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Abstract 

Glutamate receptors are essential ligand-gated ion channels in the central nervous system 
that mediate excitatory synaptic transmission in response to the release of glutamate from 
presynaptic terminals.  The structural and biophysical basis underlying the function of these 
receptors has been studied for decades by a wide range of approaches.  However recent 
structural, pharmacological, and genetic studies have provided new insight into the regions 
of this protein that are critical determinants of receptor function. Lack of variation in 
specific areas of the protein amino acid sequences in the human population has defined 
three regions in each receptor subunit that are under selective pressure, which has focused 
research efforts and driven new hypotheses.  In addition, these three closely positioned 
elements reside near a cavity that is shown by multiple studies to be a likely site of action 
for allosteric modulators, one of which is currently in use as an FDA-approved 
anticonvulsant.  These structural elements are capable of controlling gating of the pore, and 
appear to permit some modulators bound within the cavity to also alter permeation 

properties. This creates a new precedent whereby features of the channel pore can be 
modulated by exogenous drugs that bind outside the pore.  The convergence of structural, 

genetic, biophysical, and pharmacological approaches is a powerful means to gain insight 
into the complex biological processes defined by neurotransmitter receptor function. 

 

The understand of ionotropic glutamate receptors is accelerated by using diverse 

experiments methods and data. 
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Introduction 

Glutamate receptors are ligand-gated ion channels that mediate excitatory synaptic 

transmission throughout the brain and spinal cord, as well as serving other roles in 

development (Traynelis et al., 2010; Paoletti et al., 2013). This receptor family can be 

subdivided on the basis of genetic, structural, and pharmacological properties into at least 

three subfamilies; α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate, 

and N-methyl-D-aspartate (NMDA). Additional families exist in non-human animals and 

plants (Gangwar et al., 2019; Alfieri et al., 2020; Mayer, 2020). All human subfamilies serve 

unique and essential roles in neuronal circuit function.  The members of this receptor family 

are multimeric protein complexes with modular architecture (Figure 1a), composed of four 

subunits, each comprising four domains connected to each other by linker segments that 

lack secondary structural constraints.  The four subunits each contribute a series of 

transmembrane elements that assemble together to form a cation-selective pore, which 

resembles an inverted potassium channel (Hansen et al., 2017).  Each subunit also contains 

two extracellular domains that adopt the shape of a bi-lobed clamshell. One domain 

(agonist binding domain, ABD, in Figure 1a) binds the co-agonists glutamate (GluN2) and 

glycine or D-serine (GluN1) within NMDA receptors, whereas in AMPA and kainate 

receptors, glutamate is bound to the ABD in all four subunits. These bilobed ABDs dimerize 

in all glutamate receptors, at least in some of their gating states (Naur et al., 2007; 

Sobolevsky et al., 2009; Karakas & Furukawa, 2014; Meyerson et al., 2016; Burada et al., 

2020). The other clamshell domain encoded by the residues comprising the amino terminus 

resides distal to the membrane, and forms an assembly and modulatory control element of 

the receptor, as well as an important site of drug action (Figure 1a) (Ayalon & Stern-Bach, 

2001; Gielen et al., 2009; Yuan et al., 2009; Karakas et al., 2011; Watson et al., 2017; 

Esmenjaud et al., 2019; Regan et al., 2019). The relative positioning of these two bilobed 

domains within the complex varies across the receptor family, which drives unique 

structural features of subfamilies as well as unique functional attributes.  The multiple 

domains within each subunit and the multimeric nature of the tetrameric assembly of  

subunits create numerous protein-protein interfaces that can harbor modulator binding 

sites, including the region between the ABD and transmembrane domain (Figure 1b). 
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Recent structural data illuminate key features in channel gating  

Structural advances in the last decade have provided dozens of crystallographic and cryo-

EM structures for NMDA, AMPA, kainate and delta receptors (Greger et al., 2017; Mayer, 

2017; Zhu & Gouaux, 2017; Twomey & Sobolevsky, 2018; Chen & Gouaux, 2019; Greger & 

Mayer, 2019; MacLean et al., 2019; Twomey et al., 2019; Wang & Furukawa, 2019; Burada 

et al., 2020), which also became templates for molecular modelling (Mollerud et al., 2017; 

Paramo et al., 2017).  These data have ushered in a new era that has allowed close 

examination of the link between structure and function of these large, multimeric proteins . 

Evaluation of the structure-function relationship in light of structural data has led to the 

appreciation of elements critical for function that interact with the pore lining M3 helix 

(including the highly-conserved SYTANLAAF) and the agonist binding domain.  While the 

resolution of the structural data for the extracellular domains has allowed detailed atomic 

characteristics to be elucidated (Karakas & Furukawa, 2014; Lee et al., 2014; Tajima et al., 

2016; Twomey & Sobolevsky, 2018), the resolution for the linkers connecting the 

extracellular domains to each other and to transmembrane domains has been typically 

lower.  For the majority of published structures, the lack of clear density for these linkers 

prevented modeling of amino acid side chains or entire sections of the polypeptide (Tajima 

et al., 2016).  However, pulling together information across a wide range of structural 

studies highlights a key element that is present in all glutamate receptors: a short two-turn 

helix (pre-M1) that lies parallel to the membrane and is in van der Waals contact with the 

pore-lining M3 helix from the same subunit (Figure 1b,d,e).  Residues comprising this short 

helical element are conserved across species (Sobolevsky et al., 2009; Karakas & Furukawa, 

2014; Lee et al., 2014). In addition, another short flexible linker connects the membrane-

proximal lobe of the agonist binding domain to the M4 transmembrane helix, and multiple 

studies suggest both the pre-M4 linker and M4 transmembrane helix are important for 

function (Ren et al., 2003; Yuan et al., 2014; Amin et al., 2017; Platzer et al., 2017).  The pre-

M4 linker is closely positioned to the pre-M1 and M3 helices from the adjacent subunit (e.g. 

(Sobolevsky et al., 2009; Talukder et al., 2010)), and these three elements have been 

implicated in glutamate receptor gating and correspondingly proposed to comprise a gating 
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triad, shown in Figure 2a,b (Alsaloum et al., 2016; Chen et al., 2017; Yelshanskaya et al., 

2017; Gibb et al., 2018; Amin et al., 2020); see also (Sobolevsky et al., 2009; Twomey & 

Sobolevsky, 2018). 

Largely coincident with the availability of this structural data, multiple studies have provided 

a clear picture for gating in NMDA and AMPA receptors, which, given their structural 

similarities, operate by surprisingly distinct mechanisms (Banke & Traynelis, 2003; Popescu 

& Auerbach, 2003; Popescu et al., 2004; Erreger et al., 2005a; Erreger et al., 2005b; Poon et 

al., 2010; Kristensen et al., 2011; Poon et al., 2011; Gibb et al., 2018).  Single channel 

analysis and kinetic modelling indicate that following binding of the agonists, the receptors 

clearly undergo at least two additional rate-limiting conformational changes that precede 

explosive opening of the pore (Figure 2c), which yields step changes in current as the 

channel opens and closes (Iacobucci & Popescu, 2018). This is supported by structural data 

of AMPA receptors, one of such intermediate conformations is likely represented by the 

structures with partially closed agonist-bound LBDs and non-conducting closed channel pore 

(Durr et al., 2014; Yelshanskaya et al., 2014) and named a pre-active state in the framework 

of a simplistic gating model (Twomey & Sobolevsky, 2018). Evidence from NMDAR receptors 

where the ABDs have been cross-linked shut produces channels that still open and close 

with millisecond time scale closed times suggesting that pre-gating steps are being traversed 

independent of opening and closing of the agonist binding domain (Kussius & Popescu, 

2010). Moreover, multiple studies that perturb the flexible linkers between the bilobed 

clamshell and transmembrane domains, in particular the linkers involved in the gating triad, 

reveal they can significantly impact channel function and the brief closed times that appear 

to represent pre-gating conformation changes (Talukder & Wollmuth, 2011; Ladislav et al., 

2018).  Linker region cysteine mutants possess differing cross-linker modification rates, and 

the effects of these mutations in the absence and presence of agonist or antagonist implies 

activation-dependent movement (Beck et al., 1999; Sobolevsky et al., 2002; Talukder et al., 

2010; Salussolia et al., 2011). Furthermore, smFRET experiments show that fluorescently 

labeled linkers (GluN2A Pre-M1) transition between multiple energy states in the apo- and 

agonist-bound states (Dolino et al., 2017). All of these studies raise the possibility that 

rearrangement of linker elements could contribute to the two kinetically distinct pregating 

steps (Figure 2C). 
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Channel shut times could reflect the time needed for random movement of multiple side 

chains or the polypeptide backbone into a position (i.e. a state) that can decrease the 

energy for channel opening. These conformational changes may involve repositioning of 

pre-M1 or pre-M4 residues, including an aromatic residue that could perturb a network of 

aromatic interactions within the transmembrane domains (Chen et al., 2017; Gibb et al., 

2018; McDaniel et al., 2020).  Based on channel closed times, two structurally distinct 

changes occur with different energies, which may reflect the cooperative yet unique gating 

triads, or perhaps larger structural elements such as a gating ring (Tajima et al., 2016).  

Regardless of the precise nature of the intra-protein motion that underlies these two rate-

limiting steps, it is clear that advances in our understanding will come from the convergence 

of structural data with functional and mechanistic data. 

 

Genetic studies highlight critical residues involved in gating 

Technological advances have yielded dramatic cost reduction for DNA sequencing, which 

has enabled an unprecedented increase in the amount of genetic data available for both 

patient populations and healthy individuals (Heinzen et al., 2015).  Evaluation of whole 

exome sequencing information has led to the proposal that regional variation in the number 

of de novo and inherited variants can provide insight to identify intolerant domains (Figure 

3a) (Traynelis et al., 2017).  For example, for the GluN2A subunit within NMDA receptors, 

there are virtually no variants within the M3 helix, the pre-M1 helix, and portions of the pre-

M4 /M4 region (see Figure 3b) (Swanger et al., 2016; Ogden et al., 2017; Strehlow et al., 

2019).  That is, these regions are not only conserved across the animal kingdom, but appear 

to be necessary for human health.  Consistent with this idea, there is a significant number of 

de novo missense variants within these regions in subunits from both the NMDA receptors 

(Figure 4a,b) and the AMPA receptors in patients with a wide range of neurological and 

neuropsychiatric indications (Firth et al., 2009; Hamdan et al., 2011; de Ligt et al., 2012; Epi 

et al., 2013; Freunscht et al., 2013; Lemke et al., 2013; Lesca et al., 2013; Redin et al., 2014; 

Yuan et al., 2014; Farwell et al., 2015; Ohba et al., 2015; Helbig et al., 2016; Kobayashi et al., 

2016; Lemke et al., 2016; Li et al., 2016; Lucariello et al., 2016; Swanger et al., 2016; Chen et 

al., 2017; Ogden et al., 2017; Platzer et al., 2017; Tan et al., 2017; Amin et al., 2018; Fedele 
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et al., 2018; Fernandez-Marmiesse et al., 2018; Fry et al., 2018; Vyklicky et al., 2018; 

XiangWei et al., 2018; Strehlow et al., 2019).  These two unbiased data sets (structural data 

and genetic data) provide perhaps the strongest rationale that the pre-M1, M3 and pre-

M4/M4 regions play a critical and essential role in receptor function.  Moreover, structural 

data reveal that they are perfectly positioned to cooperate with multiple elements in the 

receptor that control the transition from the closed to the open state, residing within 5 

Angstroms of one another (Figure 4c) (Karakas & Furukawa, 2014; Lee et al., 2014; Twomey 

& Sobolevsky, 2018). In AMPA receptors, cryo-EM data indicates two M3 helices reorient as 

the receptor transitions to the open state that results in different configurations of the pre-

M1 and the M3 helix at their site of contact, emphasizing their close cooperative nature 

(Twomey et al., 2017; Twomey & Sobolevsky, 2018).   

The invariant nature in the general population of these three motifs suggest that the side 

chains within these regions are essential to allow the channel to remain closed under resting 

physiological conditions while also capable of responding to the energy provided by the 

binding of glutamate to open the channel with the appropriate level of activation. Almost 

any departure, even minor, from the side chains of conserved amino acids in these regions 

leads to either an increase or decrease in channel function, in some cases dramatically. 

Variants in the M3 region overwhelmingly produce a gain-of-function that results in a 

greater receptor response (Kohda et al., 2000; Kashiwagi et al., 2002; Yuan et al., 2005; 

Sobolevsky et al., 2007; Chang & Kuo, 2008; XiangWei et al., 2019; Amador et al., 2020).  

Some variants show a dramatic increase in open probability and reductions in sensitivity to 

endogenous allosteric modulators (Yuan et al., 2014; Chen et al., 2017; Fedele et al., 2018; Li 

et al., 2019), such that the channel pore is open almost all the time while the agonist is 

bound.  Other gain-of-function variants can reduce voltage-dependent block of NMDA 

receptors (Endele et al., 2010; Fedele et al., 2018; Li et al., 2019; Marwick et al., 2019a; 

Marwick et al., 2019b), and prolong the deactivation time course of both NMDA and AMPA 

receptors, which keeps the channel open for longer and allows for increased cation influx 

and likely contributes to clinical features displayed by patients (Yuan et al., 2014; Swanger et 

al., 2016; Chen et al., 2017; Ogden et al., 2017; Amin et al., 2018). Surprisingly, different 

substitutions of specific residues yield a gain of function for every mutation tested (Yuan et 

al., 2014; Ogden et al., 2017), suggesting that these residues are necessary to maintain 
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channel closure under resting conditions and a precise level of activation following agonist 

domain closure. There are additional consequences of altering the wild type sequence in 

that many variants in this region also perturb eventual surface expression, suggesting 

protein synthesis quality control mechanisms may detect aberrant function or assembly of 

channels (Swanger et al., 2016; Addis et al., 2017; Ogden et al., 2017; Fernandez-Marmiesse 

et al., 2018; Vyklicky et al., 2018; Li et al., 2019; XiangWei et al., 2019).  

 

Structural determinants of allosteric modulation overlap regions of genetic invariance 

The past decade has been exceptionally productive in terms of the development of novel 

allosteric modulators of glutamate receptor function.  Multiple classes of subunit-selective 

and non-selective positive and negative allosteric modulators have been described for 

NMDA receptors (Strong et al., 2014; Hackos & Hanson, 2017; Burnell et al., 2019).  These 

include modulators that act at the heterodimer interface between the glutamate and 

glycine binding domains (Bettini et al., 2010; Hackos et al., 2016; Yi et al., 2016), the 

interface between the ATD and the glutamate binding domain (Khatri et al., 2014; Kaiser et 

al., 2018), the heterodimer interface between the ATDs (Karakas et al., 2011; Mony et al., 

2011; Karakas & Furukawa, 2014; Lee et al., 2014; Stroebel et al., 2016; Regan et al., 2019), 

and the cavity that lies behind the pre-M1 region and adjacent to the M3 helix (Ogden & 

Traynelis, 2013; Wang et al., 2017; Perszyk et al., 2018; Perszyk et al., 2020).  In addition, 

many new modulators for AMPA receptors have been developed, with multiple examples 

acting at two of these 4 sites mentioned above.  There are multiple examples of AMPA 

modulators that act at the dimer interface between agonist binding domains  (Sun et al., 

2002; Jin et al., 2005; Ahmed & Oswald, 2010; Krintel et al., 2013) that can modulate both 

deactivation and desensitization.  There is also a series of structurally diverse compounds 

that bind in contact with the AMPA receptor pre-M1 (Balannik et al., 2005; Yelshanskaya et 

al., 2016) (see Figure 1b,c). 

Remarkably, the modulators that have structural determinants overlapping with the gating 

triad are highly diverse in their action, including both positive and negative allosteric 

modulation.  Some of these modulators have additional actions on key channel properties.  

Interestingly, while the experimentally determined poses for AMPA receptor modulators 
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appear to occupy similar space, the modulator chemical scaffolds are largely distinct, raising 

intriguing questions about the mechanistic basis for their actions.   Functional data support 

the competition of positive and negative NMDA receptor modulators at overlapping sites 

(Perszyk et al., 2018), suggesting that future atomic level information about related, 

competing modulators could be instructive in terms of how to enhance or decrease receptor 

function.   

While there has been exciting progress on the identification of multiple drug scaffolds that 

can selectively modulate glutamate receptors, there has been incomplete functional 

analysis of how these modulators operate, with little information available at the single 

channel level.  A recent mechanistic study revealed surprising effects for a positive allosteric 

modulator of NMDA receptors (Perszyk et al., 2020).  EU1622-14 enhances the activity of all 

NMDA receptors, but to differential degrees in terms of effects on channel open probability 

and the glutamate deactivation time course. Remarkably, single channel studies revealed 

that this compound reduces single channel conductance, and ion substitution experiments 

as well as Ca2+-imaging studies suggest that the modulator can alter the relative 

permeability of monovalent to divalent ions. The ability of a modulator to alter the 

permeation properties of the pore has not been described previously for NMDA receptors. 

The effects of EU1622-14 (Perszyk et al., 2020) appear to arise from its actions within the 

gating triad that must in some way alter the configuration of the open pore or change the 

relative occupancy of allowed open states of the channel, each of which has different 

properties. These pharmacological effects can be replicated in part by various point 

mutations at the gating-triad (Kohda et al., 2000; Li et al., 2016; Ogden et al., 2017; 

XiangWei et al., 2019), in particular point mutations and deletions in the M3 helix can both 

decrease conductance and increase open probability (Ladislav et al., 2018). Additionally, this 

pharmacological action is in agreement with a study that shows that activation of photo-

switchable unnatural amino acids introduced  to perturb the gating triad can constrain the 

pore to reduce channel conductance (Klippenstein et al., 2017). Thus, for NMDA receptors, 

perturbation of the gating triad by pharmacological agents can not only impact gating, but 

the properties of the pore.  For AMPA receptors, a shift in subunit-dependent gating occurs 

with increasing agonist occupancy of the four subunits, and the number of active subunits 

determines the relative conductance level.  AMPA receptor modulators acting near the 
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gating triad reduce the activation of each subunit after binding, referred to as coupling 

efficiency (Kristensen et al., 2011; Poon et al., 2011), which reduces the proportion of high 

conductance levels, an observation demonstrated for the anti-epileptic drug perampanel 

(Yuan et al., 2019) (Figure 1b,c). These properties are not universal for modulators that bind 

in close proximity to the gating triad, and it will be important to determine how they can be 

tuned through medicinal chemistry, perhaps for therapeutic gain.   

Together, these structural, genetic, and pharmacological advances emphasize the power of 

considering different modalities to drive insight into protein function.  We predict that the 

combination of structural information with genetic information will not only illuminate 

function across many protein families, but will also advance both the development of 

pharmacological probes and drugs.  As mechanistic and structural data flesh out our 

understanding of how proteins respond to genetic and pharmacological perturbations, new 

insight will be gleaned on how proteins mediate their precise and complex tasks. 
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Figure 1. AMPA receptor gating conformations and binding of perampanel (PMP). a) 

Structures of the GluA2 AMPA receptor in different conformations (PDB entries 5l1b, 4u4f, 

5weo, 5vhz) are shown in ribbon representation and viewed parallel to the membrane, with 

four subunits colored differently and the layers of the amino-terminal domain (ATD), the 

agonist-binding domain (ABD), and the transmembrane domain (TMD) labeled. The 

rectangles indicates the region of the structure viewed more closely in b. b) A closer view of 

the TMD (receptor subunits B and D) for the structures in a to highlight the gating 

transitions indicated by the arrows. c) Crystal structure of GluA2 (PDB entry 5L1F), with 

perampanel shown in sticks (yellow). The rectangle indicates the region of the structure 

viewed more closely in d and e. d) An expanded view of the perampanel binding sites, at the 

outermost end of the transmembrane domain and adjacent to the linkers connecting the 

LBD and the TMD. e) A top-down view of perampanel binding sites in the pockets formed by 

pre-M1, M3, and pre-M4/M4.  
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Figure 2. A model of subunit-dependent conformational changes for a tetrameric 

glutamate receptor.  a) Carton illustrating the unique gating triads that exist between 

heteromeric glutamate receptor assembled with two asymmetrical subunits in alternating 

sequence. b) Cartoon illustrating only the ligand binding domain, M3 transmembrane 

helices, and pre-M1 helix for four subunits. Two potentially distinct modulator binding 

pockets are shown to the right. The evidence that sites are, indeed, not identical is 

supported by, in AMPA receptors, asymmetrical motions during gating and, in NMDA 

receptors, due to the fact that they are composed of GluN1 and GluN2 subunits. c)  

Illustration of hypothesized steps (arrows) within each subunit starting with agonist binding 

to the bi-lobed agonist binding domain that involves domain closure (left), followed by a 

conformational change in a linker between the agonist binding domain and the 

transmembrane domain that is distinct of domain closure (center), followed by opening of 

the pore (right).  The conformational changes within the gating triads that are a target for 

allosteric modulation and a site of ' disease-causing variation. Panel a was adapted from 

Gibb et al., 2018, J Physiol, 596(17):4057-4089 with permission) 
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Figure 3. Intolerance of the gating triad. a) The Missense Tolerance Ratio (MTR) plot for 

GRIN2A, based on ExAC (the Exome Aggregation Consortium browser, version 2). The 

gating-triad regions (Pre-M1, M3, and Pre-M4/M4, highlighted in magenta, grey, and green, 

respectively) are some of the most intolerant portions of GRIN2A. b) Comparison of 

conservation from homologous proteins and scarcity of naturally-occurring variants in a 

human population-based genomic database. b1) Sequence homology of the pre-M1, M3, 
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and pre-M4/M4 regions across all iGluR subunits. The final column (#V) is the cumulative 

number of human variants across the subdomain for each receptor subunit reported in ExAC 

(version 2, accessed 01/24/202), and bottom row (#Human Var) is the cumulative number 

of human variants in ExAC found at the aligned position, different from WT, across all 

iGluRs. b2) The iGluR subunits are rearranged based on the cumulative number of ExAC 

variants in each subdomain sequence. Sequence alignment by Clustal Omega using 

translated open reading frames from these human reference sequences: GluN2A, 

NM_000833.4; GluN2B, NM_000834.4; GluN2C, NM_000835.4; GluN2D, NM_000836.2; 

GluN1, NM_007327.3; GluA1, NM_000827.3; GluA2, NM_000826.3; GluA3, NM_007325.4; 

GluA4, NM_000829.3; GluK1, NM_000830.4; GluK2, NM_021956.4; GluK3, NM_000831.3; 

GluK4, NM_014619.4; GluK5, NM_002088.4.  
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Figure 4. Orientation of the gating-triad components and list of disease-causing variants 

found in humans from the peer-reviewed literature or ClinVar. a) Full cartoon-ribbon 

structure of the NMDAR. b) View of one gating-triad instance (this view point is depicted in 

a by the eye and rotated box) and a list of the associated variants of the M3 helix are listed 

in grey, Pre-M1 variants are in magenta, and Pre-M4/M4 variants are in green. c) A space-

filling representation of the gating triad showing their close contact with each other (viewed 

looking down at the pore from the extracellular side). See Supplemental Table 1 for PubMed 

ID and ClinVar references. 

 


