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Abstract

The size and complexity of current software systems often necessitates distributed and cooperative
development by numerous participants. This thesis investigates the problem of management of
consistency relations between documents in the software engineering domain, which are cooperatively
developed in such distributed setting. The thesis builds on related work in expression of consistency
relations by means of consistency rules, and expands on the framework for centralised consistency link
generation to transparently provide the developers with inconsistency identification services at

distributed locations.

This thesis elaborates a consistency framework, which enables consistency checks to be carried out
at locations of the documents, rather than at a centralised server or repository. We focus on advantages
that use of software agency brings to implementation of this framework. These advantages are realised
in the developed software agent architecture, which capitalises on agent mobility for carrying out checks

in the distributed environment.

The thesis describes a method for carrying out consistency checks incrementally for the underlying
consistency link generation framework. Incremental checks relate individual document updates to the
current state of the checked document set. Incremental checking facilitates event-orientation of the
framework for distributed consistency checks, where individual update events trigger consistency checks
of related consistency rules, resulting in generation of consistency links, relevant to the original changes.
Inconsistent links indicate problem areas to the developers, where further work may be needed in

correction of remaining inconsistencies.

This thesis makes a novel contribution to consistency checking in the software engineering domain
by providing the software agent architecture, which enables distributed collaborative development.
Initial evaluation of the software agent architecture for distributed consistency checking is carried out on

a simulation model.

The software agent architecture is implemented in a prototype, developed to demonstrate and
evaluate the architecture. A case study is used throughout the thesis, which illustrates feasibility and
applicability of the proposed approach. The case study involves checking consistency between UML
diagrams of a scheduling application throughout concurrent distributed development of this application

by a team of software engineers.
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Chapter 1  Introduction

The size and complexity of current software-intensive systems necessitates their distributed and
collaborative development. In this setting, a number of participants in a joint effort produce documents,
which are often required to follow certain restrictions on their format and content. These restrictions
define relations between the documents that are required to hold by a standard, a development process, a
company policy or another factor. For example, software system descriptions, expressed in the Unified
Modelling Language (UML), are required to follow the well-formedness constraints, defined by the
UML standard [OMG 2000b].

In many cases, produced documents have "overlapping" content, as they refer to common objects or
phenomena. The overlap gives rise to consistency relations between documents and their parts referred
to as document elements. In a variety of cases, the developers intend to constrain these relations, due to
the software development process used, the document structure or semantics demanded, or project
requirements. In this thesis, we use the term consistency management to describe the process, by which
existing consistency relations between overlapping documents are checked for conformance to specified
constraints.

The task of consistency management is complicated by the distribution of documents and their
concurrent collaborative development by numerous distributed participants. With the expansion of the
Internet, company intranets and distributed collaboration technologies, company-wide distribution of
developers has already become widespread, and there exists a growing trend in adoption of the
geographically distributed, Internet-scale development. Existing centralised approaches to consistency
checking cannot cope with a scenario of checking the mutual consistency of documents in the
distributed setting of this scale.

This thesis addresses the problem of checking consistency relations between distributed documents.
We build a distributed architecture, consisting of autonomous collaborating components, which
automatically provide the consistency checking service at the distributed document locations. This
architecture is proposed as an alternative to the traditional approach, where checks are inherently
centralised. The developing software agent technologies and code mobility are making feasible the
construction of the new architecture.

As a motivating scenario in this thesis, we consider the problem of consistency management in the

software engineering domain.
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1.1 Motivating Scenario

As an application domain and a benchmark for the proposed software agent architecture for
distributed consistency management, we consider consistency checks between distributed software
engineering documents. A running scenario of throughout the thesis deals with the design of a break
scheduler application, discussed in [Bergner, et al. 1997]. In the scenario, a team of distributed
participants is concurrently developing on a UML model [Booch, et al. 1999] of the software
application. The scope of consistency relations, demonstrated in the scenario, is that of checking well-
formedness constraints [OMG 2000b] of the UML model throughout the development process.

Checking of well-formedness constraints of UML models has been chosen as the application
domain due to variety and complexity of the UML constraints. The approach to distribution of UML
model elements for collaborative development and distributed checks allowed us to generate evaluation

scenarios of significant scale for larger UML models.

1.2 Contribution

This thesis builds on the approach for expression of consistency relations between documents, the
concept of consistency checks of these relationships, and the method for representation of the state of
relationships between individual documents [Zisman, et al. 1999]. We draw on the recent development
of this framework — a novel XLinkit rule language [Nentwich, et al. 2001a] and the framework for
carrying out consistency checks of well-formedness consistency relations in UML models [Nentwich,
et al. 2000b].

The XLinkit framework follows the approach, which originates in software development

environments [Donzeau-Gouge, et al. 1984, GOODSTEPTeam 1994, Habermann and Notkin

1986, Reps and Teitelbaum 1981] and provides the facilities for carrying out centralised consistency
checks, where documents need to be stored at, or moved to, the location of the consistency checker.

The growth in distributed software development in industry and in the software engineering
community has initiated re-consideration of the centralised architectures. With respect to the existing
tools, such as XLinkit, most significant concerns arise in the scalability of the centralised approach, and
in its usability for incremental development, since consistency checks have to be initiated by a user and
upon every check, all distributed documents have to be copied to the central location and check results
need to be returned to the locations, where development takes place.

This thesis proposes a distributed architecture, where consistency checking is carried out locally at
the network hosts where documents are located. We introduce a distributed checking algorithm, which
separates checks of documents in space and time and executes at numerous locations. The approach
enables concurrent checking at numerous locations and improves efficiency and security of checks by

eliminating the need for transfer of complete documents across the network during consistency checks.
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The architecture facilitates distribution by scaling out, through introduction of self-contained
autonomous domains and forming of a domain hierarchy, and by scaling up with the increase in a
number of hosts and documents in each domain. The concept of domains — groups of related documents
allows us to tackle large scale distribution and offer a de-centralised solution, capable of delivering an
efficient consistency checking service. Disconnected operation of autonomous domains enables us to
improve fault tolerance and achieve stability by use of persistent components. In order to fulfil its task,
the distributed architecture builds on software agency and mobility in construction the architectural
components.

In a brief summary, this thesis makes the following contributions:

- Development of an architecture for distributed consistency checking, which capitalises on locality of
access to documents.

- An incremental checking algorithm, which extends the capabilities of existing exhaustive checker
and provides better support for the incremental development process. We have addressed technical
challenges of extending the current non-incremental checker XLinkit to provide support for
incremental checks. Having achieved interoperability between the checkers, we consider them as
complementary and have suggested deployment scenarios for both checkers

- Development of a model of the architecture, where components' operations are specified via state
charts. This model allows us to better explain component roles, to provide initial verification of the
architecture, and to give an initial estimation of its performance characteristics.

- Construction of an implementation prototype of the architecture, which we have evaluated on a
number of scenarios, demonstrating its scalability and explaining in detail the features provided by
the architecture. The chosen scenarios follow distributed cooperative development of a software
application by a number of participants.

- We have suggested a number of approaches to multi-agent collaboration and concurrent execution
of checks, which aim at improving performance of the distributed consistency checks, and gave
recommendations on optimal configurations of the distributed system.

- We have carried out a performance evaluation of the architecture and compared it with the
centralised checking approach. This evaluation has allowed us to highlight the distribution

configurations, in which the distributed checks are most effective.

1.3 Thesis structure

Related work to consistency checking in the areas of ViewPoint software engineering, software
engineering environments, and the XLinkit consistency framework follows in Chapter 2. Chapter 3 sets
out the primary considerations - functional requirements for construction of a distributed consistency
management architecture. Chapter 4 gives an introduction to software agency and mobility concepts, on

which the software agent architecture draws. We also provide a taxonomy of mobile software agent
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frameworks, specify our requirements and select a framework, on which the architecture and its
prototype are constructed.

Chapter 5 introduces incremental checking development for the XLinkit framework, and considers
in detail a centralised algorithm and a distributed, incremental consistency checking algorithm. By
describing the checking process, this chapter sets a context for the following description of the
architecture.

Chapter 6 gives a high level overview of the proposed software agent architecture for distributed
consistency checking. It describes the roles of the architectural components and elaborates on fulfilment
of the functional requirements, demanded in Chapter 3, by each of the components.

A model of the architecture, outlining internal operations of each component in state transition
diagrams, is presented in Chapter 7. The model allows us to give a detailed demonstration of internal
operations of the components and their interaction, and gives an initial performance estimation of
distributed consistency checks.

A number of scenarios, occurring during the development of a UML model of a break scheduler
application, are introduced in Chapter 8. The scenarios are extensively developed for distributed checks
in different distribution configurations, where events, triggering consistency checks, actions and
interactions of components during the checks, and results of the checks are described in detail. These
scenarios are a result of deployment of an implementation prototype of the software agent architecture,
which serve as validation of the architecture.

Chapter 9 lays out the internal structure of the implementation prototype that was informally
introduced on scenarios in Chapter 8. In Chapter 9, each component of the event-driven architecture is
described in terms of event generation and handling.

The software agent architecture is evaluated in Chapter 10. Qualitative evaluation outlines
advantages and disadvantages of the architecture, and refers to the functional requirements, demanded of
the architecture in Chapter 4. Quantitative performance evaluation of the implementation prototype uses
a UML design example and contrasts the traditional centralised checker with distributed incremental
checks in the software agent architecture.

Quantitative and qualitative evaluations in Chapter 10 complement the evaluation and validation of
correctness of the implementation prototype, carried out on examples from the running scenario in
Chapter 8. Chapter 9 also plays a part in evaluation, and serves to demonstrate the event-orientation
feature of the proposed architecture.

Conclusions in Chapter 11 outline the strengths and weaknesses of the proposed software agent
architecture approach. The conclusions confirm the primary argument of this thesis, that distributed
consistency checking is effectively carried out by the proposed software agent architecture.

Recommendations for future work are also given in the chapter.
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Chapter2 Related Work in Consistency
Checking

Techniques for expressing and checking consistency constraints are found in many areas of
computer science. This chapter gives a summary of major work in consistency management: the
Viewpoints framework and programming and software development environments. Here we also
describe XLinkit - the framework for consistency checking, on which the software agent architecture of
this thesis builds. The review of existing methods accentuates comparisons between proposed

approaches, and aims to establish the position of the architecture, proposed in this thesis.

2.1 The ViewPoints Background

A number of researchers have worked on formal techniques for viewpoint specification [Ainsworth,
et al. 1994, Boiten, et al. 1996, Finkelstein, et al. 1992, Frappier, et al. 1995, Larsen, et al. 1995, Zave
and Jackson 1996]. Use of different abstractions when reasoning about complex systems has been
recognised as an effective way of separating concerns. Not surprisingly, many other disciplines involved
in information systems development have come up with similar approaches. View-integration in
conceptual database design has been a widely researched topic in the 1980s [Navathe, et al. 1986]. The
use of separation of views in requirements engineering even dates back to the late 1970s [Mullery 1979].
More recently, viewpoints have been proposed and researched for program development environments
[Meyers 1991] and information systems design [Baldwin 1993].

Within the software and requirements engineering communities, numerous researchers have been
working on the "multiple perspectives problem" [Finkelstein, et al. 1992, Kotonya and Sommerville
1992, Nuseibeh 1994, Reeves, et al. 1995, Spanoudakis, et al. 1997]. By this term they refer to the
problem of how to organise and guide software development in a setting with multiple actors, using
diverse representation schemes, having diverse domain knowledge and different development strategies.
A framework has been developed [Finkelstein, et al. 1992, Nuseibeh 1994] in order to address the
diverse issues related to this problem. Multi-perspective software development within this framework is

referred to as Viewpoint Oriented Software Engineering (VOSE).

2.2 Viewpoint-Oriented Software Engineering

There is a growing awareness in distributed software engineering that the development of complex
software systems can no longer be seen as a linear, top-down activity [Steen 1998]. The ViewPoint
Oriented Software Engineering framework (VOSE) [Finkelstein, et al. 1992] advocates structuring of

the specification and development of such systems according to, so called, ViewPoints. The VOSE
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framework [Finkelstein, et al. 1992, Nuseibeh 1994] considers consistency relations within the context
of ViewPoints.

ViewPoint models allow developers to split up the complete specification of a complex system into
a number of viewpoint specifications, each concentrating on a particular concern or aspect of the system.
The specifications are potentially distributed, as they belong to different participants. Each viewpoint

then represents a particular abstraction, either from a stakeholder’s, or a modelling perspective.

2.2.1 ViewPoints

A ViewPoint combines the notion of 'actor', 'role' or 'agent’ in the development process with the idea
of a 'perspective’ or 'view', which an actor maintains. ViewPoints are defined as loosely coupled, locally
managed, distributable objects; thus containing identity, state and behaviour. A ViewPoint is more than
a 'partial specification'; in addition, it contains partial knowledge of how to develop that partial
specification.

Each ViewPoint is composed of the following components, called slots:

* The representation style defines the notation or language to be used in that ViewPoint.

* The work plan defines the actions that can be performed on specifications in the given style, and
their recommended ordering. Different kinds of actions are identified within the framework. Most
obvious are the assembly, or "editing", actions. Of particular interest to us in this thesis are
consistency checking actions, which we consider below.

* The domain is a label, identifying the area of concern of that ViewPoint.

* The specification slot contains the actual description of the identified domain, in the notation
defined in the style slot.

* The work record describes the actions that were performed on the ViewPoint specification. It thus

defines the development state of the ViewPoint.

Typically, different ViewPoints will share the same notation and development process. Creation of
a multiple-viewpoint system often occurs by instantiation of 'ViewPoint templates’. A template is a
ViewPoint, in which only the style and work plan slots have been filled in. Domain, specification and
work record slots of a template are then filled in during instantiation, thus allowing for dynamic
ViewPoint creation from templates. Creation of new ViewPoints may be the result of certain viewpoint
actions, which are a part of their work plans. Such as, a translation action would transform a ViewPoint

from one notation into another by creating a new ViewPoint-translation.
2.2,2 Consistency of ViewPoints

One of the main problems in any multiple ViewPoint approach to specification is defining and

establishing consistency of various ViewPoint specifications. This problem becomes particularly
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challenging when we consider that different specification techniques may be applied to different
ViewPoints.

Consistency in this setting can be seen as a relationship between viewpoint entities. In the viewpoint
model for specification and development of software, consistency is defined as a set of syntactic
constraints. For example, the Unified Modelling Language (UML) standard [Booch, et al. 1999], based
on the Booch method [Booch 1991] for object oriented design, requires UML models to comply with a
significant number of static constraints [Appendix A] in order to be well-formed. In addition to static
constraints, techniques for tackling behavioural, or semantic consistency, which would provide
consistency management foundations for State Charts and Sequence Diagrams by means of process
algebraic specification techniques, have been studied in [Steen, et al. 1999].

The ViewPoints framework distinguishes two kinds of inconsistencies: in-ViewPoint semantic
inconsistency and inter-ViewPoint inconsistency. Consistency constraints are specified by consistency
rules [Easterbrook, et al. 1994]. In-ViewPoint consistency rules define the constraints that should hold in
order for a ViewPoint specification to be 'well-formed'; these define the static semantics for the
ViewPoint's representation style. Inter-Viewpoint rules define relationships between the representation
styles of different ViewPoints, thus identifying areas of "overlap" between the ViewPoints.

Consistency rules define partial consistency relationships between the different specification
notations. Specifications are consistent if all the rules that should hold between particular viewpoints
actually do hold. The general form of a consistency rule in [Easterbrook, et al. 1994] is the following:

VVP,,3VP, :VP,RVP,, where VPs —is a "source ViewPoint", VPp — a "destination ViewPoint",

and R is a relationship, which must hold in order for the consistency constraint to be satisfied. It is
envisaged that these consistency rules will be specified using an appropriate logic [Finkelstein, et al.
1994], where representation in first order logic is a possibility.

In-Viewpoint and inter-Viewpoint checks can uncover inconsistencies in and between specifications
that prevent a set of specifications from being globally consistent. However, self-consistency and pair-
wise mutual consistency are in general not sufficient to obtain global consistency. It is suggested, that
deficiencies of such pair-wise specification of constraints can be remedied by construction of a macro-
ViewPoint, containing a graph of all other ViewPoints [Easterbrook, et al. 1994]. Constraints are then
composed on the graph, specifying relationships between its nodes.

The consistency checking actions and inconsistency handling actions are contained in the work plan
of each ViewPoint. The handling actions are resolution actions that may be performed in the presence of
inconsistency.

Although the method defining consistency in ViewPoints is very expressive, it has a number of
drawbacks. Firstly, the approach requires the designer to define all possible consistency relations
between all possible combinations of viewpoint templates to be able to identify the global consistency
status. Secondly, a case may arise that all specification notations may not be suitably expressed in the
same logic. Thirdly, the advocated development model is highly fluid and new types of viewpoint may

be created at any time.
20



The consistency checking techniques, defined for the VOSE approach, are focusing mainly on the
structure of specifications. Typical inter-Viewpoint rules require that for each viewpoint of a particular
type there exists a specification component in a viewpoint of some other type.

Consistency checking techniques have been proposed, which focus more on the specification
content, in particular the specified behaviour. In the PROST report [Cowen, et al. 1993] it is suggested
that specifications are consistent if there exists a common refinement. An analysis of these variations of
consistency has resulted in a generalised definition of 'semantic consistency' based on the notion of
common refinement [Bowman, et al. 1996]. It has also been shown that this general definition
encompasses the notion of logical consistency [Bowman, et al. 1995].

An important similarity between the two approaches is that both allow inconsistencies between
viewpoint specifications to exist. This is in contrast with, for example, program development
environments [Meyers 1991], where consistency is maintained at all times. VOSE provides for
development processes to be considered explicitly. As such, in VOSE, ViewPoint templates can be
defined, which prescribe a specification notation and a work plan, where the latter includes policies for
carrying out consistency checks and inconsistency handling actions, allowing toleration of

inconsistency.
2.2.3 Consistency Management Activities

In application of the VOSE framework to management of interference relations between the
viewpoints, [Finkelstein, et al. 1996] introduce a number of interference management steps or activities.
An interference consistency relation between viewpoints arises when goals of actors or viewpoint
owners are mutually interdependent (for example, at the requirements engineering stage). [Finkelstein,
et al. 1994] admit that interference is inevitable and acceptable in system development: inevitable as a
consequence of multiple perspectives, and acceptable in support of innovation in development,
fulfilment of commitments and consideration of alternatives. As a notion, embodying a broad class of
consistency relations, interference management is subject to complexities due to difference of
viewpoints held by their owners, use of different languages or heterogeneous tools, existence of
numerous levels of development and elaboration, as well as degrees of formality and granularity.

The process of resolution of interference relationships [Finkelstein, et al. 1994] comprises the
following significant activities:

Overlap identification for recognition and classification of system components, which refer to
common objects or phenomena in the domain of discourse. This essential step sets the stage for future
definition of consistency relations between the viewpoints, and is concerned with comparison, analysis
and formalisation of the views of participants. In general, overlap identification would require some
form of user input and cannot be fully automated, since certain types of references are usually implied or
not evidently found within the components themselves. While being one of the starting steps of the

interference management process, overlap identification is based on existence of somewhat elaborated
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viewpoint templates, which determine the essence, types of components envisaged to be deployed in the
system.

Construction of the instances from the templates, ViewPoint instantiation, is the activity of
transformation of classified system component templates into viewpoints. The development of
viewpoint templates reflects similarities in component structure, content or function. Instantiation of
templates with specific information taken from system components enables to trace overlaps between
particular viewpoint instances.

Consistency relation construction involves the creation of consistency relationships between
different viewpoints to reflect consistency overlaps. Construction of relationships can be automatic and
dynamic (on-the-fly), on demand (for example, as a result of a performed consistency management
check), or embedded (baseline in-system relations). The relations can then be specified in terms of
particular elements of the structures of the viewpoints, and expressed in first-order logic, as overlap
between sets or in another way, which is convenient and efficient given a language that information in
the viewpoints is expressed in and the structure of this information.

The three consistency management activities described — viewpoint instantiation, overlap
identification and consistency relation construction constitute the basic activities for consistency
management, set out in the ViewPoints framework. The scope of this thesis considers overlap
identification and consistency relation construction. Leaving the viewpoint instantiation and

inconsistency resolution to the developers, we concentrate on the consistency checking activity.
2.2.4 Policies

Depending on the required level of consistency enforcement in the system, it is advantageous to set
the policies, governing execution of checks of consistency relations between the viewpoints and use of
the results of these checks for reconciliation. Policy specification is an identification and composition of
appropriate policies for execution of checks of consistency relations. Originating from the standards
compliance domain, policies are considered by us as a useful abstraction for instrumentation of
Viewpoint consistency checks. One successful realisation of the notion of policy has been developed
within the Standards Compliance Manager project [Armitage, et al. 1998, Emmerich, et al. 1999], where
each consistency relation is associated with at least one policy, which defines:

* An indication of the consistency relation, the management of which the policy is concerned

with.

* A type of event that will trigger the checking of a consistency relation. In an example, where
viewpoints are represented by documents that are being modified by developers, creation or
removal of a document and modifications to a document would constitute those events, which
should trigger checks or some consistency relations.

* A mode that the policy is applied in. In our example, in case if inconsistencies are identified, the

user — owner of an inconsistent viewpoint - will be notified ("guideline" mode), or interrupted
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and allowed to continue his present activity ("warning" mode), or prevented from continuing
until viewpoints have been changed and are consistent again ("error" mode).

* A type of diagnosis that is displayed. Depending on the particulars of a system under
consideration and the type of the user, a user can be either presented with a listing of
inconsistencies found (links between related documents and document elements), or a statistical
output of the number of inconsistent elements.

A policy can be specified in terms of high-level strategies or goals. Preventive policies (such as an
"error" mode policies) involve the immediate rejection of an action, whose completion would cause the
occurrence of an interference inconsistency. Remedial policies are those in which interference triggers
resolution actions. These are diversified by toleration policies, which define the scope and extent of
toleration of interference (choice of "guidance" or "warning" mode affects the extent of toleration).

Preventive policies parallel the traditional perspective on conflict [Meyers 1991] in studies of
organisational behaviour, where conflict is a malfunction within an organisation or a group and as such
it should be avoided. By contrast, remedial policies reflect the behavioural perspective in which conflicts
are the natural result of individuals and groups each pursuing their own interests and objectives within
an organisation, and compromises need to be achieved in order to resolve them.

Policy is a useful configuration concept for consistency checks. Policies have triggered our special
interest, because they relate system events, which trigger checking of a consistency relation to the
consistency relation, to a check of this relation in an appropriate application mode and to a specific
diagnosis — result of a consistency check. Self-containability of checks results from coupling of the

results of a policy execution, which explicitly expresses the connection between the ViewPoint slots.

2.3 Software Development Environments

The consistency management technology for incremental development is provided in the syntax-
directed tools [Donzeau-Gouge, et al. 1984, Reps and Teitelbaum 1984] of the software development
environments. These environments offer document production support in such a way, that document
accesses and updates are issued in terms of commands, and each command corresponds to an increment.
Since commands in syntax-directed tools are directed towards the syntax of the underlying language, it
is possible to immediately establish the "propagation" of a consistent relation through all opened
documents (or an inconsistent relation when inconsistencies are tolerated). As a result, such tools can be
effectively used in the incremental document development process.

The commands, that syntax-directed tools perform, internally correspond to operations on a
particular abstract syntax tree [Habermann and Notkin 1986, Reps and Teitelbaum 1981]. Additional
attributes of this tree often contain semantic information. Therefore, static semantic checking of a
document, represented as an abstract syntax tree, can be carried out by evaluating the mentioned
attributes along the paths in the tree [Knuth 1968], which are computed at tool construction time based

on required attribute dependencies. For inter-document consistency checks, based on attribute
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evaluations, an artificial root is appended to the forest of abstract trees of individual documents. In this
case, consistency constraints are checked starting from the root node. The framework for consistency
management, XLinkit [Nentwich, et al. 2000b] uses a similar approach, in which constraints are checked
on a macro-graph of the trees of document elements.

Abstract syntax graphs generalise the concept of the abstract syntax trees [Johnson and Fisher 1982,
Nagl 1985] by using of non-syntactic paths for implementation of semantic relationships between
syntactically unconnected parts of different documents, which may even correspond to different types.
Representing a set of documents in a project by an abstract syntax graph allows one to carry out static
semantic analysis, checking of consistency relations and navigation between separate documents along
the paths in the project-wide graph.

Among the first syntax-directed tools developed were the Cornell Program Synthesizer [Reps and
Teitelbaum 1981}, tools developed in the Mentor project [Donzeau-Gouge, et al. 1984], and the Gandalf
project [Habermann and Notkin 1986]. In terms of architectures, all of these tools maintained the
document abstract syntax trees in main memory and did not provide sufficient support for persistent
document storage. As a result, inter-document constraints could not be checked between different
document types. Additionally, none of the tools supported version and configuration management.

Next generation syntax-directed tools from the IPSEN environment [Engels, et al. 1987, Nagl 1985]
provided persistent document representation based on the proprietary GRAS database model [Lewerentz
and Schurr 1988], where all documents were stored in a single graph. This graph effectively constituted
a document "universe", where each document was represented by a subgraph with reference edges
leading to other documents' subgraphs. The architecture enabled checks of static semantics and inter-
document consistency constraints. Additionally, transaction support was provided via the GRAS
transaction mechanism: any information loss was limited to the last completed command-increment. An
enhanced version of the IPSEN prototype also supported document revision control [Westfechtel 1989],
based on the functionality offered by the GRAS database system. The GRAS database system used a
proprietary data model called the graph pool, that has been explicitly defined for storing abstract syntax
graphs. While the discussed syntax-directed tools clearly benefited from the proprietary GRAS database
system providing persistent document storage, today's challenge is to be able to deploy an open standard

for document representation.

2.4 Meta-CASE Tools

Computer Aided Software Engineering (CASE) tools provide automated tool support for a range of
software engineering activities. Software engineering methods, which outline these activities, provide
techniques for specification, implementation, quality assurance, coordination, management and other
stages of the development process [Nuseibeh 1995]. Meta-CASE technology [Alderson 1991] is

designed to provide automated support for a part of the development process, by taking a formal (or a
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precise) description of the software development method as an input and producing CASE tools as its
output.

Meta-CASE tools rely on rule checking systems and techniques [Welland, et al. 1990] for
processing of, typically graphical, method notations and their relationships [Nuseibeh 1995]. One
example is a commercial meta-CASE tool — the IPSYS Tool Builder's Kit (TBK) [Alderson 1991,
Alderson and Elliott 1989], which allows a tool developer to specify the development methods and to
define the syntax and semantics of method notations.

The Methods Workbench Tool, formerly known as Virtual Software Factory (VSF) [Metasoft 2001]
allows construction of a semantic model of the method in a special-purpose language, a syntactic
definition of textual and graphical views, and a kernel environment for execution of the formal method
definition for production of a CASE tool for that method.

The capability of meta-CASE tools to provide the functionality for integration of methods, notations
and tools is traditionally supported by a common centralised repository. Both the TBK and VSF are also

based on a shared data access model.

2.5 Attribute Grammars

Attribute grammars have been suggested for the specification of semantics of context-free
languages [Knuth 1968] and were successfully used for the definition of static semantics. A subclass -
ordered attribute grammars [Kastens 1980], allows one to determine at compile-time whether the static
semantic evaluations terminate. Ordered attribute grammars form the basis for the specification
language of the Cornell Synthesizer Generator [Reps and Teitelbaum 1988].

Equations in the attribute grammars, however, can be defined using attributes based on the syntactic
structure of one language. Consistency constraints between documents of different types can only be
simulated by considering one common type and representing all participating documents as children of
an artificial root. In this case, concurrent editing of different documents by multiple users could not be
supported by existing syntax-directed tools: all inter-document consistency checks would modify
attributes of the root, thus necessarily causing concurrency conflicts.

At the same time, attribute grammars give developers such flexibility, that efficient and incremental
evaluation of static semantics equations is automatically derived from dependencies between equations
by the Synthesizer Generator [Reps and Teitelbaum 1984]. The evaluation sequence can achieve
efficiency of one assignment per attribute [Kastens 1980]. Furthermore, the Synthesizer Generator is
capable of incremental evaluation of consistency rules, where only attributes, changed since the last

evaluation, and the transitive closure of attributes, depending on those changed ones, are evaluated.
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2.6 Specification Languages

2.6.1 CENTAUR

Mentor-Project [Donzeau-Gouge, et al. 1984] and its successor, the Centaur system, support the
prototyping of languages by providing a language framework, which can be used to define a language in
terms of syntax, static and even dynamic semantics. Rule-based language TYPOL [Despeyroux 1988] is
used for expression of semantics. Analogous to attribute grammars, TYPOL is not capable of expressing
inter-document consistency constraints, as the universe of defined expressions is limited by the abstract

syntax specification of one language.
2.6.2 PROGRESS

PROGRESS, a general purpose specification language for defining graph grammars, evolved from
the IPSEN [Lewerentz and Schurr 1988, Nagl 1985] project, where graph grammars were used for the
definition of abstract syntax graph structures [Engels, et al. 1987]. Use of PROGRESS enables
expression of structure and operations on syntax graphs. As a general purpose language, it can obviously

not provide the specific support for tool specification that the Centaur language provides.
2.6.3 GOODSTEP

A serious weakness of the early programming environments like the Cornell Synthesizer Generator,
CENTAUR and Mentor is in use of attribute grammar languages or TYPOL to check semantic validity
of statements. The languages constrained the consistency checking power of these environments and did
not support inter-document consistency checks. The proposed approach of maintaining the abstract tree
structure of a "super-document" leads to problems with distribution of documents and with scalability,
since any modifications trigger consistency checks on the whole central structure.

GOODSTEP [GOODSTEPTeam 1994] succeeds the discussed systems by enabling expression of
constraints across different types of documents and allowing wider integration of heterogeneous
development tools. Semantic rules, specified in the imperative GoodStep Tool Specification Language
(GTSL), allow use of general purpose control statements in the action block. While giving power to the

language, this makes consistency rules verbose.

2.7 XLinkit

XLinkit [Nentwich, et al. 2000b] is a language for expression of consistency relations between
document types, based on simplified first order logic. The declarative form that the language is based on
removes the need for general-purpose control statements (that are used, i.e., in GOODSTEP), and allows

developers to concentrate on constraints, rather than having to deal with the language overhead.
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XLinkit provides a consistency relation specification language and a tool, succeeding the
consistency link generator [Ellmer, et al. 1999]. The latter provided a foundation for a framework, which
specifies a way of evaluating consistency language expressions against a set of documents and
generating hyperlinks between related document elements, which reflect the consistent or inconsistent
status of a consistency relation, specified in the expression. As a result, when the language expression is
satisfied, a consistent link is created between corresponding elements of the documents, participating in
the relation. Otherwise, an inconsistent link is created, which alerts developers that the consistency
relation is not currently being satisfied.

This approach in identification of inconsistencies [Ellmer, et al. 1999] [Nentwich, et al. 2000b]
follows the trend of inconsistency toleration rather than necessary resolution, which originates in [Balzer
1991]. Balzer proposed a tolerant approach to inconsistency in databases, which uses pollution markers
to identify inconsistent data and exclude them from integrity checks. Furthermore, the inconsistency is
assumed and allowed, and the focus shifts towards identification of the inconsistencies.

In the scope of this thesis, we consider a problem of consistency management from the viewpoint of
sole identification of inconsistencies, which is in itself a significant problem in software engineering.
Our concentration on this scope is complemented by our determination to construct a consistency
checking tool, which will "manage" distributed documents by identifying inconsistencies and notifying
the developers accordingly. Correction or toleration of inconsistencies is left to the developers
themselves, and depends on a number of factors, including the stage of the project in its lifecycle, degree
of collaboration between developers and an individual development style.

The consistency link generator and its successor XLinkit are built to check inter-document relations
between heterogeneous documents of different types. The framework is based on an assumption that
documents, participating in consistency checks, can be represented in the eXtensible Markup Language
(XML) [Bray, et al. 1998]. XML has gained acceptance in the software development world as an open
standard mechanism for bridging data heterogeneity problems, and in many application areas this
assumption is already being supported by developing standards and recommendations. For instance, the
examples in this thesis consider software engineering documents, described in the Unified Modeling
Language (UML) [OMG 2000b], which is supported by the eXchange of Model Information (XMI)
[OMG 2000c] standard. This standard provides the storage of MOF-compliant models in the XML
format and includes a document type definition (DTD) for the UML as an example application.

The XLinkit framework includes support for consistency checking in the software engineering
domain: a complete set of well-formedness rules for UML models with respect to the UML standard
[OMG 2000b] has been specified in the XLinkit language [Nentwich, et al. 2001a] and appears in
[Appendix A]. Demonstrative UML examples in this thesis were chosen, because they contain a variety

of complex consistency relations and explore the expressiveness of the rule specification language.
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2.7.1 Link Generation

Consistency rule language of XLink uses XPath [Clark and DeRose 1999] expressions to specify
the paths to document elements. When these expressions are executed on document DOM trees, values
of elements and their attributes are used by the XLinkit checker to evaluate rule language operators and
compute a consistent or an inconsistent status of a consistency relation among a set of documents.

Results of consistency checks consist of n-ary hyperlinks, called consistency links. A set of
elements that violates a rule is linked using inconsistent links. A link to the consistency rule is included
to specify what relation is violated and to aid the developer in reconciliation of an inconsistency.

Consistency links are built using XLink [DeRose, et al. 2000], which allows to link document
elements without inserting the actual links into the documents. XLinkit stores links "out-of-line" in

separate files called link sets or linkbases [Ellmer, et al. 1999, Nentwich, et al. 2000b].
2.7.2 XLinkit and Distribution Support

The consistency link generator and its successor XLinkit provide functionality for centralised
checking of distributed documents by means of transferring complete documents across the network for
each consistency check. The XLinkit architecture performs link generation at a centralised location
[Nentwich, et al. 2000b]. A number of potentially distributed configuration files are used to specify the
document universe [Ellmer, et al. 1999] - a set of documents, participating in the consistency check.
Each document in the universe is identifiable via a URL, and all distributed documents are downloaded
by the XLinkit tool each time the consistency check is carried out. A web interface to XLinkit
[Nentwich, et al. 2000a] allows users to upload the documents to be checked, and once again results in
the transfer of complete documents across the network.

Centralisation of consistency checks and the necessity to transfer complete documents to the
checker and resulting consistency links back to the user for each check constitute major weaknesses of
the XLinkit architecture. XLinkit evaluations [Nentwich, et al. 2000b, Nentwich, et al. 2001a, Nentwich,
et al. 2001b] concentrate on performance of local consistency checks, where documents are located at
the same host as the checker. Distribution scalability concerns of the architecture, posed by real-world
concurrent project development in a distributed team, have not yet been addressed. It is clear, however,
that the centralised checker constitutes a central point of failure, and for a distributed project of a

sufficient size, repeated document transfers will use up the network resources.
2.7.3 Exhaustive Consistency Checking

At the moment of writing, the current XLinkit tool prototype does not include support for
incremental checks and supports exhaustive checking only. This thesis proposes a principal algorithm
for incremental consistency checks on top of the XLinkit consistency checking framework. We have
provided and evaluated an initial implementation of this algorithm, which is integrated in the
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implementation prototype of the software agent architecture for distributed consistency checking. Work
is underway to integrate incremental checking into the XLinkit prototype as well.

Although incremental checks could improve XLinkit scalability issues, document distribution
issues would still remain unanswered. This thesis proposes a software agent architecture for
distribution of consistency checks, which avoids centralisation of checks and capitalises on local access
to distributed documents in order to improve efficiency. This component-based architecture benefits
from software agency and relies on agent mobility to fulfil its task. Related work in software agents and

mobility is discussed in Chapter 4.

2.7.5 Current Work in the Thesis and the Related Work

This thesis inherits much of the history of research in ViewPoints [Finkelstein et al.,
1992][Easterbrook et al., 1994]. The software agent architecture for distributed consistency checking is
based on and extends functionality of the XLinkit consistency checking engine. The exhaustive checker
functionality of XLinkit [Nentwich et al., 2000b] and the consistency rules for UML well-formedness
constraints [Appendix A] form the work, on which the author has based the research.

Incremental checking algorithm [Chapter 5], which extends functionality of the exhaustive
checker, the software architecture for distributed consistency checking of documents in the software
engineering domain [Chapter 6], its model [Chapter 7] and the implementation prototype of the
architecture [Chapter 9] are original contributions of the author. A number of scenarios, on which the
architecture is evaluated [Chapter 8] originate from the study of the distributed development project

[Bergner et al., 1997], but were re-engineered for the distributed setting.

2.8 Summary

The domain of this thesis is application of the consistency identification methodology, described in
this chapter to consistency checking in the distributed setting. ViewPoint-oriented software engineering
approach provides us with a clear representation of loosely coupled, locally managed and distributable
objects. The model of ViewPoints — potentially distributed partial specifications, is a coherent
abstraction of distributed software engineering objects, undergoing collaborative development. We
have described in- and inter-ViewPoint consistency checking techniques, and referred to the approach
of toleration of identified inconsistencies, rather than mandatory resolution, which we adopt in this
thesis.

In this chapter, we have set the scope for the concept of consistency management activity in the
context of this thesis. Drawing on related research in management of inference relations, we have set
the focus of our dissertation on overlap identification and consistency relation construction between
distributed ViewPoints. We also referred to policy specification activities, developed in the standards

compliance domain, which outline a consistency checking process by explicitly relating an occurrence
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of an event to the subsequent check of a relevant consistency relation and to the resulting feedback
diagnosis that establishes a consistency status of the original event.

In the remainder of the chapter we have described existing consistency checking tools in the
software development environment domain and the XLinkit framework for consistency checking.
XLinkit provides support for heterogeneity of checked documents and platforms on which checks are
executed, expresses consistency relations in a rule language, where general rules relate to document
types rather than instances, and generates out-of-line consistency links as a diagnosis. The framework
is concerned with overlap identification and consistency relation construction, and is based on
toleration of inconsistencies.

However, XLinkit only supports exhaustive consistency checking functionality, and cannot
execute consistency checks incrementally, which is a standard feature in a number of software
development environments. The XLinkit architecture necessitates the transfer of complete documents
from distributed document locations to the location of the checker for every consistency check, and the
upload of resulting consistency links to the location of every participant.

In this thesis, we have developed a distributed checking architecture, which capitalises on locality
of access to distributed documents, and aims to eliminate disadvantages of a centralised approach. We
build on the consistency checking functionality, provided by XLinkit, as a foundation and extend it by
constructing a distributed consistency checking architecture, which would eliminate inherent
centralisation and provide support for incremental consistency checks. The following chapter outlines
the functional requirements for such architecture, which are inspired by the review of the existing

consistency checking technologies.
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Chapter 3 Requirements for Distributed
Consistency Checking

This chapter defines the functional requirements for consistency checking between distributed
heterogeneous documents in the software engineering domain. These requirements are being put
forward as a foundation for development of the incremental consistency checking technology (Chapter
5) and for the design of the software agent architecture for distributed consistency management (Chapter
6).

The functional requirements take their origin in the analysis of problems in existing consistency
checking frameworks (Chapter 2). The main rationale behind the requirements is to elaborate on the
principle of locality of access to documents. This rationale establishes that distributed, intra-document
consistency checks can be carried out at the locations of the documents, without a need for networked
transport of each document as a whole to a remote location for centralised processing. The principal

contribution of this thesis - a distributed architecture for consistency checking, builds on this rationale.

3.1 Stakeholders

Stakeholders, participating in a distributed, collaborative software development project, are the
target users of the system for consistency checking. This brief introduction of the stakeholders precedes
a discussion of functional requirements for the distributed consistency checking architecture.

Each stakeholder authors a number of documents, which are located at the stakeholder's workstation
that is connected to the network, or at a remote network host. Local area network (LAN) connectivity is
the most common configuration, although support for other connectivity configurations, involving a
number of connected LANs and intermittent connectivity is also provided (Chapter 8, Scenario III).

Documents that the stakeholders produce often constitute different points of view on the system
under development. As a running example throughout this thesis, we use a scenario, where a UML
model of a software application is being collaboratively developed by a number of software engineers.
In this example, we check well-formedness of the model, where the consistency relations of interest to
us are the required relations between elements of the model. These relations stem from static semantic
constraints, demanded by the UML standard.

Stakeholders concurrently undertake development of groups of model elements, which are
represented as documents at stakeholders' individual workstations. Throughout development,
stakeholders introduce modifications to the existing documents, add and delete documents from the
project. Movement of documents between network hosts is considered as a composite of the addition

and removal actions.
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3.2 Specification of Inter-Document Relationships

Consistency relationships between documents should be expressed in a declarative form. The
specification of relationships should not refer to particular document instances, but to document
types.

Both requirements formed a construction base for the consistency checking framework XLinkit
[Nentwich, et al. 2000b]. This thesis builds on the infrastructure, provided by XLinkit, and therefore we
use these requirements as a common "denominator" for the distributed consistency checking architecture
as well. Because this requirement is satisfied by the underlying XLinkit framework, below we give some
brief detail as to how this requirement is implemented.

Specifying consistency relationships between document types is a natural way to provide a
generalization of the specified relationships. Within an application domain, where a set of document
types and their structure have been established, satisfaction of the requirements provides flexibility and
capability of reuse of the declarative consistency rules between individual projects within the domain.

In the XLinkit consistency framework, a consistency rule language is used for expression of
consistency relations [Nentwich, et al. 2000b]. The language uses first-order logic, which gives it
sufficient expressiveness to specify a variety of constraints in the software engineering domain
[Nentwich, et al. 2001a]. The XLinkit rule language fulfils both requirements, because constraints are
specified between particular elements of document types. Representation of documents in XML requires
a document type definition DTD, restricting otherwise arbitrary element sets and specifying allowed
element trees. For navigation of those trees, XPath [Clark and DeRose 1999] expressions are used in the
rule language constraints.

In a running scenario throughout this thesis, we use a set of consistency rules, specified in XLinkit

language. The rule set [Appendix A] describes UML well-formedness constraints [OMG 2000b].

3.3 Location of Consistency Rules and Their Applicability

Consistency rules should be stored and accessed locally to the document, which they are
applicable to. In other words, when a certain consistency rule is applicable to types of
documents stored at a certain location, it should be made available at that location.

This requirement for consistency rules follows the principle of local access to documents. At any
network host, containing documents and relevant consistency rules, all intra- and some inter-document
checks can be carried out within the limits of this host. Resulting autonomous operation and increased
fault-tolerance with respect to network failures serve as a basis for support of "disconnected operation".

The requirement is conceptually similar to the principles of the ViewPoints framework, where in-
ViewPoint and inter-ViewPoint consistency constraints form a part of each ViewPoint.

A policy defines applicability of consistency rules. Applicability should not be confused with
relevance of a consistency rule to a particular document, where the latter is dependent on the

document type and the consistency constraint.
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Policies [Chapter 2, 2.2.4] enable or disallow execution of a consistency rule for a particular
document and can define inter-dependency of rules by specifying a sequence of rules to be executed.
Policies would be . used in a situation, when in addition to execution of relevant consistency rules, an

additional level of abstraction in specifying rules for execution becomes necessary.

3.4 Distributed Document Monitoring and Change Identification

Each document, participating in the managed project, should be monitored for occurrence of
events, such as document changes. Removal and addition of new documents from the managed
project should also be monitored.

When a document change event is identified, it must be determined, which elements of the
document's structure have been changed, and which have been added or removed.

These requirements stem from the need to provide continuous, real-time monitoring of documents
and identify the relevant changes once they occur. Fulfilment of this requirement sets a basis for
construction of a '"reactive" consistency checking system, where consistency checks can be
automatically executed, following document changes. Reactivity would enable a software development
environment to provide continuous feedback to the developers by identifying inconsistencies and issuing
appropriate notifications. XLinkit does not provide an infrastructure for reactive checking: developers

must submit documents for checking to a central server.

3.5 Timing of Consistency Checks

Consistency checks occur at appropriate points in the document production process, as a result
of events occurring on documents.

This requirement expands on the requirement of "reactivity". In addition to events — document
changes, addition and deletion of documents, which can be used to trigger consistency checks,
developers must be able to request execution of checks at certain stages of the development. In a
common example, comprehensive checks of all consistency rules would be executed at the end of each
project iteration. Request for consistency rule execution is thus another type of event, which can be used

to control timings of execution of consistency checks.

3.6 Incremental Consistency Checks

Consistency checks should be carried out incrementally.

Non-incremental checkers execute all consistency rules on all documents, regardless of the nature
and extent of modifications made since the last consistency check. Current implementation of XLinkit
operates in this manner.

At the same time, a small change in a single document should not cause a need for execution of all

rules, as we expect a large number of consistency rules and documents in any software engineering
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application. An incremental check in this case would execute only those consistency rules, which are

relevant to the particular change.

3.7 Relevance of Consistency Rules

A mechanism should be in place, which would identify relevance of a consistency rule to a
given document, or to an element of the document's structure.

A first step in incremental checking, identification of relevant rules must find out whether a
consistency relationship, represented by a consistency rule, has anything to do with a given document or
particular elements of its structure. A particular implementation of the incremental checking algorithm
would be dependent on the language used for expression of consistency rules and on the structure of
documents. Chapter 5 is dedicated to description of the proposed incremental consistency checking
approach, which serves as the underlying consistency checking framework of the distributed software
agent architecture.

The basis of an incremental checking concept is expressed in the requirement for identification of
relevance of consistency rules and the requirement for identification of document changes.

Among numerous concurrent changes occurring to the documents in a document set, the
incremental checker tracks each individual change and identifies particular consistency rules, which are
relevant to that change. Execution of relevant rules across the complete set of participating documents
determines the status of consistency relations, in which this particular document is involved. Among
numerous relations established as a result of an incremental check, all relations, involving changed

elements, will be present. It is precisely these relations we consider of importance to our stakeholders.

3.8 Document Access Locality

Access to documents and retrieval of document elements during a consistency check should
occur locally with respect to the document, rather than from a remote host across the network.

Architectural de-centralisation and a number of other advantages (i.e., improved security and
scalability) justify this requirement [Finkelstein and Smolko 2000, Smolko 2001]. In this section, we
briefly point out some significant advantages of access locality, while a performance evaluation of an
implementation of the proposed approach is given in Chapter 10.

Large software engineering projects contain documents of significant size; therefore, it is most often
impractical to transport these documents to a checking server for every consistency check. In addition,
intellectual property is better protected when access locality is deployed, since, unlike centralised
checking of distributed documents, local checking at distributed locations ensures that contents of

documents involved is never transmitted across the network in the complete form.
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3.9 Representation of Results of Consistency Checks

Results of consistency checks must provide diagnostic information on the found consistencies
and inconsistencies. This may take the form of references to related documents and the relevant
elements of these documents.

The results of reactive incremental checks are a step in enabling pro-active response to detected
inconsistencies. In a fully pro-active scenario, automatic (or user assisted semi-automatic) inconsistency
resolution process would follow identification of inconsistencies.

In this thesis, we take a view of toleration of identified inconsistencies, originating from [Balzer
1991], and concentrate on providing developers with diagnostic information, which is an outcome of a
consistency check. Based on this information, developers may choose to resolve inconsistencies by
introducing further changes to the documents when appropriate.

This requirement underlies the XLinkit consistency checking framework, where consistency links
are constructed automatically and are a result of consistency checks [Ellmer, et al. 1999, Nentwich, et

al. 2000b].

3.10 Update of Results of Consistency Checks

Results of consistency checks must be kept up to date. Timings of updates depend on the
development process.

Updates of consistency links are carried out by re-checking consistency rules on a participating set
of documents. This mechanism keeps established consistency links up to date with any document
changes. Proposed incremental checks are triggered by individual document changes, but we would not
wish to constraint developers to a reactive link update mechanism only. In practice, links should be
updated at least after completion of every stage in an iterative development process.

In the distributed software agent architecture, requests for consistency checks are handled through
system events. Document changes are represented as events, and the distributed watchdog monitor
[Finkelstein and Smolko 2000] serves the basic purpose of identification of changes occurring on the
documents. In a similar manner, scheduled consistency link updates are triggered by scheduled events.

The following requirement is concerned with notification and processing of events.

3.11 Event Notification and Processing

An event-oriented consistency checking system should provide facilities for distributed event
notification and processing.

Below we outline events of most relevance to the status of consistency constraints, which occur in a

distributed consistency checking architecture. This event list is not as exhaustive as the list of system

events of the implementation prototype (Chapter 9), but gives a practical highlight of the concept of an

event within the scope of this thesis.
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- A change has occurred on a resource and the document has been saved.

- A new resource has been added to the system, deleted or moved in the distributed system.

- Aresource has been found consistent or inconsistent with respect to a constraint.

A number of other events are characteristic to a particular implementation of the software agent
architecture.

By defining roles of different architectural components, the distributed consistency checking
architecture delegates to different components the monitoring of conditions, which trigger the events,
notification of the events to relevant components, and processing of these events. In our implementation
of the architecture, events are mapped to messages, which are exchanged between components.

Event-orientation enables loose coupling between components. Message processing interfaces,
standardised across all components, ensure interoperability at the event notification level. Internal
structure of each component is then not relevant with respect to interoperability, as long as notified
events are processed and responses are generated according to an established message sequence
(protocol).

In contrast to loosely coupled event-oriented components, the consistency checking infrastructure of
XLinkit is based on a tightly integrated set of classes. A public interface allows a developer to specify a
set of consistency rules and a set of documents. Finer granularity access is not supported; modification
of source code was required in order to enable use of inner XLinkit objects by externally built
components. However, tight integration has enabled XLinkit developers to achieve performance
benefits, since class interfaces are optimised to data formats exchanged and no conversion is required
between classes.

The scope of this thesis is consistency checking in the distributed setting, and our goal was to build
a system with a degree of interoperability between heterogeneous components. At design time,
distribution overhead was considered an inevitable performance impediment, and conversion between
raw data and serializable events was thus tolerated. Performance evaluation of the implementation in
Chapter 10 has confirmed this hypothesis.

In addition to interoperability advantages, event-oriented architectures benefit from flexibility of re-
configuration. Due to the asynchronous nature of event notification, components can be added or
removed at system runtime, without a need to re-start the system as a whole. Deployment of persistent
event queues provides support for disconnected operation, which is a beneficial advantage for
intermittently connected or mobile stakeholders. Disconnected operation ability and re-configuration

flexibility improve overall fault-tolerance of a distributed system.

3.12 Summary

In this chapter, we have set out the main functional requirements for the distributed consistency
checking architecture that we construct in this thesis. In the next chapter, we define software and mobile

agents and consider their characteristics. We survey existing software agent systems, and outline
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advantages that agent systems possess in contrast with traditional distributed architectures. In fulfilment
of the functional requirements for a distributed consistency checking architecture, we draw on

advantages of software agency and mobility.
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Chapter4 Software Agents and the Mobile
Agent Paradigm

Design and deployment of agents is a rapidly expanding field of interest, research and development
within mainstream computer science. In this chapter, we introduce agents as both a technical concept
and a term and show that although there is no recognised and agreed upon definition for the term
agency, this concept can be defined through its common characteristics, or features.

There are different views on mobile agent technologies. The first view looks at the motivations
behind the agent paradigm, highlighting some of the fundamental technologies that are emerging. The
second view presents sets of characteristics, which agents could and should possess. These are
requirements for software agents and mobile agents, which are going to be deployed in the distributed
consistency management architecture presented in Chapter 6. The final view on mobile agents details a
comparison of agents according to the types of actions and different behaviours that are expected of
them. We follow this view by carrying out a review of the mobile agent frameworks, presented in this
chapter, and by mapping of the features of existing mobile agent engines onto the specified requirements
for a mobile agent framework, suitable in the context of this thesis.

This chapter is constructed to the following outline. Before we give an overview of existing mobile
agent systems and outline the requirements for a mobile agent, we set the scene by expanding on the
definition of software agency through classification of agents' features. Then, we consider advantages
and disadvantages of mobile agents' use, and provide our point of view on why use of mobile agents in
the distributed consistency management architecture is beneficial. We present a taxonomy of mobile
agent frameworks, where a number of agent systems are evaluated. We outline a brief set of
requirements for a mobile and software agent framework to be used in an implementation of the
software agent architecture. Finally, based on the requirements, we make a provision for selection of
IBM Aglets as the agent framework of choice for the development of the distributed consistency

management system.

4.1 What is a software agent?

The task of giving a general description to a software agent is difficult in the absence of a common
definition. It is not always clear what comprises an agent and what does not, which often gives grounds

for loss of coherence

The most basic understanding of an agent is "one who takes action" [Laurel 1990]. [Kay 1984]

expands the notion with goal-orientation of agents:
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... when given a goal, [an agent] could carry out the details of appropriate computer operations and
could ask for and receive advice, offered in human terms, when it was stuck. An agent would be a

“soft robot”, living and doing its business within the computer’s world.

Further, agency has become pictured as central to the concept of artificial intelligence (Al)
[Wooldridge and Jennings 1995]:
... One way of defining Al is by saying that it is the sub-field of computer science, which aims to

construct agents that exhibit aspects of intelligent behaviour.

The problem of producing a definition of agency is in part a result of a wide variety of subject areas
in which agents are being applied. Agents and agent technologies are deployed in such diverse fields as
telecommunications to assist creating of electronic market places [Magedanz, et al. 1996], personalised
shop assistants [Geddis, et al. 1995b], tailored information retrieval [Lieberman 1995] and human-
computer interaction [Chin 1991].

Requirement for a software agent’s characteristic of intelligence typically appears in modern agent
definitions. In practice, however, software agent applications achieve varying levels of complexity of the
agent's decision making engine. Most notably, agent intelligence is exhibited in the agent's characteristic
— autonomy. Autonomous software agents execute in order to achieve a certain goal on behalf of the
user. Autonomy is a unifying characteristic of existing agent applications, and thus, we believe,
constitutes an important requirement for identification of a software agent.

In distributed computing environments, achievement of goals often requires a software agent to
access distributed information resources. Traditional distributed computing architectures rely on mobile
data being retrieved from distributed resources and transferred for processing elsewhere. By contrast,
the concept of mobile code advocates migration of code across the network and its execution at the
locations, where required data is available.

Software agents, which use code mobility to effectively achieve their goals in distributed computing
environments, are referred to as mobile agents. This concept of having migrating software agents to
carry out tasks on behalf of their owners is a relatively novel paradigm for network-enabled distributed
computing.

Despite different application areas and implementation details, mobile agent applications share
common features. In terms of purpose, these applications seek to utilise a network of distributed
resources (e.g., knowledge and data bases, documents and other information resources) in an
opportunistic way in order to solve a problem for an end-user. In terms of architecture, a mobile agent
follows a static or a dynamically generated itinerary, which specifies a list of locations to be visited and
actions to be carried out at each location in order to achieve the agent's goal.

An already broad range of application fields and implementations of software agents continues to
expand, the question of definition of agency shifts from 'what are agents', to questions 'what typifies
agents' and 'what are their common features', which are addressed in the following section.
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4.2 Characteristics of software agents

Characteristics of software agents in a way define the term 'software agent' due to lack of a formal
common definition. The characteristics are classified into various notions of agency [Franklin and
Graesser 1997, Nwana and Wooldridge 1996]. In this section we describe weak and strong agency
notions, by setting out the characteristics that typify them. These notions set a basis for distinguishing
feature sets of software agent frameworks, contrasted later in this chapter, and are referred to in the

remainder of the thesis.
4.2.1 Weak Agency

An agent is considered to adhere to a weak notion of agency if it supports all of the following
characteristics.

Autonomy. The life span of an agent typically includes a "launch" or instantiation, and a period of
activity. Upon instantiation, an agent is assigned a goal, describing the bounds and limitations of its task.
In the period of activity, the agent should be able to operate independently from the user, taking steps to
achieve the goal autonomously, "in the background" [Castelfranchi 1995]. In this regard, an agent needs
to have control over its actions, so that it can develop a contingency plan, should any planned action fail.
In such situations, an agent must be able to change (to a certain limit) or extend its goal, and make
rational decisions based upon the information it has gathered.

Communication ability. In order to query the agent's environment or make changes to it, an agent
must possess the ability to communicate with the outside world [Genesereth and Ketchpel 1994,
Mayfield, et al. 1995]. This interaction can exist at a number of levels depending upon the specifics of
the agent’s function, but typically an agent would need to communicate with other agents and the local
environment (to discover or manage information), as well as with the users.

Reactivity. Agents need to be able to perceive their environment and respond to changes to it in a
timely manner, where response would depend on an agent's goal. As an example of a reactive agent,
consider a watchdog agent with a task of monitoring the file system on a certain network host and
informing a user when changes occur to a particular set of files. This goal implies, that the agent has
knowledge about the access mechanism to the respective file system and is able to track the state of and
changes in the environment.

Pro-activity. When trying to achieve a goal in a changing environment, a software agent must be
able to take the initiative. Pro-activity it related to autonomy; in an example when a planned action fails,
an autonomous agent will generate contingency plans, and a pro-active agent would then execute these
plans, and provide the results of execution as a feedback to the planning algorithm. Thus, pro-activity is
demonstrated through appreciation of the state of agent's environment, and by exploiting the current
state effectively in achievement of the agent's goal.

Supporting the weak agency in a software agent application is not a trivial task. However, a number

of software agent frameworks that we review in this chapter allow us to construct weak software agents.
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In development of a distributed software agent architecture, we are building architectural components on
weak agency features. We have introduced those in this section, and will refer to them in the discussion

of the software agent architecture and throughout the thesis.
4.2.2 Strong Agency

Strong agency expands the notion of weak agency and includes agent characteristics, which are
usually attributed to humans. Strong agency refers to ontological concepts of knowledge, intention and
goal-oriented obligation and extends beyond the requirements for weak agents with the following
characteristics.

Intelligence. Intelligence (and thus, reasoning and understanding) may be attributed to both weak
and strong agents, to a different extent. It determines how agents behave in different situations and react
to certain events. In practice, intelligence is associated with an ability to learn, and development of an
artificial personality through learning.

Learning in the notion of agency is achieved through storage of facts and experiences, acquired by
an agent during its lifespan. Strong agency implies that such knowledge can be shared and improved
overtime by communities of software agents.

Situatedness. Software agents execute in the real world, rather than in a model of the environment.
Any model or description, no matter how extensive, can rarely exhaustively cover the span of real life
situations. Situated agents have an ability to adjust the model of the environment, which they follow in
their execution, for the model to be consistent with the real world.

From the described strong agency features, the distributed agent architecture we develop in this
thesis makes use of learning, where multiple agents co-operate and exchange previously acquired
knowledge. Construction of an intelligent agent personality and full support for situatedness is outside of
the scope of this thesis. In general, support for strong agency in practical applications typically requires
substantial a-priori knowledge of the application domain before the underlying agent framework can be
constructed. Use of generic Al engines in software agent applications is not common, because the

decision making system needs to be "trained" to the particular application domain.

4.3 Agent Mobility

A stationary software agent executes only on the system, where it begins execution, and interacts
with other systems by means of messaging or other transport [OMG 2000a]. By contrast, a mobile agent
can be described as having the unique ability to transport itself from one system in a network to another.
This ability permits an agent to move to a destination system that contains an object, with which the
agent wants to interact [OMG 2000a].

Agent mobility is noted as an ability of a software agent to move between different network hosts in
fulfilment of its goals [Gray 1996b]. Research in mobile agents, agent architectures and applications

continues to be a flourishing field, dedicated to investigating the potential of this new paradigm
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[Mobility 2001]. Despite the popularity, the research field is only beginning to gain maturity [Picco
1998]. '

Similarly to stationary software agents, there is no commonly agreed definition for a mobile agent.
In this thesis, in consistency with a software agent's definition, which requires autonomy, we follow the
definition of a mobile agent from [Papaioannou and Edwards 1999] that similarly requires migration
autonomy:

A mobile agent is “a software agent that is able to autonomously migrate from one host to
another in a computer network.”

With respect to mobility itself, mobile agent frameworks provide support for the two following
characteristics of mobile agents: strong and weak mobility.

Strong mobility is characteristic of mobile agent systems, which allows an agent to transfer its code
and the state of execution of this code with all relevant data and the program counter. Execution of an
agent is suspended during migration and continues at the destination host at exactly the point, where it
was suspended.

Mobile agent systems supporting weak mobility automatically transfer the agent's code only. The
execution state and any data used by an agent have to be programmatically packaged up (serialized)
before migration and de-serialized after arrival at the destination host. It is the programmer's
responsibility to provide data serialization and structure the code in a way, which would enable code
execution to continue where it was suspended by migration. The majority of mobile agent frameworks

are able to provide weak mobility.

4.4 Distributed System Construction With Mobile Agents

In the previous sections, we have given a definition to software agency and mobile agent paradigm
through their behavioural characteristics. This section builds an architectural contrast of mobile agents
with traditional distributed middleware. We discuss location transparency supported by distributed
middleware, location awareness and resource access locality inherent in the mobile agent concept. We
argue, that mobility inherits a number of advantages from locality that are significant for construction of
distributed architectures. Further, we outline how we can capitalise on these advantages in development

of a distributed architecture for consistency checking.
4.4.1 Traditional Distributed Systems

In this thesis we consider a distributed system as a collection of autonomous hosts, which are
connected through the network as defined in [Emmerich 2000]. Hosts and components operate a
distribution middleware, which enables co-ordination and resource sharing within the system, such that
users and components perceive the distributed system as a single, integrated computing facility.

The central abstraction of modern distributed systems is location transparency, with inter-

component communication being achieved via an intermediary request broker. The broker creates a
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notion of presence of distributed components executing on the same machine. Remote calls to
distributed components and exchange of data between these components are handled by the broker. The
broker establishes a client/server relationship between the interacting parties, making it unnecessary for
the parties to be aware of each other's location.

The underlying communication mechanism supporting contemporary distributed systems is mobile
data. Remote Procedure Calls (RPC) [Colouris, et al. 2000] was a historic step forward from inter-
process communication methods in that RPC facilitates a request-reply interaction between two
distributed processes [Simon 1996]. The calling procedure executes in one computing machine, and the
called procedure executes in another [Cerutti and Pierson 1993], whilst data is exchanged between the
two communicating parties. The RPC infrastructure attempts to create an illusion that the processes exist
within the same virtual machine.

The RM-ODP model [Linington 1995] was an attempt to unify proprietary RPC systems. Its
specification extends the concepts of transparency first visited by RPC, and identifies eight separate
forms of transparency [Colouris, et al. 2000]. Among those are location transparency (enables
distributed objects to be accessed without knowledge of their location) and access transparency (enables
distributed objects to be accessed with the same operations).

Since RM-ODP, a number of distributed object frameworks have been developed on the RM-ODP
principles: Object Management Group's (OMG) Common Object Request Broker Architecture
(CORBA) [OMG 1995], Remote Method Invocation (RMI) [RMI 1998] and Distributed Component
Object Model (DCOM) [Box 1998, Redmond 1997]. All of these frameworks base on and the concepts
of location and access transparencies, and make use of mobile data.

Despite apparent success of traditional distributed systems, [Waldo, et al. 1994] argues that objects
in a distributed system are intrinsically different to those in a local system and therefore must be treated
very differently. Waldo et al. identified four major problem areas outlined below, which are inherent in
the architecture of traditional distributed systems.

- Partial failure is a significant problem in distributed computing, where if a programmer is to
take advantage of location transparency, the behaviour must be the same for local or remote
systems. [Sloman and Kramer 1987] argue, that this can be costly and difficult to achieve,
especially in the face of failures.

- As a program cannot control the invocation order in a sequence of calls, concurrency control
measures have to be introduced, which add overhead to the programming model.

- Call types for local and remote memory access have to differ. Processes cannot share the same
memory space Or use pointers.

- Latency of remote calls can degrade performance in orders of magnitude in certain applications.
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4.4.2 Mobile Agents

One significant advantages of the mobile agent paradigm is enabling of the access locality. In
contrast with RPC-style middleware, mobile agent architectures do not mask location information from
the communicating components, but instead make it apparent. There is no request broker to mediate
communication; one component requires explicit knowledge of location of another object in order to
engage in interaction. In addition, instead of accessing another component across the network, a mobile
component migrates to the relevant host and interaction occurs locally at that host.

The mobile paradigm allows components to decide how to make most effective use of access
locality, and thus to partially alleviate some of the problems of traditional distributed systems outlined
by [Waldo, et al. 1994]. A comprehensive architectural comparison between mobile agents, remote
computation, code on demand and client-server models [Papaioannou 2000] argues that location and
access transparencies are not an abstraction of a single virtual machine, distributed across numerous
hosts. Mobile agent paradigm is considered a successful adaptation of inter-process communication to
distribution, since local communication, a natural consequence of mobility, allows programmers to take
advantage of traditional programming concepts in inter-process communication.

Major differences between the mobile agent paradigm and traditional distributed systems have been
highlighted by [Picco 1998]. Mobility is a choice of an application developer or of the agent itself during
runtime, instead of being unilaterally decided upon and triggered by the middleware framework.
Programming is location-aware at application design time, and location information is available to the
components at runtime. In this respect, mobile agents are better prepared for internet-scale execution,
which necessitates coping with low bandwidth, network failures, latency, questions of trust and inherent
heterogeneity. In addition to load balancing, mobile agent systems can sustain disconnected operation,
demonstrate autonomy, fault-tolerance and provide certain flexibility.

The following section elaborates on the mentioned advantages of the mobile agent paradigm and

considers them in a context of construction of a distributed consistency checking architecture.
4.4.3 Use of Mobile Agents: Pros and Cons

It would be way beyond the scope of this thesis to draw a final conclusion to an argument on the
best approach to construction of a distributed system. As outlined in introductory Chapters 1 and 2, we
focus instead on building support for distributed consistency checks.

The previous sections of this chapter defined software agency and carried out a comparison of
traditional distributed systems and mobile agent paradigm. This section follows suit and considers
significant advantages and disadvantages of mobile agents with respect to construction of a distributed

architecture for consistency checking.
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Simpler architectural design

Mobile agent architectures are built on the principle that a service is executed at the location where
it is required. Successful construction of a mobile agent necessitates its construction in such a way,
which enables the agent to take into account the information about its location at runtime. Having
designed an agent, which is able to perform its goal at a given location, and adding itinerary planning
facilities to this agent enables the agent to function in a distributed environment. A single agent design
can then be used to provide the required service at numerous locations.

The application domain of distributed consistency checking maps well onto the mobile agent
paradigm. As we discussed in Chapter 2, distributed consistency checking involves multiple potentially
distributed stakeholders and their views on the developed system. In practice, stakeholders store and edit
representations of their views at numerous hosts, distributed across the network. Once a view changes, a
stakeholder would delegate the consistency checking task to an agent. This autonomous agent would
undertake migration across the network, visit the hosts, where related views are located, and come back
to the stakeholder with a report on any found inconsistencies.

In addition to the advantage of architectural design, mobile agent approach to distributed
consistency checking is able to capitalise on numerous additional advantages, most importantly from the
scalability point of view due to access locality and local information exchange efficiency. We elaborate

on these advantages below.

Self-containability of mobile agents

Mobile agents transport the data, which they collect in achievement of their goal, with them during
migration. When all necessary data has been collected by an agent and access to resources at the current
location is no longer required, data processing can occur at any host in the network, which provides the
agent with an execution environment. This advantage accounts for certain flexibility in distribution of
agents at runtime.

Self-containability gives rise to the capability of mobile agents to exchange collected information,
which facilitates achievement of their goals. Multi-agent co-operation and information exchange bridges
the gap between the mobile agent paradigm and the mobile data approach in traditional distributed
systems.

Multiplicity of related documents in a distributed consistency check suggests existence of numerous
mobile agents, working towards the same goal of checking a consistency relationship between the
documents. In such a case, co-operation between the agents is essential for carrying out the distributed

consistency check in an efficient manner.

Stability
During its operation, the mobile code is less dependent on the network than the traditional code that

relies on some form of remote calls. In this respect, mobile code is potentially more stable, because
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issues of unsatisfactory network quality of service are not relevant while an agent operates on local
resources at a network host.

Mobile agents can also be replicated and execute concurrently at different hosts to improve fault
tolerance. Flexibility of choice for the information processing location in a mobile agent application
allows us to construct an architecture with multiple points of control and avoid the problem of a single
point of failure, a common characteristic of centralised systems [Emmerich 2000].

We argue, that the increased stability of the distributed system, gained by processing locality, and
presence of multiple points of control in a mobile agent system are essential in the application domain of
a distributed consistency checker. The described existing architecture for centralised consistency

checking [Nentwich, et al. 2000b] (Chapter 2) is not capable of offering this required level of stability.

Disconnected operation

As an additional benefit of local access to resources, mobile agents are capable of disconnected
operation. While all required data is available at a network host, a mobile agent will continue to carry on
its uninterrupted execution at this host without requiring any network connectivity.

Disconnected operation is particularly suitable for mobile users, and those working from home with
intermittent network connections. Its advantage is in enabling a user to specify a goal for a new agent
while disconnected, instantiate an agent and launch it during a brief connection session and then
immediately disconnect. Agent's results or feedback are then collected upon a subsequent re-connection.

We foresee a number of users of a distributed consistency checking application operating from
mobile and thin clients with intermittent network connectivity. It is also important for the users of
"thinner" clients to be able to execute consistency checks on a different workstation for computationally
intensive consistency checks, and the disconnected operation feature gives them such flexibility.

Disconnected operation is also beneficial for local area network (LAN) and larger, internet-wide
applications. Should a network link between several groups of users fail, near-normal operation can
nonetheless continue within each group, while any transactions between groups are queued for
resolution after the connection has been restored. While management of transactions and smooth
operation of re-connected parts of the system is a complex issue in itself, mobile agent's support for

disconnected operation is a useful step in the direction of enabling this desired functionality.

Added simplicity of upgrade for installed code base

When evolution of code base and expansion of application functionality requires upgrade of
existing code, the concept of mobile code is an efficient solution. A number of issues have to be
addressed, primarily interoperability between code versions, and an ability of mobile agents to share the
same communication protocols and co-operation assumptions. Apparent security concerns need to be

addressed with respect to upgrade; we discuss security in more detail below.
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Bandwidth savings

Instead of transferring unprocessed data over the network, mobile agents move logic with essential
data and benefit from local access to a data source. The distributed consistency checking framework has
to be able to process large volumes of data, distributed across the network. In this framework,
consistency rules specify selection of sets of document elements from the input data, which need to be
collected before consistency status of a relationship can be computed. These element sets are relocated
between distributed hosts during a consistency check, and they are normally in orders of magnitude
smaller than the original documents (although this depends on the nature of consistency relations being
checked).

As a contrast, in a centralised architecture, all input data needs to be downloaded onto a central
location before a consistency check can commence [Nentwich, et al. 2000b]. Naturally, significant
bandwidth and latency savings can be realised in certain configurations with a mobile agent architecture

in comparison to a centralised architecture.

In addition to the advantages of mobile agents stated above, which can be readily related to the
domain of distributed consistency checking, core domain-independent advantages of mobile code usage
have been identified in [Chess, et al. 1997]: "individual advantages of mobile agents ... rest on relative
technical and commercial factors compared to alternative methods". Discussion of these domain-

independent technical advantages of mobile agents follows.

Scalability

"As a method of supporting simple queries and transactions, mobile agents benefit from the
scalability inherent in concurrent execution and messaging. The asynchronous nature of mobile agents
appears likely to enable higher transaction rates between servers. However, a need to execute agents and
to support rigorous security around the agent execution environment could become significant
computational loads in themselves. Thus, a question whether agent-based computing itself is efficiently
scalable will depend on the extent to which service providers permit resident agents to work on their
servers, thus providing computational capacity to the users. This kind of service is expected to become a
business of the future [Chess, et al. 1997]."

The software agent architecture that we develop in this thesis deploys mobile agents for execution
of distributed consistency checks. Scalability of the approach is determined on an evaluation of the

model and the implementation prototype of the architecture.

Scripting

Scripting, used in programming of mobile agents provides better support for heterogeneous
environments. The use of script language for program and data exchange enables the program and data
representation to be independent of the platform, once the script environment has been ported to all
necessary platforms. With a similar effect, the Java programming language provides a convenient

47



abstraction of a virtual machine, and is therefore most commonly used for cross-platform execution of

mobile components.

Security

Mobile agent security adds an extra dimension to security issues, raised by inter-process calls on a
local machine and the issues, relevant to remote calls and mobile data in traditional distributed systems.
As mobile code is a relatively novel and developing field, existing levels of security are most often
considered as a disadvantage of mobile agents and a reason for slow adoption of the technology in real
world applications [Milojicic 1999].

The majority of mobile agent frameworks implement mobile code security features, although
providing varying levels of functionality and granularity for security policies. Review of prominent
mobile agent frameworks further in this chapter and in Appendix D contains a brief description of
security mechanisms deployed in the frameworks.

The mobile agent paradigm is able to offer better data protection than the mobile data approach,
deployed in centralised and traditional distributed applications. When migrating between network hosts,
mobile agents transport only the essential, previously collected data. For the distributed consistency
checking application domain, as argued in the section on bandwidth savings above, the transported data
forms a relatively small portion of all data, locally available to mobile agents at distributed network
hosts.

In a mobile agent system, as a result, complete documents are never transmitted across the network
in a single transfer. Only smaller sets of document elements are transmitted with the agent in a serialized
form. Therefore, if a security is breached and transmitted data has been decoded, it is still not possible to

reconstruct source documents from the information transmitted.

Interoperability

Very limited interoperability between mobile agent frameworks from different vendors is provided
at the time of writing. There is no agreed standard yet on a common API for mobility, although an OMG
standard, Mobile Agent Facility (MAF) [OMG 2000a] has recently emerged. We further discuss in the
review of mobile agent systems below the IBM Aglets [Lange and Oshima 1998] mobile agent
framework, which is to a large extent compliant with the principles of MAF. As IBM has actively
participated in the standardisation process, Aglets are MAF-interoperable at the level of features and

available agent management and class transfer functionalities.

4.5 Inter-agent communication

This section briefly describes the technologies, which allow distributed software agents to carry out

of their tasks effectively by coordinating activities through communication.
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4.5.1 Communication Primitives

The basic building blocks for inter-agent communication are constituted by communication
primitives [Lux, et al. 1993], drawn from speech act theory. These primitives are targeted towards
expression of types of communication and co-operation objects. [Haugeneder and Steiner 1998] came up
with generic primitives for expression of goals, plans, and agents' tasks. We briefly describe these
primitives below, as they form a general basis for agent-to-agent messaging.

* Propose — a proposal starts or continues communication among agents about an object of co-
operation. The knowledge transferred by a proposal to other agents is hypothetical, as agents
sharing this knowledge have not yet committed to it.

*  Accept —indication of commitment to the co-operation object.

* Refine — an agent proposes a further instantiation of the co-operation object.

* Reject — indication of failure to commit to the co-operation object.

* Modify — a counter-proposal of an altered co-operation object.

* Query — a query for arbitrary knowledge.

* Inform — the answer to a previous information request or broadcast of a new knowledge.

The software agent architecture for distributed consistency management constructed in this thesis is
oriented on processing and notification of events. The described co-operation primitives provide a
relevant communication abstraction between architectural components. For instance, a large part of
communication between agents can be abstracted by inform and query primitives. Negotiation between
software agents involves task assignment, thus propose/accept/reject, refine and modify primitives are
used. Although message names (or "types") in the implementation of the architecture differ from the
names of primitives, message goals correspond to the discussed classification [Haugeneder and Steiner

1998].
4.5.2 Multi-agent Co-operation

So far in this chapter we have considered agents working independently, each of them having
certain features, roles and goals. In the distributed environment, however, agent-to-agent communication
is essential.

Almost from the very creation of the concept of an agent, the agent community has been looking at
the issues of inter-agent co-operation. From the perspective of Distributed Artificial Intelligence (DAI),
the emphasis of research is on collections of agents and their interaction rather than single agents. The
central problem underlying the design of agent-based systems is characterised by the following question
[Haugeneder and Steiner 1998]:

"How can individually motivated, independently designed computational artefacts, i.e., agents,
act together to achieve some (at least partial) common goal in a genuinely distributed problem

space?"
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Co-operating agents need to know what they are co-operating about and how to co-operate
efficiently. Depending on an agent's goal, and based upon the set of actions an agent can perform, it can
develop a number of plans for achieving this goal. In DAI, co-operation occurs not only by carrying out
individual actions together, but also by executing shared plans as well as actually planning together
[Haugeneder and Steiner 1998].

Carrying out a distributed consistency checking task by multiple mobile agents will necessarily
require inter-agent co-operation. As one example, due to symmetry of consistency relations between
numerous documents, multiple agents may be pursuing the same goal of checking a relation, but
surveying distributed documents in a different sequence. In this case, allowing all such "redundant"
agents to proceed uninterrupted would waste resources, as each document would be surveyed several
times by different agents.

As a solution to this problem, we have developed a multi-agent co-operation mechanism, where
agent redundancy is detected through agent registration, goals of redundant agents are shared and a co-
operative plan is generated, which takes into account all previously surveyed documents. The co-
operation mechanism facilitates multiple agents planning together, and ensures that the shared plan deals

effectively with interdependencies between agent's actions, as required by [Haugeneder and Steiner
1998].

4.5.3 Location Service for Distributed Agents

Another aspect that needs to be considered is how agents can reference other agents during
communication. Referencing other agents through network or machine address seems to be a poor
solution in the distributed setting, where agents move frequently. Additionally, some form of registration
needs to take place when an agent moves, so that its current address can be resolved and located.

The heterogeneous communication model [Goose 1995] provides an addressing mechanism based
on agent registration. As agents migrate into a domain, they register their presence with a central
"router". The agent can also register the types of messages it wishes to receive from others. For example,
an agent could register to indicate that it had information on a particular subject and that it required
information on another subject. Due to the modular nature of the heterogeneous communication model,
the scope of registration extends over domains through a Domain Name Service-like lookup
mechanisms. Agent address resolution via a unique agent identifier is then carried out by a central
"router", or a number of interconnected agent name servers.

A convenient programming model of a persistent agent proxy is provided in some mobile agent
frameworks [IBM 1998]. The proxy acts as a "pointer" to an agent instance, regardless of the agent's
location. A distributed agent location mechanism underlying agent proxy implementation makes use of
agent post-migration registration, DNS-like lookup mechanism and cached agent location information.
Agent proxies hide the underlying implementation from a programmer, and enable the programmer to

take advantage of agent location transparency when sending messages to distributed agents.
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4.6 Taxonomy of Mobile Agent Frameworks

Currently available mobile agent frameworks differ in the mechanisms they provide to support code
mobility and communication. This section and its extension in Appendix D describe and analyze
interesting mobile agent systems with respect to agents, server, mobility, communication and security.
The systems were chosen because they represent interesting solutions in this field or for historical
reasons, as in the case of Telescript, which in fact coined the basic mobile agent concepts.

Current comparisons and surveys focus mainly on mobile agent systems implemented with Java
programming language [Karnik and Tripathi 1998, Kiniry and Zimmerman 1997, ObjectSpace 1997]
and principles of mobile code systems [Cugola, et al. 1996, Fuggetta, et al. 1998, Vigna 1997].

4.6.1 Structure of the Taxonomy

The taxonomy of mobile agent systems is provided in Tables 4.1 and 4.2, which cover relevant
issues in the scope of this thesis. The taxonomy tables are structured as follows. The general section lists
all supported execution platforms, programming languages for mobile agents and supported standards in
the area. The agent section considers whether an agent system supports unique agent identity and allows
agent cloning. The server section focuses on the execution environments for agents in terms of multiple
places where agents can execute, and resource control at the server to prevent excessive resource
consumption by visiting agents (e.g., memory, CPU resources, etc.).

The mobility section compares agent migration mechanisms (weak or strong mobility) and whether
a migration decision is taken by an agent or by a server. Further, the taxonomy table compares migration
mechanisms used to transfer an agent and the corresponding executable code. The code can be
transferred with agent's data or loaded from a given code base. The communication section focuses on
the local and distributed communication mechanisms implemented. The communication can be carried
out via messages, local method invocation (LMI), remote method invocation (RMI) and its variation
remote procedure calls (RPC), and via shared files.

The last section of the taxonomy lists important concepts for large-scale mobile agents systems.
These systems must support agent tracking to find and contact roaming agents; a service directory,
where agents can find interesting places to migrate to; fault-tolerance to prevent loss of agents in a
network; and support for disconnected operation, where agents can be dispatched from a partly
connected host and wait somewhere to be retrieved by the user.

Individual mobile agent systems, classified in the provided taxonomy, are described in [Appendix
D]. Where particulars of a discussed system are of interest, features of the systems are expanded in
relation to agents, servers, communication and security, within the scope of the taxonomy.

The features of the Aglets mobile agent framework are described "inline" in this chapter. The Aglets
framework is selected in this thesis for construction of an implementation prototype of the software
architecture. Selection of the framework follows in the Section 4.8 and is based on the features,

described in the taxonomy.
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4.6.2 Comments

All mobile agent platforms are built on interpreted programming languages, except MESSENGERS
(using a subset of C) and TACOMA (C, C++), which compile the agent into native machine code before
executing it. Java is the language of choice for newly developed agent systems.

In respect to interpretation of programming languages, agent systems can be classified into three
categories. First are the systems, supporting one interpreted programming language, where agents
execute on top of the language interpreter (Telescript and Java-based systems such as Aglets, Concordia,
Grasshopper, Mole and Voyager). Second are the systems, integrating multiple programming languages
on top of a common system core like D'Agents, and finally systems, which run agents individually, each
on top of their own language interpreter, such as MESSENGERS and TACOMA.

System interoperability, such as provided in the industry standard OMG MASIF [Milojicic, et al.
1998] or OMG MAF [OMG 2000a], is only supported in Grasshopper and Aglets, respectively, while
other agent systems (for instance, D'Agents) plan to support it in the near future. Since Voyager
architecture is essentially an object request broker architecture (ORB), Voyager supports CORBA and
DCOM.

All agents in those agent systems, where a directory service is supported, can be set a limitation on
their lifetime for visiting agent places, where mobile agents execute. In some of the systems examined
here, agents must obtain a fixed list of hosts to visit before they are launched. Systems like Concordia,
MESSENGERS, and Voyager can clone agents without any danger that the network may become
overpopulated by "immortal" agents.

All systems except MESSENGERS, which was developed for use in intranets, extend the security
management features of the runtime interpreter through predefined and configurable policies, protecting
agent places at the servers from malicious agents. The protection of an agent from actions of other
agents is provided in Aglets only. It has not been clearly stated for the other agent systems if their

security policies can also be used for this problem.
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Table 4.1. Taxonomy of mobile agent systems, part 1.

Molsnle Agent Aglets |Concordia| D'Agents | Hive Jini Grass-
ystem hopper
IBM |Mitsubishil D2t | MIT KV++
[Developed by Co Cor mouth Media Sun GmbH
P- p- College Lab
Supported . JDK 1.1, [ JDK 1.1,
Platforms JDK 1.1 | JDK 1.1 | Unix 12 12 JDK 1.2
J]_a Tcl, Java,
nguages Java Java Scheme, Java Java Java
Python
[Distributed App
Standards MO - i i .| MASIF
Support
Agent Identity + UID + + + +
[Cloning + + - + + -
Places per many one many many many many
Server
Igesource ) + + + + +
ontrol
Migration Type || weak weak strong weak weak weak
Migration
Decision agent agent agent agent agent agent
Migration sockets, oP,
Mechanism ATP, RMIRMI, SSL email RMI RMI RMI, SSL,
Code Migration [ code base | with data | with data | code base | code base | code base
Agent Tracking - - - - - -
Service local | local . local : MASIF
[Directory
|Fault-Tolerance + + + - - +
Igisconnected
. + + + + + -
peration

Legend: (+) — feature is supported, (-) — elementary or insufficient support for the feature is provided,

improvement can be achieved.
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Table 4.2. Taxonomy of mobile agent systems, part 2.

Mobile Agent | MESSEN- .
System GERS Mole Tacoma | Telescript | Voyager
Develoned b Univ. Univ. of ’Il‘JrnoII‘;s(c)j General Object-
pec by California | Stuttgart Magic, Inc. | space, Inc.
Cornell
Supported Sun0s | JpK 1.1 |UM¥Windol g, 1.9
Platforms ws NT
C, C++,
Java, Tcl, .
[Languages C Java Scheme, Telescript Java
Perl, Python
[Distributed App ) i i ) CORBA,
Standards Support DCOM
Agent Identity - UID, badges - telename UID
Cloning + - - - +
IPlaces per Server many one one many many
[Resource Control - + - + -
iMigration Type strong weak weak strong weak
[Migration Decision|| agent agent agent agent agent
igration SSL, IOP,
Mechanism sockets RMI sockets sockets RMI
lCode Migration with data |code server | with data | with data |code server
Agent Tracking - - - - +
Service Directory - local - - local
ault-Tolerance - - + - +
isconnected i + i i )
peration

Legend: (+) — feature is supported, (-) — elementary or insufficient support for the feature is provided,

improvement can be achieved.
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4.7 The Aglets Framework

The Aglets Software Development Kit (ASDK) [IBM 1998] was developed by the IBM Tokyo
Research Laboratory, Japan [Karjoth, et al. 1997, Lange and Oshima 1998, Oshima and Karjoth 1997].
An aglet is a mobile agile agent written in Java and named after the base class in the framework. ASDK
is one of the most commonly used mobile agent systems in industry [Milojicic 1999] and for electronic
commerce [Dasgupta, et al. 1999, IBM 1997].

The Aglets Framework consists of the following components. The ASDK library provides basic
migration and messaging functionality. Agent Transfer Protocol (ATP) is an application-level protocol
that extends HTTP and is used to transfer agents over the network. A visual Agent Manager (Tahiti) acts
as local agent server, and the Agent Web Launcher (Fiji) allows creation of applets, which execute aglet
agents and allow one to create and retract aglets from within a client's Web browser.

The Aglets framework implements the following basic concepts: agents (aglets), execution context,

migration, messaging, and policies.
4.7.1 Agents

An aglet is a mobile autonomous agent, which is based on the concepts of the aglet core and the
aglet proxy. The core is the essence of an agent and contains all of the aglet's internal data and methods.
The core also provides messaging interfaces, through which the aglet may communicate with its
environment.

The Aglet class defines the core of the agent, contains default properties and methods for a mobile
agent to control its mobility and its lifecycle. Upon instantiation, each agent obtains a unique agent
identifier. Additional agent properties are available through AgletInfo object. Agletnfo contains an
aglet's inherent attributes, such as its creation time, URL of the host-origin, URL of the code base, and
security attributes ("authority"). Dynamic attributes are also made available, such as agent's migration
time and the address of its current execution context.

Access to a number of public methods that an aglet provides may be obtained via a proxy object
called AgletProxy, through which interaction between aglets is carried out. This interface acts as a
handle of an aglet and provides a common way of accessing the agent. The interface enables the location
transparency feature of Aglets, though the agents are aware of their location and therefore can make
adjustments to efficiently communicate with remote resources. The AgletProxy interface is implemented
in the Aglets runtime library, and hides the underlying implementation of agent location discovery
process from the programmer.

Agent classes, extending the base Aglet class, can implement their own listener methods for events
and received messages. As examples of aglet system events — storage of an agent in a persistent storage,
agent migration and cloning — can be considered. An aglet can trigger its own termination, and can also

be terminated from outside.
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With respect to cloned agents, throughout this thesis we will be referring to the term "family of
agents", by which we mean a group of mobile agents — clones, which originate from a particular parent-
agent. During cloning, an exact copy of an original agent is created, and values of all agent class
properties are replicated. Consequently, newly created clones share the same goal with the parent agent,

hence the term "family of agents".

4.7.2 Servers

The Aglets server runs one or more execution environments where agents operate, called aglet
contexts. The AgletContext interface is used by an aglet to access core facilities of the framework, to get
information about its environment and to gain references to other agents' proxies.

The context also manages the lifecycle of an aglet. Agent lifecycle allows the programmer to
describe behavior an aglet should perform in reaction to system events. Cloning, migration and storage
of an agent have already been referred to above as example events, and Sections 4.7.5 and 4.7.6 consider
the event model in more detail.

Of all the frameworks reviewed, Aglets enforces the mobile agent paradigm in the most complete
fashion. Event handler methods can be replaced at runtime, which provides greater flexibility and
autonomy for an agent. For example, an agent can reconfigure message handler methods on receipt of a
re-configuration message or when network conditions change. By exercising this capability, an aglet is
able to decide which actions to take in respect to a particular message type or group of messages at
runtime.

The ASDK runs on top of unmodified Java Virtual Machine, and therefore is not capable of fully
supporting strong agent mobility. However, the agent lifecycle and the event model are flexible enough
and enable the execution of agent's code to resume from a pre-defined method after migration has
occurred. It is the AgletContext, which maintains the infrastructure that supports the agent lifecycle.

The Agent Transfer and Communication Interface (ATCI) is responsible for migration of agents
between contexts and establishment of communication between agents. ACTI is built on Agent Transfer
Protocol (ATP) [Lange and Aridor 1997], and supports migration transfers in a fault-tolerant way. When
an aglet is dispatched to a remote aglet server, which appears to be unavailable at the time, an agent can
be temporarily stored in persistent storage until the server becomes available and the agent can finally be
transferred to the destination.

The Aglets framework provides a class loader equipped with a class cache. When an aglet migrates,
the receiving server checks whether class definitions of the incoming agent are compatible with any
existing classes in the cache. A new instance of a class loader is created if there is at least one

"conflicting" class, and this class is then transmitted from a remote location and is stored in the cache.
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4.7.3 Communication

An application program or an agent can communicate with the aglet object by local or remote
messaging. ASDK defines a synchronous message passing method ("now"-type), an asynchronous
"future"-type method with acknowledgement and an asynchronous "one-way" type method without
acknowledgement. Non-blocking "future"-type method returns a FutureReply object, which can be used
as a handler to receive the response to the message at a later time, asynchronously.

All aglets objects maintain a message queue. All incoming messages are stored in the message
queue, and then handled sequentially. Messages in ASDK arrive in the order in which they were sent,
but can have priorities associated with different types of messages. Priority affects placement of

messages in a message queue.
4.74 Security

The security model of the ASDK focuses on protection of hosts and aglet agents against other,
possibly malicious agents. The model makes use of security policies, defined by administrator as a set of
rules, which specify agents' access permissions and authentication mechanisms. Policies can be defined
hierarchically and stored in a policy database. In relation to policies, aglets may have different levels of
trust: "trusted" and "untrusted". By default, trusted agents are those with local code bases, and any other
agents are untrusted. Access rights can be inherited: a trusted aglet may create another trusted aglet on
the same aglet server.

The AgletProxy acts as a shield object that protects an aglet from invocations of its own methods by
other, possibly malicious agents. When a method is invoked, the proxy checks with the Aglets security
manager to determine whether the current execution context or aglet has a permission to execute a

method.

4.7.5 Aglets Event Model — Agent Cloning Example

A delegation-based event model provides uniform handling of aglet cloning, mobility and
persistence. When an aglet is cloned, moved or saved to persistent storage, this will result in a number of
events being sent and processed by the aglet.

Cloning is a way of creating new agents, which is an alternative to instantiation. Calling a clone
method of an aglet context creates an identical clone to the current agent and returns a proxy to the
clone. The proxy is a placeholder for the aglet, serving to shield it from direct access to its public
methods. Throughout the cloning procedure, a pre-determined sequence of methods is executed in the

master and the clone agents, as shown in Fig. 4.1, which appears in [Lange and Oshima 1998].

57



run()

onCloning()

onCloned()

onClone()

run()

> Original

L Clone

Fig. 4.1. Sequence Diagram for Aglet Cloning.

When Aglets agents are used for distributed data processing, it would be logical to use the cloning
methods onCloning and onCloned in order to prepare the necessary data for the clone and notify other

collaborating agents about the successful cloning result. Method onClone can be used for any required

initialisation within the agent clone before the execution of the main method run can commence.

Below, we demonstrate a particular example of the cloning procedure, where the master and clone
are linked after creation. Cloning is used extensively in the software agent architecture for distributed

consistency management. This example explains the Aglets event model, and cloning procedure in

particular, in essential detail.

import com.ibm.aglet.*;
public class exampleClone

extends Aglet {

AgletProxy prev = null; /* proxy of the previous, parent agent in the

linked agent list */

AgletProxy next = null; /* proxy of the next, clone agent in the list */

public void onCreation(Object o) {
addCloneListener (

new CloneAdapter() {

public void onCloning(CloneEvent e) {

prev = getProxy();

// the clone will inherit a proxy of the master agent, contained
// in "prev". This is how a clone will "know" its parent agent.

}

public void onCloned(CloneEvent e) {
System.out.println(getAgletID().toString()+

Cloning completed.");

prev=null; /* returning the value to null at parent agent */

}

public void onClone(CloneEvent e) {
next = prev; /* marking next to prevent further cloning */

}
} ); } /* end onCreation()
public void run() { try {

*/

if (next==null) /* I am a parent, have to make a clone */
next = (AgletProxy) clone();

else next=null; /* else I am a clone */

if (prev==null) System.out.println(getAgletID().toString()+

I am a parent. My clone is" +next.getAgletID().toString());
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if (next==null) System.out.println(getAgletID().toString()+
" I am a clone. My parent is "+prev.getAgletID().toString());
} catch (Exception e) { }

} /* end run() */

} /* end ExampleClone class */

Fig. 4.2. Example of the cloning code, creating linked master and clone agents.

aadd0546a46d278b Cloning completed.
aadd0546a46d278b I am a parent. My clone is b3da340474b04e51
b3da340474b04e51 I am a clone. My parent is aadd0546a46d278b

Fig. 4.3. Execution log of the example cloning code.

The exampleClone class contains two aglet proxy variables, which after cloning will point to the
"parent" and the "child" agent. OnCreation method of the parent, called only once in the parent instance
(Fig. 4.1), adds custom implementations of clone listener methods, which overload empty defaults. Run
method of the parent triggers agent cloning if the proxy variable next is null and does not point to a valid
agent. After cloning is completed, a proxy to the clone is assigned to the parent's next proxy variable.

The OnCloning method, executed in the parent agent, assigns the value of the current (parent) agent
to the prev proxy pointer; this value is copied by the child and correctly links the child with the parent.
The OnCloned method in the parent notifies the user of the completion of cloning.

The OnClone method in the child agent is the first method to be called. Next is marked in order to
prevent further cloning of the child in the method run.

After cloning, the parent agent returns to the method run. The clone also enters run for the first
time. Agent identifiers are printed on the console (Fig. 4.3), and each agent identifies itself as a parent or
a clone, depending on the values of the prev and next variables.

The Aglets event model is flexible enough to allow an agent to re-define event handlers at runtime.
In the given example, the clone agent can substitute its own action listener with a different (but of
course, pre-defined) set of method implementations for OnCloning, OnCloned and OnClone. In an
example listener substitution that we could implement, all future clones of a cloned agent ("grand-
children" of the original parent) inherit a value of the property prev, which would point to the original
parent, rather than to the son that the current event handler implements.

The dynamic behaviour described above is essential for co-ordinating agents within the same agent
family, and between different families. In the implementation of the software agent architecture, agent
cloning allows us to combine the benefit of concurrent agent execution at multiple distributed hosts and

to avoid unnecessary multiplication of consistency checks with "redundant agents".
4.7.6 Aglets Event Model — Agent Mobility

Aglet migration is a choice of an agent; migration is controlled by the agent at runtime. Migration is
triggered by a dispatch method of the Aglets framework, the destination host is specified in the

parameter to the method. Agent instances can overload onDispatching method, which is executed in the
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agent before migration, and onArrival method, which is executed straight after migration. The sequence
diagram for Aglet migration [Lange and Oshima 1998] is shown in Fig. 4.4.

The Aglets framework cannot provide support for strong agent mobility, because the underlying
Java virtual machine does not allow persistent saving of the state of code execution. At the same time,
event model provides a programmer with the facility to "mimic" strong mobility. In an implementation
of the software agent architecture for consistency checking, mobile agent code is divided into loosely
coupled fragments, which execute at different hosts. Agent message handlers refer to one of these
fragments, depending on the message received (Chapter 9). OnDispatching method is then used by an
agent to send an appropriate message to itself. Upon arrival, this message is processed by the message

handler and consequently, an appropriate code fragment is executed.

'\
run()
dispatch() g Origin
onDispatching()

~/

\
onArrival()

> Destination

run()

_/

Fig. 4.4. Sequence diagram for Aglet migration.

4.8 Choice of a Mobile Agent Framework for the Distributed
Consistency Checking Architecture

In this chapter, we have defined software agency and mobile agents through their generalized
characteristics. We have also surveyed a number of popular mobile agent frameworks [Appendix D],
and looked in detail at the IBM Aglets (Section 4.7). This survey has enabled us to compile the
taxonomy of mobile agent frameworks, where the frameworks are contrasted.

Chapter 3 specified the requirements, which are demanded of the distributed consistency checking
architecture that we construct in this thesis. At this point, we can elaborate on the discussed
characteristics of software and mobile agents with respect to these functional requirements. As a result,
we specify the requirements for a mobile agent framework that would fulfill the ambitions of the
architecture, and carry out the selection of an agent framework to be used as a basis throughout the

remainder of this thesis.
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4.8.1 Requirements For a Mobile Software Agent Framework

In Fig. 4.5 we highlight important requirements, which we use for the selection of a mobile agent

framework.
Decision making must be done by an agent without recourse to
user’s attention. This applies to consistency checks run based on
Autonomy S .
events, decisions in respect to results of consistency checks and
policies.
Agents must be able to seamlessly transfer themselves from one
. node to the other without violating the state of any of these
Mobility
systems. All data relevant to the current goal of an agent must be
carried with the agent.
Arbitrary From the high level of abstraction, migration between nodes must
migration be achieved by invocation of a single operation.

Agent must be able to derive a work plan from the goal, which has
been stated. In case of a mobile agent checking a consistency rule,
Planning it must be able to determine which parameters still need to be
filled within the consistency rule template currently undergoing a
check, and where on the network can these parameters be found.
Route determination is an ability of a mobile agent to construct a
path of nodes, which it needs to visit in order to fill in all required

g(g?et:mination parameters of a consistency rule terpplate. This sequence will
indeed depend on the logic of consistency rule itself (an AND rule
would turn out false if any of composite parts are false).

Failure Includes route re-planning, choosing another network path to the

handling and destination, as well as finding alternative locations for a requested

intelligent re- document and such.

planning

An important quality of a mobile agent, by which it actively takes
Persistence all possible action to achieve its goal without any further input
from its owner or user.

Language must be structured to provide necessary functionality to

Inter-agen . .
er-agel t . describe all types of events or messages, which need to be

communication

conveyed.
Event Agents must be able to exchange meaningful messages, and react
notification upon those.
functionality
Heterogencit Agents must share a common resource access mechanism for

BENCY | documents of all possible types. This can be achieved by use of

of accessible . . .

resource agents (drivers) and use of an intermediary meta-
resources .

language document representation (such as XML).

Domains must agents grant different access rights, depending on
Security agent’s host domain and goal (analogous to agent’s

trustworthiness)

Fig. 4.5. Review of requirements for a successful mobile agent implementation within the consistency

management domain.
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4.8.2 Selection of a Mobile Software Agent Framework

Of all mobile agent frameworks described in the review (sections 4.6, 4.7, Appendix D), we have
chosen to base our implementation of the distributed consistency management architecture on the IBM
Aglets. In this section, we highlight several of the important factors that affected our choice of ASDK.
At the time when the research, described in this thesis, had started, some of the mobile frameworks
discussed above were in development (i.e., Hive), and others were undergoing a transformation
(Telescript and Voyager). Aglets has proven as a stable platform, well documented [Lange and Oshima
1998], and used in industry [Dasgupta, et al. 1999].

ASDK provides a comprehensive and well developed Java APL. A large number of successful
projects have been completed based on ASDK, and therefore extensive documentation is available.

The Aglets framework has been an industry standard in the past for some time, and is proposed for
submission to the Object Management Group (OMG) Mobile Agent Facility RFP [OMG 2000a].

Aglets support the notion of an agent goal called "itinerary". Historic agent systems like Telescript
do not provide support for this concept. The scheduling functionality, provided by the itinerary,
facilitates implementation of agent planning, route determination, and intelligent re-planning in case of
failure.

Aglets fully support weak mobility, and are able to provide near-strong mobility through use of the
event model (see cloning and migration, Sections 4.7.5 and 4.7.6). Support of arbitrary migration is
instrumented in the ASDK libraries. The Aglets event model achieves a high standard of inter-agent
communication and event notification by providing messaging functionality via persistent agent proxies.
Aglet proxies conveniently and effectively emulate distribution transparency, while all agents are
explicitly location aware.

ASDK draws on the Java security model and extends it with agent framework specific functionality
(Aglet security policies). Overall, ASDK provides sufficient security features for the considered
application domain.

Mobility in ASDK is based on the Agent Transfer Protocol (ATP) and Java Agent Transfer and
Communication Interface (J-ATCI). ATP uses Universal Resource Locators (URLs) for locations of
hosts and places; the protocol works well with heterogeneous platforms.

Heterogeneity is enhanced by deployment of Java serialization mechanisms, and access to
heterogeneous resources in our architecture is provided via a Java XML parser, operating in a common

Java environment with the agent framework.
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4.9 Summary

In this chapter, we have given a definition to software agency by describing and classifying the
characteristics of agents. We considered the approach taken by traditional distributed systems,
contrasted it with a mobile software agent solution and highlighted some major advantages and
disadvantages of the mobile agent approach. As mobility is not a universal cure in the distributed
systems domain, we introduce inter-agent communication by giving a brief account of agent co-
operation and communication languages.

In this chapter and in Appendix D we have provided the taxonomy of mobile software agent
frameworks. One of these frameworks, the Aglets from IBM, was considered in more detail. Then, we
outlined our functional requirements for a software agent framework, on which later construction of the
software agent architecture prototype will be based. We have provided our considerations on the
characteristics of Algets, which satisfy these requirements, and result in selection of Aglets as a base
software agent framework in this thesis.

One of the significant motivations for this thesis is in application of novel technologies —software
agency and code mobility to the software engineering domain, and to the problem of distributed
consistency checking in particular. We have chosen to base our architecture "a-priori". There are
relatively few systematic applications of this technology in software engineering at present, and such
application constitutes a research problem in its own right. In this chapter, we have contrasted software
agent systems with more traditional distributed systems, but of course, our conclusions are not intended
to draw the final line in the ongoing discussion. The novel contribution of this thesis is in construction
of the software agent architecture, its evaluation on a model, and on the implementation prototype, and
in application of principles of the novel software agent technology to the software engineering field. As

a result, we present some of the lessons learned in the evaluation and conclusion chapters of the thesis.
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Chapter 5 Incremental Consistency Checking

This chapter describes the proposed incremental consistency checking approach, which extends the
exhaustive checking capabilities, provided by the existing consistency framework XLinkit. The
incremental approach is used in this thesis as a basis for construction of a software agent architecture for
distributed consistency checking. The software architecture is described in Chapter 6, and the

incremental checking approach is referred to in the following chapters.

5.1 Consistency Rules

The incremental and exhaustive checkers process consistency rules, written in the XLinkit
consistency rule language [Nentwich, et al. 2001a]. In this section, we consider the structure of a
consistency rule and give a brief example of how the rule is checked. The example derives from the
scenario for checking well-formedness of a UML model of a break scheduler application, which we

introduced in Chapter 1 and use as a running example throughout this thesis.
5.1.1 Rule Example

In order to relate document elements, consistency rules reference document elements, involved in a
consistency relationship. XLinkit uses XPath expressions to specify paths to the elements of XML
documents. An XPath processor [Apache 2000a] allows us to "execute" XPath expressions and retrieve
groups of elements - nodesets. In a consistency check, these nodesets are checked for existence of
elements of a certain type, equality and non-equality of elements, and other constraints that a
consistency rule prescribes.

Consider the UML model well-formedness rule, relating to Generalizations, expressed in the
XLinkit rule language [Appendix A, A.11]. This rule (rule identifier "gen1") is also shown in Fig. 5.1. A
consistency constraint, underlying this rule, concerns UML model elements of type
"GeneralizableElement". A well-formedness relation, underlying the constraint, demands that a child
and a parent GeneralizableElement are of the same type.

The representation of this consistency rule in XLinkit language (Fig. 5.1) contains a textual
description and a "forall" operator with a nested "equal" operator. The nesting of operators requires
equality between names of GeneralizableElement sub-elements of "supertype" and "subtype", for

existing generalizations in the UML model.

64



<consistencyruleset>
<globalset id="generalizations" xpath="//Foundation.Core.Generalization"/>
<consistencyrule id="genl">

<description>
A GeneralizableElement may only be a child of a GeneralizableElement of the
same kind

</description>
<forall var="g" in="$generalizations">
<equal

opl="name($g/Foundation.Core.Generalization.supertype/*[1])"

op2="name ($g/Foundation.Core.Generalization.subtype/*[1])"/>
</forall>

</consistencyrule>

</consistencyruleset>

Fig. 5.1. Consistency rule: well-formedness constraint for "Generalization" elements.

XLinkit consistency rule language supports global properties; the consistency rule in Fig. 5.1
contains the property "generalizations". Properties serve as points of reference in a structure of the
documents being checked; XPath expressions in the rule operators include global properties and specify

sub-elements relative to the properties.
5.1.2 Checking a Consistency Rule

An example generalization in Fig. 5.2 fulfils the consistency constraint, specified by the consistency
rule in Fig. 5.1. The generalization is between two classes, BreakPlanlmpl and UnicastRemoteObject.
Another generalization in Fig. 5.3 does not fulfil the constraint, since the generalization is between a
class "Teacher" and an interface "TeacherImpl". As a result of a consistency check, an inconsistent link

is created (Fig. 5.4). The link refers to the generalization in Fig. 5.3 and to consistency rule in Fig. 5.1.

<l=-
XPath expression to the Generalization in the UML model:
/XMI/XMI.content[1l]/Model Management.Model[l]/Foundation.Core.
Namespace.ownedElement[1l]/Foundation.Core.Generalization[2]
-—>
<Foundation.Core.Generalization xmi.id="G.307">
<Foundation.Core.ModelElement.name/>
<Foundation.Core.ModelElement.visibility xmi.value="public"/>
<Foundation.Core.Generalization.discriminator/>
<Foundation.Core.Generalization.subtype>
<Foundation.Core.Class xmi.idref="S.10023"/><!--BreakPlanImpl-->
</Foundation.Core.Generalization.subtype>
<Foundation.Core.Generalization.supertype>
<Foundation.Core.Class xmi.idref="S.10078"/><!--UnicastRemoteObject-->
</Foundation.Core.Generalization.supertype>
</Foundation.Core.Generalization>

Fig. 5.2. This generalization fulfils the consistency constraint.
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<l—
XPath expression to the Generalization in the UML Model:
/XMI/XMI.content[1l]/Model_Management.Model[1l]/Foundation.Core.
Namespace.ownedElement[1l]/Foundation.Core.Generalization[4]
—
<Foundation.Core.Generalization xmi.id="G.305">
<Foundation.Core.ModelElement.name/>
<Foundation.Core.ModelElement.visibility xmi.value="public"/>
<Foundation.Core.Generalization.discriminator/>
<Foundation.Core.Generalization.subtype>
<Foundation.Core.Class xmi.idref="S.10001"/>
<!--TeacherImpl-->
</Foundation.Core.Generalization.subtype>
<Foundation.Core.Generalization.supertype>
<Foundation.Core.Interface xmi.idref="S.10087"/>
<!--Teacher-->
</Foundation.Core.Generalization.supertype>
</Foundation.Core.Generalization>

Fig. 5.3. This generalization does not fulfil the consistency constraint.

5.1.3 Resulting Consistency Links

<xlinkit:ConsistencyLink ruleid="generalization.xml#/consistencyrule[1l]">
<xlinkit:State>inconsistent</xlinkit:State>
<xlinkit:Locator xlink:href="UMLexample.xml#/
XMI.content[1]/Model Management.Model[1l]/Foundation.Core.Namespace.
ownedElement[1l]/Foundation.Core.Generalization[4]"
xlink:label="" xlink:title=""/>
</xlinkit:ConsistencyLink>

Fig. 5.4. Inconsistent link generated as a result of a consistency check.

Each consistency link contains a reference to the consistency rule, which created this link, and
XPaths to document elements, which were detected consistent or inconsistent during execution of the
specified rule. The inconsistent link in Fig. 5.4 refers to generalizations well-formedness rule (Fig. 5.1)

and "Generalization[4]", which is a generalization element, shown in Fig. 5.3.
5.1.4 Fragility of XLink Locators

Consistency links include link locators, which identify an element in the XML document, which is
involved in a consistency relationship. The link locator contains an XLink [DeRose, et al. 2000], which
consists of a URL of a document (UMLexample.xml, Fig. 5.4), followed by a separator '#, and a simple
XPath to an element in that document. For each element, participating in a consistency relation, the
consistency link contains a separate link locator.

Simple XPath expressions, used by XLink in link locators, refer to consecutive numbers of elements
(i.e., '[4]), which correspond to the order in which elements appear at each "level" of the XML
document tree. Use of element numbers in the XLinkit locators makes consistency links fragile: every
time an element is inserted or deleted at a certain level in the document tree, the numbering of all

adjacent elements changes. As a result, the links generated previously refer to incorrect elements.
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XLinkit avoids tackling the XLink fragility problem by re-generating all consistency links in one go
in each exhaustive check. In this case a problem of partial correctness of older link bases is not relevant.
An incremental consistency checker does not discard old link bases, and therefore, has to address this
problem.

In the domain of consistency checking of UML models, a solution is based on uniqueness of model
elements' identifiers. The XMI representation of any UML model contains unique identifiers for each
element of the model. The identifiers appear as "xmi.idref" attributes of elements in the XML file (Fig.
5.2 and 5.3).

Use of unique element identifiers instead of element numbers in link locators would completely
eliminate link fragility of the XLinkit approach. However, in order to maintain compatibility with
existing XLinkit framework, we propose a different, locator mapping solution for keeping previously
generated links referring to correct document elements. Our approach maps element numbers, used by
XLink, to the unique element identifiers, and corrects the numbering within existing linksets after each
document modification. We give a detailed explanation of the mapping approach in Appendix F, where

an appropriate illustrative example is also provided.

5.2 Exhaustive Consistency Checking

Our work on incremental consistency checks takes its beginning from analysis of disadvantages
[Smolko 1999] of techniques for "batch" processing of consistency checks introduced in [Ellmer, et al.
1999] - exhaustive consistency checking. The exhaustive approach was subsequently refined in
[Nentwich, et al. 2000b], and the current iteration of the XLinkit framework [Nentwich, et al. 2000a]

provides only exhaustive checking functionality.
5.2.1 Algorithm outline

In order to demonstrate the difference between exhaustive and incremental consistency checking,
we contrast both algorithms in the pseudo code. Exhaustive checking algorithm is depicted in Fig. 5.5;

incremental checking follows in Fig. 5.6.

0: REM Exhaustive consistency check,
all documents are available to the checker locally
l: FOR each consistency rule DO

2: FOR all XPath expressions in the rule DO
3: FOR each document DO
4: Find elements, corresponding to the expression,

in the current document and store them in the NodeSet;
5: NEXT document;

6: NEXT XPath expression;

7: Retrieve values of the elements from the NodeSet,
and execute rule language operators on these values.

8: Create consistency link depending on return value of

the topmost operator in the rule;
9: NEXT consistency_ rule;

Fig. 5.5. Pseudo code of the exhaustive consistency checking algorithm.
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The pseudo code in Fig. 5.5 is based on the assumption that the numerous documents are locally
accessible and the consistency check can be executed completely and autonomously on a single host.
This assumption is satisfied for XLinkit - a centralised checker of distributed documents, where all
documents, participating in the check, are transmitted in their complete form across the network, where
they are checked locally at a central server.

In an exhaustive check for each document, every rule is checked to find if there exist any document
elements in this document that correspond to each XPath expression, specified in the consistency rule. If
there are such elements, they are retrieved and added to the nodeset.

When all documents have been surveyed and a nodeset for all expressions in a given rule has been
constructed, the link generator applies rule operators to values of all elements in the nodeset. The return
value of the top-most operator of the consistency rule corresponds to a consistent or an inconsistent state
of the relationship between document elements with respect to a constraint, specified in the consistency
rule.

The algorithm in Fig. 5.5 contains three nested loops, and therefore its algorithmic complexity is a
multiple of the complexity of a single consistency check by the number of documents and by the total
number of rules deployed in the system. Significant computation, performed by each exhaustive check
may be justified if all consistency relations need to be re-established. In this thesis, we argue that while
such approach suits project milestone checking, it is unsuitable for repeated consistency checks during
incremental development.

The exhaustive centralised checking approach (Fig. 5.2) is further disadvantaged in a distributed
setting by the necessity to make all documents available at a single location, where the checking takes
place. In the XLinkit implementation, complete documents are transmitted from their distributed
locations for each centralised check. In addition to this architectural disadvantage, exhaustive checking
presents further difficulties in identifying the differences between linkbases, generated for different
project iterations.

Expanding on the mentioned disadvantages, below we outline the domain, where the exhaustive

checking approach can be applied with success.
5.2.2 Application Domain for Exhaustive Checks

Exhaustive consistency checks perform cross-checking of all documents in relation to all
consistency rules in one go. The resulting link base is a snapshot of consistency relations between the
current versions of all documents. The exhaustive approach is best used to identify any remaining
inconsistencies at the completion stage of an iteration of project development, or at the stage of its final
release. At the same time, this approach proves hardly suitable for frequent consistency checks, which
accompany incremental development.

The effect of individual changes is difficult to track within the results of an exhaustive check. Each

time a change is made, a complete set of consistency rules has to be re-checked on all documents in the

68



project in order to find out if the change has resolved any previously existing inconsistencies or has
introduced new ones. As we expect a significant number of potentially large documents and consistency
rules to be used in a software engineering project, it is likely that a lot of processing time and resources
would have to be dedicated to the repeated exhaustive checks.

Even if appropriate resources are allocated and the developers are able to regularly execute
exhaustive checks, centralisation of the XLinkit architecture would require all distributed documents to
be transferred to a central location in their complete form on every check, and would also require the
resulting consistency links to be downloaded back to the developers' workstations. Scalability
limitations of this approach for frequent consistency checks are apparent.

Let us also consider an exhaustive checker from the usability point of view in a typical scenario,
where a developer is interested in tracing inconsistencies, introduced by individual document changes.
All useful information about a change in the state of relationships between document elements is found
by comparing a linkbase from a previous XLinkit check to the current linkbase. As we have pointed out
above, fragility of XLinks in the link locators makes comparison of linkbases difficult, because
correctness of links in older linkbases is violated by subsequent document changes. Even if
reconciliation of linkbases is carried out, inconsistencies introduced by distinct changes in different
documents would be indistinguishable within a global linkbase.

Exhaustive consistency checks are not suitable for tracing impact of individual changes on the
status of existing consistency relationships. Such functionality is, however, required during incremental

development.
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5.3 Incremental Consistency Checking

Pseudo code for an incremental checking algorithm that we propose is given in Fig. 5.6.

1: REM Stage 1. Identification of initial relevance of
consistency rules to documents
2: Execute exhaustive check of all documents, remember which
rules applied to which documents
3: REM This initialisation stage 1 executes only once for each
participating document.
4: REM Stage 2. On document change
5: WHILE there is no change on a document DO ;
6: REM Stage 2.1. Identification of rules, relevant to the change
7: Execute TreeDiff between a backup copy of the document and a
current copy. Result: list of modified document elements
8: Compare XPaths to changed elements (in TreeDiff) with XPaths
in each consistency rule

9: If XPaths are comparable, then add the rule to Relevant rule
set, remember relevance of the document to this rule

10: REM Result of Stage 2.1: Selected consistency rules, relevant
to a particular document modification.

11: REM Stage 2.2: Checking of relevant consistency rules on all

documents, previously found relevant to these rules.
12: FOR each consistency rule in Relevant rule set DO

13: FOR all XPath expressions in the consistency rule DO
14: FOR each document, relevant to this rule DO
15: Find elements in the current document, which correspond

to the XPath expression, and store them in
a NodeSet for this consistency rule.
15: NEXT document;
16: IF no elements are selected for this document THEN
remember that the document is no longer relevant to the rule
17: NEXT expression;
18: NEXT consistency_rule;
19: REM Result of Stage 2.2: Nodesets for each consistency rule,
containing values of document elements.
20: REM Stage 3. Generation of consistency links
21: FOR each consistency rule DO
22: Retrieve values of the elements from the NodeSet, and
execute rule operators on these values.
23: Create consistent or inconsistent link depending on the value
returned by topmost operator in the rule.
24: NEXT consistency_rule;

Fig. 5.6. Pseudo code of the incremental checking algorithm.

The incremental checking algorithm aims to remedy the main disadvantage of an exhaustive
checker — a mandatory execution of all consistency rules on all documents at every document change.

Our incremental checking approach refines the exhaustive checker in two significant areas. Stage
2.1 of the algorithm limits the number of consistency rules needed to be executed based on relevance of
rules to a particular incremental change. Stage 2.2 executes all selected rules on a sub-set of documents
that have been identified relevant to the rules. Initial relevance of documents to all consistency rules is
identified in Stage 1, and subsequently refined as changes are introduced (line 9, Fig. 5.6), and as

consistency checks occur (line 16).
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5.3.1 Initialisation

The initialisation code (Stage 1) is executed only once when the consistency checking framework is
started, and once for every new document added to the system. For each document, an exhaustive check
determines which rules are applicable to this document, and which relationships between this document
and all other documents hold. The generated link base serves as a basis, and subsequent incremental link
bases are merged in when required (the merging algorithm is discussed in detail in Appendix F).

Stage 2 of the incremental algorithm executes when a change on a document has been identified.
This reactivity characteristic of an incremental checker allows it to operate autonomously. The
stakeholders can also trigger execution of Stage 2 manually, if necessary, and can disable the automatic

check execution.
5.3.2 Selection of Relevant Consistency Rules

Stage 2.1 (Lines 6-10, Fig. 5.6) of the pseudo code selects consistency rules, relevant to a particular
document change. If necessary, rule applicability policies can be set up [Chapter 2, 2.2.4, Chapter 3,
3.3], which may disallow execution of certain selected rules, or demand execution of additional rules if
certain rules are selected.

Each document change is reflected in a result of a tree-differencing algorithm (TreeDiff), which
compares two versions of the same document and returns a set of XPath expressions to all modified
elements. The process is similar to the forward differencing technique [Alderson 1988}, where in our
case the deltas are necessarily merged into the latest version by the user, and are determined in order to
detect the consistency rules, relevant to the changes. Line 8 compares the XPath expression in the
consistency rule with an XPath expression from the TreeDiff. The expressions are matched to establish
whether one XPath is a sub-path of another.

Expressive power of the XPath language, inherent in availability of functions, wildcards and
relative sub-paths complicates the process of comparing XPath expressions. The TreeDiff returns a
simple XPath expression, but the UML well-formedness consistency rules [Appendix A] use extended
features of the XPath language.

A lightweight algorithm for string-wise comparison of XPaths is proposed in [Appendix F, F.2]. For
performance reasons, this algorithm does not execute XPath functions, and its accuracy in matching
paths depends on the complexity of the paths.

In comparing XPath expressions, simple string-wise comparison bears a danger of overlooking that
two XPath expressions match, because they include function calls or wildcards, and any statically
defined elements of the paths have little in common. Complex XPath expressions that cannot be
matched by this lightweight algorithm are executed on a document instance [Appendix F, F.3]. The
discussion of the XPath matching algorithm as a technical challenge of incremental checking continues

in this chapter further [Section 5.5].
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5.3.3 Execution of Selected Rules

The Stage 2.2 of the incremental checking algorithm (Fig. 5.6) is identical in its operation to the
exhaustive algorithm, except it performs checking of selected rules on selected documents. Due to a
smaller number of documents and rules in an incremental check, performance advantages are realized in
this part of the algorithm. An amendment of the exhaustive checker code is found on line 16 (Fig. 5.6),
where information about relevance of consistency rules to a particular document is updated, depending
on whether any elements of the document were selected by the rule. Updated information allows the
checker to select relevant documents for the rule in Stage 2.1, and to effectively limit the span of
incremental checks.

The final code fragment (Stage 3) computes the result of an incremental distributed consistency
check using a similar nodeset collection and link generation mechanism as the exhaustive check. For
each relevant consistency rule, values of document elements that are referred to from the rule operators
are retrieved into a nodeset. The operators are then executed on the nodeset, and for each rule, the root
operator returns a consistent or an inconsistent status of the relationship. Consistency links are then
created between the document elements in the related documents, which are referenced by the rule.

When describing an incremental checking algorithm, we have not yet considered an access
mechanism to distributed documents and, in order to simplify description of the basic algorithm, so far
assumed that all documents are accessible locally. In the following section, we propose an approach for

distribution of consistency checks.

5.4 Distribution of Consistency Checks

During consistency checks, extensive access to documents occurs only at the stage of selection of
document elements. At this stage, XPath expressions in a consistency rule are executed on the XML
document's DOM tree, and extracted nodes are stored in a nodeset for future processing by rule
operators. Both the exhaustive (Fig. 5.5, Line 4) and the incremental (Fig. 5.6, Line 15) algorithms make
use of the described mechanism when compiling nodesets. Results of consistency checks — consistency
links, are generated using the nodesets (Fig. 5.5, Lines 7, 8 and Fig. 5.6, Lines 22, 23). The resulting
links are stored externally to the documents. Consequently, access to documents is no longer required
after the nodesets have been collected from the distributed documents.

In the distributed setting, the traditional distributed document access approach used in XLinkit
involves transportation of documents in their complete form to a centralised location for consistency
checking, where nodesets are extracted and links are generated. In the software agent architecture we
propose in this thesis, we advocate extraction of nodesets at the documents' locations and the following
transport of the nodesets where necessary.

In consistency checking practice, the size of extracted nodesets is smaller than the original

document itself. Size difference is due to omission of redundant XML structure in the nodeset and use of
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internal representations of element values (integers, strings, etc.) instead of their string representations.
We expect a large number of documents of significant size in any software engineering project, and
therefore envisage a performance advantage from transport of nodesets instead of complete documents.
In a given scenario, efficiency gained would ultimately depend on the nature of document elements and
the structure of consistency rules being checked.

Our approach to transport of nodesets has a significant security advantage. Without question,
intellectual property is better protected when only parts of documents are transmitted across the
network, rather than the documents as a whole. We do not claim that nodesets constitute a complete
solution for all security concerns, and suggest that a security-critical implementation should deploy
appropriate cryptography mechanisms for all transmitted information. In such case, use of smaller
nodesets instead of complete documents is an advantage, as reduction in message size results in an

improvement of performance of the security infrastructure.
5.4.1 Mobile Agents

In this thesis, we propose to deploy mobile agents for collecting nodesets from all distributed
documents, participating in a consistency relationship that is specified in a consistency rule. After the
locations of all documents have been visited by a mobile agent and nodesets from all documents have
been extracted, the agent executes rule operators at any convenient location, where processing resources
are available. This mobile agent approach eliminates a single point of failure problem, which exists in
the centralised checking service XLinkit.

Development of autonomous agents allows us to delegate itinerary planning [Chapter 4; 4.1, 4.4.3]
to the agent, which would determine a list of locations and documents to visit and carry out a
consistency check on its own, without a need for user intervention. The incremental checking algorithm
provides an agent with the necessary information on relevance of consistency rules to participating
documents (Stage 2.2 in Fig. 5.6), which is used to compile the itinerary. As a result, mobile agents
allow us to combine reactivity of the incremental algorithm in response to document changes with
autonomy of a distributed consistency check. When the resulting consistency links are delivered to the
user, they constitute a pro-active response of the software agent architecture to a particular user
modification of a document. In contrast with the "passive" nature of the existing consistency checking
service, the ability to provide pro-active responses to user activity is a significant advantage of the
proposed approach.

The main contribution of this thesis — a software agent architecture for distributed consistency
checking, provides an infrastructure and enables mobile agents to carry out distributed consistency
checks as we have outlined in this section. The architecture is considered in more detail in the following

chapter (Chapter 6).
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5.4.2 Distributed Incremental Consistency Checking

Below, we continue to describe our approach to tackling document distribution and introduce a
distributed version of an incremental checking algorithm. The algorithm capitalises on a number of
characteristics of mobile agents and relies on the infrastructure provided by the software agent
architecture. Embodied in the algorithm are the locality of access to documents during extraction of
nodesets, the use of agent itinerary and autonomy of execution of a mobile agent at numerous locations.

The distributed incremental algorithm (Fig. 5.7) follows the 3-stage structure of the incremental
algorithm (Fig. 5.6), but these stages are executed at different hosts on the network. The initialisation
code is executed at each host, where one or more documents are located. An initial exhaustive
consistency check of local documents occurs independently at each location (Fig. 5.7, line 2), and,
similarly to the original incremental algorithm, aims to establish initial applicability of consistency rules
to all participating documents.

Stage 2.1 (Fig. 5.7, lines 3-18) of the distributed algorithm is executed at the location of a modified
document. Consistency rules, relevant to the modification, are selected here. Although this fragment is
executed for every document change, rule applicability policies, mentioned in Chapter 3, may disallow
subsequent execution of consistency rules for certain changes, or require execution of additional rules.
To establish relevance of a consistency rule, the algorithm carries out the comparison of XPath
expressions in a consistency rule with XPaths to changed document elements.

Stage 2.2 (Fig. 5.7, lines 18-31) is executed at numerous locations of one or more documents,
relevant to the executed consistency rule. Initial relevance of documents to rules is determined from the
results of exhaustive consistency checks, executed at initialisation, and is updated for every document

with respect to every document change (Fig. 5.7, lines 12, 13).
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0: REM Initialisation part: RUNS ONCE

1l: REM Stage 1l: identification of initial relevance of documents to

consistency rules

2: Execute exhaustive check on all local documents.

3: REM Incremental check: RUNS ON EVERY CHANGE

4: REM Stage 2: on document change

5: IF document has changed THEN BEGIN

6: REM Stage 2.1: identification of relevant rules

7: Compute a TreeDiff between the current document version and its
backup copy;

8: FOR each consistency rule DO
9: FOR each XPath expression in the rule DO
10: IF an XPath to the change is comparable
to the XPath in the rule operator
11: THEN BEGIN
12: REM: Remember relevance of the document to the consistency rule
13: Set the document as relevant to the consistency rule
14: ADD consistency rule to 'Relevant' rule set
15: END;
l6: NEXT expression;

17: NEXT consistency rule;

18: FOR each location of relevant documents DO

19: REM Stage 2.2. distributed checking of relevant rules
at each location of relevant documents

20: FOR each consistency rule in Relevant rule set DO

21: REM Stage 2.2.1: processing of relevant documents
at current location

22: FOR all expressions in the consistency rule DO

23: FOR each local document DO

24: IF document is relevant to the rule THEN

25: Find elements, corresponding to the expression,

in the current document, and store them in the NodeSet
for this consistency rule;

26: NEXT document;
27: NEXT expression;
28: NEXT consistency rule;

29: REM Stage 2.2.2. migration to the next location
30: Move to the next location

31: NEXT location;

32: REM Stage 3. Generation of links

33: FOR each consistency rule DO

34: Retrieve values of the elements from the NodeSet,
and execute rule language operators on these values.
35: Create consistency link depending on return value

of the topmost operator in the rule;
36: NEXT consistency rule;
37: END;

Fig. 5.7. Pseudo code for distributed incremental consistency checking.

At each location, where Stage 2.2 is executed, document nodes, selected by consistency rule XPath
expressions, are stored in a nodeset (Stage 2.2.1, Fig. 5.7, lines 21-28). Line 30 triggers relocation of the
checker agent, implementing the incremental checking algorithm, together with the collected nodesets to
the next location in the agent's itinerary. At the next location the nodeset collection (Stage 2.2.1) and the
following migration (Stage 2.2.2) are repeated.

The remaining part of the algorithm (Stage 3, Fig. 5.7, lines 32-37) computes a result of the
distributed check. The operators in each relevant consistency rule are executed on the values of

document elements, previously collected in the nodeset. For each rule, the root operator computes a
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consistent or an inconsistent status of a consistency relationship. Consistency links are created between
elements of the related documents.

The Stage 3 can be executed at the same location as the last nodeset collection, or at any other
location, where sufficient computational resources can be provided for execution of the rule operators.
Additional flexibility of the distributed incremental checking algorithm in separating the processing and
the information retrieval stages enables its deployment on "thinner" and mobile clients, supports
intermittent connectivity for participating hosts and allows a user to off-load consistency checking
processes from her primary workstation.

The discussed algorithm intentionally does not go into detail about propagation of generated
consistency links (Stage 3) to document locations. It also omits compilation of the agent itinerary and
the details of the infrastructure, which makes document relevance information, collected at initialisation,
available to the checker agents at runtime (at Stage 2.1). This functionality and the required
infrastructure are provided by the software agent architecture for distributed consistency checking,
described in the following chapters. The distributed incremental checking algorithm forms a basis of a
mobile consistency checking agent, one of the components of the architecture and specifies the process
of a distributed consistency check.

The proposed distributed incremental approach provides the means for concurrent checking of
several documents, related to the same or different consistency rules. The nodeset collection stage can
be carried out concurrently by several instances of a mobile checker agent at different locations.
Concurrently retrieved nodesets are subsequently concatenated before link generation takes place. Multi-
agent consistency checks, supported in an implementation of the software architecture [Chapter 8,

Scenario III], are based on this feature of the distributed consistency checking algorithm.

5.5 Incremental Checking Challenges

Implementation of the incremental checking algorithm is by our choice an extension of the
codebase of the exhaustive consistency checker XLinkit. We have chosen to reuse existing code
unchanged in order to support interoperability between the incremental and exhaustive checkers, so that
both could be used by the same user, although for different purposes.

Some of significant challenges, which we were able to overcome during implementation of the
incremental checker, are described in Appendix F, where we consider the task of identifying relevance
between rules and documents, and a problem of comparing XPath expressions for identification of
relevant consistency rules. We describe the proposed lightweight string-matching approach for XPath
comparison [Appendix F, F.2}], and its more accurate amendment, where XPaths are selectively executed
to improve comparison accuracy [Appendix F, F.3].

The lightweight rule selection approach and its amendment for selective XPath execution constitute
initial attempts to tackle the XPath comparison problem. The author is a part of further work, aiming at

generalizing the proposed approach and implementing a comprehensive algorithm for comparing XPath
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expressions of any complexity. In comparison of the applicability of the lightweight approach and its
somewhat more heavyweight extension where complex expressions are executed, the actual deployment
of one or the other approach is dependent on the proportion of consistency rules with complex XPath
expressions in the rule set. Performance overhead, introduced by rule selection in the incremental
checking algorithm is considered in Chapter 10, where performance measurements of an incremental
and exhaustive algorithms are provided.

We also consider a task of merging results of incremental checks into a common linkset [Appendix
F, F.4], and a merger of results of an incremental and an exhaustive check. The merger problem is
relevant to interoperability between the incremental and the exhaustive checkers.

Finally, we introduce a UML model distribution tool, which we constructed in order to enable a
number of software engineers to concurrently develop parts of a single UML model at several
distributed locations. The UMLXMI tool [Appendix F, F.5] separates an XMI representation of a UML
model into a number of XMI files, each containing representations for one or more model elements.
These files can be distributed and authored independently at distributed locations. The tool also provides
functionality for merging separated model elements into a single UML model, and checks internal
consistency of the model by establishing uniqueness of element identifiers.

We used UMLXMI in construction of the scenarios (Chapter 8), on which an implementation
prototype was tested. We found, that the tool facilitates performance of a differencing algorithm
(TreeDiff) by reducing document size for representations of model elements in comparison with the size
of a complete model. The use of UMLXMI thus has a positive impact on the performance of the
incremental checker. This characteristic of UMLXMI is a welcome addition to fulfilment of the initial

objective of enabling distribution and distributed development of UML models.

5.6 Summary

Exhaustive consistency checking of a substantial number of consistency rules on large documents,
typically required in the software engineering domain, could take up significant computational resources
away from execution of the development environment that a developer utilizes. Exhaustive checks
create consistency links between all related document elements in the project. The exhaustive linksets
are snapshots of all consistency relations, taken at the time of a check. Exhaustive checks are best used
for a project milestone or a final release, when all documents are checked to ensure that consistent state
of all relations has been achieved. An existing consistency checker, XLinkit, provides exhaustive
checking functionality.

In a commonly used incremental development process, developers sequentially introduce
modifications into the documents, and are interested in effects of these modifications on consistency
relations between the modified elements and other documents in the project. In this chapter, we argue

that exhaustive checks are ineffective in meeting the needs of incremental development. We outline the
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XLink fragility problem, which makes comparison of exhaustive linksets difficult and prevents
traceability of an impact of individual document modifications on the state of consistency relations.

We propose an incremental checking approach, which extends the functionality of the XLinkit
consistency framework. In the incremental check only those consistency rules are executed, which are
relevant to particular document changes. The resulting linkset is related to the changed elements and
other elements of the same type, thereby indicating an impact of a document change to the developer.
The incremental approach is not intended to replace an exhaustive checker; we have outlined the
application domains for both technologies and consider them complementary.

The validity of the incremental checking algorithm in correctness of computation of consistency
links is equivalent to that of the exhaustive algorithm. The incremental algorithm extends the
exhaustive algorithm with selection of relevant consistency rules with respect to a certain document
modification. All consistency rules, which correspond to the modified elements, are selected for an
incremental check, and therefore no consistency relations that may be affected by the modification are
omitted in the check. The incremental algorithm operates on the documents, which have been found
relevant to the selected consistency rules by an exhaustive check at the initialization stage of the
incremental algorithm. Relevance of modified documents is updated as a result of the incremental
check, where the same procedure is followed for nodeset extraction and link generation as in the
exhaustive algorithm. The validity of the incremental checking algorithm is therefore the same as that
of the exhaustive algorithm. The latter question is considered elsewhere [Nentwich et. al., 2000b].

In this chapter, we have described the incremental checking algorithm and its distributed version,
which takes advantage of local access to distributed documents. The distributed incremental algorithm
separates consistency checks of individual rules on different documents in space and time, and avoids
the centralisation, imposed by the existing consistency checking approach. We have adopted the
distributed incremental approach for the consistency checking software agent architecture, which we
describe in the following chapter.

We have referred to some of the technical challenges that we had to address during an evolutional
implementation of an incremental checker on the basis of XLinkit. Among these challenges, we have
considered comparison of XPath expressions for selection of relevant consistency rules (Appendix F,
F.2-F.3) and an approach to distribution of a UML model (Appendix F, F.5), which gives developers
extra flexibility and improves performance of incremental checks. Both solutions are implemented in
the architecture prototype, which we demonstrate on scenarios in Chapter 8.

The incremental checking approach for XLinkit and a distributed incremental checking algorithm,
based on local document access, are novel contributions of this thesis. Our primary contribution, the

software agent architecture for distributed consistency checking, builds on the mentioned contributions.
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Chapter 6 Software Agent Architecture for
Distributed Consistency Checking

6.1 Introduction

The software agent architecture for distributed consistency checking [Smolko 1999, Finkelstein and
Smolko 2000, Smolko 2001] emphasises deployment of mobile agents, and also contains stationary
components. Stationary agents within a distributed networking environment are deployed to provide
supporting services to mobile agents, which move between network hosts, take advantage of supporting
services and provide services of their own, capitalizing on locality of access to distributed resources.

The design of the architecture is primarily driven by the functional requirements for a distributed
consistency management system (Chapter 3). Among the key principles, targeted by this architecture are
openness, event-orientation, distribution transparency and processing locality.

Openness — The architecture should allow re-configuration, integration and removal of information
resources and instances of architectural components. Openness to new types of components is to be
achieved by building on defined interfaces of loosely coupled components.

Event orientation — The operations, carried out by components, should be triggered by, and their
timing should be synchronized via use of a distributed event notification mechanism. Loose coupling of
components is achieved through propagation of events between the components and processing of these
events by the components.

Distribution transparency is a characteristic of a location service, which is made available to the
components that are seeking access to remote distributed components. In the context of this software
agent architecture, distribution transparency is used by mobile and stationary components for location-
transparent communication [Chapter 4, 4.4.1] via message exchange.

Processing locality — Mobile components benefit from processing locality, when services are
provided at the location, where such services are required [Chapter 4, 4.4.3].

To help achieve these considerations, all functional components within the architecture are
embodied and abstracted through agents. In this chapter, we break down the desired distributed
consistency checking functionality, outlined in a distributed consistency checking algorithm [Chapter 5,
5.4.2], into clearly defined roles. These roles are embodied in the tasks that the agents can perform;
subsequently, a larger task of distributed checking includes the management of agents and resources and
is expressed in terms of agent interaction. The concept of roles allows the architecture to be modular and
extensible in its design and also facilitates the development of common communication mechanisms and

data formats to help deliver interoperability.
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The following subsections describe the design of the architecture in terms of the roles of each agent,
its place within the architecture, the functionality that agents provide and interactions that can be

established with other agents.

6.2 Architecture Description

The development of a distributed agent-oriented architecture for consistency management started
from an idea that all distributed consistency services can be provided by means of deploying a mobile
agent of only one type. It was envisaged that this mobile agent, equipped with all necessary
functionality, would be able to monitor, check and maintain consistency relations in the distributed
setting. Then, open problems in the field of distributed consistency management were identified and
explored [Smolko 1999, Smolko 2001], and it has become apparent, that decomposition of the
consistency management task into sub-tasks is required in order to provide an effective solution. As one
example, in order to address the problem of heterogeneity of document formats, a mobile agent would
have to be fluent in all file formats and would be requiring frequent updates as new formats are being
introduced. Being decomposed into a sub-problem, the issue of heterogeneity has been addressed by use
of static parser components and proposed deployment of XML as an intermediary document format and

a consistency rule language [Ellmer, et al. 1999, Nentwich, et al. 2000b].
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Fig. 6.1. A single domain of the software agent architecture for distributed consistency checking.

An overview of the structure of a domain of the agent architecture is provided in Fig. 6.1. The
purpose of the domain is to group agents, resources, and hosts into logical collectives and to provide a
standard environment for the agents to function in. The domain can include one host machine, or may
span across a number of host machines (hostl, ... hostN). One or more heterogencous documents are
located at each of the hosts in the domain. The documents, participating in the consistency management
system, are monitored by stationary Resource Interface Agents. On numerous occasions during a life
cycle of the documents. Consistency Checking Agents are instantiated by resource agents for the purpose
of verification of consistency relations, in which the documents participate. The mobile consistency
checking agent draws information on location of documents, configuration of domains and capabilities
of its own runtime environment from the Domain Agent. The architecture also provides for a User
Interface Agent, which would enable user involvement and could provide the representation function for
results of consistency checks as necessary.

A minimal configuration of the consistency management system involves a single domain. With the

growth in the size of the system, the architecture scales up with addition of hosts into domains, and
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scales out with addition of domains, connected between each other via Gateway Domain Agents, which

perform routing functions and serve as firewalls.

6.2.1 Resource Interface Agent

Resource Interface Agents are stationary software agents, existing within a domain to provide a
level of mediation between resources and mobile agents. The resource agent runs on each host, where
one or more resources are located. In the context of this thesis, resources are document, participating in
consistency checks.

The main objective of the Resource Interface Agent is monitoring a set of resources; the agent is
constructed in order to implement the functional requirements on distributed document monitoring and
change identification. The agent also "understands" the mechanisms for access to heterogeneous
resources, and ensures that mapping of numerous heterogeneous document formats to the common XML
format is carried out. XML is deployed across the consistency management system for uniform
representation of information.

The functions of the Resource Interface Agent are described below.

1. It possesses complete knowledge on the structure of the resource and access protocols to the
resource. In particular, this ensures that the XML representation of a resource, used for consistency
checking, is updated and contains the most current version of the relevant original document (for
instance, a UML model). Implementation of this function addresses a problem of heterogeneity of
representation formats for resources.

2. It advertises the presence of the resource itself, and the presence of a particular type of resource by
registering the resource with the domain agent. This information is used by mobile Consistency
Checking agents to find out which resources are present within a domain.

3. It mediates access to the resource at resource level. The Resource Interface Agent is able to resolve
conflicts between numerous mobile Consistency Checking agents' access requests to the resource.
To any given mobile agent, the resource agent permits access to the resource in accord with the
checking agent's domain-wide access permission (as allocated by the domain agent). Further access
restrictions can be imposed on a particular mobile agent by the resource agent, in addition to
domain-wide permissions.

4. The resource agent carries out monitoring of the resource for modifications. When a resource is
updated, the resource agent ensures that an updated copy is translated into XML, and a backup copy
of the XML representation of the previous version is saved. If a history of document changes and
versioning support is required, the resource agent is the component of the software agent
architecture, most suitable to provide such functionality. Incremental difference between document
versions is computed, so that specific consistency relations, relevant to the changes, can be checked.

5. The resource agent executes the rule selection algorithm to identify the consistency rules, relevant

to a particular document modification.
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6. The resource agent initiates consistency checks of the relevant rules, facilitates their execution, and
takes action on the result of the check. Storage of consistency links and notification of the user
through a User Interface Agent are the actions usually performed upon termination of a consistency

check.

The functions performed by the resource interface agents and interactions between the resource
agents and the consistency checking mobile agents form the crux of the distributed software agent
architecture. It should be noted, that resource agents enable mobile agents to access heterogeneous
resources in a generic and flexible fashion. At the same time, it is not the access mechanism, but rather
the way, in which mobile agents interpret document structure and content, that will determine usefulness
of the consistency management system for an end user.

The nature of resources is not envisaged to be ultimately limited to distributed documents or
document sets. A resource can be any system that exposes an external interface, through which it
communicates or can be accessed by a resource interface agent. In this way, the architecture can be
extended to integrate numerous additional types of heterogeneous resources through development of

functionality of the resource interface agents.
6.2.2 Domain Agent

The Domain agent is a stationary agent, which supervises activities of other mobile and stationary
agents in the domain. It is responsible for a number of functions, outlined below.

1. It provides lookup service for names, locations and types of all resources, located at the current
domain and may cache information about resources, located outside of the domain. By providing
lookup services to consistency checking mobile agents, the domain agent controls access to
resources at the domain level. All architectural components rely on the provided location service,
because no assumption is made about existence of a-priori knowledge by any of the components of
locations of distributed resources.

2. The domain agent is an initial point of contact for mobile agents within the domain. It
authenticates mobile agents and performs a verification check on mobile agents wishing to execute
within the domain. Every agent is assigned access rights within the domain. These rights serve as
guidance for the resource agents of the domain on access permissions to particular resources.
Depending on the security policies of the domain, agents that cannot be authenticated are rejected or
are given limited rights of an anonymous agent.

3. It provides a migration service to mobile agents entering and leaving the domain. Unless the
underlying mobile agent middleware ensures atomicity of the migration operation and supports
strong mobility, the domain agent saves the migrating agent's state and transfers the agent to a new
location. It must ensure that the mobile agent is transferred successfully, and is able to continue

execution at the destination domain. In case of failure, the domain agent allows the mobile agent to
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resume execution at the present location or to choose another migration destination. These domain
agent functions assist active agent migration and improve fault tolerance.

4. The domain agent launches migrating mobile agents in a suitable runtime environment. For Java-
based agents, the provided environment is a Java virtual machine, for binary executable agents —
dedicated secure memory space and a sandboxed virtual machine. Functionality of the provided
environment in a particular case will depend on the access permission granted to the mobile agent
(its "trustworthiness") and the functions, which the agent declares it wishes to perform ("goals", or
"intentions").

5. The domain agent ensures that the domain does not become overwhelmed by agents, whether mobile
or stationary. Assigning allowances to an agent’s execution and restricting the number of agents that
can exist within the system at a given time are possible strategies for resource management. For one
example, if a mobile agent attempts to monopolise a resource within a domain, it could only do so
for as long as its allowance lasted. It is envisaged, that particular methods of resource management
used for the implementation prototype will depend on the choice of runtime environment for
software agents.

6. The domain agent provides a point of registration for all agents, resources and users within the
domain. In this area, both stationary agents (resource and user interface agents) and mobile agents
can register and advertise their knowledge, functionality, interests and intentions. In this way, the
domain agent may be considered as a meeting point for agents of different types, where
communication and sharing of information between agents becomes possible.

7. The domain agent advertises a list of agents, which are resident in the domain, and their
functionality for the benefit of other agents. Distributed agents are initially unaware of availability
and presence of users, resources or other agents on different hosts and must query the domain agent
to discover available services. For example, a list of operating mobile agents is collected by the
domain agent upon registration of each migrating agent. This list is used by the domain agent to
eliminate redundant consistency checks and to facilitate co-operation and information exchange
between mobile agents, which are checking related consistency rules.

8. In-domain resources are advertised outside the domain through gateway domain agents. In this
way, mobile agents of other domains can learn of the location of a specific resource in advance of
their migration to the destination domain. By making in-domain resource lookup table accessible by
the gateway domain, the distributed architecture will ensure that mobile agents become aware of all

resources, which need to be processed during distributed consistency checks.

Domains group stationary agents that are running on several network hosts, resources that are stored
at these hosts and users, authenticated by the hosts. It is envisaged that domains are configured by
administrators in such a way, that they would include resources, grouped by relevance to each other,

although other approaches can be used.
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Grouping resources into domains enables the distributed architecture to scale up with the growth in
number of resources and network hosts. Domains are self-contained entities: most of the services
required by software agents within the domain are provided by the domain agent locally in this domain.
In this way, it is possible to optimise the performance of an implementation of the distributed agent
architecture by grouping highly related resources into a domain, or ungrouping them into different
domains to balance the processing load. In the first case, mobile agents will be able to obtain efficient
access to resource lookup information and to multi-agent coordination functions, provided by the
domain agent. However, if a large number of mobile agents execute within the same domain at any
given time, the lack of resources may justify distribution of the load across several hosts or even
different domains. In such load-balancing scenario, more operating resources for execution become
available, but check efficiency may suffer as agent migrations become necessarily more frequent.
Replication of the domain agent across a number of network hosts also has a capacity to improve load
balancing.

By introducing a notion of domain, where services are available locally from the domain agent, the
distributed agent architecture aims to "marry" the advantages of distributed and centralised processing
models. Making a decision on a particular configuration of domains for a specific application of the
architecture is outside the scope of the development of the architecture itself, and is rather a
configurational choice of the system user. However, we attempt to provide guidelines for this important
issue. In Chapter 10, where a software architecture prototype is evaluated, we give recommendations for
an optimal distribution configuration. These recommendations are based on conclusions, drawn from

performance benchmarks of the software agent architecture implementation prototype.
6.2.3 Gateway Domain Agent

In order to provide a hierarchical information structure and to distribute document name and
location information, a gateway domain is used as a grouping of domains and other inter-domain
gateways. A Gateway Domain Agent is a stationary agent that provides the logical connectivity between
individual domains. It allows a number of domains, which perhaps contain related resources and host
co-operating teams of users to be treated as a single virtual domain. The Gateway Domain Agent offers
the following services to the domains within its locale:

1. It provides a hierarchy of domains where queries from sub-domains can be dealt with and resolved
by domains at a different level in the domain hierarchy. The queries may relate to lookup of
resources by name and/or type, and it is envisaged that they are handled similarly to the name
resolution DNS (Domain Naming Service). The gateway domain agent would forward the query to
other connected domains and aggregate the responses it receives into a single set of results. For
example, loosely resembling the DNS analogy, gateway agents will provide access to "countries" at

the root level, regions at the next level and so on down to the constituent domains at the "leaves".
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2. Existence of the gateway domain agent allows firewalls at the architectural level, where access to
information within the sub-domains of the gateway domain can be restricted to requests from mobile
agents, originating from certain pre-defined domains.

3. As the architecture aims to support heterogeneous networks and hosts, gateway domain agent can
equip the mobile agents entering the gateway domain with the necessary software libraries to enable
them to execute and communicate within the virtual domain. Such libraries can implement service
descriptions, communication protocols and the like, which are specific to and are required within the
sub-domains. Efficiency of mobile agents may thus be improved, as they would not need to transfer
such libraries with their code between gateway domains; all the necessary code can be linked at

runtime.

The Gateway Domain Agent is used as a mechanism for supporting distribution and hierarchical
organisation of resources, located at multiple network hosts and groups of such hosts. It attempts to
combine the best of location transparency services, which are implemented via document name lookup
services, with location awareness, which benefits the mobile components with localised access to in-
domain resources. Building a hierarchy of domains, connected via gateway agents allows us to scale out
the architecture, as most of services from a given domain are requested and provided within the same
domain. The burden of dealing with document location discovery requests can be spread throughout the

hierarchy, thus reducing the demands on individual gateway and domain agents.
6.2.4 Consistency Checking Mobile Agent

The Consistency Checking Agent is a mobile software agent, which can migrate between hosts in a
domain and across the domain boundary between the domains. Mobile agents constitute the mechanism,
which implements the consistency checks between the distributed documents.

One of the advantages that the proposed distributed agent architecture provides is a goal orientation
of its mobile agents. Specifications of goals are assigned to mobile agents on instantiation; specification
of different goals allows us to differentiate agents by their roles. Specifications are specified in terms of
communication primitives, such as "check" for checking of consistency rules, "notify" for messaging
and notification of events or results of the check, or "select" in preparation of a consistency check by
locating relevant distributed documents.

Use of the structured goals, analogous to inline communication primitives, allows reuse of the
mobile agent class for creation of agent instances with different goals, thus eliminating a need for
multiple heterogeneous mobile components. The distributed software architecture is based on reuse and
cooperation between instances of simpler software agent templates, instantiated with the goal
statements, rather than on a large family of heterogeneous agents, implementing specific system

functions, as proposed in [Prestegard, et al. 1999].
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The essential functions of mobile agents are defined by specific tasks that agents are to carry out, as

described below.

1.

A mobile consistency checking agent can be authenticated by the goal statement that it carries,
and a unique identifier or a signature, which can be verified at the originating ("source") domain.
Additionally, an implementation of the distributed agent architecture can make use of mechanisms to
ensure correct transmission of mobile agents during migration. A mobile agent without a defined
goal or without a valid signature can be rejected by the receiving domain.

It determines the route of migration between hosts based on the itinerary. This itinerary contains
locations of distributed documents, related to the consistency rule being checked by the agent. The
itinerary is a result of a request to document location service or type lookup service of the local
domain agent. In addition to the information available locally, the itinerary is complemented by an
inter-domain document discovery request, where the query is forwarded to the gateway domain and
the search for relevant documents continues through the domain hierarchy.

The mobile agent possesses the characteristic of persistence, and its ability to migrate enhances
durability. The hierarchical domain structure allows the agent not to solely rely on services of any
given single domain, even if a part of the agent's itinerary is bound to remain uncompleted. If
failures occur in a domain, the mobile agent can continue its execution at another domain. Such
flexibility is particularly useful for distributed computing, and persistence is essential for
disconnected operation, where the user is only connected to the network for short time periods.

It is capable of communicating with stationary resource interface agents, and with other mobile
consistency checking agents. The communication function allows mobile agents to co-operate and
exchange information about their goals, and the information they have previously acquired from
distributed resources.

The mobile agent "marries" the advantages of location transparent messaging and network
awareness, which allows the agent to access resources locally by migrating between network hosts

and between the domains.

Consistency checking mobile agents perform a number of roles within the distributed architecture.

These are location of documents, relevant to a consistency rule, checking of rules and messaging of

events results of the consistency checks between network hosts. In development of the software agent

architecture, we sought to minimise the number of different types of architectural components.

Therefore, solutions for the agent roles are provided based on the same mobile agent code.

All three roles have a lot in common. Migration and serialization of data structures is applicable

both to consistency checking and messaging. Location of relevant documents is deployed prior to and

forms a part of a consistency check. In addition to notification of events, messaging is also deployed

throughout location discovery of relevant documents. Logically, differentiation between particular

instances of mobile agent code is carried out by means of different goals, assigned to the agents

according to their role.
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6.24.1  Locating relevant documents

Upon instantiation, a consistency checking agent is given a reference to the consistency rule, which
needs to be checked. Usually, this consistency rule is selected by a resource interface agent, because it is
relevant to a particular document modification. Alternatively, a user may have requested a check of this
rule, or the execution of this check has been scheduled.

The checking agent queries a domain agent for an itinerary, containing names and locations of
documents, related to the rule. Relevance of individual document instances to particular consistency
rules is reported to the domain by resource interface agents, and is one of the activities demanded by the
incremental checking approach (Chapter 5). The resulting mobile agent's itinerary contains URLs of the
document instances. An example itinerary for the consistency rule, checking well-formedness of
generalizations in a distributed UML model, relating to a number of generalizations, located at different

hosts, is shown in Fig. 6.2.

<Goal action="Select">

<RuleFile href="generalizations.xml"

xpath="/consistencyruleset/consistencyrule[1]"/>

<!—Itinerary — result of discovery of documents, relevant to genl

consistency rule -->

<DocumentSet name="Relevant to Generalization rule">
<DocFile href="A/XMI/Generalization0O.xmi" type="gen"/>
<DocFile href="A/XMI/Generalizationl.xmi" type="gen"/>
<DocFile href="B/XMI/Generalization5.xmi" type="gen"/>

</DocumentSet>

</Goal>

Fig. 6.2. Consistency checking agent's goal "select" and the result — the agent's itinerary.

The consistency checker agent's itinerary contains references to the rule "generalizations" of the
UML well-formedness rule set [Appendix A], and to three relevant documents with their type —
generalization — indicated. The documents are located at network hosts A and B; subsequently, checking

of this rule will require migration between the respective hosts.
6.2.4.2  Checking consistency rule

In order to carry out a distributed consistency check, the mobile agent migrates between network
hosts and gains local access to the documents, specified in its itinerary. Following the distributed
checking algorithm [Chapter 5, 5.4.2] at each host specified in the itinerary, the mobile agent extracts
values of document elements, which participate in a consistency relation, expressed by the rule.

A case of redundant consistency checks may arise, when the same consistency rule is checked
independently and non-cooperatively by numerous mobile agents. A redundant check occurs when
changes are concurrently made to a number of distributed related documents. Consequently, independent
consistency checks of the same rule are triggered at all distributed locations of such documents.

A procedure is in place, which facilitates co-operation between redundant consistency checking

agents in exchange of already collected nodesets in order to speed up the distributed check. The domain
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agent plays a key role in identification of redundancy, since redundancy is identified through
comparison of mobile agents' goals, which are registered with the domain agent by each mobile agent,
migrating into a domain.

Once the itinerary has been processed, the mobile agent computes a consistent or an inconsistent
result of the check and links the affected document elements accordingly (Chapter 5, 5.4.2, Stage 3).
Propagation of the resulting consistency links through all hosts in the itinerary, where the links are saved

as local consistency link files, is one of the tasks that the messenger agents carry out in the architecture.
6.2.4.3  Messaging

Messaging service in the architecture is used by all architectural components for information
exchange between distributed locations. The software agent architecture uses messenger agents to
deliver notification of events and other communication between resource interface agents, domain
agents and mobile checking agents. Conceptually, the messenger agent contains a small portion of code,
responsible for persistence and failure handling, an itinerary of hosts to visit and agents to deliver a
message to, and the message itself.

There are several occasions when messaging is deployed in the architecture. First of all, consistency
links are propagated to distributed locations by means of messaging. The consistency checking agent
sends a messaging agent to the resource interface agents of processed documents and thus notifies them
of the consistency links that need to be registered. Secondly, co-operation and information exchange
between redundant checking agents is based on messaging services. Event notifications of document
changes, of document relevance to a certain consistency rule, and of the beginning and ending of a
consistency check are registered by resource interface agents at the domain agent by means of
messaging.

Messaging implements the required functionality for the event orientation of the software agent
architecture, where components operate by raising, processing events and communicating these events
as messages. The architecture includes a notion of a messenger agent for the purpose of abstraction, as
no assumption is made about availability of messaging services in the mobile agent middleware, which
is to be used for the implementation. The implementation prototype of the architecture, described in
Chapters 8 and 9, is built on the mobile agent middleware IBM Aglets, which supports location
transparent messaging between agents. Messaging agents are thus replaced by use of messaging services
in the prototype, and identification of messenger agents by their goal is implemented through typed

messages.
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6.2.5 User Interface Agent

The User Interface Agent resides on the hosts, where users of the distributed consistency
management facility are working. This stationary agent provides a user interface to the functionality
offered by the architecture and the underlying distributed consistency checking framework. The User
Interface Agent is capable of performing the following tasks:

1. It allows a user to log in to the consistency checking facility, by which the user is authenticated
and acquires certain access permissions for access to the resources, consistency rules and policies.

2. If an ability to change consistency rules is required by the application domain, the User
Interface Agent allows authenticated users to edit consistency rules, and provides a graphical
interface [Zisman, et al. 2000] to make this process easier. Likewise, it can facilitate access to
system policies, though in both cases a user can access these directly, without the user interface
agent.

3. The User Interface Agent allows a user to launch consistency checking agents at any point in
time of the document production process in addition to the automatic checks, triggered when
particular events, occurring on the documents, are identified by a resource interface agent. The user
interface agent can provide functionality and enable the user to specify which document elements
need to be checked, allow the user to select consistency rules from rule database and schedule or
immediately launch the consistency check of these rules.

4. It creates a user-friendly representation of consistency links, which are generated by mobile
checking agents and sent to resource interface agents. The representation may involve prioritising
inconsistencies in one way or another, i.e., by possibility of toleration, urgency or estimated
difficulty of correction.

5. The User Interface Agent provides a user with a view on the goals, state and locations of agents,
history of document changes and results of consistency checks.

6. The User Interface Agent may act on behalf of the user when the user is absent from the
workstation. This functionality may be most beneficial in world-wide distributed development
projects, where daytime hours of distributed developers differ. Prioritising requests and messages
and forwarding those with highest priority to the user in a convenient form (i.e., by electronic mail)

would be a simple example of such functionality.

6.3 Hierarchical Information Structure

In order to provide the required services at the domain level of the architecture, data structures have
been developed to facilitate execution of such services. In order to support the organisation of the
information space and to assist with data location, we use a metadata structure that records information

about the contents and locations of the various resources and events in the system.
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6.3.1 Document Name Table

The Document Name Table stores document names, their types and URL addresses of document
locations. A table of this kind is maintained by a domain agent in each domain, and contains information
about documents, located in that domain. Maintaining correctness of information in this table for each
participating resource is a task of resource interface agents, which overlook the resources. The resource
interface agent initially sends and subsequently updates document name and location information at the
domain agent level.

The gateway domain agent maintains a similar document lookup table, where it caches document
location discovery results from numerous domains. The information is updated by successive location
discoveries of documents of each particular type. Despite the best effort, cached information becomes
outdated, thus the domain's document table contains an additional field: expiration time, after which

cached information is re-requested (Fig. 6.3).

Field Description Comments Example

Document Name Eull name, may include type in it, this ClassDiagram.xml

field will be searched

Document type, or type of the UML Class Diagram
Document Type element, represented by the document in

the UML scenarios.
Location In);;:lgment URL: host(domain), path, file | host.C/ClassDiagram.xml
Relevant Consistency | Identifiers of consistency rules, relevant cl,c2,c3, ...
Rules to the document

Additional Fields at the Gateway Domain

Last Requested Time stamp of last request 25/06/2001, 14:19:53
Location information | When to re-verify existence 30/06/2001, 12:00:00
expires

Fig. 6.3. Extract from the Document Name and Type Table.

Fig. 6.3 presents an example of a record of the document name table, stored at domain C. The
domain agent of domain C is responsible for receiving the information in this table from resource
interface agents.

In order to speed up distributed document location discovery between domains, our approach
advocates use of partially redundant document location tables. Initially, within each domain, the tables
contain complete location information on the documents of that domain. Additionally, the tables at
gateway domains often possess information on most frequently accessed resources of the sub-domains.
The latter information is replicated across numerous gateway domains, is redundant, and is not
guaranteed to be always correct. This redundant information is acquired through inter-domain location
discovery mechanism, where a gateway domain caches results of a location query, collected from the
connected domains. Inter-domain location discovery example [Chapter 8, 8.8.4] explains the mechanism

in detail.
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The proposed caching mechanism draws on techniques often deployed in artificial intelligence
applications, and is similar to the "ant path" planning algorithm [Steels 1990]. In search for a resource
(food or building material), ants climb "resource pheromone" gradient, left behind by other successful
ants, which have already found the way to the resource. As a result of general randomness of ant
behaviour and decaying of the pheromones with time, ants form minimum spanning trees of paths.

The document location caching mechanism is based on somewhat random pattern of inter-domain
location discovery requests. Correct paths to locations to sought resources, established at the gateway
domain table, expire with time, alike the pheromones. The deployed exploration technique of the
changing environment has proven successful in numerous industrial applications of agent-based systems
[Panurak 1998].

6.3.2 Distribution of Consistency Rules

Consistency rule databases of individual domains and gateway domains are organised in a
hierarchical structure, and information contained in the hierarchy is intentionally partially repetitive.
When the approach was being developed, a decision had to be made whether to distribute consistency
rules and store them locally to the documents, which these rules are relevant to, or to store the rules
centrally and retrieve them as necessary when distributed checks take place. Each of these approaches

was found to be too radical, and a solution aiming to "marry" the advantages of both has been proposed.
6.3.2.1  Approaches to Distribution of Consistency Rules

Localised storage of consistency rules at the document locations is an attractive solution. In this
approach, consistency rules can be treated as resources, which makes the architecture simpler. Similar to
documents, rules are then monitored for change by resource interface agents and are locally accessible
by mobile checker agents. Access locality to consistency rules allows us to capitalize on certain
advantages (i.e., distribution flexibility, disconnected operation, some performance advantage), in the
same way as access locality to distributed documents, which we have adopted for the software agent
architecture.

In the software engineering domain, we expect consistency rules to change much less frequently
than the documents. In a similar fashion to UML well-formedness constraints, which are used for a
running example in this thesis, consistency rules would normally specify static semantic constraints of a
language, in which the documents are represented. As a consequence, there is minimal evolution of
consistency rules throughout the duration of a software engineering project.

When a consistency rule does change, however, changes would almost always require update of all
distributed instances of this rule in the system. As a result, complete replication of all changed rules
across numerous domains must then be carried out. A distributed rule update mechanism must be in
place to ensure that once a change in a consistency rule has been made, the change is atomically

propagated through the domain hierarchy and all corresponding instances of this rule are updated.
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Centralised storage of consistency rules avoids the necessity to replicate rule updates. A consistency
rule would need to be updated at a single location, and all following consistency checks will take into
account the new instance of the rule.

Despite the relative ease of deployment that the centralised storage of consistency rules provides,
this solution exposes the rule database as a single point of failure. The software agent architecture aims
to provide a non-centralised solution for the task of distributed consistency management of
heterogeneous documents. It advocates carrying out consistency checks locally at locations where they
are required, and thus deployment of a centralised storage facility for consistency rules would

undermine the principles, on which the architecture is based.
6.3.2.2  Proposed Solution for Distribution of Consistency Rules

In our approach, consistency rules, relevant to the document types that are found in a domain are
stored locally within that domain. All consistency checks, originating in this domain, access consistency
rules locally. This approach makes a domain self-contained and ensures, that in-domain consistency
checks can be carried out during disconnected operation.

Gateway domains contain a comprehensive database of all consistency rules, applicable within the
sub-domains, and the system administrator or users with sufficient privileges make changes to the rules
at a gateway domain in the first instance. Mobile messenger agents are then automatically invoked by
the gateway domain agent, which propagate all changes to domain agents and other gateway domains
through the hierarchy of domains. Each domain agent replicates rule changes to the locations of the
documents within the domain. Location information from the Document Name Table is used in the
replication process.

Resource interface agents monitor rule sets at document locations, detect changes in a particular
rule and, as a response, call back any mobile checking agents, which have started checks on the previous
version of that rule. Checking is restarted with the new version of the rule, thus "atomicity" of rule
update is achieved.

The proposed approach assumes that consistency rules change much less frequently than the
documents. We propose a centralised retrieval mechanism to be deployed for rules that change often and
for which replication of updates to distributed domains proves ineffective. When a consistency check is
started, consistency rules marked as "frequently modified" are retrieved directly from the central
database at a gateway domain and stored as a local copy. Since this approach ensures that only current
version of the rule is used in every check, such checks are never recalled and a corresponding
performance penalty is not incurred. However, during busy times requests to a centralised rule
repository increase the latency of consistency checks. Frequent rule requests can potentially overload the
gateway domain and will not return any result if network connectivity to the central rule database fails.

In such cases, the latest local copy of a rule can be used instead.
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Note that both for locally accessed and frequently modified rules, local copies of all rules, relevant
to documents in the domain, exist and can be checked within the domain. Each domain can thus operate
independently of other domains regardless of the state of other domains.

To summarise, the proposed approach attempts to "marry" the advantages of centralisation and
distribution of consistency rules across the domains. We suggest distribution of consistency rules to
locations of documents, relevant to these rules, for all rules, which are not changing as frequently as the
documents. A mechanism for propagation of rule updates has been proposed for this context. Use of a
centralised repository is justified for frequently modified rules. Our approach enables flexibility in

configuration of an implementation of the architecture.
6.3.3 Agent Lookup Table

An agent lookup table is maintained by the domain agent and is updated when mobile agents
register or unregister with the domain upon migration into the domain. The purpose of the table is for
the agents to declare their goals and to advertise the information they have previously retrieved from the

distributed documents.

Field Description Comments
A Unique mobile agent identifier. This is generated by the interface
gent ID . .. .
agent when a mobile agent is instantiated.
Complementary field, which specifies the purpose of the agent:
Agent Type messenger, rule selector or consistency checker. Agent type is inferred
from the agent's goal.
Agent Source Domain of origin and the host within that domain.
Agent Goal Goal of the agent: "notify change", “select rules” or "check rules".
Consistency Rules Unique consistency rule identifiers for consistency rules being
checked by the agent.
List of documents, relevant to the rule, and their locations. The
Itinerary completed part of an itinerary specifies which documents have already

been processed by this agent.

Fig. 6.4. Structure of an element of the Agent Lookup Table.

Agents, operating within the same domain, can identify whether their goals relate and if exchange
of information between the agents could be beneficial to achieving the goal of one or the other. For
example, relating goals of consistency checking agents would require checking of the consistency rule
of the same type (i.e., type "classes" or "generalizations"). If goals of different agents coincide, then it
may be sensible to establish communication between the agents in order to exchange information, which
different agents have already collected. Exchanging information relating to a common goal increases

efficiency of the agents' performance.

94



6.3.4 Event List Table

An event list is used to store events, occurring on the documents within the domain. The events of
interest include document modifications, carried out by the user and the history of established
consistency links, generated following individual modifications.

Maintaining the events list allows all mobile agents registered within the domain to screen through
the list and to determine whether any recent events are related to the agents’ consistency checking goals.
In a simple example, when the event list indicates removal of a document, which is specified in an
agent's itinerary, the agent updates its itinerary accordingly. In another example, an agent determines
that the consistency rule it is checking had already been checked across the current domain, and none of
the related documents have changed since that check. As a result, the agent can reuse the existing
consistency links and refrain from re-checking the documents at this domain. In this case, the agent's
goal is amended and a number of documents in the agent's itinerary are marked as processed.

Consistency links between related documents, created as a result of a consistency check, are being
referenced to from the events list (Fig. 6.5). After each modification, consistency links relating to that
modification can be retrieved and navigated by the user. If a document has been made inconsistent by a
certain modification, the user can undo the latest changes and roll back to a previous “consistent” state

of the document.

Field Description Comment Example
Timestamp Time stamp when the event has occurred | 25/06/2001, 14:25:20
Event Type ’(l;)rllpl)se:vf’e\./.e.nt. OnChange, OnDelete, OnChange
Document ID Document identifier if used, or file name | Class0.xmi
Document Name Name of the document Class "Teacher"

Type of the document, or type of UML
Document Type element, represented by the document in | Class

the UML checking scenarios.
Node Path XPath expression, containing a path to the changed node.
Former Content An ext.ract of the sub-tree starting from the “Node Path” and

engulfing the part of the document, which has changed

Current content of the affected sub-tree of the “Node XPath”. If
Current Content . g

multiple changes have occurred, they may be specified here.
Document Type Type of the document | LinksClass0 01.xml

Fig. 6.5. An element of an Event List Table, registering the event "OnChange".

The event list table is maintained by a domain agent at each domain. All stationary and mobile
agents, registered in the domain, report their actions on resources of the domain and results of these
actions to the domain agent. These reports are stored in the event list table, and become accessible by all
in-domain agents for analysis. Each agent can update its goal (itinerary) as a result of recent events,
occurring on resources specified in that goal. The event list, therefore, serves as a coordination structure

for all agents, distributed across the domain.
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6.3.5 System Policies

The architecture uses the notion of policy to specify configuration parameters and execution rules
for its components, where necessary. Most of the "policies" will be coded into the components upon
their implementation and form the essence of component logic, but some are left to be defined by a user
or system administrator, because they can change at runtime.

As an example of specifiable policies, consider consistency rule execution policies within a domain
(Fig. 6.6, 6.7). These policies allow a user to specify a sequence of execution of consistency rules, where
if one rule in the sequence is executed, all other rules have to be executed as well. Although related in
the particular application domain, these consistency rules may affect different document elements or
even different documents, and therefore would not be selected by the incremental checker as relevant
rules to a document modification. At the same time, sequential execution of these rules may be
important within the application domain that these rules represent, and the rule execution policy allows
us to provide such functionality.

When rule execution policies are used, in addition to the consistency rules table, each domain has a
database, where rule policies are defined. In this database, an explicit relationship between events and
consistency rules is established (Fig. 6.7). This relationship binds an event, occurring on a resource, to
the execution of a set of consistency rules. The policy database is thus ideologically analogous to the

ViewPoint workplan.

<Policy type="Rule">
<Event documentType="Class">OnChange</Event>
<ConsistencyRules>

<rule_id>genl<rule_id/>

<rule_ id>gen2<rule_id/>
</ConsistencyRules>

</Policy>
Fig. 6.6. A consistency rule execution policy example in XML.
Event:
Event On On documer}t ofa cert.ain type AND/OR with a certain Document ID
AND/OR with a certain Document Name.
Event Type Type of event occurred: OnChange, OnNew, OnDelete, ...
Check action:
R Identifiers of the consistency rules to be executed when the specified
ule IDs
events have occurred.

Fig. 6.7. The structure of a rule execution policy.

The example in Fig. 6.6 defines a rule execution policy, that on any change event ("OnChange")
occurring on classes within the domain, executes checks of consistency rules generalizations (rule IDs
"genl" and "gen2"). A system administrator has designed this rule execution policy in order to "batch"

process consistency checks of generalizations each time the classes change. Policies also allow to
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"batch" together all relevant consistency rules for a pre-release documentation check, as well as to carry

out an exhaustive consistency check when required.

6.4 Re-configuration At Runtime

When dealing with a distributed document management system, it is crucial to have a mechanism
for dynamic update of configuration information. New documents should be able to join the system, and
registered documents should be able to unregister or relocate. In approaches proposed by Giladi [Giladi
and Shoval 1994] and Millimer [Milliner and Papazoglou 1994], all participating resources are
registered during system initialisation. Our architecture aims to provide capabilities of dynamic re-
configuration at runtime.

It is worth mentioning once again that the architecture is distributed and therefore does not have a
single origin: domains are self-contained and can work independently of each other (within the context
of in-domain consistency checks). Therefore, when reconfiguration is required, document name and type
table within the domain, affected by a change, is updated to make account of the change. For example,
when a new document is added on a host within the domain, the resource interface agent, monitoring the
document set at that host notifies the domain agent of the new document's name and type, and computes
the initial relevance of consistency rules to the document, which is computed at initialisation of the
incremental checking algorithm. Relocation of resources between the hosts, or hosts together with a set
of resources to a different domain triggers updates to the records of each document. Configuration

changes can therefore be registered at runtime.

6.5 Satisfaction of the Functional Requirements by Architectural
Components

In this section, we match the components of the mobile agent architecture with the functional
requirements demanded from the distributed consistency checking system (Chapter 3) that these

components fulfil.
6.5.1 Resource Interface Agent

The agent implements the following requirements:

Each document, participating in the managed project, should be monitored for occurrence of
events, such as document changes [Chapter 3, 3.4]. The resource interface agent serves as a "watchdog",
which monitors documents for modification.

When a document change event is identified, it must be determined, which elements of the
document's structure have been changed, and which have been added or removed [Chapter 3, 3.4]. The
agent runs the TreeDiff algorithm between a backup copy of the resource and its current version. As a

result, a set of elements is identified that have been changed, added or removed.
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Consistency checks occur at appropriate points in the document production process, as a result of
events occurring on documents [Chapter 3, 3.5]. Results of consistency checks must be kept up to date
[Chapter 3, 3.10]. In addition to reactive consistency checking of document modifications, the resource
interface agent provides support for rule execution policies, which give a user flexibility in scheduling
checks throughout the project life cycle.

An event-oriented consistency checking system should provide facilities for distributed event
notification and processing [Chapter 3, 3.11]. The agent operates as a multithreaded watchdog, which
raises events when documents are changed. It notifies the domain agent of the occurring events, which
are registered in the events table. The resource agent processes document changes by instantiating
mobile checker agents. The agent processes rule updates by re-launching consistency checks of the
modified rules. In all its activities, components communicate via events — typed messages, which control

the components' operation.

The Resource Interface Agent facilitates implementation of the following requirements by acting
jointly with other components:

A mechanism should be in place, which would identify relevance of a consistency rule to a given
document, or to an element of the document's structure [Chapter 3, 3.7]. The Resource Interface Agent
follows the incremental checker algorithm and selects consistency rules, relevant to the document
changes.

Consistency checks should be carried out incrementally [Chapter 3, 3.6]. The agent facilitates
incremental checking by identifying incremental document changes and selecting relevant consistency
rules. It instantiates the mobile consistency checking agent, which carries out the incremental checks.

Access to documents and retrieval of document elements during a consistency check should occur
locally with respect to the document, rather than from a remote host across the network [Chapter 3, 3.8].
The Resource Interface Agent implements the access protocol to a local resource, and is able to provide

an appropriate concurrency control mechanism.
6.5.2 Domain Agent

The agent implements the following requirements:

Consistency rules should be specified between types of documents, rather than between particular
document instances [Chapter 3, 3.2]. Consistency rules do not refer to related document instances, but to
document types. The domain agent participates in the resolution process: it maintains the document
name lookup table, which allows it to compose itineraries for mobile checking agents. These itineraries
contain references to document instances, which have been identified as relevant to a consistency rule

being checked.
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A policy defines applicability of consistency rules [Chapter 3, 3.3]. The domain agent maintains a
table of rule execution policies. Execution of consistency rules is also regulated by security policies,
which are enforced on incoming mobile checking agents from the other domains.

The domain agent and the event table it maintains also serve as a coordination point for stationary
and mobile agents in the domain. The agent table, also maintained by the domain agent, allows agents to
identify commonality between their goals and engage in information exchange. The coordination
function of the domain agent is specific to the software architecture and is not demanded by the general

functional requirements.

The Domain Agent facilitates implementation of the following requirements, by acting jointly with
other components:

Consistency rules should be stored and accessed locally to the document, which they are applicable
to [Chapter 3, 3.3]. The domain agent receives rule updates from the central rule database at a gateway
or other domain agents in the hierarchy of domains and forwards the rules to the hosts where documents
are located.

Consistency checks should be carried out incrementally [Chapter 3, 3.6]. A mechanism should be in
place, which would identify relevance of a consistency rule to a given document, or to an element of the
document's structure [Chapter 3, 3.7]. The domain agent maintains the document name and type table,
which registers the relevance of consistency rules to the documents within the domain. The relevance
information and the information on documents' locations at the current and other domains are used by

the mobile checker agents in carrying out incremental consistency checks.
6.5.3 Gateway Domain Agent

This agent provides a number of important functions in the software agent architecture, which are
specific to the architecture. Consequently, it does not directly relate to the general functional

requirements.
6.5.4 Mobile Consistency Checking Agent

The agent implements the following requirements:

Consistency rules should be specified between types of documents, rather than between particular
document instances [Chapter 3, 3.2]. The mobile agent composes an itinerary for checking a consistency
rule. The rule itself does not indicate related document instances, but document types (or UML element
types in the UML well-formedness scenario). The agent itinerary is composed from the information,
available in the document name table at the domain agent, in order to specify the document instances to
be checked for consistency.

Access to documents and retrieval of document elements during a consistency check should occur
locally with respect to the document, rather than from a remote host across the network [Chapter 3, 3.8].
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Mobile checking agents migrate between network hosts and capitalize on advantages of local access to
documents.

Consistency checks should be carried out incrementally [Chapter 3, 3.6]. The mobile checking
agent builds on the implementation of the incremental checking algorithm.

Results of consistency checks must provide diagnostic information on the found consistencies and
inconsistencies [Chapter 3, 3.9]. Resulting consistency links are delivered by the mobile checking agent

to all locations of relevant documents.
6.5.5 User Interface Agent

The agent implements the following requirements:

Results of consistency checks must provide diagnostic information on the found consistencies and
inconsistencies [Chapter 3, 3.9]. The agent provides a user interface to facilitate accessibility of
diagnostic information, contained in consistency links.

Consistency checks occur at appropriate points in the document production process, as a result of
events occurring on documents [Chapter 3, 3.5]. The user interface agent allows users to launch
consistency checks, call back ongoing checks and otherwise manipulate mobile agents (i.e., send control
messages, etc.). Administrators manage the configuration of a distributed system via the user interface

agent: they can launch and shut down individual mobile and stationary agents.

6.6 Summary

This chapter presented the architecture for distributed consistency checking, where each component
of the architecture abstracts a set of clearly defined roles — subtasks of a distributed consistency check.
The components are instrumented as autonomous agents, co-operation between which is essential in
completion of the consistency checking task. The architecture is decomposed into a number of stationary
agents, which provide services to mobile consistency checking agents. Mobile agents are created
lightweight, as use of stationary resource interface and domain agents allows us to off-load some
significant functionality from the mobile checker agent. The following services were discussed in the
chapter and are used by a mobile checker agent in a distributed check: access to heterogeneous
documents through resource interface agents, location of distributed documents during a consistency
check through the domain agent, and user interaction with the agents through the user interface agent.
Decomposition of the architecture into autonomous components enables flexibility in evolution of
individual components and upgrade of their functionality, and extensibility of the services provided by
the architecture by addition of components with new agent roles.

In this chapter, we described the domains — autonomous units of distribution, which form a
hierarchical structure of logical connections via gateway domains. The hierarchy of information,
contained at the domains, allows us to avoid the necessity of using centralised repositories for document

location information, consistency rules, event histories and agent contact lists. Existence of a
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continuously updated document name table and a rule table within each domain gives the domain
autonomy with respect to in-domain checks, allows disconnected operation and improves fault tolerance.

In the remainder of this chapter, we provided the mapping of roles of each of software agent in the
software agent architecture onto the functional requirements, demanded of a distributed consistency
checking framework in Chapter 3. The mapping demonstrates how the agent tasks directly implement
the demanded functional requirements or facilitate them jointly with other agents.

The following Chapter 7 is dedicated to the detailed design of the architectural components, and to
the construction of a model, which enables initial evaluation and validation of the architecture. In
Chapter 8 we introduce an implementation prototype of the architecture, explain and verify its operation
on a number of consistency checking scenarios, arising from the distributed collaborative development
of a UML model of the break scheduler application. The prototype allows us to further evaluate the

performance and qualitative features of the architecture in Chapter 10 and to support the proposed

software agent architecture.
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Chapter 7  State Transition Model of the
Software Agent Architecture

7.1 Introduction

In this chapter we describe the state transition model of the agent architecture. Prior to
implementation, all software systems necessarily go through preliminary stages of general and more
detailed analysis and design. We have followed this standard route in design of all architectural
components. The state transition model is one of important results, which we present in this chapter. The
state transition diagrams were created using the standardized representations, offered by the Unified
Modelling Language.

In addition to a role that the model plays during the analysis and design stage of the architecture, the
model also serves as an initial validation and evaluation of architecture. Subsequent development of an
implementation prototype, its validation in deployment scenarios (Chapter 8) and the following
scalability evaluation (Chapter 10) complement the material presented here.

The state transition model allows us to better clarify the particulars of the architecture, and to
provide more detail on functioning of components and interactions between them. In addition, as the
model estimates timings of inter-state transitions, initial performance estimation of the architecture is
provided in the model evaluation section. The evaluation allows us to give an initial recommendation on

a configuration of the distributed system, in which the distribution penalty can be lessened.

7.2 The Modelling Approach

We use state charts [Harel 1987] for architecture design and construction of the architecture
model. The state chart is an advanced form of a state transition diagram, which defines the state space of
a certain object, events that cause a transition from one state to another and actions that result from the
transitions between the states. The state charts attempt to encompass in their notation a diagrammatic
representation scheme, a mathematical model, describing conditional relations and transitions between
the states, a linguistic model, devising names and descriptions of simple and complex states, and a
pictorial model, providing an overview of the system and its decomposition that is close in the level of
detail to that of an algorithm.

Mobile agent systems have been modelled in different ways; the approaches include process
algebras (including © calculus), Petri nets, coordination languages (i.e., based on Linda), temporal

logics, category theory and others. A survey can be found in [Seregeundo, et al. 1996]. For application
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of Petri nets to mobility, Mobile Petri nets [Asperti and Busi 1996] and Communicative and Cooperative
nets [Sibertin-Blanc 1994] have been proposed.

For iterative development of an implementation prototype of the software agent architecture, we
have attempted to follow the Rational Unified Process, and to use a de-facto standard UML for the
design of the prototype. The UML state transition diagram modelling tool (Covers), which we describe
in more detail below, has also allowed us to "simulate" runtime behaviour of the statecharts, which we
have designed for each architectural component. We have thus chosen to use the statecharts as a
methodology for modelling the software agent architecture and to include the model in this thesis.

The notion of a state chart is actively linked with the active object [Booch 1994], the state of
which the chart reflects. Booch has defined an active object as one that encompasses its own threads of
control and is autonomous, meaning that it can exhibit some behaviour without being operated upon by
another object. During its lifetime, the object performs operations in response to the external or internal
events and conditions. The existence of state within an active object means that the order, in which
operations are invoked, is important. In the software agent architecture, where event- and time-ordering
of operations is pervasive, the best description of the behaviour of the involved active objects can be

achieved in a state transition diagram.
7.2.1 Construction of a State Transition Model

The choice of state based modelling for design and initial evaluation of the mobile agent
architecture is determined by characteristics of the architecture itself, which consists of event-driven,
independent collaborating components, each being in a particular operational state at any given moment.
Each transition between the states can be mathematically expressed in terms of the complexity of the
algorithm, implementing this transition.

A significant contribution of the state based model is in its ability to validate the architecture. The
model describes component behaviour and inter-component collaboration at different configurations of
the system (i.e., different number of documents, concurrently checked rules, network hosts, etc.). A
derived benefit of the model construction is in our ability to engage in detailed design of the architecture
during the construction process.

The state based model has allowed us to simulate the complete process of a distributed consistency
check, where all architectural components are involved. Prior to implementation of the architecture in a
prototype, the model has allowed us to identify and correct a number of problems — configurational
bottlenecks, de-synchronisation between components and alike — at design time. The model is also used

to visualise component behaviour.

7.2.2 Modelling Tool - Covers

The modelling tool was chosen based on its availability and the functionality of its development

environment in the design of object oriented distributed systems. The choice of the author was the
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modelling language framework and design environment "COVERS" [Covers 1998], which enables the
user to build and simulate the state models of such systems.

The main construction unit of a COVERS model is based on the notion of an active object.
Similarly to Booch's definition, active objects in COVERS are independent, concurrently active, event-
driven logical machines. The modelling framework supports diagrams of object structure and
interconnection, statecharts for description of behaviour, and C++ language for implementation of

transition actions in data objects. COVERS' statecharts are based on David Harel’s Statecharts [Harel
1987] - a simple yet highly expressive approach, superior to conventional flat state machines [Covers
1998].

In COVERS, the structure and behaviour of active objects is specified graphically in a development
environment. Then, this specification and behaviour is translated into C++ code. Active objects are
compiled as independent classes, and the model is linked with COVERS runtime C++ libraries to
produce the executable. Resulting models execute on the Windows platform, with ports to Unix

becoming available as well.

7.3 State Transition Model of the Software Agent Architecture

Construction of the architecture model is based on a top-level active object Domain. The structure
of Domain is shown in Fig. 7.1: COVERS alias "TSystem" applies to the Domain as a top-level system
object. The domain model embodies all active objects of other architectural components, which execute
within the domain. Fig. 7.1 depicts the domain structure as it appears within the COVERS Project
Editor, where design takes place and executable models are compiled.

Active objects, represented as boxes in Fig. 7.1, communicate with each other via ports (shown as
small circles on borders of the boxes). As such, each of the Document active objects, representing the
document component of the architecture, possesses one port connected to the active object of the

Resource Interface (Fig. 7.1).
7.3.1 Document active object

A Document active object is replicated in the model (which is indicated by presence of a "shade"
behind the object, Fig. 7.1). Replication allows us to reuse an already developed object with its structure
and behaviour, create collections of similar objects and enable objects to concurrently co-exist and co-

function during execution of the model.
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Fig. 7.1. Structure of the software architecture model.

Ail active objects in the simulation model have their own structure and behaviour. Behavioural
aspect is represented as a state chart. Fig. 7.2 shows the state chart and behaviour for the Document
active object.

The model of the Document active object contains one class TDocument and a port reference. The
state chart diagram of this class contains four states and transitions between them (Fig. 7.2); each
transition executes a number of operations (Table 7.1). Each state has entrance and exit conditions.
These conditions also contain sequences of operations, which are executed when an active object is

entering and leaving a state.
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Fig. 7.2. Document active object; its structure and behaviour.

Table 7.1. Partial code: Document active object

// This is a partial code: FULL CODE of the model is provided in
// Appendix B.
Changed — document has been changed. Event must be raised.
Entry:
// Event has occurred. Send new event (notification message)
/] "Check" through Port

Port->Send(new TNotificationMessage("Check"));

Exit :

Transition: -> AskForRate

Idle — document is awaiting next event.

Transition: -> Changed:

Transition delay: 1000*(Rate+Rate*TExponentDistr( Rate ))

// Calculation of a delay until the next change - randomised with

// an exponential distribution model parameter Rate in milliseconds.

The task of the Document active object is to generate "changes" - events, which will be reacted
upon by other architectural components. The model does not intend to describe particulars of individual
changes (i.e., the changed elements, and which document they belong to). Unlike a working
implementation prototype of the software agent architecture, discussed in the later chapters, the model
does not process documents. It "simulates" processing, as if the processing is carried out by the
components.

The state chart for the Document object contains a loop, where an event "Changed" is raised at
random intervals of time (Fig. 7.2). A delay between the generated events is controlled by a parameter
Rate (Table 7.1), which is set for each of the instances of the Document active object when the model
executes. This approach allows simulating the documents that are often modified (i.e., at the initial stage
of development), and the documents, modified rarely. Replication of the Document active object allows

us to include a specifiable number of documents with different modification rates into the simulation
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model. All "Change" events, generated by documents, are forwarded through the Port to the Resource

Interface Agent, where these events are processed and trigger actions in response.
7.3.2 Resource Interface Agent active object

Fig. 7.3 shows the structure and behaviour of the Resource Interface Agent active object. The port
ReslInterface connects to the output ports of a collection of replicated Document objects, through which
the Resource Interface Agent object receives "Change" event notifications from the documents. The
Agentlnterface port connects the agent to the Agent Middleware active object.

Alike the Document active object, the Resource Interface is implemented by one class
TResourcelnterface; the state chart defining the behaviour of this class is shown in Fig. 7.3. The state
chart is composed of two macro-states: ResInterfaceOperation and LinksChange. In the former state,
changed document elements are identified, critical consistency rules are selected and mobile agents are
instantiated for checking of each selected rule. Mobile agents' requests for values of specific document
elements are handled in the interrupt mode. Upon receipt of such request, any active sub-state of
ResInterfaceOperation looses focus, the requested document elements are identified and their values are
returned to the requesting mobile agent (as shown in the upper-right area of the state chart in Fig. 7.3).
Finally, focus is returned to the "history" state within ResInterfaceOperation — to the state, which was
active before the interruption. Identification of requested elements and return of their values is simulated
in the Resource Interface Agent active object: execution of the agent's statechart is delayed. The duration
of this delay corresponds to the size of the document and the number of requested elements (Table 7.2).

The LinksChange macro-state corresponds to Resource Interface agent making changes to the
consistency links file at the request of a mobile agent. Because of the necessary atomicity of this
operation (propagation of concurrent changes to the link set file), LinksChange state is separated from
ReslInterfaceOperation and doesn't allow servicing of external events. Since events are queued upon

receipt, their processing resumes once the Resource Agent leaves the LinksChange macro-state.

J_Eeslnterface

Resourcelnterfac

j‘fﬂxgentlntérface

Fig. 7.3a. Structure of the Resource Interface Agent active object.
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Fig. 7.3b. Behaviour of the Resource Interface active object.

Table 7.2. Partial code: Resource Interface Agent active object.

// FULL CODE of the model is provided in Appendix B.
InstantiateMAForEachCriticalRule
Enter: for (int i=0; i++; i<Mlocal) {
TMAgent ag = new TMAgent(
new TNotificationMessage("Check"), new TNotificationMessage(Z),
m_in.ruleli]);
ag.dispatch(IP_DOMAINSERVER);

}

Exit :

Transition: -> ResInterfaceOperation
ResInterfaceOperation

Transition: -> ScanRequestedElements

Delay: if ((TNotificationMessage m=AgentInterface->
Get())=="ParamRequest")

Transition: -> LinksChange

Delay: if ((TNotificationMessage m=Agentlnterface->
Get())=="LinksChange")
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7.3.3 Consistency Checking Mobile Agent active object

Because of the inherent mobility of the consistency checking agent, the corresponding active object
is not connected to any other stationary component in the outline of the architectural model (Fig. 7.1).
Instead, the relevant active object is shown in Fig. 7.4.

Consistency Checking Mobile Agent is invoked by the Resource Interface Agent during the
transition InstantiateMAForEachCriticalRule->ResInterfaceOperation (Fig. 7.3b). Table 7.2 specifies
that the following parameters are passed to the agent constructor: goal identifier "Check", structure with
references to changed document elements Z serialised as a NotificationMessage, and a relevant

consistency rule out of a set of rules (m_in), selected by the resource agent.

TMAgent ag = new TMAgent(
new TNotificationMessage("Check"), new TNotificationMessage (Z),
m_in.rulef[i]);

ag.dispatch(IP_DOMAINSERVER);

The state chart in Fig. 7.4 consists of four composite states. 'Active' state includes initialisation of
the mobile agent and its operation at source and destination domains. The model assumes, that
documents are located at different network hosts in different domains. Thus, two domains (called
"source" and "destination") constitute a minimum unit of mobile agent's itinerary, where inter-domain
migration is required. Modelling of additional domains is carried out by additional executions of the
"Migrate" transition (Fig. 7.4) from within the AtDestinationDomain super-state.

The three other composite states are event handlers. AgentDataReceived handles collaborative
communication between active mobile agents, where agents merge their already collected data.
Redundant handles identification of the current agent's redundancy if another agent is found to be
checking the same consistency rule at a given domain. Failure handler defines agent's persistency at

unforeseen situations and its communicability with the source domain.

informationPort

MAgent

o

MiddlewareFort

Fig. 7.4a. Structure of the Consistency Checking Mobile Agent active object.
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Fig. 7.4b. Behaviour of the Consistency Checking Mobile Agent active object.

The agent model embodies the essence of an incremental consistency checking algorithm in the
"Active" state. State FindDestinationDocumentURLs accounts for identification of document's
locations, RetrieveDestinationElements - for retrieval of document elements, specified by the
consistency rule being checked. If the agent's itinerary has not been completed, then the agent model re-
enters the composite state AtDestination via transition Migrate. CheckConsistencyRelation is reached
when the itinerary has been completed, where the rule operators are executed on collected document
elements. Generation and update of consistency links occur in states UpdateTargetLinks at the
destination domain and UpdateSourceLinks at the source domain. The full code for state transitions of
the mobile agent active object can be found in Appendix B, where execution operations, entrance and
exit conditions for each of the agent's states are listed.

Due to the distributed nature of the consistency checking task, execution of the agent's algorithm
takes place at the "source" domain, and one or more of "destination" domains. Migrate transition links
the AtSourceDomain and AtDestinationDomain composite states, and allows re-visiting the
AtDestinationDomain composite state for additional destinations. To ensure that the location and
activities of all mobile agents can be identified and logged, upon each migration the agent undergoes a
mandatory registration procedure (RegisterAgent and RegisterAgentDest) with a domain agent of the
domain, into which the agent has migrated. During registration, the agent deposits its unique agent
identifier and a reference to the consistency rule being checked into corresponding databases, managed
by the domain agent.

Agents, checking the same consistency rule in the domain, engage in co-operative information

exchange. The domain agent identifies redundant agents in this case and facilitates information
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exchange between them by notifying each agent about existence of other redundant agents. Redundant

and AgentDataReceived states of the mobile agent model are reached in response to the domain agent's

notification. AgentDataReceived state of a consistency checking agent compares other agents' itineraries
and extent of their completion with its own. The agent replies with the difference (CompareToOwn,

ReplyDifference) or complements its itinerary (AdditionalSourcesNoted transition). If the current agent

has completed a lesser part of the itinerary than its redundant counterparts, the agent terminates

execution (TerminateInstance) within the Redundant macro-state.

The deployed approach to multi-agent co-operation and information exchange attempts to
introduce a certain measure of agent intelligence and adaptability to the operating environment and to
improve efficiency of distributed consistency checks.

Mobile agent's failure handling mechanism aims to enable persistent and pro-active achievement of
the agent's goals. Failures can be classified into the following categories:

- Failure at source (i.e., document not found) — the agent reports to the source domain, this
information is filed in the consistency links document (i.c., an inconsistent link is created if the
document is required by the rule).

- Failure at one of destinations (destination host or document not found) — agent must persistently re-
query the destination domain agent for information about the target document location. This
information could have been updated after the initial incorrect itinerary was received.

- Failure at source or destination when a document element was not found — an inconsistent link is
created as part of the normal operation of the consistency checking algorithm.

The Failure macro-state addresses these failure categories, and re-directs the execution flow of the

agent's state transition model appropriately.

Migration state calls on the agent middleware to carry out simulation of agent's serialisation and
physical transfer of its code and data via a TCP/IP network. After migration, the agent returns to the
AtDestinationDomain state (if the agent itinerary has not yet been completed) or to AtSourceDomain

within the Active macro-state.
7.3.4 Domain Agent active object

The model of the Domain Agent encompasses instances of TDomain class and instances of four
classes — information repositories (Fig. 7.5): instance of consistency rule table (class TRulesDatabase),
document name lookup table (class TNameLookup), agent lookup table (class TAgentsList), and event
list table (class TEventsList). The purpose and structures of these information repositories are described
in Chapter 6. All instances are connected through corresponding communication ports and participate in

the behaviour of the Domain Agent (Fig. 5.7b).
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Fig. 7.5b. Behaviour of the Domain Agent active object.

The Domain Agent serves as a data repository of the distributed architecture; it functions primary in
a "request-response” fashion. The state chart (Fig. 7.5b) is subsequently composed of message sorting
and queuing (Idle, Register, IncQueues states) and an operational, information processing macro-state
(Processing). The latter state executes requests for information to the four information repositories and
forwards the responses in an acceptable message format to the enquiring active architecture components.
Processing of queries is interrupted by incoming messages, which trigger NewPortlnput transition from
the macro-state to the message sorting Register state, and are sorted into a number of queues by the
IncQueues state. A transition to the history state within the composite state Process enables the agent to

resume processing of the ongoing queries, interrupted by incoming messages.
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7.3.5 Agent Middleware active object

The Agent Middleware active object is based on a simulation of an agent transfer protocol over
TCP/IP network. Most architecture components access agent middleware through the access ports. The
implementation of the active object exposes methods for data queuing and re-transmission. These
methods are invoked automatically when messages are exchanged between architectural components
(such as mobile agent and domain agent). The methods cause a transmission delay when messages
between components are exchanged through the middleware.

The Middleware active object supports generation of "Failure" messages in case the addressee is not
found or has gone offline (Fig. 7.6, transition Report Failure). Those messages are in turn processed by
relevant components (i.e., the mobile agent). The middleware retries the transmission a number of times
(one can specify a number of retries).

The ports Portl and Port2 on the structure diagram of the mobile agent middleware are connected to
the Resource Interface Agent and the Domain Agent, respectively. The Mobile Agent component re-
connects to Portl after each migration, thereby acquiring direct local access to the Resource Interface
Agent, which uses the same port. The Gateway Port connects different domains within the model of the
architecture. When the simulation is carried out in a multiple-domain configuration, the port is jointly
used by replicated domain models, represented by class TSystem in Fig. 7.1. Inter-domain traffic of

mobile checking agents is routed through that port between the models of different domains.

X
Portl GatewayPort |
o - ® de
TAqgentMiddleware Port Count
Retry'
Port2
Failure

Fig. 7.6. Agent Middleware active object: its structure and behaviour.

7.4 Evaluation Results

Evaluation of the software agent architecture on the state transition model demonstrates that the
proposed architecture is capable of carrying out distributed consistency management services with
mobile agents. We also take advantage of the COVERS development environment's capability to
simulate "execution" of statecharts, and demonstrate that the model is capable of delivering suitable
responses in terms of consistency checking performance. In order to evaluate the performance of the
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model, we have benchmarked the model in a number of configurations. For each configuration, we have
also verified that all consistency checks complete and asynchronous interaction between independent
components does not result in synchronisation mismatches.

The configuration parameters for simulation tests were chosen in order to resemble those of real-life
scenarios (i.e., UML model development). The evaluation of the model is carried out through variation
of the parameters and observation of the resulting timing of a distributed consistency check. Fig. 7.7

depicts the set of configuration parameters being varied during the execution of the model.

IMTITPACTIVE: Change rAuabei: of elements, rules, transmission times at runtime? [0..1]

IJTiPACTIW: Change length of name and agent tallies at domain level? [0..1]

PZPLICATIOH factor for documents, L [2..32767] : 20
Interval (in sec) between changes in document 0 [1..32767] : 30
Interval (in sec) between changes in document 1 [1..32767] : 30
DOCJVEL'JT: Number of elements inthe document 'a', X [1..32767] 100
DOCJMENT: Humbier of elements indie dociment 'b', Y [1..32767] 100
DOCJHENT: Number of user-changed elements in the document 'a', Z [0..32767] 1
bUmiN: Wumtier of domain rules, Udomain 11..32.'6/j 10
DOIUIIN: Initial length of agents table, LengthTabile [1..32767] 3
DCiriMN; Initial length of the document name lookup table, Lengthl'ocumentsTable [1..32767] 50
CONSISTENCY: N'lmber cf consistency rules, Mlocal [0..32767] 5
CONSISTENCY: Number cf criticalconsistency rules (retrieved locally), A (0..32767] 1
CONSISTENCY: Numtier cf criticalconsistency rules (global), B [0..32767] 0
CONSISTENCY: How many sub-elenents are specified in each rule, RuleLength [2.. 32767] 2
AGENT: Time to instantiate a HA (in 'ticks' = 1ms), InstantiateAgent [1..32767] 600
AGE)T: lime to transmit a HA ;in 'ticks' = 1 ms), 1ransmiCAgent |1..32/bvj : 300

Fig. 7.7. Variation of model parameters.

We have classified the variant parameters in Fig. 7.7 into a number of categories (shown capitalized
in Fig.7.7), as follows.

* Interactive mode - enables interactive run of the model, where simulation parameters can be
changed at runtime throughout the duration of the execution. Disabling this mode results in a
"batch" execution of the model in an automated mode without user involvement.

* Replication factor - varies the number of participating document instances in the model.

* Timing interval - used in randomisation of intervals between events of document changes, which
are raised by document instances during model operation.

* Document - sets the number of structural elements in each document instance.

* Domain - allocates memory for the information tables at the domain agent, allows us to simulate the
effect of information centralisation in the domain.

* Consistency - varies the total number of consistency rules, selected (relevant) rules, and their

allocation (de-centralisation) configuration.
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* Mobile agent — performance characteristics of the execution environment and the agent middleware.
We have measured these basic characteristics in the test runs of the mobile agent middleware — the

IBM Aglets.

Fig. 7.8 depicts the performance graphs of the architecture model. The data is collected in an
experiment, where a number of distributed documents (1..50) are affected by changes (1..50 elements
changed out of 100..800 elements per document). These changes trigger selection of applicable
consistency rules (1..20 rules) from the consistency rule database (15..150 rules). Each rule contains a
number of operators, called "rule elements" (2..20), which are executed on the collected data. These
configuration conditions correspond to software engineering projects with small to medium sized
documents, when a modest amount of changes is made for each incremental check, and those changes
affect a significant number of consistency rules, which are concurrently checked across a number of
documents.

Each successive graph of the three graphs represented in Fig. 7.8 demonstrates the consistency
checking times, which the model of the software agent architecture achieves in varying conditions. The
number of consistency rules being concurrently checked varies from 1 in Fig. 7.8a, to 10 in Fig. 7.8b, to
20 in Fig. 7.8c, and the number of documents, on which the rules are checked also increases from 10 to
25, and to 50, respectively. As the number of documents and rules increase, our model of the
incremental consistency checking algorithm spends more time on individual checks (51-230 sec, 80-275
sec, 87-384 sec, respectively). From the graphs, we observe that durations of each distributed check are
lower than the duration of a check of a single consistency rule, taken in the proportion to the increase in
the number of documents and consistency rules. To a large extent, the observed performance
improvement of the distributed incremental checking with the software agent architecture is due to use
of concurrent checking at distributed locations, rather than use of traditional checks at a central location.
The simulation data constitutes an initial step towards evaluating scalability of the distributed software
agent architecture.

In addition to the initial performance evaluation of the distributed architecture, the simulation model
allows us to observe performance of an incremental consistency check. Having demonstrated different
durations of distributed checks with an increase in the total number of checked consistency rules and
documents, each graph in Fig. 7.8 also shows a variation in durations of incremental checks with the
increase of documents' size (from 100 to 800 elements for each document). Each graph also contains
four sets of benchmark data (marked lines 1-4), which result from variation of the number of changed
document elements (1-50 elements) and of the number of operators in the executed consistency rules
(20-150 rules, totalling 40-3000 rule operators). In the experiment, we observe that an increase in the
number of document elements or rule operators does not trigger as high a proportional growth in the
duration of consistency checks. In certain conditions, performance unexpectedly improves
(demonstrative examples are Fig. 7.8a, line 4, and Fig. 7.8c, line 1). Since our model simulates a number
of concurrent distributed checks, and total check time depends on a number of randomised parameters
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(i.e., agent migration delay, domain agent response time, etc.), we cannot at this point draw an optimistic
conclusion solely on the basis of the simulation and the observed experimental data.

250

200

150

10 200 400 800

# of eletnerits

1 checked consistency rule, 10 participating documents
Legend:
(1) 20 rules in total, total 40 rule expressions to compare and choose a relevant rule from, 1
changed element checked in each document
(2) 150 rules total - 3000 rule elements, 1 changed document element checked
(3) 20 rules total - 40 rule elements, 50 changed document elements checked
(4) 150 rules total - 3000 rule elements, 50 changed document elements checked

Fig. 7.8a. Performance evaluation of the architecture model.
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10 checked consistency rules, 25 documents

Fig. 7.8b. Performance evaluation of the architecture model (continued).

116



600

500

400

200

100

10 200 400

# of elements

20 checked consistency rules, 50 documents
Legend:
(1)20 rules in total, total 40 rule expressions to compare and choose a relevant rule from, 1
changed element checked in each document
(2) 150 rules total - 3000 rule elements, 1 changed document element checked
(3) 20 rules total - 40 rule elements, 50 changed document elements checked
(4) 150 rules total - 3000 rule elements, 50 changed document elements checked

Fig. 7.8c. Performance evaluation of the architecture model (continued).

Experimental data (Fig 7.8) allows us to characterise the performance "penalty" of the distributed
consistency checking architecture, incurred by successive migrations of the mobile checking agent. An
observed increase of this penalty with the increase in the number of distributed documents can be
explained. On each successive migration, a mobile agent carries all the data, collected previously to the
current location, as well as the data, collected at the current location. In the architecture model,
migration delay grows as the agent size increases after retrieval of document elements. Therefore, we
observe a growing timing increment for each consecutive migration of an agent, which adds up to the
performance penalty over a number of agent migrations.

We suggest for an implementation of the architecture that lengthy itineraries for mobile agents
should be avoided, and the number of agent migrations should be minimised for each individual agent.
Performance advantages of the architecture will be realised when an itinerary for a given consistency
rule is divided, and a number of checks are carried out concurrently with a number of agents checking
documents at the distributed locations.

Fig. 7.9 summarises the experimental data on performance of the model of the distributed agent
architecture and includes as a reference performance figures of a stationary, centralised consistency
checker. The data for centralised checks is taken from [Revheim 2000]. Rows 1-3 of the table (Fig.
7.9) exhibit performance measurements of the distributed architecture, rows 4-7 - of the centralised

approach.
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Max. Time of
Experiment | Number of | Number of | Number of | Total Rules, Consistenc
No. Rules Documents | Elements in | Rule Elements y
Check, Sec.
a Document
@)) 1 10 800 i 51-230
®) 10 25 800 2202012 ?ern"l‘i‘;’“t’s 80275
3) 20 50 800 per rule 87 — 384
(4) 10 700 1 rule, 55
©) 1, stand- 20 540 2 conditions, 435
(6) alone 10 1200 2-20 elements 396
) 20 540 per rule 641

Fig. 7.9. Performance of the model and a centralised consistency checker.

Comparing the performance of a centralised checker with the simulation data of the distributed
software agent architecture, we are in a position to highlight once again some significant characteristics
of the architecture, that have a potential to improve the performance of distributed checks.

* Concurrent execution of numerous consistency rules. In rows 2 and 3 (Fig. 7.9), execution of all

consistency rules was carried out concurrently, rather than sequentially as in rows 4 — 7.

* Concurrent checking of numerous distributed documents. Multiple mobile checking agents,
concurrently checking the same rule at different locations can collaborate and exchange values
of document elements, concurrently retrieved from the distributed documents.

During the execution of the simulation model, we have observed that collaboration between mobile
agents in exchange of retrieved document elements provides acceleration of consistency checks for
documents with lower number of elements, affected by a consistency check (100-200 elements), and
while the number of different consistency rules checked concurrently is not very large (around 10). In
other conditions, an overhead of information exchange between numerous mobile agents outweighs the
penalty of repeated requests for document element values. In such conditions, the state
"AgentDataReceived" of the mobile agent's statechart (Fig. 7.4b), responsible for information exchange,
is active most of the time, rather than the agent's normal operational state "Active". Therefore, it would
be an advantage to disallow inter-agent collaboration when the number of agents checking a consistency
rule exceeds a certain threshold (i.e., 10 agents), and instead make these agents re-request element

values from the documents.

7.5 Summary

In this chapter a model of the distributed software agent architecture for consistency management
has been presented. Construction of this model has taken us through the design stage of the architecture,
and allowed us to express component functionality and interactions between the components through
state transitions of active objects, which implement the corresponding components of the architecture.

Execution of the state transition model was simulated on a range of model configuration parameters.

The collected experimental data serves as an initial step in evaluation of scalability of the architecture
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with the growth in the number of documents, their size and with the increase in the number of
consistency rules. The evaluation conditions were chosen to resemble those of a distributed software
engineering activity. As a result of the evaluation, we were able to measure the range of durations of
consistency checks, and identify characteristics of the architecture, which we can draw on in the
implementation prototype, in order to improve performance of distributed consistency checks.

In the following chapters, we continue evaluation of the software agent architecture on an
implementation prototype. We consider the performance evaluation of the model in this chapter as an
initial evaluation step, rather than the final judgement. Chapter 10 contains performance benchmarking
of the implementation prototype and further supports our argument in support of the distributed
architecture.

The main purpose that the architecture model serves is the representation of structure and logic of
the architectural components in state transition diagrams. Using the model, we observed execution of
transitions within each component and interactions between components that these transitions trigger.
Consequently, the constructed model is a step in verification of the architecture: the model completes
execution of all started consistency checks. Performance evaluation is a third significant, but
complementary benefit of the model. Promising evaluation results have encouraged us to continue
development of the architecture and to implement a working prototype, which we demonstrate in the

following Chapter 8.
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Chapter 8 Scenarios: Distributed
Deveiopment of the Break Planner
Appiication

8.1 Introduction

In a running scenario throughout this thesis, we consider the development process of a "Break
Planner" application [Bergner, et al. 1997]. We demonstrate deployment of the software agent
architecture for consistency checking throughout the distributed development of this application.

Three scenarios, presented in this chapter, serve a dual function. First and foremost, they constitute
a part of evaluation of the software agent architecture, proposed in the thesis. The scenarios reflect a
number of situations during the application development, and demonstrate the results of distributed
consistency checks that the architecture prototype carries out. The discussion of distributed consistency
checks and of their results in each scenario demonstrates the distributed incremental checking algorithm
[Chapter 5, 5.4.2] in action. In addition, we re-visit the instrumentation in the software agent architecture
of the concepts, demanded by the functional requirements for distributed consistency checking [Chapter
3], this time on the practical examples. Furthermore, some significant characteristics of the architecture,
which are not directly demanded by the general requirements, are demonstrated in the scenarios. Among
such characteristics are concurrent multi-agent checks, disconnected operation and replication of key
architectural components.

Secondly, the scenarios give a detailed explanation of the operation of all architectural components.
Particular examples of document distribution, domain hierarchy and mobile agent migration are
provided in order to better explain the nature of interactions between the components. To a certain
extent, these scenarios constitute a validation for the proposed architecture. In the provided examples,
we explain the nature of changes in particular documents, the subject of individual consistency rules,
relevant to those changes, particulars of the consistency checking process with the software agent
architecture, and the content of the resulting consistency links.

All scenarios in this chapter describe the operation of an architecture prototype, which we have
implemented to evaluate the architecture. We have chosen to informally introduce the prototype in these
scenarios, in order to be able to follow up in Chapter 9 with a detailed prototype description, outlining

the internal event-based operation of each prototype component.
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8.2 Application Domain

All scenarios constitute application of the software agent architecture for consistency checking to
the domain of checking well-formedness of UML models. The Universal Modeling Language standard
[Booch, et al. 1999] provides description techniques for application development, and defines their
syntax and semantics. An important feature for a software engineers is the ability of the development
tools to provide checking of the UML diagrams under development for conformance to the standard.

At present, UML development tools do not provide support for checking full compliance of a UML
model to the standard. As one example, Rational Rose [Rational 2000] does not prohibit developers
from leaving association ends unnamed, which violates one of the UML standard well-formedness rules
[Booch, et al. 1999]. At the same time, the Rose tool provides support for some of other UML rules,
for instance, regarding uniqueness of attribute and method names in classifiers within their namespace.

The motivation behind each scenario is to offer software engineers a facility to check conformance
of the developed UML model to all well-formedness rules, specified in the standard [Booch, et al.
1999]. The scenarios demonstrate how the proposed software architecture for distributed consistency
management can be deployed by software engineers during development to complement the current
UML model standard compliance checking services, provided by the development tools.

The domain of checking UML well-formedness rules was chosen, because these rules include a
variety of consistency relations of different types between a relatively extensive number of different
constructs that exist in a UML model. Through investigation of such a non-trivial application domain,

we are able to demonstrate the usability of our approach in the relatively complex scenarios.

8.3 An Overview of the Scenarios

The application in development will assign supervision of multiple school breaks to the teachers in
a school. Assignment of teachers is specified in a break plan, where each break must be supervised by a
teacher, and the number of breaks each teacher has to supervise is proportional to the time they spend
teaching. Teachers can set exclusion times, when they cannot supervise breaks because of other duties.

The intended application must support plan editors and staff editors, responsible for respective data.
The application allows a user to create and delete break plans, assign teachers to breaks, and manage the
list of teachers. In addition, the tool computes some statistics, for example, the number of breaks a
teacher still needs to be assigned to.

The application must be constructed in such a way, that a number of plan editors and staff editors
could concurrently edit break plans, using individual client software, which accesses the database on the

application "server".
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8.4 Application Development Team

Throughout scenarios I and II, the development team consists of Anne and Bob. Bob starts
constructing application classes from a customer specification, and Anne initially designs associations
between the classes. Anne and Bob carry out their development activity at the separate workstations A
and B, respectively; these workstations are included in the domain "core development", the domain
machine, running the domain agent. The domain is named CDS — the "core development server" (Fig.

8.1).

CDS

A B

Fig. 8.1. Initial structure of the CDS domain.

8.5 Analysis and Design of the Break Scheduler Application

The following scenarios I and II are concerned with the analysis and design stage of the
development of the break scheduler application. In these scenarios, we describe developer experience
and architecture prototype operation on the example of the initial development of the Analysis Class
Diagram (Fig. 8.4 and also in Appendix C, C1), which forms part of the UML model of the distributed
break scheduler application. The model is being developed in a distributed fashion; new model elements,
created by Anne and Bob, are distributed across the network hosts in the following way (Fig. 8.2 and
Fig. 8.3a-b). This particular distribution is not a specific requirement for correct operation of the
proposed architecture for distributed consistency checking; this simple distribution is used to facilitate

understanding of the prototype's operation.

XMI files XMI files
Contained at Contained at UML Well-formedness Consistency Rules
Host A Host B Contained at the Domain CDS
Model Associations | Model Classes Association, AssociationEnd,
Model Namespace AssociationClass,
Document universe: | Document universe: BehavioralFeature, Classifier, Class,
list of all local list of all local GeneralizableElement, Generalization,
documents documents Interface, Method, NameSpace,
StructuralFeature, Type

Fig. 8.2. Distribution of XMI documents for Scenarios I and II (summary).
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Document Name Element Description
Association().xml Association, Organiser-Staff
Associationl.xml " , Organiser (organises) BreakPlan
Association2.xml ", Staff-Statistics
Association3.xml ", Staff-Teacher
Association4.xml ", Teacher (supervises) Break
Association5.xml ", Period (generalises) Break
Association6.xml ", Teacher—Exclusion Time
Association7.xml " , BreakPlan-Break
Association8.xml ", ExclusionTime-Period

Fig. 8.3a. Document distribution (host A).

Document Name Element Description
Class0.xml Class Organiser
Class1l.xml " Staff
Class2.xml " Statistics
Class3.xml " BreakPlan
Class4.xml " Break
Class5.xml " Teacher
Class6.xml " Period
Class7.xml " ExclusionTime
Class8.xml " Account
Namespace(.xml NameSpace of the model

Fig. 8.3b. Document distribution (host B).

For creation of the UML model in this and following scenarios, we use the Rational Rose tool
[Rational 2000]. For consistency checking of UML well-formedness rules, the UML model is exported
to XMI via Unisys XMI converter for Rational Rose [Rational 1999]. We then applied the UMLXMI
utility [Appendix F, F.5] to the resulting XMI model file, which enabled us to extract model elements
into separate XMI files. The consistency checks are then executed by our architecture prototype on these
files after they have been distributed (Fig. 8.3a-b).

As an alternative to use of an exported UML model, we also considered development of the model
directly in XMI. Such approach is less transparent for a user than development with Rational Rose that
provides a graphic user interface for editing the model. We have found the alternative unrealistic,
because developers without extensive knowledge of the XMI format will certainly find it difficult and
error prone to develop in a complex-structured format, such as XMI.

We found the graphical UML notation of the application model (i.e., Fig. 8.4 and Appendix C)
useful during development and for illustration of the scenario; this notation would not have been easily

unavailable from XMI.
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Fig. 8.4. The Analysis Class Diagram considered in the Scenarios I and IL

The majority of inconsistencies of the UML model, detected in the scenarios are allowed by the
Rational Rose tool, because the tool does not impose all well-formedness constraints of the UML
standard. For example, names of association ends are not displayed on the diagrams, and are effectively
not used in the tool. However, the UML standard requires uniqueness of names of association ends.
When developers are required to produce a compliant UML model, all inconsistencies detected with
respect to UML well-formedness rules must be corrected. It is thus appropriate to highlight these
scenarios as a definite advantage of joint deployment of the proposed consistency checking prototype
with industrial UML development environments.

Scenarios I, II and III form a series of scenarios, where the structure of hosts and domains and
complexity of distribution of the model elements increases from one scenario to the next. The
architecture prototype is intended to accommodate configurations beyond those demonstrated in these
scenarios. In this respect, the scenarios can serve as recommended deployment configurations, but

operation of the prototype is not limited to these configurations.
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8.6 Scenario I: Local Consistency Checking at a Host Within a
Single Domain

8.6.1 Event: Creation of a New Document

In accordance to the incremental checking algorithm [Chapter 5, 5.3], every time a new document is
added to the set of documents at a given host, initial exhaustive consistency checking of that document
is carried out to determine applicability of all consistency rules to the new document. In the context of
our scenarios, UML model elements are represented as separate documents. Thus, each time an
additional UML element is created, a complete check of UML well-formedness rules is carried out on
the XMI document, corresponding to that model element.

Initial checks establish the sets of rules, initially applicable to every XMI document. Rule
applicability information is saved into a document table [Chapter 6, 6.3.1], maintained by the domain
agent of the CDS domain. The information is used during incremental checks to create itineraries for
mobile checking agents, which include all documents, known to be relevant to the rule being checked.

A list of consistency rules, relevant to classes, associations and other elements of the UML model,
located at domain CDS, is provided in Fig. 8.5. Consistency rules are referred to by their unique
identifiers; a complete set of UML well-formedness rules used for all scenarios can be found in
Appendix A. This initial relevance of rules to documents is established at initialisation of the

incremental checker (line 2, Fig. 5.7 in Chapter 5).

Classes Class0, ..., Class6.xml, set of relevant consistency rule identifiers:

[n1, n2, b1, b2, cs2, cs3, cs4, cs5, csb, cl, d1, d2].

These consistency rules refer to model elements: Class (identifier c1), Classifier (cs2-cs5),
Name Space (n1,n2), Behavioural Feature (b1,b2), Data Type (d1,d2).

Associations Associationl, ..., Association6.xml, set of relevant consistency rule identifiers:
[n1, n2, ael, ae2, al, a2, a3, a4].

These consistency rules refer to model elements: Associations (identifiers al-a4), Association
Ends (ael,ae2), Name Space (n1,n2).

AssociationEnd: [n1, n2, ael, ae2, a2, a3, a4]

Generalization: [gen1]

Classifier, DataType, Behavioural Feature: [n1, n2, bl, b2, cs2, cs3, cs4, cs5, cs6, c1, d1, d2]
Structural Feature: [genl, nl1, n2, b1, b2, cs2, cs3, cs4, cs5, cs6, cl, d1, d2]
GeneralizableElement: [n1, n2, g2, g4, genl]

Fig. 8.5. Relevance of UML well-formedness rules to model elements.

8.6.2 Response: Consistency Check

In addition to selection of relevant rules, creation of a new document triggers an incremental
consistency check on this document. The document is considered empty prior to creation, and after

creation, the contents of this document change.
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In our scenario, Bob at host "B" of domain CDS is responsible for development of classes and
operations. His user profile is granted a right to create new documents and make changes to existing
documents, therefore the Resource Interface Agent at host B allows him to create a new instance of a
class. When Bob creates the class Teacher (Class5.xml, Fig. 8.3b) for the analysis class diagram (Fig.
8.4 and Appendix C, C.1), a consistency rule "c1" is identified relevant to the class (Fig. 8.5), and an
incremental check of this rule is triggered. At this point, we will consider execution of one consistency
rule on one document; more sophisticated examples follow.

Description of the rule "c1": if a Class is concrete, all the Operations of the Class should have a
realizing method in the full descriptor. The XML representation of this rule in the consistency rule

language is provided in [Appendix A, AS].

<?xml version="1.0" encoding="UTF-8"?>
<XMI>
<XMI.content>
<Model Management.Model xmi.id="G.1">
<Foundation.Core.Namespace.ownedElement>
<Foundation.Core.Class xmi.id="S.10001">
<Foundation.Core.ModelElement.name>Teacher
</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value="public"/>
<Foundation.Core.GeneralizableElement.isRoot xmi.value="true"/>
<Foundation.Core.GeneralizableElement.isLeaf xmi.value="true"/>
<Foundation.Core.GeneralizableElement.isAbstract xmi.value="false"/>
<Foundation.Core.Class.isActive xmi.value="false"/>
<Foundation.Core.ModelElement.namespace>
<Model Management.Model xmi.idref="G.1"/>
</Foundation.Core.ModelElement.namespace>
<Foundation.Core.Classifier.feature>
<Foundation.Core.Operation xmi.id="S.10004">
<Foundation.Core.ModelElement.name>neededDuties
</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value="public"/>
<Foundation.Core.Feature.ownerScope xmi.value="instance"/>
<Foundation.Core.BehavioralFeature.isQuery xmi.value="false"/>
<Foundation.Core.Operation.specification/>
<Foundation.Core.Operation.isPolymorphic xmi.value="false"/>
<Foundation.Core.Operation.concurrency xmi.value="sequential"/>
</Foundation.Core.Operation>
</Foundation.Core.Classifier.feature>
</Foundation.Core.Class>
</Foundation.Core.Namespace.ownedElement>
</Model_ Management.Model>
</XMI.content>
</XMI>

Fig. 8.6a. Initial version of class Teacher.

8.6.3 Result: Generated Consistency Links

For class Teacher, an inconsistent link was generated by rule "c1", because there is an operation
"neededDuties()" defined for this class in the class diagram [Appendix C, C.1], and naturally, this
operation has no method specification at this early stage in project development. For class Teacher, there
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is no method specification in the features of the class (sub-element Foundation.Core.Method does not
exist within the Foundation.Core.Classifier.feature element of class Teacher, Fig. 8.6a). An
inconsistency link, generated in this case is shown in Fig. 8.6b. The link connects two existing elements,

demanded by the rule "c1": the class and the operation.

<xlinkit:ConsistencyLink ruleid="class.xml#/consistencyrule[1]">
<!— Class rule c1-->

<xlinkit:State>inconsistent</xlinkit:State>
<!—Inconsistency : operation neededDuties doesn't have a realising method in the descriptor
of the class Teacher, to which it belongs. -- >

<xlinkit:Locator
xlink:href="atp://B/Class5.xml#/XMI.content[1]/Model _Management.Model[1]/
Foundation.Core.Namespace.ownedElement[1]/Foundation.Core.Class[1]" xlink:label=""
xlink:title=""/>
<!—this is the Teacher class, xmi.id="S.10001" -- >

<xlinkit:Locator
xlink:href="atp://B/Classifier.feature0.xml#/XMLcontent[1]/Model Management.
Model[1]/Foundation.Core.Namespace.ownedElement[ 1]/Foundation.Core.Class[1]/
Foundation.Core.Classifier.feature[1]/Foundation.Core.Operation[1]" xlink:label=""
xlink:title=""/>
<!—this is the neededDuties operation, xmi.id = " S.10004" -- >
</xlinkit:ConsistencyLink>

Fig. 8.6b. Inconsistent link between an operation in the class and the class descriptor.

8.6.4 Processing of the Event

We now describe the sequence of events and their processing within the software agent architecture
prototype. In detail, we comment on actions of the components of the architecture, which resulted in
generation of an inconsistency link (Fig. 8.6b).

Having created a new class Teacher (Fig. 8.6a), file name Class5.xml, Bob has saves the file by
overwriting the previous (empty) version. The resource interface agent at host "B" is monitoring file
Class5.xml for change, because Bob has included the file in consistency checks by adding a reference to
it in the DocumentSet.xml, which describes the local document set — the "document universe".

After a change in ClassS.xml is detected, the resource interface agent executes stage 2.1 of the
incremental checking algorithm (Chapter 5, Fig. 5.7), and computes a tree-wise difference (TreeDiff)
between the current version of the XML file and its previous version. Among numerous modifications,
the previously empty class Teacher acquires a new neededDuties operation. The TreeDiff, concerning
addition of the operation, shows the added XMI content and gives the XPath expression to the parent of

the changed element (xpathparent attribute of addsubtree element in Fig.8.7).
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<?xml version="1.0" encoding="UTF-8"?>
<treediff>
<addsubtree

xpathleftsibling="/XMI/XMI.content[1]/Model Management.Model[1]/Foundation.

Core.Namespace.ownedElement[1]/Foundation.Core.Class[ 1]/Foundation.Core.

Classifier.feature[1]/text()[1]"

xpathparent="/XMI/XMI.content[1]/Model _Management.Model| 1]/Foundation.

Core.Namespace.ownedElement[1]/Foundation.Core.Class[ 1]/Foundation.Core.

Classifier.feature[1]">

<Foundation.Core.Operation xmi.id="S.10004">

<Foundation.Core.ModelElement.name>neededDuties

</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value="public"/>
<Foundation.Core.Feature.ownerScope xmi.value="instance"/>
<Foundation.Core.BehavioralFeature.isQuery xmi.value="false"/>
<Foundation.Core.Operation.specification/>
<Foundation.Core.Operation.isPolymorphic xmi.value="false"/>
<Foundation.Core.Operation.concurrency xmi.value="sequential"/>

</Foundation.Core.Operation>

</addsubtree>
</treediff>

Fig.8.7. Document change is indicated in the TreeDiff.

The resource interface agent finds an intersection of the XPath expression in xpathparent with
XPaths in all consistency rules (stage 2.1, Fig. 5.7, Chapter 5). The result is a set of consistency rules,

which are relevant to this particular change, as shown in the activity log of the prototype (Fig. 8.8).

1. RA: Class8.xml changed.

2. RA: Processing message change

3. RA: Finding relevant rules for the following change:
/XMI/XMI.content/Model Management.Model/Foundation.Core.Namespace.
ownedElement/Foundation.Core.Class/Foundation.Core.Classifier.feature

4. RA: relevant rules to the change identified :[cl, tl1l, t2]

5. DA: Processing message newChecker

6. DA: Processing message newChecker

7. DA: Processing message newChecker

8. DA: Processing message getRuleApplicability

9. DA: Processing message getRuleApplicability

10. DA: Processing message getRuleApplicability

Legend:

RA — log record from one a resource interface agent;

DA — log record from the domain agent.

Fig. 8.8. Activity log of the prototype: selection of relevant consistency rules.

In addition to the rule c1, two type well-formedness rules have been identified as relevant - t1 and t2
[Appendix A, A.15]. These two rules may be relevant to the current TreeDiff XPath, because they are
based on the XPath expression, containing an id() function, and the parent is also
//Foundation.Core.Class, alike the class rule. A lightweight rule selection algorithm [Appendix F, F.2]
has selected the fype rules in this case. The mechanism for computing an intersection between a

TreeDiff XPath and the XPath from the consistency rule is described in greater detail in Appendix F.
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Type rules are based on the following XPath expression:
Foundation.Core.Class[id(Foundation.Core.ModelElement.stereotype/
Foundation.Extension_Mechanisms.Stereotype/@xmi.idref)]

XPath expression — basis of the UML well-formedness rule for Type.

For checking of each of the rules "cl1", "t1" and "t2", a mobile consistency checking agent is
instantiated at host "B" (lines 5-7, Fig. 8.8). Each agent on instantiation receives as a parameter the
DOM tree of the changed document (class Teacher), the rule identifier of the relevant rule (rule id), and
the DOM tree of the relevant consistency rule. The mobile agent then requests an itinerary from the
domain agent, which lists any documents, relevant to the rule that the agent must check for consistency.
The log of the working prototype shows three messages "getRuleApplicability" processed by the domain
agent (lines 8-10, Fig. 8.8): these messages contain itinerary queries from mobile agent instances.

Based on the relevance of consistency rules to distributed documents, the domain agent compiles
itineraries for each mobile agent (Fig. 8.9). Mobile consistency agents, checking type rules "t1" and "t2"
receive empty itineraries (lines 1-8 in Fig. 8.9), because comprehensive initial consistency checks have
determined that no currently existing documents are relevant to these rules. Therefore an over-estimation
of rule applicability, resulting from a light-weight rule selection process, is corrected in the mobile

agent's itinerary.

DA: getRuleApplicability (tl) gives null itinerary

. CA le28: null itinerary received from Domain, terminating.

DA: getRuleApplicability (t2) gives null itinerary

. CA 514b: null itinerary received from Domain, terminating.

. CA 514b: Processing message dispose

6. CA le28: Processing message dispose

7. DA: Processing message deleteChecker

8. DA: Processing message deleteChecker

9. CA 6599: got itinerary

10. CA 6599: checking for local documents...

11. CA Already processed document atp://B:4434//XMI\Class5.xml

12. CA Reading files specified in itinerary:

13. CA Adding XMI\DataTypeO.xml, .., XMI\DataTypel6.xml

14. CA Adding XMI\BehavioralFeature.parameterQ.xml, ..,
XMI\BehavioralFeature.parameter3.xml

15. CA Adding XMI\StructuralFeature.type0O.xml, ..,
XMI\StructuralFeature.type9.xml

16. CA Adding XMI\ClassO.xml, .., Class4.xml, Class6.xml, .. Class8.xml

17. CA Adding XMI\Classifier.feature0O.xml, .., XMI\Classifier.featureé6.xml

18. CA Adding XMI\StructuralFeature.typeO.xml, ..,
XMI\StructuralFeature.type9.xml

Legend:

CA — log record from a consistency checking mobile agent. The 4-digit number

distinguishes individual agent instances and corresponds to the last 4

digits of a 64-bit unique agent identifier generated by Aglets framework;

DA — log record from the domain agent.

O WN -
. .

Fig. 8.9 Mobile consistency agents receive itineraries from the domain agent.
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The mobile consistency checking agent (identifier CA 6599), checking rule "c1", receives an
itinerary (line 9, 10 in Fig. 8.9), where all relevant documents to rule c1 are listed. The agent then
processes all documents, specified in this itinerary (lines 11-18, Fig. 8.9). These documents are stored
locally at host "B", therefore the consistency check occurs locally and migration in this case is
unnecessary. A following Scenario II considers a distributed consistency check.

Since all documents in the itinerary for rule "c1" are available locally to the mobile agent, the agent
carries out link generation at host "B" (line 1, Fig. 8.10). The consistency links are saved in a link file

(line 3, Fig. 8.10), which is opened by the user interface agent in a browser (line 4, Fig. 8.10).

1. CA 6599: executing link generation...

2. CA 6599: Time for rule (cl) = 220 milliseconds.

3. CA 6599: Links written to 'Links/m1435882505.xml’'.

4. UI: Processing message links, launching 'Links/m1435882505.xml'
5. DA: Processing message deleteChecker

Legend:

CA — log record from a consistency checking mobile agent;

UI — log record from the user interface agent;

DA — log record from the domain agent.

Fig. 8.10. Activity log of the prototype. Local link generation for rule "c1".

The incremental check considered in this section is triggered by an event, where Bob creates a new
class (Teacher). In this section, we have described the actions, carried out by architectural components
as a response to detected changes in the Teacher class when Bob had created this class anew. From
Bob's point of view as a user, he saved a new version of the Teacher class, and after a short period of
time (less than a second total time, 0.22 seconds for consistency checking, Fig. 8.10), an automatically
generated inconsistent link opened in a browser window. The XML representation of this inconsistent
link is shown in Fig. 8.6b. Bob navigates the link and establishes that the link corresponds to the lack of
implementation of operation neededDuties in the class Teacher on the analysis diagram [Appendix C,
C.1]. He decides not to correct the inconsistency at this stage, as the method is to be implemented at a
later stage of project development.

Consistency links establish consistent or inconsistent status of relations between documents.
Inconsistent links generally indicate that further work is needed to achieve compliance with consistency
rules. The scenario I has described an inconsistent link in some detail. Consistent links allow developers
to navigate between the related UML elements in the model. In a simple example, Anne can get an
overview of Bob's classes by navigating consistent links from a common project namespace to each
individual class. Having created a number of associations between the classes, Anne can navigate
consistent links, which connect the associations and the related classes, to verify the results of her work.

Generation of consistent links allows developers to get a "look and feel" of a complete UML model
that they are working on. Consistent links externally connect distributed XMI representations of model
elements into a single 'browseable' model. Consistency checking provides developers with views on the
model from the development viewpoint of a particular part of the system (i.e., 'class view' or 'association
view').
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8.7 Scenario II: Distributed Consistency Checking Within a Single
Domain

8.7.1 Distributed Check: Generation of Consistency Links

Throughout the analysis stage of the break scheduler application development, the software agent
architecture for consistency checking provides Bob with a number of consistent links in addition to the
inconsistent links, discussed in Scenario I. One of such links results from an association, which Anne is
working on at host "A". This link has been created in a distributed fashion, unlike the local link already
presented in Scenario I. However, this scenario relies on understanding of the local consistency check
from Scenario 1.

The developed architecture prototype is coherent: selection of distributed or local checks is carried
out automatically, and creation of local or distributed links depends on locations of the documents being

checked. Separation of two scenarios is for clarity of description only.

<xlinkit:ConsistencyLink ruleid="association.xml#/consistencyrule[4]">
<xlinkit:State>consistent</xlinkit:State>
<xlinkit:Locator
xlink:href="atp://A/XMI/AssociationEnd 6.xml#/XMI.content[1]/
Model Management.Model[1]/Foundation.Core.Namespace.ownedElement[1]/
Foundation.Core.Association[1]" xlink:label="" xlink:title=""/>
<!—this is an association between Teacher and ExclusionTime classes,
association's xmi.id = G.14 -- >

<xlinkit:Locator
xlink:href="atp://B/XMI/Namespace.ownedElement0.xml#/XMI.content[1]/
Model_Management.Model[1]/Foundation.Core.Namespace.ownedElement[1]/
Foundation.Core.Association[1]/Foundation.Core.Association.connection|[ 1]/
Foundation.Core.AssociationEnd[1]/Foundation.Core.AssociationEnd.type[1]/
Foundation.Core.Class[1]" xlink:label="" xlink:title=""/>
<!—this is the Teacher class, class xmi.id=S.10001 -- >

<xlinkit:Locator
xlink:href="atp://B/XMI/Namespace.owned Element0.xml#/XMI.content[1]/
Model Management.Model[1]/Foundation.Core.Namespace.ownedElement[1]/
Foundation.Core.Association[ 1]/Foundation.Core.Association.connection[1]/
Foundation.Core.AssociationEnd[2]/Foundation.Core.AssociationEnd.type[1]/
Foundation.Core.Class[1]" xlink:1abel="" xlink:title=""/>
<!—this is the ExclusionTime class, class xmi.id=S.10017 -- >
</xlinkit:ConsistencyLink>

Fig. 8.11. Consistent link between a namespace and the ends of an association.

A consistent link (Fig. 8.11) is generated by UML well-formedness consistency rule for associations
(rule id "a4") [Appendix A, A.1]. This rule is relevant to UML association elements and concerns

association ends, classifiers and the model namespace.
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Description of the rule "a4" is the following. The connected Classifiers of the AssociationEnds
should be included in the Namespace of the Association. The XML representation of the rule in the

consistency rule language is provided in [Appendix A, A.1].
8.7.2 Event: Document Change

In the same way as Bob's, Anne's user profile at host "A" grants modification rights, therefore the
resource interface agent at host "A" lets Anne save the changes she made to the Association6.xml
document, which contains an association between Teacher and ExclusionTime classes [Appendix C,
C.1]. In a similar fashion to Scenario I, the resource interface agent at host "A" launches an incremental
check and computes a TreeDiff (Fig. 8.12) between the Association6.xml document and its previous

version.

<?xml version="1.0" encoding="UTF-8"7>
<treediff>
<addsubtree insertOrder="1"
xpathleftsibling="/XMI/XMI.content[1]/Model_Management.Model[1]/
Foundation.Core.Namespace.ownedElement[1]/Foundation.Core.Association[1]/
Foundation.Core.Association.connection[1]/text()[1]"
xpathparent="/XMI/XMI.content[1]/Model_Management.Model[1]/
Foundation.Core.Namespace.ownedElement[1]/Foundation.Core.Association[1]/
Foundation.Core.Association.connection[1]">
<Foundation.Core.AssociationEnd xmi.id="G.15">
<Foundation.Core.ModelElement.name/>

<Foundation.Core.ModelElement.visibility xmi.value="public"/>
<Foundation.Core.AssociationEnd.isNavigable xmi.value="true"/>
<Foundation.Core.AssociationEnd.isOrdered xmi.value="false"/>
<Foundation.Core.AssociationEnd.aggregation xmi.value="shared"/>

<Foundation.Core.AssociationEnd.multiplicity>1..1

</Foundation.Core.AssociationEnd.multiplicity>
<Foundation.Core.AssociationEnd.changeable xmi.value="none"/>
<Foundation.Core.AssociationEnd.targetScope xmi.value="instance"/>
<Foundation.Core.AssociationEnd.type>

<Foundation.Core.Class xmi.idref="S.10001"/> <!-- Teacher -->
</Foundation.Core.AssociationEnd.type>
</Foundation.Core.AssociationEnd>
</addsubtree>
</treediff>

Fig. 8.12. TreeDiff: an association end element is added to the UML model.
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8.7.3 Processing of the Event by the Software Agent Architecture

The sequence of events in this case closely resembles that of the example considered in case of the
local consistency check [Scenario I], with some notable exceptions, which we will discuss in detail.

In a similar way to the case of a local consistency check in Scenario I, the Resource Interface Agent
at host "A" identifies consistency rules (Fig. 8.13), relevant to the change shown in the TreeDiff (Fig.
8.12). The consistency rules concerning associations are selected [al, a2, a3 and a4], and the rule
relevance database is then updated by domain agent (lines 3-5, Fig. 8.13). The resource interface agent
then instantiates a mobile consistency checking agent for each relevant consistency rule. Execution of all
four selected rules by a single agent instead of separate agents would have been carried out if a rule
execution policy demanded such joint execution.

The mobile agents register in the agents list at the domain (lines 6-9, Fig. 8.13), and each of them
queries the rule relevance database at the domain agent for an itinerary of relevant documents to be

processed (lines 10-13).

RA: XMDMAssociationEnd(0.xml changed.

RA: Processing message change

RA: Finding relevant rules for change

DA: Processing message updateRelevant

RA: relevant rules to the change identified :[al, a2, a3, a4]

DA: Processing message newChecker

DA: Processing message newChecker

DA: Processing message newChecker

DA: Processing message newChecker

10. DA: Processing message getRuleApplicability

11. DA: Processing message getRuleApplicability

12. DA: Processing message getRuleApplicability

13. DA: Processing message getRuleApplicability

14. CA 619d NOTaClone haveNOclone :got itinerary:

15. CA 6f9d NOTaClone haveNOclone :checking for local documents...

16. CA 6f9d removing atp://A/XMI/Association6.xml (already processed)

17. CA 6f9d Adding Association0.xml, ... Association5.xml

18. CA 6f9d NOTaClone haveNOclone :preparing to clone and migrate to atp://B:4334/
19. CA 6f9d NOTaClone haveNOclone :run completed, standby - scanning messages.
20. CA 619d NOTaClone haveNOclone :Processing message clone

21. CA clone a77e IAMaClone haveNOclone :clone created, onClone() is called.

22. CA 6f9d NOTaClone haveACLONE :Processing message setclone

23. CA clone a77¢ IAMaClone haveNOclone :dispatching to next URL: atp://B:4334/

WHRXNAM AL

Fig. 8.13. Activity log of the prototype at host A: identification of changes, relevant rules, processing of

local relevant documents, migration to host B.

In the remainder of this scenario, we consider the mobile consistency agent, checking rule "a4"
(agent identifier 6f9d). The process of execution of distributed checks for different rules is similar,
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therefore we consider in detail the consistency rule "a4". The mobile agent receives its itinerary (lines
14-16), and processes all local documents at host "A" from this itinerary (line 17). Nodesets,
corresponding to XPath expressions in the consistency rule, are collected from these documents and
preserved by the consistency agent until all itinerary documents have been processed and consistency
links can be generated.

In addition to documents from host "A", an itinerary of the consistency agent 6f9d also contains
some documents, located at host "B". For the purpose of being able to carry out a concurrent distributed
check, we propose and use in this and the following scenarios a cloning and migration approach instead
of the simple agent migration. In order to migrate to the next host "B", from the itinerary, the agent
sends a message "clone" to itself (line 18). The message is placed in a queue (line 19) and processed
after any previously received message (line 20). In this way, should it become necessary for a user or the
domain agent to terminate checking of the consistency rule, a "dispose" message will be processed by a
mobile checking agent before the next migration.

The Scenario II considers a sequential distributed check, schematically represented in (Fig. 8.14).
In a sequential check, the last agent clone processes all remaining documents at the final host in the
itinerary (host D in the example in Fig, 8.14, host B in the example in Fig. 8.13) and carries out link
generation at that host. Consequently, nodesets collected by the parent agents at the previous hosts
(hosts A, B, Cin Fig. 8.14) have to be made available to the clone prior to link generation. Therefore, in
a sequential check, the clone agent inherits a copy of all data, collected by the parent agent.

The entry point in the code of the clone agent (agent identifier a77¢) is the onClone() method (line
21, Fig. 8.13). Here, the clone sets the proxy to the parent agent and sends its own proxy to the parent
via message "setclone", which is processed by the parent agent (line 22). The clone then dispatches to
the next host in the itinerary (line 23). This cloning process is similar to the cloning example in Figs. 4.2
and 4.3 (Chapter 4).

In order to enable concurrent distributed checking (discussed in Scenario III), checker agents are
cloned before migrating to the distributed hosts. The parent agent and all clones, checking the same
consistency rule, constitute an agent "family", where each member "knows" at least its parent and its
clones (if there are any), and establishes a relationship of trust with these agents. The composition of an
agent family ensures that all its members can be reached via any member. Such ability to efficiently
reach all distributed agents without a need to identify their locations is essential for controlling a
distributed check. Retraction of an ongoing distributed check in the event of a change in the consistency
rule is an example where reacheability of all agents in the family is required. Agent families provide an
effective solution to management of distributed agents for resolution of redundant consistency checks
(section 8.8.5.5-6).

A significant task of a distributed consistency check is to save the generated consistency links at all
hosts, where relevant documents reside. When a clone of the checking agent is already running at each
host, propagation of links is simplified. The set of clones, located at distributed locations, receive the
links via messaging and locally save them in a file on the host. If cloning were not used, the checking
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agent would need to migrate to each individual host and locally save the links there, an unnecessary and

a lengthy operation.

cloning migration cloning migration cloning migration \

! ! ! generation
I ' I of links
links as message links as message hnks as message
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Legend: @ - mobile agent; » - agent cloning;
— —» - agent migration; > - message passing.
Fig. 8.14. Sequence of cloning and migration actions in a distributed check.

Upon arrival at the next destination host "B", the mobile checking agent processes all local

documents, specified in its itinerary (lines 2-5, Fig. 8.13). In the case of consistency rule "a4", relevant

documents at host "B" are UML elements-namespaces (lines 3 and 5, Fig. 8.15).

RN A LN

CA clone a77e IAMaClone haveNOclone :Arrived at destination

CA clone a77e IAMaClone haveNOclone : file specified in itinerary, adding
XMI\Namespace(0.xml

CA clone a77¢ IAMaClone haveNOclone :file specified in itinerary, adding
XMI\Namespacel.xml

CA clone a77e IAMaClone haveNOclone :executing link generation...

CA clone a77e Time for rule (a4) = 721 milliseconds

CA clone a77e Links written to 'Links/432725405.xml'

CA clone a77e IAMaClone haveNOclone :run completed, scanning messages.

10 CA clone a77e¢ IAMaClone haveNOclone :Processing message dispose
11. CA clone a77e IAMaClone haveNOclone :Clone proxy is null - nothing to shut down.

Fig. 8.15. Activity log of the prototype at host B: processing of local relevant documents, link
generation, propagation of links to host A.
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When all documents from the itinerary have been processed, link generation can be carried out (line
6, Fig. 8.15). By this time, the mobile checking agent has collected all nodesets, corresponding to XPath
expressions in the consistency rule. Rule operators are now applied to the values of elements, contained
in the nodesets. As a result, a consistent or an inconsistent state of the consistency relation is determined.

In this scenario, generation of the consistency links is carried out at the location of the last
document, specified in agent itinerary. However, the implementation prototype is flexible to allow the
mobile agent to carry out computation of the consistency status at an arbitrary location. Addition of a
URL of the desired processing host as the last element of the agent itinerary will result in the required
behaviour. This option would be important for application domains, where execution of consistency rule
operators is computationally heavy and it may be desirable to off-load it from an all-purpose client
workstation to a more powerful, dedicated server. The resulting behaviour, indeed, does not equal to the
centralised processing. In our case, only nodesets from relevant documents, rather than the complete
documents themselves, are transported to a specified location for computation of the consistency status.

Generation of links in the Scenario II for the consistency rule "a4" took 0.7 seconds (line 7, Fig.
8.15), and links have been saved locally at host "B". These links have been sent as a message to the
parent mobile agent at host "A", which also saved the links locally at that host (line 1, Fig. 8.16). The
clone disposed of itself (line 10-11, Fig. 8.15), making sure that there were no "children" clones still
active (line 11, Fig. 8.15). The agent family structure thus ensures that all its agent members are

disposed of when a check has been completed.

1. CA: Processing message links, saving links as Links/432725405.xml
2. UL Processing message links, launching Links/432725405.xml
3. DA: Processing message deleteChecker

Fig. 8.16. Activity log of the prototype at host A: storing of consistency links, disposal of the parent

mobile agent.

The parent agent at host "A" now un-registers from the agent list at the domain agent (line 3, Fig.
8.16). Throughout the duration of a check of a consistency rule, the registration record in the agents
table prevents a re-launch of the consistency rule until the current check has finished. Agent un-
registration releases the "lock" on checking of the consistency rule "a4". Any subsequent change to the
documents, relevant to this consistency rule, would trigger a new consistency check. The software agent
architecture for distributed consistency checking thus ensures that checks are executed in a way similar
to transactions: during the check of a particular rule, current versions of documents are used to establish
the consistency status.

Any document modifications trigger the resource interface agents to raise events in the architecture.
If a number of modification events are raised at a host after this host has been visited by a mobile
checking agent, but before checking of a rule has completed, these events are queued by resource agents
for future execution. Once the lock on a rule is lifted at the domain agent level (line 3, Fig. 8.16), new
consistency checking agents are instantiated to process the queued events. When a host is visited by a
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mobile agent, and the latest document modifications at that host are relevant to the rule being checked,
the modifications are incorporated into the current consistency check and the corresponding events are
removed from the event queue.

This approach allows users to divide a stream of document changes into transactions, where a
number of changes are grouped into individual consistency checks. The generated consistency links
constitute the result of each transaction and reflect a consistency status of the set of document changes,
joined in this transaction.

The durations of individual checks (for example, the timings in Fig. 8.17) are the durations of
transactions and constitute minimal intervals of time between consecutive transactions. If a document is
modified more frequently than the duration of transactions, multiple changes are likely to be considered
jointly within one transaction. In any case, with event queues in place, individual changes will never be

lost, no matter how frequently they are introduced.

Forall: 741msec, 67 calls, 11.05 msec/call

Exists: 441msec, 106 calls, 4.16 msec/call

Equals: Omsec, 0 calls, NaN msec/call

XPath: 101msec, 94 calls, 1.07 msec/call

Comm: 4176msec, 4 calls, 1044.0 msec/call

Agent information processing: 531msec, 39 calls, 13.61 msec/call

Fig. 8.17. Individual statistics for the agent family (parent and all clones).

Consistency links - a result of the distributed consistency check, can be browsed by both Anne and

Bob after the check is completed. The generated link is shown in Fig. 8.11.

8.8 Scenario III: Distribution of the Break Scheduler Application.

This section demonstrates how the mobile agent architecture and its prototype handle multiple
document changes across numerous hosts in different domains. Two previous scenarios I and II
elaborated on examples from analysis and design stage: development of the class diagram and
associations between classes in a distributed break scheduler application [Bergner, et al. 1997]. In this
section, distribution of the scheduler application is considered.

One of the requirements of the distributed break scheduler is that plan editors may work at home
over the Internet with a Java-capable browser [Bergner, et al. 1997, p. 14]. RMI has been chosen by
application developers as a distribution architecture, and application logic is now being divided into
server-side and client-side objects. Each object, which must be accessed by the client, is split up into an
interface and an implementation class. "Loose coupling" principle is to be preserved in doing this. In a
Java application, implementation methods are usually hidden by using private annotation. In the context
of RMI, clients are provided with restricted interfaces, containing subsets of the full class signature.

Such restriction of the client's functionality can be seen in the class diagram [Appendix C, C.2]. The
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client interfaces contain only parts of the functionality of their corresponding server implementation
classes.

The developed application has to support "update on change" of schedules on all connected clients.
The standard Java Observable pattern (java.util.Observable) cannot be used in this case, and a remote
version has to be used instead, because an observer and observable objects are on different sides of the
client/server gap. A freely available implementation of remote observable pattern is available from
Caribou Lake Software [Caribou 1997], and is shown on the class diagram as
COM .cariboulake.util. RemoteObservable [Appendix C, C.2].

8.8.1 Distribution of UML Model Elements

The Scenarios I and II in the beginning of this chapter were concerned with the initial project
development stage. Since then, the development team on-site has expanded and now consists of the
server sub-team and the client sub-team. There is also an off-site team at Caribou Lake Software, where
development the RemoteObservable pattern for the distributed break scheduler application is carried out.

The new distribution configuration is as follows (Fig. 8.18).

Hosts: A, B, D, domain CDS, developers Anne, Bob, Dimitry — server sub-team

Hosts: CL1, CL2, domain BCL, developers Caroline and Karl — client sub-team

Hosts at Caribou Lake: O, domain CAR, developer Olga — Caribou Lake software team.
Gateway hosts: INT — internal between CDS and BCL domains, EXT — external with CAR.

A schematic representation of the hierarchy of domains and network hosts is given in Fig. 8.19. In
this Scenario III, we elaborate on distributed consistency checks between the hosts in different domains.
Consequently, a new type of a software agent — the gateway domain agent - is participating in this
scenario. Gateway domain agents ensure that mobile checking agents, performing global consistency
checks, propagate freely between the domains, whereas in-domain checks are not allowed to leave the
domain.

The two previous scenarios related to consistency checks within a single domain CDS. Both
scenarios work in a multi-domain configuration as well. However, we will elaborate on checks between
domains to demonstrate the function of gateway domains and present important features of the

architecture, such as collaboration between mobile checking agents and the disconnected operation.

Host Documents, stored at the host
(UML elements saved in XMI, other documents)
A Associations, generalizations between numerous classes within CDS
domain

B Classes Staff/StaffImpl, Teacher/TeacherImpl, Serialization interface,
UnicastRemoteObject interface, generalizations between these classes,
name space.

CDS UML well-formedness consistency rules, table of documents within CDS
domain, table of relevance of consistency rules to documents (continuously
updated). CDS runs Domain Agent
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D Interface Remote, Interface ExclusionTime and ExclusionTimeImpl,
PeriodImpl, Break/BreakImpl, BreakPlan/BreakPlanImpl,
Organiser/OrganiserImpl, BreakPlanner

INT Runs Gateway Domain agent between CDS and BCL domains

BCL UML well-formedness consistency rules, table of documents within BCL
domain, table of relevance of consistency rules to documents (continuously
updated). BCL runs Domain Agent.

CL1 StatisticsViewImpl, associations and generalizations between classes within
BCL domain

CL2 StatisticsView, BreakPlannerView

EXT Runs Gateway Domain agent between INT and CAR

CAR UML well-formedness consistency rules, table of documents within CAR
domain, table of relevance of consistency rules to documents (continuously
updated). CAR runs Domain Agent.

0 COM . cariboulake.util.Observable/COM.cariboulake.util. RemoteObservable

Fig. 8.18. Document distribution for Scenario III.
EXT
Gateway
Domain
INT
Gateway
Domain
CDS BCL CAR
Domain Domain Domain
Agent Agent Agent
Host Host Host Host Host Host
A B D CL1 CL2 0]

The multi-domain configuration in Fig. 8.19 assumes that all participating hosts (depicted as leaves

of the tree hierarchy) run resource interface agents and contain local document universes

Fig. 8.19. Multi-domain hierarchy of network hosts.

(DocumentSet.xml) of participating documents.

8.8.2 Inter-domain Agent Migration Policies

When documents are grouped into domains by relation to a particular project module, in-domain
consistency checks are usually most often executed. In addition to these, the software agent architecture

also provides flexibility for carrying out inter-domain, global consistency checks when multiple domains
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exist. For example, a global check of generalizations well-formedness consistency rule [Appendix A,
A.11] across all three domains in this scenario would establish consistency status of all generalizations.

However, allowing certain inter-domain global checks may or may not be desirable. If all domains
in a hierarchy relate to the departments, working closely together within an organisation (like domains
CDS and BCL in our scenario), traffic limitations and security concerns may not be too severe;
therefore, inter-domain checking could be allowed. On the other hand, when development teams from
different organisations collaborate (scheduler development team and Caribou Lake Software team in this
scenario), it would be natural to establish the limits of each organisation as the borders for consistency
checks. Migration policies for consistency checking mobile agents are thus established to control inter-
domain checking.

In this scenario, we also consider examples of unilateral migration policies: checks from CDS
domain are allowed to propagate to the CAR domain, yet inter-domain checks from CAR to CDS and
CAR to BCL are not. Let us suppose, that development of RemoteObserver class is an open source
project, and Caribou Lake Software has opened their UML models to consistency checks from other
organisations. At the same time, the distributed break scheduler application development is a
commercial project, thus checks from Caribou Lake are not allowed to propagate either to CDS or BCL
domains.

Within the scheduler project, consistency checks from the application development domain CDS are
allowed to propagate out of the project organisation boundaries into the CAR domain. In addition,
consistency checks of generalizations (consistency rule "gen1"), originating from the domain BCL, are
allowed to propagate to CAR.

Fig. 8.20 summarises mobile agent migration policies, which establish allowed directions of
consistency checks between the domains in this scenario. A table of agent routing policies for each
gateway domain is provided in Fig. 8.21.

As follows from routing policies for agent migration (Fig. 8.21), the gateway domains EXT and
INT operate as "firewalls", protecting the inner domains CDS and BCL from incoming traffic from
outside of the organisation (policies 5,6,9, Fig. 8.21). At the same time, both firewalls allow some
outward agent migration into the outer world (policies 7 and 8) and into the external domain CDS
(policies 3 and 4). The internal firewall INT allows exchange of agents between CDS and BCL domains
(policies 1,2).

The "clone and migrate" pattern used in the architecture prototype makes the job of specifying
policies for gateway domain agents easier: no inward agent migration is required for the final part of
agent's missions: only messaging is used to propagate results of the checks — the consistency links.

We do not elaborate on message routing here, because the prototype implementation allows direct
agent-to-agent message exchange via a persistent proxy of an agent [Lange and Oshima 1998]. Direct
messaging feature of the agent framework, Aglets, becomes available only to those agents, which

receive another agent's proxy either from that agent or from the agent place.
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Mobile consistency | Mobile consistency Propagation of the
checking agent checking agent Example routing check is allowed /
originating from destination path not allowed
Domain CDS: Domain BCL: Allowed (reason:
Hosts A, B, or D Hosts CL1or CL2 | B— INT — CL1 within same
organisation)
Domain BCL: Domain CDS: Allowed
Hosts CL1 or CL2 | Hosts A, B, or D CL2 - INT—D
Domain CDS: Domain CAR: Allowed
Hosts A, B, or D Host O A — INT —-EXT
— CAR - O
Domain BCL: Domain CAR: Allowed only of
Hosts CL1 or CL2 | Host O CL1 — INT — consistency rule
EXT — CAR — O | type "genl".
Domain CAR: Domain BCL O — EXT Not allowed
Host O
Domain CAR: Domain CDS O — EXT Not allowed
Host O

Fig. 8.20. Summary of the policies for inter-domain consistency checks.

Policy From To Checks of following
no Host Host rule types are allowed:
Gateway Domain INT:
1 *.CDS *.BCL *
2 *.BCL *.CDS *
3 *.CDS *.CAR *
4 *.BCL *.CAR Genl
5 * *.CDS None
6 * *.BCL None
Gateway Domain EXT:
7 *.CDS * *
8 *.BCL * *
9 * * None
Legend: * - a wildcard, meaning "any".

Fig. 8.21. Routing policies for mobile agent inter-domain consistency checks.

At the architectural level, routing of messages between agents in the domain occurs through

All three domains of the network configuration, used for this scenario, host documents, containing

At this point in project development, the scheduler application class diagram [Appendix C, C.2]

agent routing policies, discussed in this section.

8.8.3 Distributed Inter-Domain Consistency Check

well-formedness of generalizations [Appendix A, A.11].
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gateway domain agents. And in this case, message routing policies can be set up in a way, similar to

UML elements generalizations. In this scenario we elaborate on checking of the consistency rule for

contains a relatively large number of interface classes and implementations of the application




functionality. For instance, generalizations located at the server development domain CDS include
"TeacherImpl implements Teacher interface”, "OrganiserImpl implements Organiser", and a number of
other pairs of classes. The client development domain, BCL, contains "StatisticsViewImpl implements
StatisticsView interface". An off-sitt CAR domain contains "COM.cariboulake.util.Observable
implements COM.cariboulake.util. RemoteObservable interface". All generalizations, referred to by this
scenario, are found on the class diagram [Appendix C, C.2]

Let us suppose, that Dimitry creates a generalization OrganiserImpl implements Organiser,
document XMI/GeneralizationG320.xml at host D, domain CDS. In the beginning of Scenario III, we
consider a consistency check of this generalization and the distributed checks of other generalizations,
relevant to the consistency rule "gen1". Checking the consistency rule "genl" is a goal of an instantiated

mobile consistency checking agent (for example, agent id b47¢).
8.8.4 Inter-Domain Document Location Discovery

The inter-domain document location discovery process (example in Fig. 8.22 for the rule "genl")
collects the location information for all distributed documents, relevant to the selected consistency rule,
across numerous domains. The mobile checker agent requests the itinerary from the CDS domain agent,
and receives the result of an inter-domain document location discovery. The itinerary includes URLs of
all distributed documents, relevant to checking of the consistency rule "genl" (Fig. 8.23).

The itinerary, resulting from an inter-domain location discovery, includes URLs of relevant
documents from all accessible domains (CDS, BCL, CAR), to which routing policies allow propagation
of mobile checking agents from the current domain. In other words, this itinerary is compiled in such a
way, which allows mobile agents from one domain to find out about related documents in other domains
(hence the name "inter-domain document location discovery"). Compilation of such an itinerary requires
collaboration between the domain agent CDS and the gateway domain agents INT and EXT, as well as
collaboration between these gateway domains and all other domain agents, connected to them — the
domains BCL and CAR (Fig. 8.19).

When Caroline creates a generalization "Statistics ViewImpl implements StatisticsView" on the host
CL1 of domain BCL, an inter-domain location discovery procedure is executed for this event also. Due
to the symmetry of agent routing policies for the domains BCL and CDS (Fig. 8.21), exactly the same
combined itinerary would result in this case (in step 10, Fig. 8.22), as the itinerary for the mobile agent
b47e (Fig. 8.23).

The routing policies prohibit outward checking of any consistency relations, except between
generalizations, from the domain BCL into the external domain CAR (policy 4, Fig. 8.21). Checking of
all relations, however, is allowed from domain CDS (policy 3, Fig. 8.21). For example, if an itinerary
were requested for any of association rules (al-a4), the resulting itinerary returned to the CDS domain
would contain the association 0.CAR/XMI/AssociationG63.xml between
COM .cariboulake.util. Observable and COM.cariboulake.util. RemoteObserver. The itinerary for the
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same rule, requested from the domain BCL, would not contain this association, because routing policies
for BCL prohibit checking into the domain CAR (policy 4, Fig. 8.21). Itinerary for the same consistency
rule of well-formedness of associations, requested within the domain CAR, would result in selection of
only one association between two mentioned classes of that domain, and would not include any

associations from CDS or BCL domains.

1. Mobile agent b47e sends request for itinerary for rule "gen1" to CDS.
2. CDS compiles "local" itinerary in the same way as in scenarios I and II.
3. CDS "knows" that it's connected to the domain agent INT, and forwards the itinerary

request from b47e to INT.

4. INT receives the request for documents, relevant to rule "genl", from agent b47e in domain
CDS.

5. Mobile agent routing policies at gateway domain INT allow routing of agents from CDS to
BCL, therefore INT queries domain agent BCL for itinerary of documents, relevant to
consistency rule "genl". If routing restrictions applied, no such query would be made for
domain BCL. BCL replies to INT with the itinerary.

6. Mobile agent routing policies at gateway domain INT allow routing of agents from CDS to
gateway domain EXT, therefore INT queries EXT for itinerary of documents, relevant to
consistency rule "genl1".

7. Mobile agent routing policies at gateway domain EXT allow routing of agents from CDS to

external domain CAR, therefore EXT queries CAR for itinerary of documents, relevant to

consistency rule "genl".

CAR replies with the itinerary to EXT, EXT forwards that itinerary to INT.

INT concatenates itineraries from BCL (step 5) and EXT (step 8) and returns the itinerary to

CDS.

10. CDS combines this itinerary, received from INT with the local itinerary (step 2), and returns
the combined itinerary to mobile agent b47e.

o ®

Fig. 8.22. Inter-domain location discovery process example for consistency rule "generalizations".

A.CDS/XMI/GeneralizationG304.xml, A.CDS/XMI/GeneralizationG305.xml, ...
D.CDS/XMI/GeneralizationG320.xml], ...
CL1.BCL/XMI/GeneralizationG335.xml, CL1.BCL/XMI/GeneralizationG336.xml
0O.CAR/XMI/GeneralizationG332.xml

Fig. 8.23. Result: inter-domain itinerary for rule "genl1", checked from the CDS domain.

The consistency rule "genl" demands that all generalizable elements are children of an element of
the same type. The agent b47e checks all generalizations in its itinerary (Fig. 8.23), and creates a
number of consistency links between the distributed documents. Below, we consider the linked model
elements in more detail.

The result of the local consistency check. An inconsistent link is created at host D.CDS, where
Dimitry created a generalization "OrganiserImpl implements Organiser" (Fig. 8.24). Other locally
generated inconsistent links at the host D.CDS include "Breaklmpl implements Break", and

"BreakPlanImpl implements BreakPlan".
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The result of a distributed in-domain check. A number of inconsistent links are also created at the
host B.CDS: for instance, "TeacherImpl and Teacher", "Stafflmpl and Staff". Once again, the reason for
inconsistency is in construction of a generalization with a mismatch in the types of the parent and the
child element.

Result of a distributed inter-domain check. An inconsistent link is generated by the mobile agent
b47e at host O, domain CAR, with respect to the generalization "COM.cariboulake.util.Observable
implements COM.cariboulake.util. RemoteObservable". The agent security policies of the CAR domain
allow mobile agents from external domains to execute at the domain, therefore generation of this link
will be allowed. However, if necessary, such policies can prohibit a mobile agent from saving
consistency links into the local linkbase of the CAR domain.

In practice, all inconsistent of generalizations, identified in this scenario, would normally be
tolerated at this early stage in development, rather than result in immediate correction actions by the
developers since violation of this requirement does not invalidate the UML model. The UML well-
formedness rules require all generalizations to contain equal Foundation.Core.Generalization.supertype
and Foundation.Core.Generalization.subtype sub-elements. On numerous occasions in the original
UML model [Bergner, et al. 1997] on which the scenarios are based, and in the particular
generalization created by Dimitry, the generalization sub-elements differ (Foundation.Core.Interface

and Foundation.Core.Class), and result in an inconsistent link (Fig. 8.24).

Generalization: Domain CDS, host D, OrganiserImpl implements Organiser

Consistency Link:

<xlinkit:ConsistencyLink ruleid="generalization.xml#/consistencyrule[1]">

<xlinkit:State>inconsistent</xlinkit:State>

<xlinkit:Locator

xlink:href=" D.CDS/XMI/GeneralizationG320.xml#/XMI.content[1]/

Model Management.Model[1]/Foundation.Core.Namespace.ownedElement[1]/

Foundation.Core.Generalization[17]" xlink:label="" xlink:title=""/>

</xlinkit:ConsistencyLink>

XMI Source:

<Foundation.Core.Generalization xmi.id="G.320">
<Foundation.Core.ModelElement.name/>
<Foundation.Core.ModelElement.visibility xmi.value="public"/>
<Foundation.Core.Generalization.discriminator/>
<Foundation.Core.Generalization.subtype>

<Foundation.Core.Class xmi.idref="S.10065"/> <!-- OrganizerImpl -->
</Foundation.Core.Generalization.subtype>
<Foundation.Core.Generalization.supertype>
<Foundation.Core.Interface xmi.idref="S.10115"/> <!-- Organizer -->

</Foundation.Core.Generalization.supertype>

</Foundation.Core.Generalization>

Fig. 8.24. XMI Source of generalization "OrganiserImpl implements Organiser" and the resulting

inconsistent link.
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8.8.5 Multi-Agent Collaboration

Multi-agent collaboration takes place, when a number of agents combine the nodesets they collected
concurrently at numerous hosts across the network. All nodesets are then used to compute the status of a
consistency relation. Use of multi-agent collaboration allows the software architecture to execute a
consistency check concurrently on a number of documents at different locations. The collaborative
multi-agent approach, introduced in this section, extends the sequential distributed approach, considered
in Scenario II. The concurrent approach continues to capitalize on the cloning and migration behavioural

pattern, introduced in the section 8.7.3 (Fig. 8.14).
8.8.5.1  Concurrent rule checking at distributed locations

Let us suppose, that Caroline introduces a modification to the generalization "StatisticsViewImpl
implements StatisticsView" on the host CL1 of the domain BCL. As we considered on an example in
8.8.4, the itinerary of a mobile agent for checking the relevant consistency rule "genl" contains a
number of documents from different hosts. In this case, the itinerary is exactly the same as the one in
Fig. 8.23.

Consistency rules, which deal with sub-elements of a particular UML model element (i.e., the
generalization well-formedness rule "genl"), rather than with sub-elements of a number of different
UML elements (i.e., the namespace well-formedness rules "nl", "n2"), constitute one example, where
concurrent checking may yield a significant efficiency advantage. "Genl1" is a consistency rule, where
generation of a consistency link requires processing of one document instance: all parameters, required
by the rule, can be found in this document. Multi-agent checking also provides efficiency advantages for
a case, where elements for the check have to be collected from multiple documents.

In the multi-agent collaborative checking approach, the complete itinerary (Fig. 8.23) is divided into
sub-itineraries; each sub-itinerary ideally contains documents from a single host. The original agent
produces agents-clones, and each agent executes one sub-itinerary. If the rule allows an agent to
complete the check at the distributed locations (i.e., the generalizations rule), links are generated locally
at each host (Fig. 8.25). Otherwise, collected nodesets are transported to a selected network host, where

results are combined for link generation (Figs. 8.28-8.30).
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Host CL1.BCL Host B.CDS Host CL1.BCL

"Source" host "Source" host
generated and saviio;

{tinerary completed \

Host D.CDS Links sent back

oni to host CLI as
clonin "
" i n k S generated, ...¥ee tressages
Mobile
checking \ Links are
agent » ©) Links generated, ...*¥*’ saved at the
"source"
Host O.CAR host as well
Links generated, ... *
migra
Legend: - cloning 5A - messaging
- migration (© - mobile agent

Fig. 8.25. Multi-agent collaboration scenario for concurrent checking of a rule at each participating host.

Multi-agent collaboration in the case of concurrent distributed rule checking is demonstrated in
creation of multiple sub-itineraries and their distributed and concurrent execution. The resulting links are

then combined and saved at the originating host (Fig. 8.25)

8.8.5.2 Concurrent distributed retrieval and exchange of nodesets

Most often, checking of a consistency rule requires processing of a number of different documents
for generation of each link, for instance, the namespace well-formedness rule "n2" [Appendix A, A.14].
In such a case, link generation cannot be carried out at the distributed locations, and all collected
nodesets need to be exchanged between distributed agents before link generation can commence.

In execution of the consistency rule "n2", a number of associations are considered together with the
namespace elements. In this part of the scenario, we executed a consistency check of rule "n2" across the
domain CDS, and found an inconsistency: one association was repeated in the UML model twice. We
will demonstrate the exchange of data between mobile agents on this example.

Let us suppose, that Dimitry has created an association between the use case Manage Users and the
use case System Administrator [Appendix C, C3]. Dimitry saved the new association on his workstation:
D.CDS/XMI/AssociationG146.xml. However, he didn't know, that Anne has created the same
association some time ago; the association already exists in the file A.CDS/XMI/AssociationG137.xml.
The namespace document is located at host B.CDS (Fig. 8.18) - we use the same distribution of

documents across domain CDS throughout the Scenario IIL
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The documents, participating in a consistency check of the rule "n2", are the following:
A.CDS/XMI/AssociationG137.xml, D.CDS/XMI/AssociationG146.xml, and B.CDS/XMI/ Namespace.-

xml. These relevant files are included in the itinerary for checking of the consistency rule "n2".

<xlinkit:ConsistencyLink ruleid="namespace.xml#/consistencyrule[2]">
<xlinkit:State>inconsistent</xlinkit:State>

<xlinkit:Locator
xlink:href="B.CDS/XMI/Namespace.xml#/XMI.content/Model_Management.Model/Foundatio
n.Core.Namespace.ownedElement/Model _Management.Model" xlink:label="" xlink:title=""/>
<xlinkit:Locator xlink:href="A.CDS/XMI/AssociationG137.xml#/XMI.content/
Model_Management.Model/Foundation.Core.Namespace.ownedElement/

Model Management.Model/Foundation.Core.Namespace.ownedElement/
Foundation.Core.Association" xlink:label="" xlink:title=""/>

<xlinkit:Locator xlink:href="D.CDS/XMI/AssociationG146.xml#/XMI.content[1]/

Model _Management.Model/Foundation.Core.Namespace.ownedElement/
Model_Management.Model/Foundation.Core.Namespace.ownedElement/
Foundation.Core.Association" xlink:label="" xlink:title=""/>

</xlinkit:ConsistencyLink>

Fig. 8.26 Inconsistent link: two copies of the same association exist in the UML model.

Let us suppose that collaboration between mobile agents within the domain CDS is allowed. In
certain cases, or for large domains, collaboration may be disabled to avoid excessive cloning of agents
and, as a result, unnecessary "clogging" of resources within the domain.

The mobile agent (for example, agent id 437d), instantiated with the goal to check rule "n2", will

then create the following three sub-itineraries (Fig. 8.27).

Initial itinerary:
A.CDS/XMI/AssociationG137.xml,
D.CDS/XMI/AssociationG146.xml,
B.CDS/XMI/Namespace.xml

Sub-itineraries:

(1) A.CDS/XMI/AssociationG137.xml
(2) B.CDS/XMI/Namespace.xml

(3) D.CDS/XMI/AssociationG146.xml

Fig. 8.27. Generation of sub-itineraries.

The document in sub-itinerary number 3 would have already been processed by agent 437a at this
point, because the creation of the corresponding file has triggered the consistency check. The two clones
of agent 437d are then created: let us suppose they have identifiers 437a and 437b. Sub-itineraries 1 and
2 are then "given" to each of these clones, and executed concurrently at distributed locations (Fig. 8.28).

This concludes Stage 1 of multi-agent collaboration.
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Host D.CDS Host A.CDS
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ID 437d \"(:Namespace.xml
D 437b ID 437b

Fig. 8.28. Stage 1 of multi-agent collaboration: execution of sub-itineraries.

By the end of stage 1 of multi-agent collaboration, each of the agents 437a, 437b and 437d have
already collected the nodesets from each of three documents, relevant to consistency rule "n2". Because
all three nodesets (Fig. 8.28) are required for link generation of rule "n2", none of the checker agents
alone is able to compute the consistency status of the rule. In order to carry out link generation, it is
necessary to collect all nodesets in one place. Often the host, from which the consistency check has
originated, functions as a collection point for the partial nodesets (Fig. 8.29).

In the prototype, a simple approach for collection of nodesets is implemented: since only one
instance of each consistency rule can be checked at a given domain at any time due to agent registration,

all partial nodesets are collected into a separate repository for each rule identifier (Fig. 8.29).

Host D.CDS Host A.CDS

437a

Message:

Result: |
complgte 3 nodescf..s,a
nodes e
* Host B.CDS
437g e @ o

Fig. 8.29. Stage 2 of multi-agent collaboration: collection into the repository.

Once collection of nodesets from all three mobile agents is complete, all nodesets are forwarded to
the original checker agent at host D (ID 437d). This concludes Stage 2 of the multi-agent collaboration.
The mobile agent carries out the generation of links, and sends the links out to its clones (Fig. 8.30). All

three agents save links locally and terminate.
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Fig. 8.30. Stage 3 of multi-agent collaboration: generation of links and their propagation.

8.8.5.3 Comments

In this section, we introduced collaborative concurrent checking of consistency rules on a number of
distributed documents. Multi-agent collaboration is potentially most beneficial in the scenario, where
checking of a consistency rule requires access to single documents (i.e., checking of well-formedness of
generalizations). In this case, division of the distributed itinerary into a number of sub-itineraries, local
to each participating host, results in a minimum communication overhead, because the link generation
can be completed locally at each host. The results of a check - consistency links, are then forwarded
from each collaborating agent to the host, where the consistency check originated.

The multi-agent collaboration approach was also presented here for a more challenging scenario,
when checking of a consistency rule requires collection of nodesets from a number of documents before
link generation can be executed. The proposed 3-stage approach capitalises on concurrent nodeset
selection by multiple agents at distributed locations, followed by concatenation of nodesets at a specified
repository. Messaging, rather than active migration, is extensively deployed, for reasons of efficiency,
between trusted members of the agent family. The proposed multi-agent collaboration schemes have a
potential to yield efficiency benefits in comparison to traditional, sequential "clone-and-migrate"
approach.

Another case, in which the multi-agent collaboration is necessary, is in identification and disposal

of "redundant" mobile checking agents.

8.8.54 Identification of redundant mobile checking agents

The proposed software agent architecture for consistency checking ensures, that within a particular
domain, only one agent family is checking a particular consistency rule at any time across all relevant
documents.

Let us suppose, that in a multi-domain configuration (Fig. 8.19) a consistency check has started in a

different domain and continues after migration into the current domain. For instance, a new consistency
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check (mobile agent ID 535b) of a namespace well-formedness rule "n1" originated at host CL1 of the
domain BCL. The agent 535b has already collected the nodeset, relevant to this consistency rule, from
the document CL1.BCL/XMI/AssociationG60.xml — an association between Organiser and
StatisticsViewImpl. At this time, a clone of the mobile agent (clone ID 535c) has migrated to the host
A.CDS for checking of the next document in its itinerary A.CDS/XMIJ/AssociationG17.xml (Fig. 8.31).
For this example, we consider the complete itinerary of all associations, which extends the

shortened itinerary we considered in Fig. 8.27.

CL1.BCL/XMI/AssociationG60.xml, (Organiser and Statistics ViewImpl)
A.CDS/XMIJ/AssociationG17.xml, (TeacherImpl supervises BreakImpl)
D.CDS/XMI/AssociationG51.xml, (OrganiserImpl and StaffImpl)
D.CDS/XMI/AssociationG54.xml, (OrganiserImpl and BreakPlanner)
D.CDS/XMI/AssociationG66.xml (BreakPlannerView and Statistics ViewImpl)
B.CDS/XMI/Namespace.xml

Fig. 8.31. Complete itinerary of documents, related to consistency rule "n1", from all participating

domains

At the same time, let us suppose, that a consistency check of the same consistency rule "nl1" has
already started independently in the current domain CDS. Dimitry changed the association between
OrganiserImpl and BreakPlanner, document D.CDS/XMI/AssociationG54.xml. A mobile agent (agent
ID 247d) has collected the nodeset from this document, and also from other related documents at host
D.CDS: D.CDS/XMI/AssociationG51.xml and D.CDS/XMI/AssociationG66.xml (Fig. 8.31). An
instantiated clone (agent ID 247a) then migrates to the next host in the itinerary — A.CDS, for processing
of A.CDS/XMI/AssociationG17.xml "TeacherImpl supervises BreakImpl".

At this point of time, there are two agent families, carrying out checks of consistency rule "n1"
within the domain CDS. First family belongs to the CDS domain: agent 247d at host D.CDS and its
clone 247a at host A.CDS; the second family originated from domain BCL: agent 535b at host
CL1.BCL and its clone agent 535c at host A of the CDS domain.

Allowing both consistency checks to proceed uninterrupted would not be efficient, since in this case
some documents would be processed by both agent families (i.e., more than once): for instance, all
associations at host D.CDS in Fig. 8.31. Therefore, only one consistency check of the two running
checks should be allowed to proceed.

The domain agent CDS identifies redundancy in checking of consistency rule "n1" when the cloned
agent 535c migrates into the domain CDS from domain BCL and registers with the domain agent CDS.
Upon instantiation of a mobile agent for a new consistency check, or upon entering by a mobile agent of
a new domain, the agent sends a proxy of itself and an identifier of the consistency rule being checked to
the domain agent (message newChecker, Fig. 8.8). Likewise, upon such registration of agent 535c, the
domain agent CDS attempts to log 535c for consistency rule "n1" in the "agents table" database, and
identifies that agent 247a has already started checking of rule "nl" at the domain. A message

"redundant"”, containing proxies of detected agents, 535c and 247a, is then sent to both agents.
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8.8.5.5 Resolution of redundant checks

Receipt of the "redundant" message from the domain agent pauses the normal execution of each
redundant mobile agent. In response to the "redundant" message, all agents forward the nodesets, that
they have so far collected, and their partially completed itineraries to the domain agent. Having done so,
all redundant agents clear their itineraries and are "paused", awaiting further directions from the domain
agent.

The multi-agent collaboration now actively involves the domain agent: all collected nodesets are
concatenated, and a remaining itinerary is generated by intersection of itineraries of redundant agents
(Fig. 8.32). The domain agent is used as the host, where the repository for concatenating nodesets is
located.

The resulting concatenated nodeset and the remaining itinerary are returned to one of the redundant
mobile checking agents. Usually there is no difference, which agent of all redundant agents is selected to
continue the check. Let us suppose, that agent 535c is selected to execute the remaining itinerary that

now contains a number of generalization documents at host A.CDS and B.CDS (Fig. 8.32).

Agent 535c, originates from

Agent 247a, originates from

domain BCL, selected to domain CDS Result
continue execution
Uncompleted Part of the Uncompleted Part of the Remaining Itinerary
Itinerary: Itinerary: (operation AND):
A.CDS/AssociationG17.xml, | CL1.BCL/AssociationG60.xml, | A.CDS/AssociationG17.xml,
D.CDS/AssociationG51.xml, | A.CDS/AssociationG17.xml, B.CDS/Namespace.xml

D.CDS/AssociationG54.xml,
D.CDS/AssociationG66.xml,
B.CDS/Namespace.xml

B.CDS/Namespace.xml

Collected nodeset:
From AssociationG60.xml at
CL1.BCL

Collected nodeset:

From AssociationG51.xml,
AssociationG54.xml,
AssociationG66.xml at D.CDS

Collected concatenated
nodeset (operation OR):
From AssociationG60.xml at
CL1.BCL

From AssociationG51.xml,
AssociationG54.xml,
AssociationG66.xml at
D.CDS

Fig. 8.32. Concatenation of itineraries and nodesets from redundant consistency checking agents.

The agent 535c¢ continues its execution of the remaining itinerary: it clones itself and migrates to all
hosts in this itinerary. All other redundant agents remain awaiting a response from the domain agent.

When execution of the remaining itinerary is completed and consistency links are generated, the
agent 535c follows the normal link propagation pattern: it saves the links at the current location, and
forwards the links as a message through all agent clones down to the checking agent, which started the
check (agent 535d at host CL1.BCL). In addition, the agent 535c¢ also forwards the links to the domain
agent CDS. The domain agent re-forwards the links to all awaiting redundant agents (agent 247a).
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The redundant agent 247a is waiting for response from domain agent CDS. When links are
forwarded to 247a, its itinerary is empty, therefore, it proceeds to carry out normal link propagation

through its agent "family", i.e., to its parent agent 247d at host D.CDS.
8.8.5.6 Comments

Identification and management of redundant consistency checking agents is an important feature of
the proposed software agent architecture for distributed consistency checking. Management of redundant
checks is in a certain way similar to conflict resolution: numerous agent itineraries and the nodesets need
to be reconciled in such a way, that no acquired information is lost. From then on, the completion of the
consistency check relies on only one family of agents to finish the check.

The approach to identification and resolution of redundancy heavily relies on the concept of the
agent family in the software agent architecture. In the example we have considered, redundancy
identification halted execution of an agent from one family, and the execution of another agent from a
different agent family was allowed to proceed. The same mechanism applies without modification for a
case, where in each agent family, a number of agents concurrently execute checks at numerous
locations. The "Redundant" message, received by one agent in the family, is forwarded through the
hierarchy of parents and clones within that family and reaches all family members, which are all paused
by the receipt of this message. The following receipt of the remaining itinerary by a member of the agent
family re-commences the check of the remaining documents. When one agent family has generated
links, the links are collected at the domain, where redundancy was detected, and are forwarded to all
other redundant agent families on standby. Within each of these families, the links are distributed
between the member agents via messaging.

The redundancy identification and resolution task once again highlights the efficiency in
management of distributed concurrently operating agents that the agent family construct provides in the
architecture. Without knowing a complete list of all distributed agents or having any centralised control
point, the architecture is able to effectively reach and manage an arbitrary number of distributed agents
within each family via a single family member by use of the established "peer-to-peer" family
relationships. The redundancy resolution example is thus another "killer" application for the agent
family concept, in addition to the approach of terminating distributed checks for consistency rules,
which have been modified (as mentioned in the section 8.7.3).

The proposed approach to identification and resolution of redundant checks is based on the multi-
agent collaboration scheme, which we presented. The approach is based on the architectural features,
demonstrated throughout this chapter, in the Scenarios I, II and at the beginning of Scenario III,
specifically agent cloning and migration, messaging, and propagation of links and events via messaging
throughout the agent family.

In the remainder of the Scenario III and of this chapter, we address other useful features of the
software agent architecture: firewalls, disconnected operation of domains and replication of domain

agents.
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8.8.6 Firewalls and mobile agent security

The software agent architecture and its implementation prototype allow system administrators to
configure agent migration policies in order to regulate the inflow and outflow of agents from any
domain. Section 8.8.2 of this chapter described the inter-domain agent migration policies in detail.

Here we present an example of a firewall at the gateway domain EXT, which has been set up to
protect the distributed break scheduler project from external consistency checking agents. The
corresponding prohibitive policy (policy number 9, Fig. 8.21) disallows mobile agent migration from
within the organisation into the outside world for all but two development domains: BCL and CDS
(policies 7 and 8).

Let us extend the example from the section 8.8.3-8.8.4, where we considered a distributed inter-
domain consistency check of UML elements Generalizations, and consider operation of firewalls on this
example. Let us suppose that Olga modified the generalization O.CAR/XMI/GeneralizationG332.xml
COM . cariboulake.util.Observable implements COM.cariboulake.util. RemoteObservable. Due to the
prohibitive migration policies at the gateway domain EXT, the itinerary for checking well-formedness of
generalizations rule "genl" contains only documents from the domain CAR, unlike the complete
itinerary shown in Fig. 8.23.

Creation and configuration of firewalls is an effective security measure. In our architecture, agent
migration policies at gateway domain agents allow creation of firewalls, which regulate migration of
mobile agents between the domains. Perhaps even more importantly than that, inter-domain document
discovery in the software agent architecture is constructed in such a way, that one can effectively protect
information about names and locations of documents from becoming known outside of the firewall (i.e.,
when the routing policies are referenced in steps 5-7 of the inter-domain location discovery algorithm,
Fig. 8.22).

The system administrator should configure migration policies in such a way, which will not hinder
teamwork across project and organisation boundaries. As we have demonstrated in this example, any
changes to the freely available software component COM.cariboulake.util.RemoteObservable do not
become instantly "known" to developers of the distributed break scheduler application in the current
configuration of gateway domain agents EXT and INT. By restricting the visible itinerary of documents,
the EXT domain prevents consistency checks of the CAR domain from propagating into the domains
BCL and CDS of the application development project. Changes in CAR become "known" to developers
in BCL and CDS domains "on-demand", rather than "on change": CAR-related consistency links are re-
generated when a document, relevant to any Caribou Lake component, is changed in the scheduler
project. In our case, this kind of behaviour is desired, because it saves our main developers' time for

tracking each change in the package from Caribou Lake Software.
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8.8.7 Disconnected operation

The proposed software agent architecture for distributed consistency checking provides support for
disconnected operation of individual hosts and groups of hosts. 'Disconnected operation' implies, that the
consistency checking services within the domain will continue operating, should the network connection
between the domain and the rest of the network become unavailable either willingly through
disconnection into the off-line mode, or unwillingly due to a network fault.

By providing for disconnected operation, the software agent architecture caters for needs of remote
users, operating from home with the intermittent connection over a modem, and also for needs of larger
organisations, where distributed offices may become temporarily disconnected from each other because
of network maintenance work. In each case, consistency checking functionality within the disconnected
domain can be provided: all documents within that domain continue to be involved in in-domain
consistency checks in a normal way, as if disconnection has not taken place.

Inter-domain consistency checking between the disconnected domain and the outer world is paused
during the disconnection period. However, consistency links, which were generated previously by
consistency checks when connection was still available, continue to exist within the disconnected
domain. Therefore, throughout the whole disconnection period, all users of the disconnected domain can
analyse the state of the document universe - all consistent and inconsistent links, which were created just
before the moment of disconnection.

The remainder of this section will briefly outline on the example of disconnection of the domain
BCL in the network configuration of the distributed break scheduler application development project
(Fig. 8.19). Let us suppose, that the network connection between BCL and the outside world is
temporarily unavailable. In this case, gateway domain INT, and all of domains CDS and CAR become
unreachable from within BCL.

The complete itinerary for checking well-formedness of generalizations "genl" consistency rule
(Fig. 8.23) across all domains includes documents from host CL1, domain BCL, and a number of

documents from domains CDS and CAR:

CL1.BCL/XMI/GeneralizationG335.xml, CL1.BCL/XMI/GeneralizationG336.xml
A.CDS/XMI/GeneralizationG304.xml, A.CDS/XMI/GeneralizationG305.xml, ...
D.CDS/XMI/GeneralizationG320.xml, ...

0O.CAR/XMI/GeneralizationG332.xml

During disconnection of the domain BCL from the outside world, inter-domain document location
discoveries via the gateway domain INT are no longer available. Since during this time the gateway INT
cannot be accessed, only consistency checking of documents, local to the domain BCL, is carried out.
The partial itinerary for checking of consistency rule "gen1" within the disconnected domain BCL is
shown below (Fig. 8.33).
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CL1.BCL/XMI/GeneralizationG335.xml,
CL1.BCL/XMI/GeneralizationG336.xml

Fig. 8.33. Partial itinerary for checking rule "gen1" at the disconnected domain BCL.

Once connection of BCL domain to the outside world is restored, the gateway INT becomes
accessible, and any subsequent inter-domain document location discovery requests will become
processed, and will return complete, multi-domain itineraries.

Thus any consistency checks, starting after re-connection either from within the previously
disconnected domain or from outside of this domain will be able to propagate between the domains in a

normal way. Disconnected operation is a normal operational mode of the software agent architecture.
8.8.8 Replication

In the above example of a disconnected operation we discussed the effects of a network
disconnection between the domain BCL and the gateway domain INT. If the software at the gateway
domain INT crashes, or the network host INT is down, an effect, logically equal to the disconnected
operation, will be forced on all sub-domains of INT — the domains BCL and CDS. Even though users
from BCL and CDS will continue to be able to access documents in each other's domains in a distributed
fashion (unlike the physical network disconnection discussed above), the scope of consistency checks
will be limited to individual domains throughout the outage of gateway domain INT.

In a way, similar to the outage of a gateway domain, an interruption of a domain agent will
postpone any future consistency checks in this domain until the point in time, when the domain agent
becomes operational again. However, the software architecture does not allow all distributed consistency
checks already underway to correctly complete in this case: the mobile checking agents, which already
possess their multi-domain itineraries, will be able to carry out nodeset collection from distributed hosts
in a normal fashion, without involvement of the local domain agent.

With respect to stability, each individual domain agent and gateway domain agent is a single point
of failure within the domain or within the network, respectively. Replication of domain and gateway
domain agents is proposed as a measure to leverage the possible risks.

The software agent architecture is able to combine two replication schemes. Firstly, backup domain
or gateway domain agent software can be launched on the same host; this is replication in software.
Secondly, "backup" agents can be run on alternative hosts, thus reducing the risk of domain or gateway
domain agent unavailability due to hardware failures. The second approach is the physical replication.

The ability of the prototype to run multiple copies of a domain agent on the same network host is
due to use of a separate Java virtual machine for execution of each separate agent instance, and to
allocation of different agent transfer protocol [Karjoth, et al. 1997] ports for separate domain agent
instances. The latter feature is provided by the Aglets mobile agent framework [IBM 1998]: both in
agent migration and messaging, complete host addresses with URL and ATP port number are used.
Using this feature, multiple agents, executing on one network host, can be individually addressed.
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The software agent architecture and its working prototype implement an automatic switch-over
mechanism between the main and the "backup" domain and gateway domain agents, for both types of

the software and physical replication.

8.9 Summary

In this chapter, we have introduced and discussed a number of scenarios, which help explain the
process of distributed consistency checking with the software agent architecture.

Scenario I has introduced an example of UML model distribution across several hosts, and
discussed the process of a local consistency check, triggered by an event - document modification, made
by a developer. This scenario complements introduction of the incremental checking algorithm in
Chapter 5. Scenario II considered a consistency check with a distributed itinerary, where migration
between hosts in a domain was required. This scenario introduced the "clone and migrate" approach,
which gives mobile checking agents presence at all hosts, concerned with the check. The resulting
"family" of connected agent clones improves control of distributed checks, where all agents in the
family can be reached via any member of the family. This approach is also superior to conventional
migration, as it allows resulting consistency links to be efficiently propagated to the distributed locations
via messaging along the family of present distributed agents.

Scenario III considered a distributed consistency check between documents in distributed domains.
On an example, we introduced mobile agent migration policies, by which execution of inter-domain
consistency checks can be controlled, and a process of inter-domain document location discovery, which
provides information about distributed document locations without a need for a central repository for
such information. An approach to concurrent execution of distributed checks was described, where
agents collaborate by exchanging nodesets, collected at different locations. In the remainder of the
scenario, we considered the disconnected operation of the software agent architecture, which facilitates
distributed development by improving fault tolerance of consistency checks within the domains and

enabling operation via intermittent network connections.
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Chapter 9 Implementation Prototype

9.1 Introduction

Chapter 7 has introduced the model of the software agent architecture for distributed consistency
management and outlined the internal structure of each architectural component and presented
sequences of performed operations within these components through state transition diagrams. Chapter 8
described several scenarios, where the working implementation prototype of the software agent
architecture is demonstrated and evaluated in a single-host, multiple-host, and multiple-domain
configurations. Discussion of the scenarios is complemented by explanation of some of the features of
the prototype, and provides detailed examples of collaboration of architectural components in different
situations. In that way, the scenarios served to clarify operation of the architectural components on these
particular examples.

This chapter will focus in greater detail on the structure of the implementation prototype. Following
the event-oriented design of the software agent architecture, in this Chapter we look at architectural
components from the view point of events, which are created and processed by each component. Event
orientation is supported by the message model used in the Aglets mobile agent framework, which was
used to construct the implementation prototype.

Construction of the prototype follows design of components, elaborated in the state charts, which
were used for state-based modelling in Chapter 7. Development and evaluation of the working prototype
allowed us to optimise the architecture in a number of ways. Most notably, cloning-migration pattern
has being introduced as a more efficient alternative to agent migration, proposed in the original

architectural design.

9.2 Resource Interface Agent

In this section, all events, processed by the resource interface agent, are described. This agent is

launched at each host, where exist one or more documents, participating in the consistency checks.
9.2.1 Startup

On startup, domain discovery is carried out to obtain the addresses of the main and backup domain
agents. At initialisation, all consistency rules present at the host in the local document universe are
applied to all local documents. This is carried out in preparation for incremental checking and aims to

establish which rules apply to documents initially. The array of document names and vector of
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applicable to each document rules are sent to the domain agent with message
"documentRuleApplicability".

Resource Interface agent creates a thread, which monitors each of participating documents for
change. When a datestamp of the document changes, the thread runs an XML TreeDiff on the changed
document, and passes message "change" with parameters — document name and TreeDiff, back to the
Resource Interface agent. The backup copy of the document is then replaced by its current version.

The Resource Interface agent completes initialisation and starts processing any incoming messages.

9.2.2 Handled messages

9.2.2.1  Change - change detected on a document

The message carries as parameters: the XML TreeDiff between the old version of a document and
the new version, and the name of the changed document. This message is sent by the thread, which
monitors changes in all participating documents at this host.

If a document has been deleted completely, or a new document has been added to the local
document universe, "addDocument" or "deleteDocument" messages respectively are sent to the domain
agent.

Analysis of individual changes in the TreeDiff is carried out by intersection with XPath expressions
in consistency rules [Chapter 5, 5.3]. As a result, lists of consistency rules are produced, which are
relevant to document changes. An "updateRelevant”" message is sent to the domain agent, that updates
the table relevance of rules to documents.

For each relevant consistency rule, a new message "newChecker" is sent to itself (Resource

Interface agent).
9.2.2.2 NewChecker - instantiation of a new consistency checking agent

Resource Interface agent instantiates a new mobile checking agent, which takes as parameters the
name of a changed document and the identifier of the relevant consistency rule.

The "newChecker" message is sent to the domain agent, in which the proxy to the instantiated agent
is sent, together with the identifier of the consistency rule being checked. This information is stored at
domain agent level, and used for detection of redundant consistency checking agents.

The proxy is a location-independent reference to a mobile agent, by which messages can be sent to
this agent, regardless of agent's location. One important feature of the Aglet mobile agent framework
[IBM 1998, Lange and Oshima 1998] we used for the prototype is that proxy is guaranteed to remain
persistently valid until the relevant agent has terminated.

A copy of the mobile agent proxy and the consistency rule identifier are also stored locally, in order

to allow the Resource Agent to terminate the check if necessary (i.e., upon request of the user).
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9.2.2.3  Dialog - displays the status of the document and consistency checks

Message triggers display of document histories and other statistical information: a number of
changes to each participating document at this host, a number of consistency checks, and file names of

relevant link files.
9.2.2.4  Links - local saving of generated consistency links

This message is normally received from the mobile checking agent, and contains the generated
consistency links. This XML document is serialised by the Resource Interface agent into a local file on
the host.

The message is appended by a parameter — name of the file, and is forwarded to the User Interface
agent at the host. It is at the discretion of that agent, whether links should be displayed in a browser at

this time.
9.2.2.5 Update — checking of all local documents for consistency

This message is normally received from the user interface agent; the message is sent by the user.
The message results in checking all consistency rules on all local documents.

This message triggers the resource interface agent to send a number of "newChecker" messages to
itself, each message containing one identifier of a consistency rule. Identifiers of all consistency rules,
existing at this host, are used. This triggers consistency check of all consistency rules on all relevant

participating documents.
9.2.2.6  Dispose — disposal of the resource interface agent

This message can be sent by the user-administrator of the host, when the host needs to be
disconnected from the consistency checking framework or taken down, permanently or temporarily.

The Resource Interface agent terminates all ongoing consistency checks, which have originated at
this host. "Dispose" messages are sent to mobile checking agents, using locally saved proxies.

Document monitoring thread is stopped, and backup copies of participating documents are
removed.

A message "updateRelevant” is sent to the domain agent, which lists all local documents with no
relevant consistency rules. A number of "deleteDocument” messages are sent to the domain agent, in
order to remove information about names of local documents. This is done in order to disengage

participation of the local documents in the consistency checking framework.
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9.3 Domain Agent

9.3.1 Startup

The agent initializes the data structures [Chapter 6, 6.3], identifies addresses of replicated domain

agents [Chapter 8, 8.8.8], and awaits any incoming messages.

9.3.2 Handled Messages

9.3.2.1 DocumentRuleApplicability —incremental checking infrastructure

This message establishes the relation of applicability within the document table of the domain
agent. Both parameters, the array or consistency rule identifiers and an array of document names (more
precisely, URLs also containing host name), are saved into the document table.

The data structure is constructed in a way, which allows querying the document table for list of
documents, relevant to the rule, (agent itinerary) or for the list of consistency rules, relevant to the

document (used when updating rule relevance after a document has been changed).
9.3.2.2  UpdateRelevant — document changes require checking of new rules

Contains a document name and a list of relevant consistency rules. Used as a convenient update
mechanism of the document table.
The domain agent updates both representations of the document table: list of consistency rules,

relevant to the particular document, and the list of documents, relevant to each consistency rule.
9.3.23  GetRuleApplicability — mobile checking agent itinerary constructor

Each mobile consistency agent, checking a particular consistency rule, receives the itinerary with
names (URLs) of documents, relevant to this rule. This message has a parameter with the identifier of
the consistency rule being checked.

The domain agent searches the local document table for documents, currently registered as relevant
to the consistency rules. This is an in-domain itinerary.

If the domain agent is connected to a gateway domain, the GetRuleApplicability message is
forwarded there. The result of an inter-domain document location discovery [Chapter 8, 8.8.4]
constitutes an inter-domain part of the itinerary.

The in-domain and inter-domain parts are joined together and returned to the requesting mobile

checking agent, in a message "itinerary".
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9.3.24  AddDocument and DeleteDocument — changes in document universe

The AddDocument message notifies of the expansion of the document universe, which now
includes a new document in the domain. DeleteDocument removes all information about this document
from the document table.

Any mobile checking agents, querying the domain after this point in time, will get updated

information with respect to new and deleted documents.
9.3.2.5 NewChecker - launch of a new consistency check

The message contains a consistency rule identifier and a proxy of the mobile checking agent. These
are saved into the "agent table", which is maintained by the domain agent.

If the domain agent finds, that there is already a mobile checking agent in the domain, checking the
same consistency rule, redundancy is detected between these mobile checking agents. The domain sends
out "redundant" messages to all mobile agents involved in checking of this consistency rule. A sequence

of multi-agent collaboration actions are then followed [Chapter 8, 8.8.5].
9.3.2.6 DisposeChecker — ending of a consistency check

Upon successful completion of a consistency check, or on termination by the user, mobile checking
agents notify the domain agent with the DisposeChecker message.
This message lifts the locks on checking of the consistency rule by removing the mobile agent

concerned from the agents table.
9.3.2.7 Redundancy — avoiding redundant consistency checks

Each "redundancy" message is a reply from the mobile checking agent to the message, sent out by
the domain agent when redundancy of consistency check has been identified. Thus, normally, a number
of messages of this kind will be received: one from each "family" of mobile agents.

The message parameters are: identifier of the consistency rule, proxy of the mobile agent checking
the rule, a partially completed itinerary, and a vector of nodesets already collected throughout execution
of the itinerary.

An example is given in [Chapter 8. 8.8.5.4-8.8.5.5] on how domain agent concatenates nodesets and
computes intersection of itineraries. The concatenated nodeset and the remaining itinerary are sent to

one of the redundant mobile checking agents.
9.3.2.8 Links - redistribution of links after redundant consistency checks

Since only one of redundant mobile checking agent families is allowed to continue the consistency

check [Chapter 8. 8.8.5.5], the resulting consistency links need to be distributed to other redundant
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families at the end of the check. This message "Links" is sent by the mobile agent upon having
completed the check.
The message is forwarded by the domain agent to each of redundant mobile checking agents,

registered in the agent table.

9.4 Mobile Consistency Checking Agent

94.1 Startup

Upon instantiation, the mobile agent receives a consistency rule identifier and the name of a
changed document from the resource interface agent.

In order to find out locations and names of documents, which it needs to process before link
generation can be executed, the checking agent requests itinerary from the domain agent, by sending

message "getRuleApplicability", with a parameter — consistency rule identifier.

9.4.2 Handled Messages

9.4.2.1 Itinerary - list of documents with locations for consistency check

The message contains a parameter — array of document names (with URLs). In a multiple-domain
configuration, the returned itinerary contains documents from the current host, current domain and other
domains (inter-domain location discovery).

The checker agent processes all documents from the itinerary, which are available on the local host.
Processing includes execution of XPath expressions from the consistency rule, being checked, on each
of the documents from the itinerary. The result — node sets, are saved into a vector together with the
corresponding XPath expressions. Values of elements from these node sets are ultimately used to
establish consistency or inconsistency status of the consistency rule.

In order to continue processing of documents, which are located on other network hosts, the mobile
agent must be transferred to the next host, specified in the itinerary. At design stage of the architecture,
it was decided that agents will migrate between hosts, i.e. will transfer their code and data from one host
to the other. The implementation prototype uses a "clone and migrate" approach, which allows
propagation of the consistency links after their generation across all the hosts in the mobile agent's
itinerary.

Before migration, the mobile checking agent creates a clone of itself, and passes on the collected
nodesets and the itinerary to the agent clone. The "parent" agent remains at the current location, and is
awaiting the consistency links in a form of a message "Links" from the agent clone. Whenever the clone
completes the itinerary and has computed links, one agent migration operation is "saved" for each host
in the itinerary since messaging is used instead.
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Clone and migrate pattern is deployed at each host, specified in the itinerary. In the Thesis, we often
refer to the set of agents and their clones, which are checking the same consistency rules across a
number of hosts as an agent "family". Note, that the domain agent has a proxy to the father of the
family; at each level in the family the father has a proxy of the son, and the son has a proxy of the father.
Message "Links", and other control messages, such as "dispose", are passed within the family from
father agents to clones, and the whole set of agents is always "connected" to each other.

The IBM Aglet mobile agent framework, which we use for the implementation, allows the
implementation prototype to extensively benefit from the use of the "clone and migrate" pattern. During
installation of the prototype, agent code is distributed to all participating nodes. Thus, during migration
between such hosts, mobile Aglet agents only transfer the state of the code and any data that the agent
has acquired; the code base already exists at all hosts.

To conclude, throughout the design of the architecture and development of the working prototype,
our approach to agent mobility has evolved. Initially, we relied on "strong" mobile agents, where all
code was going to be transferred together with the data. The "clone and migrate" approach proved to be
more efficient for our application domain, where propagation of links across all previously visited hosts
is a necessity. Furthermore, it has become possible to use state of code migration, which further

enhanced the performance.
9.4.2.2  Clone - clone oneself and migrate the clone to the next host

Message "clone" is sent by the mobile checking agent to itself in order to initiate the cloning
procedure. The procedure consists of a sequence of calls to the methods of the agent class, which are

associated with cloning [Chapter 4, 4.7.5].
94.23  SetClone and SetParent

Each message contains a parameter — proxy of the clone agent or the parent agent. The messages are
used to set the proxy of the clone in a parent agent, and the proxy of the parent in the clone [Chapter 4,
Example in 4.7.5]. These proxies are used to keep all members of the agent family "in touch" by

exchanging messages between one another.
94.24  Links — propagation of consistency links across distributed hosts

The message contains a parameter — internal representation of the XML document, in which
consistent and inconsistent links are registered.

This message can be received from the clone to the parent mobile checking agent. In this case, the
message establishes, that the clone has completed execution of the itinerary, and has terminated after the
message had been sent. The parent agent under consideration saves (serialises) the links into a local file
on the current host. Then, the message is forwarded to the parent of the current agent, if one exists, then
the mobile agent terminates [Chapter 8, 8.7.3, Fig. 8.14].
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The "Links" message can also be received from the domain agent in a case, when "redundant"
consistency checks were detected [Chapter 8, 8.8.5.5]. In this case, the mobile agent serialises the links
into the local file, and forwards the message to any clones and to the parent, if one exists.

The message can be received by the clone from the parent agent. This case also corresponds to
resolution of "redundant” consistency checks. The domain agent stored a proxy to the parent of the
agent family and, therefore, forwarded the "Links" message to that parent. Since then, the message is
propagating through agent family, down the hierarchy from parent to each clone. Similarly to the
previous cases, consistency links have to be serialised into a local file, and the message needs to be
forwarded to any existing clones of the current agent.

A mechanism is in place within the implementation prototype of the software agent architecture,
where policies can restrict the ability a mobile agent to save consistency links at the current domain. The

Security section below considers the issue in more detail.
9.4.2.5 Dispose

Upon termination, the mobile checking agent must un-register from the agents table at the domain
agent. Thus, if this instance of an agent has registered with the domain agent (this happens either for the
root parent agent of the agent family or for a clone, which has migrated into a different domain), then

the agent sends "deleteChecker" message to the domain agent.
9.4.3 Cloning Procedure

Cloning is an event in lifespan of the Aglets mobile agent, which triggers a sequence of calls to
methods of the agent class [Chapter 4, 4.7.5]. OnCloning is executed by the parent before cloning
begins, OnClone is executed by the clone after creation, and OnCloned — by the parent after creation.
The sequence of calls to these pre-defined methods is defined by the Aglets mobile agent framework;
these calls can be considered events, because similar to messages-events, they are processed by methods

of the mobile agent's class.
94.3.1 OnCloned
The parent agent establishes a link to the clone: proxy of the clone is saved in the agent.

9.4.3.2 OnClone

The clone establishes a link to the parent agent: proxy of the parent is saved in the clone agent.
The clone selects the next document from the itinerary, and migrates to the host, where the

document is located.

164



9.4.4 Migration

94.4.1 OnArrival

Upon arrival to a host of a destination domain, different from the original domain, the mobile agent
identifies the address of a domain agent. Domain discovery process is followed: the agent reads the
configuration file of the local resource interface agent, and determines URL addresses of the primary
domain agent and of any backup domain agents.

Having acquired the address of the domain agent, the mobile agent sends it the message
"newChecker" with a parameter — an identifier of the consistency rule being checked. This is used to
establish whether another agent is already checking the same consistency rule - "redundant" consistency
checking within the domain.

The checking agent then processes all local documents at the current host, which are specified in its
itinerary. If at this point of time, all documents from the itinerary have been process, the mobile
checking agent executes generation of consistency links between the distributed documents in the
itinerary. Technically, generation is carried out between the collected nodesets, which are identifiable by
the name of each relevant distributed document instance, and the XPath path, leading to the node or a set
of nodes. At the end of link generation, the mobile checking agent sends to itself the message "Links",
with a parameter, containing the resulting internal representation of consistency links.

If the agent's itinerary still contains one or more documents after the ones processed at this host, the
mobile agent then once again clones itself and its clone migrates to the next host in the itinerary [Section
9.4.3].

9.4.5 Redundant Consistency Checks

Redundant consistency checks may occur in any domain of a particular configuration of the
architecture. When redundancy is identified, one or more mobile checking agent families are involved in
checking of the same consistency rule across a number of documents in the domain. An example of the

redundant check and resolution is given in [Chapter 8, 8.8.5].
9.4.5.1 Redundant - resolution of redundant checks

This message, sent by the domain agent, identifies the current mobile checking agent as redundant.
The agent pauses its execution, and awaits further messages from the domain.

One of two kinds of messages can be received after "redundant” message. The first kind, "itinerary",
contains the new itinerary to be executed in a normal fashion. This itinerary is an intersection of partially
completed itineraries from all redundant consistency agents. The second parameter is the concatenated
nodeset, containing the nodeset, collected by all redundant agents. Both parameters replace the

respective itinerary and collected nodeset data structures.
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The second kind of message is "Links". The message confirms, that execution of the consistency
check has been completed by another agent, and the produced links now need to be forwarded to all
agents within the agent family of the current mobile agent. Processing of this message is carried out in

the normal fashion.

9.5 Gateway Domain Agent

9.5.1 Startup

Upon initialisation, the gateway agent loads mobile agent migration policies, which establish inter-
domain migration patterns of consistency checking agents.

The domain agent also performs discovery of all domain agents, to which it is connected. Discovery
is carried out in the same fashion, as mobile checking agents after migration into the new domain

[Section 9.4.4.1].

9.5.2 Handled Messages

9.5.2.1  GetRuleApplicability — initiation of the inter-domain location discovery

This message is received from the domain agent of the domain, where a new consistency check has
just started. The domain agent forwards this message to all connected domain agents, except the one

where the message has originated.
9.5.2.2  Itinerary — distributed itineraries

As a reply to the GetRuleApplicability message, domain agents reply with partial itineraries, which
contain documents within their domains. The gateway domain agent concatenates all such itineraries,
and sends the result with the "itinerary" to the domain agent, which requested the distributed itinerary.
All itineraries are marked with the consistency rule identifier, thus confusion does not occur when

multiple consistency rules are processed in the inter-domain document location discovery.

9.6 User Interface Agent

User interface agent is the front interface of the system to the user. There are a number of policies,
which distinguish users of different kinds: administrator, power user, user and guest. The User Interface
Agent is in charge of exposing the functionality of the software agent architecture adequately to the role

of each particular user.
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9.6.1 Startup

Upon startup, user login panel is provided. Users, successfully logged in, are assigned the role of
the administrator, power user, user, or guest, depending on the security profile of the user.

The user interface consists of the control panel, which allows users to query the status of individual
agents, running on this host, and engage in dialog with the agents by sending messages to the agents.
Depending on the rights of the user, one or more of these functions become "greyed out" (disabled). For
instance, a "create" control, which invokes the function of the Aglets framework and instantiates an

agent class, is only available to administrators.

9.6.2 Handled Messages

9.6.2.1 Links

The user interface agent opens the browser window, and displays consistency links to the user. An

appropriate stylesheet can be applied to the XML document, which contains the links, if required.

9.7 Security

The software agent architecture for distributed consistency management aims to support security
features at the user level, at the mobile agent level and at the message level. Flexibility, functionality and
ability to carry out distributed consistency checks were primary concerns during development of the
software agent architecture; therefore, initial security support is in place at this time. During the
discussion, we outline some directions for extension of security features in the future work on the
architecture.

At the user level, the user interface agent is capable of maintaining user profiles and allowing users
to log into the system. Resource interface agent is in place to enforce user security policies with respect
restrictions on modification of documents, which participate in consistency checks, restrictions on
changes to consistency rules, and to the document universe.

At the level of execution of mobile agents within the domain, the domain agent follows trust
policies between domains. These policies establish whether mobile agents can save generated links in
this domain. Resource interface agents enforce these policies.

At the level of migration of mobile agents between domains, the gateway domain agent maintains
migration policies, which control inter-domain mobile agent migration.

At the level of exchange of messages — events between agents of different types, or between
different instances of the same type, verification procedures are in place that discard unwanted and
unexpected messages.

Below, we consider the implementation prototype of the software agent architecture, and describe

each of the levels of security in more detail. We discuss security-related messages, through which all
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components of the architecture communicate and enforce security constraints on the users and mobile

checking agents.
9.7.1 User-level Security

Different types of users can be specified in the security settings file ".java.policy", which sets
configuration parameters for the Java virtual machine (Java JDK or JRE versions 1.2 or later).
Administrators, power users, users and guests can log in to the user interface agent, in order to be able to
change documents, monitor consistency checks, view consistency links, and perform other actions,
allowed by the security settings of the relevant type of user. In the prototype, user authentication is
carried out with respect to Java security permissions, specified in the policy file.

The resource interface agent maintains holds the file handles to all files, participating in the system.
These include all documents, participating in the document universe, the document universe file itself,
consistency rule documents, and consistency link files. When the prototype is running, all system files
and user documents are monitored for change by a "watchdog" thread of the resource interface agent,

and by default the thread "locks" all such files and prohibits modifications.
9.71.1  Messages "Login" and "Release"

User authentication gives users permission for modification of system files. After a user has logged
in, the user interface agent sets the security policy for this user, and sends a message "login" to the
resource interface agent with the parameter — user login name. For each of participating files, Java
security class java.security.AccessController is used by resource interface agent to decide whether an
access to a system resource is to be allowed or denied, based on the security policy currently in effect.

If access is allowed, message "release" is sent to the thread, which is monitoring the file for change.
This causes the thread to release file handle in the intervals between checks for document update. The
thread also starts a decrementing "timeout" counter; if the user doesn't access the file during this
timeout, file lock is automatically replaced.

When the file lock is lifted, the user can save all modifications to the file. The modifications are
then identified by the watchdog thread, and consistency checks or system reconfiguration actions

proceed in a normal fashion, as defined by the architecture.
9.7.1.2  Messages "Logout" and "Lock"

When the user logs out from the user interface agent, the message "logout" is sent to the resource
interface agent. The latter sends the message "lock" to the watchdog thread, and all file locks are

replaced. The system is awaiting login of the next user.
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9.7.1.3 Comments

The proposed file locking mechanism is designed to be deployed in a single user per host scenario.
Such scenarios are intended uses of the software agent architecture for consistency management, where
individual users are modifying local files at their workstations and are interested to establish the status of
consistency relations between such distributed collections of files. The locking mechanism in this way
corresponds to the target use scenarios.

For the case of multiple users modifying documents on the same host (i.e., in case of users logged in
via telnet or remote login), more sophisticated file locking can be built, where sophisticated
reconciliation of concurrent modifications to a document by several users can be carried out.
Deployment of distributed authoring protocols like WebDAV [Goland, et al. 1999] can be
recommended for such setting.

From the standpoint of the software agent architecture, multiple user on a single host access can be
provided: the resource interface agent is the component, responsible for monitoring of all participating
documents and system files and establishing access permissions to them. In the implementation of the
architecture, a simple and lightweight locking mechanism is being demonstrated, which is based on
standard Java security mechanisms. Extension of this mechanism to include multiple user modification

access on the same host is a part of the future work.
9.7.2 Execution-level Security of Mobile Agents

Execution-level security policies are used in the prototype to establish whether a mobile checking
agent from one domain is allowed to save the generated consistency links on a host in another domain.
In multi-domain configurations of the architecture, similar to the example in Scenario III [Chapter 8,
8.8.1], migration of consistency checking agents between domains will occur. Thus, security policies are
in place and are enforced by the resource interface agents, which define mobile agents' rights on saving
of consistency links and display of these links to the user currently logged in at the host.

When a mobile checking agent migrates into the domain, the domain agent registers the agent
identifier in the "agents' table". At the same time, security policies are checked; it is established if this
agent is allowed to save links in this domain and display these links to users. These permissions are also
saved in the "agents' table".

When the mobile checking agent has generated consistency links and sends the message "Links" to
the resource interface agent, the latter queries the domain agent for security permissions of this agent —
message "getAgentPermissions". After a reply, message "agentPermissions", has been returned, if
permissions allow, the links are saved locally at this host.

User interface agent acts in a similar way to the resource interface agent: upon receipt of message
"Links", it requests permissions from the domain agent and displays the links in the browser if

permissions allow.
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In order to make the explanation of security policies and multi-agent interaction more transparent,
the execution-level security issue is described in this paragraph, rather than in the sections, related to the
user interface agent, resource interface agent, domain agent and mobile checking agent. The messages-
events "getAgentPermissions" and "agentPermissions" are sent and received in the same way, as other
messages relevant to operation of these architectural components. Processing of these messages is

described in this section.
9.7.3 Migration-level Security of Mobile Agents

Migration-level security is enforced via migration policies, which are set at the gateway domain
level. These policies specify all allowed paths for migration of mobile agents into and from the current
domain.

The explanatory example of inter-domain migration policies, provided in Scenario III [Chapter 8,
8.8.2], demonstrated the role of gateway domain agents in managing the traffic of migrating agents
between domains. In order to simplify understanding of the concept, the gateway agent was
demonstrated as performing the role of a router on the migration path between two individual network
hosts in different domains.

The software agent architecture for distributed consistency checking deploys the gateway domains
as routers, which are envisaged not only to control migration, but also to be able to perform conversion
of the mobile agent's code and data in order for that agent to run on heterogeneous hardware and
operating system platforms in different domains [Chapter 6. 6.5.3].

The implementation prototype is built on the agent transfer protocol (ATP) of the Aglet framework,
which relies on serialisation of java code and agent's data, and on socket-based connection for migration
of agents between the two hosts. The protocol does not provide a transparent way to configure
programmable routers on the path of the connection.

In order to support migration-level security in the implementation prototype, the domain agent
component assumes enforcement of the migration policies for all agents, migrating into the domain.
Immediately after migration, when the migrated mobile agent registers with the domain agent, the latter
requests the migration security policy for the domain of the incoming mobile agent. The domain agent
sends the message "getAgentPermissions” to the gateway domain agent, with a parameter — originating
domain of the mobile agent. A reply from the gateway domain — message "agentPermissions" specifies
whether migration of this agent is allowed by the migration policy or not.

If migration from a particular domain is not allowed, a "dispose" message is then sent to the
migrating mobile agent, and that instance of the agent terminates its execution within the current
domain. Any remaining documents in the agent's itinerary are then processed by other agent clones in

the family, originating from the "unwanted" domain.

170



9.7.4 Message-level Security

Message level security relates to identification of unwanted (possibly malicious) and unexpected
messages, which are exchanged by instances of components of different kinds.

Unwanted messages are erroneous messages-events, which trigger execution of an unnecessary in
current conditions or an unwillingly malicious action by the receiving component. For instance,
continuous stream of "update" messages from the user interface agent triggers continuous checking of
all consistency rules, the action requiring a lot of resources at all participating hosts. This stream may be
a result of a failure of the component (user interface agent) or malicious user action, which triggers
generation of these messages.

Unexpected messages are messages-events, which are easier to detect than unwanted messages.
Unexpected messages are legitimate messages - part of interaction protocols, which repeat, arrive out of
sequence, or are lost and need to be re-requested.

The components, which exchange messages, can be trusted (i.e., legitimately instantiated, registered
components within the domain) or untrusted (i.e., mobile checking agents of a different domain, which

engage in direct message exchange with components of current domain).
9.74.1  Message authentication

For each message in the Aglets mobile agent framework, in addition to the type of the message and
its parameters, the address of the originating agent and the type of that agent can be determined.

Stationary agents (user interface agents, resource interface agents, and the domain agent) of the
current domain are considered "trusted" agents within that domain. Trust relationships need to be
established between the gateway domain agent and all domain agents, connected to the former. By
default, agents of "foreign" domains are not trusted agents; however, relationships of trust can be
established on the individual (agent-to-agent) and group (domain-to-domain) level.

"Trust" is the notion, supported by the Aglets mobile agent framework, and the prototype builds on
this support. With respect to message authentication, a message is successfully authenticated if it
originates from a trusted agent. In such a way, messages like "updateRelevant”" (discussed in sections
9.2.2.2, and 9.2.2.5) require some form of authentication; they need to be checked they've been sent by a
trustworthy resource interface agent.

However, authenticated messages are still subject to security issues, because they are not always

"expected".
9.74.2  Unexpected messages from trusted agents

The implementation prototype of the software agent architecture for consistency checking builds
communication between all components on the principle of messaging, message-event queues and

processing of these messages in the order of their arrival. However, processing of messages of particular
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kinds, discussed throughout this Chapter, in most cases triggers a well-defined sequence of message
exchanges between the components. These message sequences relate to sequence of actions, performed
by each component, which is prescribed within the software agent architecture by state transition
component models [Chapter 7].

Therefore, the first class of security threats at the message level, out-of-sequence messages from
trusted components, is handled at the level of components of the architecture. Out-of-sequence
messages in the prototype implementation of the architecture are "caught" in exception handlers, of

which records in the logs are made for monitoring purposes.
9.74.3  Messages from un-trusted agents

For another class of message level security threats, messages from un-trusted agents, an initial
solution exists at the implementation level. The simplest approach is in place: non-authenticated
messages from un-trusted agents are not processed by any components of the prototype.

However, this approach, effective from the security viewpoint, somewhat lacks efficiency from the
viewpoint of future extension of architecture functionality. Any communication with a component
within the domain from outside of the set of "trusted" external domains requires migration of the
communicating agent into this domain. If migration policies do not allow such migration,
communication becomes impossible. At the same time, it may, for example, be useful for a developer to
be able to query the domain agent for a status of consistency checks within that domain, once the

developer is located at a different domain (i.e., at a conference).
9.744  Unwanted messages from trusted agents

Third level — identification of unwanted messages from trusted agents, is a largely unsolved issue.
While a number of checks can be hard-coded in the implementation prototype for most common patterns
of unwanted messages, the solution of the problem is clearly in introduction of additional, higher-level
authentication mechanisms between components or additional architectural components in charge of

coordination. In the future work, we aim to consider possible architectural approaches to this issue.

9.8 Summary

In this chapter, we have elaborated on the types of events, which architectural components create
and process. In this description of the implementation prototype, we have intentionally chosen a detailed
degree of elaboration of individual events, in order to be precise in describing the functionality that has
been achieved so far in the implementation of the software agent architecture.

This chapter concludes a set of chapters, describing the software agent architecture that we have
introduced in this thesis. Based on the functional requirements demanded of a distributed consistency
checking architecture, the architecture components were introduced in Chapter 6, and their internal

structure was represented as a state transition model in Chapter 7. In Chapter 8, we have demonstrated in
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detail the operation of an implementation prototype on a number of local and distributed consistency
checking scenarios of increasing complexity. Our discussion in this chapter contributes to clarity and
completeness of prototype description and takes the preceding chapters as a prerequisite.

This chapter demonstrates that the software agent architecture is extensively event-oriented, which
enables a substantial degree of extensibility and flexibility. Inter-component communication via
asynchronous event notification lessens coupling of components, and allows us to expand, contract and
cluster the distributed system at runtime. Disconnected operation of domains is an important example of
such flexibility, which is made possible by the asynchronous nature of the adopted event model.
Composition of the architecture from loosely coupled components also allows us to extend the
architecture by adding components of new types with additional functionality, replace existing
components with their updated versions, and exclude unnecessary component types (i.e., exclude the
user interface agent for automated operation in the background).

The following Chapter 10 presents a quantitative, performance evaluation of the prototype and a

qualitative evaluation of some of the characteristics of the architecture.
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Chapter 10 Evaluation

The operation of the implementation prototype of the software agent architecture for distributed
consistency checking has been demonstrated on a number of scenarios in Chapter 8. The prototype and
the incremental consistency checking method were tested in a single-host local configuration, multiple
host configuration within a single domain, and multiple host setup with multiple domains.

The purpose of this chapter is to highlight and summarise the strengths and weaknesses of the
proposed software agent architecture. Firstly, we will assess whether the architecture meets the
functional requirements, specified in Chapter 4. In doing so, we will refer to the evaluation scenarios
from Chapter 8, and map the particular features of the architecture, demonstrated on these scenarios, to
the functional requirements that we demanded.

Secondly, we discuss, from a user's point of view, the performance level that the current
implementation of the architecture prototype has achieved. In this section, we compare performance
results of exhaustive consistency checks with incremental checks and comment on different positioning
of both types of checks within the development life cycle of the project. We compare user experience in
side-by-side evaluation of the centralised checking tool and the implementation of the distributed

software agent architecture for consistency checking.

10.1 Qualitative features

10.1.1 Elegance

Elegance of the proposed software agent architecture for consistency checking can be established by
the degree of intuitiveness, understanding and transparency of the process for users, that deployment of
this architecture establishes. In related work, software and mobile agent solutions for the complex task
of distributed consistency checking that the architecture aims to address, tend to involve a multitude of
different types of mobile and stationary software agents, operating at different hosts and meeting places
[Prestegard, et al. 1999].

In the proposed architecture, an explicit effort has been made to make the architecture simpler and
more transparent to use for the end user throughout the project life cycle. At all architecture
development stages from functional requirements (Chapter 4), through analysis and initial design
(Chapter 6 and Chapter 7), in development of the implementation prototype (Chapter 9) and evaluation
on scenarios (Chapter 8), each of the four architectural components was targeted at particular
requirements, which it implements or satisfies (Chapter 6, 6.5).

Instead of inventing new component names, all architectural components are described in a simple

fashion, where names correspond to the role, performed by each component in the system.
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Decomposition of the consistency checking task into a number of clearly identifiable roles, performed
by components, aids in understanding of the architecture.

The architecture does not define a unique namespace, as most component names have been
previously used in software agent systems. At the same time, our use of common namespace does not
diminish our contribution in construction and evaluation of the software agent architecture for
distributed consistency checking. The architecture can hardly be judged as trivial: functionality that the
components provide in response to the events, that the architecture processes, and complex interactions
between multiple instances of different types of components across numerous hosts provide solutions for
complex scenarios (Chapter 8).

Locality of consistency checks, which is an important principle that the architecture builds on,
facilitates intuitiveness and transparency of the architecture for its users. Reactive incremental checks
originate locally at the host where modifications are made to the documents, and pro-active diagnostics
of inconsistencies is provided via the generated links. The software agent architecture prototype
provides automatic execution of consistency checks in the background, which enables users to
concentrate on the nature of documents and consistency relations, rather than on the mechanism for

invocation and control of distributed consistency checks.
10.1.2 Manageability

One of the difficulties in carrying out distributed consistency checks is the question of how to make
consistency rules available and update them at locations, where these rules are required. Another
challenge that the architecture tackles is compilation of a list of distributed documents, related to a
particular consistency rule, without having a single centralised repository for document relevance and
location information.

Solutions to both of these problems impact manageability of the architecture. For the latter problem,
an automatically updated database of relevant documents and consistency rules is maintained at each
domain agent in the domain hierarchy. The approach is focused on efficiency of updates to relevance
information, since documents are expected to be often modified and their relevance to consistency rules
will change. The trade off for this solution is centralisation of information within each domain and a
possibility of bottleneck occurring at domain agent, since the information is always being requested and
updated there. Availability of multiple-domain configurations is a step towards de-centralisation of
relevance information.

Consistency rules are expected to be modified far less frequently than the documents, as the
consistency relations that the rules express correspond to an established convention or a standard. The
set of consistency rules is thus distributed to all participated hosts. In addition, since multiple rules are
accessed for each incremental check, it is an advantage to make them available locally. In this approach,
the trade off is the difficulty in updating consistency rules at all distributed locations in an atomic

fashion.
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The solutions for the problem of rule distribution and the problem of centralisation of document and
rule relevance information have been proposed in the software agent architecture, and have been found
satisfactory in a number of consistency checking scenarios [Chapter 8]. At the same time, we do not
consider these solutions final, and investigation of efficient distribution mechanism must be continued.

Tool support for creation and management of consistency rules is another issue for the future
development of the architecture and its implementation. It is envisaged, that the rule editor, analogous to
the one created for the previous version of the rule language [Zisman, et al. 2000], can also be used to

trigger updates of instances of the changed rule across all hosts.
10.1.3 Rule Applicability Policies

Deployment of system policies to specify applicability of consistency rules may be useful in a case,
where checking of additional consistency rules, which are not detected as relevant by the incremental
checking algorithm, is required for a particular document change. Some examples are execution of a
sequence of consistency rules and a dependency of execution of one rule on the result of an execution of
another one.

Use of policies may also be needed if a particular change does not trigger execution of a certain
consistency rule in the general incremental checking algorithm of rule selection, but execution of this
rule is required by an external factor (i.e., a demand of the customer). An example of such policy is
execution of consistency rules at regular intervals of time (i.e., daily at the end of the working day).

The resource interface agent and the domain agent [Chapter 6] provide support for execution of rule
applicability policies. The implementation prototype provides the basic implementation of rule
application policies, which is inherent in the incrementality of consistency checks. As such, a
consistency rule is checked every time it is found relevant to a document change. Future work will
include further support for specification of more complex policies and investigation of how conflicts

between policies can be managed.
10.1.4 Flexibility and Dynamic Reconfiguration

Dynamic reconfiguration occurs automatically for addition and removal of documents and
consistency rules. Resource interface agents monitor changes in configuration files, which describe the
rule set and the document set at each host, and are able to react to changes in those files. During
reconfiguration, the information on relevance of consistency rules to documents, which is stored by the
domain agent, is updated for all new documents by resource interface agents.

The architecture also offers flexibility in removal and addition of hosts and domains at runtime,
without termination of ongoing distributed consistency checks. Upon creation of a new domain, default
mobile agent routing policies are assigned to the new domain at the gateway domain agent level, and

thus the new domain becomes available to incoming distributed consistency checks.
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Dynamic reconfiguration feature can be made more efficient for a particular reconfiguration
scenario, where documents are moved between different hosts. Current prototype sequences the removal
action of the document and creation of a new document at a different location. Rule relevance
information in this case is re-generated, whereas it could be reused instead. Future work will investigate

how the existing approach can be optimised.

10.1.5 Grouping of Resources Into Domains and Support of Domain

Hierarchies

The domain is a unit of the architecture, which has the following characteristics:

* It is a unit of organisation for a set of resources;

* Security boundary;

* Agent migration and cloning boundary;

* Document namespace and rule relevance boundary;

¢ Administration boundary;

* Policy boundary.

Domains are collections of hosts, participating in distributed consistency checks, which are served
by a domain agent. The documents, located at these hosts, are "grouped" in the domain. These
documents are normally related to the same sub-set of the global project, of which the domain forms a
part.

Domain serves as a document namespace and rule relevance boundary: all information about the
documents in a domain and relevance of consistency rules to these documents is contained and
maintained by the domain agent within that domain. All relevant queries are processed inside the
domain, and only a small part of the domain information is replicated by the gateway domain. In this
way, in-domain consistency checks are processed in the most efficient way.

Capacity for disconnected operation, discussed below, builds on these two characteristics of a
domain: being a unit of organisation for a set of resources and serving as the document namespace and
rule relevance boundary.

The security boundary is maintained by use of user profiles and application of inter-domain agent
migration policies, which restrict access to in-domain resources for users and incoming mobile agents,
respectively. Across-domain security policies implement user authentication procedures. The domain is
also an initial point of contact and mandatory registration for all migrating mobile agents.

Related to the security boundary, the domain administration boundary keeps the policies, agents of
the domain and their configuration under the control of domain administrators.

The rule applicability policies have an effect within the current domain and by default do not apply
to other domains. The domains are created for purpose of differentiation of consistency rule application

policies and grouping of resources. In addition, creation of the domain hierarchy usually reflects:
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* Organizational structure (i.e., project and sub-project domains within the development
organisation [Scenarios 1-3, Chapter 8]);

* Delegation of authority (i.e., user rights: to change particular documents, and run particular sets

of consistency checks on them)

e Capacity (i.e., to reflect difference between development of user documentation and

mainstream design and development of the software itself).

* Clustering (i.e., bringing together developers working on different parts of the project to

facilitate cooperation in development).

* Administration (i.e., to distributed administrative roles across a number of persons).

Scalability of the architecture is enhanced, when a number of domains in a hierarchy are used. In
comparison to a single-domain configuration, in a multiple-domain configuration the amount of
information about in-domain objects, stored and processed at each domain, is reduced. Queries for
location of documents, relevant to a particular consistency rule, are distributed across multiple domain
agents. If an administrator finds that the domain agent is operating at maximum load, re-destribution of
some of in-domain resources to other domains will improve operating efficiency.

Availability of consistency rules and their applicability can be controlled at each individual domain.
An ability to control the span of consistency rules by producing different rule sets for different domains
and to set up rule applicability policies for each domain gives system administrators additional

flexibility.
10.1.6 Disconnected Operation

All domains support disconnected operation mode, which allows in-domain consistency checks to
complete, even if connection to any outside domains is not available. This feature is useful for
developers working from home and connecting to the organisation's networks via a modem, or for
geographically distributed teams of developers, when faults may temporarily put the connections out of
order.

The prototype implementation of the software agent architecture takes a simple approach to
disconnected operation. In the "disconnected" mode, any consistency checks, which may involve
relevant documents from other domains, complete within the limits of the domain. Any consistency
checks, started after connection is re-established, will span across the whole document universe. In the
area of disconnected operation, future work on the architecture will be focused on reusing results of
completed in-domain checks and completing these checks across external domains after connection
becomes available again. It is envisaged that persistency feature of the mobile consistency checking
agents can be effectively used to achieve such "delayed" execution of inter-domain checks while in the

disconnected mode.

178



10.1.7 Support for Transactions

Incremental checking approach, coupled with event-orientation of the software agent architecture,
enabled us to provide elementary support for transactions in the distributed consistency management
system. With incremental checking, it becomes possible to relate individual change or a set of changes
on a document to the current state of all related documents by means of generated consistency links. In
the context of consistency checking, a transaction relates a document modification with the generated
linkset. Each transaction starts when a modification is introduced, and finishes when consistency links
are saved locally on the host where modified document is located.

A number of such transaction records are created throughout the life cycle of each document. A
mechanism is already in place in the architecture prototype, which allows a user to browse the history of
transactions within a particular domain. Document changes for each transaction are accessible via a
resource interface agent, which keeps history of document versions, consistency links are stored at the
document's location, and event history, maintained by domain agent at each domain, keeps track of
starting and ending time for each transaction.

The collected information allows a user not only to store transactional information, but also to
construct a tool, which will enable a user to browse through the state of generated consistency links and
roll-back one or more transactions in order to return to the desired state of the system. This is a novel
feature - one of contributions, which the software agent architecture makes to the continuous
development and evolution of consistency checking apparatus.

At this time, the software agent architecture for distributed consistency checking provides only
initial level of support for transactions. A number of problems need further investigation, including
detection of relevance and dependency between different transactions. It is important, for instance, to
have an ability to transparently update the state of one transaction in the history, taking into account the
changes that occurred to related documents since that transaction had taken place. At the same time,
transaction-awareness of the proposed architecture is positively a useful addition to the core

architectural features, demanded in the functional requirements.
10.1.8 Balance of Requirements

A balance of functional requirements is met in the proposed architecture. For this evaluation, we
revisit the targets — functional requirements, that each of the architectural components was aimed at
(Chapter 6).

Functional requirements on location of consistency rules and applicability policies (Chapter 3, 3.3),
requirement for document monitoring (3.4) and for timing of consistency checks (3.5) are satisfied by
the resource interface agent. Use of an interface component not solely for access to the underlying
resource, but for identification of changes and facilitation of communication between mobile checking

components and resources is a novel contribution of the software agent architecture.
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The architecture uses a mobile component for collecting data from participating documents across
numerous sites (requirement 3.8). This component is called "mobile checking agent", for the autonomy
and inter-cooperation with other static components.

The novelty of the proposed distributed checking approach is in ability of the components to engage
in communication and co-operative activities. In identification and resolution of redundant consistency
checks, mobile checker agents engage in exchange of information previously collected from distributed
locations. A scheme for replication based on cloning and migration has been proposed; such scheme is a
novel contribution to the software agent domain. The scheme is particularly useful for applications,
where information, collected from distributed locations, is analysed and certain actions at these locations
must be carried out depending on a result of the analysis.

Deployment of mobile components for execution of distributed consistency checks is novel in itself.
Joint exploitation of mobility and locality of consistency checks is a novel contribution of this thesis to
the software engineering domain.

In comparison with the software agent architecture, the predecessor framework for centralised
consistency checking [Nentwich, et al. 2000b] cannot satisfy functional requirements for distributed
document monitoring (Chapter 3, 3.4) and processing locality (3.8), without use of additional
components - distributed watchdogs and link generators. Requirement for timing of consistency checks
(3.5) can be only partially met by a centralised checker, which must be launched by the user, who
thereby personally chooses the timing of checks. In the proposed architecture, automation of this process
is readily provided.

The functional requirements (Chapter 3) express the principles, on which the proposed software
architecture is constructed. While these requirements cannot be met by a centralised architecture for
consistency checking, the proposed distributed software agent architecture satisfies them and, in
addition, provides a number of useful features which facilitate distributed cooperative work. The most
important of such qualitative features have been discussed in this qualitative evaluation section.
Prototype evaluation scenarios (Chapter 8, Scenarios I-III) demonstrate these features in operation.
Comparison of performance characteristics of the basic centralised checking architecture and the

distributed one is carried out in the following section.

10.2 Quantitative Performance Evaluation

This section, performance evaluation of the implementation prototype, consists of three parts. The
first part compares the performance of an incremental check with that of an exhaustive check. Here we
aim to determine a particular configuration, in which usage of one or the other would be more efficient
from the performance viewpoint.

In the second part, we contrast a centralised consistency check, where processing of consistency
rules and generation of links occurs on a single host, with a distributed consistency check, where

participating documents are processed locally at the hosts where they are stored. Here we determine
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document distribution patterns, which can be used to improve efficiency of distributed consistency
checks. The evaluation involves variation in the configuration parameters, such as the number of hosts
in the consistency check, the number of documents (ultimately the number of document elements) at
each host, and the number of software agents, concurrently carrying out distributed consistency checks
of the same consistency rule.

In the final part of the evaluation, we compare centralised exhaustive checking of distributed
documents with incremental distributed checking of the same documents. Our evaluation and the
collected performance data aim to highlight the different ways, in which these different consistency
checking methodologies are intended to be used.

The UML model that we use for performance evaluation of our prototype is the BMS model
[Rational 1998b]. This model serves as a development example for the Rational Rose environment,
and we therefore consider it representative of the typical UML development project. BMS is a relatively
large UML model, containing more than 10700 elements.

In all performance evaluation studies of this chapter, we use the same set of XMI files, which has
been derived from the BMS by the UMLXMI utility [Appendix F, F.5]. The set consists of 362 XMI
files in total, more than 5 megabytes in size altogether. Having a model represented as a set of files
rather than one large file was essential for evaluation of configurations, where the model is distributed
across a number of hosts. The same document set is also used for the first part of performance
evaluation at a single host.

All performance evaluations were conducted on a notebook with the Intel Pentium II processor
operating at 266 MHz, equipped with 128 megabytes of RAM memory. The testing was carried out
under OS Windows 2000, running Java Runtime Environment version 1.3.0-C. Evaluation of distributed
checks was made on a number of machines of a similar configuration, connected via a 100 Mbit
Ethernet LAN.

10.2.1 Exhaustive Consistency Check vs. Incremental Check

Exhaustive consistency check of all 34 UML well-formedness consistency rules [Appendix A] on
the document set that we used took 737 seconds. 63 seconds were spent on parsing of XMI files, and

total of 674 seconds on execution of consistency rules (Fig. 10.1).
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Fig. 10.1. Timings of exhaustive checks of UML well-formedness consistency rules.

It is worth noting, that 5 megabytes of XMI files were represented by over 50 megabytes of DOM
trees in memory during consistency checking. During an exhaustive check, DOM trees of all documents
remain in memory throughout the whole execution of the check. The test machine had enough RAM to
complete the exhaustive check of this model, although a consistency check of a larger model [Rational
1998b] did not complete within the reasonable time limits (30 minutes).

Carrying out an exhaustive check of a relatively large BMS model required all the memory
available to the operating system on the test machine, and in addition almost 100% usage of the CPU for
over 12 minutes. Therefore, the exhaustive consistency check took the complete control of the test
machine for the duration of the check and made it difficult for a user to continue any productive work
during this time.

Analysis of durations of consistency checks for individual rules (last row. Fig. 10.1) and numbers of
generated links (front row) for each of checked consistency rules (Fig.10.1) allows us to conclude, that
the most time during the consistency check of this particular model was spent on execution of
consistency rules, which did not produce any inconsistent links. Out of the total time spent (674 sec),
only 10% (71 sec) was spent on execution of consistency rules, which produced the total of 1204
inconsistent links. The four longest-running consistency rules (14,15,16 and 17 on Fig. 10.1), which
check the well-formedness relations UML classifiers (rule identifiers cs3,cs4,cs5,cs6. Appendix A, A6),
produced 24 consistent, and no inconsistent links. In the consecutive checks after the initial check has
been completed, the consistent links are normally not very useful to the developer, as they do not

identify any problems with the UML model. The further development of the UML model is most likely

182



to be concerned with correction of the identified inconsistencies, rather than with further investigation of
well-formedness of classifiers. Such development will necessarily result in a number of successive
consistency checks, following the incremental changes - corrections. In every following exhaustive
check of the model, unnecessary checking of the consistency rules cs3-cs6, which are always executed
by the exhaustive checker, demands 90% of the total resources, spent on the check, and produces the
result of little value to the developer in the incremental development process. Use of incremental
checking allows a user to avoid execution of the rules, which are not relevant to the incremental

document changes.
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Fig. 10.2. Check times for incremental and exhaustive checks.

Comparison results for execution timings of incremental and exhaustive checks are shown in Fig.
10.2. For each consistency rule, the incremental check produced the same consistent and inconsistent
links as the exhaustive check. The timings of incremental checks exceed the execution timings of
individual rules in the exhaustive checks by a margin. This margin is used to compute the tree-wise
difference (TreeDiff) between the updated XML document and its backup version, and to use this
difference for selection of relevant consistency rules. In the experiment, the margin was within 0.5 to 3
seconds for checks of different rules, where the longest margin is comparable with the execution time
for some of the individual rules.

A difference between the timing of an incremental check of a certain rule and the execution time of
that rule in an exhaustive check depends on a number of parameters. Efficiency of an incremental check
improves in a configuration with multiple smaller XMI files as compared to the configuration with one
large model. Tree-wise differencing comparisons between documents, used in an incremental check,

bear a polynomial performance degradation with the increase in the length of the files.
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For large models, consisting of a number of files, the incremental check achieves better
performance than the exhaustive counterpart because of more efficient use of memory resources. During
the incremental check, only XML DOM trees of those documents, which are relevant to the rule being
checked reside in the memory; whereas the exhaustive check must keep all DOM trees of all documents
in memory until the check has been completed.

For a user, interested in a way that a particular document change will affect consistency relations of
a document with the rest of document universe, an incremental check will almost always be more useful
than an exhaustive consistency check. However, if a number of modifications need to be processed in
"batch", exhaustive checking may produce results faster, because margins of incremental checks in this
case add up. The balance point between the two is determined by differencing the number and the
execution times of the consistency rules that need to be checked in the batch and the respective
parameters for consistency rules that are not relevant to any changes represented in the batch.

Obviously, when each and every consistency rule needs to be checked, the exhaustive checking is
preferable to the incremental approach. Likewise, in a situation, where consistency rules take
approximately equal time to complete, and almost all consistency rules are relevant to changes in the
batch, exhaustive checking will often be preferable. However, in a situation where one or more
consistency rules in the configuration takes considerably longer than others to execute, use of
incremental checking becomes more appropriate from the performance standpoint.

In our example, any batches of changes, which do not include relevance to one or more of the
longest-running consistency rules (rule identifiers-cs3, cs4, cs5, cs6), will be processed more efficiently
with the incremental checking. When all four of the mentioned rules need to be checked, incremental
checking will still produce results faster, but with a smaller performance margin. This difference in
performance will be further reduced if all four longest-executing rules need to be checked in addition to

one or more of remaining consistency rules.

10.2.2 Distributed Check vs. Centralised Check of Distributed Documents

Distributed consistency checks are those when documents are processed locally at the hosts where
they are stored. In addition to the parsing and rule execution time, discussed in the sub-section above,
the timing of a distributed check includes the time for migration between distributed hosts and a
communication overhead between the architectural components, involved in the distributed check. A
mathematical model, which aims to describe timings of distributed checks for different configurations of
a distributed system, is provided in Appendix E.

Some of the most influential configuration parameters, on which the performance of a distributed
check depends, are the following:

I.  Number of hosts for migration, between which agent migration is required.

II. Number of documents, participating in the check, number of elements in these documents.
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III. Number of distributed agents, concurrently performing consistency checks of the consistency
rule.
In order to determine the trends for better document distribution patterns, we consider impact of all

these parameters on performance of distributed checks carried out by the implementation prototype.
10.2.2.1 Number of hosts of distribution

The testing configuration used the file set, produced by UMLXMI utility from the BMS model.
Tests were carried out in distribution configuration from 1 to 7 hosts, where in the configuration of 1-3
hosts all hosts belonged to the same domain, and in configuration of 4-7 hosts there were two domains
of 3 hosts and 1...4 hosts, respectively. In all cases of distributed checks, our experiment has not
indicated a substantial difference in performance of consistency checks between a configuration, when
all documents participate in a single domain, and a multiple-domain configuration.

Four consistency rules were executed in all configurations, UML well-formedness rules relating to
associations (al and a4), behavioural features (b2) and classes (c1). Each of these four rules is applicable
to the BMS model, and produces a number of consistency links (Fig. 10.1).

Each file in the set of XMI files, distributed to different hosts in the experiment, represents a sub-
tree of an element of the BMS model. Obviously, the most of UML well-formedness consistency rules,
used for evaluation of the software agent architecture in this thesis, relate less then four different UML
model elements. Therefore, rarely would more than four distributed hosts be visited for checking of a
consistency rule. However, in order to evaluate different document distribution patterns, in the
experiment link generation was deferred until all hosts in each configuration (1 to 7 hosts) were visited.

In this section, we benchmark performance of a distributed consistency check, carried out by one
mobile checking agent family. Deployment of multiple collaborating mobile agents, running
concurrently at different hosts, is considered below [Section 10.2.2.3].

Fig. 10.3 demonstrates the durations of consistency checks of different rules for different system
configurations, depending on the number of distribution hosts. The height of each bar of the graph
corresponds to the total time it took to carry out the check when documents were distributed across the

corresponding number of hosts.
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Legend:

# of distribution hosts

b2 - behavioural feature consistency rule [Appendix A, A4]
cl - class consistency rules [Appendix A, A.5]

al, a4 - UML associations well-formedness rules [Appendix A, A.l]

Fig. 10.3a. Check timings of distributed consistency checks by number of hosts.
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Fig. 10.3b. Check timings - plain graph with trend lines.
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Increase in check times (Fig. 10.3) with the growth of a number of hosts is attributed to two primary
factors. Serialisation and de-serialisation of nodesets, which a mobile agent collects from the documents
at each host, results in growth of time spent on migration from the first agent's migration in the
consistency check to the last migration. The need to carry around already collected nodesets at each
migration increases migration durations for the multi-host consistency checks (Fig. 10.3). The second
factor is the size of the agent code and the state of the code that needs to be transmitted between the
hosts. In the implementation prototype, agent migration results in transfer of the state of the code only,
given that agent classes are already installed at the destination, and the mobile agent framework
overhead for migration is approximately 0.6 seconds on the test machine.

A relatively even distribution across the hosts of XMI files of each category (associations,
behavioural features, classes) was used in the experiment. Thus, approximately equal size of nodesets
was selected by mobile checking agents at each host. In sequential checking of hosts, this resulted in
relatively low initial value, and linear increase of the timing increment, related to serialisation of
collected data.

Performance-wise, the most inefficient distribution of documents across numerous hosts would
obviously consist of the majority of files (and therefore, selected nodesets) located at the first host in the
agent's itinerary, and only one file, resulting in a small selected nodeset, at each of the following visited
hosts. In this case, almost all information for consistency check needs to be carried through all hosts in
the itinerary. This pessimistic scenario results in a large timing increment for the first agent migration.
This timing increment will slowly increase and remain large for each subsequent migration of the
checking agent. In the end, distributed check performance results are unacceptably poor (Fig. 10.4,
"al pess").

In the optimistic case of the most efficient distribution of documents, the largest portion of the
collected nodeset is generated from documents, located at the last visited host. A much smaller timing
increment at each migration in this case results in distributed check performance, which is much closer
to that of a centralised consistency check (Fig. 10.4, "al_opt" and "al_cent"). The fastest checking result
is expectedly demonstrated in a centralised check where all documents are accessible locally and no

distribution is involved (Fig. 10.4, "al_cent_cent").
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Fig. 10.4b. Performance comparison: plain graph with trend lines.
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Fig. 10.4 contrasts performance of a distributed check in the experimental, optimistic and
pessimistic configurations (rows 3, 4, 5 on the graph) with performance of a centralised check and
performance of a consistency checking web-service, where centralised processing of documents is
deployed (rows 1 and 2, respectively). The experimental data, shown on the graph for all configurations
of the distributed check, takes a parabolic shape, which corresponds to the findings of a quantitative
model [Appendix E]. While the scale on the graph in Fig. 10.4 does not allow us to see a deviation of the
experimental data from the parabolic theoretical curve, our measured deviation constituted 8-11%.
Deviation between experimental timings for association well-formedness rules al and a4 were within 3-
5%.

From the analysis of checking performance in different document distribution configurations, we
can conclude that certain optimisation of agent itineraries can improve efficiency of distributed multiple-
host sequential checks. Ultimately, such optimisation would require guessing or computing the size of
nodesets, which are to be selected at each host in the itinerary, before execution of the itinerary by a
mobile checking agent actually takes place. In practice, nodeset sizes can be estimated, given that
number of elements in each of the documents from agent itinerary is known to the agent before
migration. In such a case, each itinerary can be sorted, so that hosts with larger size of estimated
collected nodesets are processed last in a sequential check. Such optimisation will bring the total check
times closer to the result of the optimistic scenario.

It should be noted, however, that not for all consistency rules the size of selected nodesets is
proportional to the size of an XML document. The implementation prototype, therefore, does not
perform agent itinerary optimisation in accordance with any "prediction" scheme. Future work needs to
be carried out to establish more reliable criteria for estimation of the size of selected nodesets.

Experimental prototype has demonstrated, that the major part of migration time is spent on
serialization and de-cerialization of nodesets. Therefore, future work on optimisation of distributed
consistency checking with respect to timings of migration between different hosts will concentrate on
nodeset serialisation process. The current prototype deploys standard Java generic serialization
mechanism, which we intend to optimise by implementing nodeset compression for improvement in
performance of the agent migration.

As a follow-up to the experiment, we have compared the nodeset serialization times on
experimental machines (Intel Pentium II 266 MHz processor) with respective times on faster
workstations (Intel Pentium III 850 and 650 MHz processors, equal amount of RAM memory), which at
the time of writing were already considered lower-range PC configurations. We detected a speed gain in
nodeset serialization of a factor of 2: such performance improvement results in slashing the times of

migration between hosts almost by half.
10.2.2.2 Number of document elements to be checked
With the increase of number of elements, participating in a consistency check, check timings grow

in a near-linear fashion (Figs. 10.5, 10.6, 10.7).
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Fig. 10.5. Execution of consistency rule: well-formedness of Namespace.
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Fig. 10.6. Execution of consistency rules: well-formedness of Associations.
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Fig. 10.7. Execution of consistency rules: Classes and Behavioural Features.

The experimental data concerns the performance of the XLinkit exhaustive checker, which was
tested on the individual consistency rules. The data constitutes the minimal durations of time spent on
execution of rule operators and link generation with respect to the number of elements in the checked
documents. The benchmarks do not take into account document parsing time and any distribution
overhead. All the other performance graphs in this quantitative performance evaluation include the
distribution overhead, and its effect is specifically addressed in Section 10.2.2.1, depending on the

number of distribution hosts.

10.2.2.3 Number of mobile checking agents working concurrently

Concurrent checking with multiple mobile agents (discussed in the Scenario IIl in Chapter 8)
divides the complete agent itinerary into sub-itineraries between a number of mobile agents, and each
agent processes documents in the sub-itineraries.

Performance of the most pessimistic scenario of a concurrent collaborative check is the same as in a
single-agent scenario [10.2.2.1], where one mobile agent migrates through most of the hosts in the
itinerary. This agent then takes the longest to complete nodeset collection, and its performance alone
determines the timing of concurrent consistency check.

In the most optimistic scenario of a collaborative multi-agent check, each mobile agent performs
collection of nodesets at one host and sends the collected nodesets to a selected location, where link
generation takes place. The maximum time spent by any agent on selecting nodesets and the time of
transferring a collected nodeset of a maximum size determine the timing of the complete consistency
check in this case.

In the optimistic scenario mobile agents migrate only once and collected nodesets are transmitted
only once. In the pessimistic scenario, nodesets migrate with the agent each time a different host needs
to be visited. Improvement in the timing of an optimistic scenario in comparison to the pessimistic one is

due to the difference in two approaches.
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b2 - behavioural feature consistency rule [Appendix A, A4]
cl - class consistency rules [Appendix A, A.5]

Fig. 10.8. Performance of concurrent multi-agent checks.
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Fig. 10.8b. Performance of concurrent multi-agent checks.
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Fig 10.8 demonstrates the performance gains from deployment of multiple agents, concurrently
collecting nodesets from distributed hosts. The first column shows the timing of a centralised check of
each respective consistency rule; distributed multi-agent check timings gradually decrease as the number
of checking agents grows. The most substantial timing improvements are demonstrated for consistency

rules, which select and transport larger nodesets during the check.

10.2.3 Centralised Exhaustive Consistency Check vs. Distributed

Incremental Check

Fig. 10.9 summarises the experiments above and demonstrates the performance difference of the
best multi-agent distributed check, worst single-agent check and centralised checking of distributed
documents (XLinkit web service). The graph clearly indicates the performance advantage that multi-
agent checking provides. A sequential single-agent check (last row. Fig. 10.9) was not "on par" with any
of the faster alternatives.

In the example we followed, multi-agent distributed check achieves similar performance to that of a
centralised checker of distributed documents. However, this result results from the "best case scenario",
when each consistency rule was executed individually, and all resources of distributed hosts were made
available to the distributed check. In operational conditions, however, concurrent execution of different
rules on the same host is expected, and network bandwidth will then be shared as well between multiple
agent families. Thus, multi-agent performance in a particular configuration may vary from the "best case

scenario".
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Fig. 10.9. Performance of best and worst distributed checking approaches compared with centralised

checking of distributed documents.
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10.3 Summary

In this chapter, we have summarised important qualitative features of the software agent
architecture for distributed consistency checking. Elegance of the architecture stems from clarity of
roles, assigned to architectural components. Although the architecture shares component namespace,
defined in the software agent community, operation of each component and nature of inter-component
interactions are not trivial. In addition to manageability of document updates and distribution of
consistency rules, we have discussed architecture flexibility and support for dynamic recfonfiguration,
and clustering of resources into domains, organised into a domain hierarchy. We also focused on the
disconnected operation capability and initial support for consistency checking transactions that the
architecture makes available to its users - software engineers. We further re-iterated the architecture's
achievement of the demanded requirements, which correspond to the roles of each architectural
component, and pointed out novelty in a number of contributions of the proposed software agent
architecture.

In the quantitative performance evaluation, we contrasted an incremental and exhaustive
consistency checks on a number of selected consistency rules from the application domain of UML
well-formedness checking. The experimental data supports our argument that incremental checks are
most suitable for day-to-day, incremental project development. In the representative UML model
construction example that we have considered, an incremental check of the elements, which have been
detected inconsistent and are thus likely to be extensively modified, measured 10% of the total checking
time spent on the exhaustive check. In a larger model example, an exhaustive check did not complete
within 30 minutes of standalone execution on the test machine, in which case use of incremental
checking was mandatory.

We further contrasted a distributed and a traditional centralised check of distributed documents,
and a performance impact of configuration parameters, such as the number of distribution hosts,
document size and the number of concurrently executed mobile agents. We have supported our
argument on efficiency of concurrent distributed checking by the experimental data, and suggested to
optimise the itineraries of individual agents with respect to size of collected nodesets and to shorten the
itineraries in favour of the increase in the number of concurrently operating agents.

Finally, we contrasted a centralised exhaustive and an incremental distributed check and established
a favourable document distribution pattern, which results in a performance improvement of the
incremental check. The experimental data has proved that performance advantage of the distributed

software architecture over the traditional approach can be achieved in the recommended configuration.
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Chapter 11 Conclusions and Future Work

11.1 Conclusions

This thesis has advocated an approach to carrying out distributed consistency checks, different from
the traditional centralised processing or client-server architectures. We have illustrated the need for a
distributed framework for consistency checking, in which checks occur locally at the hosts, where
documents are located, and the proposed software agent architecture meets the requirements for such
framework. The technology used to realise the work in this thesis is based around a component
architecture, in which various functions draw from concepts of software agency and mobility. Below we

briefly outline some of important results, presented in the thesis.

11.1.1 The Software Agent Architecture for Distributed Consistency
Checking

We have developed a distributed architecture for consistency checking. An important characteristic
of the architecture, that distinguishes it from traditional approaches, is that consistency checks of
distributed documents occur locally at the hosts, where the documents are located. Static and mobile
software agents are deployed to cooperatively carry out distributed consistency checks.

The architecture provides flexibility in configuration, and integrates with existing development
environments. Transparency of distributed checks for the user and simplicity of the architecture were
some of the key factors in design and implementation of the architecture.

One of the advantages of the proposed approach is in improved security features with respect to the
traditional approach: in the software agent architecture, complete documents are never transmitted
across the network. In addition, user-level, document-level and mobile agent migration-level security is

supported.
11.1.2 Architecture Model

We have developed an architecture model based on state-transition diagrams of architectural
components. Basic functions of component algorithms, event handling and inter-component
communication are outlined in the state transition diagrams. The model provides initial evaluation of the
architecture: the model development environment allowed us to "execute" the state transition diagrams,
replicate the components and estimate the effect of different configurations on predicted performance of

a distributed consistency check.
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11.1.3 Incremental Checking

We have established applicability of the incrementality concept to the underlying consistency
checking framework, on which the architecture is constructed. Incremental consistency checks extend
the functionality of the traditional consistency management framework, by establishing relations
between individual changes in one or more documents and the current state of all the documents in the
document universe. We argue, that incremental checks are useful at all development stages, and
complement the ability of the consistency framework to generate global consistency views by
performing exhaustive checks.

Ability to carry out individual incremental checks, complemented by the approach to local checking
of distributed documents, form the base for the proposed software agent architecture. The architecture
concept, where an incremental consistency check serves as a response to an event - document change,
allowed us to simplify architecture design by supporting event-orientation of all components. Event-
orientation, in turn, enables the architecture to provide initial support for transactions by maintaining
histories of document changes, their consistency status, and making rollback available to the users.

In our contribution, we have proposed a general algorithm for incremental consistency checking for
the consistency framework, underlying the software agent architecture. We also provide an
implementation of this algorithm, which is integrated in the working architecture prototype. Evaluation
of the proposed incremental checking approach is carried out within qualitative and quantitative
evaluations of the architecture. The quantitative performance evaluation results suggest, that in certain
conditions, more often than exhaustive checking, distributed incremental checks in the proposed
software agent architecture can be used for providing near "real-time" feedback to the developer
throughout the development process. We value this significant result as a contribution of this thesis,
complementary to the primary contribution — the software agent architecture for distributed consistency

checking.
11.1.4 Validation of the Architecture

In order to establish further validity of the approach, we have developed an implementation
prototype. Operation of the prototype is validated on the three scenarios, which correspond to stages of a
real software development project. We demonstrate and explain features of the architecture on particular
examples of the scenarios in a single-domain, multi-host and multiple-domain configurations. In
addition to scenarios, the internal structure of the prototype implementation is explained through events
and actions, which these events trigger in the architectural components.

We complete the evaluation by demonstrating how the proposed architecture conforms to the
specified functional requirements. We also carry out performance benchmarking, by comparing
centralised and distributed consistency checks, single-host incremental and exhaustive consistency

checks, and finally, centralised exhaustive and distributed incremental consistency checks of a set of
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consistency rules. As a conclusion of performance evaluation, we give recommendations on optimal
configuration of document distributions and confirm performance advantages of multi-agent concurrent
collaborative checks.

Performance evaluation results are extended in the quantitative performance model of the software
agent architecture. The latter determines the relations between measurable configuration parameters
(i.e., document parsing time, number of concurrent software agent, etc.). These relations can be used by
to predict performance of a particular architecture configuration before the actual system roll-out, and
can advise on deployment of either traditional centralised checking of distributed documents or

distributed multi-agent checking, for each particular configuration.

11.2 Open Questions and Future Work

11.2.1 Consistency Checking Framework

We aim to carry out research in specifying and carrying out inconsistency resolution actions in the
current framework, following the generation of inconsistent links. An approach to comprehensive
inconsistency resolution is a significantly complex area of research in itself. As an initial step,
investigation of propagation of element values over inconsistent links is under development. In this
approach, a developer points out the element, which is believed to cause inconsistency, and resolution is
carried out, whereby the value of this element is changed, satisfying the consistency relation and making
an inconsistent link consistent.

Future work on the software agent architecture, which builds on the consistency checking
framework, will then investigate whether conflict resolution role can be delegated to existing mobile
checking components, or a separate mechanism needs to be created. It is clear, however, that efficient
inconsistency resolution will make use of the distributed family of mobile agents, running at the hosts,
where inconsistent documents are located. It is then a question whether generation of possible resolution
actions can be carried out throughout the duration of the distributed check, or will necessarily have to be
postponed until the final result of the check is known. Evaluation of individual operators, comprising a
consistency rule, throughout distributed nodeset collection may make it possible to generate initial
suggestions on resolution actions during the check, rather than after its completion. This approach can
then facilitate resolution actions in the software agent architecture.

Another development area for the consistency checking framework is in specification of rule
dependencies. Support for conditional checking of consistency rules has been suggested in the research
group for some time already. From the standpoint of the software agent architecture for consistency
checking, it is suggested that rule applicability policies can be defined in such a way, that multiple rules
are checked at the same time. The question still remains on how to decidably determine inter-relation of

several consistency rules, so that applicability policies can be generated and updated automatically.
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11.2.2 Integration of the Software Agent Architecture

One interesting area for future development of the software agent architecture is tighter integration
of the architecture, its prototype with existing software development environments and workflow tools.
While currently consistency links serve as a feedback that the architecture provides to a developer, the
usability of the prototype would be extended if links could be interpreted within the native environment
of the tool, which the developer is using.

When incremental checking technology matures and its performance is further improved, an ability
to provide instant feedback of consistency status during document authoring should prove to be
extremely effective in the development process. Modern development environments enable real-time
syntactic checks, where, for instance, the syntax in a program module is checked in real time as the
developer is authoring the program. The software agent architecture already supports the automated
execution of consistency checks, and the performance evaluation suggests, that partly due to the locality
of document access, in certain conditions checking performance is sufficient to provide near-realtime
incremental checks. Thus, it would be desirable to further investigate how the software agent
architecture can be used for real-time consistency checking and for provision of feedback on results of

these checks in a useful form, within the user's development environment.
11.2.3 Distributed Software Agent Architecture

The software agent architecture makes use of replication of consistency rules to the distributed
hosts, where the documents, relevant to these rules, are located. At the same time, a central point of
software agent coordination at each domain — the domain agent — maintains information on applicability
of different rules to distributed documents. The scenarios developed and the performance evaluation
carried out, verify that this approach is satisfactory.

Future work will investigate possible advantages and drawbacks of allowing arbitrary location of
the consistency rules and information of their applicability. Such approach could be useful in an "ad-
hoc" distributed development network, or may benefit open source developers, working on a project

without an established constant development team.
11.2.4 Incremental Checking

Consistency rules in the current iteration of the framework for link generation, used in this thesis,
are based on expressions, formulated in the XPath language. The general incremental checking
algorithm we have specified, requires that each document change is compared to expressions in
consistency rules in order to determine, whether a rule is applicable to that change. In practice, the
process of selection of relevant rules compares the XPath expressions in the rules with the XPath

expression to the changed element, the latter being generated by the TreeDiff.
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The current implementation of the incremental checking algorithm uses a light-weight approach,
which provides string-wise analysis of XPath expressions and relatively simple document DOM tree
navigation to aid in selection of relevant rules. When complex XPath expressions are used, this approach
is proved to select consistency rules, which, in addition to relevant rules, selects the rules that are not
necessarily applicable to the particular document change under consideration.

Future work will enable the rule selector algorithm to compare XPath expressions of arbitrary
complexity. Efficiency of this algorithm for rule selection will then be compared to the efficiency of a
consistency check to determine whether a performance advantage can be derived from more precise
estimation of relevant rules for the incremental check.

Another area of incremental checking development, currently investigated in the group, is in
establishment of rule applicability to a document fype. In relevant rule selection process, the type
definition (DTD) can be navigated during the selection of relevant consistency rules. This approach is
attractive for application areas, where DTD is sufficiently constrained, so that sequence of allowed
elements can be easily determined. The approach was not used in this thesis, because the document DTD
of the application domain studied here, UML DTD in its original form, does not include sufficient

constraints so that the DTD can be navigated, alike a document instance.

11.3 Closing Remarks

This thesis is an attempt to tackle the software engineering problem of consistency checking in a
distributed setting. We have successfully applied the current state of the art in the continuously
developing mobile agent technology to a practical consistency checking task.

From the functional requirements, through the design and modelling, to the construction of the
implementation prototype, an effort has been made to simplify and generalize the approach. Yet, the
proposed software agent architecture has demonstrated the complexity of an infrastructure, which is
required in order to be able to engage mobile agents in a non-trivial distributed activity and coordinate
the distributed agents in the process.

Though the focus of this thesis is on distributed consistency checking, it may shed light on a larger
question whether mobile agents are an appropriate infrastructure for providing distribution support in
software engineering tools. It is clear that the agent technology can be successfully applied to
consistency checking and in other software engineering areas, but such application requires a careful

architectural consideration and a radical rethinking of the underlying algorithms.
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Appendix A UML Well-Formedness
Consistency Rules

A.1 Associations

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE consistencyruleset SYSTEM 'consistencyrule.dtd'>
<?xml-stylesheet type='text/xsl' href='rule.xsl'?>
<?cocoon-process type='xslt'?>

<consistencyruleset>

<globalset id="associations"
xpath="//Foundation.Core.Association[@xmi.id]"/>

<consistencyrule id="al">
<description>
The AssociationEnds must have a unique name within the Association
</description>
<forall var="a" in="S$associations">
<forall var="x"
in="$a/Foundation.Core.Association.connection/Foundation.Core.
AssociationEnd">
<forall var="y"
in="$a/Foundation.Core.Association.connection/Foundation.Core.
AssociationEnd">
<implies>
<equal
opl="$x/Foundation.Core.ModelElement.name/text ()"
op2="$y/Foundation.Core.ModelElement.name/text()"/>
<same opl="$x" op2="S$y"/>
</implies>
</forall>
</forall>
</forall>
</consistencyrule>

<consistencyrule id="a2">
<description>
At most one AssociationEnd may be an aggregation or composition
</description>

<forall var="a" in="$associations">
<forall var="x"
in="$a/Foundation.Core.Association.connection/Foundation.Core.
AssociationEnd">

<implies>
<notequal
opl="$x/Foundation.Core.AssociationEnd.aggregation/@xmi.value"
op2="'none'"/>

<not><exists var="y"
in="$a/Foundation.Core.Association.connection/Foundation.Core.
AssociationEnd">
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<and><notequal
opl="$y/Foundation.Core.AssociationEnd.aggregation/@xmi.value"

op2="'none'" />
<not><same opl="$x" op2="$y"/>
</not>
</and>
</exists>
</not>
</implies>
</forall>
</forall>

</consistencyrule>

<consistencyrule id="a3">
<description>
If an Association has three or more AssociationEnds, then
AssociationEnd may be an aggregation or composition
</description>

<forall var="a" in="$associations">
<not><exists var="x"
in="$a/Foundation.Core.Association.connection/Foundation.Core.
AssociationEnd" mode="instance">
<exists var="y"
in="$a/Foundation.Core.Association.connection/Foundation.Core.
AssociationEnd" mode="instance">
<exists var="z"
in="$a/Foundation.Core.Association.connection/Foundation.Core.
AssociationEnd" mode="instance">
<and>
<and>
<not>
<same opl="$x" op2="$y"/>
</not>
<and>
<not>
<same opl="$y" op2="§z"/>
</not>
<not>
<same opl="$x" op2="$z"/>
</not>
</and>
</and>
<or>
<notequal
opl="$x/Foundation.Core.AssociationEnd.aggregation/@xmi.value"

op2=""'none'"/>

<or>

<notequal
opl="$y/Foundation.Core.AssociationEnd.aggregation/@xmi.value"
op2=""none'"/>

<notequal
opl="$z/Foundation.Core.AssociationEnd.aggregation/@xmi.value"
op2="'none'"/>

</or>
</or>
</and>
</exists>
</exists>
</exists>
</not>
</forall>

</consistencyrule>

no
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<consistencyrule id="a4">
<description>
The connected Classifiers of the AssociationEnds should be included in
the Namespace of the Association
</description>

<forall var="a" in="$associations">
<forall var="x"
in="$a/Foundation.Core.Association.connection/Foundation.Core.
AssociationEnd/Foundation.Core.AssociationEnd.type/*[1]">
<exists
var="y" in="$a/ancestor::Foundation.Core.Namespace.ownedElement/*[€xmi.id=
$x/@xmi.idref]">
</exists>
</forall>
</forall>
</consistencyrule>

</consistencyruleset>

A.2 AssociationClass

The XML header of this and of all further rulesets are omitted to save space, as they are the same as

the header of A.1, Associations.

<consistencyruleset>
<globalset id="associationclasses"
xpath="//Foundation.Core.AssociationClass[@xmi.id]"/>

<consistencyrule id="acl">
<description>
The names of the AssociationEnds and the StructuralFeatures do not
overlap
</description>

<forall var="a" in="$associationclasses">
<forall var="s" in="$a/Foundation.Core.StructuralFeature/*">
<not>
<exists
var="c¢" in="$a/Foundation.Core.Association.connection/Foundation.Core.
AssociationEnd">
<equal
opl="$s/Foundation.Core.ModelElement.name/text ()"
op2="$c/Foundation.Core.ModelElement.name/text()"/>
</exists>
</not>
</forall>
</forall>
</consistencyrule>

<consistencyrule id="ac2">
<description>
An AssociationClass cannot be defined between itself and something
else.
</description>

<forall var="a" in="$associationclasses">
<not>
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<exists var="c"
in="$a/Foundation.Core.Association.connection/Foundation.Core.
AssociationEnd">
<equal

opl="$a/@xmi.id"
op2="$c/Foundation.Core.AssociationEnd.type/*[1]/@xmi.idref"/>
</exists>
</not>
</forall>
</consistencyrule>

</consistencyruleset>

A.3 AssociationEnd

<consistencyruleset>
<globalset id="associationends"
xpath="//Foundation.Core.AssociationEnd[@xmi.id]" />

<consistencyrule id="ael">
<description>
The Classifier of an AssociationEnd cannot be an Interface or a
DataType if the association is navigable from that end
</description>

<forall var="e" in="$associationends">
<implies>
<or>
<exists
var="x" in="$e/Foundation.Core.AssociationEnd.type/Foundation.Core.
DataType" />
<exists
var="x" in="$e/Foundation.Core.AssociationEnd.type/Foundation.Core.
Interface"/>
</or>
<not>
<exists
var="x" in="$e/../Foundation.Core.AssociationEnd/Foundation.Core.
AssociationEnd.isNavigable[@xmi.value='true']"/>
</not>
</implies>
</forall>
</consistencyrule>

<consistencyrule id="ae2">
<description>
An Instance may not belong by composition to more than one composite
Instance
</description>

<forall var="e" in="$associationends">
<implies>
<equal
opl="$e/Foundation.Core.AssociationEnd.aggregation/@xmi.value"
op2=""'composite'"/>
<or>
<equal
opl="$e/Foundation.Core.AssociationEnd.multiplicity/text()"
op2=""'1..1"'"/>
<equal
opl="$e/Foundation.Core.AssociationEnd.multiplicity/text()"
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op2=""0..1""/>
</or>
</implies>
</forall>
</consistencyrule>
</consistencyruleset>

A4 BehavioralFeature

<consistencyruleset>
<globalset id="behaviors"
xpath="//Foundation.Core.BehavioralFeature.parameter/.."/>

<consistencyrule id="b1l">
<description>
All parameters should have a unique name
</description>

<forall var="b" in="$behaviors">
<forall var="x"
in="$b/Foundation.Core.BehavioralFeature.parameter/Foundation.Core.
Parameter">
<forall var="y'
in="$b/Foundation.Core.BehavioralFeature.parameter/Foundation.Core.
Parameter">

<implies>
<equal
opl="$x/Foundation.Core.ModelElement.name/text ()"
op2="$y/Foundation.Core.ModelElement.name/text ()" />
<same opl="$x" op2="8§y"/>
</implies>
</forall>
</forall>
</forall>
</consistencyrule>

<consistencyrule id="b2">
<description>
The type of the Parameters should be included in the Namespace of the
Classifier
</description>

<forall var="b" in="$behaviors">
<forall var="x"
in="$b/Foundation.Core.BehavioralFeature.parameter/Foundation.Core.
Parameter/Foundation.Core.Parameter.type/*[1]">
<exists var="y"
in="¢$b/ancestor: :Foundation.Core.Namespace.ownedElement/*[@xmi.id=
$x/@xmi.idref]"/>
</forall>
</forall>
</consistencyrule>
</consistencyruleset>

A.5 Class

<consistencyruleset>
<globalset id="classes" xpath="//Foundation.Core.Class[@xmi.id]"/>

<consistencyrule id="cl">
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<description>
If a Class is concrete, all the Operations of the Class should have a
realizing method in the full descriptor
</description>

<forall var="c" in="$classes">
<implies>
<equal
opl="$c/Foundation.Core.GeneralizableElement.isAbstract/@xmi.value"
op2=""'false'"/>
<forall var="o"
in="$c/Foundation.Core.Classifier.feature/Foundation.Core.Operation">
<exists var="m"
in="$c/Foundation.Core.Classifier.feature/Foundation.Core.Method">
<equal
opl="$o/@xmi.id"
op2="$m/Foundation.Core.Method.specification/Foundation.Core.
Operation/@xmi.idref"/>
</exists>
</forall>
</implies>
</forall>
</consistencyrule>
</consistencyruleset>

A.6 Classifier

<consistencyruleset>
<globalset id="classifiers"
xpath="//Foundation.Core.Classifier.feature/.."/>

<consistencyrule id="cs2">
<description>
No Attributes may have the same name within a Classifier
</description>

<forall var="c" in="$classifiers">
<forall var="x"
in="$c/Foundation.Core.Classifier.feature/Foundation.Core.Attribute">
<forall var="y"
in="$c/Foundation.Core.Classifier.feature/Foundation.Core.Attribute">
<implies>
<equal
opl="$x/Foundation.Core.ModelElement.name/text ()"
op2="$y/Foundation.Core.ModelElement.name/text()"/>
<same opl="$x" op2="S$y"/>
</implies>
</forall>
</forall>
</forall>
</consistencyrule>

<consistencyrule id="cs3">
<description>
No opposite AssociationEnds may have the same name within a Classifier
</description>

<forall var="c" in="$classifiers">
<forall var="x"
in="id($c/Foundation.Core.Classifier.associationEnd/Foundation.Core.
AssociationEnd/@xmi.idref)/../Foundation.Core.AssociationEnd
[Foundation.Core.AssociationEnd.type/*[1]/@xmi.idref!=Sc/@xmi.id]">
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<forall var="y
in="id($c/Foundation.Core.Classifier.associationEnd/Foundation.Core.
AssociationEnd/@xmi.idref)/../Foundation.Core.AssociationEnd
[Foundation.Core.AssociationEnd.type/*[1]/@xmi.idref!=$c/@xmi.id]">
<implies>
<not><same opl="$x" op2="$y"/></not>
<notequal
opl="$x/Foundation.Core.ModelElement.name/text ()"
op2="$y/Foundation.Core.ModelElement.name/text ()" />
</implies>
</forall>
</forall>
</forall>
</consistencyrule>

<consistencyrule id="cs4">
<description>
The name of an Attribute may not be the same as the name of an
opposite AssociationEnd or a ModelElement contained in the Classifier
</description>

<forall var="c" in="$classifiers">
<forall var="a"
in="$c/Foundation.Core.Classifier.feature/Foundation.Core.Attribute">
<and>
<forall var="x"
in="id($c/Foundation.Core.Classifier.associationEnd/Foundation.Core.
AssociationEnd/@xmi.idref)/../Foundation.Core.AssociationEnd
[Foundation.Core.AssociationEnd.type/*[1]/@xmi.idref!=$c/@xmi.id]">
<notequal
opl="$a/Foundation.Core.ModelElement.name/text ()"
op2="$x/Foundation.Core.ModelElement.name/text ()" />
</forall>
<forall var="y"
in="$c/Foundation.Core.Namespace.ownedElement/*">
<notequal
opl="$a/Foundation.Core.ModelElement.name/text ()"
op2="§$y/Foundation.Core.ModelElement.name/text ()" />
</forall>
</and>
</forall>
</forall>
</consistencyrule>

<consistencyrule id="cs5">

<description>
The name of an opposite AssociationEnd may not be the same as the name
of an Attribute or ModelElement contained in the Classifier
</description>

<forall var="c" in="$classifiers">
<forall var="x"
in="id($c/Foundation.Core.Classifier.associationEnd/Foundation.Core.
AssociationEnd/@xmi.idref)/../Foundation.Core.AssociationEnd
[Foundation.Core.AssociationEnd.type/*[1]/@xmi.idref!=$c/@xmi.id]">
<and>

<forall var="a"

in="$c/Foundation.Core.Classifier.feature/Foundation.Core.Attribute">
<notequal

opl="$a/Foundation.Core.ModelElement.name/text ()"
op2="$x/Foundation.Core.ModelElement.name/text ()" />

</forall>
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<forall var="y"
in="$c/Foundation.Core.Namespace.ownedElement/*">
<notequal
opl="$y/Foundation.Core.ModelElement.name/text ()"
op2="$§x/Foundation.Core.ModelElement.name/text ()" />
</forall>
</and>
</forall>
</forall>
</consistencyrule>

<consistencyrule id="cs6">
<description>
For each Operation in a specification realized by a Classifier, the
Classifier must have a matching Operation.
</description>

<forall var="c" in="$classifiers">
<forall var="x"
in="id($c/Foundation.Core.Classifier.specification/*[1]/@xmi.idref)/
Foundation.Core.Classifier.feature/Foundation.Core.Operation">
<exists var="y"
in="$c/Foundation.Core.Classifier.feature/Foundation.Core.Operation">
<and>
<equal
opl="$x/Foundation.Core.ModelElement.name/text ()"
op2="$y/Foundation.Core.ModelElement.name/text ()" />
<equal
opl="$x/Foundation.Core.BehavioralFeature.parameter/Foundation.Core.
Parameter/Foundation.Core.ModelElement.name/text ()"
op2="$y/Foundation.Core.BehavioralFeature.parameter/Foundation.Core.
Parameter/Foundation.Core.ModelElement.name/text()"/>
</and>
</exists>
</forall>
</forall>
</consistencyrule>
</consistencyruleset>

A.7 Component

<consistencyruleset>

<globalset id="components"
xpath="//Foundation.Auxiliary Elements.Component"/>

<consistencyrule id="col">
<description>
A Component may only contain other Components
</description>

<forall var="c¢" in="$components">
<forall var="o"
in="$c/Foundation.Core.Namespace.ownedElement/*">
<equal
opl="name($0)"
op2="'Foundation.Auxiliary Elements.Component'"/>
</forall>
</forall>
</consistencyrule>
</consistencyruleset>
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A.8 Constraint

<consistencyruleset>
<globalset id="constraints" xpath="//Foundation.Core.Constraint"/>

<consistencyrule id="csl1l">
<description>
A Constraint cannot be applied to itself
</description>

<forall var="c" in="$constraints">
<forall var="x"
in="$c/Foundation.Core.Constraint.constrainedElement/*">
<notequal opl="$c/@xmi.id" op2="$x/@xmi.idref"/>
</forall>
</forall>
</consistencyrule>
</consistencyruleset>

A9 DataType

<consistencyruleset>
<globalset id="datatypes" xpath="//Foundation.Core.DataType" />

<consistencyrule id="dl">
<description>

A DataType can only contain Operations, which all must be queries
</description>

<forall var="d" in="$datatypes">
<forall var="x" in="$d/Foundation.Core.Classifier.feature/*">
<and>
<equal
opl="name($x)" op2="'
<equal
opl="$x/Foundation.Core.BehavioralFeature.isQuery/@xmi.value"
op2=""true'"/>
</and>
</forall>
</forall>
</consistencyrule>

Foundation.Core.Operation'"/>

<consistencyrule id="d2">
<description>
A DataType cannot contain any other model elements
</description>

<forall var="d" in="$datatypes">
<not>
<exists var="x"
in="$d/Foundation.Core.Namespace.ownedElement/*" />
</not>
</forall>
</consistencyrule>
</consistencyruleset>

A.10 Generalizable Element

<consistencyruleset>
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<globalset id="generalizableelements"
xpath="//Foundation.Core.GeneralizableElement.generalization/.."/>

<consistencyrule id="gl">
<description>
A root cannot have any Generalizations
</description>

<forall var="g"
in="//Foundation.Core.GeneralizableElement.
isRoot[@xmi.value='true']/..">
<not>
<exists var="x"
in="$g/Foundation.Core.GeneralizableElement.generalization"/>
</not>
</forall>
</consistencyrule>

<consistencyrule id="g2">
<description>
No GeneralizableElement can have a parent Generalization to an element
which is a leaf
</description>
<forall var="g"
<not>
<exists var="p"
in="id(id($g/Foundation.Core.GeneralizableElement.generalization/
Foundation.Core.Generalization/@xmi.idref)/Foundation.Core.
Generalization.supertype/*[1]/@xmi.idref)/Foundation.Core.
GeneralizableElement.isLeaf[@xmi.value='true']">
</exists>
</not>
</forall>
</consistencyrule>

in="$generalizableelements">

<consistencyrule id="g4">
<description>
The parent must be included in the namespace of the
GeneralizableElement
</description>
<forall var="g" in="$generalizableelements">
<forall var="p"
in="id($g/Foundation.Core.GeneralizableElement.generalization/
Foundation.Core.Generalization/@xmi.idref)/Foundation.Core.
Generalization.supertype/*[1]">
<exists var="x"
in="$g/ancestor::Foundation.Core.Namespace.ownedElement/*">
<equal
opl="$p/@xmi.idref" op2="$x/@xmi.id"/>
</exists>
</forall>
</forall>
</consistencyrule>
</consistencyruleset>

A.11 Generalization

<consistencyruleset>
<globalset id="generalizations" xpath="//Foundation.Core.Generalization"/>
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<consistencyrule id="genl">
<description> _
A GeneralizableElement may only be a child of a GeneralizableElement
of the same kind
</description>
<forall var="g"
<equal
opl="name ($g/Foundation.Core.Generalization.supertype/*[1])"
op2="name($g/Foundation.Core.Generalization.subtype/*[1])"/>
</forall>
</consistencyrule>
</consistencyruleset>

in="$generalizations">

A.12 Interface

<consistencyruleset>
<globalset id="interfaces" xpath="//Foundation.Core.Interface"/>

<consistencyrule id="il">
<description>
An Interface can only contain Operations.
</description>

<forall var="i" in="$interfaces">
<forall var="f" in="$i/Foundation.Core.Classifier.feature/*">
<or>
<equal
opl="name($f)" op2="'
<equal
opl="name($£f)"

Foundation.Core.Operation'"/>

op2=""'Behavioral Elements.Common_Behavior.Reception'"/>
</or>
</forall>
</forall>

</consistencyrule>

<consistencyrule id="i2">
<description>
An Interface cannot contain any ModelElements
</description>

<forall var="i" in="$interfaces">
<not>
<exists var="x"
in="$i/Foundation.Core.Namespace.ownedElement/*" />
</not>
</forall>
</consistencyrule>

<consistencyrule id="i3">
<description>
All Features defined in an Interface are public
</description>

<forall var="i" in="S$interfaces">
<forall var="f" in="$i/Foundation.Core.Classifier.feature/*">
<equal
opl="$f/Foundation.Core.ModelElement.visibility/@xmi.value"
op2=""'public'"/>
</forall>
</forall>
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</consistencyrule>
</consistencyruleset>

A.13 Method

<consistencyruleset>
<globalset id="methods" xpath="//Foundation.Core.Method"/>

<consistencyrule id="ml">
<description>
If the realized Operation is a query, then so is the method.
</description>

<forall var="m" in="$methods">
<implies>
<equal
opl="id($m/Foundation.Core.Method.specification/Foundation.Core.
Operation/@xmi.idref)/Foundation.Core.BehavioralFeature.isQuery/
@xmi.value"
op2=""'true'"/>
<equal
opl="$m/Foundation.Core.BehavioralFeature.isQuery/@xmi.value"
op2=""true'" />
</implies>
</forall>
</consistencyrule>

<consistencyrule id="m2">
<description>
The signature of the Method should be the same as the signature of the
realized Operation
</description>

<forall var="m" in="$methods">

<equal
opl="$m/Foundation.Core.BehavioralFeature.parameter/Foundation.Core.
Parameter/Foundation.Core.Parameter.type/*[1]/@xmi.idref"
op2="id($m/Foundation.Core.Method.specification/Foundation.Core.
Operation/@xmi.idref)/Foundation.Core.BehavioralFeature.parameter/
Foundation.Core.Parameter/Foundation.Core.Parameter.type/*[1]/
@xmi.idref"/>

</forall>

</consistencyrule>

<consistencyrule id="m3">
<description>
The visibility of the Method should be the same as for the realized
Operation
</description>
<forall var="m"
<equal
opl="$m/Foundation.Core.ModelElement.visibility/@xmi.value"
op2="id($m/Foundation.Core.Method.specification/Foundation.Core.
Operation/@xmi.idref)/Foundation.Core.ModelElement.visibility/
@xmi.value"/>
</forall>
</consistencyrule>
</consistencyruleset>

in="$methods">
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A.14 NameSpace

<consistencyruleset>
<globalset id="namespaces"
xpath="//Foundation.Core.Namespace.ownedElement/.." />

<consistencyrule id="nl1">

<description>
If a contained element, which is not an Association or Generalization has a
name, then the name must be unique in the Namespace.

</description>

<forall var="n" in="$namespaces">
<forall var="x"
in="$n/Foundation.Core.Namespace.ownedElement/
*[ (not (name(.)='Foundation.Core.Association')) and
(not (name(.)='Foundation.Core.Generalization'))]">
<forall var="y"
in="$n/Foundation.Core.Namespace.ownedElement/
*[ (not (name(.)='Foundation.Core.Association')) and

(not (name(.)='Foundation.Core.Generalization'))]">
<implies>
<equal

opl="$x/Foundation.Core.ModelElement.name/text()"
op2="$y/Foundation.Core.ModelElement.name/text ()" />
<same opl="$x" op2="$y"/>
</implies>
</forall>
</forall>
</forall>

</consistencyrule>

<consistencyrule id="n2">
<description>
All Associations must have a unique combination of name and associated
Classifiers in the Namespace
</description>

<forall var="n" in="$namespaces">
<forall var="x"
in="$n/Foundation.Core.Namespace.ownedElement/Foundation.Core.
Association">
<forall var="y"
in="¢$n/Foundation.Core.Namespace.ownedElement/Foundation.Core.
Association">
<implies>
<and>
<equal
opl="$x/Foundation.Core.ModelElement.name/text ()"
op2="$y/Foundation.Core.ModelElement.name/text ()" />
<equal
opl="$x/Foundation.Core.Association.connection/Foundation.Core.
AssociationEnd/Foundation.Core.AssociationEnd.type/*[1]/€@xmi.idref"
op2="$y/Foundation.Core.Association.connection/Foundation.Core.
AssociationEnd/Foundation.Core.AssociationEnd.type/*[1]/@xmi.idref"/>
</and>
<same opl="$x" op2="S$y"/>
</implies>
</forall>
</forall>
</forall>
</consistencyrule>
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</consistencyruleset>

A.15 Type

<consistencyruleset>

<globalset id="types"
xpath="//Foundation.Core.Class[id(Foundation.Core.ModelElement.
stereotype/Foundation.Extension Mechanisms.Stereotype/@xmi.idref)/
Foundation.Core.ModelElement.name/text()="'Type']"/>

<consistencyrule id="t1">
<description>
A Type may not have any methods
</description>

<forall var="t" in="$types">
<not> <exists var="x"
in="$t/Foundation.Core.Classifier.feature/Foundation.Core.Method" />
</not>
</forall>
</consistencyrule>

<consistencyrule id="t2">
<description>
The parent of a type must be a type
</description>

<forall var="t" in="$types">
<forall var="p"
in="id(id($t/Foundation.Core.GeneralizableElement.generalization/
Foundation.Core.Generalization/@xmi.idref)/Foundation.Core.
Generalization.supertype/*[1]/@xmi.idref)">
<equal
opl="id($p/Foundation.Core.ModelElement.stereotype/Foundation.
Extension Mechanisms.Stereotype/@xmi.idref)/Foundation.Core.
ModelElement.name/text ()"
op2=""'Type'"/>
</forall>
</forall>
</consistencyrule>
</consistencyruleset>

223



Appendix B  State Transitlon Model Pseudo-
Code

This Appendix contains the pseudo-code for state transition model of the software agent
architecture. Each state is specifies the name, entry and exit actions, time delay caused by execution of
the state in the model, and an inter-state transition. The transition indicates a destination state, reached
after the transition is completed. Conditional transitions allow selection of one destination state out of a
possible set of states, depending on values of one or more parameters. Transitions can have model

execution delays assigned to them.

The pseudo-code corresponds to the state transition diagrams of all architectural components,
constructed within the COVERS development environment. This pseudo-code was created from the
C++ source code of the executable model of the architecture, generated within the COVERS

environment.

B.1 Document Active Object

GoStraightToChange
Entry:
// if system flag of changes in model parameters is raised,
// request new value of event generation frequency

if (change==1) ExecuteModificator();
Exit: // Generate a "Change" event straight away
Transition: -> Changed

Changed — document has been changed. Event must be raised.
Entry:
// Event has occurred. Send new event (notification message)
// "Check" through Port

Port->Send(new TNotificationMessage("Check"));
Exit:
Transition: -> AskForRate

AskForRate

Entry: if (change==1) ExecuteModificator();
Exit:

Transition: -> Idle

Idle — document is awaiting next event.

Transition: -> Changed:

Transition delay: 1000* (Ratet+Rate*TExponentDistr( Rate ))

// Calculation of a delay until the next change - randomised with

// an exponential distribution model parameter Rate in milliseconds.
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B.2 Resource Interface Active Object

Idle

Entry:

Exit:

Transition: -> IdentifyChangedElements:
Condition: NumberOfChecks>0

IdentifyChangedElements

// Compares a backup copy with current version of the original,
// tree-wise, X — number of elements

Enter: Z:=X*(1l.0+TNormalDistr(X));

// Computes the number of "changed" elements

Transition: -> CheckForLocalVPRules

Delay: (2*X)*(1l.0+TExponentDistr(1l))*Tick

// Twice the randomised number of elements in this document (X)
// Tick is a time (in ms) required to access each tree element

CheckForLocalVPRules

// Scans the local rule database for consistency rules,

// relevant to changed elements

Transition: -> InstantiateMAToSearchGlobalRules

Delay: Z*Mlocal*2*(1l.0+TExponentDistr(1l))*Tick

// Twice the number of "changed" elements by the number of rules,
// randomised

InstantiateMAToSearchGlobalRules
Enter: TMAgent ag = new TMAgent(
new TNotificationMessage("Rules"),new TNotificationMessage(Z) );
// Instantiation of a new Mobile agent with a goal "Rules" (to search
// globally for relevant rules to changes in "2Z")
Transition: -> GlobalRulesReady
Delay: TNotificationMessage m_in;
while ((m_in = AgentInterface->Get())!="Rules")

AgentInterface->Send(m);
// awaits the returning message from Mobile Agent with results
// from global Rules collection

GlobalRulesReady
Enter: Mlocal+=m_in.numberOfRetrievedRules;
// Added retrieved global consistency rules to local relevant rules

InstantiateMAForEachCriticalRule
Enter: for (int i=0; i++; i<Mlocal)

{
TMAgent ag = new TMAgent(
new TNotificationMessage("Check"), new TNotificationMessage(Z),
m_in.rule[i]);
ag.dispatch(IP_DOMAINSERVER);
}
Exit:

Transition: -> ResInterfaceOperation

ResInterfaceOperation

Transition: -> ScanRequestedElements

Delay: if ((TNotificationMessage m=AgentInterface
->Get () )=="ParamRequest")

Transition: -> LinksChange

Delay: if ((TNotificationMessage m=AgentInterface
->Get () )=="LinksChange")
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ScanRequestedElements
Enter:
// for each of consistency rules requested in the message,
// traverse the document tree and return elements
TXDocument return;
for (i=0; i++; i<m.numberOfRetrievedRules) {
TXDocument consRule=m.rule[i];
return.addElement (source.parse(consRule));
}
Delay: Z*X*(l.0+TExponentDistr(1l))*Tick
Exit: AgentInterface->Send( new TNotificationMessage("ParamRequest",
return));
Transition: -> ResInterfaceOperation (Deep History State)

0ldLinksExist (LinksChange)

Transition: conditional

if (links!=null) -> NotifyRelated

else -> ChangeLinks

// Notify related document owners of a change in respective links
// so that the other end of the links could be updated

NotifyRelated

// Asynchronous notification of all "destinations" of existing links
// about the upcoming change

// asynchronous — no delay is required

Transition: -> ChangeLinks

ChangeLinks
// Update changed links within CLinks file
Enter:
TXDocument CLinks;
for (i=0; i++; i<m.numberOfLinks) {
TXDocument consLink=m.link[i];
CLinks.addElement (consLink);
}
Transition: -> ResInterfaceOperation
Delay: m.numberOfLinks*2*(1.0+TExponentDistr(1.0))*Tick;

B.3 Mobile Agent Active Object

Initialisation (Active)
Enter: ConnectPort(MiddlewarePort, TAgentMiddleware.Portl);

// Dynamic MAgent object hooks up its communication ports to static

// architectural components

Exit: InformationPort.Send ( new TNotificationMessage (
"Migrate"+targetIPaddress));

// Sends "migration" message to itself, targetIPaddress is set by the

// dispatch() method after construction, is defined by a parameter

Transition: -> AtSourceDomain

Delay: AgentMiddleware.transmitDelay(this)*(1l.0+TExponentDistr(1.0))

// Transmition of the whole MA to the host of the source Domain

RegisterAgent (AtSourceDomain)

Enter:

// Connect the InformationPort to domain agent's Port
ConnectPort(InformaionPort, TDomainAgent.Port);

// Pass agent's goal parameters (from constructor) to
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// domain agent

InformationPort.Send(new TNotificationMessage("Check"), new
TNotificationMessage (Z), Rule);

Transition: -> FindDestinationDocumentURLs

FindDestinationDocumentURLsS

Exit: Disconnect(InformationPort, TDomainAgent.Port);
InformationPort.Send ( new TNotificationMessage (

"Migrate"+m.targetIPaddress));

// Sends "migration" message to itself, targetIPaddress is received

// from the Domain agent

Transition: -> AtDestinationDomain

Delay: while (TNotificationMessage m = InformationPort.Get())!="URL");

RegisterAgentDest (AtDestinationDomain)

Enter: Connect(InformationPort, ResInterfaceAgent.AgentInterface);
// Connects to ResInterfaceAgent port for interaction

Transition: -> RetrieveDestinationElements

RetrieveDestinationElements

Enter: InformationPort.Send( new TNotificationMessage ("ParamRequest",
Rule.target );

// Requests target parameter values from target ResInterfaceAgent
localProcessingDone = true ;

Transition: -> CheckConsistencyRelation

Delay: while (TNotificationMessage m = InformationPort.Get())!=
"ParamRequest");

// waits until ResInterface sends back parameter values

CheckConsistencyRelation

Enter: TXDocument ConsistencyLinks =
ConsistencylLinksGenerator(Z, m.paramValues, Rule);

// Runs link generator with parameters: source element values,

// destination element values, consistency rule

Transition: -> UpdateTargetLinks

Delay: sizeof(Z)*sizeof(m.paramValues)*sizeof (Rule)*

(TExponentDistr(1.0)+1.0) * Tick

UpdateTargetLinks
Enter: InformationPort.Send(new TNotificationMessage("LinksChange"),
ConsistencyLinks );
Exit: Disconnect(InformationPort, ResInterfaceAgent.AgentInterface);
// Leaving AtDestinationDomain, thus port will have to be re-connected
// after migration
InformationPort.Send(new TNotificationMessage("Migrate"),
IP_HOMEDOMAIN) ;
// Migration back to source domain, IP HOMEDOMAIN constant has been
// initialised at agent construction
Transition: ~> UpdateSourceLinks

UpdateSourceLinks (AtSourceDomain)

Enter: Connect(InformationPort, ResInterfaceAgent.AgentInterface);
InformationPort.Send(new TNotificationMessage("LinksChange"),
ConsistencyLinks );

Transition: final state

Active

Enter: TMAgent(TXDocument Z, ConsistencyRule Rule);

// constructor called as normal upon creation

Transition: -> ReplicationDetected (Redundant)

Delay: while ((TNotificationMessage m=InformationPort.Get())!="Redundant");
Transition: -> branch state (AgentDataReceived)
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Delay: while ((TNotificationMessage m=InformationPort.Get())!="AgentData");
Transition: -> Migrate

Delay: while ((TNotificationMessage m=InformationPort.Get())!="Migrate");
Transition: -> branch_state (Failure)

Delay: while ((TNotificationMessage m=InformationPort.Get())!="Failure");
Transition: ~TMAgent(); // deconstructor

ReplicationDetected (Redundant)

Enter:

// Connect to Middleware and transmit own "experience"

// i1f target paramValues have already been collected, transmit

// them with a target documentURL + source values + home documentURL
if (paramvalues!=null)

MiddlewarePort.Send(new TNotificationMessage ("AgentData"),
m.agentIPAddress, paramValues, targetIPaddress, Z, IP_HOMEDOMAIN);
// else if only target URL is known

else if (targetIPaddress!=null)

MiddlewarePort.Send(new TNotificationMessage ("AgentData"),
m.agentIPAddress, paramvValues, Z, IP_HOMEDOMAIN) ;

// else only source values + home documentURL
MiddlewarePort.Send(new TNotificationMessage ("AgentData"),
m.agentIPAddress, Z, IP_HOMEDOMAIN);

Disconnect(InformationPort);
Transition: -> NotifySource

NotifySource

Enter: MiddlewarePort.Send(new TNotificationMessage ("Redundant"),
IP HOMEDOMAIN, paramValues, targetIPaddress);

Transition: -> TerminateInstance

TerminateInstance
Enter: this.~TMAgent(); // de-constructor

branch state (AgentDataReceived)
// add the target URL received from collaborating agent
// to the list of target URLs
Enter: targetIPaddress = m.targetIPaddress;
Transition: -> deep_history state (Active) "AdditionalSourceNoted"
Delay: do { TNotificationMessage m=InformationPort.Get() }
while (m.paramValues!=null);
Transition: -> CompareToOwn

CompareToOwn

// Compares received parameter values to own

Enter: TXDocument d=TreeDiff (paramValues, m.paramValues);

Transition: -> ReplyDifference

Delay: sizeof(paramValues)*sizeof (paramValues)*(1l.0+TExponentDistr(1.0));

ReplyDifference

Enter: MiddlewarePort.Send(new TNotificationMessage("AgentData"),
m.agentIPaddress, d);

Transition: -> deep_history_state (Active)

Migrate
Condition: localProcessingDone == true;
Enter: localProcessingDone = false;
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Transition: AtDestinationDomain
Delay: AgentMiddleware.transmitDelay(this)*(1.0+TExponentDistr(1.0))

branch state (Failure)

// if failure caused at target domain, go back to home domain
Transition: -> AtSourceDomain

Delay: while (currentIP!=targetIPaddress);

Transition: -> ReportToSource

ReportToSource
Enter: MiddlewarePort.Send(new TNotificationMessage("Failure"), this);
Transition: this.~TMAgent(); // de-constructor

B.4 Domain Agent Active Object

Idle

Enter: TNotificationMessage m;
m = Port.Get();

Transition: -> Register

Register
Transition: -> IncQueues:
if (Port->Count()) Input=strdup((Port->Get())->GetText());

IncQueues

Enter:

if (!strnicmp(Input,"Rules",strlen("Rules"))) {
RulesQueue++;
EventsQueue++;

} else if (!strnicmp(Input,"Name",strlen("Name"))) {
NamesQueue++;

} else if (!strnicmp(Input,"Events",strlen("Events"))) {
EventsQueue++;

} else if (!strnicmp(Input,"Agents",strlen("Agents"))) {
AgentsQueue++;

}i

Transition: -> Deep history (Active)

Active
Nothing
Transition: ->Processing

Processing:

Transition: conditional:

If (RulesQueue>0) -> RulesDatabase
If (AgentsQueue>0) -> AgentsList
If (EventsQueue>0) -> EventsList
If (NamesQueue>0) -> NameLookup

RulesDatabase
Enter: RulesQueue--;
RulesDatabaseInterface->Send ( new TNotificationMessage("Request") );

Delay: Mdomain*2*(5.0+TExponentDistr(1))
Transition: -> Nothing
Port->Send (new TNotificationMessage("Rules"));

AgentsList
Enter: AgentsQueue--;
redundant = AgentsListInterface->Send (new TNotificationMessage("Request"));
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Delay: LengthTable*(1.0+TExponentDistr(1l))
Transition: -> Nothing
If (redundant!=null) Port->Send(new TNotificationMessage("Redundant"+m));

EventsList

Enter:EventsQueue--;

EventsListInterface->Send (new TNotificationMessage("Request"));
Delay: LengthDocumentsTable*(1l.0+TExponentDistr (1))

Transition: -> Nothing

NameLookup

Enter: NamesQueue--;

NameLookupInterface->Send (new TNotificationMessage("Request"));
Delay: LengthDocumentsTable*(1l.0+TExponentDistr (1))

Transition: -> Nothing

Transition: RelayAllDBReplies (Active -> Idle)

Condition: (AgentsListInterface->Count()) ||(RulesDatabaseInterface-
>Count())
| | (EventsListInterface->Count()) || (NameLookupInterface->Count())

Action: if (AgentsListInterface->Count()) Port->Send(AgentsListInterface-
>Get());

if (RulesDatabaseInterface->Count()) Port->Send(RulesDatabaselInterface-
>Get());

if (EventsListInterface->Count()) Port->Send(EventsListInterface->Get());
if (NameLookupInterface->Count()) Port->Send(NameLookupInterface->Get());
Transition: NewPortInput (Active->Register)

Condition: (Port->Count())

B.S Agent Middleware Active Object

Idle

Enter: TNotificationMessage m;

m = Portl.Get();

if (m==null) { fromPort=0; m = Port2.Get(); }

else fromPort=1;

if (m==null) { m = GatewayPort.Get(); if (fromPort==0) fromPort=3; }
else fromPort=2;

Transition: -> Transit

Delay: AgentMiddleware.transmitDelay(m)*(1l.0+TExponentDistx(1.0))

Transit
Enter:

Switch(fromPort) {

Case 0: break;

Case 1: Port2.send(m); GatewayPort.send(m); break;

Case 2: Portl.send(m); GatewayPort.send(m); break;

Case 3: Portl.send(m); break;

}
Transition: -> Idle
// Depending on direction Portl->Port2+GatewayPort, or Port2 or
// GatewayPort -> Portl, the corresponding transition Portl_Count or
// Port2 Count is followed in the state chart
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Appendix C  Break Planner Application:
Selected UML Diagrams

C.1 Analysis Class Diagram
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C.3 Break Scheduler Application - Use Cases
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Appendix D Review of Mobile Agent
Frameworks

D.1 D'Agents

D'Agents [Rus, et al. 1997] is a multi-language agent system being developed at Dartmouth
College, Hanover, Massachusetts. The first versions were released in 1994, based on a proprietary script
language [Kotay and Kotz 1994], and in 1995 using Tcl [Ousterhout 1994] under the project name TIAS
[Harker 1995]. From 1995 to 1997 the system was renamed Agent Tcl since Tcl was the only supported
programming language [Gray 1995, Gray 1996, Gray, et al. 1997, Kotz, et al. 1997]. Since 1998 the
project is known as D'Agents and now supports Java, Python and Scheme programming languages
[Gray, et al. 1998].

From the start, D'Agents were aimed to provide support for strong mobility. In D'Agents, a call to a
single function, agent jump, triggers an agent's migration between network hosts. The D'Agents
interpreter packages up the complete state of the agent and sends it to a destination machine. D'Agents
offer support for strong mobility in Java, however a modified Java Virtual Machine (JVM) is required to
run the code. This disadvantage may limit usability of D'Agents support for Java, as the proprietary
interpreter may become out of date with evolution of the Java language.

D'Agents consists of four levels. The lowest level is an interface to transport mechanisms, the next
level is a server that runs on each machine, while the top level consists of the execution environments,
one for each supported agent language. This last level comprises the agents themselves, which execute
in the interpreters and use facilities provided by the server.

D'Agents implements the following basic concepts: agents, server, migration, and messaging.

Agents
An agent in D'Agents is a program written in any of the supported script languages, and run on top
of the framework's interpreter. Each agent is being assigned a unique name in the system.

Servers

Like most mobile agent systems, D'Agents run a server on each machine that the agent can visit. On
a server, each agent runs as a separate process in the interpreter. D'Agents server keeps track of the
agents that are running on its machine and maintains a hierarchical namespace for agents, thus allowing
agents to send messages to each other within this namespace. D'Agents can back up their states to a
nonvolatile store provided by the server. In case of server failure and a subsequent restart of interpreters,
the server restores the agents' states from the storage, and execution of the agents continues.

Mobility

Agents can migrate from their home server to a given list of destinations. Possessing strong
mobility, D'Agents call a single function, which triggers the capturing of a complete agent's state and
forwarding of this state to the destination machine.

The D'Agents server is in charge of looking after agent dispatch and arrival. Incoming agents are
authenticated with the identity of the agent's owner and passed on to the interpreter for execution. After
the agent's state information is loaded into the interpreter's execution environment, the agent is restarted
at the exact point at which it left off. Agents can be transferred over the network by plain TCP/IP
sockets or email.
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Communication

Agents are allowed to send messages to each other within the server's namespace. Two reserved
types of messages are defined: an event message and a direct connection. An event message provides
synchronous notification of an important occurrence while a connection message requests or rejects the
establishment of a direct connection. A direct connection is a named message stream between agents and
is more convenient and efficient than message passing for long interactions. The server buffers incoming
messages, selects the best transport mechanism for outgoing messages, and creates a named message
stream once a connection request has been accepted.

Agent can also communicate directly locally or remotely through procedure calls using a special
Agent RPC defined in AIDL (Agent Interface Definition Language).

Security

Security in D'Agents focuses on the protection of the host against malicious agents; server control
of the system resources is achieved via stationary agents - resource managers. Untrusted Tcl agents are
run in a special Tcl interpreter, whilst all system resources are managed by a trusted process — a trusted
interpreter. The latter asks an appropriate resource manager to determine if the visiting agent should
have access to the resource. The trusted interpreter then enforces the manager's policy decision, either
proceeding with the resource access or throwing a security exception back to the untrusted interpreter.
Agents and messages, which are transferred over the network, are encrypted and signed to maintain their
privacy and to authenticate the agent to the new host.

D.2 Mole

The mobile agent system Mole [Strasser, et al. 1997a] was developed at the University of Stuttgart,
Germany [Mole 1999] in 1995. It was one of the first mobile agent systems implemented in Java
[Strasser, et al. 1997b].

Mole only supports weak mobility, which is justified by the advantage that Mole gives through its
ability to work with any standard, un-modified JVM [Baumann, et al. 1997]. The Mole approach
contrasts with D'Agents, where strong mobility has been achieved through modifications of the JVM.
Deployment of weak or strong mobility in mobile agent systems is still an open question for the agent
community, thus both approaches co-exist and allow the developers to exploit advantages of the either
approach.

Mole provides the notions of places, the executing environment, where user agents are able to meet
and communicate. They can interact with the underlying operating system resources via service agents,
which are always stationary. A number of communication mechanisms are supported, including badges,
sessions and events. In addition to places and messaging services, Mole includes a resource manager for
accounting and resource control, a simple local directory service where agents can find other agents, and
a graphical agent monitor for examining agents, places, and messages sent between them.

Mole overcomes the Java applet restrictions of being able to connect only to the server, from which
applets are loaded, by using relay components in the server engines. These relays redirect
communication data to or from the browser engine to remote server engines. Mole implements the
following basic concepts: agent, place, migration, badge, session, and shadows.

Agents

Mole agents are clusters of self-contained objects, containing references to their execution
environment, through which Mole framework commands are executed. Agents move from place to
place to access services that places provide and to meet other agents.

Agents in Mole can be identified in two ways: through globally unique identifiers, generated by the
system, so-called badges. Badge identifiers represent the role (i.e., goal) of an agent at a given time, and
so long as the agent provides functionality associated with this role, it "wears" the badge. An agent can
wear several badges at the same time. Badges are used to group cooperative agents performing a user
task and to allow communication between them.
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Servers

An agent system consists of a set of places, each one assigned to an agent community, providing
access to a set of services and often implementing a certain "pricing" policy. A place is a server engine
that represents an execution environment for agents where they can execute and communicate with other
agents, use resources and services of the underlying system. The system agents are in charge of
negotiating the use of resources; the Master Control Process schedules all execution threads in the Mole
system. Mole supports disconnected operation through the concept of associated resources, if the system
is not connected to the network permanently.

Each place has a simple local directory service, where agents register the services that they are
capable of. Agents wishing to use other agents' services retrieve the identifier of a suitable agent from
the directory service, and establish communication directly with the target agent.

Mobility

Mole provides weak mobility through use of Java and RMI. The MigrateTo command of the
framework takes a URL of the destination place server, and results in serialization of the agent's state,
transmission to the destination and subsequent agent re-instantiation. Code base mobility is supported: if
any of the Java classes needed are not available locally, the target location requests these classes either
from a code server or from the source location if no code server has been specified. When migrated
agent resumes its thread successfully, a confirmation message is sent back to the source location. The
source location then removes any resources pertaining to the agent from the system.

Agents can be terminated remotely by use of a shadow protocol [Baumann and Rothermel 1998].
When an agent is created, a corresponding shadow is generated at a place. After agent's migration or at
regular intervals of time, the Mole system updates the shadow links for all agents. If the shadow no
longer exists, the agent is declared to be an orphan and is removed.

Communication

Agents wishing to communicate with each other must establish a session before the actual
communication can be started. After the session setup, the agents can interact by remote method
invocation or by message passing. Communication is not restricted to agents at the same server place.
Message forwarding is not supported: communication sessions must be ended and restarted after an
agent migrates to the next place. Badges facilitate selection of target agents for communication.

Security

Mole enforces the "sandbox" security model, in which mobile agents have very limited access to the
underlying system. Stationary service agents control system resources, maintaining security and
providing abstractions of the resources to Mole agents operating in the agent system.

D.3 Hive

Hive is a distributed agent platform and a decentralized system for building distributed applications,
making local system resources available to such network applications, and taking advantage of mobile
code [Minar, et al. 1999]. Hive developers at the MIT Media lab, are using it to provide the
infrastructure for connecting their numerous "Things That Think" [Gershenfeld 1999] research
initiatives. Hive is built using the standard Java features of object serialization and interpretation used by
so many mobile agent frameworks and therefore supports weak mobility.

The Hive architecture consists of the following three abstractions: cells, shadows and agents. A cell
is the executing environment in which agents are hosted. Cells also contain shadows, which are
placeholders for local resources, for example a display or printer. The designers of Hive have made
particular efforts to address the problems of agent description and Hive supports both a syntactic and
semantic ontology. Inter-agent communication in Hive has been achieved by using RMI as the
communication mechanism. This allows the methods of Hive agents to be executed remotely. While this
approach is simple and uses built in capabilities of the Java language, it has the disadvantages of loss of
control and security. In the author’s opinion, it also blurs and lowers the abstraction level of the mobile
agent to one of merely a mobile object. If an agent’s methods can be called and executed remotely, then
any notion of autonomy for the agent has been lost. Hive thus embodies a hybrid abstraction, drawing
elements from the autonomous agents research arena, and from contemporary RPC distributed systems.
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This hybrid abstraction has caused the Hive team some considerable difficulties in achieving their goals
[Minar, et al. 1999]. However, the ontological descriptions supported by Hive are superior to many if
not all of the other frameworks reviewed.

D.4 Concordia

Concordia is in development since 1997 at the Mitsubishi Electric Information Technology Center
America (MEITCA). A framework for developing and executing mobile agents in Java [Castillo, et al.
1998, Koblick 1999, Walsh, et al. 1998, Wong, et al. 1997], Concordia has been used in a variety of
applications, including an electronic auction house [Huai and Sandholm 1999].

Concordia consists of the following components: a server for executing and transferring agents, and
an administration manager for remote server administration. Concordia implements the following basic
concepts: agent, context, service point, collaboration and policies.

Agents

Concordia agents migrate between network nodes and interact with information agents locally at
each node. As components of the same application, agents can form one or more collaboration units,
known as agent groups. Concurrent execution of collaborative units allows tackling complex tasks, and
collaboration allows agents to correlate their results and adjust goals accordingly.

Servers

Concordia server consists of various modular components that provide an integrated environment
for mobile agents. The agent manager controls the creation, destruction and execution of agents. A
queue manager schedules transport of agents over the network. Concordia servers provide services
through one or more stationary information agents, which act as facilitators, or service bridges. These
service bridges effectively perform a role of interfaces and make it possible for agents to interact with
existing native applications or legacy systems. A persistent store manager ensures that agents recover
successfully from system crashes. An event manager provides for the collaboration of agent groups, a
security manager controls the local security policies, and a directory manager enables agents to locate
the application servers they wish to interact with on each host.

Mobility

Each server provides for agent mobility through a queue manager. Fault-tolerant transmission is
guaranteed through caching of a migrating agent in the local system message queue until it is confirmed
to have been received by the remote host. This store-and-forward mechanism makes Concordia suitable
for disconnected operation. Like most mobile systems, Concordia transfers the agent's internal state in
migration. Concordia supports a class loader, which packages Java byte code into a special data
structure that travels with the agent's state. Migration process runs on Java RMI and can be secured with
SSL.

The migration schedule of an agent is described in its itinerary, which is composed of multiple
destinations. Each itinerary record describes a location, to which the agent is to travel, and the work the
agent has to accomplish at that location. The agent can modify its itinerary, but the itinerary is not part
of the agent. This mechanism allows multiple entry points into agents executed at multiple locations.
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Communication

Concordia provides two forms of inter-agent communication: distributed notification of events and
agent collaboration. Distributed events are scheduled and managed by the event manager. Before an
agent can receive selected events, it must register with the event manager by sending a list of events it is
interested in receiving and a reference to a location where it wishes events to be sent. Agent
collaboration, which makes use of this event mechanism, allows agents to interact in a group. Such
collaboration requires each agent in the group to participate and to access a collaboration point.
Collaboration concurrency is resolved through a blocking scheme: when an agent arrives at the meeting
point, it posts the results of its execution to the agent group and blocks until all group agents have posted
their results as well. In addition to "strong" collaboration with a blocking scheme, meeting points can be
set up to support "weak" collaboration, where collaboration is allowed to continue even if some of the
agents in the group fail to arrive at the collaboration point.

Security

Security in Concordia is provided at numerous levels, including agent storage protection through
encryption, transmission protection with digital certificates for identity verification and symmetric key
exchanges to authenticate sender and receiver. The Concordia resource protection model extends the
capabilities of the Java environment and provides flexible user-based access control.

D.5 Grasshopper

Grasshopper [Grasshopper 1999] by IKV++ GmbH is a Java mobile agent development and
runtime platform built on top of CORBA [IKV 19992, IKV 1999b]. 1t is the first mobile agent system
that is compliant with the CORBA Mobile Agent System Interoperability Facility (MASIF) [Milojicic,
et al. 1998].

Grasshopper framework includes the distributed agent environment, providing the basic system
functionality, region registry registers for all agents and places in a region, and the platform
management tools for agents, places, and monitoring of events and threads.

Grasshopper implements the following basic concepts: agents, agencies, places, regions, and
authorities.

Agents

Agents in Grasshopper have an authority (i.e., a person or an organization), for which the agent acts.
Agents are named by their authority, identity and an agent type; a combination of these uniquely
identifies the agent. An agent's identity identifies an agent's instance among all agents of the same
authority.

Servers

A server in Grasshopper (an "agency") contains the one or more core agencies and one or more
places for visiting agents. The core agency provides minimal functionality required by the server in
order to support execution of agents. The following services can be made available in the agency: a
communication service, a registration service for all local places and agents, a management service for
monitoring and control of agents and places of the agency, a security service, and a persistence service
to store agents and places on a persistent medium.

Mobility

Grasshopper supports weak mobility, agent serialization and transport use the underlying CORBA
services, Java RMI, or are based on socket connections. To achieve secure communication, RMI and the
plain socket connection can be protected with SSL.
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Communication

Communication service is part of the core agency and is responsible for all remote interactions that
take place between the distributed components of Grasshopper. Supported are: location-transparent
inter-agent communication, agent migration, and localization of agents by means of the region registry.
The communication service provides synchronous and asynchronous communication, multicast
communication, and remote method invocation.

Security

Grasshopper security engine extends the features of JDK 1.2 by making use of identity-based
group-based access control policies. Access controller manages agent's access rights and is capable of
identifying the agent's owner behind the agent's authority. With this information it contacts the policy
object to extract the set of permissions for the owner, which are then applied to the agent.

D.6 MESSENGERS

MESSENGERS [MESSENGERS 1999], developed at the University of California, Irvine, is an
autonomous, object-based environment intended primarily for development of dynamic applications,
such as distributed simulations [Bic, et al. 1997, Bic, et al. 1996, Fukuda, et al. 1997, Fukuda, et al.
1998]. MESSENGERS classifies itself as a system for self-migrating threads.

MESSENGERS programming language is built on a subset of C and requires an interpreter, running
as a daemon at each node in the network, and a set of libraries. The language contains statements
belonging to one of the following classes: computation, navigation, and system function invocation.

MESSENGERS implements the following basic concepts: messengers agents, nodes, and hops.

Agents
Agents (Messengers) are compiled into byte code, interpreted at runtime. The agent framework
provides a number of system functions, including explicit and implicit cloning (multithreading).

Servers

Each network node runs the Messenger interpreter, and can contain one or more logical nodes.
Messengers can call precompiled C functions at logical nodes or spawn separate processes. Messengers
can create, change or delete logical nodes.

Mobility

Messengers navigate through a logical network based on their schedule. A number of addressing
methods exist: migration destinations can be specified by several parameters, including logical and
physical nodes, link names, and wildcards. At migration, a replica of the Messenger is propagated to all
nodes that match the specification.

For every Messenger agent, an interpreter continues to run the code until it encounters a
navigational instruction. At that point the interpreter passes the Messenger to the appropriate destination
nodes of the logical network. If destination logical nodes are located at the same physical node, the
Messenger is simply moved to the appropriate queue, where it awaits its turn, as the interpreter is
multiplexed between serving agents at the different logical nodes. If the destination is found at a
different node, the Messenger is sent there using TCP/IP sockets.

Communication
Messengers communicate by invocation of precompiled C functions at logical nodes.
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Security
MESSENGERS provides virtually no security features, since its general purpose is to use the power
of local area networks to speed up computational tasks.

D.7 Tacoma

Tromso And COrnell Mobile Agents (TACOMA) [TACOMA 1999] was developed at the
University of Tromso, Norway and Cornell University, USA with the focus on fault-tolerance,
scheduling and management, security, and accounting of agents [Johansen, et al. 1995]. The first
implementation was built in 1993 on the basis of experience from the StormCast project [Johansen, et al.
1998] and was entirely implemented using Unix and C. Current versions support various operating
systems, and a number of programming languages such as C, C++, Java, ML, Perl, Python, Scheme, and
Tcl/Tk.

TACOMA builds on two following mechanisms: meeting and folders. The source of a program with
all corresponding data is stored in folders and moved from host to host through stationary firewall agents
on each host.

TACOMA implements the concepts of agent, folder, briefcase, and cabinet.

Agents

A TACOMA agent has a collection of folders associated with it - a "briefcase". The agent "carries"
the briefcase while moving around the network. A code folder contains one or more scripts in a
supported language, and a data folder has the data, associated with the code from the code folder. In
addition to mobile briefcases, an agent can set up stationary folders called file cabinets, which are used
as permanent data repositories on a host.

Servers

Servers provide transport services for migrating agents through a firewall agent (tac) and a re-
launching agent (tac exec), which passes agent code on to the appropriate interpreter depending on the
language used by the agent. Such architecture provides effective agent migration support and doesn't
compromise security features of the agent framework.

Mobility

TACOMA agents migrate from one host to the other as they are a part of the "briefcase". An agent
stores required data in the briefcase and invokes TACOMA migration command. This opens a TCP
connection with the firewall agent at the destination site, URL of which is specified in the host folder of
the briefcase. After migration, the receiving tac firewall agent meets the TACOMA agent with whatever
agent identified in the contact folder of the briefcase. This mechanism can facilitate efficient
collaboration between agents.

Communication

Instead of communicating by means of messages, agents use briefcases with the data they wish to
share. One significant drawback of TACOMA is that place-to-place communication is not supported: if
the agents are located at different places, they must co-locate by moving before they can communicate.
In other words, communication between active agents can only be performed using shared cabinets and
can only involve agents residing on the same server. As described above, host and contact folders of
briefcases are used to specify the URL of the migration destination place and the ID of the agent to be
contacted.
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Security

Use of firewall agents in TACOMA allows to implement a number of security mechanisms. One of
the ways to restrict access to untrusted agents is to specify a set of TACOMA hosts, from which agents
are accepted. Further, execution of agents can be confined in a subtree of the file system.

D.8 Telescript

Developed in the early 1990s by General Magic, Telescript is a proprietary, object-oriented, type-
safe language conceived for the development of distributed applications [White 1997]. It was the first
commercial implementation of the mobile agent concept and has been the most widely adopted agent
system for years in the industry [Doemel 1996]. Indeed, General Magic first coined the term mobile
agents and applied for a patent on the concept in 1993. In 1997, it received US patent 5,603,031 [Kiniry
and Zimmerman 1997].

Telescript framework consists of three major components: anent programming language and an
interpreter, engines and communication protocols, which are also used for agent migration. One of the
driving factors for Telescript's language design was support for strong mobility, the other — support for
higher levels of security. Telescript implemented compilation of agent source files into byte code, which
is interpreted at run time, before Java became available. Success of Java forced General Magic to re-
develop Telescript, and release Odyssey [Kiniry and Zimmerman 1997], a new agent system
implemented solely in Java that uses the same design framework.

Telescript implements the following basic concepts: agent, place, travel, meeting, authorities, and
permits.

Agents

All agents in Telescript must are derived from the Agent parent class. An agent has several public
methods that can be accessed during a meeting. Each agent has a telename, which is data that denote the
agent's identity as well as its authority, and a ticket, which is data that specify the agent's destination and
the other terms of the trip (for example, the means by which it must be made and the time by which it
must be completed).

Servers

The Telescript engine manages and executes stationary agents, called places, as well as mobile
agents, which visit these places and access services, provided by the places. Each place has a telename,
denoting the place's identity and authority.

Mobility

In Telescript agents decide when to travel from one place to another by executing Telescript's go
instruction. The instruction takes a ticket as a parameter; the latter gives a telename and teleaddress
(URL) of the destination.

The Telescript agent migration protocol involves the two places concerned in authentication
through firewall agents (at the lower level) and communication of the migrating agent's briefcase
between from one place to the other (at the higher level). Fault tolerance in migration, is implemented
through exceptions: the agent receives an exception raised by the invoked go instruction and can handle
it appropriately. When migration succeeds, the agent's next instruction is executed at its destination.

Communication

Agents can interact locally at the place by executing the meet instruction of Telescript. As a result
of the meeting, each agent obtains a reference to the other. Then, both method invocation and shared
memory mechanisms can be used for communication [Vigna 1997]. The meet instruction requires a
petition, a reference to the agent to be met a number of meeting parameters, such as the time by which
the meeting must begin. Unlike TACOMA, Telescript agents always supported remote connection
between agents, which is carried out through a connect command, which uses the same parameters as
meet command.
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Security

Telescript's security mechanisms are based on authorities and permits. Authority relates to the
individual or organization in the physical world that the agent represents. Authorities let agents and
places shape interactions with one another in three different ways. First, a place can request authority of
any agent that attempts to enter it, and can arrange to admit only agents of certain authorities. Secondly,
an agent can discern authority of any place it visits, and can arrange to visit only places with certain
authorities. Finally, an agent can discern authorities of any other agents with which it meets or to which
it connects, and can arrange to meet with or connect to only agents of certain authorities.

Authorities limit capabilities of agents and places by assigned permits. Permits protect authorities
by limiting the effects of malicious agents and places. An agent's permit can specify the maximum
lifetime of this agent, its size or computation/execution time allowance. Temporary permits can be
voluntarily imposed by agents or places on themselves, which enable the agent to plan and adjust its
actions according to the resources available. The agent is notified if it violates one of temporary permits,
rather than being destroyed after having exceeded the permanent permit.

D.9 Voyager

Voyager [Voyager 1999a] is an agent-enhanced Object Request Broker (ORB) under development
since 1996 by ObjectSpace, Inc [Voyager 1997, Voyager 1999b]. Voyager uses the Java programming
language to provide a universal solution for distributed object interaction techniques. The main focus of
Voyager is on programming universal clients and servers as well as acting as a gateway for CORBA,
Java RMI, DCOM and Java Beans [Sun 1999]. Voyager should really be considered as a Java-based
messaging broker, which possesses capabilities from the mobile agent field. This allows programmers to
create network applications by choosing between traditional and mobile distribution technologies;
because of this advantage, Voyager has been a successful product.

The Voyager ORB facilitates the creation of traditional distributed object-oriented systems using
CORBA, Java RMI and DCOM as well as mobile agents. The Voyager security framework offers a
lightweight security implementation, support for secure network communications via SSL adapters, and
firewall tunneling using the industry standard SOCKS and HTTP protocols. Voyager Transactions
delivers full OTS-compliant distributed transactions support, including a two-phase commit protocol and
a one-phase commit JDBC adapter. The Voyager Application Server offers an Enterprise JavaBeans
development environment that decouples application logic from systems programming logic.

Voyager implements the following basic concepts: agent, application, secretary, and messenger.

Agents

Each agent in Voyager consists of a virtual stationary agent and the mobile agent itself. The virtual
agent acts as a reference to the mobile agent and resides with the hosting application. The application
then communicates with a mobile agent through its virtual agent, which provides two-way messaging
between the application and the mobile agent. The virtual agent is generated automatically at runtime
upon creation of the mobile agent.

Each agent receives a globally unique identifier and a defined life span. The virtual agent can be
programmed to send a lightweight "ping" to the mobile agent at regular time intervals. Voyager then
uses these pings together with the agent's life span to determine when the agent can be garbage-
collected.

Servers

Servers in Voyager are called applications. They provide the runtime core and services such as the
local service registry and can host various objects that provide services to visiting agents. Applications
can store a snapshot of any agent and subsequently act as code servers by using the class loader with
Voyager's built-in HTTP support.
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Mobility

An agent can move from one application to another by sending itself a move message, where not
only the destination application address can be specified, but also the name of the member function that
should be executed after migration. If the agent moves to the new destination, it can still be located by
using the last known address. Before moving, it creates a special secretary agent, which forwards all
relevant messages to the new location. The virtual agent at the application host then updates the mobile
agent's location every time a response message is originating from a host, which is different to the host
of the previous message. Subsequent messages are sent directly to the agent at its new location.
Secretaries are automatically destroyed by Voyager's distributed garbage collector when they are no
longer used.

Communication

Voyager's synchronous messages are used by default: they block until the message is received and a
response message has been returned. One-way messages return to the sender immediately after delivery
and do not allow return values. Future messages return to the sender without waiting for the message to
be confirmed as delivered; they return a placeholder that can be used to retrieve the returned value later
by polling, blocking, or waiting for a callback.

Voyager supports multicast and publish/subscribe messaging models through its scalable
architecture for a message and event replication system called Space. Messages in Voyager are delivered
by lightweight mobile agents called messengers.

Security

The Voyager security manager extends the standard Java security manager and distinguishes
between "native" and "foreign" agents, or objects. Native objects are those, whose classes reside in the
application's CLASSPATH. Foreign objects are objects, whose classes were loaded across the network
from another host. By default, foreign objects are restricted and have nearly the same permissions as a
Java applet, while the Voyager security manager allows native objects to fully access the functionality
provided by the JVM.
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Appendix E  Quantitative Performance Model
of the Architecture

E.1 Introduction

In this appendix we present a model for estimation of performance of a collaborative multi-agent

consistency check in the proposed software agent architecture.

E.2 Assumptions

N - Number of hosts, containing one or more documents, participating in distributed consistency
checking.
K — Number of domains: ny, n,, ..., n; hosts in each domain.

M — Number of participating documents. Two forms of access to the data in this set are used: m; = {

my, my, ..., my }gives the number of documents at each host; mij ={M;,m;,, .., m1n1 , My,

m,,, ..., m2n2 , ..., m Kn, } gives the number of documents at each host within each domain.

R — Number of consistency rules for consistency checking in the system.

Application of each rule to the participating documents results in selection of a following number

(x) of relevant documents at each host:

Vi=1..N,x=%R(m,R),

where function R () is defined as a table, for each set of consistency rules and set of documents

used.

Sizes of documents are given by an array S = [S;, S,, ..., Sy, each element of the array specifies

number of elements in all documents at each host. Another form of access to number of document
elements by host and by domain is also used: Sij ={ S11, S12 5 ey Sln1 R S21, S22 5 eees Szn2 ,
ees S Kn, }-
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E.3 [Initial findings

Execution of a consistency rule requires selection of elements from all applicable documents, at

each host:
tpars §R(’nz’R) Sia (3-1)

where t, is a parsing time for an element, and R (m;, R) * S; is the number of elements to be

parsed.

Queries the domain agent for an itinerary, containing list of documents, relevant to a consistency

rule, take the following interval of time:
N
((0 + tquery) Zi=l m(ml ’R) ’ (3‘2)

where @ is the timing function of network transmission, depending on the number of transmitted

elements. We use both notations: ¢ Arg and ¢(Arg) to specify, that the function is applied to the

argument Arg.

E.4 Local consistency check

The timing of a local consistency check consists of parsing time and the time, required to generate

consistency links. The latter timing (¢ ) is determined by an experiment, and is given as a table of

generation

values for different consistency rules.

N

Tc = thars .m(mv7R) .Sv ; 4.1)

v=1

Let p = {1, 1 ..., Iz } be link generation times for different consistency rules, then

R
Zl p =1 generation (4_2)
i=

The checking time of a local consistency check will then be the following:

c
T =T+t generation (4.3)
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E.5 Distributed in-domain consistency check

Consider the worst-case scenario for a single-domain consistency check: all hosts in a domain need

to be visited by a mobile checking agent.

Single-domain consistency check then takes time 77 . This time consists of the timing for itinerary

query to the domain agent, timing of transfer of nodesets and time of a local consistency check:

T N N-1 Tc
1= (9 + fquery) 2 R(m, R)+ 3, ¢ (Looge + R(m;,R)-S;) + 1 toral  (5.1)

i=1 j=
where L. — length of mobile agent code.

E.6 Single agent distributed check across multiple domains

max
Inter-domain location discovery timing (£ ;57 ) is a sum of in-domain itinerary queries for each of

the participating domains:

max

K nj
idid = (@ +1 )Y R(m,R). (6.1)
j=1 i=1

Inter-domain  location  discovery starts from a certain host in domain A,
A=1...K.

ny A-1 n;
i;la' = ((p + tquery )Z m(mA ’ R) + z (‘p + tquery )Z m(my > R) +
i=1 j=1 i=1

K "
Z (¢ + tquery )Z é}t(’nl] ’R) (6.2)
i=1

j=A+1

First component is the location discovery timing within the domain of host A, two remaining

components — inter-domain discovery timings outside of domain A.

Worst-case scenario for multi-domain consistency check is when all relevant documents are located
at hosts of different domains. The timing of a multiple domain consistency check T,,**is then as

follows:
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K n |
Ty™ =Tgs + D0, D P(L oo + R(my, R)-S;) + T ot | (6.3)

i=1 j=1

Once again, similarly to (4.1)-(4.3), Tiot is the timing of a local consistency check:

K n
T a1 = Z Z tpars ’ gt(mvjaR) ) Svj + tgeneration )

j=1 v=1

E.7 Multi-agent distributed check across multiple domains

In an optimal scenario, a number of agents (y agents) perform concurrent consistency checks at

different hosts:
T = Tgy + 1
M = Yidd t+ ;A +11 (7.1)
T d Topt
total = Ly T tgenerationa (7.1.2)
K IT(i,n;) K IT(,n;)
where A = Z Z P(L s + m(mij’R)'Sij) + Z thars -R(m,,,R)S,, |
i=1 )= i=1 =l
K IT(i,n)
H:Z ¢(§R(mij’R) 'Sij ) (7.2)
i=1  j=l

The expression for 7,7 consists of inter-domain document location discovery timing 7, and the

timing of a distributed multi-agent nodeset collection and nodeset transfer (7.1). In addition to that, total
time for checking a particular rule i, includes link generation time (7.1.2). Inter-domain discovery and
link generation timings here are the same as in a single-agent scenario, thus any difference in

performance of a multi-agent approach can be derived from values of A and I1.

A constitutes the total time it takes for an agent to migrate between all hosts of all domains,
specified in its itinerary, to parse documents at these hosts and to transport the collected nodesets during

migrations between hosts. In a multi-agent scenario, this job is carried out concurrently by y agents.
Consequently, in the formula for 7,7, A is divided by y, thus potentially decreasing the total time for a

multi-agent check. Function IT( i, n; ) serves as a summation index and returns number of hosts,

specified in agent's itinerary, out of total n; hosts at each domain i.
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All collected nodesets need to be transported to a location, where link generation is to be carried
out. I1 is a corresponding time interval, which is spent on information exchange between collaborating
mobile agents. I1 is a penalty for carrying out a concurrent multi-agent check. The formula for IT sums
up the transfers of nodesets, collected from documents of all domains, specified in the itinerary.
Regardless of the number of agents, these nodesets are transmitted only once, therefore y does not

directly participate in the formula for IT.

It is evident, that use of y agents ( 1<y<M ) for a distributed check is more efficient in terms of
distributed nodeset collection time (A/y), rather than use of a single anent (A). The question for
consideration is whether efficiency advantage will remain even when a penalty IT is in place. The

following Theorem aims to address this question.

E.8 Theorem on multiple-agent distributed consistency checking

Theorem. When carrying out a check of a consistency rule, there exist certain circumstances, where
performance advantages can be gained from use of distributed concurrent mobile checking agents, rather

than from use of a single mobile agent for sequential processing of distributed documents.
Comment: This theorem establishes the comparison relation between A and (A /y + IT).

Statement to be proved: There exist such conditions, that sequential transfer of agents and retrieval
of nodesets takes longer than concurrent retrieval of nodesets, followed by exchange of retrieved
nodesets preceding link generation. It is then an advantage to deploy multiple mobile agents for

distributed checking in such conditions.

Prove: Yy:1<y<M,i=1...K,j=1...IT(i,n,),

1 (
t . >— @8, y-1)
pars y- 1 (p( 1}) < Il< y A 8.1)

In other words, we have to prove that penalty IT will be such, that A /y + Il is less than A, for any
number of agents greater than 1. In this case, the larger the number of agents (upwards to the number,

equal to that of number of documents), the greater the efficiency advantage of multi-agent checking:

Vy:l<y<M,yT:‘>(A—(%+HDT 8.2)

Proof:
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Let the size of transported nodeset be = i™ m(mij ,R) ) jj » then:

A 1 K IT(i,n, 1 K IT(in;)
— = _z (¢(Lcode)+(p(gij))+—z thars
y Yia1t = Yia va
K 1 K IT(l,n,(
= 7 (Lcode) +— ; Z ((p + tpars ): ) s (8.3)
K IT(i,n;)
IT= Zl: 1 (El]> (84)
=1 j=

At this point, taking into account (8.3) and (8.4), we need to establish the following relation ( (y-1)
A/y>ID), 1<y<M:

1 K IT(in K IT(in;)
Y_ylzl: .1((¢+tparshij)>zl Z;‘P(Eij) 8.5)
=l j= =l j=

We make the relationship stricter in (8.5) by removing from consideration a component of A in

(8.3), which has to do with transfer of mobile agent's code during migration.

Transforming both parts of the relation, and removing the summation:

Vi=1...K,j=1...IT(i,ni):(¢+tpa,s = > yl'Q?(Eij)
y—

We derive the condition for the parsing time of an individual file, which is:

y-(-1) -
t >t 2.p(E
pars y—l gp( )

After transformation, we get:

Vy:l<y<M,i=1...K,j=1...I1T(i,n,)
1

tpars > ﬁ ) ¢(El]) . (8.6)
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For (8.5) to hold, parsing time for each document has to be greater than transmission time of the
nodesets, collected from that document. The transmission time is taken in the inverse proportion to the
number of concurrently deployed mobile checking agents. In practice, for sufficient number of

concurrent mobile agents, this inequation will be satisfied.
Relation (8.5) then necessitates somewhat more relaxed inequation (8.1).
End of proof.

With the increase in a number of concurrently used mobile agents, total time of a distributed

consistency check decreases: y T => T%y |.

E.9 Theorem on multi-agent distributed and local centralised
consistency checking

In the previous section, we compared single-agent and multi-agent approaches to distributed
checking of consistency relations between documents. This section continues the comparison between
the mult-agent approach and a centralised checker of local documents. Here, we also extend our check to

cover multiple consistency rules in a batch.

Let p = {1, 1, ..., Ir } be link generation times for different consistency rules, then

R
Z p = tgeneration

i=1

In the multi-agent architecture, the total concurrent checking time of all participating consistency

rules until consistency links are generated is then:

R
2IID
T% ol = HT"ZU 9.1)
=1

Tn in (9.1) is taken as a function of consistency rule number to signify that different rules result in
differing itineraries and check times. The sum of Ty is averaged by the number of rules to signify
concurrent checking. This is true with the assumption that all checks can be carried concurrently (i.e.

there are sufficient resources to execute checks concurrently at all participating hosts).

Local centralised checking of the same rules:
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M
¢ —-
T o = RZ tpars =T z :ri 9.2)
i=1

i=1
This calculation for centralised local check is provided for equal conditions with the distributed
multi-agent architecture. Documents are re-parsed for checking of different rules in order to

accommodate change, since for each incremental change complete run of all consistency rules occurs in

the centralised local checking scenario.

Comparison between T wa and T 4 . If we use as many agents as documents
(y = M), discard inter-domain discovery process timing and use (8.3-8.4), we transform (9.1) into:

T total = EZ(H‘p(Lcode) + ﬁ(qg + tpars)‘: +M - ‘P(':)) =
i=1

K — ~
P Li) + (M +1) (@) +1,,,, B ©3)

Theorem. In checking of a set of consistency rules, there exist certain circumstances, where
performance advantage can be gained from the use of multiple distributed mobile agents for concurrent
checking of a number of consistency rules in an incremental fashion, rather than from using a centralised

checker for the same set of rules on the documents available locally.

Statement to prove: There exist circumstances, in which T © ;5 > T 4 ol -

Prove:

@(E)
R

When tpars > B T ctotal >T dtotal

Proof:

We aim to establish a set of parameters, in which:

R
M R PWIHO)
c § =7 2 S
T total = R tpars =12 rl > Tdtotal = H—R—"' Zrl (94)

i=1 i=1 =1

After transformation:

__K TV ar -E
R.M.tpars.:"‘ >—A7¢(Lcode)+(M+1).¢(:“)+tpars .:',

K
s 2 (R-M ~1)> ﬁ¢(l‘code) +(M +1)-0(®) ©9.5)
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For practical applications, where the number of rules in the set R>1 and the number of documents

M>>1: RM >> 1, therefore (RM-1) ~RM, and (M + 1) ~ M.
K
When M >> K, ﬁfp(Lwde) =o(@).

Transformation of (9.5) then gives:

"E'R'M>M-p(E)+o(p),

t pars

"E*R>@-E+o0(p),

t pars

O
pars R

For a sufficient number of consistency rules checked concurrently, parsing time will exceed the

t (9.6)

result in the right side of the inequation.

End of proof.
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Appendix F  Incremental Checking: Technical
Challenges

F.1 Selection of Relevant Consistency Rules

Initial relevance of consistency rules to documents is established by an exhaustive check of all
consistency rules on all documents when the incremental checker initialises. A consistency rule is
relevant to a document when there is at least one rule operator, which contains an XPath expression that
selects an element from that document. In addition to initial rule relevance, incremental checking
requires selection of consistency rules, relevant to a particular document modification.

The proposed implementation of an incremental consistency checking approach was designed
intentionally lightweight. In the software agent architecture, which builds on incremental checking,
selection of relevant consistency rules is carried out at each participating network host. Lightweight
implementation allows users to perform incremental checking on "thinner" clients, and reduces an
amount of resources taken away by the checker from main applications, executed by the user on the
client.

Our rule selection approach is based on pair-wise comparison of XPath expressions. First
expression is generated by a tree-differencing (TreeDiff) algorithm for each modified document, when
current document's content is compared to that of the document's backup copy. Second expression in
each compared pair is an XPath expression, specified in the operators of every consistency rule. Rule
selection is a part of the incremental checking algorithm (Chapter 5, Fig. 5.7, line 10).

A result of comparison of XPath pairs establishes whether there exists an intersection between the
two XPath expressions. In other words, the comparison establishes whether one XPath points to a
document element, which is the same as, or is a sub-element of, another element, selected by another
XPath. If a TreeDiff XPath and an XPath in a consistency rule intersect, the rule is relevant to a
document modification and is selected for incremental checking.

Selected rules are executed during the incremental check. As a result, incremental consistency
check produces consistency links, which relate changed elements in one or more documents to the
current state of all documents in the system, relevant to the selected consistency rules.

Computing Intersection of XPaths

Efficiency of the incremental checking algorithm is ultimately dependent on correctly establishing
whether XPath expressions intersect. Semantics of the underlying consistency rule language determines
complexity of the comparison algorithm.

Consistency rules in XLinkit make use of XPath language, which includes advanced navigation
constructs. These include relative XPath expressions, wildcards, and selection of elements by value of
an attribute. Return values of such constructs depend on the contents of a particular document instance.
Therefore, when these constructs are used, XPath expression comparison cannot be carried out with
string manipulation of two expressions alone.

In general, in order to give a definite answer on whether two XPath expressions are comparable,
execution of XPaths on a document instance or on the definition of a document type is required.
However, execution of all XPath expressions in a rule during rule selection is inefficient, because such
approach would require the same resources as execution of the rule on the current document. We have
created a lightweight comparison algorithm, which in the case of simpler expressions allows us to avoid
unnecessary XPath executions in comparison of XPath expressions.
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Consistency Rules: Global Variables and Relative XPaths

XLinkit consistency rule language makes use of global variables. Consistency rules then include
relative paths to the "base" paths, stored in global variables. When a rule is checked, a "base" path is
concatenated with a relative path.

Relative paths in XPath language can be specified starting from a given element, from the parent of
that element, from any ancestor of that element, or from any elements at the current "level" of the DOM
tree (specified by a wildcard). These methods can also be combined. String-wise concatenation of the
values of global variables and the values of relative XPath expressions in rule classifiers results in
complex expressions, which cannot be readily compared to the XPath expression from a TreeDiff. For
example, expressions in Fig. F.1 are taken from the set of UML well-formedness rules [Appendix A].

Consistency Rule Identifier: genl

Value of a Global Variable: //Foundation.Core.StructuralFeature.type/

(I) Example XPath Expression:

/[Foundation.Core.StructuralFeature.type/../ancestor::Foundation.Core.Namespace.
ownedElement/*

Consistency Rule Identifier: n2

(II) Example XPath Expression:

//Founcation.Core.Namespace.ownedElement/../Foundation.Core.Namespace.
ownedElement/Foundation.Core.Association

(III) Example XPath Expression:

id(//Foundation.Core.Method/Foundation.Core.Method.specification/Foundation.
Core.Operation/@xmi.idref)/Foundation.Core.ModelElement.visibility/@xmi.value

Fig. F.1. Examples of complex XPath expressions from the UML rule base.

F.2 Lightweight Rule Selection Approach

We propose a lightweight approach, which determines intersection between two XPath expressions,
and a more heavyweight extension to this approach, where some complex XPath expressions are
executed when the lightweight approach fails to compare the expressions.

The lightweight approach is based on string manipulation; execution of XPath expressions on
documents is avoided, which results in a "small footprint" implementation. The string manipulation
approach, however, relaxes the matching criteria: since complete information about the contents of a
document instance is not available in this approach, numerous XPath directives are excluded from
processing (Fig. F.2).

Return values of extended XPath constructs (id functions, wildcards, selection by attribute, indices)
can only be identified when expressions are executed, and node selection operations are performed on
the DOM tree of a document instance. However, in addition to any node selection performed when
relevant rules are identified, node selection for all XPath expressions in a selected rule occurs again
when the rule is being checked. As we expect documents in the software engineering domain to generate
large DOM trees, extra node selection operations should be avoided. The lightweight rule selection
algorithm (Fig. F.2) follows this motivation.

The XPath comparison algorithm discards from consideration complex XPath constructs such as
id() functions (line 2.1 on Fig. F.2), wildcards (line 2.2), selection of elements by existence of xmi.id
attributes (2.3) and ancestry (both ".." and "ancestor::" prefix constructs, 3.1-3.3).

Removal of the mentioned XPath expression elements during selection of relevant rules can only
result in selection of additional consistency rules, which do not apply to a particular document change.
Relevant rules are not be excluded from checking, as exclusion of parts from the XPath expression only
makes selection criteria broader, not narrower. In other words, "stricter” XPath expressions, containing
id() functions, selection by xmi.id attributes and wildcards are only "relaxed" when such extended
constructs are removed. This relaxation may result in selection of additional rules. The scenarios in Fig.
F.3 help to illustrate the rule selection algorithm.
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1. For each consistency rule: concatenate XPath from global variable and relative
XPaths in classifiers; result: composite rule XPath expressions.

2. Processing of the composite consistency rule XPath expression. Within the string
representation of the composite rule XPath:

2.1.  discard all occurrences of id() function with any attributes;

2.2, discard all occurrences of wildcard ("/*") element;

2.3.  discard all occurrences of identifier element ("@xmi.id");

2.4.  discard all indices of elements (substrings between "[" and "]").

3. Starting from the end of the resulting string representation of composite rule XPath,
and parsing towards the beginning of the string:

3.1.  select one complete sub-path: a substring of all consecutive elements (i.e.,
substrings between "/" and "/", or after "/"), connected via "/". The sub-path
may contain a single element or more;

3.2.  trim subpath of elements with "ancestor::" prefix construct;

3.3.  store the resulting subpath and string representation of composite XPath for
use in the future;

3.4. if no subpaths can been selected in 3.1, then select this rule for checking
and restart at 1.

4. For each XPath expression in the TreeDiff:

4.1. remove element indices (substrings between "[" and "]");

4.2.  find occurrence of a sub-path (result of 3.3) in the XPath (from 4.1);

4.3.  if occurrence found:

4.3.1 if XPath (from 4.1) is terminated by the sub-path, then select current rule

for checking;

4.3.2 proceed to the next TreeDiff XPath expression — restart at 4.1;

4.4.  else remove ending element from sub-path, remember that the sub-path has
been trimmed; if sub-path is not empty then proceed to 4.2.

Fig. F.2. Algorithm for finding intersection between two XPath expressions.

In step 4.4 of the algorithm (Fig. F.2), if a rule sub-path was not found within TreeDiff XPath, the

rule sub-path is trimmed of an ending element. Then, a shorter sub-path is attempted for a match with
the TreeDiff XPath. If the shorter sub-path terminates the TreeDiff XPath, then the rule, once executed,
will select children of the changed element. Consequently, selection of such rule for incremental
checking is desired (Scenario 1, Fig. F.3).

Scenario 1: XPath expression in a consistency rule points to a child of the changed element.

XPath expression in the rule: //B/C/D/F

TreeDiff XPath expression: /A/B/C/D

Desired result: It is envisaged, that children of /A/B/C/D may have been affected by change in //D,

therefore it is desirable that the rule is selected in this case.

Execution of the rule selection algorithm:

Repetition 1 of the final loop 4.2-4.4:

Sub-path B/C/D/F not found in /A/B/C/D, trimming sub-path to B/C/D

Repetition 2: B/C/D found in /A/B/C/D, and it terminates /A/B/C/D

Result: rule is selected for checking (as desired).

Scenario 2: Rule points to a "neighbour" element of the changed element, "neighbour" element is of

a different type.

XPath expression in the rule: //B/C/E
TreeDiff XPath expression: /A/B/C/D
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Desired result: Logically, it is not necessary to select this rule for incremental checking (otherwise
if a rule points to a model element of certain kind, this rule would be selected for changes in model
elements of all different kinds, as normally model elements are "neighbours" in the XMI DOM tree).

Execution of the rule selection algorithm:

Repetition 1: Sub-path B/C/E not found in /A/B/C/D, trimming sub-path to B/C

Repetition 2: B/C found in /A/B/C/D, but does not terminate /A/B/C/D

Result: rule is not selected for checking (as desired).

Scenario 3: Rule points to the parent of the changed element.

XPath expression in the rule: //B/C

TreeDiff XPath expression: /A/B/C/D

Desired result: It is not necessary to select this rule for incremental checking. Otherwise, if in such
conditions a rule points to a root element, this rule would always be selected for any change in the
document.

Execution of the rule selection algorithm:

Repetition 1: B/C is found in /A/B/C/D, but does not terminate /A/B/C/D

Result: rule is not selected for checking (as desired).

Fig. F.3. Consistency rule selection scenarios.

Following the algorithm in Fig. F.2 and processing rule XPath expressions from Fig. F.1, we obtain
the following results (Fig. F.4).

Consistency rule id: "gen 1"

(I) Rule XPath expression:

//Foundation.Core.StructuralFeature.type/../Foundation.Core.Namespace.
ownedElement

Sub-path selected (3.3, Fig. F.2): Foundation.Core.Namespace.ownedElement

Rule applies to changes in all /Foundation.Core.Namespace.ownedElement

model elements

Consistency rule id: "n2"

(I Rule XPath expression:

/[Founcation.Core.Namespace.ownedElement/../Foundation.Core.Namespace.
ownedElement./Foundation.Core.Association

Sub-path selected (3.3, Fig. F.2):
Foundation.Core.Namespace.ownedElement/Foundation. Core.Association

Rule applies to changes in all //Foundation.Core.Namespace.ownedElement/
Foundation.Core.Association and //Foundation.Core.Namespace.ownedElement model elements

(III) Rule XPath expression:

id(//Foundation.Core.Method/Foundation.Core.Method.specification/Foundation.
Core.Operation/@xmi.idref)/Foundation. Core.ModelElement.visibility/@xmi.value

Sub-path selected (3.3, Fig. F.2): Foundation.Core.ModelElement.visibility

Rule applies to changes in all /Foundation.Core.ModelElement.visibility

model elements

Fig. F.4. Results of processing XPath expressions

F.3 Refined Approach: Selective Execution of XPath Expressions

An amendment to the lightweight approach selectively executes XPath expressions and improves
comparison accuracy for complex XPaths, where string manipulation is not sufficient to establish
intersection.

In the lightweight approach above, accuracy of selection of relevant consistency rules improves,
when an XPath in a rule is contains a longer section of the path to a document element, and this section
does not contain extended constructs, which are not processed by the lightweight approach. However, if
an expression contains id selector operators (Expression III, Fig. F.4) or makes use of ancestry
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constructs and only contains short relative paths, the lightweight approach will select this rule for
incremental checking for a larger number of different document changes than necessary. Selection of an
irrelevant rule for incremental checking results in "unnecessary" execution of XPath expressions in the
selected consistency rule.

In the amended approach, if parts of the composite XPath expression in the rule selection algorithm
are to be discarded (steps 2.1-2.4, 3.2 in Fig. F.2), the expression is executed instead. This results in
selection of a node set; for each element of this set, a complete XPath from the root of the document
DOM tree is then computed. This simple XPath contains sequence of node names without id function
calls, wildcards or ancestry selection operators. The simple path is then compared string-wise to the
TreeDiff XPath to the changed element (as in 4.1-4.4, F.2).

In our implementation of this amended approach, identification of a complete XPath expression
from the root to each element in the generated node set is efficiently carried out by the underlying XPath
implementation. The Xalan processor [Apache 2000], used for implementation of our incremental
checker prototype, provides the functionality for generation of XPath expressions for document
elements. If a different XPath processor is used, which does not provide such functionality, a simple
XPath expression to an element may be computed by traversing the document's DOM tree "upwards"
towards the root, and concatenating element names on the way.

The amended rule selection approach allows us to eliminate any irrelevant consistency rules from
an incremental check, at the expense of execution of some of more complex rule XPath expressions. In
any case, however, selection of irrelevant consistency rules would result in execution of these
expressions on a number of documents, including the modified document. The amended approach
significantly improves effectiveness of rule selection, although somewhat hinders performance. Our
implementation of the incremental checking approach is evaluated in Chapter 10.

F.4 Merging Sets of Consistency Links

We envisage, that users would wish to combine linksets from numerous incremental checks, and
update global linksets with results of incremental checks.

Our approach for merger of linksets assumes that the rule identifiers have remained unchanged in
the time between check executions. Consistency links refer to respective rule identifiers, which are used
to establish matching between different links. If rule identifiers have changed, older linksets need to be
updated by mapping old rule identifiers to new ones before linksets can be merged. We expect that in a
software engineering project, consistency rules, which express consistency constraints, will change
much less often than the documents, so the assumption of uniqueness of rule identifiers is satisfied. For
our UML scenario, consistency relations of well-formedness between elements of a UML model are
specified in the UML standard, and will change relatively infrequently.

We also assume that globally unique XML element identifiers within the documents remain
unchanged between consistency checks. Since XLinkit framework does not require actual development
of documents to be carried out in XML, the task of assignment of element identifiers within XML
representations of participating documents is delegated to a converter. In our UML scenario,
representation of a UML model in XMI contains element identifiers, which are assigned to elements by
the XMI generator (i.e., Rational Rose XML exporter). The UML standard demands that XMI identifiers
are unique throughout the UML model.

When these basic assumptions are satisfied, the algorithm for merger of linksets is as follows (Fig.
E.5).

1: Sort linksets in a descending order by time stamp of consistency checks;
2: Start merging from the two 'topmost' linksets on the list;
On each next step, consider the next linkset and update the 'topmost' linkset;
3: FOR each link in the 'topmost' linkset DO

3: FOR each link in the older linkset DO BEGIN

4: IF one link from 'topmost’ and the other link from older linkset

refer to the same document element (indicated by the same element identifier) THEN
5: IF rule identifiers in the links are the same THEN

6: REM this link has already been updated in the recent linkset.

7 REM do not update the topmost linkset

8: Indicate the update status to the user;
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8: ELSE copy a link from an older linkset into the new one;

9: END;
9: NEXT link;
10: NEXT link;

11: NEXT linkset.

Fig. F.5. Algorithm for merging linksets.

Problem of XPath Fragility in XLinkit Locators
Simple XPath expressions found in locators of consistency links use element indices to "point" to a
particular element within a certain level of the document's tree. Consider the following simple example,

where consistency links are created between elements of two documents (Fig. F.6).

<Document id="StoreList1">

<list>

<fruit barcode="A" type="Apple"
xmi.id="F.0001"/>

<fruit barcode="B" type="Blueberry"

xmi.id="F.0002"/>

<fruit barcode="C" type="Citron"

xmi.id="F.0003"/>

<bread barcode="Z" type="White"
xmi.id="B.0001"/>

</list>

</Document>

<Document id="StoreList2">

<list>

<fruit barcode="B" type="Citron"
xmi.id="F.0011"/>

<fruit barcode="C" type="Apple"

xmi.id="F.0012"/>

<fruit barcode="A" type="Blueberry"

xmi.id="F.0013"/>

<bread barcode="Z" type="White"
xmi.id="B.0001"/>

</list>

</Document>

Fig. F.6a. Example documents for demonstration of the XPath fragility problem.

<xlinkit:LinkBase date="Sept 03 14:21:39 GMT+01:00 2001"
docSet="file:// XPfra.xml" ruleSet="file://RuleSet.xml"
xmins:xlink="http://www.w3.0rg/1999/xlink"
xmlns:xlinkit="http://www.xlinkit.com">
<!-- Consistency rule "FruitBarcodes": for any barcode, fruit, marked with this barcode, should be
of the same type -->
<xlinkit:ConsistencyLink ruleid="FruitBarcodes">
<xlinkit:State>inconsistent</xlinkit:State>
<xlinkit:Locator xlink:href="docl.xml#/list/fruit[1]" />
<xlinkit:Locator xlink:href="doc2.xml#/list/fruit[2]" />
</xlinkit:ConsistencyLink>
<xlinkit:ConsistencyLink ruleid="FruitBarcodes">
<xlinkit:State>inconsistent</xlinkit:State>
<xlinkit:Locator xlink:href="docl.xml#/list/fruit[2]" />
<xlinkit:Locator xlink:href="doc2.xml#/list/fruit[3]" />
</xlinkit:ConsistencyLink>
<xlinkit:ConsistencyLink ruleid="FruitBarcodes">
<xlinkit:State>inconsistent</xlinkit:State>
<xlinkit:Locator xlink:href="docl.xml#/list/fruit[3]" />
<xlinkit:Locator xlink:href="doc2.xml#/list/fruit[1]" />
</xlinkit:ConsistencyLink>
<!—Consistency rule "FruitInStock": for each fruit in the base store list, there should be a fruit of
the same type in any subsequent store lists" -->
<xlinkit:ConsistencyLink ruleid="FruitInStock">
<xlinkit:State>consistent</xlinkit:State>
<xlinkit:Locator xlink:href="docl.xml#/list/fruit[1]"/>
<xlinkit:Locator xlink:href="doc2.xml#/list/fruit[2]" />
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</xlinkit:ConsistencyLink>

<xlinkit:ConsistencyLink ruleid="FruitInStock">
<xlinkit:State>consistent</xlinkit:State>
<xlinkit:Locator xlink:href="docl.xml#/list/fruit[2]" />
<xlinkit:Locator xlink:href="doc2.xml#/list/fruit[2]" />

</xlinkit:ConsistencyLink>

<xlinkit:ConsistencyLink ruleid="FruitInStock">
<xlinkit:State>consistent</xlinkit:State>
<xlinkit:Locator xlink:href="docl.xml#/list/fruit[3]" />
<xlinkit:Locator xlink:href="doc2.xml#/list/fruit[3]" />

</xlinkit:ConsistencyLink>

<xlinkit:LinkBase/>

Fig. F.6b. Links between the two documents.

When a change is introduced, the following links become outdated and need to be updated (Fig.
E.7).

<Document id="StoreList2">
<list>

<Document id="StoreList1">
<list>

<fruit barcode="A" type="Apple"
xmi.id="F.0001"/>

<fruit barcode="B" type="Blueberry"

xmi.id="F.0002"/>

<fruit barcode="C" type="Citron"

<!-- discounted citrons added -->

<fruit barcode="C0" type="Citron"
xmi.id="F.0010"/>

<fruit barcode="B" type="Citron"
xmi.id="F.0011"/>

xmi.id="F.0003"/>
<bread barcode="Z" type="White"
xmi.id="B.0001"/>

<fruit barcode="C" type="Apple"
xmi.id="F.0012"/>
<fruit barcode="A" type="Blueberry

"

</list> xmi.id="F.0013"/>
</Document> <bread barcode="Z" type="White"
xmi.id="B.0001"/>
</list>
</Document>

Fig. F.7a. Changed documents.

<xlinkit:LinkBase date="Sept 23 16:21:39 GMT+01:00 2001"
docSet="file:// XPfra.xml" ruleSet="file://RuleSet.xml"
xmins:xlink="http://www.w3.0rg/1999/xlink"
xmlns:xlinkit="http://www.xlinkit.com">
<!-- Consistency rule "FruitBarcodes": for any barcode, fruit, marked with this barcode, should be
of the same type -->

<xlinkit:ConsistencyLink ruleid="FruitBarcodes">
<xlinkit:State>inconsistent</xlinkit:State>
<xlinkit:Locator xlink:href="docl.xml#/list/fruit[1]" />
<xlinkit:Locator xlink:href="doc2.xml#/list/fruit/3]" />

</xlinkit:ConsistencyLink>

<xlinkit:ConsistencyLink ruleid="FruitBarcodes">
<xlinkit:State>inconsistent</xlinkit:State>
<xlinkit:Locator xlink:href="docl.xml#/list/fruit[2]" />
<xlinkit:Locator xlink:href="doc2.xml#/list/fruit[4]" />

</xlinkit: ConsistencyLink>

<xlinkit:ConsistencyLink ruleid="FruitBarcodes">
<xlinkit:State>inconsistent</xlinkit:State>
<xlinkit:Locator xlink:href="docl.xml#list/fruit[3]" />
<xlinkit:Locator xlink:href="doc2.xml#/list/fruit/2]" />
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</xlinkit:ConsistencyLink>
<!—Consistency rule "FruitInStock": for each fruit in the base store list, there should be a fruit of
the same type in any subsequent store lists" -->

<xlinkit: ConsistencyLink ruleid="FruitInStock">
<xlinkit:State>consistent</xlinkit:State>
<xlinkit:Locator xlink:href="docl.xml#list/fruit[1]"/>
<xlinkit:Locator xlink:href="doc2.xml#/list/fruit/3]" />

</xlinkit:ConsistencyLink>

<xlinkit:ConsistencyLink ruleid="FruitInStock">
<xlinkit:State>consistent</xlinkit: State>
<xlinkit:Locator xlink:href="docl.xml#/list/fruit[2]" />
<xlinkit:Locator xlink:href="doc2.xml#/list/fruit/3]" />

</xlinkit:ConsistencyLink>

<xlinkit:ConsistencyLink ruleid="FruitInStock">
<xlinkit:State>consistent</xlinkit:State>
<xlinkit:Locator xlink:href="docl.xml#/list/fruit[3]" />
<xlinkit:Locator xlink:href="doc2.xml#/list/fruit[1]" />
<xlinkit:Locator xlink:href="doc2.xml#/list/fruit/4]" />

</xlinkit:ConsistencyLink>

<xlinkit:LinkBase/>

Fig. F.7b. Incremental link base.

The change in document "doc2.xml" was an addition of the a fruit element of type citron with a
unique barcode. Both consistency rules (identifiers "Barcodes" and "FruitInStock") are relevant to the
change. Both documents docl and doc2 are relevant to these rules and incremental check creates an
incremental linkbase linking both documents (Fig. F.7b). Any links, which have changed after this check
in comparison to previous linkbase (Fig. F.6b), are shown in italics in Fig. F.7b.

The only link we have been expecting to see change after doc2 modification is the last link in Fig.
F.7b, which connects all fruits of the same type "Citron". All other links between "fruit" elements are
unaffected by the change and, ideally, would appear unchanged in the new linkbase. Yet, all links to
"fruit" elements have indeed changed, because indices of XPath expressions pointing to document
elements within XLinkit locators have changed after insertion of a fruit element at the beginning of
doc2.

XPath fragility problem, demonstrated in this example, is inherent in the XLinkit framework.
However, since XLinkit completely re-generates its global linksets on each check, XPath fragility
problem does not appear in the current global linksets. At the same time, due to XPath fragility, it is very
difficult to compare the current global linkset and a linkset, which was generated before certain
document modifications were made.

Because different XLinkit linksets cannot be compared, it impossible to establish which consistency
links have changed their status after a document has been modified. The incremental checking approach
is a step in the direction towards being able to provide such functionality. Below, we present our
solution to XPath fragility in XLinkit linksets.

Mapping of XPath Expressions

Our solution for the XPath fragility problem is based on uniqueness of element identifiers. The
same requirement applies before link merger algorithm (Fig. F.2) can be used. The XMI standard, in
which UML models are represented in our UML scenario, requires that individual model elements are
assigned unique identifiers.

The following algorithm matches XPath expressions in the old linkbase to current XPath
expressions, pointing to the same document elements (Fig. F.8).

1: FOR each consistency link in an older linkset DO BEGIN

2: FOR each locator DO BEGIN

3:  Get an XLink from the locator, extract an XPath expression (after '#)

4:  TF this XPath expression has not been entered into the hash table THEN BEGIN
5 Apply XPath to the backup version of the document, an element is selected
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6 Take the value of the xmi.id attribute of that element

7 IF this value exists in the hash table THEN

8: Replace the old XPath hashtable value with current XPath

9 ELSE BEGIN

10: Scan the new version of the document for appearance of an element with a
11: matching xmi.id attribute

12: IF element found THEN BEGIN

13: Generate an XPath expression pointing to that element

14: Insert key xmi.id, and values of old XPath and new XPath into the hashtable

15: END ELSE BEGIN

16: REM element has been deleted in the new version

17: Remove old consistency link from the old linkset, proceed to the next link

18: END // ELSE BEGIN

19:  END // ELSE BEGIN

20: END // ELSE BEGIN

21: END // For each locator

22: END // For each consistency link

Fig. F.8. XPath update algorithm.

Xmi.id Old XLink New XLink

F.0001 docl.xml#/list/fruit{1] docl.xml#/list/fruit[1]
F.0002 docl.xml#/list/fruit[2] docl.xml#/list/fruit[2]
F.0010 doc2.xml#/list/fruit[1] doc2.xml#/list/fruit[2]
F.0011 doc2.xml#/list/fruit[2] doc2.xml#/list/fruit[3]
F.0012 doc2.xml#/list/fruit[3] doc2.xml#/list/fruit[4]
F.0013 Null doc2.xml#/list/fruit[1]
B.0001 docl.xml#/list/bread[1] docl.xml#/list/bread[1]

Fig. F.9. XPath expression mapping hashtable.

As a result of the proposed algorithm for updating of XPath expressions, all expressions in older
linksets are re-adjusted and correspond to current element locations (Fig. F.9). This allows us to perform
string-wise comparison of XLinkit locators between linkbases when linkbases are being merged. The
XPath mapping algorithm also removes invalid links from older linkbases, which contain elements no
longer existing in the current version of the documents.

Execution of the XPath mapping algorithm has to precede the linkset merger algorithm. Using these
two algorithms in conjunction allows us to directly compare consistency links from different link sets,
correctly identify most current links and include them into the merged linkset.

Fig. F.10 shows an example of an updated link from the linkbase in Fig. F.6b. After all links in that
linkbase have been similarly mapped, the link merger algorithm establishes that one consistency link has
changed in the current linkbase (Fig. F.11). The result of update of consistency links and merger of two
linkbases makes the sense: insertion of a fruit of type "citron" has resulted in one link, corresponding to
that particular element, becoming inconsistent.

<xlinkit:ConsistencyLink ruleid="FruitInStock">
<xlinkit:State>consistent</xlinkit:State>
<xlinkit:Locator xlink:href="docl.xml#/list/fruit[3]" />
<xlinkit: Locator xlink:href="doc2.xml#list/fruit[4]" />
<!- - was: xlinkit:Locator xlink:href="doc2.xml#/list/fruit[3]" -->
</xlinkit: ConsistencyLink>

Fig. F.10. Updated link in the older linkbase.

I <xlinkit: ConsistencyLink ruleid="FruitInStock">
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<xlinkit:State>consistent</xlinkit: State>

<xlinkit:Locator xlink:href="docl.xml#/list/fruit[3]" />

<xlinkit:Locator xlink:href="doc2.xml#/list/fruit[1]" />

<xlinkit:Locator xlink:href="doc2.xml#/list/fruit[4]" />
</xlinkit:ConsistencyLink>

Fig. F.11. A changed link is detected after linkbases are updated and merged.

F.5 Distribution of UML Models

The motivation behind the XMI standard is that of enabling and making easier the exchange of
UML diagrams in XML. Even though the standard mentions a provision for splitting large XMI UML
models into separate files [OMG Nov. 2000], such provision has not yet been implemented.

In a distributed setting, software engineers often work on parts of a large UML model. For example,
a functional analyst may be developing a class diagram, and a number of software engineers are creating
collaboration and sequence diagrams for the same project.

Sharing or exchange of a single large model file between numerous distributed developers is
inconvenient and unsatisfactory, as a relatively small number of model elements are changed on every
incremental update. Our approach for separation of a UML model into several smaller files, containing
individual elements or groups of elements, gives developers flexibility to operate on the level of model
elements. We have created a tool UMLXMI, which provides this functionality. The tool allows a
development team to overcome an inefficiency of deployment of XMI for distributed development of
UML models.

By separating the UML model into parts, UMLXMI allows workgroup systems (such as CVS) to
function more effectively: naturally, execution of locking policies on a large original UML model file
would severely limit flexibility of distributed concurrent development of this model by a number of
software engineers.

In a UML model represented as an XML file, the utility selects sub-trees of major model elements
and stores them into separate XML files. XPath expressions to model elements coincide with values of
global variables in the UML consistency rule set [Appendix A}, as shown in Fig. F.12.

Model Element XPath

Association //Foundation.Core.Association[@xmi.id]

Association Class //Foundation.Core.AssociationClass[@xmi.id]

Association End //Foundation.Core.AssociationEnd[@xmi.id]

Behavioural Feature //Foundation.Core.BehavioralFeature.parameter/..

Class //Foundation.Core.Class[@xmi.id]

Classifier //Foundation.Core.Classifier.feature/..

Component //Foundation.Auxiliary Elements.Component

Constraint //Foundation.Core.Constraint

Data Type //Foundation.Core.DataType

Generalizable Elements //Foundation.Core.GeneralizableElement.generalization/..

Generalization //Foundation.Core.Generalization[(@xmi.id]

Interface //Foundation.Core.Interface

Method //Foundation.Core.Method

Namespace /[Foundation.Core.Namespace.ownedElement/..

Structural Feature //Foundation.Core.StructuralFeature.type/..

Type //Foundation.Core.Class[
id(Foundation.Core.ModelElement.stereotype/
Foundation.Extension_Mechanisms.Stereotype/@xmi.idref)/
Foundation.Core.ModelElement.name/text()="Type']

Fig. F.12. Model elements and XPath expressions to them.
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The structure of XMI ensures, that information about each model element is contained within sub-
trees of the nodes, selected by the XPath expressions (Fig. F.12).

An example class in Fig. F.13 is extracted from the UML model for Building Management
application [Rational 1998]. The "Building Management Domain" class refers to a stereotype "domain"
with an XMI identifier (xmi.id) "G.35" and to package "Actors" with an xmi.id "S.10147". The example
class is persistent and transient.

<?xml version="1.0" encoding="UTF-8"?2>
<XMI>
<XMI.content>
<Model Management.Model xmi.id="G.1">
<Foundation.Core.Namespace.ownedElement>
<Model_Management.Model xmi.id="G.562">
<Foundation.Core.Namespace.ownedElement>
<Model Management.Package xmi.id="S.10147">
<Foundation.Core.Namespace.ownedElement>
<Foundation.Core.Class xmi.id="S5.10148">
<Foundation.Core.ModelElement.name>
Building Management Domain
</Foundation.Core.ModelElement .name>
<Foundation.Core.ModelElement.visibility xmi.value="public"/>
<Foundation.Core.GeneralizableElement.isRoot xmi.value="true"/>
<Foundation.Core.GeneralizableElement.isLeaf xmi.value="true"/>
<Foundation.Core.GeneralizableElement.isAbstract xmi.value="false"/>
<Foundation.Core.Class.isActive xmi.value="false"/>
<Foundation.Core.ModelElement.stereotype>
<Foundation.Extension_Mechanisms.Stereotype xmi.idref="G.35"/>
<!-- domain-->
</Foundation.Core.ModelElement.stereotype>
<Foundation.Core.ModelElement.namespace>
<Model_ Management.Package xmi.idref="S.10147"/>
<!--Actors -->
</Foundation.Core.ModelElement.namespace>
<Foundation.Core.ModelElement.taggedvalue>
<Foundation.Extension_Mechanisms.Taggedvalue>
<Foundation.Extension Mechanisms.TaggedvValue.tag> persistence
</Foundation.Extension_ Mechanisms.TaggedvValue.tag>
<Foundation.Extension_ Mechanisms.TaggedValue.value> transient
</Foundation.Extension Mechanisms.TaggedValue.value>
</Foundation.Extension_Mechanisms.TaggedvValue>
</Foundation.Core.ModelElement.taggedvValue>
</Foundation.Core.Class>
</Foundation.Core.Namespace.ownedElement>
</Model Management.Package>
</Foundation.Core.Namespace.ownedElement>
</Model_Management.Model>
</Foundation.Core.Namespace.ownedElement>
</Model_Management.Model>
</XMI.content>
</XMI>

Fig. F.13. Class element, extracted from a UML model.

Uniqueness of XMI element identifiers

Since model elements refer to each other via XMI identifiers, it is important that all XMI identifiers
continue to remain unique throughout model development in order for the model to be internally
consistent. Initially, uniqueness of XMI identifiers is guaranteed by a generator, when a UML model is
converted into its XMI representation (we use Unisys XMI exporter for Rational Rose [Rational 1999]).

In a practical application scenario, after UMLXMI has separated model elements into individual
files, developers will "check out" groups of elements from an initial model location onto their
workstation. Each developer can edit individual elements, or import groups of them into the UML
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development environment (i.e., Rational Rose). When some changes are made, modified elements are
marked as "committed". At this point, other developers will be able to "check out" any of the committed
elements for local development.

At any time, UMLXMI tool can be executed again in order to collect individual element files into a
single UML model. However, the distributed consistency checking architecture, described in this thesis,
facilitates distributed development. It allows developers to check relations between distributed
representations of model elements, with no requirement for a model to be re-assembled into a single file.

As distributed development of model elements commences, model elements are modified, added
and removed from the model. Most modifications are expected to occur within UML development
environments or, less conveniently and more error-prone, within the source of XMI files, representing
UML model elements. Developers need to ensure that identifiers of model elements are kept unique
within the model. UMLXMI checks violation of xmi.id uniqueness, when a model is collected from
individual elements, and reports any problems found. Once uniqueness is established, consistency of
identifiers is checked by checking UML well-formedness consistency rules.

The UMLXMI utility gives developers extra flexibility in exchanging, sharing and editing
individual model elements by means of their favourite UML development environment, which imports
XM]I, or at the level of the source of XMI element files. Having adopted a model of distributed
collaborative authoring of separate model elements, we have also delegated the responsibility for
keeping existing unique model element identifiers intact.

Deployment Scenario: Initial Distribution

The first deployment scenario concerns initial distribution of a UML model, when the model has
been developed centrally and is now being separated for distributed development. The UMLXMI utility
is executed every time the XMI representation of the UML model is re-generated at the central location,
in order for all element files to be updated if necessary. The proposed sequence of execution is shown in
Fig. F.14.

UML model is changed within the design environment (i.e., Rational Rose);

XMI representation of the UML model is re-generated (Unisys XMI exporter);

Watchdog monitor detects changes in the XMI representation;

Watchdog runs UMLXMI utility on the new XMI representation of the UML model;

UMLXMI utility regenerates representations for model elements;

UMLXMI utility creates document universe descriptions for each of network hosts, where

groups of representations of model elements are to be copied to;

7. Groups of representations of model elements are copied to respective network hosts, together
with relevant document universe descriptions;

8. Consistency framework: at each host, watchdog identifies the change on monitored documents
as new versions of model element representations appear on the host;

9. Consistency framework: consistency checking takes place.

S e

Fig. F.14. Distribution of UML models into separate XMI documents.

Distribution configuration of model elements is specified by the system administrator in the
UMLXMI configuration file. Document universe descriptions, created in line 6 (Fig. F.14), contain lists
of all local XMI files, distributed to each participating host. These descriptions serve as a startup
configuration for our distributed consistency framework; all files in the description are monitored for
change (line 8), and are checked incrementally if a modification is detected.
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Deployment Scenario: Regrouping Elements Into a Single Model

This scenario occurs, when incremental development has reached a point release, and a distributed
UML model is collected into a single model file for release. UMLXMI reads in current 'document
universe' file lists from each participating host, and concatenates all XMI documents, mentioned in the
lists. Concatenation respects nesting of XML tags, therefore model elements, which were located at the
same level in the model's tree hierarchy before separation, will also appear as neighbours after
concatenation. During model distribution, the full path to every element is saved in that element's
representation, therefore, after concatenation, positioning of model elements in the DOM tree is
restored.

UMLXMI also checks uniqueness of XMI identifiers for different elements, and alerts users when
uniqueness is violated. Developers can use this functionality of UMLXMI to check a distributed model
for internal consistency of identifiers throughout distributed development.

Summary

UMLXMI provides functionality to distribute groups of UML model elements across a number of
network hosts. Developers are then able to engage in distributed development of individual model
elements locally, on their workstations. Consequently, the UMLXMI utility provides developers with
additional flexibility, and partly overcomes the deficiency of XMI standard — its inability to generate
partial views on UML models. UMLXMI makes individual elements and sets of elements easier to
exchange and, therefore, facilitates distributed concurrent development.

UMLXMI integrates with the software agent architecture for consistency management, proposed in
this thesis. When groups of model element representations, generated by UMLXMI, are propagated to
their destination domains, old representations are updated, and the update is then detected by watchdog
monitors, which form a part of the architecture. Consistency checking then takes place as usual: tree-
wise differences are identified, followed by identification of relevant consistency rules, and finalised by
carrying out consistency checks if necessary. Reduction in size of elements' XMI representations in
comparison with the representation of a complete model improves performance of the TreeDiff
algorithm, which identifies document modifications. In this way, deployment of UMLXMI on large
UML models has a significant positive impact on performance of incremental checks in the distributed
software agent architecture.
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