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A bstract

We use mechanism design techniques to analyze three novel problems. First, we study 

incentive contracts for information acquisition. In our setup, a principal must choose 

between two alternatives with unknown payoffs. An agent can find them out at a fixed 

cost per alternative. His effort and any information acquired are unobservable. The 

principal only observes the payoff of her chosen alternative, and hence the agent has 

the incentive to overstate cost by strategically finding out only one of the payoffs and 

lying about the other. We characterize sequential information acquisition procedures 

th a t can be delegated to the agent without granting him information rents.

Second, we study a situation where two agents have to choose one of three alterna

tives. Their ordinal rankings of these alternatives are diametrically opposed and are 

common knowledge. Ex ante efficiency requires tha t they implement the alternative 

tha t is ranked second by both if and only if the sum of their von Neumann Morgen- 

stern utilities under this alternative is higher than under the two extreme options. Von 

Neumann Morgenstern utilities are privately observed types. We ask if there are incen

tive compatible mechanisms which elicit utilities and implement efficient decisions. We 

show tha t no such mechanisms exist if the distribution of agents,’ types has continuum 

support.

Finally, we investigate if procurement procedures that simultaneously determine speci

fication and price of a good can result in an inefficient specification choice. In our setup, 

two suppliers can produce a good in either of two specifications which are equally good 

for the buyer. Costs are interdependent and unknown at the time of bidding. Each 

supplier receives a cost signal per specification. While an efficient mechanism exists, 

it involves a higher expected payment for the good than a mechanism tha t selects a 

bidder on the basis of price alone, in which case there is a chance of obtaining the 

specification with the highest production cost.
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Chapter 1

Introduction

Dispersion of relevant information is a pertinent feature of situations in which individ

uals strive to collectively reach a decision. Personal tastes, beliefs or experiences are 

often unknown to others, which makes communication of private information an inte

gral part of the decision-making process. A mechanism is a collection of rules tha t state 

what form the individuals’ communication may take and how it is aggregated into a 

collective decision. Examples of mechanisms abound: Auctions determine winner and 

selling price of an object on the basis of bids submitted by participants.^ Insurance 

companies provide quotes on the basis of personal characteristics self-reported by po

tential clients.^

The purpose of Mechanism Design is to characterize mechanisms tha t give agents 

the incentive to communicate their private information truthfully.^ We apply mecha

nism design techniques to three specific collective choice problems: We study contracts 

for information providers, the design of voting rules, and the construction of procure

ment procedures tha t elicit information about available product specifications. Before 

outlining these topics further, we present a brief overview of some im portant themes in

^See Krishna (2002).
^Mechanism Design has been used extensively in the contracting literature. For example, see

Laffont and Martimort (2002) or Salanié (1998)).
3See Mas-Colell et al. (1995). Chapter 23.E provides a comprehensive overview of the Mechanism

Design. Chapter 8.E describes games of incomplete information and the concept of Bayes Nash

Equilibrium.



the mechanism design literature to which the present thesis aims to add a new angle.

At the heart of Mechanism Design is the question what properties mechanisms must 

have in order to induce truthful revelation of private information. In addressing this 

question, much attention in the literature has been devoted to collective decision prob

lems (such as auctions) in which individuals’ private information is captured by a scalar 

param eter (e.g. bidders’ willingness to pay for an object at auction), utility is trans- 

ferrable between individuals through money payments, and individuals’ preferences are 

represented by linear utility functions.

In this setting, necessary and sufficient conditions for Bayesian incentive compatibil

ity have been derived. For auctions, incentive compatibility implies tha t the expected 

utility of a bidder is determined up to a constant by the allocation rule tha t indicates 

with which probability the bidder obtains the object. A generalization of this result 

to  settings in which individuals’ private information has more than one dimension can 

be found in Jehiel and Moldovanu (2001) and Krishna and Perry (2000).

A second im portant theme in Mechanism Design is the question of pareto-optimality 

(or ex post efficiency) of collective decisions generated by incentive compatible mech

anisms. If individuals in a (quasi-) linear collective choice setting can be compelled to 

participate, then there always exists at least one incentive compatible mechanism that 

achieves ex post efficiency.'^

Myerson and Satterthwaite (1983) show tha t in bilateral trade settings in which 

the buyer and seller of a good both have relevant private information and cannot be 

forced to trade (i.e. participation is voluntary), there exists no incentive compatible 

ex post efficient trading mechanism. In settings where individuals’ private information 

is multi-dimensional and their utility functions are interdependent (so that an individ

uals’ private information directly affects the utility of other individuals), Jehiel and 

Moldovanu (2001) show tha t incentive compatible ex post efficient mechanisms exist 

only under a most restrictive condition; generically, such mechanisms do not exist.

A third im portant theme in Mechanism Design is the characterization of optimal

^See Mas-Colell et al. (1995) for a description of the so called Expected Externality Mechanism.



incentive compatible mechanisms - i.e. mechanisms which maximize some appropri

ately chosen notion of individual or collective welfare. For example, an optimal auction 

mechanism is one tha t maximizes the seller’s expected welfare (i.e. revenue), where the 

welfare comparison of alternative procedures must be conducted at a time when the 

bidders’ characteristics are still unknown. In symmetric settings, an optimal auction, 

conditional on the object being sold, is also ex post efficient.^

In this thesis, we follow up the above themes in three specific settings: In Chapter 2 

we study the problem of designing optimal incentive contracts for information providers 

who, as part of their contractual obligations, come to possess private information. In 

the particular situation considered, a principal must choose between two alternatives 

with unknown payoffs. The information provider (or agent) initially has the same 

information about the alternatives as the principal, but, in contrast to the latter, can 

find them out by inspecting the alternatives at a fixed cost per alternative. Therefore, 

information should be acquired sequentially. The novel aspect of our model is tha t the 

alternatives are not ex ante identical, so tha t the order in which the alternatives are 

inspected matters.

Incentive problems in our model arise from two sources: First, the principal cannot 

observe whether the agent inspects any of the alternatives, and if so, in which order he 

inspects them. Second, the principal observes only the payoff associated with her chosen 

alternative, not tha t of the other. Contracts between principal and agent can be written 

on all observables, namely the agent’s reports about the alternatives’ payoffs, and the 

principal’s actual payoff from her chosen alternative. We characterize optimal contracts 

that incentivize the expert to adopt the first best sequential inspection procedure - the 

one tha t the decision-maker would use if she could acquire information herself.

We show tha t the first best procedure is one of two types. Under the first type, all 

incentive problems can be resolved without granting the agent any rents (on average), 

provided tha t false reports about the principal’s chosen alternative can be sanctioned. 

Sequential procedures of this type are associated with a fixed “threshold” : if the first

’See Maskin (1992).



alternative has a payoff above the threshold, the principal will choose it straight away.

Under the second type of inspection procedure, the agent must be granted strictly 

positive rents even if false reports can be punished. The reason is tha t the principal’s 

decision to choose one alternative over the other is endogenous, and hence the agent 

has an incentive to minimize inspection cost by inspecting only one alternative and 

claiming tha t the other one is worse. The rents tha t the agent can command may be 

so high tha t it is optimal for the principal to not to implement the first best inspection 

procedure. However, even if a different procedure can be implemented “costlessly” , 

there is still an efficiency loss from agency despite full surplus extraction.

In Chapter 3 of this thesis we study a setting in which two agents have to choose 

one of three alternatives.® Their ordinal rankings are diametrically opposed to each 

other and are common knowledge among the agents. Ex ante efficiency requires that 

they implement the compromise, tha t is the alternative which they both rank second, 

if and only if the sum of their von Neumann Morgenstern utilities from this alternative 

exceeds the sum of their utilities from the extreme options. We suppose tha t the von 

Neumann Morgenstern utilities are privately observed types.

We ask whether there are incentive compatible mechanisms tha t elicit utilities and 

implement ex post efficient decisions when money transfers between the agents are 

ruled out.^ In the absence of side payments, incentives for truthful revelation of private 

information must be given by exposing the agents to risk. In this setup, we derive an 

analogous principle to that underlying Revenue Equivalence Theorem for auctions: the 

expected utility of an agent is determined up to constant by the allocation rule that, 

for every possible type, indicates the probability with which the compromise is chosen.

Our main result is tha t there exist no incentive compatible ex post efficient mech

anisms if the distribution of agents’ types has continuum support. The proof of this 

impossibility bears some similarity to the proof of the impossibility of efficient bilateral

^Chapter 3 is joint work with Tilman Borgers.
^The problem we study is a simplified version of the voting problem because voting rules, if there are 

more than two candidates, must elicit information about voters’ strength of preference for candidates 

in the absence of money transfers.



trade in Myerson and Satterthwaite (1983). We also show that in simple examples, in 

which there are only two or three types to which the prior distribution attaches positive 

values, there exist simple incentive compatible ex post efficient mechanisms.

Chapter 4 of this thesis is devoted to the design of procurement procedures in which 

not only the price of the good, but also its specification is determined as part of the 

process. We study the question whether procurement procedures tha t simultaneously 

determine specification and price of the good can result in an inefficient specification 

choice.

We consider a stylized model in which each of two suppliers can produce a good in 

either of two specifications, both of which are equally good for the buyer. Production 

costs are interdependent and unknown at the time of bidding. Each supplier has two- 

dimensional private information about the production cost.

We analyze a specific procurement mechanism that selects the winning supplier 

purely on the basis of price and irrespective of his chosen specification. Under this 

mechanism, there is a strictly positive chance tha t the specification with the highest 

production cost is selected.

While there exists an efficient and incentive compatible mechanism, it requires 

the buyer to make large lump-sum payments to the suppliers in order to give them 

incentives to truthfully reveal their cost information and to take part in the mechanism. 

Our setup is an example of the non-generic case in Jehiel and Moldovanu (2001) where 

incentive compatible ex post efficient mechanisms exists.

A comparison of the two mechanisms leads us to conjecture tha t in our setup with 

two-dimensional private information, an optimal mechanism (i.e. one tha t minimizes 

the buyer’s expected expenditure for the good) will not generally be ex post efficient 

even if the buyer is obliged to purchase the good. This would contrast with the standard 

result on optimal auctions with scalar private information.



Chapter 2

Delegated Search

2.1 Introduction

In this chapter we study a contracting-model in which an expert can acquire and 

communicate information tha t helps a decision-maker in choosing the best available 

alternative. The real-world situations we have in mind include recruitment agencies 

who interview job candidates on behalf of a manager, media agencies who “identify” 

the best advertising campaign for their client’s products, insurance brokers who find 

out which policy is best for a client, etc.

In our model, the expert can find out the payoffs of two risky alternatives. The 

decision-maker cannot observe whether the expert “inspects” the alternatives, and if so, 

which information this brings to light. All she observes is the payoff she receives from 

choosing an alternative, and by selecting one, she foregoes the possibility of learning 

the.payoff of the other. Inspecting the alternatives is costly for the agent, and hence 

he has an incentive to acquire less information than requested.

The decision-maker’s problem is to design a contract tha t induces the agent to 

investigate the alternatives. However, the decision-maker may not always want the 

agent to find out both payoffs. As there are no economies of scale from inspecting both 

alternatives at once, it is optimal to acquire information sequentially. The alternatives 

are not ex ante identical, and therefore the order in which they are inspected matters.
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The purpose of this chapter is to characterize contracts tha t incentivize the expert to 

adopt the first best sequential inspection procedure - the one tha t the decision-maker 

would use if she could acquire information herself.

Depending on the model parameters, the first best procedure is one of two types. 

We show th a t one type can be “costlessly” delegated to a risk-neutral agent with 

limited liability, provided tha t false information, if detected, can be sanctioned. The 

other type, however, can only be implemented by granting the agent information rents, 

in which case it may be optimal to implement a different procedure.

The first procedure is associated with a payoff-threshold tha t each of the two al

ternatives can potentially meet or exceed. If the first alternative has a payoff above 

this threshold, the decision-maker chooses it straight away.^ The optimal contract 

th a t implements this procedure pays the expert only if he succeeds in identifying an 

alternative with a payoff above the threshold. Otherwise the expert is not paid at all.^

Under the second type of inspection procedure the decision-maker chooses the first 

alternative only if the second one is worse. In this case, the agent must be reimbursed 

for the cost of two inspections. As the decision to choose the first over the second 

alternative is endogenous, it pays for the agent to investigate only the second alternative 

and pretend th a t the first one is worse.

Under the first type of procedure this behavior can be “costlessly” deterred because 

the cost of inspecting the first alternative are fully covered (in expected terms) by the 

promise of a generous payment if the alternative is chosen straight away. If the expert 

is subsequently asked to investigate the other alternative, he must be reimbursed only 

for the cost of the second inspection. It therefore does not pay for him to investigate 

only the second alternative in order to claim tha t he has seen both.

The present work makes a contribution to the literature on principal-agent problems

^If both alternatives fall short of the threshold the decision-maker has to make a compromise by

selecting the “best of a bad lot” .
^Contracts of this type bear some resemblance to the way in which advertising agencies are rewarded

in reality: the agency is paid only if sales following the advertising-campaign exceed a preset target

level.

11



with acquisition of soft information. The most general formulation of this problem is 

due to Demski and Sappington (1987). The basic structure is as follows: The principal 

must choose from amongst a range of available projects whose payoffs depend on the 

unknown state of the world. Thus, each project is a lottery over a given set of possible 

outcomes. The agent can, at a cost to himself, acquire a private signal about the 

state from a range of available signal technologies with varying precision. The higher 

the precision, the more costly the signal is to acquire. Demski and Sappington study 

the properties of optimal contracts for information acquisition and subsequent project 

selection in a series of examples.

Malcomson (2002) provides general results for a setup where the available projects 

are binary lotteries over the outcomes “success” and “failure” . Projects differ with 

respect to the payoff tha t the principal obtains in the event of success, as well as their 

success probability. Malcomson shows tha t the principal may find it optimal to limit 

the information rents to a risk-neutral agent with limited liability by distorting the way 

in which information is used relative to the first-best level (i.e. relative to a situation 

in which the principal can acquire and use information herself). The present work is 

remotely related to Malcomson’s in as far as the implementation of sequential infor

mation acquisition procedures requires the agent to appropriately use any information 

acquired in the first stage when deciding whether or not to acquire further information.

The paper by Martimort and Gromb (2003) is related to the present work via its fo

cus on the implementation of (possibly) sequential information acquisition procedures. 

They, however, study a setting in which the agent can acquire two informative i.i.d. 

signals th a t convey information about the relative desirability of two available projects. 

Our model also features two signals, namely one per project. However, each signal is 

perfectly informative, and as the two projects are not identical, the signals are not i.i.d. 

Our model therefore features a richer set of incentive constraints because the order in 

which the signals are acquired matters.

A special feature of our model with perfectly informative signals is tha t the principal 

can compare the payoff from her chosen project with any information provided about

12



it by the agent. We study the limiting case in which false reporting, if detected, can 

be punished. It is worth emphasizing, however, that this punishment assumption does 

not render the implementation of sequential information acquisition procedures trivial: 

Information rents arise from the agent’s ability to acquire signals in whichever order 

he chooses.

A seminal paper tha t addresses issues surrounding delegation and information ac

quisition is th a t by Aghion and Tirole (1997). However, it has a different focus from 

the present one and the other papers mentioned above. Their paper could be described 

as dealing with information acquisition and delegation within organizations, as they 

consider an environment in which both principal and agent are affected by a decision 

to be taken. Principal and agent may differ in their view of what the “best” decision 

is. Both can acquire information about the available choices, and consequently, the 

principal can potentially check up on the agent. The main question is whether and 

when the principal should delegate decision-rights to the agent so as to provide incen

tives for information acquisition (which gives the agent the ability to take the decision 

th a t is best for him, but not necessarily for the principal). This, of course, has to be 

traded off against the potential loss of control from delegation for the principal. In our 

model, the principal cannot acquire information herself, and the agent is not directly 

affected by the choices available to the principal.

While dealing with an agent’s incentives for information acquisition, the papers by 

Crémer and Khalil (1992) and Cremer, Khalil and Rochet (1998a) study a different 

problem. In their contracting environment, the agent can strategically acquire infor

mation tha t only directly affects himself, and which becomes freely available once he 

accepts the contract offered by the principal. Ideally, the principal would want the 

agent to  remain uninformed. While studying two different variants of the same prob

lem, both papers find tha t the possibility of becoming informed prior to accepting (or 

rejecting) the contract is a source of rents for the agent.^ The paper by Crémer, Khalil

^In the paper by Cremer and Khalil (1992), the agent can only acquire information after a contract 

has been offered but before accepting it. In this case, information acquisition will optimally be deterred. 

The complementary paper by Crémer, Khalil and Rochet (1998a) studies the situation in which the

13



and Rochet (1998b) studies a third variant of this problem in which the agent will not 

know the relevant information upon accepting the contract unless he has acquired it 

between offer and acceptance. In this model, the principal trades off possible efficiency 

gains from dealing with an informed agent against the ability to inflict ex post losses 

on an uninformed agent.

The remainder of this chapter is structured as follows: In Section 2.2 we review the 

classical search model of Weitzman (1979) and introduce a simple extension tha t will 

constitute the basis of our delegated search model. Section 2.3 studies the hypothetical 

situation in which the principal can conduct interviews herself and characterizes the 

optimal inspection procedure. Section 2.4 contains the delegated search model as well 

as our main results. Section 2.5 concludes with a brief discussion. Longer proofs are 

relegated to  Section 2.6 (Appendix to Chapter 2).

2.2 Search M odel

In this and the following section, we focus on search problems involving a single 

decision-maker. These serve as benchmark against which we compare the results of 

delegated search once agency concerns are introduced:

A risk-neutral principal must choose between two alternatives indexed i = 1,2. 

Each of them  leads to a deterministic payoff that is unknown ex ante. The payoff 

associated with alternative i  is Xj, which is the realization of a random variable Xi with 

domain X{ C M+, distribution Gi and mean Let and xi respectively denote the 

minimal and maximal elements of X i. Random variables xi and X2 are statistically 

independent.

While the payoffs of the two alternatives are unknown ex ante, the principal can 

find them out before choosing by “inspecting” each one at a cost of c, where

0 <  c < min {E  [max {/i^, Xi}] —
*€{1,2}

agent can acquire information in anticipation of (i.e. before) being offered a contract. In this case the 

agent may or may not acquire information, but obtains rents from the contract in either case.

14



W hen the principal inspects alternative 1 (2 resp.) she instantaneously observes the 

true payoff realization xi (resp. X2 ). If she inspects both alternatives simultaneously, 

she instantaneously observes x\ and X2 . As total inspection costs are additive in the 

number of inspections, it is never optimal to inspect the alternatives simultaneously. 

To make the issue of sequential information acquisition non-trivial, we exclude the 

following cases:

1. One alternative is always better than the other because it always yields a higher 

payoff than  the other.

2. A single inspection suffices to reveal which of the two alternatives is best.

The principal’s von Neumann Morgenstern utility function is Xi — nc, where Xi is 

the utility she obtains from choosing alternative i {i — 1,2) and n  is the number of 

inspections she makes. She faces the following search problem: Which alternative (if 

any) to inspect first, and, having inspected one, whether or not to find out the payoff 

of the other alternative. We consider two specifications of this problem:

In the first (referred to as “search with restricted choice”), the principal can only 

choose an alternative that has previously been inspected, as analyzed by Weitzman 

(1979).^ For instance, if the principal has only inspected alternative 1, she cannot 

choose alternative 2. If she wants to choose between both alternatives, she must also 

inspect alternative 2. Prior to conducting any inspections, the principal can’t choose 

either alternative. If she conducts no inspections, she is left with her outside option, 

assumed to yield a payoff of zero.

In the second specification of the problem (referred to as “search with unrestricted 

choice” ), the principal is free to choose either alternative at any stage of the search 

process. Suppose she has inspected alternative 1. She may term inate search at this 

point by choosing alternative 2. Prior to conducting any inspections, she is free to 

choose either alternative 1 or 2 without incurring any search costs. In the following

^In Weitzman's (1979) model the decision-maker faces more than two alternatives with unknown 

payoffs.

15



section we use backward induction to characterize, for each of the two specifications 

of the search problem, the inspection procedure that maximizes the expected value of 

Xi — nc.

2.3 F irst B est Search Procedures

2.3.1 Search w ith restricted choice 

W h at to  do after th e first inspection?

The principal’s optimal search procedure must state which alternative to inspect first, 

and what to do once it has been inspected. Having inspected alternative z (i =  1,2) 

the principal chooses the action that yields:^

max{T^, E  [max Xj}] — c},

where Xi is the payoff the principal gets from choosing alternative f, and E  [max Xj}]- 

c is the expected payoff from inspecting alternative j  at cost c before choosing the ex 

post optimal alternative. Figure 2.1 characterizes the principal’s optimal contingent 

choice: Terminate search after the first inspection if Xi exceeds the “threshold” Zj. 

Otherwise, incur inspection cost c again in order to find out xj  before making a deci

sion.

The “threshold” Zj is defined implicitly:

Zj = E  [max {zj, Xj}] — c. (2.1)

This expression can be equivalently written as

c = [  (xj -  Zj)dGj{xj).  (2.2)

This suggests the following interpretation: If the principal finds tha t alternative f ’s 

payoff is above Zj, the “option value” of being able to choose alternative j  is lower than 

the “option price” c (which is the cost of observing xj).^

®The cost of inspecting alternative i are omitted as they have already been sunk.
®Note that Zj need not be an element of X i  (for instance, Xi may be a discrete random variable).

16



Inspect alternative j  before Stop and choose
choosing m ax } alternative i

Figure 2.1: Optimal Contingent Choice (restricted)

L em m a 2.1 For any alternative j  ( j  = 1^2) there exists a unique threshold Zj.

P ro o f  o f  L em m a 2.1: The result follows immediately from the properties of the

function E[max{- ,Xj }]  and the fact tha t c >  0: l î  z  < Xj, then E  [max {z,Xj}] = [ij. 

If z >  Xj, then E  [max {z,Xj}] = z. Finally, E  [max {z,Xj}] is strictly increasing and 

convex for all z G [Xj,Xj]J

Q.E.D.

It should therefore be thought of as the hypothetical payoff that would make the principal indifferent

between choosing alternative i and continuing the inspection process. Threshold zj  is the analogue of

the Gittins Index in multi-armed bandit problems (see Roberts and Weitzman (1980)).
^As X j  has both a minimal and a maximal element, all elements of X j  lie in the interval [xj,Xj],

which thereby constitutes the convex hull of Xj .  As E  [max { z , Xj } ]  =  zdGj {xj )  -|- XjdGj{xj ) ,

we have [m ax{z,Xj}] =  Gj{z)  >  0.

17



W hich  a lternative to  inspect first?

Weitzman (1979) shows that the thresholds zi and Z2 not only determine the princi- 

pal’s optimal contingent choice once one alternative has been inspected, but also fully 

determine which alternative should be inspected first. Denote by 7t[ the expected of 

the sequential inspection procedure commencing with alternative z (z =  1,2) when the 

cost of the first inspection are disregarded.®

P rop osition  2.1 (W eitzm an (1979)) 7t[ >  i f  and only i f  z* > Zj.

The proof of Proposition 2.1 can be found in Weitzman’s (1979) article. The fol

lowing example provides an illustration:

E xam ple X i = {1,2,5} and X 2 = {0,3}. Let Pr (xi =  1) =  P r(^ i =  5) =  1/4 and 

P r ( ^ 2  =  0) =  1/2 and c = 1/4. By equation (2.2) we have =  4 >  5/2 =  Z2 - It is 

easy to verify that 7t\ = 45/16 > 44/16 =  tt^.

2.3.2 Search w ith U nrestricted Choice 

W h at to  do after th e first inspection?

If the principal can choose either alternative at any stage of the search process, the 

decision to stop searching after the first inspection does not automatically imply which 

alternative will be chosen. Having inspected alternative z (z =  1,2), the principal 

chooses the action that yields:

max{a;%, j i j ^ E  [max { x i ,  X j } ]  — c},

where x i  is the payoff the principal gets from choosing alternative z, fj,j is the expected 

payoff from choosing alternative j  without inspection, and E  [max {x^, Xj}] — c is the 

expected payoff from inspecting alternative j  at cost c before choosing the ex post 

optimal alternative.

^The superscript r  in 7t[ refers to “restricted choice” .
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Figure 2.2: Optimal Contingent Choice (unrestricted)

Figure 2.2 characterizes the principal’s optimal contingent choice: Terminate search 

after inspection of alternative i if Xi is “so good” tha t it exceeds the “upper threshold” 

Zj, or if Xi is “so bad” that it is below the “lower threshold” Vj. Otherwise, incur 

inspection cost c again in order to find out Xj before choosing the ex post optimal 

alternative.

The “upper threshold” Zj has been defined above in equation (2.1). The “lower 

threshold” Vj is the value tha t makes the principal indifferent between choosing j  

without inspection, and inspecting it before making a decision. Formally,

fij = E  [max {vj,Xj}] — c, (2.3)

or

c = {vj  Xj ) dGj { xj ) . (2.4)

This suggests the following interpretation: If the principal finds a payoff realization Xi 

below Vj, then the value of “insurance” against a low payoff realization from alternative 

j  is lower than the “insurance premium” c (which is the cost of observing X j ) .
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Lem m a 2.2 For any alternative j  ( j  = 1,2) there exists a unique threshold Vj.

The proof follows immediately from tha t of Lemma 2.1 above. The assumption 

th a t c <  minj=i^2 { ^  [max ensures tha t Vj < Zj.

W hich  alternative to  inspect first?

Denote by n f  the expected payoff from the sequential inspection procedure commencing 

with alternative i when the cost of the first inspection are disregarded:^

7T̂  =  L^[max{xi, f i j , E [max {xi, Xj}] — c}], where j  = 1 ,2, j  ^  i.

It is easy to see from Figure 2.2 tha t >  max{/i^,/i^} for all i, so tha t it is always 

optimal to conduct at least one inspection. It is not possible to infer from the threshold 

values Vi, zi, V2 and zg alone which alternative should be inspected first. We can, 

however, derive a necessary condition for “order reversal” , by which we mean tha t the 

optimal inspection orders under restricted and unrestricted choice differ.

Suppose tha t it is optimal to commence search with alternative i when choice is 

restricted: tt^ — 7t[ >  0. Note tha t the expected payoff from the search procedure 

commencing with alternative j  when choice is rznrestricted can be written as follows:

It is immediate from Figure 2.2 tha t tt̂  — tt̂  >  0. The payoff difference between the 

two search orders under unrestricted choice is

7t“  -  <  =  7T  ̂ -  <  +  [ ( tT^ -  TTp -  «  -  < ) ] .

If TTj — 7rT > 0 a necessary condition for order reversal is (ttJ — Tr̂ ) — (tt^ — tt^) > 0 . We 

can show the following

P roposition  2.2 (ttj — tTj ) > (tt^ — 7r̂ ) if  and only of Vi > Vj.

The proof is relegated to the Appendix. If 7t[ >  ttJ (which, by Proposition 2.1, holds 

if and only if Zi > Zj), then Vi > Vj is necessary for the optimal inspection procedure

^The superscript u in 7t“ stands for “unrestricted choice”.
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under unrestricted choice to start with alternative j .  If, instead, vi > Vj and Zj > 2 %, 

it follows from Propositions 2.1 and 2.2 that

-  Tr;- >  0.

In this case the optimal inspection order is the same under restricted and unrestricted 

choice. The following example illustrates a situation where order reversal occurs:

E x a m p le  c o n t’d: X i = {1,2,5} with P r(x i =  1) =  P r(^ i =  5) =  1/4 and X 2 = 

{0,3} with P r (x 2 =  0) =  1/2. Also, c = 1/4. Prom equations (2.2) and (2.4) we 

obtain Vi = 2, zi = 4, V2 = 1/2 and 22  =  5/2. With restricted choice it is optimal 

to first inspect alternative 1, while with unrestricted choice it is optimal to first inspect 

alternative 2 ( ' ^ 2  ~  ' ^ 1  ~  1/16/. The intuition for order reversal is as follows: As  

■̂ 2 <  ^ 1  =  1 Ihe choice restriction imposes no “loss” when search commences with 

alternative 1 (i.e. ttj =  ttj =  45/16/. I f  search starts with alternative 2 and X2 =  0 

the principal knows that alternative 1 has a higher payoff. By choosing alternative 1 

without inspection the principal “saves” inspection cost of 1/4 that she would have to 

incur if  choice was restricted. Thus, — TTg =  1/8.

2.4 D elegated  Search

2.4.1 Setup

In this section we study the contractual relationship between the principal and an 

agent who can acquire information on her behalf. The principal is faced with the 

choice problem described in Section 2.2, but now cannot conduct inspections herself. 

By choosing an alternative, the principal instantaneously learns its payoff, but thereby 

foregoes the possibility of learning the payoff of the other alternative. The principal 

can learn the alternatives’ payoffs prior to choosing by employing the agent. The agent 

can inspect any alternative by incurring cost c per alternative. If the agent inspects 

alternative 1 (resp. 2) he instantaneously observes the true realization xi (resp. X2 ). 

If he inspects both alternatives simultaneously, he instantaneously observes xi and

21



X2 - Both principal and agent have symmetric information ex ante, that is, the sets 

X \  and %2 , &s well as the distribution functions G\ and G2 are common knowledge 

among them. The agent’s effort cost c is also common knowledge. The principal’s von 

Neumann-Morgenstern utility function is Xi — w, where Xi is the utility she obtains by 

choosing alternative i {i = 1,2), and w  is the payment she makes to the agent. The 

agent’s von Neumann-Morgenstern utility function is w — nc, where n is the number 

of inspections he carries out. Both principal and agent are risk-neutral.

As a benchmark, consider the hypothetical scenario in which the principal com

pletely controls the agent. Whatever instructions the principal gives to the agent, the 

agent will carry out. Assuming perfectly transferable utility, this situation is equiva

lent to the one considered in Section 2.3 where the principal carries out the inspections 

herself so as to maximize the expected value of Xi — nc. The inspection procedure that 

is optimal in this hypothetical situation is called first best

The agent is free to choose his actions and the messages tha t he reports back to 

the principal. As a consequence, there is both a hidden action problem (will the agent 

carry out the appropriate number and order of inspections?) and a hidden inform.ation 

problem (will the agent report what he finds correctly?). The principal must therefore 

offer the agent a contract tha t addresses these incentive problems.

We model the contract negotiation between principal and agent as an ultimatum 

bargaining game: The principal proposes a contract, and the agent can either accept 

or reject it. If he rejects it, he obtains a utility of zero. Formally, a contract is defined 

as follows:

D efin itio n  2.1 (C o n tra c t)  A contract is a triplet {i, / ,  w), where i is the alternative 

that the principal wants the agent to inspect first; the mapping f  denotes the choice 

rule that states which alternative the principal chooses given the agents report(s): the 

agent either submits a singleton report about the payoff o f alternative i, or he submits 

a report consisting of two payoffs - one about alternative i and one about alternative j;  

the mapping w determines the agent’s wage as a function of his report and any payoff 

level that the principal observes upon choosing an alternative.
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We assume tha t a contract of this type is enforceable. In addition, we make the 

following assumptions:

A ssum ption  2.1 (N o Transfers from A gent to  Principal) The agent has no 

initial endowment o f money and cannot borrow.

Assumption 2.1 implies that w must be non-negative. Its purpose is to ensure that 

the contracting problem is not trivial. In particular, it prevents the principal from 

solving all incentive problems by letting the agent choose whichever alternative he 

wants and transferring its payoff to him in exchange for a fixed p a y m e n t . I t  is worth 

emphasizing tha t this assumption does not require the agent’s ex post utility w —no to 

be non-negative in all possible outcomes that may arise under the terms of the contract. 

The agent’s (net) utility w — no may be negative in some outcomes. However, in order 

to ensure acceptance of the contract the agent’s expected utility from it must be at 

least zero. To avoid inconsistencies with Assumption 2.1, we assume henceforth that 

the agent’s inspection cost c are non-monetary.

A ssum ption  2.2 (Punishm ent) I f  the payoff of the principal’s chosen alternative 

differs from the agent’s report about it, the principal imposes an arbitrarily large non

monetary punishment on the agent.

One can interpret the punishment as irreversible damage to the agent’s professional 

reputation. Assumption 2.2 prevents the agent from submitting reports for which 

the principal chooses an alternative whose payoff differs from his report with positive 

probability.

2.4.2 Costless Im plem entation

In this section we characterize inspection procedures that can be delegated to the agent 

without granting him information rents. We derive a simple contract tha t extracts, on

^°By charging a negative wage equal to the principal’s expected payoff from the first best inspection 

procedure the agent is induced to adopt this procedure, while all his (expected) rents are extracted.
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average, all surplus from the agent. Suppose the principal wishes to implement a 

sequential inspection procedure tha t starts with alternative i (i = 1 , 2 ) and which 

satisfies the following

C o n d itio n  2 . 1  zj < Xi, where j  = 1 , 2 , j  ^  i.

This condition says tha t there exist payoff realizations Xi th a t are “so good” that 

the principal chooses alternative i without further information about alternative j .  

Figure 2.3 shows such a procedure under unrestricted c h o i c e . T h e  interval 

depicted in the figure represents the set of possible payoff realizations of alternative 

i. For values Xi in [x^^Vj] the principal chooses alternative j  without inspection. For 

payoff realizations Xi in there is valuable information to be gained from an

inspection of alternative j .  Finally, for payoff realizations Xi in the principal

chooses alternative i immediately.

V,. Z,. X .

Choose j  Inspect j  and Choose i
immediately choose whichever immediately

alternative is best

Alternative i

Figure 2.3: Search Procedure th a t satisfies Condition 2.1

In the following, we propose a simple contract tha t allows the principal to

implement inspection procedures tha t satisfy Condition 2.1. It asks the agent to first 

inspect alternative i. The principal’s decision rule f* replicates the choices associated 

with the inspection procedure shown in Figure 2.3:^^

i if X* > Zj V {vj < X i <  Zj AXi  >  Xj)
r  = < (2.5)

j  if Xi < Vj V (vj <  Xi <  Zj AXi  <  Xj)

^^For what follows it is irrelevant whether choice is restricted or unrestricted.
Given the inspection procedure depicted in Figure 2.3, the domain of the mapping f*  is the set

U [ z j , Xi ] )  U i { x i  \vj <X i <Z j ] x  X j ) .
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where X{ is the agent’s report about the payoff of alternative z, and Xj is his report 

about the payoff of alternative j .  The wage-schedule is given by:

w =  <

i iXi = X i > Z j

if Vj < X i <  Zj and Xj = x, >  z,- • (2 .6 )

0  otherwise

The interpretation is as follows: The agent receives a positive payment only in case 

of “success” , i.e. if the payoff from the principal’s chosen alternative exceeds the upper 

threshold Zj. If alternative i is chosen and its payoff is above this threshold, then the 

agent receives a fixed payment of c / (1 — Gi{zj)).  If alternative j  is chosen and its payoff 

is above the threshold, then the agent receives a fixed payment of c / (1 — Gj{zj)).  In 

all other cases the agent receives no payment. The lump-sum payments in w* in (2.6) 

are chosen so as to make the agent’s expected payment for any inspection equal to 

the inspection cost. Thus, at any stage of the search process, the agent is indifferent 

between conducting and not conducting the inspection stipulated by the contract.

P roposition  2.3 (C ostless Im plem entation) Under contract (i, where f*

is given by (2.5) and w* is given by (2.6), the agent’s optimal strategy is to inspect 

alternative i first. If Xi <  Vj or Xi >  Zj the agent terminates search and submits the 

report Xi =  Xi. If Vj <  Xi <  Zj the agent inspects alternative j  and submits the report

{Xi,Xj) = (Xi,Xj).

The agent’s expected payoff from contract { i , f*,w*)  is zero, and the principal’s 

expected payoff is the same as in the first best. This result rests on the assumption 

tha t whenever the agent is indifferent between several “actions” he will adopt the one 

preferred by the principal.

P ro o f o f P roposition  2.3: We show that under (z, /* , w*) the agent cannot obtain a

positive expected payoff by deviating from the principal’s desired inspection procedure:

is easy to modify the wage-schedule in (2.6) so as to give the agent strict incentives to follow 

the principal’s desired procedure: If alternative i is chosen and has payoff above Zj, pay the fixed wage 

i-Gj (̂zj) +  G:, and if alternative j  is chosen and has payoff above zj,  pay the fixed wage +  S,

where 6 > 6 (1  +  >  0-
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(i) N o inspections: If the agent accepts the contract but inspects neither alterna

tive, he must submit a report Xi < Vj in order to avoid the risk of punishment. 

In this case the principal chooses alternative j  and therefore cannot verify the 

agent’s report about alternative i. The agent’s wage in this case is zero.

(ii) Inspecting  alternative j  first: If the agent finds that Xj > zj, he can secure a 

wage of c / (1 — by submitting any report {xi, Xj) where Vj < X i <  Zj. This

allows him to pretend that both alternatives have been inspected. If Xj < Zj the 

agent can either terminate the inspection process or go on to inspect alternative 

i “retrospectively” . In the former case the highest wage he can secure is 0 (e.g. 

by submitting any report Xi < vj). It is easy to verify tha t the expected payoff 

from “retrospectively” inspecting alternative i is also zero. Thus, the agent’s ex 

ante wage from any inspection procedure tha t commences with alternative j  is 

zero.

(iii) Inspecting alternative i only: Suppose the agent inspects alternative i. If 

Xi > Zj he can secure a wage of c / (1 — Gi(zj)) by truthfully reporting T*. If 

Xi < Zj the highest wage the agent can get is zero (e.g. by submitting any report 

{xi,Xj) for which Xj < Xi). Thus, the agent’s ex ante wage from inspecting 

alternative i only is zero.

(iv) Inspecting i and j  sim ultaneously: In this case the agent’s ex ante wage is 

—c(l — Gi{zj) 4- Gi{vj)) <  0.

Q.E.D.

An implication of Proposition 2.3 is tha t i f  the principal’s first best inspection 

procedure satisfies Condition 2.1, then contract is optimal. This follows

immediately from the fact that the principal’s expected payoff is the same as in the 

first best. It is easy to show the following

P roposition  2.4 The first best inspection procedure under restricted choice satisfies 

Condition 2.1.
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P ro o f  o f P ro p o s itio n  2.4: Suppose tha t it is optimal to first inspect alternative i.

Thus, Zi > Zj. We have to show th a t Zi > Zj implies Xi > Zj. To see that this is true 

recall tha t Xi > zi since c > 0. This immediately implies tha t Xi > Zi> Zj.

Q.E.D.

Thus, if choice is restricted, the first best can always be attained by contract 

It is also worth noting tha t any inspection procedure tha t satisfies Condi

tion 2 .1  can also be costlessly implemented if the principal cannot write “contingent” 

contracts. When restricted to contracts that cover only the inspection of a single alter

native, the principal should first offer the agent a contract {i,wi)  to inspect alternative 

2 , where the wage is determined by

if Xi > Zij i-GXz,)
I 0  otherwise

Based on the report Xi and the belief tha t X{ the principal chooses the action

which is ex post optimal: If Xi > zj, the principal chooses alternative i. If % < Vj, 

she chooses alternative j .  If Vj < X i <  zj, she offers the agent the contract (j, W2 ) to 

inspect alternative j .  The function W2 is given by:

W2  =  <
0  otherwise

Once the agent has inspected both alternatives, the principal chooses the one which 

yields max{T^, %}, based on her belief tha t both reports are correct.

2.4.3 Costly Im plem entation

In this section, we show tha t if choice is unrestricted, so tha t the principal can choose 

any alternative irrespective of whether or not the agent has previously inspected it, then 

it is not possible to costlessly delegate first best inspection procedures tha t violate 

Condition 2 .1 . Suppose the first best procedure commences with alternative i and 

violates Condition 2.1. This implies th a t the first best search order under restricted 

and unrestricted choice d i f f e r . W e  know from Proposition 2.2 tha t “order reversal”

^^This follows immediately from the violation of Condition 2.1: we have zj  >  Xi and hence Zj >  z*.
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implies tha t Vj >  Vi. Therefore any inspection procedure tha t is first best under 

unrestricted choice and violates Condition 2.1 is of the form depicted in Figure 2.4. It 

depicts the possible payoff realizations of alternatives i and j  as overlapping subsets of 

the real line. The key feature of such search procedures is tha t alternative i (the one 

to be inspected first) is chosen if and only if alternative j  has a lower payoff. Thus, 

the decision to choose i relies on a direct comparison of alternatives i and j .

X; X:

Choose j  
immediately

Alternative i

Alternative j

1 Inspect j  and choose !
j whichever alternative |
j is best 1

X
— 1'

Figure 2.4: Inspection Procedure tha t violates Condition 2.1

A generic incentive contract (%, w) that implements an inspection procedure of 

the type depicted in Figure 2.4 has the following form:^^

f = {
i 1Î Xi >  max{vj ,Xj }  

j  if Xi < Vj V {vj <  Xj < Xi)

The agent’s payment is determined by a wage-schedule of the following form:

W o { x j )  if Xi  < Vj

w = < Wi{xi) if Xi > Vj and Xi = Xi > Xj

I W2 {xj) if Xi > Vj and Xj = Xj > Xi

We can now establish the following result

(2.7)

(2 .8)

P roposition  2.5 (Im possib ility o f costless im plem entation) A first best in

spection procedure that violates Condition 2.1 can only he implemented by granting the 

agent strictly positive rents.

Given the inspection procedure depicted in Figure 2.4, the domain of the mapping /  is the set

k i , V j ]  U { [ v j , Xi ]  x X j ) .
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P roof o f P roposition  2.5: By contradiction. Suppose there exists a wage schedule

w of the form shown in (2 .8 ) th a t is accepted by the agent and costlessly implements 

the inspection procedure depicted in Figure 2.4. This implies tha t no other inspection 

procedure yields the agent a positive expected payoff:

(i) N o inspections: If the agent accepts the contract but inspects neither alterna

tive, he must submit a report Xi < Vj in order to avoid the risk of punishment. 

In this case the principal chooses alternative j  and therefore cannot verify the 

agent’s report about alternative i. This deviation cannot yield a positive wage. 

Thus it must hold that wo{xj) = 0 for all Xj.

(ii) Inspecting alternative i only: Suppose the agent has inspected alternative 

i and has found the payoff realization Xi, where X{ > Vj. If the agent deviates 

from the principal’s desired inspection procedure and terminates the inspection 

process, the highest wage he can secure himself is Wi{xi).

As a benchmark, consider the agent’s expected payoff from conducting the second 

inspection as required by the contract: the agent is paid Wi{xi) if Xj < Xi and 

W2 {xj) if Xj > Xi. Thus, the expected payoff from the second inspection is

rXj
Wi{xi)Gj{xi) + / W2{xj)dGj{xj) 

J Xi
—  C.

As the contract is assumed to be incentive compatible, it cannot pay for the agent 

to term inate search after the first inspection if it reveals that Xi > Vj. Thus,

wi{xi) < wi{xi)Gj{xi) +  / W2 {xj)dGj{xj) -  c,
J Xi

or equivalently

W2 (xj)dGj{xj) -  c >  (1 -  Gj{xi))wi{xi).  (2.9)
I

(iii) Inspecting alternative j  first: If the agent finds tha t Xj > vj, he can truthfully 

reveal Xj while claiming that alternative i has a lower payoff (i.e. submit any 

report X i  < X j ) .  In this case, the principal chooses alternative j  and the agent’s
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wage is W2 {xj)}^ If, instead, the agent finds a payoff Xj < Vj he can either 

term inate search, or “retrospectively” inspect i. In the former case he must 

pretend tha t he has inspected alternative i but that its payoff is low (i.e. X i  < V j ) .  

Prom (i) we know that such reports yield a wage of zero. In the latter case, the 

agent’s expected wage from the second inspection is

/ ’J Vi
wi{xi)dGi{xi) -  c.

The ex ante payoff from starting with alternative j  therefore is

rxi rXj
Gj{vj) m ax{0, wi{xi)dGi(xi) -  c} / W2{xj)dGj{xj)

J V j  J V j

—  C.

As the contract is incentive compatible, this inspection procedure cannot yield a 

positive payoff:

rXi rXj
Gj{vj) max{0 , / Wi{xi)dGi{xi) -  c} +  / W2 {xj)dGj{xj) -  c <  0 .

J V j  J V j

(2 .10)

Note tha t the left-hand side of (2.10) is at least as large as the left-hand side of 

(2.9), which, in turn, is non-negative. Thus, both the left-hand side of (2.9) and 

tha t of (2.10) must be equal to zero, which (by (2.9)) implies tha t Wi{xi) = 0 for 

all Xi > Vj. Hence,

rxi
max{0 , / Wi{xi)dGi{xi) — c} =  0 . 

J Vi

We therefore obtain

rXj
W2(xj)dGj(xj) =  c =  W2(xj)dGj{xj).

J V j

The latter equality is satisfied if and only if W2 (xj) = 0 for all Xj € [vj,Xi]. The 

agent is therefore not paid at all if alternative i is chosen. Also, the agent’s wage 

if alternative j  is chosen just covers (in expected terms) the inspection cost. This 

implies tha t the expected wage from inspecting alternative j ,  conditional on hav

ing found tha t alternative z’s payoff is above Vj, is the same as the unconditional 

expected wage (which the agent can get by inspecting alternative j  only).
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wage ^ 2  = 0

A lternat ive  ;
<------------

wage
-------------->
Wq = 0

<-------------------------------->
wage w, = 0

X
yA lternative  j

<--------------------------------><------------------->
unconditional 
expected  wage
tv, = C

Figure 2.5: Contract violates Participation Constraint

It is easy to see tha t the above incentive compatible wage-schedule violates the 

agent’s participation constraint (Figure 2.5 provides an illustration): The agent is 

reimbursed (in expected terms) only for the second inspection. Thus, the expected 

payoff from accepting the contract is — c (which is the cost of conducting the first 

inspection). This constitutes a contradiction to the premise tha t the agent is willing 

to accept the contract.

Q.E.D.

The following proposition characterizes a contract tha t implements the first best 

inspection procedure depicted Figure 2.4 at the lowest cost to the principal.

P roposition  2.6 Contract (z,/,  ic), where f  is given by (2.7) and

0

w  

w
w =  <

if Xi < Vj and xj < X{ 

if Xi > Vj and Xj < Xi

if Xi < Vj and Xj > Xi

where

w =

and

w  =

{Gi(vj) + (1 -  Gi{vj)){l — Gj{vj))) c 

( 1  “
Gi{vj){l — Gj{xi)) {1 — Gj{xi))

the report Xi on alternative i cannot be verified, the wage u>2 must not depend on it.
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minimizes the expected wage that the principal has to pay in order to implement in

spection procedures that violate Condition 2.1.

The proof is relegated to the Section 2.6 (Appendix). The contract in Proposition 

2.6 yields the agent a strictly positive expected utility. To see this, suppose that he 

deviates from the desired inspection procedure and conducts no inspections at all. In 

order to avoid punishment, he must submit some report Xi < Vj. In this case the 

principal chooses alternative j  straight away and the agent receives a strictly positive 

wage if the principal’s payoff from alternative j  is above Xi. Thus, the agent’s ex ante 

payoff from conducting no inspections is ( 1  — Gj{xi))w.

An obvious question in cases where the first best inspection procedure does not 

satisfy Condition 2.1 is whether it is optimal for the principal to implement the first 

best procedure, or whether it is better to costlessly implement the “reverse” search 

procedure. The following example shows tha t the latter may indeed be optimal for the 

principal.

E x am p le  c o n t’d: As before, X i  = {1,2,5} with P r (xi =  1) =  P r (xi =  5) =  1/4

and X 2 = {0,3} with P r ( ^ 2  =  0) =  1 / 2 . Also, c = 1/4. Choice is unrestricted 

and hence the first best inspection procedure commences search with alternative 2. The 

expected payoff from this procedure is 2.625. I f  it is delegated to the agent using the wage 

schedule in (2.29), the agent faces a wage of 0 for reports/ outcomes {x2 , x i )  = (0,1) 

and (0,2). For reports/outcomes (3,1) and (3,2) he gets a wage w = 5/6, for  (0,5) 

he gets w = 8 / 6 , and for  (3,5) he gets 11/6. This leaves him an ex ante utility of 

1/3. Consequently, the principal’s payoff when implementing the first best inspection 

procedure is (just under) 2.292. In contrast, the inspection procedure commencing with 

alternative 1 does satisfy Condition 1 (the principal chooses alternative 1 after the first 

inspection if  its payoff is reported to be b). It can therefore be delegated to the agent 

without granting him rents, yielding the principal an expected payoff o f 2.5625 > 2. 

292.
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2.5 D iscussion

The present work shows that whether a sequential search procedure can be costlessly 

delegated to an information provider depends on the form of the procedure. If there 

is a chance that, after every single report made by the agent, the principal will pick 

the corresponding alternative, then the agent can be costlessly induced to follow the 

desired procedure. The reason is tha t every single inspection potentially generates 

a “verifiable” outcome to which the principal can tie her payment. Therefore, the 

expected payoff from any single inspection can always be lowered to zero. For inspection 

procedures where the first alternative is chosen if and only if the second one is worse, 

the principal’s decision to choose the first one is endogenous. In this case, the agent 

must be granted information rents in order to follow the principal’s desired procedure. 

We have shown by means of an example tha t the agent’s rents can be sufficiently large, 

so that it is better for the principal to use a different inspection procedure. Even if the 

alternative procedure can be implemented costlessly, there is an efficiency loss because 

the implemented search procedure is not the first best one.

Our results suggest that in real life recruitment we should observe widespread use 

of recruitment agents when it comes to filling job-openings for which it is easy to fix 

a “performance standard” or objective selection criterion. Casual observation suggests 

that is indeed so, with companies making frequent use of recruitment agencies to hire 

support and administrative staff. Note also tha t recruitment agents are typically paid 

for their services only if they successfully place a candidate, in which case the agency 

receives a fixed fee tha t is a proportion of the position’s salary. In this sense, real- 

life contracts for recruitment agents (at least in high-volume recruitment) carry some 

hallmarks of the contract derived here. The fact tha t recruitment agencies often make 

recourse to candidate-data-bases instead of newly searching for potential candidates 

could be seen as a response over time to the type of contract proposed here, as it 

exposes the agent to losses even if he has interviewed candidates, but fails to make the 

placement.
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2.6 A pp en d ix

P ro o f o f  P rop osition  2.2: Suppose tha t Vi > Vj. We need to show tha t this implies

(TTj — TTj) — (tt^ — '^i) > 0 . We first consider the inspection procedure commencing with 

alternative i and compute its expected payoff in the case of unrestricted and restricted 

choice (tt^ and resp.). The two cases differ only for values Xi < Vj. We can therefore 

write (where the term “Rest” is used to describe all elements tha t are present both in 

7T̂  and 7t[):

7T̂  = Gi{vj)fij +  Rest (2.11)

and

7t[ =  Gi{vj){Gj(vj)E[maix{xi,Xj} \xi < vj ,Xj < Vj]

+(1 — Gj(^Vj^^E[xj \xj z> "Uj] — c) T  Rest. (2.12)

Subtracting (2.12) from (2.11) yields after some manipulation

= Gi(vj)[c -  Gj{vj){E[mayi{xi,Xj} \xi < Vj,Xj < Vj] -  E[xj \xj < -Cj])].

(2.13)

The expression in (2.13) can be simplified further by using the fact tha t c =  {vj — Xj) dGj{xj),  

which implicitly defines Vj. It can obviously be rewritten as c =  Gj{vj){vj—E[xj \xj < Vj]). 

Substituting this expression into (2.13) finally yields

'^1 = Gi{'^j)Gj{vj)[vj -  E[max{xi, Xj} \xi < Vj, Xj < Vj]]. (2.14)

This expression is non-negative.

We now consider the inspection procedure commencing with alternative j  and com

pute its expected payoff under restricted and unrestricted choice. The two cases differ 

only for values Xj < Vi. Taking into account that Vj < Vi, we can therefore write (where 

the term  “Rest” is again used to describe all elements that are present both in ttj and

7r“ =  Gj(vj)fii -f {Gj{vi) — Gj{vj)) 4- Rest, (2.15)
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and

TTj =  Gj{vj){Gi{yj)E[md^{xi ,Xj} \xi < Vj,Xj < vj]

-\-{Gi{vi) — Gi{vj))E[xi \vj < Xi < Vi]

+(1 — G i { v i ) ) E [ x i  \ x i  >  Vi ]  — c }

-j-{Gj{vi) — Gj{vj)){Gi{vj)E[xj \vj < Xj < Vi]

-\-{Gi{vi) -  Gi{vj))E[maix{xi,Xj} \vj < Xi < Vi,Vj < xj  < Vi]

+ ( l  — G i ( v i ) ' j E [ x i  \ x i  ^  Vi ]  — c} 4- Rest. (2.16)

Since

Iii = Gi(vj)E[xi \xi <Vj]-\- (Gi{vi) -  Gi{vj))E[xi \vj < Xi < V i ]

+(1  —  Gi{vi))E[xi \xi > Vi],

we can express the difference between (2.15) and (2.16) as follows:

-  7T̂ =  Gj{vj){Gi(vj)E[xi \xi < V j ] ~  Gi{vj)E[max{xi,  xj}  <  Vj, Xj <Vj]-\- c }

HGj i v i )  -  Gj{vj)){Gi{vj)E[xi \xi < Vj] -  Gi{vj)E[xj \vj < Xj < Vi]}

-\-{Gi{vi) — Gi{vj))E[xi \vj < Xi < Vi]

-{G iiv i)  -  Gi{vj))E[Ts\Qyi[xi,Xj} \vj < X i <  Vi,Vj < Xj < Vi] +  c}. (2.17)

Now note that the equation which implicitly defines Vi, c  = j^]{vi — Xi)dGi{xi),  can be 

written equivalently as

c  =  G i { v j ) { v i  -  E [ x i  \ x i  <  Vj]) +  { G i { v i )  -  G i { v j ) ) { v i  -  E [ x i  \ v j  < X i <  -û ]).

Using this expression to eliminate o, we obtain

== Gi{vi)Gj{vj)[vi -  E[xi\vj  < X i <  Vi]] (2.18)

^Gj{vj)Gi(vj)[E[xi \vj < X i < V i ] ~  E[maiK{xi,Xj} \xi < Vj,Xj < Vj]]

+(Gj{vi) — Gj(vj))Gi{vj)[vi — E[xj \vj < Xj < v*]]

+{ Gj { v i )  -  Gj {vj ) ) {Gi {vi )  -  Gi{vj))[vi  -  E[mayi {xi ,Xj }  \vj < X i <  Vi,Vj <  Xj <  Vi].
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This expression is non-negative. To complete the proof, subtract (2.14). This yields 

the following expression for (tTj -  tTj ) — (tt" — tt^):

Gi(vi)Gj(vj)[vi -  E[xi\vj  < Xi < Vi]] Gi{vj)Gj{vj)[E[xi \vj < Xi < Vi] -  vj]

+  ~ I'̂ j ^  ^  ' î]] (2.19)

- \ - ( G j ( v i )  -  G j { v j ) ) { G i { v i )  -  G i { v j ) ) [ v i  -  E [ m a x { x i , X j }  \ v j  <  X i  <  V i , V j  <  x j  <  û ]].

As Vi > Vj, it is easy to see tha t (tt^ -  ttj) — (tt^ — 7t[) > 0 .

To prove sufficiency, suppose tha t the expression in (2.19) is strictly positive. Is 

this compatible with Vi < Vj. We show by contradiction tha t this cannot be the case. 

For this purpose assume th a t the expression in (2.19) is >  0 and tha t Vi < Vj. Using 

the fact that Vi < Vj we can rewrite the expression (2.19). Note that

E[max{xi ,Xj} \vj < Xi < Vi,Vj < xj  < Vi]

=  E[mdiyi{xi,Xj} \vi < Xi < Vj,Vi < Xj < Vj] for Vi < Vj.

We therefore obtain from (2.19) by the assumption tha t u* <  Vj:

~  G i ( v j ) ) E [ x i  \vi  <  Xi  <  Vj ] ]  4- G j { v j ) [ G i { v i ) v i  — G i { v j ) v j ]

~  k* ^  ^  '^j]] (2 .2 0 )

H G j { v i )  -  G j { v j ) ) { G i { v i )  -  G i { v j ) ) [ v i  -  E [m a x {T ^ ,T j}  \ vi  < X i <  V j , V i  <  X j  <  Vj ] ] .

It is easy to see that (2.20) is strictly negative when Vi < Vj, which constitutes a 

contradiction to the premise tha t the expression in (2.19) is >  0. Hence, if the latter 

is true, it must hold tha t Vi > Vj.

Q.E.D.

P ro o f  o f P ro p o s itio n  2.6: In the following, we derive the restrictions th a t incentive

compatibility of the inspection procedure depicted in Figure 2.4 imposes on the wage- 

schedule given in (2.8). Where appropriate, we will simplify the components of an 

incentive compatible wage-schedule in line with the principal’s goal of minimizing the 

(expected) payment to the agent.
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(i) E x  P o s t S tage; Suppose the agent has inspected alternatives i and j  and has 

found payoffs Xi and Xj^ respectively. If he submits reports Xj), where Xi > xj,  

the principal will choose alternative i, in which case the agent receives the wage 

wi{xi)  if the report is correct, and is punished otherwise. Likewise, if the agent 

submits reports where Xi < Xj, the principal chooses alternative j .  In

this case, the agent receives the wage W2 {xi) if the report is correct, and is 

punished otherwise. As the agent can misrepresent the payoff associated with the 

alternative not  chosen by the principal, ex post incentive compatibility requires 

tha t wi{xi) > W2 {xj) whenever alternative %'s payoff Xi is greater than alternative 

j ’s payoff Xj. Likewise, it must hold tha t Wi{xi) < W2 {xj) whenever alternative 

j ’s payoff is greater than alternative %’s. Suppose now tha t the agent has found 

identical payoff realizations for the two alternatives (i.e. Xi = Xj = x, where 

X G (vj, Xi]). If it holds under an incentive compatible wage-schedule tha t %ci(x) ^  

W2 {x), then agent will find it optimal to ensure tha t the principal chooses the 

alternative which maximizes the agent’s wage. He can do so by understating 

the payoff associated with the alternative for which the wage is lower. Incentive 

compatibility therefore requires

W2 {x) = wi(x)  for all x  G {vj^Xi], 

where wi  is non-decreasing on {vj, Xi] to satisfy ex post incentive compatibility.

(ii) In te r im  S tage: Suppose the agent has inspected alternative % and has found

a payoff realization Xi for which valuable information can be gained from an

inspection of alternative j  (i.e. Xi G (x^, x j) . The agent will inspect alternative 

j  if and only if

r^j
wi(xi) < Wi{xi)Gj(xi)  +  / W2 {xj)dGj{xj) -  c.

Jxi

Re-arranging terms and using the fact that Wi{x) = W2 {x) for all x G (x j,x j, we 

can write this interim incentive constraint as follows:

c < {GjÇxi) -  Gj{xi)) {E[wi{xj) \xi < Xj < Xi] -  wi(x^))

+ ( 1  -  Gj(xi)) {E[w2{xj) \xj > Xi] -  wi(xi))  (2 .2 1 )
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The right hand side of the inequality in (2.21) represents the expected wage 

increase tha t the agent can get by inspecting alternative j .  An optimal con

tract will make this expected increase as small as possible. As ex post incentive 

compatibility requires the function Wi to  be non-decreasing, it is optimal to set 

wi{x) = w  for all x  G {vj,Xi\, thus providing the agent (weak) ex post incentives 

to truthfully reveal both payoff realizations correctly. Note that making wi  con

stant is without loss of generality for ex ante incentive provision since, at the ex 

ante stage, the agent’s incentives are determined only by the expectation of wi. 

The interim incentive constraint in (2.21) therefore reduces to

E[w2 (xj) \xj >Xi] >  U) +   ---- ^  r - \ - (Interim IC)
1 -

It is optimal for the principal to make this interim incentive constraint bind in 

order to extract the agent’s entire surplus from the second inspection. W ithout 

loss of generality we can set W2 {xj) = w + for all Xj > X i P  Thus, an

optimal incentive compatible wage-schedule of the form (2 .8 ) reduces to

WQ{xj) if Xi < Vj

w =  < w ii X i > Vj and Xj < Xi (2 .2 2 )

— +  i-Gj{xi) f̂ ^  and Xj > Xi

(iii) E x  a n te  S tage: To ensure ex ante incentive compatibility it must hold that no 

deviation at the ex ante stage yields the agent a higher expected payoff than that 

associated with the desired inspection depicted in Figure 2.4, which is given by

G i { v j ) E [ w o ( x j ) ]  4- (1 — G i { v j ) ) w  — c =: II* (2.23)

First suppose tha t the agent does not inspect any alternatives at all. In order to 

avoid the risk of punishment, he must submit any report for which the principal 

chooses alternative j  immediately (i.e. Xi < Vj). The agent’s expected wage from 

this procedure is E[wQ{xj)\. To deter the agent from adopting this procedure it

^^All that matters for incentive provision at the interim stage is the conditional expectation of wg 

on {xi,Xj].
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must hold tha t II* >  E[wo{xj)], which implies that

w > E[wo{xj)] +    T T T ^ -  (2.24)
i -  Lri[Vj)

Thus, w > E[wo{xj)], it hence it follows immediately tha t II* < w-

Now consider the procedure under which the agent first inspects alternative j .  If 

he finds tha t Xj > Vj he can pretend tha t he has inspected both alternatives, but 

tha t j  is better. If instead Xj < Vj he retrospectively inspects alternative i. This 

deviation yields the following expected payoff

\xj < Vj] + (1 — Gi{vj))w — c] +  (1 — Gj{vj))w =: II

(2.25)

Using the expression for II* in (2.23) we can write (2.25) as follows

n  =  Gj{vj) (n* — Gi{vj) {E[wo{xj)] — E[wo{xj) \xj < vj])) + (1 — Gj{vj))w.

(2.26)

Ex ante incentive compatibility of the wage-schedule in (2.22) requires that II* > 

n, which, in turn, implies tha t

n* > u; -  (E[wo(a:;)] -  E[wo(xj) \xj < u^-]).
(1  -  Uj[Vj))

Prom above we know that II* < w,  and therefore a necessary condition for ex 

ante incentive compatibility is that

E[wo{xj)] > E[wo{xj) \xj <Vj].  (2.27)

Condition (2.27) places mild restrictions on the shape of the function wq - it 

is easy to see tha t wq cannot be constant for all Xj. Condition (2.27) roughly 

states tha t wq must reward the agent more for realizations above Vj than for 

realizations below Vj. The exact functional form of wq, however, is irrelevant for 

ex ante incentive provision, as only the expectation of wq matters. Thus, it is 

sufficient to consider step functions for which wq(-) takes on a fixed value for all 

Xj <  Vj, and a strictly higher value for at least some realizations Xj > Vj. There
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is no loss of optimality in restricting ourselves to step functions of the following 

form:^^

W o ( X j )  =
0  if Xj < Xi 

w if Xj > Xi
(2.28)

Thus, E[wo{xj)] = w { l  -  Gj{xi)) and E[wo{xj) \xj < V j ]  = 0. An optimal incen

tive compatible wage-schedule therefore reduces to

if Xi < Vj and Xj < Xi 

if Xi > Vj and Xj < Xi 

if Xi < Vj and Xj > Xi
(2.29)

— “*■ i-Gj{xi) and Xj > Xi

The optimal values of w and w are determined by the two ex ante incentive con

straints described above. Using the step function in (2.28), the ex ante incentive 

constraint in (2.24) becomes

w >  (1 — Gj{xi)) w 4- (Ex Ante IC 1)
( 1  -  Gi(vj))

By (2.28) the second ex ante incentive constraint (namely tha t II* >  II) reduces

to

(Ex Ante IC 2)
Gi{vj) ( 1  — Gjixi))  ( 1  — Gj{xi))'

It is optimal for the principal to make the two ex ante incentive constraints bind, 

so tha t the optimal values of w and w are characterized by the solution to a 

system of two linear equations; in particular,

{Gi(vj) +  (1 -  Gi(vj)){l — Gj{vj))) c
w =

and

w =
G iiyj){l — Gj{xi)) ( 1  — Gj{xi))

Q.E.D.

Recall that Xi >  vj.
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Chapter 3 

How much do you really care? A  

study of Efficient Compromising^

3.1 Introduction

You and your partner disagree about which restaurant to visit tonight. You prefer 

the Italian restaurant over the English restaurant, and the English restaurant over the 

Chinese restaurant. But your partner has exactly the opposite preferences. Should you 

compromise, and go to the English restaurant, or should you go to a restaurant that one 

of you likes best? The answer presumably depends on how much each partner really 

cares whether his or her most preferred alternative or the compromise is chosen. Is 

there a way of finding out how much each partner cares, or will they always necessarily 

overstate the importance of the decision? This is the question which this chapter 

addresses.

How we answer our question depends, of course, on what precisely we mean by 

“strength” of preference. This could be interpreted as the amount of money tha t an 

agent is willing to pay to obtain one outcome rather than another. If this is what we 

have in mind when speaking of “strength” of preference, then one could try  to elicit the 

strength of the partners preferences by introducing a mechanism according to which a

^This chapter is joint work with Tilman Borgers.
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partner whose preferred restaurant is chosen has to pay the other some compensation.

Here, we abstract from such side payments, as they seem inappropriate in many 

situations. Spouses, for example, rarely pay money to each other to resolve conflicts. 

When initially conceiving of this project, we had another situation in mind in which 

money payments are typically not made: voting. Optimal voting rules, if there are 

more than two candidates, need to elicit, in some sense, the “strength” of preference 

for candidates, yet voters are typically not asked to offer payments in conjunction 

with their votes. The problem tha t we study here is a simplified version of the voting 

problem.

If side payments are ruled out, what do we mean by “strength” of preferences, 

and how can we elicit them? We mean in this chapter by strength of preference the 

von Neumann Morgenstern utility of different alternatives. If we evaluate different 

mechanisms from an ex ante perspective (Holmstrom and Myerson (1983)) then von 

Neumann Morgenstern utilities have to be taken into account when resolving conflicts. 

How can we hope to elicit von Neumann Morgenstern utilities truthfully? By exposing 

agents to risk. Agents’ choices among lotteries indicate their von Neumann Morgen

stern utilities. If agents play a game with incomplete information, then they are almost 

always automatically exposed to risk. Their choices can then help with efficient decision 

making.

We develop this theme in a simple stylized example with two agents and three 

alternatives. We assume that it is known that the agents’ ranking of the alternatives is 

diametrically opposed. Their von Neumann Morgenstern utilities for the alternatives 

are, however, not known. It is optimal to implement the compromise if and only if 

the sum of the agents’ utilities of the compromise is larger than  the sum of the agents’ 

utilities from their most preferred alternatives. A decision rule with this property is 

called first best

In simple examples, in which there are only two or three values of the von Neumann 

Morgenstern utility of the compromise to which the prior distribution attaches positive 

values, we find tha t simple mechanisms implement the first best decision rule. However,

42



for the case tha t a continuum of values of the von Neumann Morgenstern utilities of the 

compromise is in the support of the prior distribution, we prove an impossibility: There 

is no incentive compatible decision rule tha t implements the compromise efficiently.

The proof of the impossibility result in the present work is related to the proof of the 

impossibility of efficient bilateral trade due to Myerson and Satterthwaite (1983). Our 

argument uses the incentive compatibility constraints to obtain a differential equation 

for the probabilities with which different alternatives are implemented by an incentive 

compatible first best rule. This is similar to Myerson and Satterthwaite’s use of a 

differential equation to derive the payments made by the agents in an incentive com

patible first best trading rule. Where Myerson and Satterthwaite then show that an 

ex ante budget constraint is violated by these payments, we show tha t the constraint 

that probabilities need to add up to one is violated ex ante.

The present work is also remotely related to Borgers (1991), where the impossibility 

to compromise efficiently was demonstrated in a setting in which lotteries played no 

role, but agents’ information about other agents’ preferences was assumed to be much 

poorer than it is in the present work.

Finally, the present chapter is related to a recent paper by Li, Rosen and Suen 

(2 0 0 1 ), who study incentive compatible decision rules in a common value setting: com

mittee members have private information about the underlying state of the world which 

affects their payoffs from the collective decision. Li et al. show tha t incentive com

patible binary deterministic decision rules partition agents’ private information, where 

the degree of conflict between the agents’ interests determines the coarseness of the 

partition.

This chapter is organized as follows. In Section 3.2 we introduce our model, ex

tensions to which are briefly discussed in Section 3.3. Section 3.4 describes normative 

properties of decision rules. In particular, we explain what we understand by “first 

best” decision rules. Section 3.5 defines incentive compatibility in our setting, and 

obtains some general implications of incentive compatibility. In Sections 3.6 and 3.7 

we then deal first with the case tha t there are only two possible values of the von
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Neumann M orgenstern utility of the compromise, and later with the case that there 

are three such values. The purpose of these sections is to show in simple examples that 

it is possible to elicit von Neumann Morgenstern utilities through simple mechanisms, 

and th a t sometimes it is even possible to do so and to implement the first best. Sec

tion 3.8 then deals with the case in which there is a continuum of possible values of 

the von Neumann Morgenstern utility of the compromise. We prove a rather general 

impossibility result. Section 3.9 concludes.

3.2 M od el

There are two agents: î =  1,2 who must collectively choose one alternative from the set 

{ A , B , C } .  Agent 1 prefers A  over B, and B  over C. Agent 2  prefers C  over B,  and B  

over A.  These preferences are common knowledge among the two agents. Each agent 

i has a von Neumann Morgenstern utility function: Ui : {A,  B, C}  —>• R. We normalize 

each agent’s utility from her least preferred alternative to zero: Ui{C) = U2 (A) = 0. In 

addition, we assume tha t each agent’s utility from her most preferred alternative is 1 : 

ui{A) = U2 {C) = 1. This assumption means tha t agent I ’s intensity o f preference for 

her most preferred alternative over her least preferred alternative is the same as agent 

2’s.^ These features of the von Neumann Morgenstern utility functions are common 

knowledge among the two agents.

For z — 1, 2 we write ti for Ui{B). We refer to ti as “player z’s type”. We assume 

th a t ti is a random variable which is only observed by agent i. The two players’ 

types are stochastically independent, and they are identically distributed with common 

cumulative distribution function G.  We assume tha t G has support S  Ç [0,1]. We 

consider only the two special cases: (i) the case tha t S  is finite, and (ii) the case that 

S  = [0,1] and th a t G has a strictly positive density on [0 , 1 ]. The joint distribution of 

(^1 ,^2 ) is common knowledge among the agents.

A decision rule /  is a function /  : —> A({A, B, G})  where A({A, B, C})  is the set

of probability distributions over {A,  B, G}.  We write 2̂ ) for the probability which

Tor a brief discussion of this assumption, see Section 3.3 below.
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assigns to alternative A,  and we define and /c (^ i,^ 2 ) analogously.

Given any decision rule, denote for every U G S  by Pi{ti) the conditional probability 

that the alternative that agent i likes best is implemented, conditional on agent z’s 

type being U, i.e.:

Pi{h) = [  f A { h , t 2 )dG{t2 ) and ^ 2 (^1) =  /  f c { t i , t 2 )dG(ti).
J s  J s

Denote by qi(ti) the probability tha t the compromise is implemented, conditional on

agent z’s type being U, i.e. for i =  1 , 2 :

qi{U) = J  fB{t \M)dG{t j )  where j  ^

Finally, we denote by Ui{ti) agent z’s expected utility, conditional on being type t*, 

that is:

Ui{U) =Pi{ti) -{-qi{ti)ti.

3.3 D iscussion  on In tensity  o f Preference

The special feature of the model described in Section 3.2 is that both agents have 

identical intensity of preference for their most preferred alternative over their least 

preferred alternative. In general, there is no reason to believe tha t two agents’ cardinal 

von Neumann Morgenstern utilities should satisfy this assumption, even in situations 

where the agents’ ordinal preferences over alternatives are known to be diametrically 

opposed. We can, however, view the model described in Section 3.2 as the “reduced 

form” of a more general setup in which agents’ intensities of preference differ.

To see this, let agent i ’s von Neumann Morgenstern utility function be given by the 

numbers Ui{A), Ui(B) and Ui{C). As before, normalize each agent’s utility from her 

least-preferred alternative to zero (i.e. u\{C) = U2 {A) = 0). Now, however, suppose 

that each agent’s value of her most-preferred alternative is believed to be the realization 

of a random variable p with some known distribution on R+. That is, Ui{A) = p-̂  and 

U2 {C) = P2 , where Pi,p2 G M+ are drawn independently of one another. Note that p̂  

measures agent i ’s intensity of preference for her most preferred over her least preferred
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alternative. Finally, assume that agent Fs utility Ui{B) from the compromise is given 

by tip^, where U is drawn (independently of pi,pj  and tj) from G on [0 , 1].

In this setup, agent Fs private information is given by (Pi^U) G M+ x [0,1]. As 

above, a collective decision rule prescribes a (possibly randomized) choice from the 

set of alternatives {A, B, 0 }  on the basis of the agents’ private information.^ For 

concreteness assume furthermore that agents’ preference intensity can only take on 

one of two values: p,p, where "p > p. Now take a decision rule that gives each agent 

incentives to truthfully reveal her private information. Consider agent 1 and suppose 

tha t if she reports her private information as (p, t ) , the decision rule selects the lottery 

I G A({A, B, C } ) ^  If, instead, she reports her private information as (p, t), the decision 

rule selects the lottery I' G A({A, B, C}), where I' ^  I.

Now suppose tha t agent 1 has “preference intensity” p. As the decision rule is 

assumed to be incentive compatible, agent 1 prefers to submit the report (p, t) over the 

report (p, t). In the former case, her expected utility is p(/^ +  /^t), while in the latter 

it is p(Vĵ  +  Hence, incentive compatibility implies

pi^A +  >  p{1'a +  (ICp)

Now suppose tha t agent 1 has “preference intensity” p. As the decision rule is 

assumed to be incentive compatible, agent 1 prefers to submit the report (p, t) over the 

report (p,t). In the former case, her expected utility is p(Z(̂  +  while in the latter 

it is p {Ia +  Ib )̂- This implies that

p (/(4  + /^^) >  p(^A +  (ICp)

Combining ICp and ICp implies that

I'a  4- =  â ~̂  b̂ -̂

^Formally, a decision rule now is a mapping v? : (M+x [0,1])^ —> A ({A , B ,  C } )  where ^Pkipi ,  P21 tiA s)

denotes the probability that alternative k G {A,B,C} is chosen when agent I ’s information is

and agent 2’s information is (^2 ,^2 )-
'^Note that I =  ( I a J b J c ) ,  where Ic =  1— Ia ~  Is-
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Thus, if agent 1 claims her private information is (p, i), then she has the same expected 

utility as if she had reported it as (p, t). Therefore, a decision rule tha t assigns the lot

tery I to both reports (p, t) and (p, t) is also incentive compatible. In this sense, we can 

say th a t any incentive compatible decision rule must ignore agents’ intensity of pref

erence for their most over their least preferred alternatives. We may therefore restrict 

ourselves to  the model presented in Section 3.2 in which the intensity of preference 

only takes a single value (normalized to 1 ).

3.4 N orm ative P rop erties o f D ecision  R ules

We calculate the expected welfare resulting from a decision rule /  using a utilitarian 

welfare criterion. This corresponds to the evaluation of the ex ante expected utility of 

an agent who does not know whether he will be agent 1 or 2 , and who does not yet 

know his type. We assume tha t the probability of being either agent 1 or agent 2 is 

equal to 1 / 2 .

D efin itio n  3.1 The ex ante expected utility associated with decision rule f  is:

J  Ui(ti)dG{ti)  4- J  U2{t2)dG{t2).

It is easy to see that the decision rules /  tha t maximize ex ante expected utility 

among all decision rules are those tha t are “first best” in the sense of the following 

definition.

D efin itio n  3.2 A decision rule f  is called “first best” i f

ti +  ^2 >  1 f s i h M )  = land

t\-\-t2  < 1 /b(^15 2̂ ) =  0 -

Note tha t there are many first best decision rules. The reason is that the above 

definition does not restrict in any way the probabilities with which A  and C  are chosen 

if the compromise is not implemented. A second normative property tha t will play a 

role in this chapter is the following symmetry condition.
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D efin ition  3.3  A decision rule f  is called “symm,etric” i f  for all ^1 ,^ 2  & S  we have: 

fA{ti , t2) = /c fe ,^ i) -  

L em m a 3.1: I f  a decision rule f  is symmetric then for all t i , t 2 E S  we have:

/b (^ i,^ 2 ) =  f B(h , t i ) .

P ro o f  o f L em m a 3.1: By definition, fc { t 2 , t i)  =  1 -  /a (^ 2 ,^i) — /b(^ 2 ,^i)- Using

Definition 3.3 to replace fA{h, t i )  we obtain

f c ( f 2, t l )  =  1 — / c ( U j ^ 2) — / s ( ^ 2, U )

=  1 — ( 1  — /a (U ,^ 2 ) — /b (U ,^ 2 )) —

=  /^ (U ,^ 2 ) + /s(U, '^2 ) — /b(^ 2 ,U)-

Applying Definition 3.3 once more yields /g ( t 2 ,U) =  / s ( U , t 2).

Q.E.D.

3.5 Incentive C om patibility

Because types are privately observed, a decision rule can be implemented in practice 

only if it is incentive compatible.^

D efin ition  3.4 A decision rule f  is “incentive compatible” if  fo r i = 1,2 and for 

any types ti,t'^ E S  we have:

P i i f i )  + q i ( t i ) t i  >  pi ( t ' i ) + qi(t ' f)t i .

The following simple Lemma is key for understanding how an incentive compatible 

rule incentivizes agents to reveal their true von Neumann Morgenstern utility of the 

compromise.

^The following definition implicitly assumes that the mechanism which is used to implement the 

decision rule is a direct one. The “Revelation Principle” (see, for example, Proposition 5.1 in Krishna 

(2002)) says that this assumption is without loss of generality.
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L em m a 3.2 A decision rule f  is “incentive compatible” if  and only i f  for  z =  1,2 

we have:

(i) Qi is (weakly) monotonically increasing in ti;

(ii) Pi is (weakly) monotonically decreasing in ti, and Pi{ti) 7  ̂Piit'f) ^  qiifi) 7  ̂qiif'f);

(iii) for any two types ti,t'^ e  S  with ti < t[, i f  qiifi) 7  ̂ %%) we have:

' - « ( i ')  -

In words, Lemma 3.2 says tha t the probability of the compromise, conditional on 

an agent’s type, increases as this agent’s utility of the compromise increases (item (i)). 

Where is this probability taken from? If it were taken from the agent’s least preferred 

alternative only, then the agent would have an incentive to pretend to have a higher 

utility for the compromise than he actually has. Therefore, the probability must be 

taken in parts from the alternative which the agent likes best (item (ii)). The agent 

“pays” for a higher probability of the compromise with a lower probability of his most 

preferred alternative.

Item (iii) of the lemma concerns the ratio of the reduction in the probability of the

most preferred alternative and the increase in the probability of the compromise. In

other words this is the price paid per unit increase in the probability of the compromise. 

Item (iii) says tha t this price needs to be increasing in the agent’s type, tha t is, agents 

who value the compromise more pay a higher price than agents who value it less. This 

is how an incentive compatible decision rule screens low type agents and high type 

agents.

P ro o f  o f L em m a 3.2: The condition that defines incentive compatibility can equiv

alently be written with reference to all pairs of types G S  which are ordered, i.e. 

t i < t \ .  We then need to require:

vAk)^q i i f ^ )U  > p^(4) +  (3.1)

Vi {u)q i { f i ) ^ i  < P i ( t ' )+  g*(t')t' (3.2)
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Subtracting (3.2) from (3.1) we obtain:

%(^i)(^( -  ^0 >  %(^0(^i -  4)

which shows tha t (i) in Lemma 3.2 is necessary. The necessity of (ii) follows from the 

argument given in words in the paragraph preceding this proof. Finally (iii) is obtained 

simply by rewriting (3.1) and (3.2).

To see the sufficiency of (i)-(iii) note tha t (i) and (ii) imply tha t for any pair of 

types, ti^t[ G 5, we either have tha t qi{U) = g*(^) and Pi(U) — pi(^), in which case it 

is obvious tha t neither type has an incentive to pretend to be the other type, or we 

have tha t % is strictly larger and pi is strictly lower for the higher type. But in that 

case the inequality in (iii) implies tha t the incentive compatibility constraints hold.

Q.E.D.

We now focus on the special case tha t G  has a density that is strictly positive ev

erywhere on [0,1]. The next Lemma shows how some standard results from mechanism 

design with transferable utility generalize to our context.®

L em m a 3.3 Suppose that G has a density that is positive everywhere on [0,1]. I f  a 

decision rule f  is incentive compatible, then for every agent i = 1,2;

(i) Ui is differentiable almost everywhere, and in all points in which Ui is differen

tiable:

U'iiti) =  qi{ti)]

(ii) for every ti G [0,1]:

Uiifi) =  Ui{l) — [  qi{si)dsi- 
Jti

In words, point (i) and the fact tha t for incentive compatible mechanisms % is 

increasing in ti (part (i) of Lemma 3.2) imply tha t Ui is convex in ti. Part (ii) shows

'See pages 64 and 65 in Krishna (2002).
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th a t the expected utility which an agent derives from the mechanism is completely 

determined by the expected utility Ui{l) of the highest type, and by the expected 

probabilities of the compromise, conditional on the agent’s type. This is analogous to 

the principle in auction theory tha t the expected utility of a bidder is determined up 

to  a constant by the allocation rule tha t determines the probability with which the 

bidder obtains the object.

P ro o f  o f L em m a  3.3: Incentive compatibility implies that

Ui{U) = max{pX4) +

Thus, Ui is the maximum of a set of affine functions and is therefore convex. This 

implies th a t U i  is differentiable almost everywhere in (0,1). It follows from the Envelope 

Theorem tha t, a t every point at which U i  is differentiable,

=  Qiiti). (3.3)

As U i  is the definite integral of its derivative, we have

Ui{ti) = Ui{l) -  [  qi(si)dsi.
Jti

This implies th a t up to the constant agent %’s expected utility from any incen

tive compatible decision rule depends only on the probability of the compromise. By 

definition, Ui(ti) = Pi{U) +  so that

P i i U )  = U i { l )  -  q i { t i ) t i  -  f  q i { s i ) d s i ,  (3.4)
J t i

where Ui{l) = Pi{l) +  %(1).

Q.E.D.

Our interest will be in those decision rules tha t maximize ex ante expected utility 

among all incentive compatible rules. We make the following

D efin itio n  3.5 A decision rule f  is called “second best” if  it yields the largest ex 

ante expected utility among all incentive compatible decision rules.
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The following simple result shows tha t when considering whether first best rules 

are incentive compatible, or what second best rules would be, as we do in this chapter, 

there is no loss of generality in considering symmetric decision rules only.

L em m a 3.4  For every incentive compatible decision rule f  there is a symmetric 

incentive compatible decision rule f  which yields the same ex ante expected utility as 

/■

To see why this is true define / '  to be the rule which results if agents are first asked 

to reveal their types, then a fair coin is tossed and, if head comes up /  is applied, but if 

tails comes up /  is applied except tha t the roles of the agents are reversed, i.e. agent 2 

now plays the role of agent 1, and vice versa. Because /  is incentive compatible, both 

agents would have no incentive to distort their preferences if they knew the outcome of 

the coin toss in advance. Therefore they also have no incentive to distort preferences 

ex ante. It is obvious tha t the new rule / '  is symmetric, and tha t it has the same ex 

ante expected utility as / .

3.6 T w o typ es

We ask ourselves whether first best rules are incentive compatible, and, if they are not, 

what second best incentive compatible rules would be. We begin with a look at the 

special case th a t S  = where t < tf. If both types are smaller than 0.5, or both

types are larger than 0.5, then there are symmetric first best rule tha t are constant. 

In the former case such a rule is: always implement the lottery (0.5,0,0.5) (listing first 

the probability of A, then the probability of B,  and then the probability of C y .  In 

the la tter case, such a rule is: always implement the lottery (0,1,0). These rules are 

obviously incentive compatible.

Consider the case tha t t  < 0.5 < t'. For simplicity we ignore the situation that 

one of the two types equals 0.5. We need to distinguish between the case in which 

t-{-t' < 1, and the case tha t t-\-t' > 1. For simplicity we ignore the case tha t t-\-t' = 1.

^We shall use the same notation throughout the paper.
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In the former case, an example of a symmetric first best rule is in Figure 3.1, where 

rows refer to agent I ’s type, and columns refer to agent 2’s type.

1\2 t t'

t (0.5,0,0.5) (0.5,0,0.5)

t' (0.5,0,0.5) (0,1,0)

Figure 3.1: Unanimity required to implement Compromise

Note that in Figure 3.1 it is weakly dominant for each agent to tell his true type. 

Thus, this first best rule is incentive compatible.

IÏ t 1' > 1, then the following decision rule is first best and incentive compatible:

1\2 t t'

t (0.5,0,0.5) (0,1,0)

t' (0,1,0) (0,1,0)

Figure 3.2: Unanimity required to veto Compromise

The two mechanisms in Figures 3.1 and 3.2 reflects mechanisms where, in the case 

of Figure 3.1, unanimity is required to implement the compromise and in the case of 

Figure 3.2, unanimity is required to veto the compromise. We conclude tha t in the 

case of two types the first best is incentive compatible. It can even be implemented in 

dominant strategies.

It is worthwhile at this stage to briefly consider an alternative (indirect) mech

anism tha t has been advocated in practice: approval voting. Approval voting has 

been designed for much more general environments than we consider here (see Brams 

and Fishburn, 1983). Under approval voting each agent indicates for each alternative 

whether he approves of it, or not. The alternative that is approved of by the largest 

number of agents is then chosen. If several alternatives receive the same number of 

votes, then each of them is picked with the same probability.
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It is easy to see what approval voting implies in our context. In the unique equilib

rium of approval voting agents with type below 0.5 vote for their preferred alternative 

only. Agents with type above 0.5 vote for their most preferred alternative, and the 

compromise. Agents whose type equals exactly 0.5 are indifferent between the two 

strategies. Assuming as we did above tha t t < 0.5 < f , Figure 3.3 shows the decision 

rule that is implemented by approval voting.

1\2 t t'

t ( 2 0̂ , 1) (I  1 1) V3’ 3’ 3 /
t' ( i è ’ 3 ) (0,1,0)

Figure 3.3: Decision Rule implemented by Approval Voting

Now this decision rule is first best only if  ̂4- f  =  1, a non-generic case ruled out 

above. The background to this is that approval voting implements a decision rule 

that sometimes randomizes between the compromise and the agents’ most preferred 

alternatives. In the first best, such a randomization occurs only in the non-generic case 

that t 1' = 1.

3.7 T hree typ es

We now consider the case of three types: S  — where t  < t' < if'. We denote

the probabilities of the three types by g(t), g{t') and g{t"). To identify the values 

of the exogenous parameters for which interesting complications arise, we begin by 

considering the probability of the compromise B  under the first best rule. Notice tha t 

this probability is unique and is either zero or one, except in the non-generic case 

that the sum of two types is exactly 1. We rule out this case. Figure 3.4 shows the 

eight different forms tha t the function which assigns to each pair of types the first best 

probability of the compromise can take. Eight different cases arise.^

®Rows in Figure 3.4 refer to agent I ’s type, columns to agent 2’s.
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t t' t t' t" t t' t"

t 0 0 0 t 0 0 0 t 0 0 0

t' 0 0 0 t' 0 0 0 t' 0 0 1

t" 0 0 0 t" 0 0 1 t" 0 1 1

Case 1 Case 2 Case 3

Case 4 Case 5

t t' t" t t' t" t t' t"

t 0 0 0 t 0 0 1 t 0 0 1

t' 0 1 1 t' 0 0 1 t' 0 1 1

t" 0 1 1 t" 1 1 1 t" 1 1 1

Case 6

Case 7

t t' t" t t' t"

t 0 1 1 t 1 1 1

t' 1 1 1 t' 1 1 1

t" 1 1 1 t" 1 1 1

Case 8

Figure 3.4: FB probability of Compromise

Figure 3.5 shows for all possible values of {t,t') which case they give rise to. In 

Figure 3.5 the value of t" is taken as given and fixed. The remaining two types, t and 

t' have to  be smaller than t". It also has to be the case tha t t < t ' . The restrictions 

resulting from this are indicated in Figure 3.5 by solid lines. The remaining restrictions, 

corresponding to  the various case distinctions, are indicated in dashed lines. Figure 

3.5 assumes th a t t" > 0.5. Thus, Case 1 of Figure 3.4 cannot arise in Figure 3.5. But 

all other cases are possible.

In Figure 3.4 it is obvious tha t the first best can be implemented in the trivial 

Cases 1 and 8. It is also easy to see tha t in Cases 2, 4, 5 and 7 the first best can be 

implemented, because in these cases the first best rule depends only on whether the 

players’ types are “high” or “low” , where one of the two categories, “high” or “low” 

contains two of the types. In all these cases one of the two (now indirect) mechanisms 

in Figures 3.1 and 3.2 will implement the first best.

Of interest are therefore only Cases 3 and 6. We shall show first th a t the first best
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LO

1-t" 0.5 t"

Figure 3.5: Param eter Regions (Numbers refer to Cases in Figure 3.4)

1\2 t t' t"

t (i'O , (1 -  a ,0 ,a ) (1 -  a ,G ,a)

t' (q ,0 ,1  -  a) (i'O ) i) ) (0,1,0)

t" (a, 0,1 -  a) (0,1,0) (0,1,0)

Figure 3.6: Implementing FB in Case 3 (where a = p(t'')(^ — ^ ) )

can always be implemented in Case 3. Indeed, a direct mechanism tha t implements 

the first best in Case 3 is displayed in Figure 3.6. It is easily verified tha t the rule 

displayed in Figure 3.6 is incentive compatible.

Because Figure 3.6 shows the first mechanism in this chapter in which non-trivial 

stochastic outcomes are used to separate agents of different types from each other, 

it is worthwhile to consider this mechanism in more detail. We can calculate the 

probabilities of different alternatives, conditional on the agents’ types, as follows:
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Pi{i) — %(4 — 0

Pi{t') = g{i)oi + g it ') \  qi{t') = g{t")

Pi{t") =  g{i)o^ Qi{t") =  g{t') + g{t")

Thus, for example, when comparing the report t' to the report t, agents find tha t 

for reporting the higher type they pay the price tha t the most preferred alternative is 

chosen less frequently, with the loss in probability being but they gain that

the compromise is chosen more frequently, with the increase in probability being g{t"). 

The price paid in terms of loss of probability of the preferred alternative per unit of 

gained probability of the compromise is Types t will not find it worthwhile to pay 

this price, but types t' will find it worthwhile. In this way, the mechanism separates 

these two types. Similarly, when comparing the report t" to  the report t', agents find 

tha t if they report the higher type the probability of their most preferred alternative 

decreases further, by g{t')^, but the probability of the compromise increases by g(t'). 

Thus, the price paid in lost probability of the most preferred alternative per unit of 

increased probability of the compromise is Types t' will not find this worthwhile 

(because t' < 1/2), but types t" will find it a price worth paying (because t" > 1/2).

It is a curious feature of the mechanism in Figure 3.6 tha t while the probability 

with which an agent’s most preferred alternative is implemented is decreasing in tha t 

agent’s type from the interim perspective, this is not true from the ex ante perspective. 

For example, if the other agent reports that his type is t, then the probability tha t an 

agent’s most preferred alternative is implemented is actually increasing in this agent’s 

type from 1 to a .

We now tu rn  to Case 6. In this case, a symmetric decision rule tha t is first best 

must take the form indicated in Figure 3.7.

It is immediate that type t' has no incentive to pretend to  be type t", and vice 

versa, if and only if /? G Noting tha t this implies tha t /3 >  0.5 one can then see

tha t the only incentive constraint tha t still needs to be taken care of is the constraint
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1\2 t t' t"

t (1 — /3,0,/3) (0,1,0)

t' (/3,0,1 — /3) (0,1,0)) (0,1,0)

t" (0,1,0) (0,1,0) (0,1,0)

Figure 3.7: Implementing FB in Case 6

tha t type t must not have an incentive to pretend to be type t'. This is the case if and 

only if:

^ ^ 2  +  ^(^0(1 -  P) >  g{'t)P +  g{t')i +  g{t")t <=> —^  ^ <  g{t) \-  ^ ( f ) ’

We can pick a (3 from the interval \t' ,t"\ that satisfies this constraint if and only if the 

constraint is satisfied for [3 = t', i.e.

<
i   ̂ g{t) +  g{^')

For given t", there will always be values of t and f  for which this inequality is 

violated, and therefore the first best cannot be implemented. Figure 3.8 indicates the 

relevant region. The line that separates Region 6a from Region 6b has slope —

We now consider two examples, one from parameter region 6a, and one from pa

rameter region 6b. In both examples we assume tha t all types are equally likely: 

g{t) = g{t') — g(t") = In both examples let t = 0.3 and t" = 0.8. In Example 1 we 

choose t' — 0.55, and in Example 2 we choose t' — 0.65. In Example 1 the first best 

can be implemented as shown in Figure 3.9.

For Example 2 our earlier calculations show tha t we cannot implement the first 

best. We have determined the second best decision rule numerically.^ It is displayed 

in Figure 3.10.

^Second best decision rules can be found as the solution to a linear programming problem. To solve 

Example 2 we used the implementation of the simplex algorithm that is available in the 6ooi-package 

for the open source software R (R Development Core Team, 2003).
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If)
-  d

1-t" 0.5 t"

Figure 3.8: Region 6a: FB can be implemented; Region 6B: FB cannot be implemented

1\2 t t' t"

t (0.5,0,0.5) (0.45,0,0.55) (0,1,0)

t' (0.55,0,0.45) (0,1,0)) (0,1,0)

t" (0,1,0) (0,1,0) (0,1,0)

Figure 3.9: Implementing FB in Example 1

1\2 t t' t"

t (0.5,0,0.5) (0.3825,0,0.6175) (0.05,0.95,0)

t' (0.6175,0,0.3825) (0,1,0)) (0,1,0)

t" (0,0.95,0.05) (0,1,0) (0,1,0)

Figure 3.10: The Second Best in Example 2 

The inefficiency occurs when one agent is of the lowest and the other agent is of the
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highest type. In this case, first best would require that the compromise is chosen with 

probability 1. But this cannot be made incentive compatible, and instead it is optimal 

to choose the compromise with probability 0.95 only. Changing this probability has 

a cascading effect: The intermediate type, when encountering the low type, can be 

rewarded with a lower probability of his or her most preferred alternative. Therefore, 

the low type has no incentive to pretend to be the intermediate type.

One can continue to explore second best rules for the parameter region 6b. The 

second best rule is sensitive to changes in the exogenous parameters. It does not appear 

tha t a “robust” second best mechanism emerges from this analysis.

3.8 C ontinuum  o f T ypes

We now turn to the case in which all types between 0 and 1 are in the support of the 

distribution G. For this case, we obtain an impossibility result.

P ro p o s itio n  3.1 Suppose that G has a density g that is strictly positive everywhere 

on [0,1]. Then no first best decision rule is incentive compatible.

Before we give the formal proof of this result, it may be worthwhile to outline the 

structure of our proof. The proof is indirect. We postulate the existence of a first 

best rule tha t is incentive compatible. We then first note tha t the probability with 

which the compromise is implemented, conditional on an agent’s type, is determined 

by the definition of first best. The corresponding conditional probability with which 

any agent’s most preferred alternative is implemented is then determined by the dif

ferential equation in Lemma 3.2. In the next step we derive the ex ante probability 

of the compromise, and the ex ante probability of any agent’s most preferred alterna

tive. Finally, we prove tha t the ex ante probabilities add up to more than one, which 

constitutes a contradiction.
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P ro o f  o f P ro p o s itio n  3.1: Suppose /  is a first best decision rule. Then by definition

for every agent i\

QiiU) =  1 —  G(1 —  ti).

We are going to use Lemma 3.3 to determine the conditional expected probability 

Pi { t i )  tha t agent z’s most preferred alternative is implemented. For this purpose, we 

first investigate agent i ’s conditional expected utility. By Lemma 3.3:

Ui{ti) — Ui{l) — f  qi{si)dsi. 
Jti

Now by the definition of first best Ui{l) = 1. Substituting this, and the formula for 

qi{t{), we find:

Ui(ti) =  1 — f  (1 — G{1 — 5%)) dsi.
J ti

Now recall the definition of conditional expected utility:

Ui{ti) = Pi(ti) +  qi(ti)ti.

We substitute the expressions for and Ui{ti) tha t we have found above, and solve 

for Pi{ti):

Piiji) =  1 — f  (1 — G{1 — Si)) dsi — (1 — G(1 — ti))ti.
J ti

We simplify the formula on the right hand side:

Piiji) = [  G{1 — S i ) d s i G { 1  — ti)ti.
J t i

Finally we substitute the integration variable in the integral and obtain:

r l —ti
Pi{ti) = I  G{si)dsi +  G{1 — ti)ti.

Jo

The next step is to calculate the ex-ante probability of the compromise, and z’s 

most preferred alternative, calculated before i learns his type. These probabilities can 

be obtained by computing the expected values of the probabilities calculated above.
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Thus, the ex-ante probability of the compromise is:

Q — f
Jo

[  — G{1 — ti)) g{ti)dti
Jo

1 — /  G il  — ti)g{ti)dti. 
Jo

The ex-ante probability of z’s most preferred alternative is:

P  = J  G i s i ) d s i G { 1  — t i ) t ^  giti)dti

n l—ti rl
G{si)giti)dsidti -f / G{1 — ti)g(ti)tidti 

Jo

Changing the order of integration in the first expression, and integrating by parts in 

the second expression, we get:

P  = [  [  G{si)g(ti)dtidsi +  f  G{1 -  ti)g(ti)tidti 
Jo Jo Jo

1
[  G(si) f  g{ti)dtidsi +  G{1 — ti)G{ti)ti 

Jo Jo ^

— f  G{ti) (G (l — ti) — g{l — ti)ti) dti 
Jo

[  G isi)G il — Si)dsi — f  (j( ti)G (l — ti)dti 
Jo Jo

+  [  G{ti)g{l — ti)t{dti 
Jo 

[  G{ti)g{l — ti)tidti 
Jo

0

The probability P  calculated above is not only the ex-ante probability with which 

agent z’s most preferred alternative is chosen, it is also the ex-ante probability with 

which the other agent’s most preferred alternative is chosen. Thus, we have now 

determined for all three alternatives the ex-ante probability with which they are chosen. 

Clearly, these ex-ante alternatives have to add up to one. However, we shall now obtain 

a contradiction by showing:

Q + 2P > 1 ^
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1 — /  G{1 — ti)g(ti)dti +  2 /  (G{ti)g{l — ti)ti) dti > 1 <=>
Jo Jo

f  G ( t i ) g { l  — t i ) (2 t i  — l ) d t i  >  0 
Jo

To prove tha t this inequality is true, we denote the integral on the left hand side 

by I. Integration by parts yields:

1 

0
I  — — G(ti)G(l — ti){2ti — 1) 

+ f  G(1 — ti) ( 2 G ( t i )g ( t i ) { 2 t i  — 1)) dti 
Jo

= [  2G{1 — ti)G(ti)dti +  f  G{1 — ti)g{ti)(2ti — l)dti 
Jo Jo

= f  2G{\ — ti)G{ti)dti — I  
Jo

Solving for I,  we obtain:

I  = [  G{1 — ti)G(ti)dti 
Jo

It is obvious that this is strictly positive.

Q.E.D.

3.9 D iscussion

Our main result is the impossibility derived in the previous section. We have shown that 

two individuals with opposing preferences who do not know the others’ von Neumann 

Morgenstern preferences cannot compromise efficiently. Second best mechanisms can 

be determined as solutions to linear programming problems, but appear to be sensitive 

to the exogenous parameters.

Our study could be extended to a study of incentive compatible voting schemes. 

The voting problem differs from the compromising problem in th a t typically more than 

two people are involved. Moreover, not only the von Neumann Morgenstern utilities, 

but also the ordinal ranking of the alternatives by the other agents may be unknown.
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We conjecture tha t the impossibility result that we found extends to the voting context, 

and tha t also in the voting context second best rules will be highly sensitive to the 

exogenous parameters of the model.

In practice rules for compromising, and voting rules, cannot be targeted for par

ticular distributions of individual characteristics. They have to function well across 

a large variety of environments. To understand which rules for compromising, and 

which voting rules, are suitable in this context, one needs to develop a theory of “ro

bust mechanism design”. This appears to be the most im portant open problem in this 

area.^°

^°For some progress in this direction see, for example, Bergemann and Morris (2003)).
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Chapter 4

Inefficient Procurement

4.1 Introduction

Many government tenders and procurement procedures not only require bidders to 

quote the price at which they are willing to supply a particular good or service, but 

also details of its specification. For example, the Strategic Rail A uthority’s (SRA) pro

cedure for awarding rail franchises asks train  operators to submit multi-dimensional 

bids, detailing proposals for infrastructure enhancements as well as the subsidy level 

required to put them in place. In their 2001 report, consultancy firm PriceWater- 

houseCoopers raises concerns tha t the SRA’s procedure may select a bidder whose 

enhancement proposals are “bad value for money” - the reason being tha t bidders 

must commit to a subsidy level at a time when the cost of implementing their pro

posed service specification is uncertain.^ Do procedures tha t simultaneously determines 

price and specification always result in an efficient specification choice? If not, is there 

a justification for using such a procedure? These are the questions we address in this 

chapter.

There are various reasons why a procurer, instead of fully specifying the required 

good at the outset, may wish to use a two-dimensional procurement procedure. One 

reason is that the procurer may not know the possible specifications of the good, and

 ̂ “Upgrading the Rail Network: Focusing on Delivery^’’, Price Waterhouse Coopers, August 2001 

(see www.pwcglobal.com/rail).
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therefore uses the procurement process to elicit this information. A second reason is 

that the buyer, while aware of all possible specifications, lacks the expertise to assess 

how much it costs to produce them. This is the view adopted in the present chapter, 

where we assume th a t suppliers have superior information, but also do not fully know 

the cost of the available specifications.

We develop this theme in a simple stylized model in which a buyer must purchase 

a good that exists in two specifications, both of which are considered equally good. 

There are two suppliers from whom the good can be sourced, and each of them can 

produce either specification. The suppliers’ production cost for each specification are 

the same, but neither supplier actually knows them. Each of them has some private 

information about production cost in the form of two independent cost signals, namely 

one per specification. The production cost of a specification is simply the sum of the 

suppliers’ signals about that specification.

Our setup captures the essence of the opening example of rail franchising, where it 

seems reasonable to assume that train operating companies are in a better position than 

the government to assess the cost of the various train technologies. However, the cost 

of implementing each train technology is likely to feature components tha t are common 

to all train operators: Tracks and signals in the UK are owned by NetworkRail, and 

hence, the implementation of any train technology depends on NetworkRail’s ability 

to deliver the necessary track and signal work.

In this chapter, we first study a particular procurement procedure tha t essentially 

requires bidders to choose specification and price of the good in question. The two- 

dimensional bids are then evaluated according to the net benefit they generate for the 

buyer, with the winning bid being the one tha t yields the highest net benefit. As the 

buyer is indifferent between the two specifications, the suppliers’ price quotes alone 

determine which supplier, and hence, which specification is chosen.

We show tha t this procedure may result in the choice of the specification whose 

production cost are higher. The reason is that, in equilibrium, each supplier chooses 

the specification for which he has observed the lower cost signal. Otherwise, expected
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production cost of a supplier with identical cost signals, conditional on winning, would 

be different for the two specifications.

We compare the inefficient procurement procedure to one tha t always selects the ex 

post efficient (i.e. cheapest) specification. Such a procedure requires the suppliers to 

report their cost signals, and then randomly chooses a supplier to produce the efficient 

specification. We show tha t under this procedure, the buyer has to make large lump

sum payments to induce the suppliers to truthfully disclose their cost information. The 

intuition is th a t each supplier has a chance of being selected to produce the buyer’s 

chosen specification. Provided the payment he receives from the buyer is independent 

of his information, he has an incentive to  ensure tha t the chosen specification is efficient 

and thus has lower production cost than the other.

A comparison of the (expected) payments tha t the buyer has to make in exchange 

for the good under the two procurement procedures leads us to conjecture that an 

optimal procurement mechanism will not generally be efficient.

The present work is related to the paper by Che (1993) who studies procurement 

auctions in a private value setting in which bidders submit two-dimensional bids spec

ifying both quality (or specification) and price of the good. In contrast to our setting, 

he allows for a continuum of product specifications. Che studies scoring rules that 

assign a one-dimensional score to every (two-dimensional) bid. He considers a variety 

of procedures for choosing a supplier and specification on the basis of the awarded 

scores. One such procedure is the first score auction, in which the bidder whose bid 

has the highest score wins the auction, and supplies the good in the specification and 

at the price stated in his bid. In our setting, in which the two available specifications 

are equally good for the buyer, the first score auction corresponds to our procurement 

procedure tha t selects specification and supplier on the basis of price alone. In Che’s 

model, the first score auction reduces to the standard first price auction with private 

values, and therefore always awards the contract to the most efficient supplier. The 

distinguishing feature of our model is tha t suppliers’ production cost are “common 

value” and that their signal spaces are two-dimensional. We show th a t in our setup
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the first score auction is not efficient. This also contrasts with the efficiency result 

for the first price auction in the standard symmetric common value setup (see Maskin 

(1992)).

The present work is also related to the paper by Jehiel and Moldovanu (2001) 

who study the question whether efficiency can be attained in general social choice 

settings where the dimension of the agents’ signal spaces is the same as the number 

of possible outcomes. In such settings, a one-dimensional payment (per agent and 

alternative) should in principle suffice to elicit the entire information. However, if the 

agents’ payoffs/ valuations are interdependent, efficient and incentive compatible direct 

revelation mechanisms exist only if a very restrictive symmetry condition holds. This 

condition is trivially satisfied in our model. To see why this is the case, note that due 

to the “pure common value” nature of production cost, it is irrelevant which supplier 

produces the efficient specification. Thus, the buyer can select a supplier at random, 

whose expected production cost of each specification are therefore a fixed proportion of 

the actual production cost.^ This allows the buyer to align individual incentives with 

the goal of achieving ex post efficiency.

The remainder of this chapter is structured as follows; Section 4.2 contains the 

description of the model. Section 4.3 is studies the procurement procedure under which 

suppliers’ two-dimensional bids contain specification and price of the good. Section 

4.4 details an efficient procurement procedure, and Section 4.5 concludes with a brief 

discussion of the findings. Section 4.6 (Appendix 1) contains a characterization of 

suppliers’ expected payments under any incentive compatible procurement mechanism. 

Section 4.7 (Appendix 2) contains some proofs.

4.2 M odel

There is a buyer who must buy one unit of a particular good. There are two suppliers 

from whom this good can be sourced, and it can be produced either in specification 

A  or in specification B. We consider the limiting case in which the buyer derives the

'The expectation is taken with respect to the probability of being chosen by the buyer.
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same benefit b from both specifications.

The true cost of producing specifications A  and B, ca and cg respectively, are 

unknown at the time at which suppliers compete for the buyer’s custom. However, 

each supplier has some private information about the true value of ca and cg. Supplier 

z’s private information consists of two signals: and (z =  1,2). The signal s \  is z’s

private information about the cost of specification A, and the signal is z’s private 

information about the cost of specification B. Each signal is a random variable with 

domain [0,1]. We assume that all signals are identically and independently distributed 

according to some distribution G with density g.

The production cost of each specification are the same across suppliers.^ Further

more, we assume tha t ca can be expressed as the sum of the suppliers’ signals about 

specification A, and that cg can be expressed as the sum of the suppliers’ signals about 

specification B:

ca{s\ ,  s\ )  =  sJi +  4  and cg(sg, s%) =  Sg +  4 -

The buyer can either purchase the good from supplier 1 or from supplier 2, and in 

each case, either in specification A  or in specification B. The buyer’s von Neumann 

Morgenstern utility function is 6—p, where p  is the price she pays for the good. Supplier 

z’s von Neumann Morgenstern utility function is p — if the good is purchased from 

supplier z in specification k {k E { A ,B } )  at price p, and zero if the good is purchased 

from supplier j  ( i , j  = 1,2, j  ^  i).

The buyer proposes the suppliers a procurement procedure with the aim of simul

taneously determining the specification and price of the good, as well as the identity of 

the supplier. Based on their private information about production cost, the suppliers 

can either participate in the buyer’s procedure or opt out. If a supplier opts out, he 

receives his outside option, which is assumed to yield him a payoff of zero. In the 

following two sections, we analyze two specific procurement procedures.

^Thus, this is a “pure common value” model.
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4.3 M inim um  P rice M echanism

4.3.1 Setup

Suppose the buyer asks each supplier i (z =  1,2) to submit a pair of prices: a price 

p \  to be paid if the buyer sources the good from supplier i in specification 4 , and a 

price pg to be paid if the buyer sources the good from supplier i in specification B.

The buyer commits to sourcing the good at the lowest of all four prices. That is, the 

buyer purchases the good from the supplier whose minimum price is lowest. If the 

minimum price of supplier 1 is the same as the minimum price of supplier 2, then each 

supplier has equal probability of being selected by the buyer. We call this procurement 

procedure minimum price mechanism (MPM).

Formally, the MPM, in conjunction with the suppliers’ signal spaces S  = [0,1]^, the 

probability distribution G, and the cost functions ca and cg, constitutes a Bayesian 

game of incomplete information. The structure of the game is as follows:

• Stage 1: Supplier 1 privately observes his signal-vector € S,  and

simultaneously supplier 2 privately observes his signal-vector =  (s^, s^) G S.

•  Stage 2: Based on supplier 1 submits a pair of prices (p a :Pb ) ^ ^+- Simul

taneously supplier 2 submits a bid {p%p%) G based on his signal s^.

•  Stage 3: The buyer sources the good from supplier i*, where i* G arg min*2 {i,2}(min;.g{^_g} pi). 

Supplier i* must provide the good in specification k*, where k* G arg mink^{A,B} Pk •

Supplier i* receives a payment equal to his minimum price pÇ from the buyer and

incurs production cost c^*. Supplier j  ( j G {1,2}, j  f  ) receives no payment

and incurs no cost. The buyer’s payoff is 6 —

A strategy for supplier i consists of two pricing functions, one per specification.

Formally, p\ \ S  ^  R+, s* p%(s*) for every k G {A, B}. In order to facilitate 

the characterization of Bayes Nash Equilibria (BNE) of this game, we introduce the 

following alternative version of the MPM:
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Suppose the buyer asks each supplier to submit a two-dimensional bid consisting of 

a specification and a price. Let fc* G {A, B }  denote the specification chosen by supplier 

i, and let denote the price at which i is willing to provide specification /c*. The 

buyer commits to sourcing the good at the lowest price, irrespective of the proposed 

specification(s): Given prices p\i and p^2 , the buyer chooses the good from supplier f , 

where

r  € arg min pL.

Supplier i* is paid his price p^ . in exchange for the good in specification k^*. In 

producing he incurs cost c^i*. Supplier j  {j G {1,2}, j  ^  i*) receives no payment 

and incurs no cost. The buyer’s payoff is 6 — p^%.

A strategy for supplier i in this alternative version of the MPM consists of three 

functions - the specification choice rule k^ and the pricing functions p \  and p^:

p] : S  ^  M+, s* 1-^ p1(s*) for every I G {A, B}.

The interpretation is as follows: If k^{s^) = I then supplier i offers to produce the good 

in specification I at price p]{s^).

In the next section, we characterize a symmetric BNE of the alternative MPM. 

The following Lemma states that this BNE will also be a BNE of the original MPM. 

This is intuitive, as a supplier’s decision not to offer a particular specification under 

the alternative MPM can be replicated in the original MPM by setting a price tha t is 

strictly above the one for the other specification.

L em m a 4.1 Every BNE of the alternative M PM  constitutes a BN E of the original 

MPM.

The proof is relegated to Section 4.7 (Appendix 2).
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4.3.2 Equilibrium Characterization

In this section, we characterize a BNE of the alternative MPM introduced in the 

previous section. We make the following assumptions about the suppliers’ equilibrium 

strategies:

A ssum ption  4.1 (Sym m etry w .r.t. suppliers) Both suppliers use the same strat

egy. Thus, if  the two suppliers have identical cost signals, they choose the same spec

ification and quote the same price for it. Formally, if  s \  = s \  = x and = s \  = y 

it holds that k^(x,y) = k^{x,y) = k{x,y) and p]{x,y)  =  p‘f{x ,y)  = Pi(x,y) for every 

I G { A ,B }  and all (x ,y)  G S.

A ssum ption  4.2 (Specification  choice rule) The specification choice rule k takes 

the form,

( a  i f  s  d > I ( s \ )
=  < for all {s\ , s'b ) e  S, (4.1)

\  B  if 4  < I ( s \ )

where I  : [0,1] —> [0,1], •—> I { s \ )  is a strictly increasing function.

A ssum ption  4.3 (Separability) The price quoted for any specification depends only 

on the signal realization pertaining to that specification. That is, for all (s^, s^) G S' 

it holds that Pa{s\, s^) = Pa(sa) and Pb{s\,  s^) =  pg(sg).

A ssum ption  4.4  (Sym m etry w .r.t. specifications) The pricing functions for  

the two specifications are identical: Pa(s) = Pb{s) =  p{s) for all s G [0,1].

A ssum ption  4.5 (M onotonicity) The pricing function p is increasing and differ

entiable on [0,1).

We can show tha t in a Bayes Nash Equilibrium (k,p) tha t satisfies Assumptions 

4.1-4.5, each supplier chooses his specification on the basis of his minimum signal. I.e. 

the specification choice rule in (4.1) is such tha t /(s ^ )  =  s \  for all s \  G [0,1]. For this 

purpose, suppose there exists an interval Z  C [0,1] such that z >  I{z)  for all z G Z.
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Consider supplier 1 and suppose he has identical signal realizations 5^ =  =  z. He

will therefore offer specification A at price p(z). Figure 4.1 (a) provides an illustration.

Choose A''

Choose B

Figure 4.1: Specification Choice

If supplier 1 wins the contract, he has to provide the good in specification A in 

return for a payment of p(z), while his production cost are z +  s j .  The shaded area 

in Figure 4.1 (b) shows all signal realizations ( s ^ ,s |)  of supplier 2 for which supplier 

1 wins the contract. This is the case in the following events:

1. Supplier 2 offers the good in specification A  at a price > p(z). This implies

that > I(s^)  and > z.

2. Supplier 2 offers the good in specification B  at a price p (s |)  > p{z). This implies

that s |  < I{ s \)  and s% > z.

It is easy to show that, conditional on winning the contract at price p(z), the 

expected production cost of specification A  are strictly higher than those of specification 

B. Thus, supplier 1 would prefer to offer the good in specification B  rather than A, 

which constitutes a contradiction. To see this, note that, conditional on supplier 1 

winning the contract, the expected value of supplier 2’s signal about specification A  is

{I -  G{z))‘̂ E[s^^\s\ > z] A I  (G(z) -  G{I{s\))) s \g {s \)d s \ .  (4.2)



The expected value of supplier 2’s signal about specification B,  conditional on supplier 

1 winning the contract, is

(1 -  | s |  >  z] +  y {G(z)  -  E[s% \ l ( s \ )  <  s |  < z ]g { s \ ) d s \ .

(4.3)

As s \  and s% are i.i.d. random variables, the difference in expected value between (4.2) 

and (4.3) is

J  (^ (^ ) “  ~  ^  < ^]]9i^‘A)ds\ .

As |7(s^) < Sq < z] <  z  and G [z, 7~^(z)], it follows immediately tha t this 

difference is strictly positive. Thus, conditional on winning, specification B  has lower 

production cost than specification A.^ The following result completes the equilibrium 

characterization:

P roposition  4.1 The unique Bayes Nash Equilibrium {k,p) of the alternative MPM  

that satisfies Assumptions 4-1 - 4-5 is given by the specification choice rule

A  if s% > 

B  if 5^ <
for  all Sg) G S',

and the pricing function

= (1 -  { L  ’

where z* =  min{s^, s^}.

The remainder of this section is devoted to the derivation of the equilibrium pricing 

function in Proposition 4.1.

similar argument shows that it cannot be the case that z <  I{z).
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P ro o f  o f P ro p o s itio n  4.1:

S u p p lie r I ’s m a x im iza tio n  p rob lem : Consider supplier 1 and suppose that

s \  < Suppose supplier 2 uses the equilibrium strategy {k,p)  in Proposition 4.1 

and that supplier 1, instead of submitting the price quotes some other price for

his chosen specification.

Notice tha t it does not pay for supplier 1 to quote a price pi  less than p(0) since 

in tha t case, supplier 1 would be chosen for sure, but could do better by increasing his 

price slightly so tha t he is still chosen for sure but has a higher payoff. Second, any 

price Pi above p (l) means that supplier 2 is chosen for sure, leaving supplier 1 with a 

profit of zero. The same outcome can be achieved by setting pi = p (l). Thus, we only 

need to consider prices pi  in [p(0),p(l)].

Quoting a price pi G [p(0),p(l)] is equivalent to choosing some cost signal s G 

[G, 1] (where s need not be equal to supplier I ’s minimum signal s \ )  and quoting the 

corresponding equilibrium price p{s).  In the following, we assume tha t supplier 1 with 

minimum signal s \  quotes price p{s)  for specification A. Conditional on winning, he 

receives a payment equal to p{s).  He wins if he charges a lower price than supplier 2, 

which is the case in all events in which min{s^, s%} > s. Supplier I ’s expected profit 

therefore is

(1 — G{s))  ^(1 — G{s))p{s) — («A +  • (4.4)

Supplier 1 solves the following problem:

max(l -  G{s))  ^(1 -  G{s))p{s) -  ( s \  +  s \ ) g { s \ ) d s^ ^  .

The first order condition is

~  p(^) ^(1 — G{s))p(s) -  (sa +  ■5a)p(^a)^^a^

+  (1 — G{s)) (—̂ (s)p(s) +  (1 — G{s))p'(s) +  (s^ +  s)g{s)) =  0.

In equilibrium, the optimal value of s must be equal to s^, and so setting s =  Sa 

in the first-order condition, we obtain the following linear differential equation of first
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order

p' { s \ ) + p{s\ )  = -  ( ^ 2 4  +  +  4 ) Y T % ) ' ^ 4 ^

(4.5)

G eneral solu tion  to  the differential equation  in (4.5): In order to obtain an

explicit expression for the pricing function p  we need to solve the differential equation 

in (4.5). The first step is to multiply the equation through by (1 — G(sJ^))^. This yields

(1 -  G'(sa))V ('5a) + p (sJi) ( -2 p (s ^ )( l -  G(sJi)))

=  ~  (s^ +  s \ ) ^  ~

Note that the left-hand side of the latter equation is the derivative of (1 —C(s^))^p(5^). 

Integrating both sides of the latter equation from s \  to 1 yields the unique solution

- {1 -  G{ s \ ) Y p {s \ )  = — J ^  { t — G{t ))dt

or

-  (1 -  à { s \ ) y  ( / .  ■

(4.6)

B oundary condition: Consider supplier 1 and suppose that he has a minimum

signal of 1 (i.e. =  1). Assume tha t supplier 2 uses the equilibrium strategy

{k,p). Conditional on winning (which happens in the event tha t supplier 2 has the 

same signal realizations as supplier 1) the (expected) production cost of supplier 1 are 

ca — Cg — 2.

Suppose now tha t the equilibrium pricing function is such tha t p (l)  >  2. Figure 

4.2 (a) provides an illustration. In the event th a t supplier 1 wins the contract he has 

a strictly positive payoff. However, the probability that supplier 1 is chosen when he 

quotes the pricep(l)  (which is Pr{s^ > 1 A s^ >  1}) is zero. Thus, his expected payoff
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(a) (b)

Figure 4.2: Boundary Condition

is zero. Now consider the following deviation: supplier 1 offers specification A, say, 

and charges the price p*, where 2 < p* < p(l).  This results in an expected payoff of

[  [  (P* -  1 -  s \ ) 9 {s\)g{s\)ds\ds%,

or equivalently

(1 — G{p ^{p*))Ÿ{p* — 1 — E [s \  \s \  > p  ^(p*)]).

This expected payoff is strictly positive as p* > 2 >  1 E [ s \ \ s \ >  p“ ^(p*)]. This

establishes a contradiction.

Now suppose th a t the pricing function is such tha t p (l) <  2. Figure 4.2 (b) provides 

an illustration. Suppose that supplier I ’s minimum signal is 1 — e, where e: > 0 but 

small. In the event tha t supplier 1 wins the contract (which occurs with probability 

(1 — G{1 — s))^) he has a strictly negative payoff. Note that it is profitable for supplier 

1 to deviate to p* =  2. In the limit as e: —> 0 supplier 1 charges the price p* = 2 and 

has a profit of zero. Thus, the boundary condition associated with (4.5) is

p (l) =  2.
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Note tha t the differential equation in (4.5) has a unique solution (namely the func

tion p given in (4.6)). We can easily verify tha t this function p satisfies the boundary 

condition derived above. As (1 — =  0 at =  1 we know tha t p  is not defined

at this point. We therefore compute limg^_,ip(s^). To compute the limit, we use 

L’Hôpital’s Rule. For this purpose note tha t the numerator of the pricing function p(-) 

in (4.6) can be equivalently written as

f  3 tg { t ) ( l - G { t ) ) d t+  [  E[s‘̂ ^ \ s \> t ] g { t ) { l - G { t ) ) d t .
J s \  J s \

I t ’s derivative w.r.t. (via Leibniz’ Rule) is

-3 sJi^ (s^ )(l -  G (s^)) -  E [s \  \s \  > sJi]^(5^)(l -  G(sJi)).

Now take the derivative of the denominator of the pricing function p{-) in (4.6). This 

yields —2g{s\){l — G{s\)). Dividing the derivatives of numerator and denominator, 

we obtain

2^a +  2^1^‘̂a \^a ^  ^a ]- 

Thus, lim ,^_i ( | s \  -b l E [ s \  \s \  > sj^]) =  2, as E [s \  \s \  > ! ]  =  !.

P roof that if  supplier 2 uses p( ) th en  it is optim al for supplier 1 to  do

so: We now show tha t it does not pay for supplier 1 (whose minimum signal is sj^)

to “pretend” that his minimum signal is s < s \:  The expected payoff if supplier 1 

submits the price p{s) when his true minimum signal is s \  is

n i(s , 5^) — (1 — G{s)) ^(1 — G{s))p{s) — J  (5 ^ 4- s\)g{s\)d.

Hence,

 ̂ — ~ 2 5 '(s ) ( 1  — G{s))p{s) +  (1 — G(s)Ÿ p '{s)
ds

+ ~  4- s) 4- g(s) J  s \g ( s \ )d s \ .

Note tha t 2s^ -(- s >  2s -|-s as we assumed tha t s \  > s. We can easily compute Ili(z , s) 

and As p(-) maximizes the expected utility of a supplier whose minimum signal
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is s, it holds tha t

dz
— ~ 2p(s)(l — G{s))p{s) +  (1 — G(s))^p'{s)

+  p('5)(l -  G'(s))(3s) +  5 '(s) J  s \g (s ]^ d s \  

=  0 .

As 2 s \  +  s >  2s +  s =  3s we have 

a n i(s ,s ^ )  ^ dUi{z,s)
ds dz

or > 0. Thus, supplier 1 can raise his expected payoff by raising his “report”

s. An analogous argument shows tha t if s >  ŝ  ̂ it holds tha t <  0. Therefore,

supplier I ’s expected payoff IIi(s, s^) is maximized by choosing s =  s \ .

Q.E.D.

Note th a t under the equilibrium pricing function in Proposition 4.1, each supplier’s 

ex ante expected payment under the alternative MPM is given by

2 /  p { s ) { l -G { s ) fg { s )d ^  
Jo

As an example, consider the case in which all signals are distributed uniformly on [0,1].

K  +  |:

' \ 7

We obtain p{z^) = Iz^ +  | ,  and hence the ex ante payment is

15

Thus, the expected expenditure tha t the buyer has to make in order to procure the 

good using the MPM is 16/15 ~  1. 067.

4.3.3 Inefficiency of M inimum Price M echanism

The outcome of the procurement process is (ex post) efficient if and only if the buyer 

sources the good in the specification for which production cost are lowest. Note that 

efficiency of the outcome of the procurement process pertains only to the choice of 

specification, not to the choice of supplier: Due to the symmetry of the setup, the
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buyer does not care from which supplier he sources the good, as long as it is provided 

in the efficient specification.

Recall tha t under the minimum price mechanism the winner is the supplier who 

has the lowest minimum signal, irrespective of the specification to which this signal 

pertains. It is not surprising tha t there are signal constellations for which the outcome 

is inefficient. Suppose tha t s \  < s \ .  Then, the minimum price mechanism is inefficient 

if:

Case 1: Specification A  is implemented although specification B  is efficient. This is

the case for all pairs (s \,  s^) such that

Sa <  4  and &A <  < 4  +  ( 4  -  4 ) ,

resulting in supplier 1 being chosen.

Case 2: Specification B  is implemented although specification A  is efficient. This is

the case for all pairs (s^, s^)  such that

< 1 — — 4 )  and +  ( 4  ~  s |) ,

resulting in supplier 2 being chosen.

The shaded areas in Figure 4.3 represent all pairs (s \, s^) for which the minimum 

price mechanism selects the good’s specification efficiently. The unshaded regions high

light the inefficiencies.^ Figure 4.3 also shows tha t for all pairs (s^, s^) for which the 

minimum price mechanism results in an inefficient specification choice, it must hold 

that Sq > s \ .  This illustrates a more general point: A necessary condition for an 

inefficient outcome is tha t the specification associated with supplier I ’s minimum sig

nal is not the same as the specification associated with supplier 2’s minimum signal. 

Consequently, if and the outcome is inefficient, then it must hold tha t 4  >  4

{i,j  = 1,2, i ^  j) .  It is easy to see tha t the minimum price mechanism is efficient 

whenever the suppliers’ minimum signals pertain to the same specification: Suppose

^The figure is based on s \  =  0.8 and Sg =  0.6.
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Figure 4.3: Inefficiency of MPM

that each suppliers’ minimum signal pertains to specification A, so that the good is 

produced in specification A (by supplier P, where i* = arg mhpg{y  ̂ s \) .  The cost of 

producing specification A is =  s \  -h s \ .  As < s%  it follows immediately that ca  

< 5^ +  s | .  As we also have < s^, it then follows that s \  ^  ^  s% — cg.

Thus, the cost of specification A are lower than those of specification B.

This argument also illustrates why inefficiencies arise under the minimum price 

mechanism: In order to determine the efficient specification in situations where the 

minimum signals of the two suppliers pertain to different specifications, we must not 

only look at the suppliers’ minimum signals, but also at the difference between the two 

signals of each supplier. This information, however, is ignored by the minimum price 

mechanism. In the next section, we discuss a mechanism that achieves efficiency.

4.4 Efficient M echanism

Recall that specification A  is efficient if and only if s \  +  s \  < +  s^. For given signal

values s \  and (where s \  > s^). Figure 4.4 shows all signal pairs (g^, for which 

specifications A  and B  must be chosen in order to guarantee efficiency.
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Figure 4.4: Efficient Specification Choice

As production cost are the same for both suppliers, it is irrelevant which supplier 

produces the efficient specification. Therefore, consider the following direct revelation 

mechanism:

Each supplier is asked to report his cost signals in return for a fixed payment. The 

buyer selects a supplier using a random device that selects supplier i {i = 1,2) with 

probability A, (0 < A, < 1 and Ai +  A2 =  1). The chosen supplier is then required to 

produce the good in the efficient specification. No supplier can be forced to participate 

in the mechanism. If a supplier decides not to participate, he receives his outside option 

payoff of zero.

Formally, if the suppliers’ cost signals are s^, s \  and s | ,  let 7^%^{s\, s%)

be the probability that supplier z (i =  1,2) is selected to produce the good in specifi

cation A.

(4.7)

Similarly, define as 7t^/(s^, s^, s^, s | )  the probability that supplier i is selected to
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produce the good in specification B:

4 , 4 , 4 )  =  I  ° ‘J "j* +  <  "j’ +  (4.8)
[ Ai if >  Sg +

Finally, let be the fixed payment tha t the buyer pays supplier i for reporting his 

signals:

=  Ai +  2 J  s( l -  G {s))g{s)ds^  .

It is easy to verify tha t is equal to the (interim) expected production cost of 

supplier i when both his cost signals are 1.

The suppliers’ cost signals are private information, and therefore the buyer must

ensure tha t supplier 1, when invited to report his signal vector s^, has no incentive to

lie:

G argmax(ri-^-^ -  C i(s \s^ )) .

where (7 i(s\s^ ) denotes the expected production cost of supplier 1 when his signal 

vector is but he report it as s^:

Ci{s\s^) =  i' Âi ( s \s^ )c^ (s i ,4 )  +  ( s \ s ‘̂ )cB{sB^^B))9 {s\)g{sl)ds ‘̂ d̂s‘̂B-

Similarly, supplier 2, when invited to report his signals s^, must not have any incentive 

to lie:

G arg m a x — C2 (s^,s^)).

Supplier 2’s expected production cost (72(s^,s^} are defined analogously to those of 

supplier 1. It is straightforward to show the following:

P roposition  4.2 The efficient mechanism  tt^ /, has a Bayes Nash

Equilibrium in which each supplier participates and truthfully reveals his cost signals.

This result follows immediately from the fact tha t if supplier z (i =  1,2) truthfully 

reveals his signals, then supplier j  { j = 1,2, j  ^  Ï) minimizes his expected production 

cost C j(^ ,s^ )  by reporting his signals truthfully.® To see this, note th a t each supplier 

®This is shown formally in Appendix 2.
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has a positive chance of being chosen to produce whichever specification is efficient. 

Hence no supplier has an incentive to misrepresent his cost signals, as this may result 

in him having to produce the more costly of the two specifications. By the same logic, 

it holds tha t an efficient direct revelation mechanism is incentive compatible if and 

only if the transfer to each agent is a constant. The need to ensure participation then 

determines the level of the transfer. For example, if all signals are uniformly distributed 

on [0,1], we have Q ( l ,  1,1,1) =  |Ai, so tha t the buyer has to pay a total of |  for the 

good.

4.5 D iscussion

The main contribution of this chapter is the characterization of suppliers’ equilibrium 

strategies in the Bayesian game induced by the Minimum Price Mechanism. We have 

shown that this mechanism is not efficient. W ith uniformly distributed signals, the 

buyer’s expected payment for the good is roughly 1.067, which is strictly lower than 

expenditure under the efficient direct revelation mechanism. We can therefore con

clude that the efficient mechanism given in (4.7) and (4.8) is not optimal (i.e. does 

not minimize the buyer’s expected expenditure for the good). We also conjecture that 

efficient direct revelation mechanisms in which each suppliers’ probability (z =  1,2) 

is a function of the reports (i.e. Xi{s\, s^, s%)) will not allow the buyer to achieve 

efficiency more “cheaply” than with constant A*. The reason is tha t incentive compat

ibility imposes stringent conditions on how A, can depend on supplier z’s signals.

A characterization of expenditure minimizing incentive compatible mechanisms 

(even in the uniform case) is difficult due to the multi-dimensionality of the suppliers’ 

signals. In Appendix 1 to this chapter, we derive the suppliers’ equilibrium payoff func

tions associated with incentive compatible mechanisms. We thereby obtain a “revenue 

equivalence” result for our setup with two-dimensional private information, stating 

that the suppliers’ payoff functions from any two incentive compatible procurement 

mechanisms with the same conditional expected allocation probabilities differ at most
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by an additive constan t/ This result forms the basis for a characterization of optimal 

mechanisms, which is left for future work.

Finally, note tha t the existence of an efficient direct revelation mechanism in our 

setup hinges on the fact that there is (at least) one supplier who can produce whichever 

specification is efficient. In more general versions of our setup (i.e. those in which 

production cost for each specification are interdependent, but need not be the same 

across suppliers), an efficient and incentive compatible mechanism exists if and only if it 

is possible to separate the question of which specification is efficient from the question 

which of the two suppliers should produce it. The following example illustrates a 

situation where this is not possible:

Suppose the suppliers’ production cost are as follows: c \{ s \ ,  s \ )  = s \+ s ^ ,  c^ (s \, s \ )

= 2(sJi + s^), c^(s^,4) = 2 (4  + 4 )  an dc |(4 ,4 )  = 4  + 4 -  If 4  + 4  < 4  + 4

it is efficient to choose supplier 1 to produce specification A. Otherwise it is efficient to 

choose supplier 2 to produce specification B. Prom the point of view of achieving effi

ciency, we can recast this setup as one in which there are only two possible outcomes: 

either supplier 1 is chosen to produce A  or supplier 2 is chosen to produce specification 

B.

The suppliers’ induced cost functions are therefore C \{s\^  s \ )  = c\{s\^  s \ )  = s \ ^

4 ,  </i(4,4) = 0, C^(4 ,4 )  = O and C%(4,4) = 4 ( 4 , 4 )  = 4  + 4 -  Note that
signal component of supplier 1 does not affect his cost in either of the two possible 

outcomes. Incentive compatibility therefore requires that the probability of supplier 

1 being chosen to produce specification A  is independent of 4- This, however, runs 

counter to the goal of achieving efficiency, and hence, there exists no efficient, incentive 

compatible DRM.

^Jehiel and Moldovanu (2001) derive a generalization of Myerson’s (1981) “revenue equivalence” 

to the case of multi-dimensional dimensional types.
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4.6 A pp en d ix  1: Incentive C om patib le P rocurem ent 

M echanism s

In this section we take a general mechanism design approach to the design of pro

curement procedures. It forms the foundation for any future work on expenditure 

minimizing procurement mechanisms. We show that, in contrast to the design of 

optimal auctions with one-dimensional private information, one cannot characterize 

an optimal (i.e. expenditure minimizing) DRM by (initially) neglecting the incentive 

compatibility constraints. Recall tha t in the case of one-dimensional signals, incentive 

compatibility is equivalent to the requirement tha t the expected conditional alloca

tion probabilities are nondecreasing.® We find tha t this approach does not work with 

multi-dimensional signals, because a solution to the buyer’s unconstrained expenditure 

minimization problem will typically not satisfy the constraints imposed by incentive 

compatibility. We therefore need to  find a way to explicitly account for the incentive 

compatibility constraints in the buyer’s optimization problem. This is left for future 

research.

When looking for expenditure-minimizing mechanisms, the Revelation Principle 

tells us tha t we can restrict attention to direct revelation mechanisms (DRM) under 

which the suppliers report their signals in exchange for a (report-contingent) payment. 

Given reports s^, s^, s \  and a DRM specifies:

• probability 7TAi{s\,s]g,s\^s‘̂ )  tha t supplier i {i = 1,2) is chosen to produce 

specification A

•  probability 7Tsi(s\, s^, s^, s^) tha t supplier i is chosen to produce specification 

B

•  payment Ti{s\,s^^) to supplier i for revealing his signals

There is no loss of generality in restricting ourselves to payments T* tha t depend 

only on supplier Ps signals, and not on those of supplier j .  The reason is tha t even if

®See Krishna (2002), p.68.
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the payment function T* depends on supplier j ’s signals, supplier i ’s decision whether 

or not to reveal his signals truthfully is made only on the basis of the expected value 

of Ti.

In the following, we only consider supplier 1. The expressions for supplier 2 are 

completely analogous. We are looking for restrictions on the DRM which ensure that 

supplier 1 truthfully reveals his signals if supplier 2 does so. Supplier I ’s expected 

payoff when he reports his signal vector as =  (% ,% ) although the true signal 

vector is is given by®

-  /  7 rB i(s\s:^)(4  +  4 ) / ( s ' ) d s ' .
[̂0,l]2

Supplier I ’s decision problem is the following: Given the true signal vector s^, choose 

the report G [0,1]^ tha t solves:

maxC/i(s\s^).

The following notation simplifies the analysis: Define supplier I ’s expected conditional 

probabilities of being chosen to produce specification k G {A, B} as follows:

■= [  7r*i(s\s^)/(s^)ds^.
Vfo.iP10,1]:

Supplier I ’s expected production cost when participating in the DRM can therefore 

be written as follows:

Cl ( s \  ) =  s\qAi (ŝ  ) +  s^bQbi (ŝ  )

[̂0,l]2

+  /  7rg i(s\s ')4 /(s^ )d s:^ .
VfO.lP'[0 ,1]"

Thus, supplier Ts expected payoff when his signal vector is and he reports it as 

can be written as:

C l(s\s^ ) =  Ti(s^) -  C i(s\s^ ).

®To easy notation, define the joint density / ( s ^ ,  s^) =  for all i — 1,2.
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Define supplier I ’s expected payoff/rent from truthful revelation (i.e. =  s^) as

follows:

/ii(s^) :=  [ / i ( s \  s^) =  Ti(s^) -  C i(s \s^ ) .

A DRM is said to be incentive compatible if truthful revelation maximizes supplier 

I ’s expected rents. That is,

Mi(s^) =  -  C i{s \s^ ) )  .

As participation in the DRM is voluntary for supplier 1, the participation constraint is 

tha t yai(s^) > 0. Note tha t supplier I ’s expected rents from truthful revelation, /ij, is a 

convex function, and is therefore differentiable almost everywhere in [0,1]^. It follows 

via the Envelope Theorem that

d s \

and

As qAi and qB\ are probabilities, it follows immediately tha t /ii(s^) decreasing on [0,1]^.

Note that monotonicity of /Xj reduces the participation constraint to 1) >  0. Thus, 

as we assume that the buyer has to ensure provision of the good and hence participation, 

it is optimal to set 1) =  0. Note furthermore tha t the convexity of /i  ̂ implies that

The expected rents of supplier 1 from participating in an incentive compatible DRM 

depend only on the (conditional expected) allocation probabilities. The above envelope 

condition implies that

V /2i(s^) =  ( -g A i(s ^ ) , - g g i ( s ^ ) )  . (4.9)

Any real-valued and differentiable function on [0,1]^ such that V/ii(s^) =  {—g^i(s^), —gBi(s^)) 

is called potential function. Thus, incentive compatibility implies that pi  is a potential



function for the vector field (—g^i(s^), —ggi(s^)). Note that a necessary condition for 

the existence of a potential function is tha t

9qM(s\,s^s) dqBi{s\,s^g)
d s ] ,  d s \  ■  ̂ - ’

The obvious question is how to find potential function from (4.9)? Some multi

variate version of the “Fundamental Theorem of Calculus” regarding the relationship 

between integration and differentiation is n e e d e d .N o te  that if the necessary condi

tion in (4.10) is satisfied, then we can express /Zi(sJi, Sg) as the integral of V/Zi(s\, Sg) 

along any curve in [0,1]^ that connects the points (s \,S g ) and (1,1). Such a curve 

<T^(r)  =  (cr^(r),cr^(r)) is parameterized by r  G [0,1] so that

(<^^(0), <^g(0)) =  (1? 1)

= (s J i ,4 )-

The curve integral of /Zj between the points { s \ ,  s^) and (1,1) is defined as follows:

=  Mi (^a(1),ctb(1)) -M i(^ i(0 ),cr^ (0 ))

=  m ( 4 , 4 )  -  1) =  4 ) -

Note tha t ^Ati((T^(r),cr^(r)) is given by

dfi^{(T^{r)) da\{r)  a/Zi(cri(r)) do-^(r)
^5^ dr Dsq dr

Thus, for an arbitrary path cr^(r) we can express /z^as follows:

The next question is which path one should choose? One possibility is to  integrate 

V /Z i(s^ ,sy  along the line connecting the points (s\ , S q) and (1,1). That is,

o - i ( r )  =  ( 1  -  r ( l  -  s \ ) ,  1 -  r ( l  -  4 ) )  •

10 See Lang (1998).
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In this case, M i(s \ ,s y  is given by

f  (?Ai(l -  r ( l  — s^), 1 -  r ( l  -  Sg))(l -  s^)
J o

+9bi(1 — ’’(1 — 5^), 1 — r ( l  — Sg))(l — s \) )  dr.

We have now fully expressed in terms of the (conditional expected) allocation prob

abilities qai and qbi- Thus, supplier I ’s payment t i  is fully determined:

Ti(s^) =  /ii(s^) +  Ci(s\s^).

The problem of designing an expenditure minimizing DRM is now to solve

min f  Ti(s^)/(s^)ds^ + f  r 2 (s^)/(s^)ds^.
' l̂’'̂ 2y[o,l]2 V[0,l]2

Note that the expected payment to supplier 1 under an incentive compatible DRM is 

given by

-E’si[t i (s )̂] =  Esi[/Xi(s^) +  C 'i(s\s^)].

In order to express the expected rents Egi [/^i(s^)] in a more compact way, we can follow 

a technique used by Armstrong (1996), which is a form of “multivariate integration by 

parts” . It yields the following expression:

^ s i [ M i ( s ^ ) 1  =  [  ( ç a i ( s ^ ) ( 1  -  s \ )  +  g s i ( s ^ ) ( l  -  s D )  / i ( s ^ ) d s \

where /i(s^) is given by

^  " r / ( l - r ( l - , ^ ) , l - r ( l - 5 ^ ) ) d r .

We can therefore express (s^) + (7i(s^,s^)] as

( 4 + ( i  -  4 ) 4 ^

+  XI f / 7I-fcl(s\s^)4/(4)c?4
kG{A,B}
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The buyer’s problem is therefore to choose 'ïïa\i'^b \ , '^ A 2 and 'Kb2 s o  as to  minimize 

the sum of the suppliers’ expected payments. We can express supplier I ’s expected 

payment in terms of tt^i, ttbi-

ke{A,B}

To obtain the buyer’s objective function, simply add up the expected payments to 

suppliers 1 and 2. This yields:

-£'Ŝ ,s2 5̂ ) ("sfc+Sfc + (1 -

+7Tfc2(s\s^) +  (1 -

In the uniform case, the buyer’s problem is to minimize the expected value of following 

expression:

irAi(s\s'^) ( ^ 4 + 4 + ( 1  -

+ ^ b i(5 ',s^ ) ( 4 + 4 + (1  -

( 4 + 4  + (1 -  )

+^b2( s \5̂) ( 4 + 4  + (1 -  4)4 l ’_ m ? n { i i s |ÿ  )  ’

subject to the constraint tha t the 7r-functions must be chosen such that the neces

sary condition for the existence of potential functions /Zj, is satisfied:

dqAi{s\,s%) ^  dqBi{s%s%)

4.7 A ppend ix  2: Proofs

P ro o f  o f L em m a 4.1: Suppose the suppliers’ strategies ) and {k"̂ *, Pa iPb )

constitute a BNE of the alternative version of the MPM. This implies tha t for every 

signal-vector s \  the strategy {k^*-,P^a ->Pb ) ^ best response to supplier 2’s strategy

91



) (and vice versa). In particular, given supplier I ’s equilibrium specification

choice  ̂the pricing functions pg solve

max£;s2[(Pfci.(si)(s^) -Cfci.(s^))]Pr{Pfc2*(s2)(s^) >pli.(gi)(s^)}, (4.11)
Pa’Pb

for every G S. Now consider the original version of the MPM. Supplier I ’s strategy

consists of the pricing functions q \  and q^, and his expected payoff is

^ s 2 [(gp(si)(s^) -  qi(si))] Pr{min{g^(s^), Çg(s^)} >  ÿi(si)(s^)}, (4.12)

where P(s^) =  argm in2e{^,g} ÿ (s^). Based on his equilibrium strategy in the alterna

tive MPM, we can construct for each supplier z (z =  1,2) the following strategy for the

original MPM:

p^(s*) if A:̂ *(s*) =  ^
^ (s* ) — <

and

9g(s3 — ^

(4.13)
maxtie5 Ps(t*) if /c**(s*) =  B

m axtiesPS(t') if ^

pg(s ') ifA;"(s*) =  B

The interpretation is as follows: The pricing function ^  equals the equilibrium pricing 

function p^ for specification A  if supplier z’s signal is such that he would choose 

specification A  in the alternative MPM. Otherwise, it takes on a fixed value equal to 

maxtig5 P^(t*), which is the highest possible price supplier z would quote for specifica

tion B  under the alternative MPM. Suppose now tha t supplier 2 uses strategy (%, % ) 

in the original MPM. It follows that

or, more compactly,

min{g^(s^), g|(s-^)} =  P&L(g2)(s^).

We can therefore write supplier I ’s expected payoff in (4.12) as follows:

^s2[(9n(si)(s^) -  Qi(si))] Pr{Pk2.(g2)(s^) > g?i(si)(s^)}. (4.15)

92



It is easy to see tha t the strategy (g^, q^) given by (4.13) and (4.14) constitutes a best 

response for supplier 1 as the pricing functions p ÿ  and p ÿ  solve

inax£;s2[(Pfci.(si)(s^) -Cfci*(si))]Pr{p^^.(32)(s2 ) >pli.(gi)(s^)}.
Pa  'Pb

This shows tha t every BNE of the alternative MPM constitutes a BNE of the original 

MPM.

Q.E.D.

P ro o f  o f P ro p o s itio n  4.2: If supplier 1 with signal (s^, s^) (where 0 <  Sg <  <

1) reports the signal values (% ,% ), his expected profit is

ŝ , s \ ,  s i )  := r f - C i { s \ , ŝ , s^),

where

+ 4 ^ y  (4,4,4, sl)g(s\)g{s%)ds\ds%

+ (4,4, 4, s \ ) s \ g { s \ ) g { s \ ) d s \ d s \

Is I  ^̂ "̂>̂B9{s\)g(sl)ds\dsl.

In the following, we assume initially tha t the probability with which supplier 1 is chosen 

to produce the efficient specification is a function of the suppliers’ reports. That is,

A i( s ^ ,s ^ ,s ^ ,s |)  if sj, +  <  s], +  s |

and

if s \  +  5^ > s i  +  s?

4 Y ( 4 , 4 , 4 , 4 )  = <
if s \  +  s i  <  4  +

^ i ( 4 , 4 , 4 , 4 )  i f 4  + 4 > 4  + 4
Now consider the expected probability with which supplier 1 is chosen to produce 

specification A  if his signals are and Sg but he reports them as 4  and 4 -

J ( 4 V ( 4 , 4 , 4 ,  s l )g { s \ )g { s l )d s \d s l

A i(4 , S g ,  s i ,  s l ) g ( s l ) d s l  ] g { s \ )d s \
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and

^  f y  > ^ i{ s \ , s l , s % s l ) g { s l ) d s l j  g { s \)d s \

+ f  (  [  Xiis\ ,s^B^s\ ,sl )g{sl)dsl]  g{s‘̂ ĵ )ds\. 
l-sj^+s  ̂ \Jo J

Jehiel and Moldovanu (2001) show that a necessary and sufficient condition for truthful 

revelation of supplier I ’s signals is

^  Is I 4 , sl)gis\)g{sl)ds‘̂ ĵ dsl
d

^ a I s I  4 ,  s l)g ( s \ )g { s l )d s ‘̂ ^dsl.

W ith the above specification of and we obtain:

Jo y s \+ s \ - s ^ ^  OS g J

+  [  Xi {s\ , S q , s\ , s\  + s \  — SQ )g{s\-\-s \ — SQ)g{s\)ds\
Jo

and

’A JS
_Tl _i_̂ l /  „o2 I -S-1 _^1

'o \Jo  ^ 4

+ 4 . ̂ -1 (% ] g ( s \ ) d s \Sfs\
U-fii+si

+  [  Xi {s \ , S q , s\ , s \ - \ - s \ - S Q ) g { s \ - \ - s \ - S Q ) g { s \ ) d s \ .
Jo

It is easy to see tha t the necessary and sufficient condition in Jehiel and Moldovanu 

(2001) is satisfied if Ai is a constant. In the following we therefore restrict attention to
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this case. For ease of notation let Ai — This yields

i'̂ Ai ( s \ , s l , s \ , s l ) g { s ‘̂ ^)g{sl)ds\dsl =  ^ f  (  f  9 {s\ )ds \
2 Jo \Jsl+s\-P^ J

and

TTm ( 4 , 4 , 4 , 4 ) p ( 4 ) g ( 4 X 4 c ^ 4  =  ^  ^  W  g { .s l )d s i \  g { s \)d s \

\ ! \  i f2 J 1—s\+sL \Jo
+  n /  /  g ( 4 ) ^ 4  g (4 )< ^ 4

Also,

/  [  7 r ^ ^ ( 4 ,4 ,4 ,^ ) 4 ^ ( 4 ) p ( 4 ) c ^ 4 ( ^ 4  =  /  ( [  ^ 4 ^ ( 4 ) ^ 4 l  5^(4)'
Jo Jo Jo \ J s \+ { s \—s^) 2 /

and

a
l /"I — ĝ) /  + 1 \
4 i  ( 4 , 4 ,  4 ,  s l ) s \ g { s \ ) g ( s \ ) d s \ d s l  =  W 2 ^ B 9 { s l ) d s l  j p(4)d

+ /  ( f  % 4p(4)^4l ^(4)c(7l-(si-sk) \./o 2 /

It is then easy to compute the gradient vector D C ( ^ , 4 ,  s^):

M -̂ 1 „1 „1 \ 1 rl-âj+s)

4 -

^ ( ^ ( 4 , 4 , 4 , 4 )
— ~ 2  ~  4 )  -  ( 4  ~  4 ) )  J  p ( 4  +  4  ~  4 ) ^ ( 4 ) < ^ 4

and

< 9 C ( 4 , 4 , 4 , 4 )  _  ^ ( ^ ( 4 , 4 , 4 , 4 )

Thus, D C {s\ ,  5g, 4 j  4 )  — 0 As is constant we therefore have D U (sj^, s^, sj^, Sg) =

0, so that the necessary condition for a maximum of [ / ( 4 ; 4 ) ^ A ) 4 )  the point

( 4 ) 4 )  =  ( 4 ) 5 s ) is satisfied.
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Now compute the Hessian matrix D ‘̂ C{s \ , ' s^q̂s \ ^ s\ ) .  Its elements are as follows:

1 —st +Sr

and

d ‘̂ C (s\ ,  s^, s3i, 4 )  9‘̂ C (s\ ,  4 ,  s \ ,  s^) d^C (s\,  4 , 4 , 4 )
( % ) 2  (a%)2

In the uniform case, for example, the Hessian matrix D ‘̂ C{'s\,s^,  s^, Sg) reduces to:

“ 4  -  24  + 4  + i 4  + 2 4  + 24  ~ 4  ~ i 4  -  i 

4  + i 4  “ 4  “ i 4  “  2 “ 4  ~ i 4  + 4  + i 4  + ^

Evaluating the general Hessian at (4 ?  4 )  =  ( 4 ;  we obtain D^C(s \ , S q , s\ , s^q):

i ^(4 + 4  -  4 )^ (4 )^4  - i  /o p(4 + 4  -  4)^(4)<^4 

- i  p(4 + 4  -  4 )^ (4 )^ 4  i p(4 + 4  -  4 )p(4)^4

which is a positive semzdefinite matrix as det {D‘̂ C{s\, Sq , s \ ,  s^))  = 0 (ambiguous 

case). However, note tha t the function CÇs\, s^, s^)  has a minimum at 4  — -̂ a (at

this point, the second derivative is |  9 {^Ad-s\ — SQ)g{s\)ds\, which is strictly

positive for all 5 ^, Sg G (0,1) and 5 ^ >  Sg). Likewise, the function C (s^, 4 ?  4> 

has a minimum at 4  — Thus, we can conclude tha t C ( 4 , 4 ;  4 ?  kas a 

minimum at ( 4 , 4 )  — ('®a,4)-

As the transfer function is constant, the expected profit ( 7 ( 4 , 4 , 4 ,  

maximal at ( 4 , 4 )  ~  ( 4 ,  4 ) -  An analogous argument can be made for all signal 

values 5 ^, Sg G (0,1) where <  s^, and hence the efficient DRM is incentive com

patible.

Q.E.D.

96



Chapter 5

Concluding Remarks

In this thesis we have adopted a mechanism design approach to study three specific 

situations of economic relevance. We have thereby added a new angle to im portant 

themes tha t , in one form or another, have been at the heart of the mechanism design 

literature.

Chapter 2 on incentive contracts for information providers emphasizes tha t sequen

tial information acquisition procedures that rely on a direct comparison of the payoffs 

of two alternatives cannot be costlessly delegated to a self-interested agent, even in our 

setup tha t is more favorable to the principal as one would ever expect to  find in reality.

Chapter 3 studied whether efficient procedures exist that give agents with conflicting 

interests the incentive to truthfully reveal their “strength” of preference when money 

transfers are ruled out. Our main result was tha t no such mechanisms exist if the 

distribution of agents’ types has continuum support. If three types have positive prior 

probability, there exist examples in which incentive compatible and ex post efficient 

decision rules exist, and others where they do not. We have numerically characterized 

a second best decision rule for the latter case numerically. It is highly sensitive to 

the model parameters, and hence an im portant question for future research is the 

characterization of “robust” rules for compromising.

Finally, chapter 4 has established in a simple procurement model for a good tha t 

exists in two specifications, tha t when suppliers have multi-dimensional private in-
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formation an optimal procurement mechanism will not generally be efficient. A full 

characterization of optimal mechanisms in the presence of multi-dimensional private 

information is a very difficult problem. General results to date exist only for multi

dimensional monopoly screening. ̂

hSee Rochet and Choné (1998).
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