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Abstract 

Tissue engineering materials play a key role in how closely the complex architectural and functional 

characteristics of native healthy tissue can be replicated. Traditional natural and synthetic materials are 

superseded by bespoke materials that cross the boundary between these two categories.  Here we 

present hydrogels that are derived from decellularised extracellular matrix and those that are synthesised 

from de novo α-helical peptides. We assess in vitro activation of murine macrophages to our hydrogels 

and whether these gels induce an M1-like or M2-like phenotype. This was followed by the in vivo immune 

macrophage response to hydrogels injected into rat partial-thickness abdominal wall defects. Over 28 

days we observe an increase in mononuclear cell infiltration at the hydrogel-tissue interface without 

promoting a foreign body reaction and see no evidence of hydrogel encapsulation or formation of 

multinucleate giant cells. We also note an upregulation of myogenic differentiation markers and the 

expression of anti-inflammatory markers Arginase1, IL-10, and CD206, indicating pro-remodelling for all 

injected hydrogels. Furthermore, all hydrogels promote an anti-inflammatory environment after an initial 

spike in the pro-inflammatory phenotype. No difference between the injected site and the healthy tissue 

is observed after 28 days, indicating full integration. These materials offer great potential for future 

applications in regenerative medicine and towards unmet clinical needs. 
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1. Introduction 

The repair or replacement of damaged tissue using tissue engineering strategies is strongly influenced by 

the material selected to mimic the architecture and functional characteristics of native healthy tissue. 

Published sources of bespoke materials are either biologically derived or synthetic.[1, 2] In vitro response 

to these biomaterials is usually assessed by their ability to promote specific cell responses.  However, it is 

the host immune response to implanted biomaterials that is the critical, if not the defining, determinant 

of clinical success or failure.[3, 4] A desirable host response relies on cell infiltration and material 

integration/ remodelling in support of an optimal functional outcome. Prolonged inflammation typically 

results in the formation of granulation tissue or fibrous capsules,[5] seroma, scars and encapsulation.[6] 

Such an effect results in the isolation of the implanted material from the surrounding healthy tissue and 

prevents the formation of new functional tissue. Macrophages represent a major cellular component of 

the innate immune response to biomaterials. These cells show diverse plasticity in their functions ranging 

from pro-inflammatory to anti-inflammatory and reparative phenotypes.[7, 8] Contrary to accepted 25-

year dogma, macrophages, among other cell types such as muscle-specific regulatory T cells and satellite 

cells,[9] are essential for normal tissue development.[10-13] Macrophages are necessary for successful 

tissue and organ regeneration in regenerative species such as the axolotl,[14, 15] and have the ability to 

affect stem cell/ progenitor cell differentiation,[16] and proliferation (i.e., are not necessarily “end stage” 

cells).[17] Given this relatively recent understanding of macrophage biology and their role in critical life 

processes, the signalling molecules, physical factors, and environmental factors that influence 

macrophage phenotype are of great interest to the biomaterials community.  

 

Naturally occurring biomaterials composed of extracellular matrix (ECM), such as decellularised 

tissues[18-20], have been shown to contain a variety of potent signalling molecules that are released or 

exposed during degradation of the matrix.  These include cryptic peptides,[14] cytokines and 
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chemokines,[20, 21] and, most recently, embedded matrix bound nanovesicles (MBV).[22] In addition to 

the chemical cues, these materials provide physical signals such as material stiffness, pore size, and load 

transfer,[20] which have all been shown to influence macrophage phenotype.[23] Several  tissue types 

have been decellularised and used either in their original form, as sheets[24], or  as injectable hydrogels. 

[20] The tissues used include dermis,[25, 26] small intestinal submucosa (SIS),[27-29] urinary bladder 

matrix (UBM),[30, 31] liver,[32] tendons,[33] and whole limbs[34]. The use of decellularised ECM in clinical 

applications is commonplace with several FDA-approved ECM products currently available on the market 

including AlloDerm®, NeoForm™, GraftJacket®, Strattice™, Meso BioMatrix®, SynerGraft® Oasis® and 

Surgisis®.  

 

There have been many attempts to mimic properties of the native ECM within synthetic biomaterials.[35-

37] It is possible to study individual ECM proteins and to design peptides that are capable of hydrogel 

configurations.[38-42] Some aspects of the complexity of naturally occurring ECM can be incorporated 

through the addition of cell-guiding chemical moieties.[43-45] The use of synthetic peptides to accomplish 

these ends is not new, and there are several reports of natural proteins that are used to create hydrogels 

suitable for clinical applications.[46-48] The benefits of the previously described hydrogelating self-

assembling fibre (hSAF) system include their stable α-helical structure, modifiable chemistry and ability to 

form at low concentrations compared to other peptide-based systems.[42, 43, 49] Briefly, the hSAF 

system is formed from two complementary de novo designed α-helical peptides. The two peptide 

sequences form sticky-ended dimers that assemble end-to-end to form fibres. At mM concentrations, the 

mixed hSAF peptide fibres form self-supporting hydrogels. Combined with added chemical functionality, 

such as the addition of adhesive ligands, these gels offer at least partial control over cell adhesion, 

migration and differentiation[43], all characteristics of a material with high clinical translational potential.  
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While there are clear compositional differences between SIS, UBM and hSAFs, they all form hydrogels 

with fibrous networks through which cells can migrate and form three-dimensional constructs. Herein, 

we investigate the macrophage response to injectable UBM, SIS, bovine collagen (type I; FibriCol) and 

hSAF hydrogels in a partial thickness abdominal wall defect model in Sprague Dawley rats over 28 days, 

using the native tissue for comparison. Macrophage interaction with these materials will provide a pre-

clinical indicator of the likely cell response in vivo and offer insights into strategies for promoting cell 

infiltration and functional restoration of damaged tissue.  

 

2. Materials and Methods 

2.1 Material Preparation 

2.1.1 Small Intestinal Submucosa 

Porcine small intestinal submucosa (SIS) was prepared using previously described methods [50]. Briefly, 

the intestine was flushed with double distilled water, opened horizontally and most of the tunica mucosa, 

and entirety of tunica serosa and tunica muscularis externa were removed using a scraper. The remaining 

tunica submucosa and basilar layers of the tunica mucosa were cut to 80 g particles and shaken at 300 

rpm for 2 hrs at room temperature in 0.1% peracetic acid (v/v) (Rochester Midland, USA) with 4% ethanol 

(v/v) (Decon Laboratories, USA) in Type I H2O. Tissue was washed thrice in Phosphate Buffered Saline (PBS; 

Fisher Scientific, USA) and sterile water and shaken at 300 rpm for 15 mins each before being frozen 

overnight at -20°C, cut into 1 cm x 1 cm sections, lyophilised and milled using a 60 µm mesh on a Wiley 

Mill (GE Motors & Industrial Systems, USA). Milled small intestinal submucosa (SIS) was stored at room 

temperature and in the dark until required.    

 

2.1.2 Urinary Bladder Matrix 
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Urinary bladders were harvested from market-weight (N240 lbs.) pigs (Animal Biotech Industries, USA). 

The bladders were decellularised as previously described [51]. Briefly, they were rinsed using double 

distilled water and the urethra and ureter removed. The bladders were opened along their length and a 

bevelled scraper was used to stretch the muscle across the abluminal surface of the tissue. The tunica 

serosa, tunica muscularis externa, tunica submucosa and muscularis mucosa were gently removed by 

making a shallow incision along the length of the bladder (from the apex to the neck). The remaining 

tunica propria and basement membrane were submerged in double distilled water to reveal any remnant 

muscle fibres. These remaining fibres were removed and the urinary bladder matrix (UBM) was cut to 80 

g particles and shaken at 300 rpm for 2 hrs at room temperature in 0.1% peracetic acid (v/v) with 4% 

ethanol (v/v) in Type I H2O. The UBM was then washed thrice in PBS and sterile water on an orbital shaker 

at 300 rpm for 15 mins each before being frozen overnight at -20°C, cut into 1 cm x 1 cm sections, 

lyophilised and milled using a 60 µm mesh on a Wiley Mill. Milled UBM was stored at room temperature 

and in the dark until required.    

 

2.1.3 hSAF Peptides 

Two complementary peptides (hSAF-p1 and hSAF-p2) were synthesised as previously described.[49] 

Briefly, the peptides were synthesised on a 0.1 mmol scale by solid phase peptide synthesis on a CEM 

“Liberty Blue” microwave-assisted peptide synthesiser (CEM, USA) using fluorenylmethyloxycarbonyl 

(Fmoc) chemistry. After cleavage from the resin, the peptides were purified by reverse-phase HPLC (Jasco, 

UK) on a Luna C18 column (5 µm, 100 Å, 4.6 mm x 150 mm ID), and their masses confirmed by MALDI-TOF 

mass spectrometry (Applied Biosystems 4700 Proteomics MALDI-TOF Analyzer). Peptides were then 

lyophilised and stored under air at 4°C until required.  

 

2.2 Hydrogel Preparation 
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For SIS and UBM the lyophilised powders were first digested using 1 mg/mL pepsin (Sigma, USA) in 0.01 

N HCl for 48 hrs at room temperature whilst continuously stirring. Digested SIS and UBM were neutralised 

using 0.1 N NaOH and PBS to concentrations of 8 mg/mL (SIS) and 15 mg/mL (UBM). Collagen hydrogels 

(FibriCol, Advanced Biomatrix, USA) were formed according to manufacturer’s instructions to a 

concentration of 8 mg/mL. 1 mM hSAF hydrogels were produced using previously described methods.[43] 

 

2.3 Bone Marrow-derived Macrophage Isolation and Culture 

Bone marrow-derived mononuclear cells were obtained from female C57bl/6 mice (Jackson Laboratories,  

USA) and differentiated into macrophages using a previously described technique [29]. In brief, the femur 

and tibia were isolated and washed in supplemented Dulbecco’s Modified Eagle’s Medium (S-DMEM) 

containing DMEM high glucose (Gibco, USA), supplemented with 10% fetal bovine serum (FBS) 

(Invitrogen, Carlsbad, USA), 10% L929 cell supernatant, 50 mM beta-mercaptoethanol (Gibco, USA), 100 

U/mL penicillin, 100 µg/mL streptomycin, 10 mM non-essential amino acids (Gibco, USA), and 10 mM 

Hepes buffer. After removing the ends of each bone, the marrow was flushed using a 30-gauge syringe 

needle filled with S-DMEM. Cells were then centrifuged at 1500 g for 5 mins before filtering through a 70 

µm cell filter.  

The effect of the hydrogels on the differentiation of monocytes into macrophages was evaluated and 

compared with differentiated cells cultured on tissue culture plastic. 24-well plates previously coated with 

one of the test hydrogels (1 mM hSAF, 8 mg/mL collagen, 8 mg/mL SIS, and 15 mg/mL UBM to match 

stiffnesses between the hydrogels to 1 kPa; Figure S1) [42, 52, 53] or uncoated controls were seeded with 

1 x 10^6 cells per well in S-DMEM and were incubated at 37°C, 5% CO2 and 100% relative humidity and 

the media changed every 48 hrs.  

 

2.4 Macrophage Activation and Immunolabeling 
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After 7 days of differentiation the expression of macrophage activation markers was evaluated on 

macrophages seeded on the hydrogel coated plates and uncoated tissue culture plastic controls. As 

controls of macrophage activation, 100 ng/mL LPS (Sigma Aldrich, USA) and 20 ng/mL IFN-γ (Peprotech, 

USA) to induce M1 macrophage activation, 20 ng/mL IL-4 to induce M2 macrophage activation were used. 

After 24 hrs of induced activation the cells were washed with PBS and fixed for 1 hr with 2 % 

paraformaldehyde (Fisher Scientific, USA) (500 µL on tissue culture plastic, 1 mL for hydrogels; and 700 µL 

for tissue culture plastic control samples). The cells in all wells (hydrogel and tissue culture plastic controls) 

were then washed three times with PBS before 1x blocking buffer was added (1 mL for hydrogels/ 500 µL 

for uncoated samples) and the samples incubated at room temperature for 1 hr. After removing the 

blocking buffer, 500 µL of the primary antibody (monoclonal rat anti- murine F4/80 (CI-A3-1) (Novus 

Biologicals, USA), rabbit anti-murine Fizz1 (RELMa; Peprotech, USA), polyclonal rabbit anti-iNOS (Novus 

Biologicals, USA) and polyclonal rabbit anti-liver Arginase1 (Abcam, USA) was added (1:100 in blocking 

buffer for each) and incubated overnight at 4°C. The following day, the primary antibody was removed 

and the samples washed twice with PBS before 500 µL of the Alexa Fluor 488-conjugated secondary 

antibody (Invitrogen, USA) was added to each well (1:200 in blocking buffer goat anti-rat for F4/80 and 

goat anti-rabbit for iNOS, Fizz and Arginase1 and the samples incubated at room temperature in the dark 

for 1 hr.  After incubation the samples were washed twice with PBS before the cell nuclei were 

counterstained with 500 µL 4’ 6-diamidino-2-phenylindole (DAPI; 500 nM in type I water) (Sigma Aldrich, 

USA) and incubated in the dark at room temperature for 5 mins. The samples were washed again with 

PBS and left in fresh PBS before they were imaged blindly. Images of three 200X fields were taken for each 

of the three wells (for each condition) using an inverted live-cell microscope (Zeiss, USA), standardising 

the light exposure times based on those set for cytokine-treated macrophages. The percent of positive 

cells for each marker was quantified using CellProfiler Image Analysis Software 

(http://www.cellprofiler.org), positive macrophages (green label) were identified by their co-localisation 

about:blank
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with DAPI positive nuclei. The percent of expressing macrophages was then determined by dividing the 

identified positive cells by the total number of macrophage nuclei. Three biologic replicates were 

evaluated, and three images were analysed for each marker per replicate. 

 

2.5 In Vivo Studies of SIS, UBM, hSAF and Collagen 

All animal experiments were conducted in accordance with the NIH Care and Use of Laboratory Animals 

guidelines. Female Sprague-Dawley rats (~250 g; Envigo, USA) were anaesthetised using 2-3% isofluorane 

(Baxter, USA) and their abdominal area shaved. They were then sterilised using 70% ethanol and Betadine 

solution (Purdue Pharma, USA). A midline skin incision was made on the abdominal wall to expose the 

abdominal muscles (Figure 1). 1 cm2 bilateral partial thickness abdominal wall defects were created by 

removing the internal and external oblique muscles and retaining the transversalis fascia and peritoneum. 

Defects were marked at the border with four-point sutures using non-degradable polypropylene sutures 

(Med-Vet International, USA). Defects were then injected with 150 µL of the hydrogel solution being 

tested. Gel concentrations were determined from rheological studies to ensure a similar stiffness of 

material, 1 kPa, was used for the in vivo studies (Figure S1). [42, 52, 53] Collagen (FibriCol, Advanced 

BioMatrix, USA) was prepared according to manufacturing protocols to produce a final concentration of 

8 mg/mL. For hSAF hydrogels 2 mM hSAF-p2 in 3-(N-morpholino) propanesulfonic acid (MOPS)-buffer (20 

mM MOPS, 5 mM sodium acetate, 1 mM EDTA (Fisher Scientific, USA) pH 7.4 was added to a syringe 

containing 2 mM hSAF-p1 immediately before injection at a total gel concentration of 1 mM. All materials 

were gelled in situ based on gelation times determined from the rheological studies (Figure S1C) before 

the wound was closed using vicryl sutures (Medsurplus online, USA). Two types of controls were used for 

this study; abdominal wall with no injury and abdominal wall with defect to match the time points of the 

study but with no material injected.  
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Post-surgery the animals were given a daily dose of 0.05 mg/kg buprenorphine hydrochloride (Buprenex) 

(Covetrus, USA) by subcutaneous injection and 5 mg enrofloxacin (Baytril (Bio-Serv, USA)) orally for the 

first three days. The tissue at the injection site was explanted at 1 day, 3 days, 7 days, 14 days or 28 days 

after surgery (N=3 for each time point). Samples were excised using 8 mm punch biopsies and fixed in 

either 2.5% glutaraldehyde (for scanning electron microscopy) or 10% Neutral Buffered Formalin (NBF; 

for histology and fluorescent microscopy (VWR, USA) or frozen in liquid nitrogen and stored at -80°C for 

polymerase chain reaction (PCR).  

 

 

Figure 1: Cartoon representation of the surgical model and study outline. (A) Bilateral partial thickness 

defects were created on the abdominal wall of female Sprague-Dawley rats measuring 1 cm by 1 cm. (B) 

The three-part study consisted of matching macro physical properties, in vitro characterisation and in vivo 

characterisation of the defect (wound alone with no hydrogel injected), collagen hydrogels, SIS hydrogels 

(small intestinal submucosa), UBM hydrogels (urinary bladder matrix) and hSAF hydrogels (hydrogelating 

self-assembling peptides).  
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2.6 Scanning Electron Microscopy 

Three samples for each condition were fixed in 2.5% glutaraldehyde for 1 hr and triple washed in PBS for 

15 mins each. They were then dehydrated in graded ethanol (30%, 50%, 70%, 90% and 100% v/v in distilled 

H2O) for 15 mins each and critical point dried at 50 bar.  The dried samples were then sputter coated with 

5 nm of gold-palladium and imaged using a JEM-6335F scanning electron microscope (Jeol, USA) at a 

working distance of 8 mm and magnifications of 25X, 200X, 1000X and 5000X.  

 

2.7 Histology 

The NBF samples were embedded in paraffin, cut into 5 µm thick sections, and mounted onto glass slides. 

Hematoxylin and eosin (H&E; Sigma-Aldrich, USA) staining was performed following manufacturer’s 

instructions, and after deparaffinisation using xylene and graded series of ethanol solutions (100%, 95%, 

75%). Stained slides were dehydrated using a graded series of ethanol solutions (75%, 95%, 100%) prior 

to cover-slipping. Three biologic replicates with three different images were taken from each sample at 

the gel-tissue interface. A total of nine images were analysed per group and time point at 200X 

magnification.  

 

2.8 Immunolabeling of Explants 

5 µm sections of the explanted tissues were cut and mounted onto slides in paraffin. Deparaffinisation 

was performed by dipping the slides in xylene (Fisher Scientific, USA) three times for 3 mins each, which 

was followed by one min washes in 100 % ethanol, 95 % ethanol (in type I water) and 70 % ethanol. The 

slides were then rinsed under running tap water for 2 mins before they were placed in 10 mM antigen 

retrieval buffer at 95-100°C for 20 mins. The samples were cooled on ice to 35°C and washed twice in TRIS 
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buffered saline/Tween 20 buffer (Sigma Aldrich, USA) for 3 mins each. After two washes in PBS for 3 mins 

each, the slides were dried and incubated in 1x blocking buffer at room temperature for 1 hr in a 

humidified chamber to inhibit non-specific binding. After incubation with the blocking buffer the slides 

were incubated overnight in the primary antibody (a triple stain of rabbit anti-human CD86 (clone 

EP1158Y, Abcam, USA; an M1-phenotype marker) and mouse anti-rat CD68 (clone ED1, Abd Serotec, USA; 

a macrophage marker) 1:150 in blocking buffer and goat anti-human CD206, polyclonal, (R&D systems, 

USA; an M2-phenotype marker) 1:100 in blocking buffer) at 4°C.  

The following day the primary antibody was removed, slides washed three times in PBS for 3 mins each 

and secondary antibodies were added: donkey anti-mouse Alexa Fluor-594 (1:200 dilution, Invitrogen, 

USA), donkey anti-rabbit PerCPCy5.5 (1:300 dilution, Santa Cruz, USA), and donkey anti-goat Alexa Fluor-

488 (1:200 dilution, Invitrogen, USA) and incubated in a dark humidified chamber for 1 hr at room 

temperature. Slides were washed three times in PBS for 3 mins each, cell nuclei stained using 500 nM 

DAPI in type I water for 5 mins, dipped in type I water for a final wash and mounted with DAKO Mounting 

Media (Carpinteria, USA) before covering with a cover slip. Three multispectral epifluorescent images 

were acquired for each of the three biological replicates at the mesh-tissue interface (Nuance 

Multispectral Imaging System, CRi Inc., USA) at 200X magnification. 

Macrophages were defined as CD68 positive co-localised with nuclei. The total number of cells co-

expressing CD68 with CD86 and/or CD206 was quantified for each image using CellProfiler Image Analysis 

Software (http://www.cellprofiler.org). The M1-like subpopulation was calculated by subtracting the 

number of triple-labelled CD68+CD206+CD86+cells from the CD68+CD86+cells, to avoid duplicating cell 

counts. Similarly, the M2-like subpopulation of macrophages was calculated by subtracting the number 

of triple-labelled CD68+CD206+CD86+cells from the CD68+CD206+cells. A ratio of the number of M2-like to 

M1-like cells was calculated for each field by dividing the number of M2-like macrophages by the number 

of M1-like macrophages. 
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2.9 Polymerase Chain Reaction 

Total RNA was extracted from tissue sections (three biological replicates and three technical replicates for 

each sample) by homogenising the samples with 1000 µL TRIzol reagent (Ambion, USA) using TissueRuptor 

disposable probes (Qiagen, USA) 800 µl of each of the homogenised samples was mixed with 200 µL 

chloroform, vortexed for 15 secs and centrifuged at 12,000 g for 10 mins. The aqueous phase was then 

transferred to a new tube and the RNA precipitated with 3M sodium acetate (1/10 of the volume; 

Novagen, USA) and isopropanol (1 volume; Fisher Scientific, USA), followed by centrifugation at 18,000 g 

for 20 mins. The extracted RNA was purified by washing the pellet in 75% ethanol with an additional 

centrifugation at 18,000 g for 15 mins. The RNA pellet was air-dried and resuspended in nuclease-free 

water. 1 mg of RNA was converted to cDNA using a High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems, USA) according to manufacturer instructions. Real-time quantitative polymerase chain 

reaction (qPCR) was conducted using PowerUp™ SYBR® Green Master Mix (Applied Biosystems, USA) to 

determine the expression levels of different macrophage activation markers (TNF-α, IL-1β, IL-10, and 

Arginase1) and mononuclear signals of myogenesis (MyF5, MEF2, Myogenin, and MHC) Table 1. The levels 

of expression were normalised against the housekeeping gene GAPDH. Results were expressed as Log(2) 

of fold change (2-ΔΔCt) relative to native muscle. 

 

Table 1: Primer sequences 

TNF-α 

F: 5´-ATACACTGGCCCGAGGCAAC-3´ 

R: 5´-CCACATCTCGGATCATGCTTTC-3´ 

IL-1β F: 5´-CTCTGTGACTCGTGGGATGATG-3´ 
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R: 5´-CACTTGTTGGCTTATGTTCTGTCC-3´ 

IL-10 

F: 5´-CCTTACTGCAGGACTTTAAGGGTTA-3´ 

R: 5´-TTTCTGGGCCATGGTTCTCT-3´ 

Arginase1 

F: 5´-CATATCTGCCAAGGACATCG-3´  

R: 5´-GGTCTCTTCCATCACTTTGC-3´ 

MHC 

F: 5´-TGACTTCTGGCAAAATGCAG-3´ 

R: 5´-CCAAAGCGAGAGGAGTTGTC-3´ 

MyF5 

F: 5´-GAAGGGAAGACAAGCAGCAC-3´ 

R: 5´-GCAAAAAGAACAGGCAGAGG-3´ 

Myogenin 

F: 5´-CAGTGAATGCAACTCCCACA-3´ 

R: 5´-CAAATGATCTCCTGGGTTGG-3´ 

MEF2 

F: 5´-TGCTGCTCTCACTGTCACTAC-3´ 

R: 5´-TTCACGACTTGGGGACACTG -3´ 

MyoD 

F: 5´-CGACTGCCTGTCCAGCATAG-3´ 

R: 5´-GGACACTGAGGGGTGGAGTC-3´ 

GAPDH 

F: 5´-GTGGTGCCAAAAGGGTCAT-3´ 

R: 5´-ATTTCTCGTGGTTCACACCCA-3´ 

 

 

2.10 Statistical Analysis 
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All data are presented as “mean ± standard error of mean (SEM)”. The mean value differences between 

groups, and whether the differences were significant, were determined by either a two-way Analysis of 

Variance (ANOVA) or a non-parametric ANOVA with a post-hoc Tukey HSD (honestly significant difference) 

test. The fold change gene expression relative to native muscle was analysed using the BootstRatio Web 

Application for the ratio between the treatments and the control.[54] The significance level was set at p 

< 0.05. 

 

3.0 Results 

3.1 In Vitro Effect of ECM-derived and α-Helical Peptide-based Hydrogels on Primary Murine 

Macrophages 

In vitro, the presence of the hydrogels did not inhibit monocyte differentiation into macrophages. As 

shown in Figures 2A and 2B, at least 50% of the cells seeded onto the hSAF, collagen, SIS, and UBM 

hydrogels were positive for the pan-macrophage marker F4/80, indicating successful differentiation, 

without significant differences between the different hydrogel types.  

 

In addition to supporting the differentiation of monocytes into macrophages, the presence of the 

hydrogels induced a spontaneous macrophage activation in vitro, as seen by the positive staining of the 

pro-inflammatory M1-like phenotype marker iNOS, and the anti-inflammatory M2-like phenotype 

markers (Fizz1, and Arginase1). There were no statistical differences in F4/80, iNOS, Fizz1 and Arginase1 

expression between hSAF, collagen, SIS and UBM hydrogels (Figure 2A and 2B). However, fluorescent 

studies showed that the highest expression of both M1-like and M2-like markers was observed in a ‘band’ 

that formed across all hSAF hydrogels (Figure 2A). This band was not visible in any of the other hydrogels 

studied. 
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Figure 2: In vitro characterisation of hSAF, collagen, SIS and UBM hydrogels. (A) Fluorescence-

microscope images of the pan-macrophage marker (F4/80), a marker of activation towards an M1-like 

(iNOS) or M2-like (Fizz1 and Arginase1) phenotype depicting cell nuclei (blue) and positive macrophage 

markers (green). (B) Percentage of macrophages expressing F4/80 (black), iNOS (grey), Fizz1 (red) and 

Arginase1 (green) in comparison to the total number of nuclei in each field of view. N= 3 biological 

replicates and 3 technical replicates; magnification: 200X; scale bar: 100 µm. No statistically significant 

differences between the groups were noted (p < 0.05). 
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3.2 Morphological Characterisation of Injected Hydrogels 

A rat abdominal wall partial thickness defect model was used to evaluate the host response to implanted 

collagen, hSAF and ECM hydrogels.[55] There were no discernible morphological differences between the 

implanted hydrogels and the surrounding healthy tissue after 28 days. (Figure 3A). The acute host 

response, days 1 to 7, to the injected hydrogels was characterised by an increased infiltration of 

mononuclear cells at the hydrogel-tissue interface that increased over time. There was no encapsulation 

of the hydrogels or formation of multinucleate giant cells. By day 28 there were no signs of foreign body 

reaction at the host tissue interface for any of the hydrogels. All injected hydrogels were associated with 

pro-healing outcomes by day 28. Healing was confirmed through the presence of organised tissue, newly 

formed ECM and neovascularisation, although muscle fibre formation was not evident at any of the 

repaired sites (Figure 3B). 
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Figure 3: Morphological characterisation of implanted hydrogels. (A) Scanning electron micrographs and 

(B) histomorphologic characterisation, with haematoxylin (purple) and eosin (pink), of tissue repair at 

the defect site over 28 days. N= 3 biological replicates and 3 technical replicates; magnification: 200X; 

scale bar: 100 µm.  
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Initially, quantification of myogenesis at the wound site showed a decrease in MyF5 expression after day 

3 for all hydrogels investigated, indicating a decrease in cell proliferation and an onset of myogenic 

differentiation (Figure 4A). No statistical difference was observed in the MEF2 expression between the 

hydrogels and the defect over 28 days (Figure 4B). However, a decrease in Myogenin expression was 

noted across all sample types by day 28 although only collagen showed statistical difference to the defect 

alone (Figure 4C); further supporting the histomorphologic findings. Finally, while some increase in the 

expression of the late myogenic factor, MHC, was observed for all sample types by 28 days, these 

differences were not statistically significant between the hydrogel types (Figure 4D) and indicated that no 

mature muscle fibre had formed.  
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Figure 4: Gene expression of myogenesis markers. Expression of (A) MyF5 (B) MEF2 (C) Myogenin and 

(D) MHC for defect (black), hSAF (grey), collagen (red), SIS (green) and UBM (blue) over 28 days.  N= 3 

biological replicates and 3 technical replicates. Dotted lines indicate the biologically significant 

threshold.  * illustrates statistically significant difference between the indicated hydrogel and the native 

tissue (p < 0.05). 

 

3.3 Macrophage Response to Implanted Hydrogels 
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Macrophage phenotype was determined to evaluate the in vivo innate host response to the hydrogels 28 

days post-implantation. While fluorescence studies suggested some differences in macrophage marker 

expression over 28 days, particularly in images obtained for hSAF CD206+ expression on day 7 (Figure 5A), 

quantification showed that the ratio of M2-like phenotype to M1-like phenotype is similar for hSAF, 

collagen and SIS hydrogels immediately after surgery with all three exhibiting ratios < 0.2 (Figure 5B). UBM 

hydrogels showed an initial spike of the M2-like:M1-like ratio on day 1 post-surgery and again on day 14, 

although there was no statistical difference in marker expression across hSAF, UBM, SIS and collagen 

hydrogels by day 28 (Figure 5B).  
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Figure 5: Macrophage response to implanted hydrogels. (A) Fluorescent images of macrophages at the 

defect site over 28 days depicting either an M1-like (CD86+; orange) or M2-like (CD206+; green) 

phenotype. Macrophage marker (CD68+; red) and cell nuclei (DAPI; blue) are also shown. (B) Ratio of 

cells expressing CD86+ and CD206+ over 28 days; defect (black), hSAF (grey), collagen (red), SIS (green) 

and UBM (blue). N= 3 biological replicates and 3 technical replicates; magnification: 200X; scale bar: 100 
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µm. No statistically significant differences between the indicated hydrogel and the native tissue were 

noted (p < 0.05). 

 

 

A more in-depth study of M1-like and M2-like cytokine expression showed that pro-inflammatory 

cytokines TNFα and IL-1β increased for collagen and UBM hydrogels on day 3 although there was no 

statistical difference in the expression of the two markers between all gel types and the native tissue by 

day 28 (Figure 6A and 6B). Anti-inflammatory cytokine expression (IL-10) is significantly higher for hSAF, 

SIS and UBM gels compared to the native tissue at early time points but by day 14 only remains high for 

hSAF and collagen samples (Figure 6C). By day 28 there is no statistically significant difference between 

the gels and the native tissue. Similarly, although temporary increases in Arginase1 expression were noted 

for collagen and SIS early in the study, by day 28 there is no difference between the hydrogels and the 

native tissue (Figure 6D).  
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Figure 6: Macrophage response to implanted hydrogels. Macrophage activation showing (A) TNFα (B) IL-

1β (C) IL-10 and (D) Arginase1 gene expression for defect (black), hSAF (grey), collagen (red), SIS (green) 

and UBM (blue). N= 3 biological replicates and 3 technical replicates. Dotted lines indicate the 

biologically significant threshold. * illustrates statistically significant difference between the indicated 

hydrogel and the native tissue (p < 0.05). 

 

 

4.0 Discussion 
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Biomaterials that attempt to mimic the chemical and physical complexity of native tissues provide 

controllable environments that may actively promote cell attachment and differentiation.[56-59] 

Hypothetically, these materials are more likely to generate a constructive and functional response in vivo, 

lead to integration with host tissue and minimise the risk of adverse immunological responses. We 

investigate the macrophage response to complex injectable hydrogels derived from ECM and constructed 

from de novo design peptides. In the former class, UBM-ECM and SIS-ECM have been shown to largely 

retain the fibrous structure of native tissue and provide the biological signalling potential of the original 

tissue. [24] In the second, α-helical peptide hydrogels offer a bottom-up design approach with absolute 

control over hydrogel assembly and structure, and over the cell-guiding chemistry, by adding such cues in 

known amounts and formulations.[42, 49] Although in vitro studies have suggested superiority of all of 

these hydrogels over commercially available hydrogels,[23, 43, 49, 60] neither class has been investigated 

in vivo in a partial-thickness abdominal model; a model that has been widely used to study foreign body 

response to biomaterials.[61, 62] Here, we investigate the host inflammatory response to injectable UBM, 

SIS and hSAF hydrogels over 28 days.  

 

We note that the macrophage response to the hydrogels differs for SIS and UBM compared to other 

hydrogels: typically, in wound healing a switchover from an M1-like phenotype to an M2-like phenotype 

should occur by day 7-14. While UBM hydrogels do eventually induce an M2-like phenotype, the delayed 

changeover may be the result of a slower release of the molecular mediators responsible for this effect. 

By the end of the study all hydrogel types induced an M2-like phenotype over time, as observed in the in 

vitro macrophage response to the hydrogels.  

 

The chemistries of hSAF and UBM are very different and some of the changes in macrophage behaviour 

may be attributed to this chemical difference. However, the majority of macrophage marker expression 
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in hSAF hydrogels, for both M1-like and M2-like phenotypes, is observed across a ‘band’ that was visible 

in these particular gel types. We posit that this band is caused by cells contracting the hydrogel and a 

build-up of tension along areas where the hydrogel remained anchored to the cell culture plate. Although 

effort was made to ensure experimental protocol was identical for all hydrogels, it has previously been 

shown that the highly porous hSAF hydrogels not only allow cells to migrate freely through the scaffold 

but also encourage cell attachment to the fibres[49], which could lead to a build-up of tension in the 

network. Furthermore, previous studies suggest that substrate stiffness could influence macrophage 

activation strongly.[63, 64] In vivo this tension could induce macrophage activation that could lead to the 

formation of foreign body giant cells and chronic inflammation or, if controllable, could lead to better 

tissue remodelling.[64] To test this hypothesis, hSAF gels with different, but controllable, mechanical 

properties would need to be studied in an in vivo model. 

  

Histomorphologic examination of explanted tissues at the injected wound site show no evidence of 

multinucleate giant cells or a foreign body response previously noted by some researchers in the 

investigation of polypropylene-based biomaterials in a rat partial thickness abdominal model.[62] Rather, 

a transition of a pro-inflammatory environment to an anti-inflammatory environment in the hSAF 

hydrogels is observed. Either the band observed in the in vitro studies is not replicated in the in vivo studies 

or the stiffness does not sustain a pro-inflammatory environment over 28 days and possibly is unlikely to 

have a detrimental effect long-term. An initial infiltration of mononuclear cells, immediately post-

injection, was maintained throughout the study and indicates the likelihood of a positive tissue 

remodelling outcome.[65] This is further supported by the neovascularisation and new ECM observed at 

the wound site, although no muscle regeneration is observed in any of the explants. Initial signs of 

myogenesis are noted for all hydrogels, through a decrease in the expression of proliferation markers and 

an increase in the expression of differentiation markers. This is despite the expression of the late 
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differentiation complex MHC[66] reaching a plateau between days 14 and 28.  Without this terminal 

differentiation stage mature myofibres cannot develop[67] and a permanent loss of muscle mass could 

result in compromised functionality. While this is a vital factor in considering tissue remodelling in the 

abdominal area where the injury was induced and in future studies it may be possible to chemically modify 

the materials to induce myogenesis, we did not anticipate observing muscle regeneration in the current 

study as the stiffness of the materials used did not match native muscle stiffness (10 kPa compared to 1 

kPa for our hydrogels).[68]  

 

Our studies show that after an initial spike in the M1-like pro-inflammatory phenotype, as expected due 

to neutrophil and macrophage influx immediately post-injury,[69] all of the injected hydrogels induce an 

M2-like anti-inflammatory phenotype after 28 days. Though no difference in M2:M1 ratio was noted 

across the hydrogels, hSAF hydrogels exhibit the highest levels of M2 cytokine expression. A high M2 

cytokine expression is an indicator of constructive tissue remodelling and likely to lead to better functional 

outcomes with a low likelihood of scarring.[64, 69] 

 

Our initial observations on the chemical and physical heterogeneity within UBM, and possibly 

decellularisation of tissues in general, as well as tensile forces eliciting, and maintaining a possible M1-like 

phenotype, are not reflected in the in vivo studies. Previous research has shown that, in vivo, when pro-

inflammation is caused specifically by cell debris trapped in an unsuccessfully decellularised scaffold, it is 

in fact dose-dependent.[6] Similarly, the band observed across hSAF-based macrophage studies is in 

contact with tissue culture plastic as well as cells. The 3-dimensional environment of an in vivo model and 

exposure to multiple cell types already introduces variables that cannot be replicated in in vitro studies. 

None of the explants excised from the rats that are initially injected with hSAF hydrogels display such 
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bands or any sign of tension-based cell alignment and differentiation. These observations highlight the 

limitations of comparing in vitro data with in vivo results.  

 

Studies conducted specifically on explants show that all of the hydrogels exhibited an M1-like to M2-like 

transition, generating a pro-healing environment after 28 days, although further tests are required to 

determine the mechanism by which the materials initiate this transition as well as an investigation of 

other cell types that play critical roles in muscle development, such as T cells and quiescent satellite 

cells.[9] While differences between the composition and behaviour of SIS and UBM were noted, the in 

vivo macrophage response remains favourable. As derivatives of healthy tissue, it could be argued that 

the positive outcome to the injectable form of the matrices is to be expected. However, it has been shown 

that the considerable chemical and physical modification of the original tissue that has been employed in 

this study not only allow the complex cell-guiding proteins to be retained but that the manipulation of the 

materials towards injectable hydrogels introduces superior control over geometry. Similarly, hSAF 

hydrogels, although far simpler in composition than the ECM hydrogels, have been shown to offer 

comparable results to their complex counterparts. For the regenerative medicine field, the unparalleled 

and highly controllable chemical and physical properties offered by hSAF materials could end some of the 

limitations of existing injectable biomaterials and reduce the probability of chronic inflammation. 

Although the cell response to both the ECM and synthetic hydrogels, and tissue remodelling abilities, are 

the primary focus of the present study, these materials may also be used in cell or drug delivery, 

particularly as further rheological studies could offer valuable insights into controlling the stiffness of the 

materials. We suggest that multi-purpose, highly tunable biomaterials, such as those investigated here, 

could be considered in the drive towards regenerative biomaterials for unmet clinical needs.  

 

5.0 Conclusion 
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Hydrogels derived from decellularised extracellular matrix and synthesised de novo designed α-helical 

peptides have been injected into rat partial thickness abdominal wall defects to examine the immune 

macrophage response in vivo. Over 28 days a progressive increase in mononuclear cell infiltration is 

observed with no foreign body reaction at the hydrogel-tissue interface, no evidence of hydrogel 

encapsulation or formation of multinucleate giant cells. Furthermore, the upregulation of myogenic 

differentiation markers and the expression of anti-inflammatory (M2-like) markers Arginase 1, IL-10, and 

CD206, indicate pro-remodelling for all injected hydrogels. All hydrogels induce a stable anti-inflammatory 

environment. No difference between the injected site and the healthy tissue is observed after 28 days, 

which is indicative of full integration and is promising for future applications as part of regenerative 

therapeutic approaches to unmet clinical needs.  
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