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Abstract

This thesis addresses the problems of recovering the 3D position and orientation of a vehicle 

mounted camera relative to a known object and, additionally, tracking the 2D position of that 

object in camera images, under conditions of extremely poor visibility such as encountered 

underwater. The human visual system can often make correct interpretations of images that 

are of such poor quality that they contain insufficient explicit information to do so. It is 

asserted that such systems must therefore make use of prior knowledge in several forms.

A novel algorithm (the EM/E-MRF algorithm) is presented for the interpretation of 

scene content and camera position from extremely poor visibility images. The algorithm is 

capable of tracking camera trajectories over extended image sequences. The algorithm 

combines observed data (the current image) with predicted data derived from prior 

knowledge of the object being viewed and an estimate of the camera’s motion.
During image segmentation, a predicted image is used to estimate class conditional 

probability distributions and an Extended-Markov Random Field technique is used to 

combine observed image data with expectations of that data within a probabilistic 
framework. Markov dependency is extended to include contributions from corresponding 
pixels in the predicted image. Interpretations of scene content and camera position are then 
mutually improved using Expectation-Maximisation.

The resulting algorithm exhibits elements of continuous machine learning. Non-rigid 

statistical models of object being viewed and background are continuously modified and 

updated during the analysis of each frame of the video sequence.
Poor visibility image sequences of known objects, filmed along pre-measured 

trajectories with a calibrated camera have been constructed in order to provide real test data 

with underlying ground-truth. An industrial robot arm was used to move a camera along a 

highly repeatable trajectory. Test sequences, (featuring an object of interest in extremely 

poor visibility generated using dry ice fog), and calibration sequences (featuring calibration 

targets in good visibility) were filmed along identical trajectories. Camera intrinsics, lens 

distortion parameters and camera position and orientation could be extracted from the 

calibration sequences for every frame. This information was used to provide ground-truth for 

corresponding frames in the poor visibility test sequences.

Using this data, the EM/E-MRF algorithm has been tested on several hundred 

images, over a range of visibility conditions, camera trajectories, algorithm parameters and 

observed objects.
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1 Introduction

Introduction

1.1 Overview

This thesis addresses the problem of vision-based navigation in conditions of 

extremely poor visibility, such as encountered by remote operated vehicles (ROVs) 

in underwater environments. A motivation for this work is the visual inspection of 

submerged components of off-shore oil rig structures.

Most robot vision systems are designed for good visibility conditions and 

typically rely on extracting detailed features, such as edges, lines or corners, from 

observed images. This kind of feature extraction is unfeasible in conditions of 

extremely poor visibility as is demonstrated in the following section (section 1.2).

In contrast, the human visual system can often understand the content of 

images that are of such poor quality that conventional computer vision algorithms 

fail. It might be argued (Ullman [1996]) that such images do not actually contain 

enough explicit information to enable correct interpretation. It therefore seems likely 

that such systems (e.g. human) must make use of prior knowledge in several forms.

This thesis presents the Expectation Maximisation/Extended-Markov 

Random Field (EM/E-MRF) algorithm, for the interpretation of scene content and 

camera position from poor quality images. This algorithm combines observed data 

(the current image) with predicted data derived from prior knowledge of the object 

being viewed and an estimate of the camera’s motion.

An Extended-Markov Random Field technique (See section 3.3) is used to 

combine observed image data with expectations of that data during image 

segmentation, within a probabilistic framework. Interpretations of scene content and

18



1 Introduction

camera position are then mutually improved using Expectation-Maximisation. The 

resulting algorithm exhibits elements of continuous machine learning.

To validate these ideas, it was necessary to construct poor visibility image 

sequences with known ground truth. This must include known models of the object 

being viewed, a known model of the camera’s intrinsic calibration parameters (focal 

length, principal point position and pixel aspect ratio), a known model of lens 

distortion and a known camera position and orientation for each frame of each image 

sequence.

An industrial robot arm was used to move a camera along a highly repeatable 

trajectory. Test sequences, (featuring an object of interest in extremely poor visibility 

generated using dry ice fog), and calibration sequences (featuring calibration targets 

in good visibility) were filmed along identical trajectories. Camera intrinsics, lens 

distortion parameters and position and orientation could be extracted from the 

calibration sequence for every frame. This information was used to provide ground 

truth for the corresponding poor visibility test sequences.

Image sequences with known ground truth were constructed with various 

different known objects, different degrees of poor visibility and various different 

camera trajectories. The EM/E-MRF algorithm was tested on these image sequences 

and the camera position estimates, output by the vision system, were compared with 

the pre-measured ground truth. The performance of the algorithm has been examined 

in response to various different conditions. Sources of error and limitations of the 

algorithm have been high-lighted and suggestions have been made as to how this 

work might be extended in the future.

19



1 Introduction

1.2 Machine vision in poor visibility

The vast majority of machine vision systems are designed to perform in good 

visibility through a clear medium which is assumed not to interfere with the 

relationship between world and image. Unfortunately, poor visibility is inescapable. 

Outdoor applications are subject to the vagaries of the weather and the atmosphere 

including haze, fog, rain, hail and snow. Even indoor environments will not provide 

perfect visibility because of inadequate lighting, shadow, clutter and occlusion. 

Underwater (and other poor visibility) applications suffer from a variety of forms of 

image degradation including:

Radial lens distortion (barrelling).

Non-uniform lighting (lighting intensity varies with position in image).

Dynamic lighting (lights move with vehicle, lighting conditions vary with time). 

Camera saturation.

Shadow.

Occlusion.

Attenuation.

Reflection and back-scattering.

Blur (both focal blur and motion blur).

Discrepancies between real objects and their models.

Hardly any reported vision systems are designed to cope with very poor 

visibility. Occasionally papers appear in the computer vision and robotics literature 

(see section 2.4) which deal with underwater scenarios and these often claim 

robustness in poor visibility. However, these invariably still rely on extracting

20



1 In troduct ion

conventional features (typically edges) using conventional techniques. In contrast, 

this thesis addresses the problems o f  image sequences for which visibility is so poor 

that conventional feature detection is impractical.

In order to illustrate what is meant by “poor visibility” in this thesis and in 

order to dem onstrate the difficulties o f  applying conventional com puter vision 

approaches to these conditions, figures 1.1-1.4 present a selection o f  poor visibility 

images and their corresponding edge detected versions (using the Canny edge 

detection method). It is apparent that attempting to locate structures by robustly  

identifying relevant edges under such conditions would pose challenging problems.

Figure 1.1 Real, poor visibility image, frame grabbed from video footage featuring a scale
model of an off-shore structure, filmed underwater at night from an ROV. The 
only illumination is from spotlights mounted on the vehicle. Left is original 
image and right is the result of edge detection.

Figure 1.2 Real, poor visibility image, frame grabbed from video footage featuring a scale 
model o f an off-shore structure, filmed underwater at night from an ROV. The 
only illumination is from spotlights mounted on the vehicle. Left is original 
image and right is the result of edge detection.
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In troduct ion

mm.m  #  I' ‘
k '

Figure 1.3 Image from a poor visibility sequence filmed in the laboratory. The creation of 
these test sequences is described in chapter 4. The image features a model o f an 
oil rig-like structure. Poor visibility conditions are created using dry ice fog. 
Illumination is from focussed beam spotlights mounted on and moving with the 
camera. Left is original image and right is the result of edge detection.

'A

Figure 1.4 Image from a poor visibility sequence filmed in the laboratory. The creation of 
these test sequences is described in chapter 4. The image features a model of an 
oil rig-like structure. Poor visibility conditions are created using dry ice fog. 
Illumination is from focussed beam spotlights mounted on and moving with the 
camera. Left is original image and right is the result o f edge detection. Note, this 
image is used extensively in chapter 5 to demonstrate the EM /E-M RF algorithm.

1.3 Note on image quality

It should be noted that the quality of  images presented in this thesis may differ 

som ewhat from that o f  the original digital data since the resolution o f  digital 

photographs may be finer than that o f  the printer.

W here frames taken from poor visibility image sequences are shown, these 

are usually linearly contrast stretched to aid the reader.
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1 Introduction

It may be noticed that the objects in some images appear to be upside down. 

This is due to the orientation in which the camera was attached to the robot arm 

during the filming of the image sequences (see chapter 4). The images are presented 

in their original form, as they were downloaded from the digital video cassettes, and 

have not been inverted in order to make objects appear the right way up.

1.4 Layout of this thesis

Chapter 2 reviews literature on various topics which are relevant to the work 

described herein. Areas of research that are examined include published algorithms 

for model based pose estimation and tracking, image segmentation techniques 

including Markov Random Fields, use of the Expectation Maximisation algorithm, 

research into computer vision in poor visibility conditions, the use of known ground 

truth in various forms for validating vision algorithms and the creation of image 

sequences with known ground truth, camera calibration methods and work that 

directly preceded the research described in this thesis.

Chapter 3 describes the EM/E-MRF robot vision algorithm in detail. The 

structure and motivation for the algorithm are presented in an intuitive fashion, 

deriving progressively from fundamental requirements of a machine vision system. It 

is demonstrated how the vision algorithm becomes equivalent to a form of 

Expectation Maximisation (EM) algorithm when iterated. The algorithm is justified 

mathematically by rooting it in probability theory, both as an expression of the EM 

algorithm and also from the point of view of Bayesian discrimination. The algorithm 

is summarised conveniently in a flow diagram. It may help the reader to view these 

parts in conjunction with section 5.2 in which the various stages of the algorithm are 

illustrated. This chapter also describes the practical details of the parameterisation of

23



1 Introduction

camera position and orientation, how these poses are interpolated and extrapolated 

and how the objects being viewed are measured and modelled.

Chapter 4 describes extensive practical work, carried out in the laboratory, to 

create poor visibility image sequences with known ground truth for the purpose of 

testing and validating the EM/E-MRF algorithm. The accuracy of the measured 

ground truth and calibration data is estimated and assessed in various ways and 

suggestions are made for improving the experimental procedure.

Chapter 5 presents the results of testing the EM/E-MRF vision algorithm on 

the poor visibility image sequences described in chapter 4. The algorithm is first 

tested on a single frame, examining the performance when subjected to different 

kinds of starting error. The algorithm is then tested on extended image sequences and 

the variation in performance is examined with respect to good and bad visibility 

conditions, smooth trajectories and those containing abrupt direction changes, 

different kinds of observed object and variation in important parameters of the 

algorithm relating to weightings in the use of observed and predicted data in several 

forms.

Chapter 6 contains a discussion of the results of chapter 5. The limitations of 

the EM/E-MRF algorithm in its present form are discussed as well as issues 

pertaining to the implementation of the algorithm at real time frame rates. 

Suggestions are made for how the work described in this thesis might be extended. 

These include possible improvements to the vision algorithm, improvements to the 

practical procedures for generating test sequences with known ground truth and 

suggestions for advances in the way that the performance of the vision algorithm can 

be tested, analysed and presented. The thesis is summarised and a list of those 

aspects of the work thought to constitute original contributions is provided.
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Literature review

2.1 Model based pose estimation and tracking

Perhaps the most fundamental problem in robot vision is that of how to endow 

machines with the humanlike capabilities of being able to recognise known objects, 

distinguish these objects from some scene background and determine the location 

and orientation of the objects relative to the camera (or similarly the position and 

orientation of the camera relative to the known objects). These issues have been 

considered by many researchers throughout the brief history of robot vision 

development.

The above ideas are central to this thesis in which the EM/E-MRF algorithm 

is proposed as a way of distinguishing and tracking known objects in conditions of 

extremely poor visibility. A discussion of relevant literature in this field is important 

since it will emerge that the approach proposed in this thesis is distinct from those 

previously explored. Vision systems reported in the literature are almost exclusively 

designed for good visibility conditions in which conventional features, such as edges, 

corners and lines, are readily extractable, however the visibility conditions tackled in 

this thesis are so poor that conventional feature extraction is problematic (see section 

1.2).

Besl and Jain [1985] is an early, theoretical and somewhat philosophical 

paper which attempts to formalise a clear statement and definition of the 3D object 

recognition problem. It suggests that vision systems should possess models of known 

objects, be able to determine the location (2D) of a known object in an image, and be 

able to determine the 3D position and orientation of the object in space.
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Faugeras and Hebert [1986b] propose a method for recognising and locating 

objects. The scheme is based on range data from a laser range finder, which is used 

to construct a representation of the observed object in terms of “linear primitives” 

such as points, lines and planes. This representation can then be compared with 

representations of objects stored in memory.

Lowe [1992] presents a well-known procedure for 3D to 2D registration. An 

initial estimate of camera pose (relative to the object being viewed) is used to project 

a 3D model of the object into the image plane. Correspondences are assumed 

between model features and extracted image features which lie close to these model 

features. A probabilistic approach is used to select the best matches. Non-linear 

optimisation is then used to determine the rigid body transformation that best maps 

the model onto the image. This approach relies on a good initial pose estimate since 

if this differs too much from the true position then occlusion may hide important 

model features whilst features not visible in the image are brought into view. This 

may make it impossible for proper feature correspondences to be established.

Besl and McKay [1992] describe the iterative closest point (ICP) method for 

registering a model to a 3D data set. Each iteration of the ICP algorithm consists of 

two steps. Firstly, correspondence is assumed between model points and the closest 

data point. Secondly, a displacement is found which minimises the distance between 

corresponding pairs. It can be shown that the procedure converges to a minimum of 

positional error.

Wunsch and Hirzinger [1996] introduce a method for improved 3D to 2D 

registration performance. The algorithm combines the iterative closest point method 

with a 3D to 2D correspondence operator. The algorithm is an improvement over that 

of Lowe [1992], because it will converge even for large initial displacements.
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TINA (Lacey et al. [2001]) is a set of tools for tackling image understanding 

problems. The initial focus of the project was the development of a 3D model 

matching system. This uses edges and depth maps extracted from pairs of binocular 

stereo images together with corresponding camera calibration information. Statistical 

matching of 3D scene descriptions to a stored wire-frame model enables the location 

of the model within the scene to be identified.

Once algorithms exist that enable a model to be registered to an image with 

the corresponding extraction of camera position, it is a natural extension to apply this 

process to an entire image sequence. The result is a tracking algorithm, which can 

distinguish objects moving along some trajectory relative to the camera and/or 

determine the camera trajectory relative to the observed object. Most significantly, 

extra information is now available since there is normally some relationship between 

consecutive images. If the trajectory can be modelled, predictions can be made about 

what might be expected to appear in the next image in the sequence. This a-priori 

information can improve the robustness of the registration algorithms and gives 

initial estimates for the registration process at each frame.

Early systems for 3D model-based motion tracking include that reported by 

Gennery [1982]. This system tracked Sobel edges within a five pixel range of 

predicted edges. The prediction involved velocity extrapolation and filtering. In 

earlier work, Gennery [1981] also addressed the issue of probabilistic evaluation of 

feature matches to a model. Verghese et al. [1988] [1990] proposed a system for 

tracking 3D objects, based on the assumption that features are spatio-temporally 

dense (moving less than one pixel from frame to frame).

Harris [1992] describes the system known as RAPiD (Real-time Attitude and 

Position Determination). This is a model-based 3D tracking algorithm for a known
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object executing arbitrary motion and viewed by a standard video camera. The 

system matches high contrast edges from the image to markings, folds or edges 

projected from the 3D object model based on an initial position estimate derived 

from a Kalman filter. The set of measured displacements of these edges from those 

predicted is used to refine the estimate of model pose.

Drummond and Cipolla [1999] [2000] present a three-dimensional model- 

based tracking system, incorporated into a visual servoing (camera on robot arm) 

system. The system uses a CAD model of the object to be tracked and matches this to 

the observed image in order to recover position and orientation at every frame. The 

approach is similar to that of the RAPiD system (Harris [1992]) and uses an estimate 

of motion trajectory to predict the object position in the next frame. This position 

estimate is then refined by measuring the displacements between projected model 

features and observed image features.

Christmas, Kittler and Petrou [1996] describe a system for tracking the pose 

of a camera relative to some 3D object for which a model exists. An initial (perhaps 

inaccurate) estimate of camera pose is used to project a 3D CAD model of the object 

into the image plane. A probabilistic 2D-2D matching algorithm is then used to 

determine correspondences between the observed image features and projected 

model features. These correspondences provide labels for the image features. A 

better estimate of camera position and orientation can then be computed. An iterative 

scheme is suggested in which successive refinements of camera pose are used as 

initial estimates for the following iterations of the algorithm. The authors suggest an 

application to navigation of an underwater vehicle observing an oil rig structure, 

however the images used in the work were filmed in air in a laboratory. The authors
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acknowledge that the poor visibility conditions often encountered in real underwater 

applications might make this approach unworkable.

Additional reported work on model based visual tracking includes Ginhoux et 

al. [2001], Kosaka et al. [1995], Braud et al. [1994], Jurie [1997]. Much of this work 

follows similar approaches to that already described or combines various similar 

techniques, employing models of the objects being tracked, predictions of position 

and fitting of the models to extracted features in some optimal way.

An alternative to using stored 3D object models is to use a small number of 

stored images of the object (see Ullman [1996]). Ullman suggests interpolating 

between stored images to synthesise predicted images from different viewpoints. 

These can then be compared with the observed image, varying the synthesised 

viewpoint until a match is found. A logical extension to this idea would be to use two 

observed images, from an observed sequence, to synthesise an interpolated image 

which is matched against a single stored reference image. For matching, Ullman 

discusses the use of a variety of possible features including points, edges, blob 

centres and contours.

The approach proposed in this thesis differs significantly from all of the 

systems described above. All the tracking algorithms so far mentioned, rely on the 

extraction of high contrast features from the image, most typically edge detection. 

The aim of this thesis is to tackle image sequences in which visibility conditions are 

so bad that edge detection based methods are not feasible. Rather than detecting 

edges to which a model is then fitted, the EM/E-MRF algorithm segments the image 

pixel by pixel using a probabilistic MRF based approach aided by prediction. The 

model is then fitted directly to the segmented image. No edge or other conventional 

feature detection methods are used. Ullman [1996] also briefly discusses directly
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matching between two images. The approach consists of evaluating the differences in 

grey-level between corresponding pixels in the two aligned images, whereas the 

EM/E-MRF algorithm finds the camera position for which a projected segmented 

image best fits the segmented observed image.

Some alternative approaches to tracking also deserve mention. It is possible 

to track a moving object simply on the basis of a moving coherent region in an image 

sequence. Such tracking methods are not applicable for the purposes of this thesis 

because they do not provide 3D information on the position of the camera relative to 

the object being tracked. Isard and Blake [1996] and [1998] report the use of the 

Condensation (Conditional Density Estimation) algorithm to track continually 

deforming curved boundaries of various moving objects against a cluttered 

background. The Condensation algorithm tracks a discretely sampled probability 

distribution of various alternative hypotheses from image to image. The tracking 

approach relies on being able to extract high contrast edges around the object being 

tracked in each image. Even though the algorithms are tested on objects against a 

cluttered background, object edges are clearly visible (though the clutter provides 

additional spurious edges). Such tracking systems are not appropriate for the extreme 

case considered in this thesis where visibility is so poor that object boundaries are 

often not defined by extractable edges. The tracking system is also inappropriate in 

that it is purely 2D and does not yield the 3D position and orientation of the camera.

Zisserman et al. [1999], Fitzgibbon et al. [1998] and Torr et al. [1999] report 

methods for extracting the 3D camera trajectory and camera Intrinsic parameters 

from image sequences. The advantage of the method is that neither a pre-calibrated 

camera nor a special calibration target or object are necessary. The method relies on 

matching a large number of high resolution features (corners and lines) between

30



2 Literature review

successive images with the constraint that the scene is rigid. The method is not 

suitable for scenes in which such features are sparse. This work does not attempt to 

recognise or locate a particular object of interest in the image. The intended 

application is the introduction of fictitious objects into video sequences for the 

entertainment industry.

Most of the tracking systems discussed so far deal with rigid bodies, since 

that is the scope of the work reported in this thesis. However, work is also reported 

which deals with deformable or articulated objects, particularly the case of human 

bodies. Sometimes these are modelled as kinematic chains of linked rigid 

components. Hilton et al. [2000] presents a technique for automatically building 

recognisable, moving 3D models of individual people. A set of images of a person 

from different viewpoints is captured. A standard 3D “generic humanoid model” is 

then transformed to approximate the individual’s shape and anatomical structure by 

fitting it to the captured images. Ioffe and Forsyth [1999] describe a method to find 

sparsely clad people in static images. People are modelled as an assembly of nine 

cylindrical segments. Deutscher et al. [2000] and [2001] address human motion 

capture, modelling the body as an articulated set of truncated cones. They compare 

the use of Kalman filtering. Condensation and “annealed particle filtering” for 

tracking an articulated body with up to 34 degrees of freedom.

2.2 Segmentation and Markov Random Fields

Segmentation is the process of partitioning an image into a set of non-intersecting 

regions, such that each region is homogeneous but the union of no two adjacent 

regions is homogeneous. This thesis is concerned with binary or bi-level
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segmentation which is equivalent to classifying all pixels of an image into two 

classes, namely “object” and “background”.

Segmentation is a fundamental low-level vision task and forms the first 

essential step in many complex vision systems. This thesis presents a model based 

tracking algorithm which involves firstly segmenting each image in a sequence and 

secondly fitting a model of the object being tracked to the segmented image in order 

to extract the camera position and orientation relative to that object. Clearly, in such 

systems, the quality of the final output will depend largely on the quality of the initial 

segmentation process.

Hundreds of segmentation techniques are present in the literature, but no 

existing method works well on all kinds of images and each kind of image or 

imaging situation will yield best results with a different technique. For a 

comprehensive review of many different kinds of segmentation techniques see Pal 

and Pal [1993]. Other reviews include Fu and Mui [1981] and Haralick and Shapiro 

[1985].

The scope of this thesis is limited to the case of monochrome grey-scale 

images only. Pal and Pal describe several categories of segmentation techniques for 

these images including grey-level thresholding, relaxation, Markov Random Field 

(MRF) approaches, neural networks, edge detection of region boundaries and 

methods based on fuzzy set theory.

Thresholding is a simple and popular technique for image segmentation. A 

grey-level value (the threshold) is chosen and pixels are classified according to 

whether they are brighter or dimmer than this level. If only one threshold is used for 

the entire image then it is called global thresholding whereas schemes that involve 

partitioning the image into several sub-regions with a separate threshold defined for

32



2 Literature review

each are known as local thresholding or adaptive thresholding. For general surveys of 

various thresholding techniques see Sahoo et al. [1988] and Kittler et al. [1984].

Kittler and Illingworth [1985] derive a minimum error threshold under the 

assumption that the grey-levels of both object and background pixels are normally 

distributed. The pixel intensities of the image are described by a histogram giving the 

frequency of occurrence of each grey-level in the image. This histogram is viewed as 

an estimate of the probability density function for pixel grey-levels. Kittler and 

Illingworth model this density function as a mixture of two separate distributions, for 

“object” and “background” pixels respectively. These distributions are modelled as 

normal distributions. Since the means and variances of the two components of this 

mixture are unknown, Kittler and Illingworth present a method of best fitting the 

mixture of two Gaussians to the original histogram. The point of intersection of the 

object and background distributions then provides an optimal threshold value.

The EM/E-MRF algorithm presented in this thesis uses thresholding as the 

first stage of the segmentation process. The initial segmented image produced by 

simple thresholding is then iteratively refined using an Extended-Markov Random 

Field (E-MRF) method. As in Kittler and Illingworth’s work, the image histogram is 

modelled as a mixture of two normal distributions, one representing object pixels and 

the other representing background. This work is distinct for two reasons. Firstly, 

instead of best fitting the normal distributions to the image histogram (in the manner 

of Kittler), a predicted (and segmented) image is projected using a camera position 

estimate and an object model. This is used to predict which regions of the observed 

image represent object and which background. Means and variances can then be 

calculated over these predicted regions and these values are used as estimates of the 

means and variances of object and background normal distributions. Secondly, in
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Kittler and Dlingworth’s work the two normal distributions (and hence the 

segmentation thresholding value) remain fixed, however in the EM/E-MRF 

algorithm these distributions are continually relearned, both over successive 

iterations of the algorithm on a single image and also from image to image over a 

sequence.

Adaptive thresholding techniques are described by Chow and Kaneko [1972] 

and extended by Nakagawa and Rosenfeld [1979]. Each image is divided up into 

regions. An optimal threshold is determined for each region and this is interpolated 

between regions in order to determine an individual threshold for each pixel. The 

EM/E-MRF algorithm, described in this thesis, does not make use of adaptive 

thresholding. Incorporating adaptive thresholding into the algorithm would provide a 

more general image model and might improve robustness. This is discussed in 

chapter 6 as a possible extension for future work.

A more complex segmentation technique (for a surveillance camera 

application) is described by Crimson et al. [1998]. A number of observed images 

from a fixed camera are used to build up statistical image data of an observed scene 

for every individual image pixel. This historical data is then compared against new 

images in order to track foreign objects which have recently moved into the field of 

view (e.g. people, cars etc). Image rgb-levels are modelled by Gaussian mixture 

models, with a separate model for each pixel. A subset of the most common 

Gaussians-those with the highest weightings-are assumed to represent “background”. 

Any observed pixel value which does not lie within two standard deviations of at 

least one of the background distribution means, is classified as “object”.

This method is adaptive and robust, however it is intended for a fixed camera 

observing a relatively static scene. In contrast, the EM/E-MRF algorithm creates new
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statistical image models for each new image, since a moving camera, moving and 

focussed beam light sources, and changing visibility conditions mean that historical 

image models may not be applicable to new images. Two valuable aspects of 

Crimson’s method are that the image model distributions are multi-modal and can 

vary with position in the image. Similar ideas are explored as possible further work 

in section 6.5.1.

Since the 1970s, there has been increasing interest in the use of Markov 

Random Fields (MRFs) as models to aid in the restoration and segmentation of 

digital images. MRFs are particularly useful in the case of very noisy or degraded 

images (e.g. in poor visibility) since they can make up for deficiencies in observed 

information (fluctuations in intensity, colour, texture and shape in observed images) 

by adding a-priori knowledge to the image interpretation process in the form of 

models of spatial interaction between neighbouring pixels. Hence, the classification 

of a particular pixel is based, not only on the grey-level of that pixel, but also on the 

classification of neighbouring pixels. Simplistically, pixels are more likely to belong 

to the “object” class if their nearest neighbours are also members of the “object” 

class and similarly for background pixels. Landmark papers include Besag [1974], 

Besag [1986], and Geman and Geman [1984]. Historically, the mathematical 

concepts originate in the statistical mechanics and mathematics literature with Gibbs 

[1902], Markov [1906] (in Russian) and Ising [1925] (in German).

One key probiem is that of determining the values of the probability 

distribution of classifications for each pixel based on those of its neighbourhood. 

Besag [1974] and [1986], Geman and Geman [1984] and Derin [1985] and [1986] all 

make use of Gibbs distributions for characterising MRFs. These distributions were 

first used by Ising [1925] (in the statistical mechanics literature) to model molecular
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interactions. For the purposes of image segmentation, Gibbs distributions offer a 

simple way to assign a numerical value to the probability of any particular pixel 

classification that is dependent on the classifications of other pixels in the 

neighbourhood.

Once a suitable neighbourhood size has been specified and a model (e.g. 

Gibbs distribution) has been assumed to enable the computation of probabilities, the 

optimum segmentation problem becomes that of classifying every pixel in the image 

such that the probability associated with no pixel can be increased by altering the 

classification of either that pixel or any of its neighbours. The space of all possible 

permutations of pixel classification is too large to be searched exhaustively. Several 

iterative algorithms have been suggested for the solution of this problem. These are 

surveyed and their performance compared in Dubes et al. [1990]. Two of the most 

popular methods are known as “simulated annealing” and “iterated conditional 

modes”.

Simulated annealing (Geman and Geman [1984]) belongs to the class of 

stochastic relaxation algorithms. Simulated annealing is theoretically guaranteed to 

find a globally optimal labelling, however it is relatively computationally expensive 

and slow. Dubes et al. [1990] report simulated annealing as failing on some real 

problems due to computational burden.

The Iterated Conditional Modes (ICM) algorithm (Besag [1986]) is not 

guaranteed to find the probabilistically optimum set of pixel labels, being vulnerable 

to convergence on local maxima. It is, however, several orders of magnitude faster 

than simulated annealing and therefore much more suitable for real time applications. 

Interestingly, despite the theoretical sub-optimality, Dubes et al. [1990] find the ICM 

algorithm to be more robust than simulated annealing. They also note that the
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probabilistically optimal labelling solution does not always correspond to the “best” 

image segmentation. The ICM algorithm was chosen to solve the Extended Markov 

Random Field (E-MRF) problem described in this thesis.

The work of Bouthemy and Lalande [1988] and [1989] is especially relevant 

to this thesis. Bouthemy and Lalande are concerned with the interpretation of murky 

underwater image sequences for robot navigation. Crucially, they extend the notion 

of Markov dependency to include, not only contributions from a given pixel’s 

neighbourhood in the observed image, but also a contribution from the corresponding 

pixel in the previous frame of the image sequence. Thus Markov dependency 

becomes both spatial and temporal. In the Extended-Markov Random Field (E-MRF) 

used in this thesis, Markov dependency is again extended but, here, any given pixel’s 

neighbourhood includes the corresponding pixel from a predicted image based on a 

model of the object being tracked and an estimate of the current camera position 

based on a learned model of the camera trajectory.

Other approaches to segmentation include those based on neural networks 

and fuzzy set theory. Neural networks are massively connected networks of 

elementary processors, some of which are claimed to resemble information 

processing in biological neurones. Many kinds of network architecture have been 

reported in the neural network literature. Good introductory texts include Bishop 

[1995], Ripley [1996] and Tarassenko [1998]. An obvious question in the neural 

network approach is what to use as input features. In general a (non-trivial) network 

(e.g. perceptron) will have several inputs and so a grey-level alone is insufficient 

information for a network based system that is designed to provide a classification 

for any particular pixel in an image. Hall et al. [1992] use, for each pixel, the 

intensities from three different Magnetic Resonance (MRI) images, as the three
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feature inputs of a neural network which then outputs a classification for that pixel. 

Ghosh et al. [1991] employ a neural network to segment an image according to a 

Markov Random Field model. The inputs to the network are the pixel values of a 

local neighbourhood and the output is the optimal classification for the pixel 

corresponding to that neighbourhood. A proposed hardware implementation of the 

network offers the potential of a high speed solution to MRF approaches which are 

normally computationally expensive.

The impetus behind the introduction of fuzzy set theory was to provide a 

means of defining categories which are inherently imprecise. This is achieved by 

means of membership functions such that a particular object can be a member of 

multiple sets simultaneously but with varying degrees of membership of each. The 

notion of membership functions of fuzzy categories is readily applied to image 

segmentation which attempts to divide up an image into several homogeneous 

regions. A membership function can be associated with each region and pixels 

assigned according to their degree of membership. Keller and Carpenter [1990] apply 

a similar approach to produce fuzzy versions of three segmentation schemes, namely 

fuzzy clustering, fuzzy region growing and fuzzy relaxation. The performance of 

these schemes is then compared to that of their crisp (non-fuzzy) counterparts. Pal et 

al. [1980] and [1987] assign fuzzy brightness levels to each pixel. They then define 

an “image fuzziness” value, based on fuzzy measures of distance between the grey- 

level image and its nearest binary (two-tone) version. An optimum segmentation 

thresholding value is then determined so as to minimise the corresponding image 

fuzziness value.
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2.3 Expectation Maximisation

The Expectation-Maximisation (EM) algorithm was first reported by Dempster et al. 

[1977] as an iterative solution to problems where the observations can be viewed as 

incomplete data. The EM algorithm has since become increasingly popular in the 

literature, more recent examples including Neal and Hinton [1993], Bishop [1995], 

Ripley [1996], Cootes and Taylor [1997], North and Blake [1997], Crimson et al. 

[2000].

The EM algorithm is often referred to in the context of gaussian mixture 

models however it has far wider application. It is a general iterative approach to 

problems involving a hidden or latent variable (Blake [2000]).

Neal and Hinton [1993] express the algorithm in terms of calculating an 

expected distribution (E-step) for unobserved variables (in our case pixel class) in 

terms of observations (in our case pixel grey-level) and a current estimate of 

parameters (in our case camera position). The Maximisation or M-step then re- 

estimates the parameters to be those with maximum likelihood. It can be shown that 

with each iteration the true likelihood improves or at least remains constant until a 

maximum is reached.

The EM algorithm has previously been used to solve complicated image 

segmentation problems. Crimson et al. [2000] and Wells et al. [1996] incorporate 

segmentation of medical images by MRF within an EM feedback loop whilst 

refining an estimate of certain parameters of the scanning equipment (gain field or 

bias field). In this case the E-step consists of calculating pixel class (unobserved 

variables) based on the observed variable (pixel intensity) and a current estimate of 

the bias field (the hidden parameter). The M-step consists of re-estimating the bias 

field based on the new estimate of pixel class. The EM/E-MRF algorithm, described
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in this thesis, also incorporates MRF segmentation within the EM algorithm whilst 

refining an estimate of a hidden parameter, in this case camera position.

2.4 Poor visibility

The vast majority of current vision systems are designed to perform in good visibility 

through a clear medium which is assumed not to interfere with the relationship 

between world and image. Hardly any reported vision systems are designed to cope 

with very poor visibility. Occasionally papers appear in the computer vision and 

robotics literature which deal with underwater scenarios and these often claim 

robustness in poor visibility. However, these invariably still rely on extracting 

conventional features (typically edges) using conventional techniques.

Several authors have discussed the effects of poor visibility on images and 

vision systems. Barun and Ivanov [1999] use the theory of radiative transfer to 

investigate the optical effects of turbid media such as aerosol atmosphere, sea or 

oceanic water. They address the visibility problems of driving in poor visibility, 

including such topics as the visibility of retro-reflective markers of heavy trucks, 

ultimate visibility range of a car driver in a foggy environment and how many anti­

fog headlamps one should use on a car. The paper does not deal with computer 

vision in the sense of automated image analysis, segmentation or object recognition 

but rather is restricted to a physical analysis of the optical effects of turbid media.

Narasimhan and Nayer [2002] investigate ways of actually making use of 

poor visibility effects in order to recover three-dimensional structure of a scene. In 

haze or fog, the visibility, colour and brightness of objects will diminish with 

distance from the observer. Hence, using one or two images taken under poor 

weather conditions it is possible to determine range information about objects in the
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scene. The work also investigates the chromatic effects of atmospheric scattering. 

Algorithms are developed for computing fog or haze colour, extracting depth 

information and recovering “clear day” scene colours. The work does not deal with 

feature extraction or object recognition under these conditions. The nature of the 

image degradation addressed does not eliminate image features (e.g. edges). Rather, 

the image is dimmed and colours (but not structure) are distorted. The degradation is 

also uniform over each of the images.

The work of Watkins et al. [2000] describes a system that improves the vision 

of pilots on runways in fog. The system utilises hyperstereo vision (a binocular 

system with baseline separation wider than the human inter-ocular spacing). A 

camera and laser are fitted to each wing of the aircraft. Each camera is synchronised 

with the laser on the opposite wing. The cameras alternately capture images with 

illumination from the opposite laser. The backscatter radiation pattern has a 

decreasing gradient away from the side where the illumination source is located and 

by comparing the images from each camera it is possible to subtract the 

backscattered radiation pattern from each image. The cameras are fitted with narrow 

bandpass filters which only permit light of the same frequency as the lasers to be 

detected. This is useful for minimizing the effects of scatter from solar and other 

light sources. They also propose the use of special retro-reflectors on the runway. 

The reflections of laser radiation from the reflectors provide a-priori information 

which enables deblurring to be performed. The work is also relevant to this thesis in 

that a test image sequence was created by using a fog chamber to generate poor 

visibility conditions. The work does not consider computer vision algorithms for 

object recognition or tracking but is restricted to providing a human pilot with 

enhanced images using stereo goggles and a display.
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Forest! [2001] describes a vision based system to enable an autonomous 

underwater vehicle to navigate by following pipelines on the sea bed. The work is 

relevant to this thesis in that it involves vision based navigation in an underwater 

environment and also in that a known 3D model of the environment is used to 

provide a-priori information to the system. Foresti claims robustness in poor 

visibility, however his notion of poor visibility is not the same as that of this thesis, 

where poor visibility is taken to mean that conventional features (e.g. edges) are not 

useable. Foresti’s system relies on extracting edges from the observed image and 

then fitting a known model of the pipeline to the edges in order to recover the 

position and orientation of the camera. When poor visibility obscures the edges of 

the pipeline, Foresti suggests reliance on the on-board inertial motion sensors of the 

vehicle.

Rokita [1997], Kaneda [1991] and Nishita [1987] deal with the modelling of 

poor visibility conditions for computer graphics applications including flight and 

driving simulators. Various kinds of poor visibility are considered including visual 

effects caused by ground fog, haze, clouds and raindrops on a windscreen. This work 

is relevant in that it highlights the range and complexity of the degradation processes 

present in real image sequences thus confirming the importance of using real images 

over synthetically rendered images when testing computer vision algorithms.

2.5 Ground truth

In order to quantify the performance of vision based tracking algorithms, it is 

necessary to test the algorithms using appropriate image sequences for which 

ground-truth data is available. This ground-truth data can then be compared with the 

outputs of the vision algorithms, enabling the computation of errors. Ground-truth
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data might include the true positions and orientations of the camera (or a tracked 

object) at each frame, calibration data for the camera and models of the viewed 

scene.

It is easy to construct artificial image sequences with known ground-truth 

using computer graphics packages (e.g. “POV-ray for Windows”, 

http://www.D0vrav.0r2l  However, although testing computer vision algorithms on 

synthetic scenes allows comparison of performance, it gives only a limited idea of 

how the algorithms will perform on real scenes. Artificial scenes, generated using 

computer graphics software, do not completely reproduce the detailed variation of 

objects, the multitude of complex lighting conditions and modes of image 

degradation encountered in the real world and the only true test of computer vision 

algorithms remains their performance on real data. To this end, a number of 

researchers have attempted to create real video sequences with pre-measured ground- 

truth.

Drummond and Cipolla [1999] [2000] describe algorithms for tracking an 

object by fitting a CAD model to an observed image. They use a robotic “camera-in- 

hand” system (camera attached to a robot arm) to test the algorithms. The arm is set 

to manoeuvre the camera into a specified position and orientation relative to the 

object being observed. The process is repeated with the arm starting from a variety of 

different randomly selected positions. The final positions (which ideally should all be 

identical) are read from the robot controller. Differences in final position yield r.m.s. 

translational and rotational errors. The process is repeated with the object being 

observed rotated by 15 degrees each time. The final positions should ideally now lie 

on a circle. Deviation from a true circle is used to assess accuracy.
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In both these experiments the differences in final position are measured 

relative to each other. The true ground-truth position of the camera relative to the 

object being observed is not known and so no objective assessment of the system’s 

positional accuracy is possible. The r.m.s. differences quoted assess variation in end 

result (noise) but there is no way of knowing if these noisy perturbations are about 

the true camera location or whether there is some underlying structured deviation 

from the true position.

Wunsch and Hirzinger [1996] also describe an algorithm for registering a 

model to an object in an image. The algorithm yields the position and orientation of 

the object relative to the camera. Wunsch and Hirzinger describe an experiment to 

assess the accuracy of their algorithm in which a robot arm is used to position a 

camera in known positions relative to the object being viewed. They report known 

ground-truth camera positions as being accurate to 0.5mm and 1.0 degrees. It is not 

clear whether or not these positions were extracted from the robot controller and, if 

so, how the position of the camera optical centre was measured relative to the 

terminal link of the robot.

The work is significant in that an attempt has been made to capture images 

with known ground-truth camera positions. The work is limited in that only still 

images from fixed positions have been captured. In contrast, the work described in 

this thesis generated moving image sequences with ground-truth camera positions 

determined along entire trajectories.

Agapito, Hayman and Reid [2001] generate ground-truth image sequences 

using their “Yorick” stereo head/eye platform. Ground-truth data for the orientation 

and zoom of the camera at each frame is extracted from the motor encoders of the 

platform. The work is limited to providing motion with only two degrees of freedom
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(both rotational). Angles of elevation and pan are known but the translational 

position of the camera remains unknown. It is not clear how the orientation 

information extracted from the encoders is synchronised to match individual frames 

in the sequence. This may be an inherent functionality of the Yorick system.

Otte and Nagel [1994] and [1995] have created both real and synthetic image 

sequences with known ground-truth for the assessment of optical flow algorithms. 

The real sequences involved using a robot arm to “fly” a camera past simple scenes. 

Known velocities are generated by translating the camera at known speeds. The work 

is significant in that the authors actually measured the ground truth motion field for a 

real video sequence and have made the sequence and the motion field publicly 

available. Unfortunately, the focus of work on optic flow centres on extracting 

motion fields (related to velocities) rather than absolute positions. The work is also 

limited to the case of pure translation only. Although motion fields are measured, 

camera positions do not appear to have been measured.

McCane et al. [2001] present a benchmarking suite of image sequences for 

the purpose of evaluating optical flow algorithms. Their technique allows the 

measurement of ground-truth motion fields for sequences involving general motion 

of a (hand-held) camera about a scene. The work is limited in that the scene may 

only contain planar polyhedral objects in front of a planar background. Only the 

background may intersect the image edges and the polyhedra must be un-occluded. 

Furthermore, all visible faces of the polyhedra must have at least four vertices, and 

the set of visible polyhedra faces may not change over the image sequence. The 

technique involves the hand-labelling of matching features in every single image of 

the sequence. This laborious process prohibits the use of sequences longer than a few
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frames. Again, while motion fields are measured for the sequence, the absolute 

position and orientation of the camera remain unknown.

Gracias and Santos-Victor [2001] address the problem of estimating the 3D 

trajectory of an underwater autonomous vehicle from a set of images of the seabed 

taken by an onboard camera. They present algorithms for visual pose estimation 

using video mosaicing. They describe the use of an image sequence with available 

ground-truth in order to assess the performance of the algorithms and quantify error. 

A sequence of images of the sea bed, captured by a surface-driven ROY is used to 

generate a mosaic of the sea bed which is assumed to be planar. A trajectory and 

camera model are specified and new images corresponding to views from the camera 

on this trajectory are synthesized from the mosaic. This data set cannot truly be said 

to be a “real” image sequence. The images are synthesized albeit based on other 

images which are real. The object being viewed is, in this case, the sea bed. This is 

constrained to be perfectly planar. Images of solid objects viewed against a 

background are not available using this method.

The work of Watkins et al. [2000] is significant in that a test image sequence 

is created in bad visibility. Dry ice (solid CO2) and liquid nitrogen are used to fill a 

chamber with fog. Images are filmed through the fog to simulate conditions 

experienced by a pilot landing a plane in bad visibility. Ground truth camera data and 

positions were not calculated.

2.6 Work that directly precedes this research

The research described in this thesis was originally intended as an extension of work 

begun in Fairweather [1997a], Fairweather et al. [1997b] and Hodgetts et al. [1999]. 

This work introduces the Extended-Markov Random Field (E-MRF) in which
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Markov dependency is extended such that the local neighbourhood surrounding any 

particular pixel also includes a contribution from the corresponding pixel in a 

predicted image. The predicted image is projected using a 3D model of the object 

being tracked and an estimate of camera position based on a Kalman filtered model 

of the camera trajectory. The method is tested on a variety of degraded images and 

the performance of the E-MRF is demonstrated to be superior to that of a 

conventional MRF (Geman and Geman [1984], Besag [1986] and Dubes et al. 

[1990]) and also superior to a spatio-temporal version of the MRF (Bouthemy and 

Lalande [1988] and [1989]) when segmenting poor visibility, underwater images for 

which a model is available.

Fairweather presents a tracking algorithm for determining the position of a 

remote operated vehicle (ROV) relative to an observed underwater oil-rig-like 

structure. Each frame in the video sequence is first segmented using the E-MRF 

technique. The segmented image is then edge detected and straight lines are best 

fitted to the edges. These straight lines are assumed to correspond to the boundaries 

of cylinders from which the oil rig structure is composed. Range information is 

computed by comparing the diameter of cylinders in the observed image with the 

known diameter of cylinders in a 3D model of the oil rig. Orientation relative to the 

oil rig is determined by comparing the angle between cylinders in the observed 

image with the true angle known from the model.

Fairweather’s algorithm is limited in several respects. Firstly, it is assumed 

that the camera is looking directly at a node (intersection of 3 cylinders). Besides 

these assumed conditions being inapplicable in most real scenarios, this assumption 

reduces the degrees of freedom of motion that can be accommodated from six down 

to four (namely range and orientation with respect to the node). Secondly, the highly
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task specific method of determining range and orientation means that the algorithm 

cannot be applied to any other kind of observed object other than oil rig-like nodal 

intersections of three cylinders.

Fairweather was primarily concerned with proof of principle of E-MRF 

segmentation technique and, to this end, certain steps in his vision system were 

performed by hand. Both predicted images (produced by CAD software) and 

observed images from a video sequence were “trimmed” by hand such that portions 

of each would overlap to produce a good match. Most importantly, in order to 

determine statistics of the observed image, including the means and variances of the 

“object” and “background” portions of the image, each image was first “hand 

segmented”. This means, in effect, that the vision system could only function if it 

was already given its ideal output as one of its inputs.

Fairweather’s vision system, as presented, seems to rely on accurate predicted 

images coupled with a large weighting in favour of predicted information. Many of 

the outputs appear to have received little influence from the actual observed image.

The EM/E-MRF vision algorithm presented in this thesis differs from 

Fairweather’s system in a number of important respects. A novel contribution of this 

work is the use of a predicted image to compute image statistics. The predicted 

image is used to divide the observed image into an initial estimate of “object” and 

“background” regions. Now pixel intensity values can be summed over these regions 

to compute means and variances for each region and hence class conditional normal 

distributions. This is in contrast to Fairweather’s use of “hand-segmentation” to 

create these statistics for each image.

Fairweather’s system, of fitting straight lines to the edge detected segmented 

image in order to extract cylinders, was found difficult to implement and re-produce.
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Instead, the EM/E-MRF system fits the model of the object being viewed directly to 

the segmented image by means of non-linear optimisation of the correlation between 

segmented image and an image predicted from the current camera position estimate. 

This results in a far more general vision algorithm which can be applied to the 

tracking of any object for which a model is available, providing that the object’s 

structure is sufficiently complex to provide unique views from which each position 

can be determined.

The other major advance on Fairweather’s work is the use of iterative 

feedback by means of an Expectation Maximisation style mutual refinement of 

unobserved data and parameters. This permits the system outputs of both camera 

position and pixel classification to be simultaneously optimised over several 

iterations for each frame in the sequence. In contrast, Fairweather’s entire system 

would be equivalent to a single such refining iteration.

2.7 Camera calibration

The work described in this thesis involves camera calibration for two reasons. 

Firstly, camera calibration makes it possible to measure ground-truth camera 

positions for test image sequences (see chapter 4). Secondly, the EM/E-MRF vision 

system relies on accurate knowledge of intrinsic camera calibration parameters (focal 

length, principal point location, pixel aspect ratio) as well as an accurate radial lens 

distortion model. Cameras used to film test sequences therefore need to be calibrated 

before the vision algorithm can be tested on those sequences.

The camera calibration approach used is based largely on that of Zhang 

[1998]. Many other camera calibration techniques have been proposed, both within 

the photogrammetry community (see for example Brown [1971]) and more recently
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in the computer vision literature (see for example Faugeras [1986a], Tsai [1987], 

Weng [1992], Maybank [1992], Faugeras [1992], Wei [1993]).

Photogrammetric calibration techniques rely on capturing images of known 

calibration objects or targets. These typically consist of three exactly orthogonal 

planes containing sets of features (e.g. comers of a grid of squares) or a single plane 

which undergoes a precisely known translation (e.g. placed on a bench for which the 

height can be precisely varied). These methods produce accurate and reliable 

calibration but require expensive or elaborate equipment.

Brown [1971] uses a series of plumb lines. By assessing the deviation from 

straight of the images of the lines, a lens distortion function can be found which 

varies with object distance. Weng [1992] uses the comers of a grid of black squares 

as his calibration features. The calibration target is mounted on a stand that can be 

raised or lowered in precise increments with a micrometric screw. Tsai [1987] uses a 

similar arrangement to calibrate video cameras and model radial lens distortion.

In contrast, “self-calibration” techniques, developed in the computer vision 

community, do not require any special calibration objects or targets. Instead they 

make use of geometrical constraints provided by corresponding points detected 

between multiple images of a static scene. This approach is very flexible but is much 

less robust, reliable and accurate than the photogrammetric methods.

Faugeras [1986a] suggests finding the camera parameters and epipolar 

geometry of a stereo pair of cameras using, firstly, a known set of 3D co-ordinates 

for a set of reference points in the images and, secondly, without a known set of 3D 

co-ordinates but just using pairs of matched correspondence points between images. 

Faugeras [1992] describes a system for calibrating a single camera which is moving. 

The system relies only on point matches between different images from the
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sequence. It is not necessary to know the motion of the camera. Maybank [1992] 

uses the epipolar transformations between several images from a single camera in 

different positions to provide constraints on the camera calibration parameters. Wei 

[1993] notes that it is possible to compute parameters defining image projection 

without explicitly finding the physical parameters of the camera itself. He calls these 

“intermediate” parameters and the process is known as “implicit” calibration.

The technique used in this work, based on the theory of Zhang [1998], lies 

somewhere between the two extremes of photogrammetry and self-calibration. As 

with self-calibration techniques, the camera captures calibration information from its 

observed environment whilst moving along its trajectory. In this case, however, the 

observed environment has a known structure since calibration targets have been 

placed in view of the camera throughout its motion. Unlike some of the 

photogrammetry apparatus, these targets are simple and inexpensive, being printed 

on a conventional laser printer and mounted on MDF fibre board (Zhang reports 

accurate results using only a book cover as his planar surface).

Once the intrinsic camera parameters are calculated (from a few views of a 

calibration target), the camera position and orientation can be computed at every 

frame in an image sequence, provided that at least one calibration target is in view at 

any time. This allows the complete camera trajectory for the image sequence to be 

re-constructed.
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3 The EM / E-MRF algorithm

3.1 Overview of this chapter

This chapter explains in detail the vision algorithm which is the focus of this thesis. 

The Extended-Markov Random Field segmentation technique is described and it is 

shown how this can be incorporated into an Expectation Maximisation (EM) iterative 

feedback scheme. It is shown how this scheme is arrived at intuitively from the 

fundamental requirements of the vision system and the algorithm is also justified 

mathematically by expressing it formally in terms of probability theory.

Sections 3.9 and 3.10 explain some practical details including the 

parameterisation chosen to encode camera positions and orientations, how these 

poses are interpolated and extrapolated (in order to combine two pose hypotheses or 

predict a future pose), how the objects being viewed are measured and modelled and 

how these models are used to project predicted images.

3.2 Requirements of the vision system

The fundamental purpose of a vision based navigation (or tracking) system is to 

estimate the position and orientation of a camera (relative to some observed object) 

at regular intervals in time. Additionally (possibly as a by-product of locating the 

camera) it is useful for the system to interpret which part (2D) of the image 

represents the object being observed (i.e. segmentation). The system takes, as inputs, 

the grey level values of each pixel from the current image in a video sequence. The 

corresponding camera co-ordinates are output for each frame in addition to a 

segmented version of the observed image. This simple description is conveniently 

illustrated in figure 3.1.
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Image
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Observed
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Figure 3.1 Fundamental requirements of the vision system

This thesis is particularly concerned with situations in which extremely poor 

visibility conditions are encountered. Hence it can be assumed that the information 

(grey-level pixel values) inputs to the system are severely degraded. Conventional 

approaches based on extracting features (e.g. edges) purely from the image grey- 

levels are unsuitable for this level of noise (see section 1.2) and it is therefore 

necessary to utilise some additional information. Since the recent history of the 

camera trajectory is known, it should be possible to estimate the camera position at 

the frame in question. The additional information contained in this position estimate 

might then be exploited by the vision system, aiding in the interpretation of the 

observed image. This system is illustrated in figure 3.2. One way of exploiting the 

estimated camera position information, in addition to a known camera model and a 

known model of the object being viewed, is to project a predicted image which can 

then be compared with the observed image.
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Figure 3.2 Utilising prior knowledge of the camera trajectory

Since an estimated position is now a system input, and an improved estimate 

of position is also a system output, an obvious feedback scheme suggests itself. The 

improved position estimate (system output) can now be fed back into the input of the 

system and this process can be iterated, hopefully converging on an optimal solution. 

This iterative process is illustrated in figure 3.3.

Image
Interpretation

Observed
Image

Camera
Position
Estimate

Segmented
Image

Improved Camera 
Position Estimate

Figure 3.3 Iterative feedback scheme
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The next section (3.3) describes an iterative procedure known as the 

Expectation Maximisation (EM) algorithm. It will become apparent that, under 

certain conditions, the iterative process of figure 3.3 can be seen as an example of the 

EM algorithm.

3.3 Expectation Maximisation

The Expectation Maximisation (EM) algorithm is often presented in the context of 

optimising Gaussian mixture models (e.g. Neal and Hinton [1993], Bishop [1995], 

Cootes and Taylor [1997]). It is, however, a very general iterative scheme (Blake 

[2000]) for solving problems which involve a set of observed variables, a set of 

“unobserved”, “hidden” or “latent” variables, and a set of parameters which may be 

either probabilistically or explicitly coupled to both the unobserved and observed 

variables. In order to remain consistent with analysis undertaken later in this chapter 

(where I  is used to represent pixel intensities, C represents the set of pixel Class 

labels and 9 represents camera position and orientation co-ordinates), let the vector 

of observed variables be /, the vector of unobserved variables be C and the vector of 

coupled parameters be 6. During the iteration of the EM algorithm, the current

estimate of 9 is written as 9 .

The EM algorithm consists of two steps, which are iterated alternately until 

convergence. The “E-step” (expectation) consists of computing the joint probability 

distribution for the observed and unobserved variables (/ and Ç) that is expected, 

given the observed variables, /, and the current estimate of the parameters, 9. In other 

words, compute:

£  p ( / , C | ^ ) | / , ^  Equation 3.1

55



3 The EM /  E-MRF algorithm

The “M-step” (maximisation) consists of re-estimating 6  to be that which 

maximises this expected probability. In other words, a new estimate o f# (  which now

becomes 0  ) is chosen to be that which would be most likely to result in the

currently observed values of the variables I  and the inferred values of the hidden 

variables C. Often a “log-likelihood” function is used (Dempster et al. [1977]) which 

is equal to the logarithm of the expected probability expression of equation 3.1. 

Taking the logarithm of a probability term can be a convenient way of simplifying 

expressions, since these terms are often exponential (e.g. normal distribution) and the

A. n+1
logarithm function is monotonie. In this case 0 is chosen to maximise:

log, H L C \0
'«+1

LO Equation 3.2

Z' M+l
The new estimate 0  is now fed back into the E-step and the process is 

iterated until convergence. It can be shown (Neal and Hinton [1993]) that each such 

iteration improves the true likelihood, or leaves it unchanged if a local maximum has 

already been reached. The resulting iterative scheme is illustrated by figure 3.4.

EM algorithm 
nth iteration

Observed Variables

Hidden Variables

Estimated Parameters

Improved Parameter Estimate
n̂+1

Figure 3.4 An illustration of the EM algorithm
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The reason for this section’s digression into EM theory will now be apparent, 

since the EM algorithm flow chart of figure 3.4 shares obvious similarities with the 

visual tracking system flow chart of figure 3.3. Under certain conditions, as follows, 

the vision scheme does indeed become a paradigm for the EM algorithm.

It is possible to regard the set of pixel grey levels from an observed image as 

corresponding to the “observed set of variables” of the EM inputs. Likewise, the set 

of “parameters” of the EM scheme are taken to be the camera position and 

orientation co-ordinates of the vision system. The true values of the “unobserved 

variables” are taken to be the ideal set of class labels (classes being either “object” or 

“background”) for pixels in the image. Thus, inferring the values of the set of 

unobserved variables is equivalent to the process of image segmentation.

In order for the two schemes to become truly equivalent, the “image 

interpretation” process of figure 3.3 should involve choosing a new estimate of the 

camera position parameters which maximises an expected log-likelihood function, 

the expected form of which is based on both the observed pixel grey level values and 

also the current estimate of the camera co-ordinates. The following section describes 

how a modified notion of Markov dependency, the Extended-Markov Random Field 

(E-MRF), can be used to produce just such a log-likelihood function. Not only does 

the E-MRF enable estimated camera positional information to be included in the 

image interpretation process, but the use of spatial Markov processes as an image 

model provides robustness against severe noise (poor visibility being the theme of 

this thesis). It will be shown that the resulting EM architecture becomes equivalent to 

an intuitive iterative scheme whereby, firstly, observed images are segmented (via E- 

MRF utilising predicted camera co-ordinates) and, secondly, an improved estimate of
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the camera parameters is extracted from the segmented image, these two stages being 

iterated until convergence.

3.4 Markov Random Fields

It will be seen in later sections of this chapter that, in order to evaluate the expression 

of equation 3.2 or, alternatively, to determine a probabilistically optimal 

segmentation for an image deriving from Bayes’ law, it will be necessary to 

determine values for the prior probability P (c), where C denotes a particular 

arrangement of class labels for the pixels of an image. For the purposes of the images 

that are considered in this thesis, class labels can be either “object” or “background”.

Markov Random Field image models enable P (c) to be evaluated by 

assuming a spatial dependency between the classes of neighbouring pixels. They are 

particularly useful for interpreting very noisy or degraded images (e.g. in poor 

visibility), since they can make up for deficiencies in observed information 

(fluctuations in intensity, texture and shape in observed images) by adding a-priori 

information to the image interpretation process in the form of models of spatial 

interaction between neighbouring pixels. Simplistically, a pixel is more likely to 

belong to a particular class if its neighbours also belong to that class.

A random field is a collection of random variables arranged on a lattice 

(Zhang et al. [2000]). A digital image can be considered as a random field. In 

particular this thesis is concerned with binary, segmented images in which pixels can 

take either of two discrete values, namely “object” or “background”. In principle the 

random field can be characterised by its probability distribution and the optimum 

classification for any particular pixel will be that which maximises the overall 

probability for the image. In other words, when segmenting an image containing N

58



3 The EM /  E-MRF algorithm

pixels, for the pixel we seek a class label, C, , which maximises the joint 

probability:

p(c, ) = P(C |, C2  Cj  ̂) Equation 3.3

Unfortunately, this implies that such a probability distribution must explicitly 

characterise the joint statistics of every pixel. In a binary image, this would consist of 

2^ permutations with N  being the total number of pixels in the image. This is an 

impossibly massive space to search, every time a pixel needs to be classified.

This combinatorial explosion is avoided by treating the image as a Markov 

Random Field (MRF), the fundamental notion associated with Markovianity being 

that of conditional independence (Zhang et al. [2000]). Conditional independence 

means that the probability distribution that describes a particular element of the 

random field can be de-coupled from the values of the other elements in the field 

beyond some local neighbourhood. For a simple, one dimensional example, consider 

the (temporal) Markov chain in which each variable (element) represents the weather 

on a particular day. In this case, de-coupling might mean that the probability of rain 

tomorrow is related to whether or not it is raining today, but is not related to whether 

or not it rained yesterday or on days prior to yesterday. This concept is readily 

extended to the two dimensional case of a digital image. It is now possible to de­

couple the classification of a particular pixel from the classifications of other pixels 

in the image, instead restricting the probability of classification to being related only 

to the classifications of the pixels in some small neighbourhood local to the pixel in 

question. For the pixel at image location (ij):

. C , ) Equation 3.4
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where k denotes a small local neighbourhood around the pixel (z, j).  Here, the 

neighbourhood is considered to include the eight pixels which im mediately  border 

the pixel in question (see figure 3.5).

P i x e l  ( i , j )

Figure 3.5 Conventional M arkovian neighbourhood

In order to evaluate this expression for specific permutations o f  

neighbourhood class labels, the M arkov R andom  Field is characterised by a Gibbs 

distribution o f  the form:

d c , . , ) = Z
Equation 3.5

where Z  is included as a normalising constant to prevent equation 3.5 returning 

probabilities greater than one. The exponential part o f  this equation is defined as:

) Equation 3.6= S  A C ,,.C
I I I . n e k

where i  is a function defined as:

i + i i i . j  +  n

J{a,h)  =
- 1  if a = h 

0 i f a ^ h
Equation 3.7

Equations 3.4 to 3.7 describe a conventional M R F  image model in which 

pixel class labels are considered to be spatially dependent. H ow ever, in accordance 

with equation 3.2, it is desirable to incorporate prior know ledge into the image model

6 0
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by making use o f  the estim ated cam era co-ordinates 6  . This is achieved by means 

o f  a known model o f  the object being viewed and a known model o f  the cam era

intrinsic parameters. Using the estimated cam era co-ordinates, 6  , a predicted binary 

(segmented) image o f  the object being viewed is created by projecting the object 

model through the cam era  model. M arkov dependency  is now extended  so that the 

M arkovian neighbourhood includes, not only the nearest neighbour pixels to the 

pixel being classified, but also the corresponding pixel in the predicted image (see 

figure 3.6).

Predicted

Observed

Extended-M arkovian neighbourhoodFigure 3.6

Now:

-u,
Equation 3.8

where C,  ̂denotes the predicted  class label o f  the pixel (/, 7), i.e. the value o f  the

corresponding pixel in the predicted image. The exponential part o f  the Gibbs 

distribution now consists o f  weighted com ponents:

+  -̂ 2 , ) ]  Equation 3.9
m.nek
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where 5, and S2 are weighting constants which adjust the relative significance of 

information derived from the observed image versus information derived from the 

predicted image.

Thus, the Extended-Markov Random Field model provides a convenient 

means of determining the prior probability distribution for any particular pixel class 

label. In the following sections this model will be exploited in order to evaluate the 

log-likelihood function of the Expectation Maximisation algorithm.

3.5 E-step

From equation 3.2, the E-step consists in determining the expected value of the 

logarithm of the Joint distribution p\ / ,C  16 given the observed set of pixel grey

levels, /, and the current estimate of camera parameters 6  . Maximising this 

likelihood function can be seen as mutually optimising, over the entire image, the 

corresponding likelihood function for individual pixels:

Equation 3.10

This is the expected value of l o g , y  n  C.  ̂)}, given 6  where:

P[h.j ) = p[Ci,j )x  p[h,j I Q j  ) Equation 3.11

The prior probability p(c, ^) can be evaluated by making use of the Gibbs

distribution of equation 3.9. It is not necessary to consider the entire set of pixel 

classes, Ç, because of the assumption of Markovian conditional independence.
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The class conditional distributions, p(/,.  ̂ | C- J ,  are estimated using a novel

technique, developed during this work, which also makes use of prior knowledge and 

prediction. A conventional approach would be to estimate these distributions offline, 

based on values averaged over some training set of images for which the “true” class 

labels are known. This may not be appropriate if, for example, lighting conditions 

change radically over the image sequence as might be expected in an underwater 

environment where the light source is mounted on a moving vehicle. Different 

models may be necessary for different images. The approach taken here is to allow 

the vision system to re-learn new class-conditional models for each image frame and 

during each EM iteration by making the approximation:

P[h,j I I ) Equation 3.12

where C.  ̂ denotes the predicted class label of the pixel (i, j). In other words, the 

predicted image (found by projecting the object model based on estimated camera

co-ordinates 9 ) is used to define provisional (predicted) class labels, C , for the 

observed image, from which class conditional grey-level histograms, means and 

variances can be computed. The validity of this approximation is obviously

dependent on how closely 9 approximates the true camera co-ordinates 9. (For 

examples of the system failing due to overly poor approximations, ̂ , see sections 

5.33 and 5.35).

The class conditional distributions are next approximated to Normal 

distributions. This approximation is justifiable in that the true class conditional 

histograms are often uni-modal and bell shaped (see figure 5.3, section 5.2.2). 

However, future work (see section 6.5.1) will propose ways of modelling both multi­

modality in the distributions and also variation of the distributions with position in
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the image. The Gaussian model is particularly useful since it is of exponential form. 

The prior probabilities (equation 3.8) are also of exponential form and so it is easy to 

arrive at the log-likelihood function required by equation 3.10. The overall likelihood 

for a particular classification of a particular pixel is:

p fe ,)x  p [ l , ,  IC,J = ^ e x p f  - / / , , ,  } l 2 a l  ]

Equation 3.13

Where and are the variance and mean of the class conditional distribution'-i.j ' î.j

of pixel intensities that corresponds to the choice of C,  ̂ that is currently being 

considered for pixel This results in the negative log-likelihood function:

{h.i )'

m.nek

Equation 3.14

Note that certain constants, including the Z of equation 3.5, can be ignored since it is 

only necessary to compare the relative likelihoods of alternative pixel classification 

choices.

There is no obvious way of choosing values for the constants 5"i and 8 2 - In 

chapter 5, results will be demonstrated using different values in different visibility 

conditions. In good visibility, it is desirable to rely on observed information while 

taking comparatively little notice of error prone predictions derived from 

extrapolating the previous trajectory. Hence S\ will be large and 8 2  comparatively 

small. Conversely, given the absence of observed information in bad visibility 

conditions, it is necessary to make greater use of predicted information. In this case, 

much larger values of 8 2  must be used. Further work (see chapter 6) may investigate
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methods by which these values can be automatically adjusted in response to varying 

visibility conditions.

3.6 M-step

/l+I
The purpose of the M-step is to choose a new estimate of camera position, 6  ,

which maximises the overall log-likelihood of the image. This is equivalent to jointly 

minimising the expression of equation 3.14 simultaneously over all pixels in the 

image.

The optimal set of class labels, Ç, should represent the binary image of the 

object being viewed, formed by projecting the object model through a camera placed

 ̂/I ‘bl
at the true camera co-ordinates 0. The optimal choice of values for 0 should thus 

be geometrically coupled with the optimal choice of class labels, Ç " , determined

during each iteration. Choosing new values for 0 with maximum likelihood, can

thus be achieved by, firstly, choosing values of C" which maximise the likelihood

function (this corresponds to optimally segmenting the image) and, secondly,

/1 + 1
choosing values of 6  in order to best fit the segmented image.

The space of all possible image interpretations contains many variables since 

it is necessary to consider all possible class label permutations over all pixels in the 

image. It is therefore not possible to search this space (of size 2^ where N  is the 

number of pixels in the image) exhaustively in order to locate its global minimum 

(minimum negative likelihood). Various methods for finding mimima in MRF 

problems were discussed in section 2.2. Dubes et al. [1990] find the Iterated 

Conditional Modes (ICM) method, proposed by Besag [1986] to be both faster and
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more robust than Simulated Annealing (SA), proposed by Geman and Geman [1984], 

even though the ICM method is not guaranteed to find a global minimum. The ICM 

method was used during the research described in this thesis and is summarised as 

follows:

1) Initialise values for Ç ” by choosing class labels that maximise the

class conditional distributions, p[l 1C) ~ /?(/ | c), for each pixel.

2) For each pixel {i,j) in the image:

Update the class label, C, •, to be that which minimises the negative

log-likelihood function of equation 3.14. (Note that this operation was 

performed on each pixel, line by line, as opposed to randomly 

choosing pixels to update).

3) Iterate step 2) until there is no further change of pixel class labels.

The second stage of the M-step involves finding the set of camera co­

ordinates, , which best fits the set of class labels, C " , that were determined by

the ICM algorithm. The fitting is done by optimising the correlation between the 

ICM class labels, C " , and those predicted by projecting a predicted image using the

 ̂/I + I
current estimate of the camera co-ordinates 0 . Denoting the set of projected class

labels as  ̂ gives a correlation based “goodness of fit” function:

E k .  - c , 7 )
Equation 3.15
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I 1 if class is "object" 
where C, , = <

I 0 if class is "background"

and:

Equation 3.16

Uci’roj Equation3.17

where N  is the total number of pixels in the image.

/\ /i+l
The new estimate of camera position, 9 , is found by non-linear

optimisation of the goodness of fit function over the six dimensional space of camera

co-ordinates (three degrees of rotational freedom and three degrees of translational

freedom). Many possible optimisation algorithms can be used. During this work, 

Powell’s method was used for convenience, since it was also used in other aspects of 

the work (see chapter 4) and was readily available. This work has only been 

concerned with proof of principle and no attempt has yet been made to implement 

the EM/E-MRF algorithm in real time. Powell’s method does take a long time to 

converge and it is possible (see section 6.5.1) that an alternative method might 

profitably sacrifice quality of fit for speed, especially since further refinement of 

position can be performed in successive EM iterations.

3.7 Equivalent Bayesian analysis

It is possible to arrive at the same likelihood function (equation 3.14) in a more 

intuitive fashion by treating the problem as one of segmentation according to 

maximum likelihood derived from Bayes’ law. Given an observed image, /, we wish 

to segment each pixel (/, j) by choosing a class label, C- j , which maximises the a-

posteriori probability p{c^ j | /. J .  From Bayes’ law, we have:
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P fc .j  I P[h.i I C „ y )x p (C ij)  Equation 3.18

As before, the prior probability, p{c^j), is modelled by the Extended-Markov

Random Field and the class conditional probabilities, p(/,  ̂ | C, J ,  are predicted and

continuously re-learned via equation 3.12. The Iterated Conditional Modes algorithm 

is then applied to choose class labels which maximise expression 3.18 over all pixels 

of the image. The model is then best fitted to the segmented image, yielding an 

improved estimate of the camera co-ordinates.

The EM algorithm is thus equivalent to an intuitive, two step process as 

shown in figure 3.7. An initial position estimate is used to help segment the image. 

The object model is then fitted to the segmented image to produce an improved 

position estimate. This is fed back into the segmentation process and the two stages 

are iterated until convergence. The algorithm is briefly summarised in the following 

section.

Segmentation

c”

Model Fitting

Figure 3.7 Equivalent intuitive two step process 

3.8 Summary of the EM/E-MRF algorithm

This algorithm (figure 3.8) estimates the current camera position from the recent 

vehicle motion using a predictive filter. A predicted (and segmented) image is then
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generated by projecting a 3D model of the object being viewed onto an image plane 

at the estimated camera position. The predicted image is used to help interpret a 

relatively poor visibility observed image by means of an Extended-Markov Random 

Field (E-MRF) segmentation technique. The resulting segmented image is compared 

with the object model to provide a new estimate of the camera position. This 

improved position estimate can be fed back into the start of the algorithm resulting in 

an iterative scheme which has been shown to be a variant of the Expectation- 

Maximisation (EM) algorithm.

Projection

E-MRF

Model
Fitting

3D Model

Predicted
Image

Observed
Image

Position
Estimate

Segmented
Image

Interpreted
Image

Improved
Position
Estimate

Figure 3.8 The EM/E-MRF algorithm
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The algorithm combines predicted data with observed data in several important 

ways:

• A predicted image is used to estimate class conditional probability density 

functions.

• The predicted class of each pixel is introduced within an extended MRP model, 

enabling image segmentation to be both data and expectation driven.

• The estimate of camera position, as measured by the vision system, can be 

combined with the position predicted by extrapolating the recent trajectory of the 

camera.

3.9 Camera position parameterisation and prediction

3.9.1 Minimum parameterisation for rigid body rotations

The EM/E-MRF algorithm is designed to track the six degree of freedom motion of a 

camera. It is simple to parameterise the translational position of the camera, relative 

to the origin of a world co-ordinate system, in terms of three co-ordinates which 

represent the translation of the camera along each of the three orthogonal, cartesian x, 

y, z axes of the system. Unfortunately, it is not so simple to parameterise the rotations 

about these axes since they are not (kinematically) independent i.e. rotation about 

one Cartesian axis can be produced by combining rotations about the other two axes.

It is often convenient to describe rotation using a 3x3 rotation matrix. Since 

this matrix contains nine numbers, it provides excess degrees of freedom beyond the 

three required for rigid body rotation. Both in the EM/E-MRF algorithm (when best 

fitting the object model to the segmented image), and also during the calibration 

work described in the next chapter, it is necessary to perform non-linear 

optimisations on rotations, incrementing each rotational component by small
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amounts. It is desirable to avoid the complication of performing these optimisations 

under additional constraints (e.g. constraining a 3x3 matrix to remain a true rotation 

matrix while varying each of its elements) and so a minimum parameterisation is 

used which describes rotation uniquely using three numbers.

Rigid body transformations are defined by a vector of the form 

where {x,y,z)  conventionally defines the translation component

and (û)^,û)y,û)J is a vector whose direction defines an axis of rotation and whose

magnitude defines the amount of rotation about that axis in radians. Since rotation 

matrices are still useful for operations such as projection of predicted images, it is 

necessary to be able to convert between the two notations.

It can be shown (see Paul [1981] and Watt [1992]) that, for a rotation of 6  

radians about an axis (of unit magnitude) n = {n î n^k), the rotation matrix R

is given by:

'n i '*12 '*13 ' '1 0 0" »|'%3̂ '  0 -«3 "2 "
R = '*21 '*22 '*23 = COS^ 0 1 0 +(1-- COS O) %2%3 + sin^ «3 0 - " l

/3I '*32 '*33 > .0 0 h ^-rii «1 0 J

In this case:

Equation 3.19

and

where

0  = \û̂  = -̂ cü̂  + col + Cûl
' X  V z

n = û)

ço=û)J + CûJ + û),k

Equation 3.20 

Equation 3.21 

Equation 3.22
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In order to retrieve the minimum parameterisation from the

corresponding rotation matrix, R, the procedure is as follows. Summing the diagonal 

terms of the rotation matrix gives:

cos ̂  ^  (r, 1 +r 2 2 + ^ 3 3  - 1) Equation 3.23

Differencing the off-diagonal terms:

r̂ 2 -  ̂ 23 = 2n̂  sin 6 Equation 3.24

rj3 -  r3, = 2«2 sin 0  Equation 3.25

2̂1 ~ '12 = 2»3 sin 0  Equation 3.26

Squaring and adding equations 3.24, 3.25 and 3.26 gives:

sin ̂  = ± ̂  V f e  -  '■23 f  -  '*31Y + k l  - r n f  Equation 3.27

Taking the positive square root produces a positive value for sin^, ensuring 

thatO < 0 < 7 t . Note that this gives a unique direction to the axis of rotation. There are

now two possibilities. If , then, from equations 3.24-3.26:

r̂-> -  rtil — Equation 3.28
' 2sin^

n-, = '•13 -  '■31

tl'i —'*21 1̂2
 ̂ 2 sin 0

Equation 3.29

Equation 3.30

If, however, — < ^ < Æ, the diagonal terms of the rotation matrix are used: 
2

T], = nf (1  -  cos û) + cos 0  Equation 3.31

^22 = ^2  (1 -  cos 0 ) -I- cos 0  Equation 3.32

7-33 = « 3  (1 -  COS 0 ) -H COS 0  Equation 3.33
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Giving

^ 2  _  'ii -  COS6
1 -  cos 0

2 A-22 -COS^
n .  = ■

1 -  cos 0

2 -  cos 0
M: = —------ —

T - C O S 0

Equation 3.34

Equation 3.35 

Equation 3.36

One must take care, when square rooting the above expressions, to obtain the correct 

signs. From equations 3.24, since sin^ is always taken as positive, must have the

same sign as {r̂ 2 ~ '23 ) • This gives:

«I = s g n ( r ,^ - r ^ ,) J ^
r,, - C O S 0

C O S 0

2̂2 -COS^
-c o s^

n ,= s g n ( r ^ ,- r ,2 ) J ^
-COS0
COS0

where
[+1 if - r j > 0
1 - 1  i f  <0

Equation 3.37

Equation 3.38

Equation 3.39

Equation 3.40

In practice, only the component of n with the largest value is taken from equations 

3.37-3.39. The other two components are then found by summing the off-diagonal 

terms of the rotation matrix:

'21 + ''12 = « 2  (1 - C O S 0 )

hi + h-i -  2 «2«3 (l-cos#)

' 1 3 + '3 1  =  ( l - C 0S<9)

Equation 3.41 

Equation 3.42 

Equation 3.43

The vector^ is easily obtained by scaling n by the magnitude^.
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3.9.2 Quaternions for interpolating angular displacements

While tracking over a video sequence, two different estimates of camera position and 

orientation are available at each frame. One of these is the “initial estimate” based on 

extrapolating the camera trajectory from the previous frame position. The other is the 

output of the EM/E-MRF vision system. These can be regarded as two independent 

measurements (though arguably not completely independent) which should be 

combined or “averaged” according to some optimum weighting (depending on the 

level of confidence associated with each measurement) to give a position estimate 

which makes best use of both sources of information. A commonly used technique 

for combining information from two measurement sources during tracking is the 

Kalman filter (Welch and Bishop [2002], Kalman [I960]) in which the updated 

Kalman gain provides the probabilistically optimum weighting for combining two 

sources of information.

In conventional implementations of the Kalman filter, the state (in this case 

camera pose) is updated (extrapolated to predict the next position) by multiplying it 

by a matrix-the “system model”. This is commonly written as:

=  Ajc^_, + Equation 3.44

where is the “state” (here position) and w is a noise model. For position tracking,

the matrix A often contains a set of linear kinematic equations, typically constant 

acceleration models.

Unfortunately, when tracking a rigid body moving with six degrees of 

freedom of motion, there is no obvious choice for the matrix A because the three 

degrees of rotational freedom are not independent. In addition, proper 

implementation of the Kalman filter requires estimates of the variances associated 

with each of the two position estimates. For the application described in this thesis.
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these variances are difficult to measure or predict since they will vary with the 

visibility conditions encountered and with the different kinds of possible camera 

motion.

Instead, for interpolating between the observed and estimated camera 

orientations and for extrapolating the camera trajectory to predict new orientations, 

rotations were encoded in quaternion space (see Watt [1992]). Quaternions extend 

the concept of a complex number to include three imaginary units:

quaternion ^ = (5, v) = j  + v̂ , j  + vjc Equation 3.45

(j stands for scalar component and v stands for vector component) 

where =/:^ = —1 Equation 3.46

ij = k Equation 3.47

ji =  —k Equation 3.48

with the cyclic permutation:

/ —> j  k i Equation 3.49

Quaternions form a closed group under the multiplication operator defined as:

^ 1 ^ 2  “  V, . V 2  , S, V2 + S 2 V, +  V, X V 2 ) Equation 3.50

Quaternions are useful for representing rotations since a subgroup of the quaternion 

group is closely related to the group of rotation matrices. It can be shown (Watt 

[1992]) that the act of rotating a vector r by an angular displacement 0 about an axis 

n, is equivalent to performing the operation:

qpq Equation 3.51

where ^ is a quaternion encoding the rotation:

Equation 3.52
(e\ (e\ ^= COS - , sin — n

V UJ UJ J
and p  is another quaternion representing the vector to be rotated:
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Equation 3.53

-  2  I | 2  I | 2qq = s + v =\q\ Equation 3.54

Rotations map onto quaternions of unit magnitude so that:

qq = \ and q = q~̂  Equation 3.55 and 3.56

and the entire group of rotations maps onto the surface of a four dimensional 

hypersphere in quaternion space. Since any two angular displacements lie on this 

surface, the angular displacement that interpolates between them must also lie on this 

surface. In order to ensure a sensible, smooth interpolation between two angular 

displacements, it is necessary to employ spherical linear interpolation, moving along 

an arc of the geodesic that passes through the hyperspherical locations of the 

mappings into quaternion space of the two displacements. Figure 3.9 illustrates the 

case of interpolating between two angular displacements, represented by the 

quaternions q̂  and q^. The interpolated quaternion is shown as q̂ ^̂  where:

q\ ' q i ~  COS Q  Equation 3.57

u represents the degree of interpolation between q̂  and , i e:

0 < M < 1 Equation 3.58

It can be shown (Watt [1992]) that the correct interpolation is given by:

sin(l -  sinQw
—  + ^2sinQ sinQ

Equation 3.59

Figure 3.9 Spherical linear interpolation
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When combining measured (by the EM/E-MRF vision system) and predicted 

camera pose estimates, a value of u is chosen that reflects the confidence associated 

with each source of data. In good visibility, the interpolation is weighted heavily in 

favour of the vision based measurement whereas in increasingly poor visibility u is 

chosen to weight increasingly in favour of the predicted camera orientation, based on 

trajectory extrapolation. In this respect, u acts very much like a Kalman gain.

In order to extrapolate a trajectory for predicting the camera orientation at a 

frame, the orientations of the two previous frames are assigned to the quaternions 

and ^2 , and the interpolation factor u is set to the value of 2. This is equivalent to a 

constant velocity model which is a reasonable assumption given a slow camera 

motion and high frame rate. The translational components of the camera position are 

similarly predicted using a constant velocity model.

3.10 Measurement and modelling of viewed objects

In order to test the EM/E-MRF algorithm, real video sequences were filmed (see 

chapters 4 and 5) which contain various different objects, including a rectangular 

steel block and a scale model oil-rig-like structure. In order for the EM/E-MRF 

algorithm to project predicted images, it was necessary to build computer models of 

these objects. For a discussion of projective geometry, the camera model and camera 

calibration, lens distortion and the co-ordinate frames used see chapter 4.

The “oil-rig” object is composed of cylinders. Each of these cylinders can be 

defined by the co-ordinates of each end (ends of cylinder axis) and a radius. The 

spatial co-ordinates and radii of all the cylinders were measured on a co-ordinate 

measuring machine (CMM) and the co-ordinates were converted to those of the 

world co-ordinate frame (chosen as that of the base calibration target, see chapter 4).
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For every pixel in each image to be predicted, the vector equation o f  a ray is 

found which passes through that pixel, originating at the optical centre o f  the camera. 

Each ray is then exam ined  to determ ine whether or not it intersects any o f  the rig 

cylinders.

In order to determ ine whether or not a ray intersects a cylinder, the shortest 

distance between the ray and the cy linder axis is first determined. If this distance is 

greater than the cylinder radius, then intersection does not occur and the 

corresponding pixel is labelled as “background” (black). If this distance is less than 

the cylinder radius, then there are two scenarios in which intersection can occur. 

Firstly (figure 3.10), intersection occurs if the shortest line, connecting the ray to the 

cylinder axis, intersects the axis between the end points o f  the cylinder. Secondly 

intersection occurs if (see figure 3.11) the distance d  is shorter than the distance L, 

where d  is the distance between the end o f  the cy linder and the intersection between 

the cylinder axis and the shortest line jo in ing  the axis to the ray. L is the length o f  the 

projection onto the cylinder axis o f  the portion o f  the ray which connects  the point o f  

intersection o f  the ray with the cylinder surface to the point o f  closest approach 

between the ray and the cylinder axis.

C y lin d er ends

C losest approach  of 
ray  and cy linder axis Ray

Figure 3.10 Shortest distance between ray and cylinder axis occurs 
between cylinder end points. View shown is the 
projection on a plane parallel to both ray and cylinder 
axis directions.
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C losest approach  o f 
ray and cy lin d er axis

In tersection  o f  ray 
w ith cy linder surface.

radius

Figure 3.11 Shortest distance between ray and cylinder axis occurs outside 
cylinder end points. Left diagram is a projection on a plane 
parallel to both ray and cylinder axis. Right diagram is an end 
view of the cylinder.

The “b lock” object was measured with callipers and the co-ordinates o f  each 

corner in the world co-ordinate  system (see chapter 4) were com puted  and recorded. 

In order to project a predicted image o f  the block, each corner was projected onto the 

image plane by m ultiplying its co-ordinates by the cam era projection matrix (see 

chapter 4). The three dim ensional corner positions thus give rise to a set o f  two 

dimensional projected corners on the image plane. The shape o f  the projected block 

is now defined by the convex hull (smallest possible convex polygon) that encloses 

these points. The hull can be found using a “package w rapping” algorithm (other 

algorithms are com putationally  more efficient but unnecessarily  so in this limited 

case of a six sided polygon).

In both cases (oil-rig and block), the projected image must now be radially 

distorted using the m easured (during calibration) radial distortion parameters. 

Chapter 4 includes a detailed d iscussion o f  how the radial distortion param eters are 

determined and used.
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4 Constructing a data set

4.1 Introduction

4.1.1 Purpose of this work

Having proposed algorithms to enable a robotic vehicle to navigate visually, it is 

necessary to construct appropriate video sequences with which to test and validate 

these algorithms. It is desirable to create test video sequences filmed along a pre­

measured camera trajectory. This known ground-truth can then be compared to the 

outputs of the vision algorithms in order to quantify their performance.

The purpose of this experimental work is to produce a set of image sequences 

for which the camera position at every frame has been accurately measured. The 

image sequences must show a known object, which can be accurately modelled. 

They must be captured by a camera of known calibration parameters moving along a 

known trajectory and must be filmed in various conditions of limited visibility.

4.1.2 Why is this work necessary?

Chapter 3 describes the EM/E-MRF algorithm for vision based robotic navigation in 

conditions of poor visibility. Variant algorithms have also been proposed (see section 

6.5).

During early work (Stolkin et al. [2000]), the algorithm was partially 

demonstrated using an image taken from a set obtained by Fairweather et al. 

(Fairweather [1997a], Fairweather et al. [1997b] and Hodgetts et al. [1999]). No 

calibration information was known for this image and so the EM/E-MRF algorithm 

was demonstrated crudely by extracting camera ranges as a ratio of the unknown 

focal length. The performance of the algorithm was assessed qualitatively in that
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successive iterations could be seen by eye to converge towards the true image 

interpretation (in terms of a predicted image superimposed over the observed image). 

It is common in the literature for tracking (e.g. Christmas [1996], Drummond 

[2000]), model registration (e.g. Lacey [2001], Wunsch [1996]), and segmentation 

(e.g. Kamber [1992], Wells [1996]) algorithms to be demonstrated and validated 

“visually” in an ad-hoc manner (i.e. illustrating a visual match between an observed 

image and a superimposed outline of the algorithm’s interpretation of that image). 

Such tests are a simple and intuitive way to support the validity of novel algorithms, 

however they have several deficiencies. Problems posed by using un-calibrated 

image sequences and adhoc visual validation include:

• Ranges cannot be properly extracted (by matching predicted images to observed 

images) from an image up to a scale factor of focal length without knowing any 

other camera parameters. If the depth of the object being viewed is significant 

relative to the range of the object from the camera, then parts of the object that 

are close to the camera will appear enlarged relative to those that are distant from 

the camera. The severity of this distortion is also a function of the focal length of 

the camera; hence predicted images based on a unit focal length and a camera 

range estimated in “focal length units” will not properly correspond to the 

observed image even if the range estimate is accurate.

• The position of the camera cannot be properly extracted, making it impossible to 

model the trajectory of the camera. This means that the predictive filtering 

aspects of the algorithms cannot be tested, and that it is therefore impossible to 

test the algorithms on sequences of multiple images.
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• It is not possible to quantify the performance of the algorithm without an image 

sequence for which the “ground-truth” of camera position has been accurately 

measured at each image for comparison with the outputs of the navigation 

algorithms.

It is therefore necessary to produce a set of test sequences with a properly calibrated 

camera moving along an accurately measured trajectory.

4.1.3 Why not use artificial image sequences?

A video sequence is needed with known ground-truth in the following forms:

• Intrinsic camera parameters.

• Lens distortion parameters.

• Camera position and orientation for every frame.

• Known object in the field of view which can be accurately modelled.

It is a relatively simple task to construct an artificial image sequence, which satisfies 

these requirements, using commonly available computer graphics software e.g. POV- 

Ray rhitD://www.povrav.org). Furthermore, it would then be possible to generate varying 

degrees of poor visibility by artificially adding noise to the synthetic images.

In fact, the use of artificial images for testing vision algorithms is common in 

the literature (e.g. Smith [1997], Otte [1994], Harkness [2000], Mokhtarian [2000]). 

In general, vision and image processing algorithms seem to perform much better on 

these artificial (or artificially degraded) images than on real images of real objects
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filmed with a real camera (see Fairweather [1997a]). Real cameras and real visibility 

conditions result in many kinds of noise and image distortion. These real conditions 

are far more complicated than Gaussian noise or “salt and pepper” type speckling 

and it is not trivial or obvious how to realistically synthesise real world noise in an 

artificial image (Rokita [1997], Kaneda [1991]). Typically, real sources of image 

degradation (see figure 4.1) will include:

Radial lens distortion (barrelling).

Non-uniform lighting (e.g. ROV mounted spotlights, lighting intensity varies 

with position in image).

Dynamic lighting (lights move with vehicle, lighting conditions vary with time). 

Camera saturation.

Shadow.

Occlusion.

Attenuation.

Back-scattering.

Blur (both focal blur and motion blur).

Reflection.

Discrepancies between real objects and their models.

The unknown and unplanned e.g. fish, seaweed etc.
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Figure 4.1 Images of an oil-rig like structure filmed underwater. The only illumination
comes from lights mounted on the ROV. Many kinds of image degradation are 
present.

It is therefore not sufficient to test vision algorithms on artificial images subjected to 

simple degradation models, especially  when it is claimed that these algorithm s are 

suitable for real world pictures in conditions o f  extrem ely poor visibility.

4.1.4 Characteristics of the data set

A set o f  image sequences, exploring a range o f  conditions, has been produced. These 

conditions include:

•  A range o f  3 different objects o f  varying complexity.

A cuboidal block.

A cuboidal b lock plus hexagonal prism.

A scale model o f  an offshore rig type structure.
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Figure 4.2 Photographs of the three objects to be filmed in the video sequences. Objects 
are shown in position within the calibration target system. Scale is 30mm  
between dots.

A range o f  trajectories o f  different complexities:

Pure translation.

Pure rotation about an axis approxim ately  through the cam era  (panning). 

M ovem ent o f  the cam era in a planar, approxim ately circular motion about the 

object being viewed.

A six degree o f  freedom motion involving varying speeds and accelerations 

and sudden direction changes.

A range o f  different visibility conditions varying from full visibility to zero 

visibility. Poor visibility was created using dry ice fog by pouring boiling water 

on solid C O ] chips. This produces visibility conditions sim ilar to the genuine 

underwater video footage collected by Fairweather [1997a].

Different lighting conditions including:

Fixed lighting.

Dynamic lighting consisting o f  spotlights m ounted on the cam era  that m oved 

with the camera. This simulates the lighting conditions encountered by an 

underwater Rem ote O perated  Vehicle.
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Furthermore, for each video sequence filmed it was possible* to extract the following 

information:

• The “intrinsic” camera parameters were measured including:

- Focal length.

- Principal point location.

- Pixel aspect ratio.

• Radial lens distortion parameters.

• The position and orientation of the camera (“extrinsic” parameters) for every 

frame in the sequence.

• An accurate computer model of the object being viewed.

*Note: although image sequences filmed along four trajectories of varying 

complexity were captured (along with additional calibration images) for each object, 

due to time constraints only the most complicated (the general six degree of freedom 

trajectory) of these has so far been fully calibrated and analysed. Computer models 

were created and tested for the block object and the oil-rig object, but so far not for 

the hexagonal prism object.

4.1.5 Structure of this chapter

Section 4.2 explains in detail how the data was captured, including physical details of 

the experimental set-up and construction. Section 4.3 explains how this data was 

analysed to produce calibrated image sequences. Section 4.4 presents the results of 

this work, including the trajectory extracted during analysis and a discussion of 

accuracy and sources of error. The calibration technique adopted here and much of 

the analysis in this chapter is adapted from Zhang [1998].
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4.2 Data capture procedure

4.2.1 Summary of data capture procedure

V al II 
C ontroller

O bject

Cam era
Trajectory

C alibration Targets

Robot

Figure 4.3 Equipment set-up for data capture.

An industrial six axis robot arm (PU M A  560) was used to move a digital cam -corder 

along a highly repeatable trajectory. “Calibration sequences” were filmed during the 

motion by placing a set o f  three calibration targets (square grids o f  dots) in the field 

o f  view. “Test sequences” (bad visibility image sequences) were film ed by:

• Concealing the calibration features on the targets.

•  Introducing an object o f  interest at a known location relative to the targets.

• Introducing dry ice fog to create poor visibility conditions.

•  Introducing variable lighting conditions.

•  M oving the cam era  past this scene (object in limited visibility) along the same

trajectory as for the calibration sequence.
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4 Constructing a data set

“Target relations” image sets were also filmed. These involved positioning the 

camera in order to capture images clearly featuring all three targets together and also 

pairs of targets. These “target relations” images were used to compute the position 

and orientation of each target relative to the base target (one of the three targets lying 

in a horizontal plane, forming the base of the scene and used as a world co-ordinate 

frame for the scene) and also to provide information about intrinsic camera 

parameters and lens distortion.

Software was constructed to analyse the calibration sequence:

• Detect, locate, and label calibration features.

• Extract intrinsic camera parameters (focal length, principal point and pixel aspect 

ratio).

• Extract lens distortion parameters (two numbers defining radial distortion).

• Compute the position and orientation of targets relative to each other.

• Compute the position and orientation of the camera (extrinsic parameters) at 

every frame in the video sequence (with respect to a world co-ordinate frame 

defined to lie in the base target).

Positions and orientations for the camera at each frame in the calibration 

sequence were used to provide ground truth for the corresponding (synchronous) 

frames in the poor visibility test sequence.
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Figure 4.4 Filming calibration sequence (top left), good visibility sequence (right) and 
visibility sequence (bottom left).

poor

4.2.2 Synchronising image sequences

The strategy, for the creation o f  video sequences with known ground truth, relies on 

extracting cam era positions for each frame in a calibration sequence and then using 

these positions as ground truth for the corresponding frames in a test sequence (video 

sequence o f  interest). The success o f  this strategy depends on how  well the two 

sequences can be synchronised.

For the purpose o f  synchronisation, an extra calibration feature (a white spot) 

was introduced to the scene (located in an extrem e corner o f  one o f  the targets). The 

robot trajectories were program m ed such that this extra feature w as always visible at 

the beginning and end o f  each trajectory/video sequence. During poor visibility (with 

fogging) sequences, the dry ice fog was not introduced until after this extra  feature 

had been clearly filmed. The synchronisation procedure was then as follows:
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•  Choose an image at beginning or end  o f  poor visibility test sequence in which the 

extra “synchronisation spot” can be clearly  observed.

•  Superim pose successive frames from the calibration sequence (e.g. by  image 

differencing) until an accurate match is found. Label these images as the 

calibration synchronisation image and the test sequence synchronisation image 

respectively.

•  The cam era position for the test sequence image, a certain num ber o f  frames 

aw ay from the test sequence synchronisation image, is now taken to be the 

position extracted from the calibration image that is the same num ber o f  frames 

aw ay from the calibration synchronisation image.

A detailed analysis o f  the synchronisation error is presented later (section 4.4.3). 

Most sequences could be synchronised to within ± 1 pixel when com paring 

synchronisation spots. At 25 frames per second, synchronisation in terms o f  temporal 

error should be at worst ± 0.02 seconds. If multiple test and calibration sequences are 

filmed, there is a high probability o f  finding an accurately matching test/calibration 

sequence pair.

Figure 4.5 The “synchronisation spot” shown at the beginning of a calibration  
sequence (right) and a test sequence (left).
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I
Figure 4.6 Images from figure 4.5, superimposed using image differencing.

The area of the calibration spot is black indicating a good (to 
within ± pixel) match between the two sequences.

4.2.3 Why not extract positions from the robot control system?

There are several reasons why it is not practical to extract cam era positions for each 

frame o f  an image sequence from the robot control system.

Firstly, industrial robots are highly repeatable but not accurate. Any position 

obtained from the control system would be significantly erroneous (Greig [1996]). 

Additionally, positions are needed that are m easured relative to the object being 

observed (or a co-ordinate frame com m on to both object and cam era) rather than 

from the robo t’s arbitrary co-ordinate system origin.

Furthermore, even if the robot controller could output a list o f  points, there would 

be no obvious w ay o f  matching these points to individual frames in the video 

sequence (i.e. synchronising the robot position m easurem ents with information from 

the camera).

W hat is needed is the position o f  the cam era (optical centre) which is not the 

same as the position o f  the robot terminal link. Cam era  calibration methods would 

therefore, in any case, have to be used to com pute the position and orientation o f  the 

cam era relative to the terminal link o f  the robot.
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4.2.4 Calibration target strategy

The construction o f  the calibration targets is described in the following section 

(4.2.5). The purpose o f  the calibration targets is to provide a sufficient num ber of 

appropriate features in each frame to allow the com putation o f  cam era position and 

orientation for that frame. In addition, it should be possible to com pute cam era 

intrinsic param eters and lens distortion parameters from these features.

The calibration target structure must also provide a world co-ordinate system. 

It must be possible to accurately and repeatably locate the objects being observed at 

known world co-ordinates within this system.

During this work, three calibration targets were used. Each target consisted o f  

a square, 9 x 9  grid o f  white circular spots on a matt black background. The three 

targets were arranged approxim ately  orthogonally. An arrangem ent was chosen such 

that at least one target would be in the field o f  view o f  the cam era  throughout its 

motion during each video sequence.

Figure 4.7 The three calibration targets.
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For each target, each spot was labelled according to a pair o f  cartesian axes 

set in that target i.e. each target had spots ranging from (1,1) to (9,9). The world co ­

ordinate system was taken to be that o f  the spots in the base target. The units o f  the 

world co-ordinate system are thus “spot spaces” (of 30mm). Thus the calibration 

process produced cam era positions and orientations relative to the co-ordinate system 

of the base target. Objects being viewed by the cam era  were located (see section 

4.2.6) on the base target at known positions relative to this co-ordinate system.

Spot ( 1 . 9 ) Spot (9, 9)
"Spot (9 , 9)

Target 3Spot ( 1 . 9 )

Target

Spot (9 , I )
Spot (9, 1 ) 0

Spot ( 1 . 9 )

Base Target 
(Target 1)

Spo

Spot (9 . 9)Spot (9, 1 )

Figure 4.8 Labelling system for spots in each target. The 
labels of each spot refer to that spot's position 
within a co-ordinate frame set in the target to 
which the spot belongs.

It should be possible (Zhang [1998]) to extract the position o f  a pre-calibrated 

camera from a single view o f  a single calibration target. T he  reason that the 

arrangement o f  three targets was used is that, due to the com plicated motion o f  the
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camera, the base target was not always in view. During the data analysis process (see 

section 4.3) it was possible to compute the position and orientation of each additional 

target relative to the base target. This meant that camera positions could be extracted 

from views of any target. These positions (relative to the target in view) were then 

combined with known relationships between each target to yield camera positions 

relative to the world co-ordinate system fixed in the base target.

4.2.5 Construction of calibration targets

• The target features were printed on thin card using a conventional office laser 

printer. Each target featured a square 9x9 grid of white circular spots of 4mm 

diameter and 30mm spacing, against a black background.

• The printed spot spacings were measured by hand to check for distortion in the 

printing process. A small distortion was noted in one direction of approximately 

0.5mm over 8 spot spaces (240mm). This was considered too small to be 

significant. Larger errors of this kind could be easily corrected during the 

calibration process.

• After printing, each target was sprayed with a matt varnish in order to reduce 

reflection from the black background sections and make these sections appear 

more consistently dark in images.

• Each printed target was then spray mounted onto 30mm thick medium density 

fibre-board (MDF) to ensure that targets remained rigidly flat and planar.
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• Any remaining visible surfaces of MDF were painted matt black.

• Two targets were fitted with MDF bases to make them stand vertically and one 

target was left to lie flat, forming a base to the scene being viewed (see figures 

4.7 and 4.8).

• The targets were clamped in position on a steel deck.

4.2.6 Locating objects in the scene

The calibration strategy relies on locating the camera (for every frame in the video 

sequence) relative to a co-ordinate system attached to the base target. Clearly, this is 

only meaningful if the objects to be viewed can be accurately and repeatably located 

at a known position and orientation with respect to this base target co-ordinate 

system.

The objects being filmed were constructed such that they would sit stably on 

a flat surface under their own weight. The problem of locating the objects thus 

became two dimensional. A simple jig was incorporated into the base target to ensure 

precise, repeatable location of objects within the scene.

Two straight steel strips were bonded to the base target using a cyano-acrylic 

adhesive. Objects were then repeatably located in unique positions and orientations 

by butting them up against the straight edges (see figure 4.9). The edges were 

attached at known distances from the grids of calibration spots (see figure 4.10).
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Straight
ed ges.

Plan v iew  o f  o il­
rig object feet 
(rig id ly  linked  
circular cross- 
sections).

Figure 4.9 Plan view of the base target, showing how two straight edges can 
uniquely locate the three circular feet of the oil-rig object.

28mtn

2 8 nun

Figure 4.10 Plan view of base target showing steel strips and their position 
relative to the grid of calibration spots. The 28mm gap is 
measured from the edges of the spots (not the centre).

4.2.7 Attaching the camera to the rohot

A rig (see figure 4.11 ) was built that enable(J the cam -corder to be rigidly c lam ped to 

the terminal link o f  the P U M A  robot. The major com ponents  were m anufactured 

from m achined Tuffnel since this material is light, strong and rigid. The rig system
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consisted o f  two plates. The upper plate was bolted to the robot and the lower plate 

was attached to the cam era using both a circular c lam p around the cam era barrel and 

also a U shaped c lam p that fitted around the body o f  the camera. The upper and 

lower plates were then bolted together securing the cam era  rigidly to the robot. An 

overhanging lip afforded a degree o f  protection to the cam era  in instances o f  

collision.

Figure 4.11 Robot-camera attachment system.

4.2.8 Generating variable visibility conditions

During filming, varying degrees o f  poor visibility were created using dry-ice fog. A 

metal trough was positioned above the scene, out o f  view o f  the camera. Variable 

quantities o f  solid C O 2 (“dry-ice” ) chips were deposited in the trough. During the 

filming o f  each poor visibility video sequence, boiling w ater was continuously  

poured onto the dry ice chips at varying rates. A dense vapour w as formed which
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Steadily drifted down onto the scene during filming (figure 4.12). Using this 

technique it was possible to create video sequences with varying degrees o f  poor 

visibility, ranging from clear visibility to virtually zero visibility. The poor visibility 

sequences exhibit elem ents o f  image degradation similar to those observed in 

genuine underw ater conditions. Both kinds o f  image (see figure 4.13) exhibit 

attenuation, back-scatter, blurring, occlusion, cam era  saturation, shadow, non- 

uniform lighting and lens distortion. The images also appear visually similar.

Figure 4.12 Generating poor visibility using a suspended trough, solid CO] “dry ice”, and a kettle of 
boiling water.

Figure 4.13 Real underwater image (left) and laboratory image (right) from poor visibility test 
sequence (degraded with dry ice fog). Both images exhibit similar degradation.
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4.2.9 Generating variable lighting conditions

An important aspect o f  underwater imagery, filmed from an R O V  in limited 

visibility, is that the lighting is both non-uniform  (one portion o f  the image m ay  be 

brightly illuminated whereas another portion may be dark) and dynam ic (lighting 

conditions change from  one image to the next). These conditions arise as a result o f  

illumination by spotlights m ounted on and m oving with the underw ater vehicle. 

D ynamic lighting conditions were simulated by m ounting a pair o f  Maglite, focussed 

beam torches next to the cam era on the robot-cam era attachment rig.

Figure 4.14 Camera rig with attached spotlights.

4.2.10 Image capture

Video sequences were recorded on a JV C  G R -D V 2000  digital cam -corder at 25 

frames per second. The cam -corder was carefully selected to provide a num ber o f  

important features. It was useful to have a progressive scan facility (as opposed to 

conventional interlaced scan) so that each frame provided a com plete  image for
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individual analysis. Often, practical applications (e.g. ROVs) use conventional 

interlaced video. This can be inconvenient to analyse, with data needing to be 

averaged or discarded. However, it seems reasonable to use non-interlaced digital 

footage for this work, since these camera systems could always be substituted for 

interlaced video, and may become increasingly popular in the future. It was 

important that various automatic features (including auto-focus and automatic motion 

compensation systems) could be switched off so that the camera projection matrix 

remained unchanged both between and during image sequences.

The cam-corder stores video data in Digital Video format on Mini DV tape 

cassettes. The sequences were output to a PC via a “Fire-Wire” card. They were then 

broken down into individual frames using standard software tools. Each frame was 

compressed and stored in a “portable network graphic” (.png) file format. Both 

vision algorithms and image processing, calibration and analysis procedures were 

implemented in JAVA. These programs are able to open and read sequences of .png 

image files.
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4.3 Data analysis

4.3.1 Introduction

Having programmed the robot with a suitable trajectory, many calibration sequences 

were filmed along that trajectory. Several sequences were also filmed for each object 

and for each level of visibility (clear, foggy with fixed lights, foggy with moving 

lights).

A sample of each of these sequences was selected such that good 

synchronisation (see section 4.2.2) was achieved between each test sequence and the 

corresponding calibration sequence. Quality of synchronisation was assessed by 

finding the two frames (one from each sequence) showing the “synchronisation spot” 

which best matched each other when superimposed using image differencing.

Once a suitable calibration sequence had been selected, it was analysed in 

order to extract the camera characteristics and the position and orientation of the 

camera at every frame in the sequence.

4.3.2 Summary of data analysis procedure

Software was constructed that automated most of the steps in the analysis procedure 

which was as follows:

1) Detect all spots in every image. Output the image co-ordinates of each spot 

centroid to a text file.

2) User labels by hand a selection of spots in one or more frames. This involves 

entering the target co-ordinates (of at least four spots from each target) into the 

text file of corresponding spot centroids.
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3) Automatic labelling by projecting (calculate homography from existing spot 

labels, project all possible spot labels through this homography and look for 

matches in spot centroid image co-ordinates) and by propagating (use spot labels 

in one frame to label close matches in adjacent frames both forwards and 

backwards along the image sequence).

4) Complete steps 1-3 on the video sequence being measured and also on a selection 

of approximately twenty good calibration images featuring multiple targets. This 

“calibration set” consists of separate still images containing good views of all 

three targets or pairs of targets. This set of images is composed partly from the 

“target relations” images-still images which were filmed separately to the 

sequence being measured. The set also includes a selection of images from the 

calibration sequence itself.

5) Use the calibration set images to extract initial estimate values for camera 

Intrinsic parameters (focal length, pixel aspect ratio and principal point location). 

Use these to generate initial estimate Extrinsic parameters (position and 

orientation of camera) for each target in frames showing multiple targets. Initial 

estimate Extrinsics yield initial estimate target relations matrices (the 

transformations relating the co-ordinate frames of each target to that of the base 

target). For initial estimates assume no lens distortion.
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6) Now optimise Intrinsics, Extrinsics, Target Relations and Lens Distortion 

parameters over all images in the calibration set using Powell’s method (Press 

[1992], Nocedal [1999]).

7) Use optimised Intrinsics, Target Relations, Lens Distortion parameters and an 

extracted homography to optimise for Extrinsics (relative to base target) using 

Powell’s method in one image selected from the middle of the video sequence 

(calibration sequence).

8) Use the optimised Extrinsics, for the frame selected above, as an initial estimate 

for adjacent frames. Optimise extrinsics (given the already optimised Intrinsics, 

Target Relations, Lens Distortion values) for these frames using Powell’s 

method. Thus propagate forwards and backwards through the entire video 

sequence generating optimised Extrinsics for every frame.

Note that two different sets of images are used during the calibration process. One set 

is the video sequence of interest, filmed along some camera motion trajectory. This is 

sometimes referred to as the “calibration sequence” (distinguishing it from the 

corresponding poor visibility sequence, referred to as a “test” sequence) and also as 

the “trajectory sequence” (distinguishing it from the individual, still images of the 

“calibration set”). The other set of images that must be labelled is the “calibration 

set” consisting of about 20 still images, not filmed as consecutive images in any 

sequence. This “calibration set” is necessary to provide data about the position and 

orientation of each target relative to the base target since, depending on the camera 

trajectory, the base target may not be observed during the trajectory sequence itself.

103



4 Constructing a data set

The base target is important because this allows us to determine the position of the 

camera in the same co-ordinate system as that in which the position of the object 

being viewed is known.

It should be noted that Intrinsics, lens distortion parameters and target 

relations are optimised only over the calibration set (20 images) and not over the 

entire calibration video sequence (approximately 1000 frames), since this would 

entail an impossibly high dimensional search space.

This procedure is illustrated in the following flow chart (figure 4.15). Each of 

these steps will now be explained in detail.
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Figure 4.15 Calibration and trajectory extraction strategy.
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4.3.3 Feature extraction

“Spot detection” software was created in order to locate the centroids of spots in

images. The procedure for detecting spots was as follows:

• The image is severely blurred by convolving with a broad gaussian kernel.

• The blurred image is subtracted from the original image in order to leave the 

background more consistently dark and improve contrast between the spots and 

the background.

• The modified image is then thresholded. The threshold is chosen as follows:

Since the image consists of bright spots on a dark background, Pixel grey- 

levels can be expected to be distributed according to two major clusters (see 

figure 4.16).

- The optimum threshold grey-level value lies some proportion of the distance 

between the means of these two clusters. Good results were obtained by 

using a proportion of 70% (i.e. threshold equals background mean plus 70% 

of difference between background mean and spot mean).

- Unfortunately, since the spots have not yet been located, the mean pixel grey- 

level values are not known for either background or spots. However, since the 

vast majority of image pixels must be background pixels, the background 

mean can be approximated to the mean grey-level value for the whole image.
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The spot mean can reasonably be approxim ated by the brightest pixel value in 

the image (see figure 4.16).

70000

60000

I 50000

S  40000

30000
M ean spot 
g rey -levelO ptim um  threshold

20000
grey -level value

10000

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248
Pixel grey-level (in groups of 8 e.g. 0-7, 8-15 etc)

Figure 4,16 A calibration image and its grey-level histogram. The mean grey-level o f spot 
features can he approximated to the brightest pixel value in the image. The 
mean background grey-level can he approximated by the mean of the entire 
image.

•  All pixels above the threshold grey-level value are now clustered into “b lobs” . A 

pixel is classified as being a m em ber o f  a particular blob if it is in contact with 

any other m em ber pixels o f  the blob, i.e. a next door neighbour pixel.
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Small or dim blobs are now discarded. A “significance value” is assigned to each 

blob depending on the number of pixels in the blob and the mean brightness of 

these pixels. A threshold value for the significance value is specified. Any blobs 

that fall below the significance threshold level are discarded. Useful significance 

threshold values can be found by trial and error, depending on the set of images 

being analysed.

The remaining blobs are now all considered to be genuine target spots. The 

centre of these spots is now estimated as the blob centroid. When computing spot 

centroids, each member pixel is weighted in proportion to its brightness.

A list of the image co-ordinates of every detected spot centroid in every image is 

now output as a text file.

D :\\Users\\Rustam\\ComplexTraj ectory\\CalibrationDisk\\call\\ComplexCall.aviOOl.png

20

4 0 5 . 5 4 4 1 2 8 4 1 7 9 6 8 7 55 1 8  . 9 0 5 9 4 4 8 2 4 2 1 8 8

5 5 4 . 9 0 1 3 0 6 1 5 2 3 4 34 4 4  . 8 5 4 8 8 8 9 1 6 0 1 5 6

4 4 2  . 3 1 7 5 9 6 4 3 5 5 4 6 92 7 8  . 5 8 8 9 2 8 2 2 2 6 5 6 2 5

4 4 8 . 1 0 8 7 6 4 6 4 8 4 3 7 55 2 9  . 0 9 9 5 4 8 3 3 9 8 4 3 8

1 1 . 9 0 1 0 3 5 3 0 8 8 3 7 8 93 3  . 3 7 4 8 3 9 7 8 2 7 1 4 8 4 4

8 6 . 6 4 0 4 4 9 5 2 3 9 2 5 7 82 9 . 8 3 6 7 7 2 9 1 8 7 0 1 1 7 2

1 0  . 4 8 5 0 0 8 2 3 9 7 4 6 0 9 41 0 0  . 3 1 4 2 4 7 1 3 1 3 4 7 6 6

8 5  .  7 8 3 5 0 8 3 0 0 7 8 1 2 59 7  . 4 4 0 5 1 3 6 1 0 8 3 9 8 4

1 0  . 0 8 5 1 1 2 5 7 1 7 1 6 3 0 91 6 9  . 3 2 0 9 9 9 1 4 5 5 0 7 8

Image file name

Total number of 
spots detected in 
this image.

Image X and Y 
co-ordinates of 
spot centroids

This column is for spot 
labels (target co-ordinates o f 
each spot).

-I indicates not yet labelled

Figure 4.17 Extract from  an output text file illustrating the layout o f data.
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Figure 4.18 Feature detection. The thresholded pixels have been grouped into “blobs” and 
any “blob” that is too small or too dim has been discarded. Remaining blobs 
(shown in green) are assumed to be calibration spots. The centroids of these 
spots have been marked with a blue pixel.

4.3.4 Feature labelling

The feature detection process locates, for each image, the centroids o f  all spots 

observed in that image. These centroid positions are output as a list o f  image co ­

ordinates in units o f  pixels. It will be necessary to com pute  hom ographies 

(mathematical relationships between points in the target planes and points in the 

image planes). The nature and use o f  hom ographies is discussed in detail in section 

4.3.8. In order to com pute  hom ographie relationships between the image plane and 

each o f  the calibration target planes, it is necessary to determ ine the positions o f  the 

spots in terms o f  co-ordinate systems set in each o f  the targets.

To this end (see figure 4.8), each spot on each target is assigned a numerical 

label according to its X-Y  position in that target. The labels o f  each spot refer to that 

spot's position within a co-ordinate frame set in the target to w hich the spot belongs. 

Another num ber is used to identify the target itself e.g. “367” indicates the spot on
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target 3 with X-Y co-ordinates (6, 7). The units of this co-ordinate system are “spot 

spaces”, each spot space being 30mm.

In order to compute homographie relationships, it was thus necessary to 

determine the “label” of each spot observed in each image. Since video sequences of 

up to 1000 frames were to be analysed, this process needed to be largely automated. 

Two algorithms were developed to aid in this process:

1) “Projection”

A small number of labelled spots within a single image are used to determine 

the labels of the remaining spots in that image.

A minimum of four labelled spots are required for each target whose 

spots appear in the image. Three or more of these spots must not be co-linear 

as this results in a loss of constraint.

For each target in the image, the four (or more) labelled spots are used to 

approximate the homography (see section 4.3.9) between that target and the 

image plane.

This homography is used to project the target co-ordinates of the entire 9x9 

grid of spots from that target, thus giving the expected image co-ordinates for 

every spot in that target.

These predicted image co-ordinates are compared with the list of spot 

centroid co-ordinates produced by the feature detection process (see section 

4.3.8).
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If a detected spot centroid lies within a specified maximum distance (e.g. ±5 

pixels) of a predicted spot co-ordinate, then that detected spot is assigned the 

label of the matching projected spot centroid.

- The ±5 pixels range allows for errors due to lack of knowledge of camera 

lens distortion parameters and also errors in the homography estimate 

resulting from a sparse set of known spot correspondences.

2) “Propagation”

A set of spot labels for one image frame in a video sequence is used to 

generate labels for spots viewed in chronologically adjacent images.

The detected spot centroid positions in the labelled frame are compared to the 

detected spot centroid positions in the adjacent, unlabelled frame. If any spot 

position in the unlabelled frame lies within a specified maximum distance 

(e.g. ±5 pixels) of a spot position in the adjacent labelled frame, that label is 

assigned to the unlabelled spot.

- The ±5 pixels range allows for motion of the camera between successive 

frames. The optimum value for this error constraint will depend on the speed 

of camera motion and the frame rate of image acquisition.

Spots must be labelled in two different sets of images. One set is the video 

sequence of interest, filmed along some camera motion trajectory. This is referred to
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as the “trajectory sequence”. The other set of images that must be labelled is the 

“calibration set” consisting of about 2 0  still images, not filmed as consecutive images 

in any sequence.

• Procedure for labelling “calibration set” images:

- For each image, every visible target must be “hand-seeded”. This involves the 

user identifying at least four spots in each visible target in the image and 

entering their target co-ordinate labels into the text file list (output from the 

feature detection process).

For each image, the “projection” labelling process is iterated until no new 

spot labels are identified. This process normally terminates within two 

iterations.

• Procedure for labelling “trajectory sequence”:

- A small number of images, scattered throughout the sequence are “hand- 

seeded” with a small number of spot labels. Each target that is viewed at any 

time during the sequence, must be hand-seeded in at least one image of the 

sequence. The hand-seeding must provide the labels for at least four non-co- 

linear spots in each target.

- The “projection” labelling process is performed on every image in the 

sequence. This is iterated until no new labels are created (usually only one or 

two iterations are necessary).
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The “p ropagation” labelling process is perform ed both forw ards and 

backw ards from  each end, end to end, along the entire im age sequence.

The “p ro jec tion” labelling process is again perform ed on every  im age. The 

projection  and propagation processes are now iteratively  alternated until no 

new labels are found.

MS • :4a » * * -, m n5 • : n- * 77 2-«.** .-7 • ÿ' * * -, 4
» 24’ -'.r, » .4 4 X * . ,6 ‘

v i m s g r ; . ;

v” *

Figure 4.19 Output from feature labelling process. The figure is a visual aid, 
illustrating the locations of detected spot-centroids and their 
computed spot labels.
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4.3.5 Camera co-ordinate system: perspective projection

The following sections (4.3.5-4.3.15) set out the theory necessary for calibrating the 

camera and extracting the camera trajectory. The camera is treated as a standard pin­

hole model. Consider a 3D point Xc = (Xc, Yc, Zc ) in the camera co-ordinate frame 

(see diagram) which projects onto a 2D point Xc = (%c, yc) in the image plane.

Figure 4.20 Perspective projection of a pin-hole camera.

This mapping from 3D to 2D can be described by a 3x4 “projection matrix” using a 

homogeneous* co-ordinate system:

"l 0 0 o' X"
= 0 1 0 0 Yc

z.
J  _ 0 0 1 0 1

Equation 4.1

such that X,. =

vZcy
and = y .
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*Note: the homogeneous vector

X
x / w

y maps to the 3D point y/w
z

z/w
w

and the

homogeneous vector maps to the 2D point
x j w

4.3.6 Image co-ordinate system: intrinsic camera parameters

When dealing with digital images it is necessary to consider the pixelated nature of 

the image plane.

V

Figure 4.21 Image plane co-ordinate system.

The position of a pixel in an image is described as the pixel horizontally and the 

pixel vertically from the top left corner. If the optical axis intersects the image 

plane at the “principal point” (uo, vq) and the number of pixels per unit length in the u 

and V directions respectively are ku and kv then the {Xc, y j  co-ordinates are related to 

the (m,v) co-ordinates by a 3x3 upper triangular “camera calibration matrix”:

u a 7 Uq a 7 U q 1 0 0 0

V = 0 P ^0
= 0 P ^0 0 1 0 0

1 0 0 1 0 0 1 0 0 1 0

Equation 4.2
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where a  = Jk^ and y is a parameter describing the skewness

between the u and v axes. In practice y is usually close to zero and was assumed to 

be zero during this work.

4.3.7 World co-ordinate system: extrinsic camera parameters

X w /

Ÿc üc

Figure 4.22 Relationship between world co-ordinate system and camera co-ordinate system. 
Subcript vv stands for “world” and subscript c stands for “camera”.

This section considers the Euclidean transformation between a 3D point, in a 

world co-ordinate frame, and the same 3D point Xc described in the camera co­

ordinate frame. In general this is a six degree of freedom rigid body transformation 

which can be expressed as:

Xr =RXw + T Equation 4.3

Or in homogeneous co-ordinates:

R T

1

0^ I Z w
1

Equation 4.4
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Where R is a 3x3 rotation matrix and T is a translation vector.

The calibration, projection and extrinsic matrices can now be concatenated to give:

u a 7 Uq “1 0 0 o'

P
R T K

X, = V = 0 Vo 0 1 0 0
0^ 1 z^

Equation 4.5

1 0 0 I 0 0 1 0
I

This simplifies to give:

a  y  Uq

0 /3 V,

0 0 1
[r  t y,

z. or X, = C[R T]X^ Equation 4.6

In general, to fully calibrate the camera, it is necessary to determine 10 parameters- 6  

extrinsic parameters and 4 calibration or “intrinsic” parameters (if / i s  assumed to 

be zero).

4.3.8 Homography between a target plane and its image

It is possible (Zhang [1998]) to calibrate a camera by capturing images of a planar 

target. If the world co-ordinate system is defined such that the target plane lies on 

Zw = 0 , then points Xt on the target plane are mapped to points on the image plane 

by:

u

V = c [r  T Y,
0

1
1

C[r, Tj r, T y,
0
1

C[r, r, T Equation 4.7
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Thus Xi and Xt are related by the homography (straight line preserving mapping 

between two planes) H such that:

2^ = H Xt where H = C[rj T]=[h, hj hJ  Equation 4.8

In general a homography possesses 8  degrees of freedom (4 intrinsics, 2 rotations 

and 2 translations). It should therefore be possible to extract the homography given 

both the image and target plane/world co-ordinates of four target points (as each 

planar point yields two constraints-x and y). In practice, extracted image points are 

subject to noise and so the resulting four pairs of simultaneous equations have no 

exact solution. Nevertheless, a good estimate for the homography can be obtained 

(Zhang [1998]) by using non-linear optimisation techniques. In this case Powell’s 

method was used (Press [1992]).

4.3.9 Computing the homography between a target plane and an image

A homography is a transformation which maps points from one plane to another. 

This transformation is constrained in that straight lines in one plane are mapped to 

straight lines in the other. Using homogeneous co-ordinates, a homography can be 

expressed as a 3 x3  matrix which multiplies the homogeneous vector of a point in 

one plane to yield the homogeneous vector (up to some arbitrary scaling factor w) 

describing a point in the other plane.

p la n e ! /Z] 2 / l |3 ^ p la n e  I

e.g. w y  p la n e !
= hn

^ 2 2 ^23 y  planeX Equation 4.9

1 / I 31 ĥ ! ^ 3 _ 1

This idea is usefully applied to the camera calibration problem (Zhang 

[1998]). Since planar calibration targets were used (each consisting of a square grid
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of circular spots), the camera becomes a device which maps points (spot centres) in 

the target plane onto corresponding image points (located as spot centroids) in the 

image plane. This transformation is (ignoring lens distortion) clearly an example of 

an homography. It is useful to compute this homography since it must encode 

information about both the intrinsic and extrinsic properties of the camera:

' K 1̂2 1̂3 a Ï U q

i.e. hi\ 2̂2 2̂3 = C.E = 0 P 0̂
_̂ 3l 3̂2 3̂3 _ 0 0 1

k. r , T] Equation 4.10

Each spot centroid that is successfully located and labelled yields a pair of 

target plane co-ordinates (X„, T„) in units of “spot-spaces” and a corresponding pair 

of image plane co-ordinates (m„, y„) in units of pixels.

A homography contains nine elements but is only unique up to some arbitrary 

scaling factor. Hence each homography has eight degrees of freedom. Since each 

known spot yields two constraints (mapping of x and y co-ordinates) it follows that, 

if a minimum of at least four spot centroids are known and labelled, it is possible to 

deduce a unique 3x3  homography matrix as a closed form solution.

In practice the data yielded by each spot relationship is noisy. It is therefore 

desirable to use a large number, n , spot relationships and compute the homography 

which best fits the resulting n sets of simultaneous equations:

vy,M, W3W3 • 'K h\2 /l|3 % 2 X 3 . •
vy,v, W3V3 . = ^21 ^22 2̂3 Y2 1̂3 • •

_ w, W2 W3 . • • _ _̂ 31 ĥ 2 3̂3 _
1 1 1 . . 1

Equation 4.11

Expanding the above expression, any one spot relationship yields three simultaneous 

equations of the form:
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+ ^ > 1 2 + ^ 3  o r  = 0  Equation4.12

^ > 2 1  +^«^ 2 2 + ^ 2 3  =  «** ^  nK\ +^«^ 2 2 + ^ 2 3  ~^n^n Equation 4.13

+Y„hj2 + K  =  o r  X„/t3 , +  y„/i32 +  /î33 -  =  0  Equation 4.14

Extracting all the unknowns to form an unknown vector, rearranging and then 

stacking all n sets of simultaneous equations, yields the following matrix equation:

1 0 0 0 0 0 0 -M, 0 0 . . . 0
0 0 0 1 0 0 0 - ^ 1 0 0 . . . 0
0 0 0 0 0 0 1 -1 0 0 . . 0

^ 2 ^2 1 0 0 0 0 0 0 0 - « 2 0 . . . 0
0 0 0 ^ 2 ^2 1 0 0 0 0 -V̂ 2 0 . . . 0
0 0 0 0 0 0 % 2 ^ 2 1 0 -1 0 . . . 0

%3 3̂ 1 0 0 0 0 0 0 0 0 -«3 . . 0
0 0 0 %3 n 1 0 0 0 0 0 -V 3 . . 0
0 0 0 0 0 0 %3 3̂ 1 0 0 -1 . . . 0

etc

1 0 0 0 0 0 0 0 0 0 0 0 0  -u„
0 0 0 n 1 0 0 0 0 0 0 0 0 0  -v„
0 0 0 0 0 0 K 1 0 0 0 0 0 0  - 1

hu o'
hyi 0
/lj3 0
2̂1 0
2̂2 0
2̂3 0
/%3, 0
3̂2 0
3̂3 0
w, 0
2̂ 0

W3 0

w„ 0

Equation 4.15

This is of the form A.x = 0 where A contains only known quantities and x 

contains only unknown quantities. The unknown vector can readily be found using 

singular value decomposition (Press [1992]) to yield a least squares best fit for the 

values of x
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4.3.10 Locating one target relative to another

During the calibration sequence, the camera will be moved past several targets 

during the motion of the robot manipulator. The targets should be arranged such that 

at least one target is satisfactorily viewed in each image in the video sequence.

Once the intrinsic parameters of the camera have been measured (e.g. from a 

few initial images of target planes) they do not need to be re-calculated at successive 

images. Given the intrinsics, the extrinsics can be calculated in successive images 

from a good view of just one target, thus yielding the camera position relative to that 

target.

The world co-ordinates of the camera are required for every image in the 

sequence. It is therefore necessary to choose one target plane in which to locate the 

world co-ordinates and then pre-calculate the Euclidean transformation that maps 

points from frames located in all other targets onto the world co-ordinate frame.

Given a single image of two target planes A and B, it is possible to extract the 

homographies between each plane and the image plane of the camera. Let a single 

3D point be described by:

in a co-ordinate frame located in target plane A 

Xg in a co-ordinate frame located in target plane B

Xç in normalised image co-ordinates

With the two homographies being H J and Hg such that:

= H J X ^  = H g X g  Equation 4.17
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If the absolute world co-ordinates are chosen to be centred in the A target plane then 

it may be useful to know the world co-ordinates , given measured co-ordinates 

X g. These are given by:

X .= ( h î )‘ ' x c = (h î )-‘h ^X, Equation 4.18

4.3.11 Constraints on the intrinsic parameters

The following analysis derives from Zhang [1998]. A single image of the target 

plane allows an homography to be estimated (see section 4.3.9):

H =[h ,  h; h,] = C[r, r, T] Equation 4.19

Using the knowledge that all column vectors of a rotation matrix are orthonormal 

(since in general a rotation may only possess three degrees of freedom), yields the 

following constraints on the intrinsic parameters:

rj r 2 — 0

and

Equation 4.20

Equation 4.21

Since r„ =C  'h„ these become:

and

h[C = 0

'h, =h^C ^C 'h2

Equation 4.22

Equation 4.23

Thus one homography provides two constraints on the intrinsic parameters.
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4.3.12 Solving for the intrinsic and extrinsic parameters

The matrix of intrinsic camera parameters is typically (Zhang [1998]) characterised

as:

or 7 U q

c  = 0 P ^0

0 0 1

More generally, since the matrix is only defined up to an arbitrary scale factor À

C =
X a  X y  Xuq 

0 Xp Xvq 

0 0 X

which yields:

fi,2 B
= B22 B

«3. 3̂2 B.

2

X̂

a
7

T’a ~^oP

7

or'/?'
Z(?^o-Wo^)__Yg_

P"

7̂ 0 -U qP

7i7’̂ -^ o P )  Vq 
or'/? '

(y i’o —  UqP )  V q

Equation 4.24

During this work, y was assumed to be zero. For simplification, or and P  were 

assumed to be equal as an initial estimate (i.e. pixels were assumed to be square). 

These initial approximations considerably simplify equation 4.24. (In fact, the pixels 

of the cam-corder are not square. The final, non-square values for or and /? are found 

during the final stage of non-linear optimisation where all the intrinsic quantities are 

iteratively refined (see section 4.3.14) ).
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With the above assumptions, C simplifies to give: C = Â
a  0 Uq

0 a  Vq

0 0 1

Giving C C =
Bj, 5,2 5,3

^ 2 1  ^ 2 2  ^ 2 3

^ 3 1  ^ 3 2  ^ 3 3

1
0

-U q

0
1 -Vo

2 2-U q - ^ 0 + \ +
a

Equation 4.25

Since this matrix is symmetric, it can be defined by a 6 D vector: 

b = [5/7, 5/2, B22, B]3 , B23, Bjs]^

But, since 5 // = B22 and B33 is a function of Bjj, B23 and À , b need only contain 4 

elements (to encode information about the4 variables a ,Uq,Vq,à):

b =  [5/7, Bi3, B23, B33Ÿ

It is now possible to express h[C  C h in the form: v ' b Equation 4.26

Where y-  — [(^/I^y2 ^/2 ^y2 (^/3^/l "^^/l^;3 )’(^/3^y2 ^/2 ^ / 3  )» ̂ /3^y3 ]

The two constraints from each homography can now be written as:

12 b =  0 Equation 4.27

Given n such homographies (obtained from n images of a single target or one image 

of n targets), n such pairs of equations can be stacked to give:
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V b  = 0  where V  is a 2«x4 matrix. Equation 4.28

If the number of homographies n is greater than 3 (or 2, discounting the skewness 

parameter y ) then it should be possible to solve for b and hence the intrinsic camera 

parameters C. In practice there will not be an exact solution due to noise in the 

measurement/modelling process, however a least squares estimate can be obtained 

from singular value decomposition (Press [1992]).

Given the intrinsics, the extrinsics are readily solved from C and H. When 

solving for R and T, measurement noise may result in values being obtained for R 

that do not properly conform to the requirements of a rigid body rotation. In this case 

an approximate rotation matrix can be best fitted to the data (Zhang [1998]).

4.3.13 Dealing with tens distortion

Digital cam-corders exhibit significant radial lens distortion (barrelling) which can 

be corrected by shifting pixels in the distorted image as a function of their radial 

distance from the optical axis.

Let («,v)and («,v)be the pixel co-ordinates on a true pinhole image and a 

radially distorted image respectively. For each pixel in the image, the degree of 

distortion is related to the radial distance r of that pixel from the principal point. The 

following distortion model was adopted which is that typically adopted in the 

literature (Zhang [1998]):

Û = u + {u — Uq )(/:, +k 2 f ‘̂ ) Equation 4.29

and V = V -h (v -  Vq )( ,̂ r  ̂  -h A:2 r ) Equation 4.30

where ={u - U qY +{v - V qY
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Initially the distortion parameters k\ and ki are approximated to zero. Optimum 

values are then computed by iteratively refining the distortion parameters whilst 

simultaneously refining the camera intrinsics, extrinsics and target relations 

transformations using non-linear optimisation (see next section 4.3.14).

4.3.14 Refining parameters with non-linear optimisation

Once initial estimates of camera parameters have been extracted using geometrical 

and analytical principles, it is possible to mutually refine these parameters by a 

method of non-linear minimisation of an error function, resulting in a maximum 

likelihood estimate for all parameters.

Given initial estimates of intrinsic and extrinsic parameters, radial distortion 

parameters and target relations transformations, the following error function may be 

minimised:

n m  . ^

Z Z (c, ̂ 1 , * 2 , R „  T,, X,„,„ _ I Equation 4.31
target 1=1 spot ,r=l

Where, for m points (spot centres) extracted from n target views, is the

observed image in pixelated camera co-ordinates of the world co-ordinate target 

point , and x . ^  is the expected image of that point given the current

estimates of the camera parameters (C,/:,,/:2 ,R ,,T , ). Note that the values of the co­

ordinates of t̂arget, ^Iso dependent on the current estimates of target relations

transformations and these transformations are also being iteratively refined.

These non-linear minimisation problems may be solved using a standard non­

linear optimisation strategy. In this case Powell’s method was used. The error
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function to be minimised is the sum of the squares of the discrepancies between 

predicted and observed spot positions over the set of calibration images.

There are many algorithms (Press [1992], Nocedal [1999], Hartley [2000]) 

that can be used for performing non-linear optimisation of a function in multiple 

dimensions. Different strategies achieve different trade-offs between speed of 

convergence and robustness to local minima. Powell’s method is an example of a 

“Direction Set” method. It works by choosing an optimal direction. The function to 

be minimised is then minimised along a line in this optimal direction before a new 

direction is chosen. Although alternative algorithms might have been used, Powell’s 

method is well established, robust and rapid. It was also convenient since pre-written 

code for this algorithm was available within the research group.
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4.4 Results of data set construction

4.4.1 The extracted trajectory

Figure 4.23 The computed trajectory for a six-degree of freedom motion video sequence. The 
camera position at each frame is illustrated hy a small red sphere.

The trajectory is illustrated in relation to the spots o f the calibration target 
structure.

Top right also illustrates the orientation of the camera. For each frame the camera 
is located at the red dot and looks along the blue line towards the green dot.

Bottom image shows an enlarged portion of top left.

A six-degree o f freedom  m otion, incorporating both sm oothly  curv ing  and sharp 

cornered  trajecto ry  segm ents, was program m ed into the PU M A  560 robot arm . V ideo 

sequences w ere film ed along this trajectory  show ing various ob jects in good 

v isib ility  and varying degrees o f poor visibility. C alibration  sequences, view ing
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calibration targets, were filmed along this trajectory. A sample of each type of 

sequence was chosen such that all the sequences were synchronised to within ± 1 

pixel when comparing synchronisation spots. The calibration sequence was analysed 

as described in section 4.3, yielding a list of camera positions and orientations for 

every frame, intrinsic camera parameters and lens distortion parameters. This 

trajectory is summarised in the images of figure 4.23. The specific calibration data 

measured for this image sequence is appended at the end of the thesis.

4.4.2 Smoothness of the trajectory

The trajectory plots of figure 4.23 are a useful visual representation of the complex 

six degree of freedom motion video sequence that has been analysed. The trajectory 

appears to be smooth and this consistency implies a high degree of positional 

accuracy.

It is apparent (see bottom image, figure 4.23) that one section of the trajectory 

appears broken, erratic and non-smooth. This section corresponds to the beginning 

and end of the trajectory. During these portions of motion, the camera is moved from 

(and back to) a position fixated on the synchronisation spot to a more central position 

regarding the main areas of calibration target. For this reason, during these portions 

of motion, comparatively few calibration spots are in the field of view. This results in 

a sparse set of point correspondences with which to triangulate the position of the 

camera, leading to inaccurate measurements. These portions of the camera motion do 

not correspond to visually interesting portions of the video sequence and are not 

needed for the purposes of testing vision algorithms. The only use for these 

beginning and end sections is to enable the use of the synchronisation spot for 

determining chronological correspondence between matching video sequences.
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In order to quantify  sm oothness and to assess any apparent d iscrepancies in 

the com puted  m otion, the rotational and translational com ponents o f the m otion were 

p lotted  (see figure 4.25). T hese plots indicate the trajectory  m easurem ents to be 

sm ooth and consistent. M aking the assum ption that deviations from  sm oothness 

equate to m easurem ent noise gives an estim ate o f positional m easurem ent accuracy 

that approaches the m echanical lim its o f the robot itself, i.e. o f the o rder o f  ±0.2m m .

14

12

10

8

I I
6

4

2

0
1 28 55 82 109 136 163 190 217 244 271 298 325 352 379 406 433 460 487 514 541 568 595 622 649 676 703 730 757 784 811 838 865 892

F r a m e

Figure 4.24 X,Y and Z components (blue, red, yellow respectively) of camera motion 
in world co-ordinate system (relative to base target origin).
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Figure 4.25 Rotational components about X, Y and Z axes of camera motion in world 
co-ordinate system (relative to base target origin).
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Figure 4.26

Frame

Total distance moved by the camera from one image to the next. This 
gives some indication of “jerkiness” in the estimated trajectory. Any 
percieved jerkiness is, at worst, attributable to trajectory measurement 
noise, but may in fact be genuine jerkiness in the robot motion.

There are obvious large discrepancies at the beginning and end of the 
motion due to sparsity of spots when moving to and from the 
synchronisation spot. In the central, smooth portion of the motion, the 
movement is consistentiv around 1mm between each frame.
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4.4.3 Error associated with video sequence synchronisation

There is an obvious source of error associated with the synchronisation procedure. 

Clearly two video sequences can only be matched to the nearest frame. Since it is not 

possible to synchronise the camera with the motion of the robot arm, there will be no 

frame in the test sequence which occurs at exactly the same time during the motion 

as any corresponding frame in the calibration sequence.

At worst, frames in the test sequence will occur, chronologically, exactly 

halfway between frames in the calibration sequence. This will cause a 

synchronisation error of half a frame period. At 25 frames per second this results in 

± 0 . 0 2  seconds.

How significant is this error? Ultimately we are not concerned with temporal 

error, but rather in errors in the extracted camera co-ordinates for each frame i.e. 

position and orientation errors. In this case, position and orientation errors are caused 

by temporal errors in synchronising test sequences with calibration sequences. The 

“real” error resulting from a worst case temporal error of ± 0 . 0 2  seconds is thus 

dependent on the speed of motion of the camera and robot arm. A high speed will 

lead to large errors and a low speed will result in small errors.

There are two main ways in which this synchronisation error can be reduced:

• Programming the robot to move at very slow speeds.

• Filming a large number of repeats of each video sequence.

Since the degree of temporal overlap between any two sequences is dependent on 

when the camera was switched on, i.e. random, a large number of samples of each 

sequence increases the probability of finding one pair of sequences (test and 

calibration) that form a good match. For example, if ten examples of each sequence
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are film ed, there are now  one hundred possib le pairs o f test sequence and calibration  

sequence. If these are d istributed  random ly  in tim e, we m ight expect the 

synchronisa tion  error to be reduced by a factor o f one hundred on average.

In practice, it w as possible to synchronise the tw o sequences such that w hen 

corresponding  fram es were superim posed, the “visual m atch” error w as often less 

than ±  one pixel.

Figure 4.27 Corresponding images from poor visibility sequence (top left) and good visibility 
sequence (top right). Bottom image shows an edge detected version of the good 
visibility image superimposed over the poor visibility image.

Note that the edges of the object being viewed match up exactly (to within the 
accuracy of the image capture technology i.e. to the nearest pixel), indicating a 
high level of precision in the synchronisation of these two sequences.

133



4 Constructing a data set

4.4.4 Error associated with robot motion

Industrial robot arms are highly repeatable. This means that the same motion can be 

performed many times with the end-effector (in this case the camera mounted on the 

terminal link of the arm) returning to the same position with a high degree of 

precision each time.

Note that repeatability is not the same thing as accuracy, which is normally 

taken to mean the degree of correspondence between programmed position co­

ordinates and the actual positions achieved. In general, the repeatability of an 

industrial robot will be several orders of magnitude better than its accuracy.

A simple test of robot repeatability was performed as follows:

• Mount the camera securely on the robot.

• Position the robot such that a static real world feature (e.g. set of calibration 

spots) is visible in the field of view.

• Set the camera running.

• Run the robot along a varied, six-degree of freedom motion that includes pauses 

at three different positions during the motion.

• Film whilst performing this motion several times.

• Compare the three pause images in one sequence with the pause images in a later 

sequence by superimposing and differencing.
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T hese tests reveal excellen t repeatability  in the PU M A  560 robot. Superim posing  the 

im ages reveals a barely  visually  d iscern ib le  erro r o f  better than ±  one pixel. This 

im plies that errors associated  with robot repeatab ility  are so sm all that they approach 

the scale o f  the noise associated  w ith the cam era  itself.

Figure 4.28 Three different pauses along a trajectory.

The top row and second row are taken from two different video sequences filmed along the 
same trajectory.

The bottom row is the difference between corresponding images o f the same pause position 
taken from the two sequences. The difference image has been negativised to improve visibility 
of the very faint features.

White negative difference images would imply no difference between the two images being 
compared i.e. an exact correspondence (to the nearest pixel). These images appear to match 
with an accuracy better than ± one pixel. Very small discrepancies can just be distinguished. 
These may be due to differences in lighting causing spots to appear bigger or smaller rather 
than true robot position differences.
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4.4.5 Error associated with computer based data analysis

The procedure used to assess error during the calibration and trajectory measurement

process was as follows:

• The measured (extracted from the calibration process) camera position and 

orientation, lens distortion parameters and intrinsic camera parameters were used 

to create a camera model through which world co-ordinate points could be 

projected onto predicted points in the image plane for each image being 

considered.

• A model of the calibration target structure was constructed, listing the position of 

every spot with respect to co-ordinate systems in the respective targets to which 

the spots belonged.

• Knowledge of the position and orientation of each target with respect to the base 

target was used to compute the world co-ordinates (relative to the base target) of 

every spot over the complete set of all three targets.

• Every spot position (world co-ordinates) was then projected through the camera 

model to create a corresponding set of expected image plane spot centroid 

positions.

• These were compared to the list of spot centroids generated by the feature 

detection stage of the calibration procedure (see figure 5.19). A root mean square 

error was calculated, representing the average discrepancy (over that image)
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between measured (from the feature extraction process) spot centroid positions 

and expected spot positions given the computed camera model.

Typical error values were 0.6 pixels rms error per spot. There are several reasons 

why these errors might occur:

• Centroids of image spots may not be truly representative of the true spot centres.

- In general a circular spot projects as a distorted ellipsoid in an image. The 

centroid of this shape is rarely the same as the true spot centre.

Some spots may lie in shadow such that an off-centred portion of the spot is 

detected during the image thresholding process.

• Camera intrinsic parameters, lens distortion parameters, and camera position and 

orientation parameters are refined over an error space using a non-linear 

optimisation process (Powell’s method). This process may have converged on a 

local minimum of the error space i.e. there may be some better values of the 

camera parameters that would result in a better fit to the observed data.

• The camera model may be over-constrained, i.e. certain aspects of the camera 

may not have been modelled. For example, Zhang [1998] includes a parameter in 

the camera model which represents skewness in the pixel array (i.e. horizontal 

and vertical lines of pixels may not be exactly perpendicular). In this work, such 

skewness was ignored, with the camera pixel array assumed to be perfectly 

perpendicular.
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4.4.6 Visualising the overall error

An obvious way to inspect the accuracy of the measured trajectory is to reconstruct 

the images that would be generated by the camera moving along that trajectory. 

These images can then be compared (by super-imposing corresponding images) to 

those of the real video sequences filmed along that trajectory.

The “synthetic” video sequences are generated by creating a model (in world 

co-ordinates) of the object viewed in the real sequence (e.g. block object or oil-rig 

object). This model is then projected according to the measured camera 

characteristics (position and orientation, intrinsic parameters, lens distortion 

parameters). Methods for modelling and projecting the viewed objects are detailed in 

section 3.10.

An alternative method for projecting “synthetic” images was to use the ray 

tracing software package “POV-ray for Windows” ( http://www.Dovrav.orgk This allows 

an object to be built at a fixed location in a world co-ordinate system. A camera can 

then be introduced at a desired position and orientation. Since POV-ray does not 

permit camera distortion to be modelled, images had to be distorted after they were 

created. The forms of distortion that were applied included:

• Vertical stretch (due to rectangular rather than square pixel aspect ratio).

• Principal point shifted away from the image centre.

• Radial lens distortion.
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Figure 4.29 Two images from the good visibility “block object” video sequence. In each case, 
the measured camera position for the frame bas been used to project a predicted 
image (shown as a red wire frame) and this predicted image has been 
superimposed over the real image. This helps illustrate the errors involved (in this 
case ± 3 pixels discrepancy in block edges).

4.4.7 Disparities between predicted error and actual error

The observed error (section  4.4.6) is an order o f m agnitude larger than w hat w ould 

be expected , given the errors m easured during the calib ration  and trajectory 

m easurem ent process (section  4.4.5).

W hen the im age positions o f ca lib ration  target spots w ere reconstructed  

(section 4 .4 .5) and these expected  spot positions w ere com pared  w ith  those observed, 

the typical root m ean square error w as 0.6 pixels per spot. In contrast, w hen expected 

im ages o f objects (b lock, oil-rig  etc) have been projected  and com pared  to the 

corresponding  real im ages, an erro r o f several p ixels is observed.

T here are several possib le explanations for this d iscrepancy  including:

•  Since the observed objects are at d ifferent ranges from  the cam era than the 

calib ration  spots, cam era position  errors that project sm all errors in im age spot 

position m ay also project relatively  large errors in im age object position.
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• Centroids of image spots may not be precisely representative of the true spot 

centres.

- In general a circular spot projects as a distorted ellipsoid in an image. The 

centroid of this shape is rarely the same as the true spot centre projection. 

Some spots may lie in shadow such that an off-centred portion of the spot is 

detected during the image thresholding process.

• The camera model and camera location were optimised to best fit the observed 

location of spots in calibration targets. These spots were all co-planar. It may be 

that the camera position was over-fitted to known points at a particular range or 

in a particular plane and correspondingly under-fitted to any points in space 

outside of the target planes (e.g. corners of the block object).

• The objects being viewed are considerably smaller than the space covered by the 

calibration spots. Thus, when the camera moves in closer to the relatively small 

space occupied by the objects, errors may be magnified relative to the views from 

the calibration set of images.

• In many image frames, only a single calibration target was viewed. In theory 

(Zhang [1998]), only a single target view is necessary to uniquely locate a 

calibrated camera, however, in practice, degrees of freedom are introduced 

because some small camera rotations have a similar effect on the image as some 

small translations. Thus, for each true camera position it may be possible to find 

a combination of small translational and rotational errors which leaves the 

calibration image almost unchanged, but shifts the projected position of objects
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placed in front of the calibration spots. If, instead, three significantly non-co- 

planar targets are viewed, this small amount of freedom can be constrained.

f  • • f

Figure 4.30 Equivalent e^ect on observed image of a rotation and a translation. In the 
fîgure these movements are exaggerated, however if the translation is 
small and the range of the camera from the target is large, then the 
corresponding small rotation will leave the camera remaining 
approximately perpendicular to the target.

4.4.8 How the data capture procedure might he improved

In response to the problems discussed in section 4.4.6, several suggestions arise as to 

how the experimental procedure should be changed in order to produce more 

accurate results in the future:

• The robot trajectory should be programmed such that the camera has a good view 

of all three targets in every frame. This constrains the problem of 

translation/rotation equivalence.

• The camera should be calibrated from a set of images filmed at a variety of 

different ranges from the targets. This prevents over-fitting to points lying in the 

target planes and under-fitting to points in the space outside of those planes.
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• The objects to be viewed should be constructed such that they largely fill the 

volume of space within the calibration targets. This prevents error magnification 

when the camera moves in from a wide view of the targets to a close range view 

of a relatively small object.

4.4.9 A suggested technique for assessing accuracy

The main contribution of this thesis is to develop vision algorithms for interpreting 

poor visibility video sequences by combining observed and predicted data. Several 

steps (4.4.2-4.4.7) have been taken to assess the accuracy of the data set construction 

procedure. These assessments are sufficient to enable the generated data sets to 

reasonably validate the performance of the vision algorithms that form the main 

contribution of this thesis. However, a more comprehensive and systematic approach 

for future researchers might be as follows:

• Create a computer model of some calibration targets featuring grids of spots.

• Create a computer model of a camera with known intrinsic parameters and lens 

distortion parameters.

• Create a trajectory (a smoothly varying list of camera positions and orientations).

• Project synthetic images of the calibration targets by placing the camera at each 

of the co-ordinates from the synthetic trajectory list.

• Feed the resulting images into the calibration and trajectory extraction process.

• Compare the output (measured trajectory) with the input (synthetic trajectory).
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Results

5.1 Layout of this chapter

Sections 5.2 and 5.3 examine the detailed workings of the EM/E-MRF algorithm as it 

analyses a single image. An observed image is fed into the vision system along with 

an initial position estimate for that frame. The position estimate is based on the 

ground-truth camera position (see chapter 4) but contains a deliberate error in one of 

the co-ordinates. The performance of the algorithm is assessed for various different 

starting errors.

To aid understanding of the algorithm, section 5.2 describes the various steps 

contained within a single iteration of the Expectation Maximisation algorithm, during 

the analysis of a single image frame. Each stage of the algorithm is illustrated using 

partially processed images produced by that step. Section 5.3 examines the 

performance of the algorithm over multiple EM iterations, when subjected to various 

different degrees of error in the initial position estimate at that frame. Section 5.4 

presents the results of attempting to track camera trajectories over image sequences 

containing large numbers of frames.

Although the entire filmed trajectory lasted over 800 frames, the vision algorithm 

has been tested on sequences of between 51 and 201 frames. These were selected 

from the total filmed footage as exhibiting appropriate levels of visibility-neither 

“good” nor impossibly bad.

Often an observed image frame is shown with a superimposed red outline. The 

red outline is derived (by edge detection) from the predicted image output by the 

EM/E-MRF algorithm (what it “thinks” it is seeing). Where poor visibility images 

are shown, linear contrast stretching has been performed to aid the reader.
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Trajectories are illustrated with a 3D plot. The ground truth trajectory is shown in red 

and the algorithm output is shown in green. The positions of the calibration target 

spots (30mm spacing) are also shown to provide a visual reference frame.

5.2 Stages of the EM/E-MRF algorithm

5.2.1 Initial position estimate

The EM/E-MRF algorithm is intended for visual tracking during an extended video 

sequence filmed along a trajectory. Under these conditions, the initial position 

estimate at each frame is generated by extrapolating the prior trajectory of the camera 

(see section 3.8), however for the purposes of testing the algorithm on individual 

images, an initial position estimate containing a known error of varying severity is 

input to the system.

The data used to illustrate the stages of the EM/E-MRF algorithm in the 

following sections (5.2.1-5.2.4) are based on the first EM iteration of the sequence 

presented (later) in section 5.3.1, in which the initial camera position estimate input 

to the system contains a deliberate error of 28.4mm in the X co-ordinate (this figure 

is entirely arbitrary and arose initially from varying the ground truth co-ordinate by a 

factor of ten percent).

Position estimates are conveniently visualised by superimposing the outline of 

their corresponding predicted image (shown here in red) over the observed image 

(figure 5.2).
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Figure 5.1 The observed image. Figure 5.2 Erroneous initial position estimate.

5.2.2 Thresholding

The predicted image, based on the initial position estimate, is com bined  with pixel 

grey-level data from the observed image (see chapter 3, equation 3.13), to estimate 

class conditional probability density functions (m odelled as normal distributions) for 

the two classes (“object” and “background” ). The intersection o f  these distributions 

(figure 5.3) defines a discriminating value which is then used to threshold the 

observed image (figure 5.4).

The use o f  normal distributions as image m odels is Justified in that the true 

im age histogram s (show ing distribution o f  pixel grey-levels within object and 

background image regions) are often uni-modal and bell shaped. The true histograms 

for these class regions in the specimen image are also show n in figure 5.4 for 

com parison. Further w ork (section 6.5.1 ) will consider ways o f  m odelling images for 

w hich the class conditional distributions are m ulti-m odal and vary with position in 

the image.
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Top: true class conditional histograms i.e. distribution of pixel 
grey-levels within “true” object and background image regions. 
Bottom: estimated class conditional distributions and 
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5.2.3 E-MRF segmentation

The thresholded image (figure 5.4) is now used as the starting point for segm entation 

(figure 5.5) by Ex tended-M arkov R andom  Field (see section 3.3). W hen assigning a 

class to each pixel, M arkov dependency is extended to include a contribution from 

corresponding pixels in the predicted image as well as contributions from 

neighbouring pixels in the observed image. The advantages, in poor visibility, o f  the 

E-M R F com pared  to conventional M R F methods were investigated and 

dem onstrated in Fairweather [1997a], how ever an exam ple is included here (figure 

5.6), showing com parative segmentation results by each method.

Figure 5.5 Segmentation by E-MRF 
(T ‘ EM iteration)

m

Figure 5.6 Conventional M RF

The quality o f  the segm ented image is partly dependent on the accuracy  o f 

the predicted image. Consequently , E -M R F segmentation improves with each 

iteration o f  the Expectation M axim isation algorithm (figures 5.7 and 5.8). The 

following section (5.2.4) describes how the relative weightings betw een observed 

and predicted data are chosen during this segmentation process.
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Figure 5.7 Segmentation during 2 
EM iteration

n tl Figure 5.8 Segmentation during 3’̂*' 
EM iteration

5.2.4 Choosing a weighting factor for predicted data

In chapter 3 (section 3.4) a negative log-likelihood function was developed (equation 

3.14). This expression is reproduced here for convenience:

m.nek 2 a -

Equation 3.14

5, and are weights which determ ine the significance (to the prior probability term) 

o f  the class values o f  nearest neighbour pixels and predicted pixels respectively. 

They thus effect the relative significance o f  observed and predicted data. It is not 

obvious how these values should be determ ined and other researchers (Fairweather 

[1997a], Dubes [1990], B outhem y[1998], [1999]) suggest experim enting to find 

useful values for these constants by trial and error. Expression 3.14 consists o f  three 

parts, nam ely a class conditional com ponent,  the conventional M R F  (spatial) prior 

probability com ponent and a predictive prior probability com ponent,  was set to

unity, which experim entally  appears to produce similar m agnitudes o f  contribution 

from the class conditional and spatial M R F  terms. was then varied to find a

prediction w eighting that yielded a reasonable trade o ff  between over-prediction and
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over-reliance on noisy observed data (figures 5.9-5.12). Values for Sj  o f  between 

1.0 and 4.0 are often found to produce useful results. Note that the 5, value,

determ ined through trial and error based on a small num ber o f  test images, is likely 

to be sub-optim al and might profitably be investigated more thoroughly  in further 

work (see section 6.5.1).

Figure 5.9 S2 = 0.0 (no prediction) Figure 5.10 S 2  = 1.0

Figure 5.11 5 2 = 1 .7 5 Figure 5.12 52 = 4.0 (too much prediction)

5.2.5 Position extraction by model fitting

In order to extract a new cam era  position estimate, successive projections o f  the 

object model are best fitted to the segmented image by m eans o f  a non-linear 

gradient ascent method. In this case, for p roof o f  principle, P o w ell’s m ethod  is used
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for convenience (see section 3.5), though alternative non-linear optimisation schemes 

may be better suited for real-time im plem entations (see section 6.3). The initial 

position estimate (figure 5.13) is used as a starting point for the optimisation process. 

The final position estimate (figure 5.14) is that which m axim ises the correlation 

(figure 5.15) between the predicted image, projected from that position estimate, and 

the segm ented image.

Figure 5,13 Initial position estimate Figure 5.14 New position estimate after fitting 
model to segmented image

0.78

I
E

0.76

I.
9i
•D 0.74
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O p t i m i s a t i o n  a l g o r i t h m  i t e r a t i o n s

Figure 5.15 Improvement in correlation between predicted and segmented  
images during model fitting
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5.3 Successive EM iterations with various starting errors

In the previous section, the various stages of a single EM iteration were examined in 

detail. The following sections demonstrate the behaviour of the algorithm during 

successive iterations. Different scenarios comprising various kinds of starting error 

are presented. It is interesting to note how the class conditional distributions change 

as the algorithm “homes in”. This represents a form of machine learning since the 

algorithm is continually refining its models of both “background” and “object”.

Typically the distributions will separate with successive iterations, with the 

“background” mean decreasing and the “object” mean increasing, as the algorithm 

progressively learns that object is bright and background is dark. In cases (see 

sections 5.3.3 and 5.3.5) where the initial position estimate is so bad that the 

algorithm will not converge on a better solution, the estimated class conditional 

distributions have very similar means, in other words “object” and “background” 

have become indistinguishable.

Translational errors are presented both as overall Euclidean distance between 

the ground-truth camera position and the position estimate output by the algorithm 

and also as the components of translational error in particular directions. An overall 

rotational error is calculated as the magnitude (in radians or degrees) of the rotation 

which would align the camera orientation output by the algorithm with that of the 

ground-truth. This difference, between algorithm estimate and ground-truth values 

for the camera position rotation matrix, is computed by multiplying one rotation 

matrix by the inverse of the other. The resulting rotation is then expressed (see 

section 3.8) as an axis of rotation and a magnitude (angle) of rotation about that axis. 

These errors are measured relative to a world co-ordinate system. It might also be 

useful to consider errors relative to a co-ordinate frame set in the camera and
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alternative w ays o f  quantifying and presenting perform ance errors will be discussed 

under further work in chapter 6 (section 6.5.3).

5.3.1 Translational starting error of 28.4mm on x co-ordinate.

— ODIKI 8«k»ownei

Figure 5.16 T' EM iteration (class conditional distribution estim ate and E-MRF segmentation)

Obfgct BackyovM

Figure 5.17 2"‘‘ EM iteration

152



5 Results

liyv

 Où#ci Backyovno

Figure 5.18 3'̂ '* EM iteration

1*‘ EM iteration

2"“ EM iteration
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3"̂ EM iteration

Figure 5.19 Improvement of predicted image with successive EM iterations. The left 
hand image shows the predicted image based on the current camera position 
estimate. The right hand image shows the outline (in red) of this prediction, 
superimposed over the observed image.

Figure 5.20 Progressive re-learning of class 
conditional distributions with 
successive iterations.

Figure 5.21 Improvement in position 
estimate with successive 
iterations.
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25

I
I.

EM itftration

Figure 5.22 Decrease in x co-ordinate error with successive EM iterations.
The initial position estimate for this image was the ground-truth  
position plus a 28.4 mm x co-ordinate error.

25

S

3

Figure 5.23
EM iteration»

Decrease in overall translational error with EM iterations.

Figure 5.24 Variation of overall rotational error with EM iterations.
The rotational error actually increases-but by a very small 
amount (from zero to 0.147 degrees).
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5.3.2 Translational starting error of 56.8mm on x co-ordinate

Otfct Baekyound

Figure 5.25 EM iteration (class conditional distribution estimate and E-MRF segmentation)

— Obiad Backyownd

« m lFigure 5.26 2"‘ EM iteration (class conditional distribution estimate and E-MRF segmentation)

êI

—  Batkffou-yj

Figure 5.27 3rd EM iteration (class conditional distribution estimate and E-MRF segmentation)
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Pii*l or*v t«v*l 
ObyKi — BacKyound

Figure 5.28 4“’ EM iteration (class conditional distribution estimate and E-MRF segmentation)

EM iteration

2"" EM iteration
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3 EM iteration

4‘ EM iteration 

Figure 5.29 Improvement of image predicted image with successive EM iterations. The left hand 
image shows the predicted image hased on the current camera position estimate. 
The right hand image shows the outline (in red) of this prediction, superimposed 
over the observed image.

Figure 5.30 Progressive re-learning of class 
conditional distributions with 
successive iterations.

Figure 5.31 Improvement in position 
estimate with successive 
iterations.
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Figure 5.32 Variation of translational and rotational errors
with EM iterations for a starting error of 56.8mm. 
Translational error is greatly improved, though a 
rotational error of 1.96 degrees is a small but non- 
negligihle deterioration in orientation estimate.
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5.3.3 Translational starting error of 85.2mm on x co-ordinate

r  i

Figure 5.33 I ' (and only) EM iteration (class conditional distribution estimate and failed E-MRF 
segmentation)

Figure 5.34 Initial position estimate.

In this case (figures 5.33 and 5.34) the starting error is too great for the algorithm 

to recover from. Critically, the “object” portion o f  the initial predicted image 

intersects with so little o f the “object” in the observed image that the estim ated class 

conditional distributions have approxim ately  equal means. This  m eans that the 

algorithm cannot correct prediction error by a strong discrim ination betw een classes 

in the observed data. The algorithm term inates after a single iteration with no 

im provem ent in estim ated position.
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5.3.4 4.2 degrees rotational starting error

Figure 5.35 T‘ EM iteration (class conditional distribution estimate and E-MRF segmentation)

-OeiKi----

Figure 5.36 2"‘‘ EM iteration (class conditional distribution estimate and E-MRF segmentation)

— Obieci BackycwM

Figure 5.37 3'̂ '* EM iteration (class conditional distribution estim ate and E-MRF segmentation)
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Figure 5.38 4'*' EM iteration (class conditional distribution estimate and E-MRF segmentation)

-Obpcl Mckgnund

Figure 5.39 5‘*’ EM iteration (class conditional distribution estimate and E-MRF segmentation)

1*‘ EM iteration
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2"" EM iteration

3'̂ '* EM iteration

4 EM iteration
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EM iteration

Figure 5.40 Improvement of predicted image with successive EM iterations. The left hand 
image shows the predicted image based on the current camera position estimate. 
The right hand image shows the outline (in red) of this prediction, superimposed  
over the observed image.

àti4-;

Figure 5.41 Progressive re-learning of class 
conditional distributions with 
successive iterations.

Figure 5.42 Improvement in position 
estim ate with successive 
iterations.
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Figure 5.43 Variation of rotational error with EM iterations.
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Figure 5.44 Variation of overall translational error with EM 
iterations.

The above result is interesting in that the image has been very accurately segm ented 

(object has been correctly  distinguished from background, see figure 5.40) but the 

rotational and translational errors have significantly increased (figures 5.43 and 

5.44). The algorithm has in effect com pensated  for a rotational error by increasing a 

coupled translational error.

This is a fundamental limitation o f  vision based tracking systems. There may not 

be a one-to-one correspondence between observed images and unique cam era 

positions. This may be because o f  sym m etries in the observed object (e.g. a sphere
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looks the same when viewed from any direction and a cube looks the same when 

viewed from several different directions) but m ay also be because a range o f  cam era 

positions produce very similar looking images resulting in an error space around the 

true cam era  location.

In particular, there is a coupling between certain directions o f  translation and 

rotation. Certain small rotations o f  the cam era may be equivalent to corresponding 

small translations in term s o f  the observed effect on the position o f  important image 

features. Thus model based object tracking algorithms must generally  be prone to 

convergence on m oderately  erroneous cam era  positions for which a com bination o f 

small translational and rotational errors results in a seem ingly  correct projection o f  

an object model onto the observed image. This effect is illustrated in figure 5.45. 

Consistent with this idea, when com plete cam era  trajectories are analysed in section 

5.4, a high degree o f  correlation will be observed between rotational errors and 

translational errors.

e
 O b s e r v e d  

o b j e c t

\  / C a m e r a

True camera 
position

Rotational Rotational error compensated
error with additional translational error

Figure 5.45 A combination of small rotational and translational errors can result in 
an erroneous camera position which still projects im ages sim ilar to those 
projected from the true camera position.
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5.3.5 9.0 degrees rotational starting error

1
!

Figure 5.46 T‘ EM iteration (class conditional distribution estim ate and E-M RF segmentation)

7

Figure 5.47 Predicted image based on the initial camera position estimate. The right hand image 
shows the outline (in red) of this prediction, superimposed over the observed image.

This result is similar to that o f  section 5.3.3. Again the starting error is too great for 

the algorithm to recover from. The “object” portion o f  the initial predicted image 

intersects with so little o f  the “object” in the observed image that the estim ated class 

conditional distributions have approxim ately  equal means. This m eans that the 

algorithm cannot correct prediction error by a strong discrim ination between classes 

in the observed data. The algorithm  terminates after a single iteration with no 

improvem ent in estim ated position.
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5.4 Trajectory tracking

This section presents the results of testing the EM/E-MRF algorithm on extended 

image sequences. Poor visibility image sequences are used, and also an “ideal” 

visibility synthetic image sequence. The performance of the algorithm is investigated 

while varying two key parameters.

The first parameter {u from equation 3.58, see section 3.8.2) determines the 

degree of interpolation between the predicted (via trajectory extrapolation) camera 

position and the measured (via the EM/E-MRF algorithm) camera position. In this 

respect, u functions in a similar fashion to a Kalman gain (Kalman [1960], Welsch 

[2002]). With a u value of zero, the vision system becomes a dead reckoning system, 

estimating the current camera position purely by extrapolating the prior trajectory 

(assuming constant velocity) and completely ignoring any observed information. 

With a u value of 1.0, the vision system will rely exclusively on the position 

extracted from each image via the EM/E-MRF algorithm. Consequently it will be 

observed that overly high values of u produce jagged, erratic trajectory estimates 

while small values of u produce smooth trajectory estimates which gradually drift 

away from the ground truth.

The second parameter ( ^ 2  in equation 3.14, see section 3.4) determines the 

weighting, during E-MRF segmentation, assigned to likelihood function 

contributions due to corresponding pixels in the predicted image. This parameter 

controls how much prediction is used during image segmentation. An Si value of 

zero results in segmentation by conventional MRF, having no contribution from a 

predicted image. A very high Si value will result in the segmentation process simply 

reproducing the predicted image, with no contribution from the observed image.
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In good visibility, it is desirable to use a high u value and a low S2 value in 

order to incorporate as much (good quality) information from the observed image as 

possible. In poor visibility it is necessary to decrease u and increase S2 in order to 

compensate for missing observed information by using additional predicted 

information. Too much prediction eventually results in pure dead reckoning which 

steadily accumulates errors over time.

5.4.1 Synthesised “perfect” images-best case scenario

The purpose of this experiment is to gain understanding of the upper limit of 

performance of the vision system. Artificial images were projected, corresponding to 

views from the ground-truth camera positions from a 2 0 1  frame portion of the 

trajectory measured in chapter 4. These artificial images constitute “perfect” 

visibility in that they show “object” pixels as pure white (grey level of 255) and 

“background” pixels as black (grey level of zero). The algorithm can never be 

expected to perform better on any other kind of image or under any other visibility 

conditions. This test is also useful since it eliminates any possible errors in the 

ground-truth trajectory measurements or camera model.

For this experiment u was assigned the value 0.7 and S2 was assigned the 

value 1.0. The vision system is observed (figure 5.48) to successfully track the image 

sequence, even when the camera trajectory includes a sharp corner. The rms 

translational error during this sequence was 3.02 mm and the rms rotational error was 

1.17 degrees.

169



5 R esu lts

Figure 5.48 Measured trajectory output by the vision system (green) compared to 
ground truth trajectory (red) for a 201 frame good visibility (synthetic) 
image sequence for which the camera follows a trajectory incorporating a 
sharp corner. The calibration target spot positions are shown as a visual 
reference.

It is in teresting to note (figure 5.49 and figure 5.50) that translational errors are 

h ighly correlated  w ith rotational errors. T his supports the idea, expressed  in section 

5 .3.4, that certain  com binations o f cam era rotations and translations result in very 

little change to a pro jected  im age, thus im posing a lim it on the accuracy to w hich a 

cam era position  can be ex tracted  from  an observed im age.

T he accuracy o f im age segm entation  achieved w ith a relatively  erroneous 

position  estim ate (figure 5.51) is alm ost as good as that achieved w ith an ex trem ely  

accurate position  estim ate (figure 5.52).
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Figure 5.49 Translational error at each frame.
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Figure 5.50 Rotational error at each frame.
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Figure 5.51 Frame 136 vision system output (red) superimposed over 
observed image. Even though the output camera position 
contains a relatively large error (7.7 mm and 3.3 degrees), 
the segmentation and model fitting appear to he accurate.

À

Figure 5.52 Frame 143 vision system output (red) superimposed 
over observed image. For this frame, the camera 
position output by the vision system is extremely 
accurate (0.3mm translational error and 0.06 degrees 
rotational error).

It is also in teresting  to observe that the vision system  can recover from  a relatively  

erroneous position  estim ate (fram e 136, see figure 5.51) to achieve an ex trem ely  

accurate position  estim ate a few  fram es later (fram e 143, see figure 5.52).
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5.4.2 Poor visibility with over-prediction

• • • •
• • • •

• • •
• • •

Figure 5.53 Measured trajectory output by the vision system (green) compared to 
ground truth trajectory (red) for a poor visibility (dry ice fog and moving 
lights) image sequence for which the camera follows a trajectory 
incorporating a sharp corner. The calibration target spot positions are 
shown as a visual reference.

This experim ent attem pts to tackle a poor v isib ility  (dry ice fog and m oving, 

focussed beam  light sources) im age sequence. A u value o f 0.3 and an S2 value o f 4 .0  

w ere used. T he u value im plies a re la tively  heavy w eighting in favour o f  predicted 

position  w hen in terpolating  betw een predicted  and observed position  estim ates. The 

S2 value im plies a relatively  high sign ificance o f predicted pixel class during im age 

segm entation.

T he vision system  produces a trajectory  estim ate w hich is sm ooth  but 

deteriorates in a s im ilar fashion to dead reckoning navigation system s, w ith 

positional error gradually  increasing w ith  tim e. The vision system  fails to negotiate a 

sharp corner in the trajectory .

173



5 R esu lts

15.00

10.00

I

5s
I

5.00

0.00
90 10030 40 50 60 70 800 10 20

Image frame num ber

Figure 5.54 Translational error at each frame (analysis o f first 100 frames of 
sequence).
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Figure 5.55 Rotational error at each frame (analysis of first 100 frames of sequence).
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Frame 0 Frame 20

Frame 40 Frame 60

Frame 80 Frame 100

Figure 5.56 Vision system output superimposed over observed images. The sequence 
has been sampled once every 20 frames.
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5.4.3 Poor visibility with under-prediction

Figure 5.57 Measured trajectory output by the vision system (green) compared to 
ground truth trajectory (red) for a poor visibility (dry ice fog and moving 
lights) image sequence along a smooth trajectory section.

For this experim ent a u value o f 1.0 and an ^2 value o f 1.0 w ere used. T hese values 

im ply  a relatively  sm all predictive contribu tion  and an over-acceptance o f poor 

quality  observed data. The vision system  roughly  tracks for a short period before 

failing.
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5.4.4 Poor visibility with over-prediction and under-interpolation

Figure 5.58 Measured trajectory output by the vision system (green) compared to 
ground truth trajectory (red) for a poor visibility (dry ice fog and moving 
lights) image sequence along a smooth trajectory section.

For this experim ent a u value o f 1.0 and an Si value o f  3.0 w ere used. The u value 

im plies that w hatever position  estim ate is com puted  by the vision system  is accepted 

w ithout any in terpolation  w ith the position  predicted by trajectory  ex trapo lation , i.e. 

total reliance on observed  position. In contrast, the Si  value im plies a large 

significance for the p red ic ted  class o f  pixels during im age segm entation . This choice 

o f values can be thought o f  as a m ixture o f over-pred iction  and under-pred ic tion . The 

behaviour shares sim ilarities w ith the over-predic ted  case o f  section 5.4.2 in that the 

system  u ltim ately  appears to fo llow  its ow n path regardless o f observed  inform ation.
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The d ifference is that in this case the final d irection is not an ex trapo lation  o f  the 

original ground truth trajectory.

5.4.5 Successful tracking with moderate prediction

• • •

Figure 5.59 Measured trajectory output by the vision system (green) compared to 
ground truth trajectory (red) for a 101 frame poor visibility (dry ice fog 
and moving lights) image sequence along a smooth trajectory section.

For this experim ent a u value o f  0.6 and an ^2 value o f 1.5 w ere used. Both o f  these 

values are m id range and represent a m oderate  w eighting  betw een observed and 

predicted data. The rm s translational erro r o ver this 101 fram e sequence w as 24.9m m  

and the rm s rotational e rro r was 3.6 degrees.
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Figure 5.60 Translational error at each frame.
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Figure 5.61 Rotational error at each frame.
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Frame 0 F rame 20

L

Frame 40 Frame 60

Frame 80 Frame 100

Figure 5.62 Vision system output superimposed over observed images. Sequence 
sampled once every 20 frames.
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5.4.6 Successful tracking with moderate prediction

Figure 5.63 Measured trajectory output by the vision system (green) compared to 
ground truth trajectory (red) for a 101 frame poor visibility (dry ice fog 
and moving lights) image sequence along a smooth trajectory section.

For this experim ent a u value o f  0.5 and an Si value o f 1.0 w ere used. B oth o f  these 

values are m id range though they represent less prediction w eighting than the values 

for the previous experim ent (section  5.4.5). The rm s translational erro r over th is 101 

fram e sequence was 27 .2m m  and the rm s rotational error w as 3.6 degrees. T hese 

errors are very sim ilar in m agnitude to those o f the previous experim ent w ith  a 

m arginally  larger translational error and sm aller ro tational error.
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Figure 5.64 Translational error at each frame.
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Figure 5.65 Rotational error at each frame.
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Frame 0 Frame 20

Frame 40 Frame 60

Frame 80 Frame 100

Figure 5.66 Vision system output superimposed over observed images. Sequence 
sampled once every 20 frames.
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5.4.7 Tracking problems with different objects

The EM/E-MRF algorithm was also tested on image sequences featuring another 

object (the “block” object, see chapter 4). Two experimental test sequences 

(including a sharp corner in the camera trajectory) are shown featuring the results 

obtained using firstly, a u value of 0.8 and an S2 value of 3.1 (figures 5.68 to 5.71) 

and secondly, a u value of 0.7 and an S2 value of 4.0 (figures 5.72 to 5.75).

In both cases the algorithm is able to successfully track the 2D position of the 

object in each image throughout the image sequence (although this accuracy does 

deteriorate towards the end of one sequence, the algorithm still manages to broadly 

identify the correct portion of each image as being “object”). Additionally, in both 

cases the 3D position and orientation of the camera is tracked accurately during the 

smooth segment of the camera trajectory (first five frames of the first example and 

first 25 frames of the second example). However, in both cases the estimated 3D 

camera trajectory becomes highly erroneous once the true trajectory encounters a 

sharp comer, despite the fact that the algorithm continues to accurately track the 2D 

position of the object in each image.

It is interesting that the vision algorithm may produce seemingly sensible 

interpretations of 2D image content whilst producing significantly erroneous 3D 

camera position estimates. This may be because the geometry of the object (a 

cuboid) means that views from different directions are not sufficiently different to be 

distinguishable, especially in poor visibility conditions in which parts of the object 

are obscured by clouds of fog. The problems of tracking a tall, thin block in poor 

visibility are similar to those of observing a cylinder (figure 5.67) in good visibility-it 

can appear similar when viewed from many different directions. It is observed that 

the vision system manages to track the object reasonably successfully from image to
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im age, but the sy stem ’s estim ate o f the orien ta tion  o f  the object (w ith respect to its 

ow n vertical axis) deteriorates w ith time.

C
\ Cylinder
/ (orthogonal to page)

Camera > lC am era

Figure 5.67 Two possible views of a cylinder that will 
result in indistinguishable images

5.4.7.1 First experiment with “block” object

This experim ent (figures 5.68 to 5.71) uses a 51 fram e test sequence based on a 

ground-tru th  cam era trajectory  that features a sm ooth ly  curved section 

(approxim ately  first five fram es) follow ed by a sharp corner leading to another 

relatively  sm ooth portion o f trajectory. The vision algorithm  param eters used were a 

u value o f 0.8 and an Sj  value o f 3.1.

The algorithm  was able to accurate ly  and consisten tly  track  the 2D position 

o f the object in each im age fram e over the entire sequence, even after the sharp 

corner in the cam era trajectory  (figure 5.69). H ow ever, after the corner (at 

approxim ately  the fifth fram e), the estim ated  3D  position  and orientation  o f the 

cam era deteriorate linearly  w ith tim e (figures 5 .70 and 5.71). T he estim ated cam era 

path is observed to sm oothly  drift aw ay from  the g round-tru th  path  after the corner 

event (figure 5.68).
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• • •

Figure 5.68 Measured trajectory output by the vision system (green) compared to 
ground truth trajectory (red) for a 51 frame poor visibility (dry ice fog 
and moving lights) image sequence along a trajectory section including a 
sharp corner.

F rame 0 Frame 10
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f

Frame 20 Frame 30

Frame 40 Frame 50

Figure 5.69 Vision system output superimposed over observed images. Sequence 
sampled once every ten frames. The object is tracked (2D) successfully from  
frame to frame throughout the sequence despite a deterioration in the 3D 
measurement of camera position.
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Figure 5.70 Translational error at each frame. The algorithm tracks 3D 
camera position very accurately for the first five frames before 
encountering the corner event in the camera trajectory at 
around the sixth frame of the sequence, afterwhich the error 
increases linearly with time.

Image frame number

Figure 5.71 Rotational error at each frame. The algorithm tracks 3D 
camera position very accurately for the first five frames before 
encountering the corner event in the camera trajectory at 
around the sixth frame of the sequence, afterwhich the error 
increases linearly with time.

20

10

16

14

I "
1 -»

1  =
6

2

0
15 250 5 10 20 30 35 40 45 50

188



5 Results

S.4.7.2 Second experiment with “block” object

This experiment (figures 5.72 to 5.75) uses a 51 frame test sequence based on a 

ground-truth camera trajectory that features a smoothly curved section 

(approximately first 25 frames) followed by a sharp comer leading to another 

relatively smooth portion of trajectory. The vision algorithm parameters used were a 

u value of 0.7 and an S2 value of 4.0.

The algorithm exhibits partial success in tracking the 2D position of the 

object in each image frame over the entire sequence, although with less accuracy 

than in the previous example. Again, after the comer (at approximately the 25^ 

frame), the estimated 3D position and orientation of the camera deteriorates. 

Whereas the errors increased linearly with time in the previous example (figures 5.70 

and 5.71), in this case the estimated camera positions appear to scatter seemingly 

randomly even though the 2D object position is tracked (albeit somewhat clumsily) 

right through to the end of the sequence.
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Figure 5.72 Measured trajectory output by the vision system (green) compared to 
ground truth trajectory (red) for a 51 frame poor visibility (dry ice fog 
and moving lights) image sequence along a trajectory section including a 
sharp corner. The vision system tracks the 3D trajectory with reasonable 
success for the first 25 frames until the corner event is encountered.

Frame 0 Frame 10
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Frame 20 Frame 30

Frame 40 Frame 50

Figure 5.73 Vision system output superimposed over observed images. Sequence 
sampled once every ten frames. The “object” region o f the image is tracked 
(2D) successfully from frame to frame throughout the sequence despite a 
deterioration in the 3D measurement of camera position. The errors in 2D 
tracking of the “object” image region deteriorate towards the end of the 
sequence.
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Image frame number

Figure 5.74 Translational error at each frame. The algorithm tracks 3D 
camera position relatively accurately for approximately the first 
25 frames before encountering the corner event in the camera 
trajectory, afterwhich the error increases towards the end of 
the sequence.
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Figure 5.75 Rotational error at each frame. The algorithm tracks 3D 
camera orientation relatively accurately at first, deteriorating 
towards the end of the sequence and after the trajectory corner, 
despite the fact that the 2D location of the object in each image 
is tracked (albeit imprecisely) throughout the sequence.
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5.5 Recap

Starting error No. iterations before 
convergence

Improves image 
segmentation?

Improves position 
estimate?

28.4mm 3 Yes Yes

56.8mm 4 Yes Yes

85.2mm 0 No No

4.2 degrees 5 Yes No

9.0 degrees 0 No No

Figure 5.76 Sum m ary o f perform ance o f the EM /E-M RF algorithm  on a single im age 
fram e when subjected to various different starting errors. This table 
sum m arises section 5.3.

Visibility Trajectory Object 5i ^2 U 2D tracking of 
object region in 
image?

3D tracking of 
camera positions?

Good Comer Oil rig 1.0 1.0 0.7 Very accurate. Very accurate.
Bad Comer Oil rig 1.0 4.0 0.3 Initially accurate. 

Deteriorates with 
time.

Estimated 
trajectory drifts 
away from ground- 
tmth with time.

Bad Smooth
curve

Oil rig 1.0 1.0 1.0 Fails after short 
period.

Fails after short 
period.

Bad Smooth
curve

Oil rig 1.0 3.0 1.0 Fails. Fails.

Bad Smooth
curve

Oil rig 1.0 1.5 0.6 Tracks throughout 
sequence.

Tracks throughout 
sequence.

Bad Smooth
curve

Oil rig 1.0 1.0 0.5 Tracks throughout 
sequence.

Tracks throughout 
sequence.

Bad Comer Block 1.0 3.1 0.8 Very accurate 
throughout.

Very accurate at 
first, then 
deteriorates with 
time after comer.

Bad Comer Block 1.0 4.0 0.7 Tracks object 
region throughout. 
Accuracy 
deteriorates 
towards end of 
sequence.

Accurate until 
comer event.

Figure 5.77 Sununary o f perform ance o f the EM /E-M RF algorithm  on extended im age 
sequences involving various trajectories, visibility conditions, algorithm  
param eters and observed objects. This table sum m arises section 5.4.
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Discussion

6.1 Discussion of results

6.1.1 Quantity and quality of testing

The choice of examples, presented in chapter 5, might appear somewhat arbitrary 

and limited to some readers. It should be possible (although prohibitively time 

consuming in this case due to the slow running speed of the algorithm in its present 

implementation) to run the vision algorithm very large numbers of times on each 

image sequence and chart the variation in performance with a wide range of 

variations in each parameter, thus determining optimum values. However, the 

usefulness of this approach is limited since different sets of parameter values will be 

required for different video sequences under different visibility conditions. Extensive 

fine tuning of the algorithm for a particular data set is of little help to other 

researchers who may wish to apply ideas from this thesis to future engineering 

problems.

Similarly, when testing individual images with varying starting errors 

(section 5.3), it should be possible to determine the threshold error beyond which the 

algorithm can no longer converge on an improved position estimate. Again, this 

information is of little use since thresholds will be different for all images, varying 

with the object viewed, visibility conditions and the particular view as well as the 

types (orientation or translation) and directions of the starting errors.

Instead, the examples have been carefully selected in order to illustrate the 

various significant kinds of behaviour of the algorithm and the conditions which can 

cause them. In particular, the results chapter has explored the various conditions
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which cause the algorithm to fail, and has demonstrated the different modes of 

failure which result.

6.1.2 Algorithm performance on single images

It has been clearly demonstrated (sections 5.2.2. and 5.2.3) that both thresholding and 

conventional MRF techniques are unable to adequately segment the poor visibility 

test images. In contrast, segmentation by Extended-Markov Random Field produces 

useful results. The quality of the E-MRF segmentation is shown (section 5.3) to 

improve with successive iterations of the EM/E-MRF algorithm.

Section 5.2.5 illustrates how the object model is fitted to the segmented 

image, producing an improved camera position and orientation estimate.

Section 5.3 demonstrates that the EM/E-MRF algorithm is capable of 

accurately locating the (2D) position of objects in poor visibility images. It is also 

able to improve camera position (3D) estimates when subjected to various initial 

translational and rotational errors.

Occasionally (section 5.3.4) the algorithm is observed to accurately locate the 

object in an image (significantly improving the initial estimate of 2D object location 

in the image) while failing to improve or even worsening the 3D camera position 

estimate. This is a result of combinations of rotational and translational errors 

producing similar predicted images to those projected from the true camera location. 

This explanation for the errors is supported by the strong correlation observed 

between rotational and translational errors (see section 5.4.1, figures 5.48 and 5.49). 

These errors may be regarded as a fundamental limitation of vision systems which 

are based on fitting an object model to an observed image. This source of error is 

reduced when using objects with complex geometry and many distinctive features.
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For each image frame, there will be a limiting size of starting error from 

which the algorithm cannot recover. This limit will vary with the geometry of the 

scene being viewed, the directions of the errors and the level of visibility. During 

experiments the algorithm was able to recover good estimates of both the object 

position in the image and the 3D camera position when subjected to a translational 

error of 56.8 mm. When subjected to a rotational error of 4.7 degrees, the algorithm 

was able to accurately locate (2D) the object in the image but was unable to improve 

the error in the 3D camera position estimate. The algorithm was unable to improve 

an initial position estimate with a translational error of 85.2mm or a rotational error 

of 9.4 degrees.

Where the initial error was too big for the algorithm to recover from, the area 

of overlap between the portions of the observed and predicted images containing the 

object were small. This caused the means of the class conditional distribution 

estimates to be very similar resulting in the failure of the algorithm to distinguish 

between object and background classes in the observed image.

6.1.3 Algorithm performance on image sequences

The algorithm was able to accurately track a 201 frame artificially created perfect 

visibility sequence for which the camera trajectory contained a sharp comer. The 

algorithm failed to negotiate sharp trajectory corners with real, poor visibility image 

sequences, although in two examples (section 5.4.7) the algorithm was able to 

continue tracking the 2D position of the object in the images even though the 3D 

estimate of camera trajectory deteriorated following the comer event.

The algorithm successfully tracked a 101 frame image sequence. The image 

sequence was filmed along a smooth trajectory in extremely poor visibility, produced
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by dry ice fog and moving, focussed beam lighting. The rms translational and 

rotational errors while tracking the sequence were 24.9mm, 3.6 degrees and 27.2mm, 

3.6 degrees respectively with two different settings of algorithm parameters.

Parameters of the algorithm can be altered in order to vary the degree to 

which the algorithm utilises predicted data. Both the significance of predicted pixel 

class values during segmentation, and also the weighting during combination of 

predicted (by trajectory extrapolation) and observed (by the vision algorithm) camera 

positions, can be varied.

Excessive use of prediction results in smooth trajectories which deviate from 

the ground truth increasingly with time (section 5.4.2). Too little use of prediction 

results in instability with the estimated trajectory prone to scatter, seemingly 

randomly, as the algorithm fails (section 5.4.3).

The algorithm was tested with an object (the “block” object) the geometry of 

which is not sufficiently complex to provide distinctly different images when viewed 

from different directions in poor visibility. The algorithm was partially successful as 

a “blob” tracker, satisfactorily identifying and tracking the approximate position (2D) 

of the object in the image. The algorithm was partially successful at tracking the 3D 

position and orientation of the camera during the early parts of these sequences for 

which the camera trajectory was relatively smooth. The 3D tracking aspect of the 

algorithm failed once the camera trajectory encountered a sharp corner although the 

algorithm continued to track the 2D position of the observed object in each image.

6.2 Limitations of the algorithm

Currently the vision system needs to be manually initialised. Good estimates of the 

camera position at two successive image frames at the start of each image sequence
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need to be entered into the system by hand. This suggests an application to situations 

in which good visibility conditions suddenly deteriorate. In such a scenario, the 

EM/E-MRF vision system could be initialised by the position estimates derived from 

a conventional, good visibility vision system for the frames immediately prior to the 

onset of poor visibility conditions.

The EM/E-MRF algorithm will only work for images in which the mean 

grey-levels of object pixels and background pixels are significantly different (see 

sections 5.3.3 and 5.3.5). If these class means are approximately equal, the algorithm 

is unable to compensate for erroneous predicted data by accurately distinguishing 

between classes in the observed data. This makes the algorithm unsuitable for 

practical problems involving tracking an object with a similar colour or texture to the 

background. It might also have consequences for attempts to extend the algorithm to 

track one of several similar objects or an object against certain types of clutter.

The EM/E-MRF algorithm will only work if the initial camera position 

predicted for each frame is sufficiently accurate that the position (2D) of the object in 

the predicted image significantly overlaps true object position in the observed image 

(when the observed and predicted images are superimposed). A common 

consequence of this condition not being met is that the above condition of distinct 

class means is not met either (see sections 5.3.3 and 5.3.5).

The geometry of the object being viewed should be sufficiently complex that 

its segmented silhouette appears significantly different from different viewpoints 

even under poor visibility conditions. When objects are viewed that do not 

adequately satisfy this condition, the vision system is often unable to correctly 

extract 3D camera positions, even though the approximate location (2D) of the object 

within each image can often still be detected with some success (see section 5.4.7).
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This work is limited to the case of scenes containing only a single known 

object of interest, for which the vision system possesses an accurate model. The 

problems of distinguishing between a number of different known objects or 

classifying a variety of unknown objects are not addressed.

6.3 Suggestions for tuning the algorithm parameters

Two important parameters of the vision system are u and S2 (see chapters 3 and 5). 

These control the relative weightings between predicted data and observed data 

during image segmentation and also the relative levels of confidence associated with 

camera position estimates derived from fitting the object model to the segmented 

image and those derived from extrapolating the recent camera trajectory.

Both these parameters must be fine tuned to each specific application of the 

algorithm in order to achieve optimum performance. It is necessary to consider, not 

only the visibility conditions which are likely to be encountered, but also the 

expected nature of any camera motion. Poor visibility levels require high S2 values 

(large predicted class value weighting) and low u values (low confidence in observed 

camera position and high reliance on extrapolated camera position), however if the 

camera trajectory is expected to be highly erratic, with large accelerations and rapid 

direction changes, then a low u value will be undesirable since extrapolated camera 

positions are unlikely to be correct. Note that 0 < m < 1 and 0 < , but useful

values for ^ 2  often lie in the range 1.0 < 8 3  < 4.0.

One way to optimise these parameters would be to generate video test 

sequences with known ground-truth, for which both the motion and visibility 

conditions closely resemble those expected in the intended application. With a large 

number of experiments the parameters can then be modified in order to minimise.
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over the set of test sequences, the errors between the vision system outputs and the 

known ground-truth.

In practice, however, it either may not be feasible to create known ground- 

truth test sequences which realistically match the intended application conditions, or 

alternatively both the visibility and motion conditions may be highly variable. In 

such cases it would be desirable to enable the vision system to automatically adjust 

these parameters in response to varying conditions. This idea is discussed as further 

work in section 6 .6 .

6.4 Real-time issues

The EM/E-MRF vision system does not at present run in real time. Currently the 

software, implemented in JAVA and running on an off-the-shelf 3GHz PC, takes 

between several minutes and an hour to analyse a single image, depending on how 

many EM iterations take place before convergence. This work therefore serves as 

proof of principle and is not yet ready for application as a useful working system.

During this work, the computer code was designed primarily for clarity and 

simplicity and no attempt was made to optimise the code for speed of operation. It is 

likely that some rearrangement and optimisation of the code would result in 

improved speed.

The algorithm has so far been implemented in Java (Borland J-Builder). It is 

generally accepted that other languages are better suited to speed critical 

applications. It is likely that implementing the software in C-H+ would lead to a 

significant improvement in speed.

By far the most time consuming part of the algorithm is the non-linear 

optimisation of camera position estimate when best fitting the object model to the
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segmented image. This is computationally expensive since every increment in 

camera position during successive iterations of the non-linear optimisation requires a 

corresponding predicted image to be projected for comparison with the segmented 

image. During this work, Powell’s method was used primarily for convenience since 

it was already available in a compatible coded form. Alternative optimisation 

strategies might usefully sacrifice accuracy of fitting and robustness for increased 

speed, especially since further refinement can take place during successive EM 

iterations.

Most algorithms can be speeded up by using dedicated hardware including 

programmable logic chips or “hardwiring” algorithms directly into specialised chips. 

Such technology could be expected to significantly increase the speed of the system.

Moore’s law (Denning [1997]) expects that the speed of computers will 

double every eighteen months. This rate of improvement is expected to continue over 

the next two decades. The algorithm in its present, un-optimised form, can therefore 

be expected to operate in real time on a conventional PC within 20 years.

It should also be noted that speed is relative and application specific. A 

slowly operating algorithm performs as well with a slowly moving camera as a high 

speed algorithm performs with a fast moving camera. It is possible that applications 

for this work might arise which involve relatively slowly changing scenes.

Finally, this work has usefully demonstrated the principle that predicted data 

can be combined with observed data in order to enable machine vision in poor 

visibility conditions. There may be alternative or modified methods by which these 

two kinds of data can be combined which will prove better suited to real time 

applications.
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6.5 Original contributions in this work

• The use of a predicted image (projected from an initial estimate of camera 

position) to estimate class conditional probability distributions and a 

discriminating threshold value during image segmentation.

• A method by which class condition distributions are progressively re-learned and 

refined, both with successive iterations during the analysis of each image and 

also from image to image over an extended image sequence, thus exhibiting 

machine learning and response to variable visibility conditions.

• Use of the E-MRF segmentation technique within an iterated feedback loop. The 

E-MRP is used as part of a process which outputs an improved estimate of 

camera position based on a less good initial position estimate. The output of this 

process is then recycled resulting in an Expectation Maximisation feedback 

process.

• Creation of test image sequences with known ground truth. These are extended 

real image sequences of several hundred frames, filmed along six degree of 

freedom camera trajectories, featuring a variety of known objects, filmed in poor 

visibility with known ground truth in terms of camera position and orientation at 

each frame in addition to camera intrinsic calibration data and a lens distortion 

model.

• Use of synchronised good visibility calibration sequences and poor visibility test 

sequences to provide ground truth. The camera positions extracted from the
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calibration sequence at each frame are used to provide ground truth for the 

corresponding images in the poor visibility test sequence.

6.6 Further work

6.6.1 Improving the vision algorithm

The image model used in the vision system is overly simplistic for two reasons:

• Class conditional distributions are modelled as uni-modal normal distributions. 

This is a useful approximation since the true class-conditional histograms are 

often uni-modal and bell shaped (see figure 5.3, section 5.2.2). However, in the 

presence of focussed beam spotlights and severe back-scattering, both the object 

being viewed and the background may at times become multi-modal since 

regions of the (mostly bright) object can appear very dark and regions of the 

(mostly dark) background can appear very bright.

• The same class conditional distributions are assumed for all regions in the image. 

This assumption is not always valid since both lighting and visibility conditions 

can vary with position in the image.

It is therefore suggested that, firstly, class conditional distributions be modelled as 

multi-modal, possibly using histograms or some form of Gaussian mixture model, 

and secondly, that an adaptive method be adopted such that these distributions can 

vary with image position. Ideally, each pixel should be modelled with a unique pair 

of class conditional distributions which are based on data from a local region 

surrounding that pixel. The size of this region will be crucial in its effect on 

generality and over-fitting or under-fitting of the image model to the observed data.
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It is also apparent that more use can be made of predicted data. Not only can 

the position of the camera at the next frame be estimated, but it should also be 

possible to estimate the forms of the class conditional distributions at the next frame. 

It may prove useful to allow the form of class conditional distributions to be 

influenced by those of the previous frame. This might help from the point of view of 

reducing noise and also might improve computation speed by providing a good 

starting point for any process that refines distribution estimates.

Two important parameters of the vision system are u and S2 (see chapters 3 

and 5). These control the relative weightings between predicted data and observed 

data and the confidence associated with extrapolated camera positions. Ideally these 

values should be self tuning and automatically adjusted as visibility conditions vary 

(see section 6.3). Such a system would require a method for detecting and 

quantifying “goodness of visibility”. Different kinds of image degradation 

(attenuation, occlusion, back-scatter) may require different settings. This is a 

complex problem without obvious solutions. One possible approach would be to 

measure the difference or separability of object from background for each frame after 

segmentation. This measurement could then be used to determine the levels of 

prediction used to tackle the next frame in the sequence. Perhaps Fisher’s 

discriminant ratio (the square of the difference between class means divided by the 

sum of class variances) could be used as a separability measure. Similarly, a measure 

for “trajectory smoothness” should be considered, and this could be computed from 

recently measured camera positions.

Another important parameter is (see chapters 3 and 5), which determines 

the significance of the spatial portion of the MRF neighbourhood (i.e. significance of 

the class of nearest neighbour pixels). During this work, attention was focussed on

204



6 Discussion

investigating different values of S2 which determines the significance of a predicted 

pixel class. Comparatively little attention was paid to .Si, which was set to 1.0 on the 

basis of a few experiments with a small number of images. Further work needs to be 

undertaken to determine optimum relative weightings between S\ (spatial), S2 

(predictive) and the class conditional components during segmentation.

As has been mentioned previously (section 6.3), the speed of the algorithm 

might be improved by using an alternative to Powell’s method for the non-linear 

optimisation involved in best-fitting the object model to the segmented image. An 

alternative optimisation strategy might profitably sacrifice accuracy of fitting for 

improved speed, especially since further refinement is always possible during later 

EM iterations. Possible modifications might include limiting the number of iterations 

of the optimisation algorithm and enlarging the minimum step size that the algorithm 

can move along each parameter.

6.6.2 Improvements to data set development

In chapter 4 (section 4.4.8) several suggestions were made as to how the practical 

process of generating test sequences might be improved. These are summarised as 

follows:

• The robot trajectory should be programmed such that the camera has a good view 

of all three targets in every frame. This reduces the errors caused by 

translation/rotation equivalence.

• The camera should be calibrated from a set of images filmed at a variety of 

different ranges from the targets. This prevents over-fitting to points lying in the 

target planes and under-fitting to points in the space outside of those planes.
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• The objects to be viewed should be constructed such that they largely fill the 

volume of space within the calibration targets. This prevents error magnification 

when the camera moves in from a wide view of the targets to a close-up view of a 

relatively small object.

Additionally, it would be useful to define a measure of visibility and a more 

systematic way to classify and compare different kinds of image degradation. Ideally 

image sequences should be filmed at a range of specific and consistent visibility 

levels. It might be possible to maintain relatively consistent visibility conditions by 

means of a fog chamber. An image sequence in which visibility gradually 

degenerates with time would also be a useful way of observing the visibility level at 

which the vision system begins to fail.

6.6.3 Improvements to testing and analysis

In chapter 5, errors were presented in terms of translational and rotational 

components relative to a world co-ordinate system. It might also be useful to 

visualise errors with respect to a co-ordinate frame set in the camera itself. Thus 

errors could be expressed in terms of role, pitch and yaw of the camera and 

translations parallel to the image plane (up-down, left-right) and the optical axis of 

the camera (forwards-backwards or “range”). The error source identified in section

5.3.4 (see figure 5.44) could be better investigated and understood by seeking 

correlation between specific directions of rotational and translational error relative to 

the camera. Errors in terms of a co-ordinate system set in the camera should be 

computable from existing data.

206



6 Discussion

As mentioned in the previous section, it would be desirable to create new test 

sequences featuring various different consistent and distinct visibility levels. If this 

could be achieved, the algorithm could be systematically tested to determine at what 

level of poor visibility it fails. These experiments could also cover various different 

specific and distinct kinds of image degradation.

6.7 Summary

Throughout the history of computer vision research, object recognition and tracking 

algorithms have been developed predominantly for good visibility applications. 

These algorithms typically rely on detecting edges, lines and corners of the object 

being observed. Such systems, dependent on identifying detailed features, are 

unsuitable for conditions of extremely poor visibility which are often encountered in 

the real world and under which the human visual system is often capable of 

functioning successfully.

This thesis presents a novel algorithm for the interpretation of scene content 

and camera position from extremely poor visibility images. The algorithm is capable 

of tracking camera trajectories over extended image sequences under conditions of 

extremely poor visibility.

The algorithm combines observed data (the current image) with predicted 

data derived from prior knowledge of the object being viewed and an estimate of the 

camera’s motion.

It has been shown that an Extended-Markov Random Field technique can be 

used to combine these two kinds of data. The E-MRF extends Markov dependency to 

include contributions from corresponding pixels in a predicted image. It has also

207



6 Discussion

been shown how interpretations of scene content and camera position can be 

mutually improved using Expectation-Maximisation.

The resulting algorithm exhibits elements of continuous machine learning. 

Statistical image models are continuously relearned, both during the analysis of each 

frame and also with successive frames over an entire image sequence. The algorithm 

is therefore able to adapt to changing visibility conditions.

Suggestions have been made for ways in which the algorithm might be 

improved by increasing the generality of the statistical image model and by allowing 

certain parameters of the algorithm to vary automatically with changing visibility 

conditions.

Poor visibility image sequences of known objects, filmed along pre-measured 

trajectories with a calibrated camera have been constructed in order to provide test 

data with underlying ground truth. Using this data, the EM/E-MRF algorithm has 

been tested on a large number of images, over a range of visibility conditions, 

camera trajectories, algorithm parameters and observed objects.

The algorithm has been shown to accurately segment poor visibility images 

given a range of errors in the initial camera position estimate for those images. The 

camera position for these images is recovered. Various sources of error have been 

identified and explored and some important failure behaviours of the algorithm have 

been illustrated.

The algorithm has been tested on extended image sequences including 

examples for which the camera moved on both smooth trajectories and trajectories 

containing abrupt changes of direction. Both poor visibility real image sequences and 

artificially created good visibility sequences have been tested. Sequences containing 

objects of both distinctive, complicated geometry and also overly simple geometry
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were used. The performance of the algorithm has been investigated both in response 

to these different kinds of image sequence and also in response to varying key 

parameters of the algorithm.
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Calibration data

The following calibration data were computed from the calibration sequence 
described in chapter 4 and apply to all the test sequences used in the thesis.

Intrinsic camera parameters

a Ï Mq "790.18 0 361.r
0 P ^0 = 0 869.81 313.13
0 0 1 0 0 1

Mo, vq are co-ordinates of the principal point (in pixels).

(2 , are equal to focal length multiplied by number of pixels per unit length (in u 
and V directions respectively, units in pixels).

y is a measure of skewness between u and v directions in the pixel array, which in 
this work was assumed to be square.

Lens distortion parameters

= -3.475x10-’ 

k2 = 2.0335x10'" 

such that:
M = u-\ -{u-Uo)(k^r^

and V = v-i-(v-VQ)(/:,r^-1-^ 2 ^^)

where = {u -U o f + {v -V o f

and(M,v)and ( m , v )  are the pixel co-ordinates on a true pinhole image and a radially 
distorted image respectively.

Target relations transformations

These are rigid body transformations which map the spot co-ordinates from one 
target onto another.

Transformations are expressed in the form {x y z cô CÛ2 <̂ 3 ) where the first 
three numbers represent translation (in mm) and the second three numbers are a
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vector whose direction is that of the axis of rotation and whose magnitude is the 
angle of rotation (in radians) about that axis.

All transformations are relative to the world co-ordinate system, chosen to be that of 
the base target (target 1). See figure 4.8, section 4.2.4 for target designation, layout 
and co-ordinate axes.

Transformation from target 2 to target 1 
(251.2, -38.2, -5.3, -0.024, 2.221, 2.222)

Transformation from target 3 to target 1 
(-38.7, -52.2, -4.2, 1.199, 1.205, 1.212)
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