138

If it is impossible to assign deadlines to the actions within a plan (because there is insuf­

ficient time available to achieve the plan’s goals), the “Edit the partial plan” component

edits the partial plan and another attempt is made by the “Estimate deadlines” component

to reassign deadlines. This cycle continues until the plan has been edited sufficiently in

order that deadlines can successfully be assigned to each action belonging to that plan.

To summarise, each time a goal or subgoal is achieved, several new partial plans are gen­

erated. In order to select the best partial plan for subsequent refinement, each newly gen­

erated partial plan must be evaluated prior to being added to an ordered search space of

partial plans. Because the search space is ordered, the best partial plan for subsequent

refinement is the head plan within the search space of partial plans. In this section we

describe in detail the “Evaluate partial plans” process which uses the agent’s motivations

to evaluate each newly generated partial plan so that it is possible to select the “best” par­

tial plan from among those within the search space. Each partial plan is assessed in terms

of the extent to which each of its actions supports or undermines the agent’s current

motivations.

6.4.2 Evaluating partial plans

In chapter 2, section 2.2.3 and chapter 3, section 3.2.1 we described how the motivations

of an agent are directly affected both by physical changes occurring within the agent’s

environment, either brought about by the agent or by other agents/physical processes,

and by changes that are made to the agent’s plan (as a consequence of planning to

achieve some goal or subgoal). The planning/execution architecture illustrated in chapter

2, section 2.2.1, figure 2.1 updates an agent’s motivations to reflect such changes each

time the agent executes an action. The agent’s motivations therefore partly represent the

context of the agent within its environment. When an agent executes an action, one of the

consequences is that the agent’s motivations are updated to reflect the fact that the agent

has brought about changes to its environment. For example, the motivation hunger will

decrease in strength as a consequence of an agent eating some food. This means there is

a difference between the agent’s current motivations and how those motivations will be

once the agent has executed some action. It can therefore be argued that one way of

determining the degree to which the actions within a partial plan support the agent’s

motivations is to predict the future motivations of the agent (i.e. the future motivations

that arise once those actions have been executed). In this thesis we assume that it is pos-

139

sible to crudely predict the effect that executing an action will have upon the agent’s

motivations. This is the responsibility of the “Evaluate partial plans” component which

attempts to predict the effect that executing the sequence of actions belonging within

each partial plan will have upon the agent’s motivations. This component is able to pre­

dict the agent’s future motivations by using the current motivations as well as the fields

pros and cons associated with each action (see chapter 4, section 4.2.3).

For example, one way of achieving the goal of having some food, is to buy food at

the local shop. When selecting an action that enables the agent to get to the shop, one of

the options might be to walk down a secluded alleyway. When considering this option,

the agent may predict that executing this action will undermine the motivation safety, i.e.

the agent’s safety might be compromised by executing this action. In fact, when a human

agent plans to achieve such a goal, when imagining the action of walking down the

secluded alleyway, they might actually experience a small increase in their level of fear,

even though they are currently within a safe environment. An alternative means of travel­

ling to the shop, such as driving by car, may not undermine the motivation safety but may

have some other problem associated with it - the agent may not wish to pollute the envi­

ronment by driving unnecessarily, or it may be hard/expensive to find a parking place.

Likewise, when thinking about the option of travelling by coach between London and

Edinburgh, a human agent might imagine the boredom of such a lengthy journey spent in

such a confined space. A trade-off may have to be made, on one hand travelling to Edin­

burgh by coach is extremely dull and not very pleasant, on the other hand it supports the

human agent’s desire to save money. It is this notion of trade-off that we wish to capture

by evaluating actions within a plan to determine the extent to which they support the

agent’s motivations. It is not just different actions that may affect the agent’s motivations

differently. The way those actions are instantiated might also have different effects on the

agent’s motivations. For example, if an agent is deciding to go out to eat, the different

places at which the agent might eat will support its motivations to a differing extent. Eat­

ing at a very expensive restaurant may undermine the agent’s motivation to save money,

but support the agent’s motivation for eating good food. Eating at a fast-food restaurant

however, may support the agent’s motivation to save money but undermine the agent’s

motivation for eating good food.

140

6.4.3 Examples of the degree to which actions support motivations

An agent has to achieve the goal of having some food. The different possibilities avail­

able to the agent are listed below along with the degree to which they may support the

agent’s motivations.

1. Go to a shop to buy some food, prepare the food and cook a meal. This may sup­

port the motivations associated with saving money, eating healthy food and eating

enjoyable food. In addition, this may undermine the motivations associated with

idleness and enjoyment (i.e. the agent may not wish to invest the effort involved in

going shopping and cooking, and the agent may not enjoy cooking).

2. Go to a shop to buy some ready cooked food, heat up that food in the oven and eat

the food. This may support the motivations associated with saving money to a

lesser degree than option 1, eating healthy food to a lesser degree and eating enjoy­

able food to a lesser degree. In addition this may also support the motivation asso­

ciated with idleness and enjoyment (i.e. the agent still has to go shopping but does

not have to cook).

3. Go to a takeaway to buy ready cooked food. This may support the motivations

associated with saving money to an even lesser degree than option 2, eating healthy

food and eating enjoyable food to a greater extent than option 2 but to a lesser

extent than option 1. In addition, this may support the motivation associated with

idleness to a greater extent than option 2 (the agent doesn’t even have to heat up the

food) and enjoyment.

4. Go to a fast food place. This may support the motivations associated with saving

money to a greater degree than option 1 but to a lesser degree than options 2 and 3,

eating healthy food and eating enjoyable food to a lesser degree than options 1, 2

and 3. In addition, this may support the motivations associated with idleness (the

agent doesn’t have to cook) and enjoyment.

5. Go to a restaurant. This may undermine the motivations associated with saving

money but support the motivations associated with eating healthy food and eating

enjoyable food to a greater extent than options 1, 2, 3 and 4 above. This may also

support the motivation associated with idleness and enjoyment.

The latter two options, going to a fast food place (4) and going to a restaurant (5) are

different instantiations of an operator schema/action template which represents the activ-

141

ity of going out to eat. This illustrates how different instantiations of operator schemas/

action templates support or undermine the agent’s motivations to varying degrees (see

also chapter 5, section 5.2.3). As discussed in chapter 5, section 5.2.3 a look-up table is

used during the step addition/simple establishment process, which indicates how differ­

ent instantiations of various operator schemas/action templates support or undermine the

agent’s motivations.

Another example involves the goal of being in Edinburgh by 2pm. The options avail­

able to achieve this goal are listed below.

1. Fly by aeroplane - this may undermine the motivation associated with saving

money, but support the motivations concerned with saving time and arriving at the

destination feeling reasonably alert.

2. Travel by train - this may support the motivation associated with saving money,

saving time and feeling reasonably alert (but to a lesser degree than option 1).

3. Drive - this may support the motivation associated with saving money (to a greater

degree than option 2) but undermine the motivations associated with saving time

and arriving feeling reasonably alert.

4. Travel by coach - this may support the motivation associated with saving money (to

a greater degree than option 3), undermine the motivation concerned with saving

time, and support (but to a lesser degree than options 1 and 2) the motivation asso­

ciated with feeling reasonably alert.

6.4.4 The algorithm used to evaluate partial plans

When evaluating partial plans, the “Evaluate partial plans” component crudely predicts

the agent’s future motivations - i.e. the motivations that will arise as a consequence of

executing the actions within each partial plan. In order to do this, it requires the current

set of motivations together with information indicating the extent to which each action

supports or undermines the agent’s motivations. The representation used for actions

includes two fields, pros and cons, where pros indicates the degree to which executing an

action will support the agent’s motivations, and cons indicates the degree to which exe­

cuting that action will undermine the agent’s motivations (see chapter 4, section 4.2.3).

pros and cons both contain a set of tuples where each tuple contains the name associated

with a motivation (this is used to uniquely identify a particular motivation), together with

a value indicating the degree to which executing the action will support (if the tuple

142

belongs to the set pros) or undermine (if the tuple belongs to the set cons) the motivation

identified by name.

The algorithm used by the “Evaluate partial plans” component (see table 6.13) deter-

Table 6.13 Evaluating partial plans

1. Let s u p p o r t be a value reflecting the degree of support that a partial plan p has for the set of
motivations m o tiv a t io n s . Initialise s u p p o r t to be the value 0.

2. For each motivation m o tiv a t io n belonging to the set m o tiv a t io n s .

(a) Let n e w s tr e n g th be a value indicating the predicted future strength associated with the
motivation m o tiv a t io n . Initialise n e w s tr e n g th to be the value s tr e n g th associated with the
motivation m o tiv a t io n .

(b) For each action a c t belonging to the partial plan p .

i. Let p r o be a measurement of the degree to which the action a c t supports the motiva­
tion m o tiv a t io n .

A. If the action a c t contains a motivation p r o m o t belonging within its associated set
p r o s , where the n a m e associated with p r o m o t is equal to the n a m e associated
with the motivation m o tiv a t io n , p r o is assigned the value p r o m o t .

B. Else, the action a c t does not support the motivation m o t iv a t io n so p r o is
assigned the value nil.

ii. Let c o n be a measurement of the degree to which the action a c t undermines the
motivation m o tiv a t io n .

A. If the action a c t contains a motivation c o n m o t belonging within its associated
set c o n s , where the n a m e associated with c o n m o t is equal to the n a m e associated
with the motivation m o tiv a t io n , c o n is assigned the value c o n m o t.

B. Else, the action a c t does not undermine the motivation m o tiv a t io n so c o n is
assigned the value nil.

iii. If p r o has a value (i.e. p r o is not nil),
A. Let n e w s tr e n g th be the value obtained by subtracting the value s tr e n g th associ­

ated with p r o from the original value of n e w s tr e n g th , i.e.
newstrength = newstrength - strength. This new value n e w s tr e n g th indicates a

prediction of the future value s tr e n g th associated with the motivation m o tiv a t io n

after the action a c t has been executed. Continue with step 2. (b) above.

iv. Else if c o n has a value (i.e. c o n is not nil),
A. Let n e w s tr e n g th be the value obtained by adding the value s tr e n g th associated

with c o n to the original value of n e w s tr e n g th , i.e.
newstrength = newstrength + strength. This new value n e w s tr e n g th indicates a

prediction of the future value s tr e n g th associated with the motivation m o tiv a t io n

after the action a c t has been executed. Continue with step 2. (b) above.

V. Else, continue with step 2. (b) above.

(c) Set the value s u p p o r t to equal to the total obtained by adding the value n e w s tr e n g th (this
value represents a prediction of the future strength of the motivation m o t iv a t io n - i.e.
once each action belonging within the plan p has been executed) to the original value
s u p p o r t , i.e. support = support + newstrength. Continue with stage 2. (a) above.

3. Return a tuple containing the partial plan p together with the value s u p p o r t .

mines the degree to which the actions within a partial plan support the agent’s motiva­

tions by creating a cumulative score for each motivation - this score indicates the degree

to which executing each action will support/undermine that motivation. These scores are

143

then totalled - the result is a value indicating the degree to which the partial plan supports

the agent’s motivations.

For each motivation in turn, the algorithm examines each action to determine

whether it supports or undermines that motivation. If the action supports the motivation

(i.e. if the set pros contains a tuple with the same name as the motivation), the value indi­

cating the degree to which executing the action will support the motivation is subtracted

from the score indicating the current strength associated with the agent’s motivation. If

the action undermines the motivation (i.e. the motivation belongs to the action’s set

cons), the value indicating the degree to which executing the action will undermine the

motivation is added to the score indicating the current strength associated with the moti­

vation. If the action neither supports nor undermines the motivation, the score remains

unchanged. In this way, each motivation will have a cumulative score representing the

degree to which the actions within the partial plan support or undermine that motivation.

(This method is used to predict the future strength associated with each motivation as a

consequence of executing the actions in the partial plan.) Finally, the cumulative scores

associated with each motivation are totalled - the result is the measurement of the degree

to which the partial plan supports the agent’s motivations (a tuple containing the partial

plan together with this result is returned by the “Evaluate partial plans” procedure”). Par­

tial plans with low results are preferred (i.e. they best support the agent’s motivations.

As well as determining the degree to which a partial plan supports the agent’s moti­

vations, several versions of the “Evaluate partial plans” heuristic have been implemented

which take into account the following domain-independent information: the number of

actions; the total duration of the partial plan (i.e. the estimated time it takes to execute the

sequence of actions belonging to the partial plan); the number of outstanding goals (i.e.

these are goals/subgoals which have not yet been achieved by the “Achieve goal” compo­

nent); the number of achieved goals or subgoals (these have been achieved by the

“Achieve goal” component).

6.4.5 A truck world example

In chapter 4, we demonstrated how a truck-driver agent was presented with the goal of

delivering a package from cityl to city5 by 20 units of time, at(package city5) - see chap­

ter 4, section 4.4.2, table 4.3. By examining the topology of the truck world domain (see

chapter 4, section 4.4, figure 4.1) it can be seen that the truck-driver could use three alter-

144

native routes to achieve this goal.

1. Drive from cityl to cityl to city5.

2. Drive from cityl to cityl to city4 to city5.

3. Drive from cityl to city3 to city4 to city5.

A standard plan evaluation heuristic might take into account the number of steps in a

Table 6.14 Plans to achieve at(package city5)

action name: pros cons

name strength name strength

Plan 1

drive-truck(truck cityl cityl) pleasure 0.1 conserve-juel
conserve-tyres

7.2
1.0

drive-truck(truck cityl city5) pleasure 0.1 conserve-fuel
conserve-tyres

1.0
0.9

Plan 1

drive-truck(truck cityl cityl) pleasure 0.1 conserve-fuel
conserve-tyres

1.1
1.0

drive-truck(truck cityl city4) pleasure 1.1 conserve-fuel
conserve-tyres

0.3
0.1

drive-truck(truck city4 city5) pleasure 1.8 conserve-fuel
conserve-tyres

0.3
0.4

PlanS

drive-truck(truck cityl city3) pleasure 1.9 conserve-fuel
conserve-tyres

0.3
0.1

drive-truck(truck city3 city4) pleasure 1.1 conserve-fuel
conserve-tyres

0.3
0.4

drive-truck(truck city4 city5) pleasure 1.8 conserve-fuel
conserve-tyres

0.3
0.4

partial plan - in this example, if such a method was used the first plan would be selected.

However, the heuristic adopted by the planning/execution architecture assesses the

degree to which each partial plan supports or undermines the agent’s motivations in addi­

tion to taking into account the number of steps and the number of outstanding goals.

Table 6.14 illustrates the actions used for each route and the degree of support they lend

to the agent’s motivations - the look-up table shown in chapter 4, section 4.4.6, table 4.7

shows how the values indicating the degree of support were obtained. Using the algo­

rithm shown in table 6.13, and the current strength associated with the truck-driver’s

145

motivations (see chapter 4, section 4.4.4, table 4.5), it can be seen that the first plan sup­

ports the truck-driver’s motivations with the value 3.8, the second plan with the value 0.3

and the third plan with the value -3.1. The best partial plan is that with the lowest value

indicating its support for the agent’s motivations. The third partial plan is therefore cho­

sen by the partial plan evaluation heuristic when planning to achieve the goal at(package

city5) as shown in chapter 5, section 5.4.1 table 5.9, even though it has a high number of

plan steps and takes longer to execute than the first partial plan.

6.4.6 Discussion

The current method adopted to evaluate partial plans with respect to the agent’s motiva­

tions uses the current motivations and set of actions to predict the future motivations (i.e.

the motivations that will arise as a consequence of executing each action). One limitation

of this approach is that it treats each motivation as being equal in importance. In practice,

motivations may not be equal - it may be more important for an agent to support (i.e. to

maintain a low value of) one motivation than another. For example, if an agent creates a

plan to attend an interview, if the agent wishes to perform well, it may be more important

that they ensure that having travelled to the interview they remain alert than that they

save money, in the process of executing the plan to achieve this goal. Actions that favour

remaining alert (for example actions that allow the agent to sleep, such as travelling by

train), may be preferred over those that allow the agent to save money (driving to the

interview is cheaper but more tiring). The relative importance of each motivation

depends upon the context of the plan. For example, if the agent was planning to reach a

holiday destination, saving money might be more important than feeling alert. This fea­

ture is not currently implemented and requires further examination.

Finally, the following additional criteria may be used to determine good partial

plans. Firstly, a good partial plan might achieve a large number of important goals. A

plan which achieves a small number of goals of high importance may be better than one

that achieves a large number of less important goals. Again, this feature is not currently

implemented and requires work. Secondly, a good partial plan may be one containing a

small number of actions that take very little time to execute - i.e. plans that have a lot of

free time. However, this criteria very much depends upon the agent - one agent (a lazy

agent) might prefer to have as much free time as possible, while another might prefer to

be as busy as possible (such an agent might favour plans containing lots of actions and

146

might not be concerned as to how long those actions take to execute). Future work might

focus upon how an agent’s motivations influence its choice of “Evaluate partial plans”

heuristic - different agent’s might prefer to use different evaluation heuristics. This illus­

trates why it is difficult to implement good domain and agent-independent heuristics to

guide the choice of partial plans.

6.5 Summary

In this chapter we described in detail three of the “Plan to achieve goal” components

(shown in chapter 2, section 2.2.6, figure 2.2): “Estimate deadlines”; “Edit the partial

plan”; Evaluate partial plans. In section 6.2 we described how deadlines are assigned to

actions and subgoals belonging within a partial plan - in the current implementation such

deadlines are pessimistic (i.e. are too early in the early stages of plan refinement). We

also discussed problems that arise in using various temporal constraint propagation tech­

niques to reason about time. In particular, the requirement that goals should be aban­

doned if there is insufficient time available to achieve them, means partial plans are

edited. Temporal constraint propagation techniques require more sophisticated means of

backtracking to deal with this problem. In section 6.3 the “Edit the partial plan” compo­

nent was presented - this enables the planning/execution architecture to abandon the

achievement of one or more goals, thereby allowing sufficient time to achieve the

remaining goals. When plans are edited, there is a possibility that the search space might

contain duplicate partial plans. Finally, in section 6.4, we described the “Evaluate partial

plans” heuristic - one of the main problems with domain-independent planning is being

able to define a “good” plan. It is our belief that “good” plans are context dependent - i.e.

a plan considered to be “good” by one agent may be considered “bad” by another. This

problem is overcome in part by evaluating partial plans with respect to the agent’s moti­

vations.

147

Chapter 7

Execution and Recovery

7.1 Introduction

In this chapter we describe what happens when an action is executed. If the “Select goal

or action” component (shown in chapter 2, section 2.2.1, figure 2.1) chooses to execute

an action, that action is passed to the “Execute action” procedure which is responsible for

updating the partial plan to reflect the outcome of execution. In chapter 4, section 4.5 we

described how an action may only be selected for execution if it is fully instantiated, its

preconditions are true, and it is possibly first within the partial order of actions. When the

action is executed, changes occur within the environment.

Figure 7.1 is a more detailed diagram which illustrates what happens if the “Select

goal or action” component chooses to execute an action. Once the action has been exe­

cuted, a user keys in the resulting state of the environment as well as the time. In addition

to modelling the changes that occur as a consequence of executing the action, the user

may also model changes that are brought about by the activities of other agents or physi­

cal processes. (Note that in order to perceive changes that occur within its environment a

fully implemented agent would require sophisticated sensors as well as the ability to

translate raw sensor data into symbols. This is beyond the scope of the work presented in

this thesis which is why such information is user-supplied.)

The “Execute action” component ensures that the agent’s internal partial plan is

updated to reflect the outcome of execution - this involves updating the agent’s represen­

tation of its environment and removing the action which has been executed together with

certain temporal, binding and achieved goals/subgoals.

The “Recover” component checks to see if the outcome of execution is as expected,

and, if not (one or more goals or subgoals which have been achieved may have been

148

undone/clobbered or the action may take longer to execute than expected), repairs the

partial plan.

links are clobbered

Is actual time
later than
expected time?

yes

succeedfail no

Recover

Estimate
deadlines

Execute
action

Edit the
partial plan

Generate/update
goals

Update
motivations

User keys in
state and time

Figure 7.1 Executing an Action

Once the partial plan’s model of the environment is updated to reflect the outcome of

execution, we effectively have a new “initial state” for planning purposes. It is therefore

149

necessary to prune the search space of partial plans by deleting all other previously gen­

erated partial plans. The changes that occur within the environment as a consequence of

Table 7.1 Executing an action

1. Let e x a c t be the action which is to be executed.

2. Let n e w s ta te be the actual state of the world following execution (this is keyed in by a
user), n e w s ta te represents all changes that have occurred in the world following execu­
tion, including those that arise as a consequence of executing e x a c t (which may result in
an unforeseen outcome) as well as those that arise as a consequence of the activities of
other agents or physical processes (see section 7.2.1).

3. Let p o s t t im e be the actual time following execution (this is keyed in by a user).

4. Let la te s t f t be the estimated time by which execution of the action e x a c t should be com­
plete. { la te s t f t is calculated by adding the d u r a t io n associated with e x a c t to the execution
deadline associated with e x a c t .)

5. Let c lo b l in k s be the set of plan links which have been clobbered following execution of
the action e x a c t. (Plan links may be clobbered if the world changes in unforeseen ways
following execution.)

6. Let a c h g o a ls be the set of goals which have been achieved following execution.

7. The partial plan p is updated by the following procedures.

(a) The set of actions belonging to the partial plan p is updated using n e w s ta te (see sec­
tion 7.2.3).

(b) The set of persistence constraints or links is updated using the sets c lo b l in k s and
a c h g o a ls (see section 7.2.4 below).

(c) The set of ordering constraints is updated using the set a c h g o a ls (see section 7.2.4
below).

(d) The set of binding constraints is updated (see section 7.2.4 below).

(e) The set of open conditions may need updating if the set c lo b l in k s is not empty (i.e. if
one or more links have been clobbered following execution of the action e x a c t) . The
clobbered links must be converted into a set o f open conditions which are appended
to the set of open conditions already within the plan p (see section 7.3 below).

(f) The set o f goals is updated if the set a c h g o a ls is not empty (i.e. if one or more goals
have been achieved following execution).

8. If the time following execution, p o s t t im e , is later than the estimated execution finishing
time, la te s t f t .

(a) Estimate the deadlines associated with each of the actions belonging to the newly
updated partial plan.

(b) If there is insufficient time available to achieve each of the goals in the newly
updated partial plan.

i. Edit the partial plan.

ii. Continue with stage 8. (a) above (i.e. estimate the deadlines associated with
each of the actions belonging to the edited partial plan).

(c) Else, return the modified partial plan.

9. Else, return the newly updated partial plan.

execution (and as a consequence of the activities of other agents and physical processes)

will directly affect the agent’s motivations which in turn might lead to the generation of

new goals or cause existing goals to be updated. Again, because a detailed implementa­

150

tion of the components “Update motivations” and “Generate/update goals” are beyond

the scope of this thesis, a user is responsible for both updating the motivations and gener­

ating new or updating existing goals. In the following sections we describe each of these

components in more detail. The algorithm used in the implementation of the “Execute

action” and “Recover” components is presented in table 7.1.

7.2 Executing an action

The task of the “Execute action” component of figure 7.1 is to update the partial plan to

reflect the state of the environment following execution and to update the search space of

partial plans. This consists of the procedures described in the following sections.

7.2.1 Updating the agent’s model of the environment

The agent’s model of the environment must be updated to reflect the changes brought

about as a consequence of execution as well as due to the activities of other agents and

physical processes. Once an action has been executed, the environment will have

changed - the agent perceives these changes and updates its world model to reflect those

changes. In the current implementation, a user supplies a set of predicates which repre­

sent the state of the environment following execution (see table 7.1, stage 2.). This means

that unforeseen changes to the environment may be represented - for example, execution

may not result in the expected outcome, or other agents or physical processes may have

made changes to the world. The user-supplied set of predicates (which represent the state

of the environment following execution) are used in order to update the “initial state”

action belonging within the partial plan as this contains the agent’s model of the current

state of the environment (see section 7.2.3 below).

In practice, changes to the environment may occur while the action is being exe­

cuted. Actions take time to execute, so, although the preconditions of an action must

remain true at least until execution commences, an action’s effects may become true at

any time during execution. We assume however, that an action’s effects are true once

execution is complete (i.e. we do not model the exact point during execution at which an

action’s effects become true).

7.2.2 Updating the time

The agent’s model of the environment must be updated to reflect the actual time follow­

ing execution. In the current implementation, this time is supplied by a user (see table

151

7.1, stage 3.). The actual time may differ from the predicted time as execution may take

longer or shorter than anticipated.

7.2.3 Updating the set of actions

The set of actions belonging to the current partial plan must be updated to reflect the out­

come of execution. Firstly, the action act which has been executed must be removed from

this set of actions. Secondly, the “initial state” action (which is the agent’s model of the

current state of the environment) must be updated, using the user-supplied set of predi­

cates (see figure 7.1 and table 7.1, stage 2.), to reflect the changes that have occurred

within the environment following execution.

7.2.4 Updating binding, temporal and persistence constraints

Binding, temporal and persistence constraints (these represent goals or subgoals which

have been achieved by the “Plan to achieve goal” component) must be updated (see table

7.1, stage 7. (d), 7. (c) and 7. (b) respectively). All binding constraints which contain

variables associated with the action act (which has been executed) must be modified so

that those variables are removed (this may mean that some binding constraints become

redundant and must also be removed).

Certain persistence and temporal constraints also become redundant following exe­

cution and must be removed from the partial plan. In particular, persistence constraints

which maintain the truth of the preconditions associated with the action act are redun­

dant once act has been executed. Once established, the preconditions associated with act

must only remain true until the point at which execution commences. This means that

once execution is complete, the persistence constraints that are responsible for maintain­

ing the truth of those preconditions are no longer required. Likewise, persistence con­

straints which maintain the truth of any goals that have been achieved following

execution (see table 7.1, stage 6.), are now redundant and must be removed from the par­

tial plan. In addition, prior to executing act, the partial plan will contain a temporal con­

straint which specifies that the “initial state” action (this action represents the state of the

world prior to executing act) must occur prior to act. Once act has been executed, this

constraint must be removed from the partial plan. Likewise, if any goals have been

achieved following execution, all temporal constraints specifying the ordering of such

goals must be removed from the partial plan.

Finally, some of the remaining temporal and persistence constraints must be modi­

152

fied to reflect the fact that the action act has been removed from the partial plan follow­

ing execution. For example, the action act may have been chosen previously by the “Plan

to achieve goal” component in order to achieve the subgoal g. Once act is executed, g

becomes true and act is removed from the partial plan. The persistence constraint repre­

senting the fact that the subgoal g is established by act, must be modified to reflect the

fact that now g is true, it is the newly updated “initial state” action (which has been newly

updated - see section 7.2.3 - to reflect the changes made to the environment) which now

establishes g. In addition, all temporal constraints that specified (prior to execution) that

the action act is ordered to occur prior to some other action, must be modified to specify

that, following execution, it is now the newly updated “initial state” action that occurs

prior to the other action. (A consequence of executing act is that the environment results

in a state that is captured within the newly updated “initial state” action.)

7.2.5 Removing goals which have been achieved

All goals that have been achieved as a consequence of execution must be removed from

the partial plan - see table 7.1, stage 7. (f).

7.2.6 Updating the search space of partial plans

Following execution of some action act, all previously generated partial plans must.be

removed from the search space. When the “Plan to achieve goal” component plans to

achieve a goal or subgoal, a search space of partial plans is generated in which each par­

tial plan contains the same “initial state” action (i.e. an action which represents the cur­

rent state of the world) and in which each partial plan achieves the goal or subgoal (using

different actions). The “Select best partial plan” component then selects the “best” partial

plan for subsequent refinement and, if the “Select goal or action” component decides to

achieve a goal or subgoal belonging to the “best” partial plan, a new set of partial plans

which achieve that goal or subgoal is generated by the “Plan to achieve goal” component.

These partial plans all contain the same “initial state” action and are added to the search

space of partial plans. The “Select best partial plan” component chooses the best partial

plan from this search space of partial plans.

However, when an action is executed, the world changes, which means the “initial

state” action belonging within all previously generated partial plans in the search space

no longer corresponds to the actual state of the world. The “Select best partial plan”

component cannot choose to refine a previously generated partial plan whose “initial

153

State” no longer corresponds to the actual state of the world, as this partial plan is no

longer valid. This means that once an action has been executed, all previously generated

Table 7.2 Plan 4 following execution of drive-truck(truck city4 cityl)

actions; id:

9
11
4
8
2

name:

load-truck(parcel truck city2)
drive-truck(truck city2 city4)
drive-truck(truck city4 city5)
unload-truck(parcel truck city5)
unload-truck(package truck city5)

links establisher: condition:

11
0
9
8
2
4
0
4
0
0
0
0
0
0

at(truck city4)
at(truck city2)
in(parcel truck)
at(parcel city5)
at(package city5)
at(truck cityS)
at(parcel city2)
at(truck city5)
connects(city2 city4)
has-fuel(truck)
at(truck city2)
in(package truck)
connects(city4 city5)
has-fuel(truck)

consumer:

4
9
8
7
1
2
9
8
11
11
11
2
4
4

open: nil

unsafe: nil

ordering: load-truck(parcel truck city2) > drive-truck(truck city2 city4) >
drive-truck(truck city4 city5) >
unload-truck(parcel truck city5),
unload-truck(package truck city5)
(9 -> 11 - > 4 - > 8 -> 7) & (4 - > 2 -> 1)

bindings: <varset {(?from ll city2 ?loc9)} = city2 not(?toll ?truckll ?truck9 ?ob9)>

<varset {(?truck4 ?truck2 truck ?truck9 ?truck8 ?truckll)J = truck not(?from4 ?to4
?loc2 ?ob2 ?ob9loc9 ?loc8 ?ob8 ? to ll ?from ll)>

<varset {(?from4 city4 ? to ll)} = city4 not(?to4 ?truck4 ?truckll ?from ll)>

<varset {(?ob8parcel ?ob9)} = parcel not(?truck8 ?loc8 ?loc9 ?truck9)>

<varset {(?to4 city5 ?loc2 ?loc8)} = city5 not(?from4 ?truck4 ?truck2 ?ob2 ?truck8
?ob8)>

<varset {(?ob2 package)} = package not(?truck2 ?loc2)>

goals: id: conditions:

at(package city5)
at(parcel city5)

deadline:

20
16

effort:

21
14

importance:

6
20

154

partial plans in the search space must be deleted. To continue the planning/execution pro­

cess, a new search space is created which consists solely of the partial plan (which has

been newly updated by the “Execute action” component to reflect the outcome of execut­

ing the action act).

7.2.7 A truck world domain example

Table 7.2 shows the partial plan that arises as a consequence of executing the action

drive-truck(truck city4 city2) (see chapter 5, section 5.4.2, table 5.13) which belongs to

the partial plan shown in chapter 5, section 5.4.2, table 5.16. The outcome of execution is

as predicted which means that the current time (following execution) is 8 and the state

following execution, which is supplied by a user, is that shown in table 7.3. The “Select

Table 7.3 Initial action for Plan 4, time = 8

id: name: add:

0 initial connects(cityl city2) & connects(city2 c ity l) &
connects(cityl city3) & connects(city3 cityl) &
connects(city2 city4) & connects(city4 city2) &
connects(city2 city5) & connects(city5 city2) &
connects(city3 city4) & connects(city4 city3) &
connects(city4 city5) & connects(city5 city4) &
has-fuel(truck) &
at(truck city2) &
in(package truck) &
at(parcel city2)

goal or action” component takes the partial plan shown in table 7.2 and chooses to exe­

cute the action load-truck(parcel truck city2). We first demonstrate how a partial plan is

updated when execution of the action load-truck(parcel truck city2) results in the

intended outcome. In sections 7.3.1 and 7.3.2 below we demonstrate how a partial plan is

Table 7.4 Initial action for Plan 5, time = 9

id: name: add:

0 initial connects(cityl city2) & connects(city2 c ity l) &
connects(cityl city3) & connects(city3 c ity l) &
connects(city2 city4) & connects(city4 city2) &
connects(city2 city5) & connects(city5 city2) &
connects(city3 city4) & connects(city4 city3) &
connects(city4 city5) & connects(city5 city4) &
has-fuel(truck) &
at(truck city2) &
in(package truck) &
in(parcel truck)

updated when execution goes awry.

155

Once the action load-truck(parcel truck city2) has been executed successfully, the

Table 7.5 Plan 5 - load-truck(parcel truck cityl) goes as expected, time=9

actions: id:

11
4
8
2

name:

drive-truck(truck city2 city4)
drive-truck(truck city4 city5)
unload-truck(parcel truck city5)
unload-truck(package truck city5)

links establisher: condition:

11
0
8
2
4
4
0
0
0
0
0
0

at(truck city4)
in(parcel truck)
at(parcel city5)
at(package city5)
at(truck city5)
at(truck city5)
connects(city2 city4)
has-fuel(truck)
at(truck city2)
in(package truck)
connects(city4 city5)
has-fuel(truck)

consumer:

4
8
7
1
2
8
11
11
11
2
4
4

open: nil

unsafe: nil

ordering: drive-truck(truck city2 city4) > drive-truck(truck city4 city5) >
unload-truck(parcel truck city5),
unload-truck(package truck city5)
(11 - > 4 - > 8 -> 7) & (4 - > 2 -> 1)

bindings: <varset f(?from ll city2)} = city2 not(? to ll ?truckll)>

<varset {(?truck4 ?truck2 truck ?truck8 ?truckll)} = truck not(?from4 ?to4 ?loc2
?ob2 ?loc8 ?ob8 ? to ll ?from ll)>

<varset {(?from4 city4 ? to ll)} = city4 not(?to4 ?truck4 ?truckll ?from ll)>

<varset {(?ob8 parcel)} = parcel not(?truck8 ?loc8 ?loc9)>

<varset {(?to4 city5 ?loc2 ?loc8)J = city5 not(?from4 ?truck4 ?truck2 ?ob2 ?truck8
?ob8)>

Kvarset {(?ob2 package)} = package not(?truck2 ?loc2)>

goals: id: conditions:

at(package city5)
at(parcel city5)

deadline:

20
16

effort:

21
14

importance:

6
20

current time following execution is 9 (the action only takes 1 unit of time to execute) and

the state of the world following execution is shown in table 7.4. Both the time and state

of the world following execution are supplied by a user.

Table 7.5 illustrates the partial plan that results following the successful execution of

156

the action load-truck(parcel truck city2)li can be seen that the action load-truck(parcel

truck city2) together with its associated links, ordering constraints and bindings have

been removed from the partial plan shown in table 7.2.

7.3 The Recovery Component

Once an action is executed, the outcome may not be as expected. The task of the

“Recover” component (see figure 7.1) is to determine whether the outcome of execution

is as expected and, if not, to repair the partial plan. When an action is executed, the out­

come may not be as expected for two reasons.

1. Executing the action could result in an unexpected outcome and/or the world could

change in unforeseen ways due to the activities of other agents or physical proc­

esses.

2. Execution could take longer than expected.

Figure 7.1 illustrates what happens when the outcome of execution is not as

expected. In the following paragraphs we describe in detail how the “Recover” compo­

nent deals with both scenarios.

The actual state of the environment following execution may differ from the pre­

dicted state either because executing the action could go wrong, or because other agents

or physical processes may change the environment in unforeseen ways. In particular, one

or more of the action’s effects may not become true following execution (for example, an

action which involves picking up a block could fail so that the block has not been picked

up following execution), or facts which were previously made true as a consequence of

executing previous actions may be accidentally undermined or undone following execu­

tion (for example, a block which was previously picked up may be knocked out of a

robot’s grippers by another agent). This means that plan links or persistence constraints

(these represent goals or subgoals which have previously been achieved by the “Plan to

achieve goal” component) within the partial plan may be violated or clobbered, in which

case subgoals (i.e. the preconditions of subsequent actions) or goals within the partial

plan which should be true following execution, may not actually be true. One of the tasks

of the “Recover” component is to determine whether any of the persistence constraints

belonging to the partial plan have been clobbered/violated following execution (see table

7.1, stage 5.) and, if so, to repair the partial plan. The repair process involves converting

157

the clobbered persistence constraints into a set of goals or subgoals (to be reachieved)

which are added to the set of open conditions belonging to the partial plan (see table 7.1,

stage 7. (e)), and removing the clobbered persistence constraints from the set of persis­

tence constraints belonging within the partial plan (see table 7.1, stage 7. (b)).

If execution takes longer than expected, the agent could miss the “latest” execution

deadline associated with subsequent actions which in turn means the agent may not be

able to achieve various goals by their deadlines. Another task of the “Recover” compo­

nent is to determine whether, as a consequence of execution taking longer than antici­

pated, it is still possible to achieve all goals by their associated deadlines. The “Recover”

component compares the actual time following execution with the predicted time (the

predicted time is determined by adding the estimated duration of the action which has

been executed to the estimated execution deadline associated with that action - see table

7.1, stage 8.) - if the actual time is later than the predicted time, the “Estimate deadlines”

component (described in chapter 6, section 6.2) reestimates the deadlines associated with

each action in order to determine whether there is sufficient time available to achieve

each goal (see table 7.1, stage 8. (a)). If there is insufficient time (i.e. the “Estimate dead­

lines” procedure returns the value :fail) available to achieve each goal by its associated

deadline, the “Edit the partial plan” component (described in chapter 6, section 6.3) edits

the partial plan to remove one goal (the goal which caused the deadline estimation rou­

tine to fail) and its associated actions and constraints from the partial plan - see table 7.1,

stage 8. (b). Once the plan has been edited, the “Estimate deadlines” component reesti­

mates the deadlines associated with the remaining actions in the plan in order to deter­

mine whether there is sufficient time available to achieve each remaining goal. This

process is repeated (see figure 7.1) until the “Estimate deadlines” component is able to

successfully assign deadlines to each of the actions within the partial plan.

7.3.1 An example of execution failure - the parcel fails to load

In this section we show how the partial plan of table 7.2, i.e. the partial plan prior to exe­

cuting the action load-truck(parcel cityl), is updated when the parcel fails to be loaded

into the truck at cityl. This could be either due to the truck-driver failing to successfully

execute the action, or because some other malicious agent unloaded the parcel once it

was loaded into the truck. The current time following execution is 9 while the current

state is shown in table 7.6 which indicates that the parcel is still at cityl, at(parcel cityl).

158

as opposed to being in the truck.

Table 7.6 Initial action for Plan 6, time = 9 (fail to load parcel)

id: name: add:

0 initial connects(cityl cityl) & connects(city2 c ity l) &
connects(cityI city3) & connects(cityS c ity l) &
connects(cityl city4) <& connects(city4 c ity l) &
connects(cityl city5) & connects(city5 c ity l) &
connects(city3 city4) & connects(city4 city3) &
connects(city4 city5) & connects(city5 city4) &
has-fuel(truck) &
at(truck c ityl) &
in(package truck) &
at(parcel c ityl)

Table 7.8 shows the partial plan which results following execution. One of the conse­

quences of execution not resulting in the expected outcome, is that the plan link (9

in(parcel truck) 8) belonging to the partial plan prior to execution (which is shown in

table 7.2) is undone or clobbered - the link means that the action load-truck(parcel truck

city2) was supposed to establish the precondition in(parcel truck) belonging to the action

unload-truck(parcel truck cityS). The clobbered link is converted into a subgoal or open

condition to be reachieved.

The “Select goal or action” component chooses to achieve this open condition

in(parcel truck) which means that a new action load-truck(parcel truck city2) with the

unique identifier 12 is created (see table 7.7) and added to the partial plan of table 7.2 -

see the newly updated partial plan in table 7.8. The resulting partial plan is moreorless

Table 7.7 New action for Plan 6

id: 12

name: load-truck(parcel truck cityl)

precondition: at(truck cityl) &
at(parcel cityl)

delete: at(parcel cityl)

add: in(parcel truck)

goals: (7)

pros: nil

cons: nil

duration: 1

importance: 10

effort: 17

159

identical to the partial plan created prior to executing load-truck(parcel truck cityl) (see

table 7.2 except that a new version of load-truck(parcel truck cityl) has been created and

that different deadlines have been assigned to each action. Table 7.9 below shows the

Table 7.8 Plan 6 - load-truck(parcel truck cityl) fails

actions: id: name:

12
11
4
8
2

load-truck(parcel truck city2)
drive-truck(truck city2 city4)
drive-truck(truck city4 city5)
unload-truck(parcel truck city5}
unload-truck(package truck city5)

links establisher: condition: consumer:

11 at(truck city4) 4
0 at(truck city2) 12
12 in(parcel truck) 8
8 at(parcel city5) 7
2 at(package city5) 1
4 at(truck city5) 2
0 at(parcel city2) 12
4 at(truck city5) 8
0 connects(city2 city4) 11
0 has-fuel(truck) 11
0 at(truck city2) 11
0 in(package truck) 2
0 connects(city4 city5) 4
0 has-fuel(truck) 4

open: nil

unsafe: nil

ordering: load-truck(parcel truck city2) > drive-truck(truck city2 city4) >
drive-truck(truck city4 city5) >
unload-truck(parcel truck city5),
unload-truck(package truck city5)
(12- > 11 - > 4 - > 8 - > l) & (4 - > 2 - > l)

bindings: <varset l(? locl2 ?fromll city2)} = city2 not(?obl2 ?truckl2 ? to ll ?truckll)>

<varset {(?truckl2 ?truck4 ?truck2 truck ?truck8 ?truckll)} = truck not(?ob 12
?locl2 ?from4 ?to4 ?loc2 ?ob2 ?loc8 ?ob8 ? to ll ?from ll)>

<varset {(?from4 city4 ? to ll)} = city4 not(?to4 ?truck4 ?truckll ?from ll)>

<varset ((?ob8 parcel ?obl2)} = parcel not(?truck8 ?loc8 ?locl2 ?truckl2)>

<varset { (?to4 city5 ?loc2 ?loc8)} = city5 not(?from4 ?truck4 ?truck2 ?ob2 ?truck8
?ob8)>

Kvarset {(?ob2 package)} = package not(?truck2 ?loc2)>

goals: id: conditions: deadline: effort: importance:

1 at(package city5) 20 21 6
7 at(parcel city5) 16 17 20

160

deadlines that have been assigned to each action belonging to the partial plan in table 7.8.

The deadlines that were previously assigned to each action can be seen in chapter 6, sec­

tion 6.2.6, table 6.9.

Table 7.9 Deadlines are assigned to actions

id: type: name: duration: deadline:

12 : action load-truck(parcel truck city2) 1 9

11 :action drive-truck(truck city2 city4) 2 10

4 : action drive-truck(truck city4 city5) 3 12

8 taction unload-truck(parcel truck city5) 1 15

2 taction unload-truck(package truck city5) 1 15

1 .goal at(package city5) 0 20

7 tgoal at(parcel city5) 0 16

7.3.2 Another example - execution takes longer than expected

In this section we describe what happens when execution takes longer than anticipated.

Taking the partial plan generated in table 7.8 in the previous section, we attempt to exe­

cute the newly created action load(parcel truck city2), with the unique identifier 12,

which was created to reachieve the clobbered plan link (9 in(parcel truck) 8) of table 7.2.

This time, the truck-driver succeeds in loading the parcel into the truck at cityl, but takes

longer than anticipated to do so. The current time following execution is 11 (this is sup­

plied by a user), when it was anticipated to be 10. Table 7.10 illustrates the current state

of the environment following execution.

Table 7.10 Initial action for Plan 7, time = 11

id: name: add:

0 initial connects(cityl city2) & connects(city2 cityl) &
connects(cityl cityS) & connects(city3 c ity l) &
connects(city2 city4) & connects(city4 city2) &
connects(city2 city5) & connects(city5 city2) &
connects(city3 city4) & connects(city4 city3) &
connects(city4 city5) & connects(city5 city4) &
has-fuel(truck) &
at(truck city2) &
in(package truck) &
in(parcel truck)

Table 7.11 illustrates how the partial plan of table 7.8 has been initially updated to

reflect the outcome of execution. It can be seen in this table that the action load-

truck(parcel truck cityl) together with its associated constraints have been removed from

161

the partial plan shown in table 7.8.

Table 7.11 Plan 7 - load-truck(parcel truck city2) has been executed

actions: id: name:

11
4
8
2

drive-truck(truck city2 city4)
drive-truck(truck city4 city5)
unload-truck(parcel truck city5)
unload-truck(package truck city5)

links establisher: condition: consumer:

11 at(truck city4) 4
0 in(parcel truck) 8
8 at(parcel city5) 7
2 at(package city5) 1
4 at(truck cityS) 2
4 at(truck city5) 8
0 connects(city2 city4) 11
0 has-fuel(truck) 11
0 at(truck city2) 11
0 in(package truck) 2
0 connects(city4 cityS) 4
0 has-fuel(truck) 4

open: nil

unsafe: nil

ordering: drive-truck(truck city2 city4) > drive-truck(truck city4 city5) >
unload-truck(parcel truck city5),
unload-truck(package truck city5)
(11 - > 4 - > 8 - > 7) & . (4 - > 2 - > 1)

bindings: <varset {(?from ll city2)J = city2 not(?to ll ?truckll)>

<varset {(?truck4 ?truck2 truck ?truck8 ?truckll)} = truck not(?from4 ?to4 ?loc2
?ob2 ?loc8 ?ob8 ? to ll ?from ll)>

<varset {(?from4 city4 ? to ll)} = city4 not(?to4 ?truck4 ?truckll ?from ll)>

<varset ((?ob8 parcel)} = parcel not(?truck8 ?loc8 ?loc9)>

<varset {(?to4 city5 ?loc2 ?loc8)J = city5 not(?from4 ?truck4 ?truck2 ?ob2 ?truck8
?ob8)>

Kvarset {(?ob2 package)} = package not(?truck2 ?loc2)>

goals: id: conditions: deadline: effort: importance:

1 at(package city5) 20 21 6
7 at(parcel city5) 16 17 20

162

Once the partial plan of table 7.8 has been updated to reflect the outcome of execu-

Table 7.12 Plan 8 - load-truck(parcel truck city2) takes longer than expected

actions: id:

11
4
2

name:

drive-truck(truck city2 city4)
drive-truck(truck city4 city5)
unload-truck(package truck city5)

links establisher: condition:

11
2
4
0
0
0
0
0
0

at(truck city4)
at(package city5)
at(truck city5)
connects(city2 city4)
has-fuel(truck)
at(truck city2)
in(package truck)
connects(city4 cityS)
has-fuel(truck)

consumer:

4
1
2
11
11
11
2
4
4

open: nil

unsafe: nil

ordering: drive-truck(truck city4 city2) > drive-truck(truck city4 cityS) >
unload-truck(package truck city5)
(12 -> 11 -> 4 -> 2)

bindings: <varset {(?from ll city2)} = city2 not(?toll ?truckll)>

<varset f(?truck4 ?truck2 truck ?truckll)} = truck not(?from4 ?to4 ?loc2 ?ob2
? to ll ?from ll)>

<varset {(?from4 city4 ? to ll)} = city4 not(?to4 ?truck4 ?truckll ?from ll)>

<varset f(?loc2 ?to4 city5)} = city5 not(?from4 ?truck4 ?truck2 ?ob2)>

<varset f(?ob2 package)} = package not(?truck2 ?loc2)>

goals: id: conditions:

at(package city5)

deadline:

20

effort:

21

importance:

tion (see table 7.11), the “Estimate deadline” procedure reestimates the deadlines associ­

ated with each action because the actual time following execution, 11, is later than the

predicted time, 10. In this example, the “Estimate deadline” procedure fails to assign

deadlines to each of the actions belonging to the partial plan because there is insufficient

time available to achieve the goal at(parcel city5) by its deadline 16. The “Edit the partial

plan” component therefore edits the updated partial plan to remove the goal at(parcel

cityS) together with its associated actions and constraints. In this example, the “Edit the

partial plan” process removes the action unload(parcel truck city5) with the unique iden­

tifier 8 together with its associated constraints from the updated partial plan as it is the

163

only action that contributes solely towards the goal at(parcel city5). Once the partial plan

has been edited, the “Estimate deadline” process reassigns deadlines to the remaining

actions within the plan as shown in table 7.13. Note that in this example, the parcel is in

the truck even though there is insufficient time available to deliver the parcel to cityS by

the required deadline.

Table 7.13 Deadlines are assigned to actions

id: type: name: duration: deadline:

11 .'action drive-truck(truck city2 city4) 2 14

4 : action drive-truck(truck city4 city5) 3 16

2 .action unload-truck(package truck city5) 1 19

1 .'goal at(package city5) 0 20

7.3.3 Discussion

The techniques used to enable the planning/execution architecture to recover, should exe­

cution not result in the intended outcome, are similar to those used by PLANEX [Pikes et

al 72]. The differences in approach are due to the different planning algorithms -

PLANEX repaired linear plans generated by STRIPS which do not record persistence

constraints. PLANEX did this with the aid of triangle tables which contained records of

the dependencies between actions and preconditions.

When one or more persistence constraints or plan links have been undone/clobbered

as a consequence of execution, the current implementation of the “Recover” component

repairs the partial plan by converting the clobbered persistence constraints into a set of

goals/subgoals which are to be reachieved at a later stage by the “Plan to achieve goal”

component. This is not necessarily the most efficient way of repairing the partial plan as

it involves making local repairs by reachieving the preconditions or subgoals associated

with actions currently within the partial plan. This method effectively patches the exist­

ing plan, making it longer by incorporating new actions which are added to reachieve the

previously violated preconditions or subgoals. Instead of reachieving violated precondi­

tions or subgoals, it may be more efficient instead to determine which goals each violated

precondition or subgoal contributes towards, to edit the partial plan to remove these goals

together with their associated actions and constraints, and then to plan to reachieve these

goals. Instead of patching the partial plan (which results in a longer plan) this approach

plans to reachieve goals from scratch which may result in a shorter plan.

164

In addition, the actual outcome following execution can also present the following

opportunities: propositions that were expected to have been denied (or made untrue) by

executing an action, may not have been denied (i.e. they may still be true); effects may be

established (or made true) unexpectedly which could lead to goals or subgoals being

achieved prematurely. These opportunities mean there could be a number of redundant

achievers within the partial plan. (By “achiever” we mean an action that achieves some

goal or subgoal. Normally, the “Plan to achieve goal” component selects an action to

achieve a goal or subgoal. However, if execution goes awry, the newly updated “initial

state” action may establish or achieve some goal or subgoal that was to be achieved at a

later stage by executing some other action. This means that the action that was previ­

ously selected to achieve that goal or subgoal may now be redundant.) The current

implementation does not address the issue of there being redundant achievers within the

partial plan and so does not take advantage of opportunities.

7.4 Updating the Motivations

When an action is executed, the world changes, both as a consequence of execution and

as a consequence of other agents or physical processes acting within the world. The

change in the world/environment directly affects the strength associated with the agent’s

motivations (see chapter 2, section 2.2.3). The “Update motivations” component is

responsible for updating the strength associated with each motivation to reflect the

changes within the agent’s environment as well as changes made to the agent’s partial

plan. This component has not been implemented and is beyond the scope of this work.

However, by examining the sets pros and cons associated with the action which has been

executed, it is possible to calculate a new value indicating the strength associated with

each motivation, pros and cons both contain a set of tuples where each tuple consists of

two fields: name, which indicates a motivation which the action, when executed, sup­

ports (if the tuple belongs to the set pros) or undermines (if the tuple belongs to the set

cons); strength, a value indicating the degree to which the action, when executed, sup­

ports or undermines the motivation identified by name (see chapter 4, section 4.2.3). The

algorithm shown in table 7.14 enables the strength associated with each motivation to be

calculated using the fields pros and cons associated with the action which has been exe-

165

cuted.

Table 7.14 Updating the motivations

1. Let exact be the action which has been executed.

2. For each motivation motivation belonging to the agent’s set of motivations.

(a) If exact supports the motivation motivation (the action exact supports the
motivation motivation if there is a tuple promot belonging to the set pros asso­
ciated with exact whose value name is the equal to the value name associated
with the motivation motivation), subtract the value indicating the degree to
which exact supports the motivation motivation (i.e. subtract the value
strength associated with the tuple promot) from the value strength associated
with the motivation motivation. The result is the new value indicating the
strength associated with the motivation motivation.

(b) Else, if exact undermines the motivation motivation (the action exact under­
mines the motivation motivation if there is a tuple conmot belonging to the set
cons associated with exact whose value name is the equal to the value name
associated with the motivation motivation), add the value indicating the
degree to which exact undermines the motivation motivation (i.e. add the
value strength associated with the tuple conmot) from the value strength asso­
ciated with the motivation motivation. The result is the new value indicating
the strength associated with the motivation motivation.

(c) Else, do nothing (the value indicating the strength associated with the motiva­
tion motivation remains the same as the action exact neither supports nor
undermines the motivation motivation).

This algorithm however, only takes into account the effect that executing the action

has on the motivations, it does not take into account how unforeseen changes brought

about by other agents or physical processes, or how changes made to the agent’s partial

plan might change the strength associated with each motivation. In addition, the tuples

assigned to the fields pros and cons are an estimate of the degree to which executing the

action supports/undermines the agent’s motivations and their value assumes that the out­

come of execution is as expected. Should execution go awry, the agent’s motivations may

be supported/undermined to a different degree. The “Update motivations” component

has not been implemented - currently, once an action has been executed, a user keys in

the change in strength associated with each motivation.

7.5 Generate/Update Goals

In the previous section we saw that changes to the environment (which occur both as a

consequence of the agent executing an action and as a consequence of other agents or

physical processes acting in that environment) and changes to the agent’s partial plan

cause a change in the strength associated with the agent’s motivations. The “Update

motivations” component is responsible for determining the new values indicating the

166

strength associated with each motivation to reflect the changes that have occurred both to

the environment and to the agent’s plan. Such changes in the strength associated with

each motivation, together with the newly updated partial plan (updated by the “Execute

action” and “Recover” components to reflect the changes that have occurred within the

environment) may lead to the generation of new goals. The “Generate/Update Goals”

component is responsible for generating new goals in response to the newly updated set

of motivations and to information which can be inferred from the newly updated partial

plan. It is assumed that goals are generated in response to the following information (see

chapter 2, section 2.2.4).

1. The newly updated set of motivations.

2. The current state of the environment (this is represented within the partial plan).

3. Future states of the environment (these may be predicted using information con­

tained within the partial plan - i.e. we can predict that certain actions will be exe­

cuted and that certain goals will be achieved).

4. The future strength of the agent’s motivations (this may be estimated using the val­

ues pros and cons associated with each action belonging within the partial plan).

This component has not been implemented - currently, a user is able to key in new

goals which are added to the set of open conditions belonging within the partial plan.

In addition to generating new goals, the “Generate/Update goals” component is

responsible for updating existing goals (these are goals previously generated by the

“Generate/Update goals” component). Changes in the agent’s motivations and environ­

ment may mean that the value indicating the importance and/or the deadline associated

with a previously generated goal may change or that a previously generated goal should

be deleted as it is no longer necessary (for example, if a meeting is cancelled, the goal to

attend that meeting should be removed from the partial plan). Such changes to goals that

have been previously generated have repercussions within the partial plan.

1. If the value indicating the importance associated with a previously generated goal

is changed, the importance associated with each action and subgoal/precondition

that contributes towards that goal changes and must therefore be recalculated.

2. If the deadline associated with a previously generated goal is changed, the deadline

associated with each action and subgoal/precondition that contributes towards that

goal changes (the deadlines associated with other actions may also be affected

167

depending upon the ordering constraints within the partial plan) and must therefore

be recalculated (the “Estimate deadlines” procedure must be called and, if this

returns the value :fail, the “Edit the partial plan” procedure must also be called).

3. If a previously generated goal is deleted/removed, all actions/constraints that con­

tribute towards that goal must be removed (the partial plan editing routine must be

called).

A facility which enables a user to update the importance/deadline associated with

previously generated goals or to delete previously generated goals has not been imple­

mented although implementation is trivial as most of the routines necessary to support

this requirement have already been implemented.

7.6 Summary

In this chapter we described in detail each of the components that are responsible for

updating the partial plan and the agent’s motivations to reflect the outcome of execution.

In particular we described how a description of the time and state of the environment fol­

lowing execution is supplied by a user - this enables us to model changes made to the

environment as a consequence not only of the planning/execution agent executing an

action, but also as a consequence of the activités of other agents/physical processes

(these are unforeseen changes). This facility is powerful as it provides a user with the

opportunity to supply new information to the planning/execution architecture once exe­

cution has taken place. For example, in the truck world domain, in chapter 5, section

5.4.2 we showed how new information concerning the location of the parcel was sup­

plied by a user following execution of the action drive-truck(truck city3 city4) (see table

5.11). This information was supplied because the truck-driver was requested to achieve

the new goal at(parcel city5) shown in table 5.12.

Using the truck world domain, we then demonstrated how a partial plan is updated to

reflect the outcome of execution (“Execute action”), and how the “Recover” component

repairs a partial plan if the world changes in such away as to adversely affect that partial

plan. Finally we discussed how the components “Update motivations” and “Generate/

update goals”, which are beyond the scope of this thesis, might be implemented.

168

Chapter 8

Conclusions

8.1 Introduction

In this thesis we described a planning/execution system to be used onboard an agent to

enable it to plan and act in order to satisfy its aims or goals. The system was designed to

address four requirements: to model the context of the agent; to plan and act in real or

simulated time; to interleave planning and execution; to cope with unpredicted changes

made to the environment. In this chapter we first discuss how the system may be evalu­

ated as well as its limitations. We then discuss the contributions of the work to the area of

AI planning, and finally describe possibilities for future research.

8.2 Evaluation

8.2.1 Introduction

One of the main problems with the planning/execution architecture described in this the­

sis is the question of how to evaluate its performance. Planning and execution are inter­

leaved, and the world may change in unexpected ways due to execution failure as well as

the activities of other agents or physical processes. In such a scenario, how is it possible

to determine whether the agent is acting efficiently? What is an optimal plan? When

faced with an unpredictable environment, new goals and time constraints, an agent can

only aim to act in the best way it can (i.e. satisficing) - whatever this may mean. Context

may play a role in determining performance. For example, a good plan for a lazy agent

may be one that enables the agent to do as little as possible, whereas a good plan for an

agent working with resource constraints may be one that maximises (or conserves)

resources. One method of evaluating the performance of the overall system is to monitor

how many of the goals generated by the “Generate/update goals” component are

169

achieved by their deadlines (this involves maintaining a list of all goals that have been

achieved) over a certain period of time. Achieving a large number of important goals is

good, a small number of less important goals is bad. Another criteria for evaluating per­

formance is to examine how busy the agent is over a period of time - i.e. by determining

how many actions the agent performs as well as how much time is spent acting. As we

mentioned above, context plays a role - the agent might like being busy, in which case,

spending as much time acting as possible is good and not acting is bad.

Because the two components “Update motivations” and “Generate/update goals”

components have not been implemented however, it is not possible to accurately evaluate

the performance of the entire system. Instead, we focus upon the various ways in which

the components of the planning/execution architecture which have been implemented

(these are the components with solid rectangular boxes in chapter 2, section 2.2.1, figure

2.1) may be evaluated.

8.2.2 Efficiency

The plan generation process described in this thesis is based on SNLP, a partial order,

causal link planner which uses STRIPS representations. SNLP has been proved to gener­

ate plans that are both sound, complete and systematic. In this thesis we described how

the SNLP algorithm and the STRIPS representation have been extended to reason with

goals that have deadlines and actions with duration. In addition, the problem solving

context has been represented by modelling the motivations of the agent. Such extensions,

(i.e. estimating the deadlines of actions, editing and evaluating partial plans) increase the

computational load. Unlike SNLP and many other planners (e.g. Graphplan) which,

when presented with a goal, create a complete plan to achieve that goal, the planning/

execution framework described in this thesis is continually presented with goals to

achieve and must therefore interleave planning and execution, which means that plan­

ning is an ongoing activity and is never complete. The framework plans to achieve goals

until it finds an action which can be executed, whereupon it executes that action, and

continues planning with the updated world model. The amount of planning that takes

place prior to execution may therefore be less than the amount of planning required to

generate a complete plan. However, the plan generation process “Plan to achieve goal”

will not be fast as it incorporates extended versions of algorithms used by SNLP.

170

8.2.3 Rationality

In this section we discuss the rationality of the planning/execution system. One of the

aims of the work presented in this thesis was to design a planning/execution system to

enable an agent to satisfy some of the requirements described in chapter 1, section 1.5 -

in particular we designed the system to take into account the context of the agent by

modelling the motivations of that agent. In chapter 2, section 2.2.3 and chapter 3, section

3.2.1, we discussed how motivations change in strength in response to changes in the

environment as well as to changes in the agent’s plan. Changes to the motivations and to

the plan are internal to the agent, which means that the agent’s internal state changes

while it is both planning and acting. Changes in the agent’s internal state affect the

choices the agent makes - for example, whether to plan to achieve a goal or whether to

execute an action; which goal to achieve; which action to execute; which partial plan to

choose for subsequent refinement. When making such choices, the agent is able to reflec­

tively evaluate each choice in order to decide upon its subsequent behaviour. We believe

that the system’s ability to reflectively evaluate each choice is one of the main contribu­

tions of this thesis.

However, it is important that the system behaves rationally when deciding upon its

behaviour. We define a rational agent as being an agent that is capable of goal-directed

decision making and whose behaviour is robust with respect to changes within its inter­

nal state. This means that the agent should be able to make sensible decisions about

achieving its goals regardless of what changes occur to its internal state. The behaviour

of the planning/execution system can therefore be said to be rational if it is robust with

respect to changes in the agent’s motivations and plans. In the following paragraphs we

demonstrate how the planning/execution system behaves with regard to differences in the

motivations and plans.

In chapter 4, section 4.6.1 we demonstrated how the “Select goal or action” compo­

nent decided whether to achieve the goal at(package city5) (see chapter 4, section 4.4.2,

table 4.3) or whether to execute the action drive-truck(truck city4 city5). Chapter 4, sec­

tion 4.6.1, table 4.9 shows the values assigned to the fields importance, effort and dead­

line associated with the goal at(parcel city5) and the action drive-truck(truck city4 cityS).

If, at this point, the agent’s motivations had been different, the value indicating the

importance associated with the goal at(package city5) might have been lower (in chapter

2, section 2.2.4 we described how the agent’s motivations directly determine the impor-

171

tance associated with goals). In this case, the “Select goal or action” component would

have chosen to execute the action drive-truck(truck city4 city5) instead of achieving the

goal at(parcel city5).

In chapter 6, section 6.4.5 we demonstrated how the motivations of the truck-driver

(shown in chapter 4, section 4.4.4, table 4.5) influenced the truck-driver to select the plan

illustrated in chapter 5, section 5.4.1, table 5.9, to achieve the goal at(package city5)

which involved the truck-driver driving from cityl to city5, via city3 and city4. If the

agent’s plan had been different, for example if the deadline associated with the goal

atipackage city5) had been 9 instead of 20, the “Plan to achieve goal” component would

have generated a plan in which the truck-driver drove from cityl to city5, via cityl. This

is because there would have been insufficient time available for the truck-driver to

achieve the goal by using either of the other two routes (via cityl and city4, or via city3

and city4).

These examples indicate that the planning/execution system is capable of behaving

rationally as it makes sensible choices in response to differences in its internal state. We

believe that further experimentation will corroborate this view.

In conclusion, we discuss why the development of a rational agent might be of inter­

est to the community in terms of what kind of tasks may require such an agent. The plan­

ning/execution architecture described in this thesis generates goals, and aims to achieve

as many of those goals as possible within given time constraints taking into account

unpredictable changes occurring within its environment. The system cannot guarantee to

achieve all of its goals however, making it not particularly suitable for performing safety-

critical tasks. In addition, the system cannot guarantee to achieve goals in an optimal

manner - at most, it tries to achieve its goals in the best way possible, depending upon its

motivations. It is envisaged that this system would be suitable for performing tasks that

are tedious for human operators but which require non-trivial problem-solving and goal-

directed decision making, for example, tasks in the warehouse domain described in chap­

ter 1, or tasks involving logistics such as an extended version of the truck world domain

described in chapter 4.

8.2.4 Generality

The pianning/execution architecture described in this thesis is domain-independent and

can therefore be applied to solving problems in various domains. In addition, the archi­

tecture is agent-dependent as long as the agent satisfies the requirements described in

172

chapter 1, section 1.5. In chapter 4, section 4.4, we introduced the truck world domain in

which a truck-driver must collect packages and parcels from one city and deliver them to

another city. The implemented components of the planning/execution architecture have

also been tested using an extended version of the blocks world domain. Although the

system has only been tested in two domains, it is our belief that it will be effective in

many other domains.

8.3 Limitations

8.3.1 A situated agent

In chapter 1, section 1.5 we described the properties required of an agent for which the

planning/execution architecture presented in this thesis was designed. The most contro­

versial of these requirements is the assumption that the agent has perfect sensors (i.e.

they deliver data which is accurate) which enable the agent to construct a sufficient,

accurate, symbolic representation of the environment (by sufficient we mean that the sen­

sors must be able to detect all aspects of the environment that are relevant to the agent’s

choice of action). [Brooks 86], [Brooks 91] has argued persuasively that it is difficult, if

not impossible to construct an accurate model of the environment using sensor data and

that to construct and continually update such a model requires intensive computation.

Work by [Aylett et al 97] demonstrated that it is possible to combine symbolic reasoning

techniques such as planning, with a behavour-based or reactive execution control system,

where the resulting agent requires only an abstract symbolic representation of the envi­

ronment (consisting only of those features that are either static, such as walls or doors, or

that are moved as a consequence of the planner deciding that they should be moved). The

execution agent, using a behavioural control architecture, is able to deal with changing

features - i.e. it is able to avoid obstacles without requiring a symbolic representation of

the location of those obstacles. We argue that such an approach could be used to imple­

ment an agent with the properties stated in chapter I which means that only an abstract

model of the environment is required which could be user-supplied as part of the domain

description process.

8.3.2 Why use SNLP?

Using SNLP as a basis for the “Plan to achieve goal” algorithm is a severe limitation as

SNLP is unable to deal with complex planning problems. Nonlinear causal link planners

173

such as SNLP and UCPOP are outperformed by more recently developed planners such

as Graphplan planners and SAT-based planning systems. In this section we discuss why

we chose to extend SNLP when implementing the “Plan to achieve goal” component.

SNLP is well-known and understood by the planning community and has been

proved to be sound, complete and systematic (systematicity is the property that the same

plan, or partial plan, is never examined more than once). The SNLP algorithm has

formed the basis of UCPOP ([Penberthy & Weld 92], [Weld 94]) and many other plan­

ners (such as Cassandra [Pryor & Collins 96], [Collins & Pryor 92], Buridan [Kushmer-

ick et al 95], CNLP [Peot & Smith 92], C-Buridan [Draper et al 94], etc.). The code

(SNLP is implemented in Allegro Common Lisp) was freely available at the time imple­

mentation of the work presented in this thesis commenced.

One of the main advantages of nonlinear causal link planners is their insensitivity to

irrelevant information in the initial state (due to their backward-chaining regression

search) [Weld 99] which makes them well-suited to domains which change unpredict-

ably. In addition, they maintain a record of which actions achieve each goal or subgoal

(persistence constraints) making it relatively easy to determine whether such goals or

subgoals are undone or clobbered if execution goes awry. Although planning technology

has matured with the development of Graphplan planners and SAT-based planners, such

technology is not easy to adapt to cope with interleaving planning and execution in

unpredictable environments, especially when goals have deadlines. Although such plan­

ners are able to generate plans quickly, once execution commences, if it does not result in

the intended outcome, planning would have to recommence from scratch. Graphplan

planners would have to build a new planning graph from the new initial state that arises

following execution. SAT-based planners would also have to start planning from scratch.

The advantage of POCL (partial order causal link) planners is that if execution does not

result in the expected outcome, the partial plan is relatively easy to update and repair - it

does not necessarily need to be thrown away - which means planning does not have to

restart from scratch.

It is also easier to extend POCL planners to enable to reason about time. Unlike the

STRIPS representation (which uses a discrete model of time in which all actions are

assumed to be instantaneous), in the POCL approach to planning, actions can be of arbi­

trary duration as long as the conditions under which actions interfere are well-defined

[Smith et al 2000]. DEVISER [Vere 83] was the first planner to exploit this by allowing

174

actions of arbitrary duration and goals and actions to be restricted to user-specified time

windows. Many other systems (TRAINS-95 [Ferguson et al 96], Zeno [Penberthy &

Weld 94], IxTeT [Ghallab & Laruelle 94], HSTS [Muscettola 94]) have combined ideas

from POCL planning with an interval representation for actions and propositions (first

introduced by [Allen 84]) using constraint-satisfaction techniques to manage the rela­

tionship between intervals. [Smith et al 00] describe this approach as the Constraint-

Based Interval (CBI) approach.

In contrast, it is much harder to adapt Graphplan planners to reason with continuous

time [Smith et al 00] (see TGP [Smith & Weld 99]) while SAT-based planners can only

cope with discrete time with difficulty.

8.4 Contributions

8.4.1 A prototype rational system

A prototype domain-independent and agent-independent planning/execution architecture

(with the exception of the “Update motivations” and “Generate/update goals” compo­

nents) has been implemented using Allegro Common Lisp which extends the partial

order causal link planning algorithm SNLP to meet the four objectives described in chap­

ter 1, section 1.6. The truck world domain examples shown in chapters 4 ,5 ,6 and 7 show

the partial plans output by the components of this architecture at various stages of plan­

ning and execution. These examples demonstrate the performance of each of the imple­

mented components of the planning/execution architecture and, as discussed in section

8.2.3 indicate that the behaviour of the planning/execution architecture is rational. In the

following sections we demonstrate how the system has been designed to meet the four

objectives described in chapter 1, section 1.6.

Context

The context of the agent (captured partly by modelling the motivations of that agent)

plays an important role in enabling the agent to generate goals (context constrains which

goals are generated), to prioritise amongst actions and goals as well as to select the best

partial plan in which such goals are achieved. The planning/execution architecture pre­

sented in this thesis takes the agent’s context into account in the following ways.

Firstly, context is partially captured by modelling the agent’s motivations (which

represent the agent’s desires or preferences). These play an important part in the archi-

175

lecture as they capture part of the dynamic which exists between an agent and its envi­

ronment (see chapter 1, section 1.5.2, Embodiment) - motivations directly influence an

agent to act in order to satisfy its aims and, whilst acting to satisfy its aims the agent

changes its environment which (together with other changes brought about by other

agents or physical processes) directly affects the agent’s motivations.

Motivations directly influence an agent to act as they affect which goals are gener­

ated, enable newly generated goals (and therefore actions) to be assigned a value indicat­

ing their priority (i.e. their importance) and enable partial plans to be evaluated/ranked.

In order to support these requirements, the planning/execution architecture presented in

this thesis contains a component responsible for both creating new and updating existing

goals (“Generate/update goals”) which takes as input the agent’s motivations, its model

of the current state of the environment and its current partial plan (which contains infor­

mation that enables the agent to predict future states of the environment). This compo­

nent is an important part of the architecture but is not yet implemented. Goals created by

this component have an associated value indicating their importance or priority as well as

a deadline by which they must be achieved. The “Plan to achieve goal” component (this

is described in chapters 5 and 6) is fully implemented and supports the requirement of

capturing the agent’s context in two ways. The “Achieve goal” component (see chapter 5,

sections 5.2.5, 5.2.7 and 5.2.8) assigns and propagates values indicating the importance

associated with actions and their preconditions (the step addition and simple establish­

ment procedures estimate the value indicating the importance of actions and their pre­

conditions). This component also estimates the degree to which actions support or

undermine the agent’s motivations. Finally, the “Evaluate partial plans” process (see

chapter 6, section 6.4) evaluates and ranks each partial plan by calculating the degree to

which a plan supports or undermines the agent’s motivations.

When acting to satisfy its aims or goals, the agent makes changes to its environment

(unpredicted changes are also brought about by other agents and physical processes).

Such changes to the environment directly affect the agent’s motivations. The planning/

execution architecture contains a component responsible for updating the agent’s motiva­

tions once that agent has executed some action. This component, “Update motivations”

is described in chapter 7, section 7.4 and is not currently implemented.

To summarise, the planning/execution architecture described in this thesis satisfies

the objective of modelling the context of the agent.

176

Planning and acting in real or simulated time

Time passes while the agent executes actions. Goals that are created by the “Generate/

update goals” component have an associated deadline by which they must be achieved,

and duration indicating how long they must remain true. It is assumed that deadlines

associated with goals are hard (i.e. if the goal cannot be achieved by its deadline, the

agent has effectively failed to achieve that goal). Actions also have duration. It is impor­

tant that the agent ensures that it can achieve goals by their deadline, if possible. If there

is insufficient time available to achieve all of the goals in the partial plan by their dead­

lines, it is necessary to create extra time by abandoning the achievement of one or more

goals (i.e. by editing the partial plan to remove such goals).

In this section we describe the ways in which this requirement is supported by the

planning/execution architecture. Firstly the “Achieve goal” (described in chapter 5, sec­

tion 5.2) process both estimates how long it takes to execute each action (i.e. it assigns a

value indicating the duration of each action) and keeps track of which goals each action

contributes towards (to facilitate plan editing). Secondly, the “Estimate deadlines” pro­

cess (described in chapter 6, section 6.2) estimates the deadlines associated with actions

and subgoals belonging within each partial plan. If the “Estimate deadlines” process

returns the value :fail, it cannot assign deadlines to each action because there is insuffi­

cient time available to achieve all goals. In this case, the “Edit the partial plan” process

(described in chapter 6, section 6.3) edits the partial plan by removing one or more goals

and their associated actions and constraints - a consequence of plan editing is to create

more time for the agent to achieve its remaining goal. The planning/execution architec­

ture described in this thesis therefore satisfies the objective of enabling the agent to plan

and act in real or simulated time.

Interleaving planning and execution

Planning and execution are ongoing activities - because the agent is capable of continu­

ally generating new goals, planning is never complete which means that planning and

execution must be interleaved. To support this requirement, the “Select goal or action”

component of chapter 2, section 2.2.1, figure 2.1, decides, once each cycle, whether to

plan to achieve a goal/subgoal or whether to execute an action. In order to do this goals/

subgoals and actions are evaluated on the basis of values indicating their importance,

deadlines and effort (for goals, the value ejfort represents the amount of effort previously

177

expended by the planner in achieving those goals, while for actions and their associated

preconditions, the value effort represents the amount of effort previously expended by

the “Achieve goal” process in achieving the set of goals to which each action and its pre­

conditions contributes). The “Plan to achieve goal” component is responsible for assign­

ing values indicating the importance, effort and deadline to each action and its

preconditions - the “Achieve goal” process assigns values indicating the importance,

effort and duration associated with each action and its preconditions, while the “Estimate

deadlines” process assigns deadlines to each action and its preconditions (using the val­

ues indicating the duration of each action). The planning/execution architecture

described in this thesis therefore satisfies the objective of enabling the agent to interleave

planning and execution.

Planning and acting in an unpredictable environment

In chapter 1, section 1.6, we described how one of the required properties of the agent is

that it should be able to cope with an unpredictable environment. The agent is unable to

accurately predict the environment for the following reasons.

1. When the agent executes an action, the actual outcome may differ from the pre­

dicted outcome (for example, the warehouse agent may drop a commodity whilst

picking it up off the shelf, or the time taken to pick up the commodity may take

longer or shorter than anticipated).

2. Other agents act in the environment - because the agent in question has only access

to the external state of other agents acting within the environment, the agent is una­

ble to predict the consequences of the activities of other agents. For example, there

may be several other agents of differing capabilities acting within the environment,

but because the agent does not have knowledge of the capabilities of these agents, it

will be unable to predict how they might act and change the environment. In the

warehouse domain, another warehouse agent might be occupying the battery

recharge point, thereby causing it to be unavailable.

3. Physical processes occurring within the environment may cause changes to that

environment (for example, an ice cube will melt if it is exposed to a temperature

greater than 0° Celcius) - the agent can only predict the consequences of physical

processes if it has knowledge of such processes.

When unexpected changes such as those described above, occur to the agent’s envi­

178

ronment, the agent must be able to adapt. The planning/execution architecture described

in this thesis supports this requirement by enabling the agent to first monitor the actual

changes that have occurred within the environment, and then to recover, if necessary, by

reachieving goals or subgoals that have been accidentally undermined. The “Execute

action” component described in chapter 7, section 7.2 is responsible for updating the par­

tial plan to reflect the changes which have occurred within the environment following

execution. The “Recover” component is responsible for repairing the partial plan in two

ways: if previously achieved goals or subgoals have been undermined following execu­

tion, such goals/subgoals are placed in the set of outstanding goals/subgoals so that they

can be reachieved; if execution takes longer than predicted, the deadlines of actions/pre­

conditions are reestimated to ensure that there is still sufficient time available to achieve

all goals by their deadlines - if there is insufficient time, the partial plan will be edited.

The planning/execution architecture described in this thesis therefore satisfies the objec­

tive of enabling the agent to cope with an unpredictable environment.

8.4.2 Reflective evaluation

Finally, the main contribution of this thesis is the design and implementation of a plan­

ning/execution architecture that enables an agent to deliberate about its choices of behav­

iour. The architecture allows the agent to deliberate when making the following choices.

1. Deciding whether to plan to achieve a goal or whether to execute an action. The

“Select goal or action” component described in chapter 4, section 4.5 enables the

agent to choose whether to plan or whether to execute by reasoning about the

importance, effort and deadlines associated with actions/goals/subgoals.

2. Deciding which is the best goal to achieve or which is the best action to execute.

Again, this facility is provided by the “Select goal or action” component.

3. Deciding which is the best partial plan. The “Evaluate partial plans” component

presented in chapter 6, section 6.4 enables the agent to evaluate each partial plan by

assessing the degree to which that partial plan supports or undermines the agent’s

motivations. By modelling the agent’s motivations as well as the degree to which

each action supports or undermines the motivations, we partially capture the con­

text of that agent.

The agent is therefore provided with the ability to perform reflective evaluation when

deciding upon its behaviour.

179

8.5 Future Work

The research presented in this thesis has presented many areas that merit further investi­

gation. Firstly, in order to effectively evaluate the performance of the planning/execution

architecture described in chapter 2, section 2.2.1, figure 2.1 we require an implementa­

tion of the “Update motivations” and “Generate/update goals” components. (Currently, a

user both updates the strength associated with each motivation and generates/updates

goals.) We need to investigate how changes to the agent’s environment as well as

changes to the agent’s plan affect the agent’s motivations - in chapter 2, section 2.2.3,

chapter 3, section 3.2.1 and chapter 7, section 7.4 we presented an overview of the ways

in which such changes might affect the agent’s motivations but a deeper analysis is

required in order to implement the “Update motivations” component. In addition, we

need to further investigate how changes to the agent’s motivations, plan and environment

might cause new goals to be generated and existing goals to be updated. Again, in chap­

ter 2, section 2.2.4, chapter 3, section 3.2.2 and chapter 7, section 7.5, we presented some

ideas as to why or when new goals are generated and existing goals updated. [Norman

97] describes in detail a mechanism for generating goals which could be extended to suit

the planning/execution architecture presented in this thesis.

Another area for further research is to implement execution. The work presented in

this thesis simulates execution - once an action has been executed, a user supplies a set of

predicates which represent the state of the environment following execution. One

approach is to interface the planning/execution architecture described in this thesis with a

behaviour-based execution control architecture (see [Aylett et al 97], [Barnes et al 97]).

This requires an agent to be implemented with sensors and effectors. A simulated envi­

ronment could then be implemented to show how effective an implemented agent is in

achieving its goals and aims within that environment.

8.6 Conclusions

The most significant contribution to the field of AI planning made by the planning/execu­

tion architecture described in this thesis is the facility it provides to enable an agent using

such a system to perform reflective evaluation when choosing its course of behaviour.

This is achieved primarily by using motivations to model the context of an agent capable

of planning and execution and by enabling such an agent to reason about time. In addi­

180

tion, one of the strengths of the planning/execution system is that it is both domain and

agent independent. The implementation of the system demonstrates that the ideas and

mechanisms proposed are computationally possible and effective, making it a prototype

as opposed to a fully functional system capable of planning and acting within the real

world.

181

Bibliography
[Allen 84] Allen, J., “Towards a general theory of action and time”, Artificial Intelligence,

vol. 23, no. 2, pp. 123-154, 1984.

[Ambite et al 97] Ambite, J., Arens, Y., Ashish, N., Knoblock, C. A., Minton, S., Modi,

J., Muslea, M., Philpot, A., Shen, W., Tejada, S. & Zhang, W., “The SIMS

Manual: Version 2.0”, Information Sciences Institute and Department of

Computer Science, University of Southern California, 4676 Admiralty

Way, Marina del Rey, CA 90292, USA, 1997.

[Ambros-Ingerson 87] Ambros-Ingerson, J., “IPEM: Integrated Planning, Execution, and

Monitoring”, Ph.D. Thesis, University of Essex, 1987.

[Aylett et al 97] Aylett, R. S., Coddington, A. M., Barnes, D. P. & Ghanea-Hercock, R.

A., “What does a planner need to know about execution”. In Recent Ad­

vances in AI Planning, Proceedings o f the Fourth European Conference

on Planning (ECP-97), eds. Steel, S. & Alami, R., pp. 26-38, Springer,

1997, ISBN 3540639128.

[Bacchus & Kabanza 98] Bacchus, F. & Kabanza, P., “Using Temporal Logics to Express

Search Control Knowledge for Planning”, submitted to Artificial Intelli­

gence, 1998.

[Barnes et al 97] Barnes, D. P., Ghanea-Hercock, R. A., Aylett, R. S. & Coddington, A.

M., “Many hands make light work? An investigation into behaviourally

controlled co-operant autonomous mobile robots”. Proceedings o f the

First International Conference on Autonomous Agents, pp. 413-420,1997.

[Bates et al 92] Bates, J. B., Loyall, A. B. & Scott Reilly, W., “An Architecture for Action,

Emotion, and Social Behaviour”, Technical Report CMU-CS-92-144,

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,

May 1992. Also appearing in Artificial Social Systems: Fourth European

Workshop on Modeling Autonomous Agents in a Multi-Agent World,

182

Springer-Verlag, Berlin, 1994.

[Blum & Burst 97] Blum, A. L. & Burst, M. L., “Bast Planning through Planning Graph

Analysis”, Artificial Intelligence, vol. 90, pp. 281-300, 1997.

[Blythe 99] Blythe, J., “Decision-theoretic Planning”, AI Magazine, vol. 20, no. 2, pp.37-

54, 1999.

[Bonet & Geffner 99] Bonet, B. & Geffner, H., “Planning as heuristic search: New re­

sults”, In Recent Advances in AI Planning, Proceedings o f the Fifth Euro­

pean Conference on Planning (ECP’99), eds. Biundo, S. & Box, M., pp.

360-372, Springer 1999, ISBN 3540678662.

[Boutilier et al 99] B outiller, C., Dean, T. & Hanks, S., “Decision-Theoretic Planning:

Structural Assumptions and Computational Leverage”, Journal o f Artifi­

cial Intelligence Research, vol. 11, pp. 1-94, 1999.

[Brooks 86] Brooks, R., “A Robust Layered Control System for a Mobile Robot”, IEEE

Journal o f Robotics and Automation, RA-2(1) pp. 14-23, 1986.

[Brooks 91] Brooks, R., “Intelligence without Representation”, Artificial Intelligence,

vol. 47, pp. 139-159, 1991.

[Chapman 87] Chapman, D., “Planning for Conjunctive Goals”, Artificial Intelligence,

vol. 32, pp. 333-337, 1987.

[Collins & Pryor 92] Collins, G. & Pryor, L., “Achieving the functionality of filter condi­

tions in a partial order planner”. In Proceedings o f the Tenth National Con­

ference on Artificial Intelligence (AAAI-92), August, 1992.

[Dean et al 87] Dean, T., Birby, J. & Miller, D., “Hierarchical planning involving dead­

lines, travel time, and resources”. Computational Intelligence, vol. 4, no.

4, pp. 381-398, 1987.

[Doherty & Kvamstrom 99] Doherty, P. & Kvamstrom, J., “TALplanner: An Empirical

Investigation of a Temporal Logic-based Borward Chaining Planner”,

Proceedings o f the Sixth International Workshop in Temporal Represen­

tation and Reasoning (TIME’99), 1999.

[Drabble & Tate 94], Drabble, B. & Tate, A., “The Use of Optimistic and Pessimistic Re­

source Profiles to Inform Search in an Activity Based Planner”, In Pro­

ceedings o f the Second International Conference on AI Planning Systems,

183

Chicago, AAAI Press, June 1994.

[Draper et al 94] Draper, D., Hanks, S. & Weld, D., “Probabilistic planning with informa­

tion gathering and contingent execution”. In Proceedings o f the Second In­

ternational Conference on Artificial Intelligence Planning Systems, ed.

Hammond, K., pp. 31-37, Chicago, AAAI Press, 1994.

[El-Kholy & Richards 96] El-Kholy, A. & Richards, B., “Temporal and Resource Rea­

soning in Planning: the parcPhAN approach”. In Proceedings o f the 12th

European Conference on Artificial Intelligence (ECAI-96), pp. 614-618,

1996.

[Erol et al 94] Erol, K., Nau, D. & Hendler, J., “UMCP: A Sound and Complete Planning

Procedure for Hierarchical Task-Network Planning”, In Proceedings of

the Second International Conference on AI Planning Systems (AlPS-94),

Chicago, June, 1994.

[Etzioni et al 92] Etzioni, O., Hanks, S., Weld, D., Draper, D., Lesh, N. & Williamson,

M., “An approach to planning with incomplete information”. In Proceed­

ings o f the Third International Conference on Principles o f Knowledge

Representation and Reasoning, pp. 115-125, Cambridge, MA, 1992.

[Ferguson et al 96] Ferguson, G., Allen, J. & Miller, B., “TRAlNS-95: towards a mixed-

initiative planning assistant”. In Proceedings o f the Third International

Conference on Artificial Intelligence Planning Systems (AIPS-96), pp. 70-

77, 1996.

[Fikes & Nilsson 71] Fikes, R. E. & Nilsson, N., “STRIPS: A New Approach to the Ap­

plication of Theorem Proving to Problem Solving”, Artificial Intelligence,

vol. 5, no. 2, 1971.

[Fikes et al 72] Fikes, R. E., Hart, P. E. & Nilsson, N. J., “Learning and Executing Gen­

eralized Robot Plans”, Artificial Intelligence, vol. 3, no. 4, pp. 251-288,

1972.

[Gat 96] Gat, E., “ESL: A language for supporting robust plan execution in embedded au­

tonomous agents”, In Plan Execution: Problems & Issues, Papers from the

1996 AAAI Fall Symposium, Technical Report FS-96-01, November 9-

11, 1996, Cambridge, Massachusetts, AAAI Press, 1996, ISBN

184

1577350154.

[Ghallab & Laruelle 94] Ghallab, M. & Laruelle, H., “Representation and control in Ix­

TeT, a temporal planner”. In Proceedings o f the Second International

Conference on Artificial Intelligence Planning Systems, pp. 61-67, 1994.

[Ghosh et al 92] Ghosh, S., Hendler, J., Kambhampati, S. & Kettler, B., “UM Nonlin Ver­

sion 1.2.2 User Manual”, Parallel Understanding Systems Group, Depart­

ment of Computer Science, University of Maryland, College Park, MD

20742, 1992.

[Hoffman & Nebel 00] Hoffmann, J. & Nebel, B., ’’The FF Planning System: Fast Plan

Generation through Heuristic Search”, submitted to the Journal o f Artifi­

cial Intelligence Research, 2000.

[Hoffmann 00] Hoffmann, J., “A Heuristic for Domain Independent Planning and its use

in an enforced Hill-climbing Algorithm”, Technical Report, Institut fur In-

formatik, 2000.

[Kautz & Selman 99] Kautz, H. & Selman, B., “Blackbox: A new approach to the appli­

cation of theorem proving to problem solving”. In AIPS98 Workshop on

Planning as Combinatorial Search, pp. 58-60, 1998.

[Knoblock 92] Knoblock, C. A., “An Analysis of ABSTRIPS”, In Proceedings o f the Sec­

ond International Conference on Artificial Intelligence Planning Systems,

pp. 126-135, Morgan Kaufmann, 1992.

[Knoblock 95] Knoblock, Craig A., “Planning, Executing, Sensing and Replanning for In­

formation Gathering”, In Proceedings o f the Fourteenth International

Joint Conference on Artificial Intelligence, Montreal, Canada, 1995.

[Knoblock 96] Knob]ock, Craig A., “Why Plan Generation and Plan Execution are Insep­

arable”, In Plan Execution: Problems & Issues, Papers from the 1996

AAAI Fall Symposium, Technical Report FS-96-01, November 9-11,

1996, Cambridge, Massachusetts, AAAI Press, 1996, ISBN 1577350154.

[Koehler et al 97] Koehler, J., Nebel, B., Hoffmann, J. & Dimopoulos, Y., “Extending

Planning Graphs to an ADL Subset”, In Recent Advances in AI Planning,

Proceedings o f the Fourth European Conference on Planning, eds. Steel,

185

s. & Alami, R., pp. 273-285, Springer-Verlag, 1997, ISBN 3540639128.

[Koehler 98] Koehler, J.,“Planning under Resource Constraints”, In Proceedings o f the

Thirteenth European Conference on Artificial Intelligence, Brighton,

U.K., pp. 489-493, August 23-28, 1998.

[Kunda 90] Kunda, Z., “The Case for Motivated Reasoning”, Psychological Bulletin, vol.

108, no. 3, pp. 480-498, 1990.

[Kushmerick et al 95] Kushmerick, N., Hanks, S. & Weld, D., “An algorithm for proba­

bilistic planning”. Artificial Intelligence, vol. 76, pp. 239-286, 1995.

[Laborie & Ghallab 95] Laborie, P. & Ghallab, M., “Planning with Sharable Resource

Constraints”, In Proceedings o f the Fourteenth International Joint Confer­

ence on Artificial Intelligence, vol. 2, pp. 1643-1649, Montreal, Canada,

1995.

[Lever & Richards 94] Lever, J. & Richards, B., “parcPLAN: A Planning Architecture

with Parallel Actions, Resources and Constraints”, In Proceedings o f the

9th International Symposium on Methodologies for Intelligent Systems,

pp. 213-222, 1994.

[Long & Fox 99] Long, D. & Fox, M., “Efficient Implementation of the Plan Graph in

STAN”, Journal o f Artificial Intelligence Research, vol. 10, pp. 87-115,

1999.

[Luck 93] Luck, M. M., “Motivated Inductive Discovery”, Ph.D. Thesis, University of

London, 1993.

[McAllester & Rosenblitt 91] McAllester, D. & Rosenblitt, R., “Systematic Nonlinear

Planning”, In Proceedings o f the Ninth National Conference on Artificial

Intelligence, AAAI-91, vol. 2, pp. 634-639, Anaheim, California, USA,

AAAI Press/MIT Press, July 1991.

[Muscettola 94] Muscettola, N., “HSTS: Integrating planning and scheduling”. In Intelli­

gent Scheduling, eds. Fox, M. & Zweben, M., Morgan Kaufmann, 1994.

[Muscettola et al 98] Muscettola, N., Pandurang Nayak, P., Pell, B. & Williams, B. C.,

“Remote Agent: To Boldly Go Where No AI System Has Gone Before”,

Artifical Intelligence: 100th volume on the Best of IJCAI 1997, 1998.

[Norman 97] Norman, T. J. F., “Motivation-based direction of planning attention in

186

agents with goal autonomy”, Ph.D. Thesis, University of London, 1997.

[Pednault 89] Pednault, E., “ADL: Exploring the middle ground between STRIPS and the

situation calculus”. In Proceedings Knowledge Representation Confer­

ence, 1989.

[Pell et al 96a] Pell, Bernard, Chien, Gat, Muscettola, N., Pandurang Nayak, P., Wager,

M. D. & Williams, B.C., “An implemented architecture integrating on­

board planning, scheduling, execution, diagnosis, monitoring and control

for autonomous spacecraft”. In Proceedings o f the SPIE conference on

Optical Science, Engineering and Instrumentation, 1996.

[Pell et al 96b] Pell, B., Gat, E., Keesing, R., Muscettola, N. & Smith, B., “Plan Execution

for Autonomous Spacecraft”, In Plan Execution: Problems & Issues, Pa­

pers from the 1996 AAAI Fall Symposium, Technical Report FS-96-01,

AAAI Press, pp. 109-116, 1996, ISBN 1577350154.

[Penberthy & Weld 92] Penberthy, J. S. & Weld, D., “UCPOP: A sound, complete, par-

tial-order planner for ADL”, Proceedings, 3rd Int. Conf. on Principles o f

Knowledge Representation and Reasoning, pp. 103-14, October 1992.

[Penberthy & Weld 94] Penberthy, J. S. & We]d, D., “Temporal Planning with Continu­

ous Change”, Proceedings o f the 12th National Conference on Artificial

Intelligence, vol. 2, pp. 1010-1015, 1994.

[Peot & Smith 92] Peot, M. A. & Smith, D. E., “Conditional nonlinear planning”. In Pro­

ceedings o f the First International Conference on Artificial Intelligence

Planning Systems, ed. Hendler, J., pp. 189-197, Morgan Kaufmann, 1992.

[Picard 97] Picard, R., “Affective Computing”, MIT Press, 1997, ISBN 0262161702.

[Pryor & Collins 96] Pryor, L. & Collins, G., “Planning for contingencies: a decision-

based approach”. Journal o f Artificial Intelligence Research, vol. 4, pp.

287-339, 1996.

[Russell & Norvig 95] Russell, S. & Norvig, P., “Artificial Intelligence: A modem ap­

proach”, Prentice-Hall, 1995, ISBN 0131038052.

[Sacerdoti 74] Sacerdoti, E. D., “Planning in a hierarchy of abstraction spaces”. Artificial

Intelligence, vol. 5, no. 2, pp. 115-135, 1974.

[Sacerdoti 75] Sacerdoti, E. D., “The Nonlinear Nature of Plans”, Proceedings o f the In-

187

temational Joint Conference on Artificial Intelligence, pp. 206-214,1975.

[Smith et al GO] Smith, D. E., Frank, J. & Jonsson, A. K., “Bridging the Gap between Plan­

ning and Scheduling”, To appear in Knowledge Engineering Review, vol.

15, no. 1, 2000.

[Smith & Weld 99] Smith, D. & Weld, D., “Temporal planning with mutual exclusion rea­

soning”, In Proceedings o f the Sixteenth International Joint Conference

on Artificial Intelligence (IJCAI-99), pp. 326-333, 1999.

[Tate 77] Tate, A., “Generating Project Networks”, Proceedings o f the International Joint

Conference on Artificial Intelligence, pp. 888-893, 1977.

[Vere 83] Vere, S. A., “Planning in Time: Windows and Durations for Activities and

Goals”, Pattern Analysis and Machine Intelligence, vol. 5, pp.246-267,

IEEE 1983.

[Weld 94] Weld, D. S., “An Introduction to Least Commitment Planning”, AI Magazine,

vol. 15, no. 4, pp. 27-61, 1994.

[Weld et al 98] Weld, D. S., Anderson, C. & Smith, D. “Extending graphplan to handle

uncertainty and sensing actions”. In Proceedings o f the Sixteenth National

Conference onAI, 1998.

[Weld 99] Weld, D. S., “Recent Advances in AI Planning”, Technical Report UW-CSE-

98-10-01, Department of Computer Science & Engineering, University of

Washington, Seattle, WA 98195-2350, USA, To appear in: AI Magazine,

1999.

[Wilkins 88] Wilkins, D. E., “Practical Planning: Extending the Classical AI Planning

Paradigm”, Morgan Kaufmann, ISBN 093461394X, 1988.

[Wooldridge & Jennings 95] Wooldridge, M. & Jennings, N., “Intelligent Agents: Theory

and Practice”, Knowledge Engineering Review, vol. 10, No. 2, pp. 115-

152, 1995.

188

