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ABSTRACT 

Background: Single-omic analyses have provided some insight into the basis of lung 

function in asthmatic children, but the underlying biological pathways are still poorly 

understood.  

Methods: Weighted gene co-expression network analysis (WGCNA) was used to 

identify modules of co-regulated gene transcripts and metabolites in blood, among 325 

children with asthma from the ‘Genetic Epidemiology of Asthma in Costa Rica’ study. 

The biology of modules associated with lung function; as measured by FEV1, 

FEV1/FVC-ratio, bronchodilator response, and airway responsiveness to methacholine 

was explored. Significantly correlated gene-metabolite module pairs were then identified 

and the constituent features submitted for integrated pathway analysis using IMPaLA. 

Results: WGCNA clustered 25,060 gene probes and 8,185 metabolite features into eight 

gene modules and eight metabolite modules, where four and six, respectively, were 

associated with lung function (p≤0.05). The gene modules were enriched for immune, 

mitotic and metabolic processes and asthma associated microRNA targets. The 

metabolite modules were enriched for lipid and amino acid metabolism. Integration of 

correlated gene-metabolite modules expanded the single-omic findings, linking 

FEV1/FVC-ratio with ORMDL3 and dysregulated lipid metabolism. This finding was 

replicated in an independent population.  
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Conclusions: The results of this hypothesis-generating study suggest a mechanistic basis 

for multiple asthma genes, including ORMDL3, and a role for lipid metabolism. They 

demonstrate that integrating multiple omic technologies may provide a more informative 

picture of asthmatic lung function biology than single-omic analyses.  
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INTRODUCTION 

Asthma; a disorder characterized by variable and reversible airway obstruction, hyper-

responsiveness and inflammation, represents one of the most common chronic 

conditions among children and adults worldwide 1,2. Asthmatic lung function 

abnormalities are present early in life 3,4, track through childhood and adulthood 5,6, and 

are strong determinants of disease exacerbations and severity 7,8.  

 

Reduced lung function in asthmatics is thought to emerge from complex gene-

environment interactions 9. Advances in high-throughput technologies allow us to 

explore such interactions at the level of the epigenome, genome, transcriptome, 

proteome, and metabolome. Combining the transcriptome; which reflects genomic 

activity, with the metabolome; which is sensitive to environmental influences and 

closely related to phenotype, may be particularly informative. While previous studies 

have investigated metabolomic and transcriptomic profiles of asthma separately, to date 

only two studies with a limited sample size have integrated the two “omes” together in 

humans 10,11. This integrative approach demonstrated increased predictive ability for 

asthma and its subtypes, as well as a greater biological insight relative to the use of 

single omics technologies. Consequently, integrative-omics represents an exciting new 

avenue in asthma research 12.  

Currently, there are no analytical standard for integrative omics. However, network 

medicine; a rapidly emerging field that moves away from previous reductionist 
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methodologies to combine systems biology and network science in the study of complex 

disease, represents a particularly promising approach. It provides a holistic methodology 

to better understand disease through the identification and investigation of nonlinear 

relationships and networks of interacting components. This provides insights into these 

conditions beyond the level of a single, gene or omic platform. Weighted Gene 

Correlation Network Analysis (WGCNA) is a network method for identifying clusters or 

‘modules’ or highly correlated variables, such as genes or metabolites that are likely to 

be co-regulated, or working together in biologically coherent fashion. This module can 

then be summarized as a single unit which can be correlated with phenotypes or other 

modules of interest.  

The aim of this study was to conduct an integrated analysis of the blood transcriptome 

and metabolome among asthmatic children participating in the ‘Genetic Epidemiology 

of Asthma in Costa Rica’ 13 cohortin order to identify biologically informative networks 

of both genes and metabolites associated with asthmatic lung function. Then to identify 

relationships between gene and metabolite networks which were found to be associated 

with lung function. The Genetic Epidemiology of Asthma in Costa Rica cohort recruited 

children with mild to moderate asthma from the Central Valley of Costa Rica. This area 

represents a Hispanic population-isolate which is genetically homogenous and has one 

of the highest prevalence’s of asthma in the world (24% in children) 15, making it 

uniquely suited for the exploration of the genomic and integrative omic underpinnings of 

asthmatic lung function. In particular, the study focuses on FEV1 and FEV1/FVC ratios, 

which are thought to mediate the association between early life characteristics and 

asthma 16. 
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METHODS 

Study Population 
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This integrative omic study was nested within the ‘Genetic Epidemiology of Asthma in 

Costa Rica Study 13, which recruited children aged 6-14 years with mild to moderate 

asthma and their parents from the Central Valley of Costa Rica. Children were eligible if 

they had physician-diagnosed asthma and at least two episodes of troublesome 

respiratory symptoms or asthma attacks in the prior year, and a high probability of having 

≥6 great-grandparents born in the Central Valley of Costa Rica 14,17. A total of 1,165 

asthmatic children were enrolled in the original study. All children completed a protocol 

including questionnaires, spirometry, allergy skin testing, house dust samples, and 

collection of blood at enrolment, when children were not exacerbated. The majority of 

blood samples were processed within four hours; RNA was extracted and stored in 

PaxGene tubes.   Genome-wide SNP genotyping and RNA expression profiles were 

generated for a subset of the study population with suitable samples. Genotype data was 

obtained with Taqman real-time PCR with an ABI Prism 7900 machine (Applied 

Biosystems, Foster City, CA)18 . Standard PCR conditions, as recommended by the 

manufacturer, were used. Children were prioritized for metabolomics profiling if they had 

both genome-wide genetic and genome-wide expression data, with the goal of conducting 

integrated omic analyses. Children with both metabolomics and transcriptomic profiling 

were included in the current study Written parental and participating child consent was 

obtained.  The study was approved by the Institutional Review Boards of the Hospital 

Nacional de Ninos (San Jose, Costa Rica) and Brigham and Women’s Hospital (Boston, 

Mass, USA).  

 

Lung Function 
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At enrollment, baseline lung function was investigated by spirometry (forced expiratory 

volume in one second (FEV1), and the ratio of forced expiratory volume to forced vital 

capacity (FEV1/FVC ratio)), bronchodilator response (BDR, percentage difference in 

FEV1 from baseline after inhaled albuterol), and airway responsiveness to methacholine 

(PD20; determined as the provocative dose of methacholine resulting in a 20% drop in 

FEV1 from baseline) (see e-Methods for details). 

 

Transcriptomic Profiling 

Whole-blood gene expression profiles were generated with 47,009 probes from the 

Illumina HumanHT-12 v4 Expression BeadChip (Illumina, Inc., San Diego, CA) that 

passed stringent and commonly used quality control (QC) metrics. Expression data were 

then log2-transformed and quantile-normalized as a single batch using the “lumiT” and 

“lumiN” functions, respectively, from the R package “lumi” (version 2.22). Principal 

components (PCs) of gene expression were generated specifically for each of the four 

cohorts using the “getPCAFunc” function from the R package "iCheck" (version 0.6), 

which provides several functions for visualizing QC metrics of Illumina gene expression 

data and for filtering based on those outputs. Phenotypes and gene expression were 

measured concurrently. Prior to downstream statistical analyses, we applied a standard 

non-specific variance filter to the expression data using the “nsFilter” function from the R 

package Croteau-Chonka et al. E5 “genefilter” (version 1.52). Probes not annotated with 

a valid Entrez gene identifier or Human Genome Organization (HUGO) gene symbol and 

probes with interquartile ranges (IQR) of expression variance below the 50th percentile  
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were removed to select only the most informative probes 19. Data were then collapsed to a 

single probe per gene based on the largest IQR of expression variance 20. 

 

Metabolomic Profiling 

Plasma samples were shipped from the sample repository to the Broad Institute 

(Cambridge, MA, USA) on dry ice for metabolomic profiling. Samples were thawed on 

ice for sub-aliquoting for each of the metabolomic methods and then re-frozen on dry ice 

and stored at -80C until work up for LC-MS analyses. Four liquid chromatography-

tandem mass spectrometry (LC-MS) platforms measured complementary sets of 

metabolite classes: (i) HILIC-positive platform, amines and polar metabolites that ionize 

in the positive ion mode using hydrophilic interaction liquid chromatography (HILIC) 

and MS analyses; (ii) HILIC-negative platform, central metabolites and polar metabolites 

that ionize in the negative ion mode using HILIC chromatography with an amine column 

and targeted MS; (iii) C8 platform, polar and non-polar lipids using reverse phase 

chromatography and full scan MS; and (iv) C18 platform, free fatty acids, bile acids, and 

metabolites of intermediate polarity using reverse chromatography with a T3 UPLC 

column (C18 chromatography) and MS analyses in the negative ion mode. 

 

Quality control was performed using previously described methods 21: Metabolite 

features with a signal-to-noise ratio <10 were considered unquantifiable and excluded, as 

were features with undetectable/missing levels for >10% of the samples. All remaining 

missing values were imputed with the median peak intensity for that feature across the 

whole population. Features with a coefficient of variance in the quality-control samples 
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greater than 25% were excluded to ensure good technical reproducibility.  The mean and 

interquartile range percentage coefficient of variance of the remaining features was 

13.1% (8.7%, 17.1%).   Features were indexed by their mass-to-charge ratio and retention 

time, and metabolite identities were confirmed using known standards. Metabolite 

features were analyzed as measured LC-MS peak areas, and were log-transformed and 

pareto scaled prior to analysis. This data processing pipeline has previously been utilized 

for a number of peer-reviewed publications 17,21-23.   

 

Of 18,064 measured metabolite features, 8,185 passed quality control and data processing 

procedures (e-Methods). Of these, 574 could be reliably annotated to known 

metabolites by matching measured mass to charge ratios (m/z) and measured retention 

times (rt) with authentic reference standards. Reference compounds were spiked into 

biological samples to mitigate any matrix effects. MS/MS data were not acquired during 

the profiling analyses in order to facilitate acquisition of sufficient numbers of data points 

across peaks for precise quantitation. To confirm IDs during analytical runs, synthetic 

mixtures of standards as well as pooled QC samples were analyzed to confirm RT and 

m/z matches.  

 

To reflect that fact that only a small proportion of metabolites could be annotated, both 

known and unknown metabolite features were included in the analysis. This allowed the 

capture of all relationships between the features with no missing links, which would be 

inevitable if only named metabolites were included, thereby reflecting the whole 

metabolome. Furthermore, annotation of metabolites is ongoing; metabolites identified as 
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important in this analysis will be prioritized for annotation and available for future 

analyses in this population.   

.  

 

 

Network Identification and association with Lung Function Traits 

Weighted gene co-expression network analysis (WGCNA) 24 was used to identify 

transcriptomic and metabolomic networks based on correlation patterns. The correlation 

matrix quantifies interconnectedness between features (genes and metabolite features) 

and assigns them to co-expression modules. Highly correlated modules were then merged 

using a cut height (i.e. the Euclidean distance between clusters) of 0.75 for the 

transcriptomic data and 0.70 for the metabolomic data; these cut-heights were chosen 

using an iterative process to identify an optimal number of adequately sized modules for 

analysis.  Features that do not show high enough co-expression metrics with any module 

are excluded from further analysis.  

 

Modules were summarized by eigenvector (based on the first principal component of 

each module) for each participant. Associations between the modules with lung function 

traits were computed using multivariate regression models with adjustment for potential 

confounders (age, sex, height, weight and treatment regime (regular use to control 

chronic symptoms versus sporadic use for acute symptoms)). For the modules nominally 

significantly (p≤0.05) associated with at least one lung function phenotype, the ‘hubs’ 

were identified. Hubs are the features that are most highly connected within a module, 
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and therefore driving module formation. WGCNA computes a module-membership value 

and associated p-value for each feature within a module, which is a measure of how 

connected or co-expressed that feature is with others within the same module. Features 

with a module-membership p-value that retained significance after Bonferroni-correction 

were considered to be hubs.  

 

Pathway Enrichment Analysis 

For the transcriptomic data, pathway enrichment analysis was performed using the 

g:GOSt tool within the g:Profiler web server (http://biit.cs.ut.ee/gprofiler/).  

Metabolomic pathway analysis was performed using MetaboAnalyst v.3.0 

(http://www.metaboanalyst.ca/). Metabolomic pathway analysis was limited to those 

metabolites that could be assigned Human Metabolome Database (HMDB) IDs, therefore 

it was utilized here as a hypothesis-generating tool (for full details see e-Methods). 

 

Integrated Omics Analysis 

Relationships between the WGCNA generated transcriptomic and metabolomic modules 

were explored by computing the correlation between the eigenvector of the two sets of 

modules. Constituent hub features of correlated pairs were submitted for integrated 

pathway analysis using IMPaLA: Integrated Molecular Pathway Level Analysis 

(http://impala.molgen.mpg.de/) to identify pathways simultaneously dysregulated on both 

a transcriptional and metabolic level. (e-Methods). These pathways were then prioritized 

for further follow up. 

http://biit.cs.ut.ee/gprofiler/
http://www.metaboanalyst.ca/
http://impala.molgen.mpg.de/
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Replication 

Replication of the most interesting findings was performed in a comparable childhood 

cohort of mild to moderate asthmatics who were phenotyped in the same way as the Costa 

Rica Cohort; The Childhood Asthma Management Program population (CAMP). CAMP 

is a multi-center, randomized, double-masked, clinical trial designed to determine the long-

term (~16.5 years of follow-up) effects of three inhaled treatments for mild to moderate 

asthma in children aged 5 to 12 at baseline: placebo, nedocromil, or budesonide25 A follow-

up study to the primary trial extracted blood samples from 620 CAMP subjects at early 

adulthood (after trial completion) for gene expression profiling using Illumina HumanHT 

chip and the same protocols and methods as the Costa Rica study. Genome-wide SNP 

genotyping was as performed by Illumina, Inc. on the HumanHap550v3 BeadChip was 

also available for these children 26. A total of 207 children additionally had metabolomics 

profiling conducted on the same blood samples at the Broad Institute. Metabolomic 

profiling was conducted on serum using the same four platforms and the same methodology 

as the Costa Rica plasma samples (full details in supplementary methods). A total of 

14587 metabolite features including 324 named metabolites passed the sample QC and data 

processing pipeline as applied to the Costa Rica Metabolomics data. Two-hundred and 

twenty two named metabolites were common to the CAMP and Costa Rica populations. 

Each child’s parent or guardian signed a consent statement approved by the clinic’s 

institutional review board (IRB). The clinics also obtained each child’s assent.  
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RESULTS 

 

Baseline Characteristics 

Of 1165 asthmatic children, 328 had RNA available for transcriptomic profiling and 

sufficient plasma for metabolomic profiling. Initial clustering based on the transcriptomic 

data profiles identified three outliers who formed a distinct cluster that could be separated 

from the rest of the population using a cut-height of 0.9 (e-Figure 1). No metabolomic 

outliers were detected, and in total 325 children were included in all analyses (e-Figure 
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2). All children were Hispanic/Latino; 139 (42.8%) were female; mean age was 9.1 years 

(range: 4.5-13.3); and 90% reported asthma controller or reliever treatment (Table 1). 

Although distinct, there was significant correlation between the measured lung function 

phenotypes (e-Table 1).  

The 325 children with omics profiling data were representative of the entire population of 

1165 children (e-Table 2). 

 

Transcriptomic Network Analysis 

WGCNA clustered the 25,060 gene probes into 39 different modules. After merging 

highly correlated modules using a cut height of 0.75 (e-Figure 3) a total of eight 

modules, spanning 19,581 genes, were characterized (e-Table 3). A nominal significance 

threshold of p≤0.05 was utilized to capture all potentially biologically interesting 

relationships. Six modules were significantly correlated with at least one measure of lung 

function (e-Figure 4). Four of these modules retained significance at a 95% confidence 

interval after adjustment for age, weight, height, gender and asthma treatment (Table 2). 

 

Lung function-associated modules were enriched for distinct groups of defined biological 

processes (Table 3): the dark green and plum modules for immune processes (renamed 

the “adaptive immunity” and “innate immunity” modules); the dark grey for cell cycle 

and mitotic processes (“cell cycle” module); the dark olive-green for asthma-related 

microRNA targets sites (“asthma microRNAs” module; g:Profiler allows functional 

interpretation of gene lists in the context of computationally predicted microRNA target 
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sites from the MicroCosm database); the pink for processes relating to translation 

(“translational” module); and the yellow for multiple transcriptional and metabolic 

processes (“transcriptional” module) (Table 3). 

 

Metabolomic Network Analysis 

WGCNA clustered 8,185 metabolite features (including 574 annotated metabolites) into 

44 different modules. After merging (cut height 0.7; E-Figure 5), there were eight 

modules including 7,473 metabolite features (excluding the grey module) (E-Table 4). 

Six modules were correlated at a nominal significance level of 95% with at least one 

measure of lung function (e-Figure 6); and five were robust to confounder adjustment 

(p≤0.05) (Table 4). 

 

All pathways with a nominally significant p-value <0.1 are reported for hypothesis-

generating purposes. The medium-purple module (renamed the “lipid” module) was 

enriched for glycosylphosphatidylinositol (GPI)-anchor biosynthesis (p=0.034), 

sphingolipid metabolism (p=0.061), glycerolipid metabolism (p=0.077), and 

glycerophospholipid metabolism (p=0.093). The tan module (renamed the “purine” 

module) was enriched for caffeine (p=0.017) and purine metabolism (p=0.075) (Table 5). 

 

Integrated Omics Analysis 
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There were ten nominally significant (p≤0.05) metabolite-gene module associations 

based on their eigenvector (Figure 1). Of these, seven were between modules that both 

correlated with lung function phenotypes. 

 

Integrated analyses of the “asthma micoRNAs” transcriptomic and “lipid” metabolomic 

modules; which correlated with FEV1 and FEV1/FVC ratio, identified 186 pathways 

including 51 pathways robust to false discovery rate correction (top pathways in Table 6, 

full list in E-Table 5), the majority were for the dark olive-green module, most of which 

relate to immune regulation. This integrative analysis extends upon the findings of the 

metabolomic analysis, where sphingolipid, glycerolipid and glycerophospholipid 

metabolism were all enriched, by identifying the upstream genes including ORMDL3, , 

SLC1A2 and AKR1B1 driving the dysregulation of these pathways.  

 

The “asthma microRNAs” module was also correlated with the red “Ubiquinone” 

metabolite module and both associated with FEV1/FVC ratio (Table 6); integration of 

these modules identified a large number of pathways involved in cellular respiration. 

However, none were significant after correction for multiple testing.  

Cellular respiration was also captured by the integration of the “translational” gene 

module and the red “Ubiquinone” metabolite module, which also both associated with 

FEV1/FVC ratio  

 

ORMDL3 
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ORMDL3 represents one of the most interesting genes in childhood asthma 27. Given its 

role as a hub gene in the asthma micoRNAs” transcriptomic module, we utilized 

genotype data available for the Costa Rica subjects, to identify SNPs that may influence 

the expression of this gene and which also associate with the lipid metabolite module. 

Three relevant SNP were available in the Costa Rica population rs2872507, rs7216389 

and rs8079416. While all three associated with at least one of the lipids in the lipid 

metabolite module, the strongest results were observed for rs8079416 which was 

associated with 165 (31%) of the 537 metabolites comprising the module, as well as with 

the module eigenvector (p=0.024), with an increasing number of T alleles associated with 

lower levels of these lipids (e-Figure 7). Importantly, the T allele was also strongly 

associated with decreased expression of ORMDL3 in this population (p=0.0006 in an 

additive model). Providing a further link between ORMDL3 and dysregulation of lipid 

metabolism.  

 

Replication of the Integrated Analysis 

In order to explore the validity of the nominally significant integrative findings a 

replication analysis was conducted, focusing on the relationship between the lung 

function associated “asthma microRNAs” transcriptomic module and the “lipid” 

metabolomic module. 

 

Whole genome transcriptomic profiling and metabolomic data were available on blood 

samples from 207 participants from the Childhood Asthma Management Program 

(CAMP) population; a randomized clinical trial designed to determine the long-term 
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effects of inhaled treatments for mild to moderate asthma in children 28 (see e-methods 

and e-Table 6).  

 

A summary score based on the first principal component was generated utilizing the 

expression levels in CAMP of 3926 hub genes from the Costa Rica “asthma microRNAs” 

module. A significant association was observed between this score and FEV1 BDR in a 

regression model adjusting for age, sex, height, weight and treatment group (p= 0.027). 

Metabolomic profiling information was available for 564 named metabolites; including 

30 of the named metabolites identified in the lipid metabolomic module. A score based 

on the first principal component of these 30 metabolites had a borderline significant 

association with baseline FEV1 (p=0.073). Furthermore, there was evidence of a 

correlation between the transcriptomic and metabolomics modules (r=0.13, p=0.065). 

Finally, replication of the finding for the ORMDL3 SNP rs8079416 was attempted in this 

population. It was again shown that the T allele was strongly associated with increased 

expression of ORMDL3 (p=5.2x10-10), and with four of the investigated lipids. Thereby 

providing a measure of replication of the Costa Rica metabolomics, transcriptomic and 

integrative-omic findings. 
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DISCUSSION 

This study represents one of the first integrative-omics studies of children with asthma. A 

network approach was taken to identify and integrate modules of highly co-regulated 

genes and metabolites that correlated with lung function metrics. Specifically, metrics 

relating to FEV1, and FEV1/FVC ratio, which associate with childhood asthma severity 

and have been shown to be predictive of future lung function 16. Interrogation of the 

biological pathways and processes underlying these modules allowed the exploration of 

asthmatic lung function mechanisms. These findings strengthen the evidence for the role 

of sphingolipids, lipids and fatty acids, and demonstrate the potential of network based 

methods for integrating large-scale omic datasets. 
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The transcriptomic network analysis revealed six gene-modules that associated with lung 

function in terms of airway obstruction, airway responsiveness to methacholine, and 

BDR. Pathway analysis determined these modules were enriched for distinct processes 

with biologically plausible relationships with lung function, including adaptive and innate 

immunity.  

 

Mitosis and processes relating to cell division characterized the “cell cycle” 

transcriptomic module. Interestingly, a previous WGCNA study of gene expression data 

from asthmatic airway epithelial cells also identified a “mitosis” module characterized by 

PTTG1, BIRC5, NCAPG, CDCA2, FANCI 29. All these genes were hubs within our “cell 

cycle” module. Dysregulation of cell division can alter the composition of the airway 

epithelium, initiate airway remodeling and lead to chronic airway obstruction and more 

severe asthma 30. Intriguingly, the “cell cycle” module was significantly associated with 

FEV1/FVC ratio pre and post-bronchodilator, but not with FEV1. It has been shown that 

children with asthma can have an abnormal FEV1/FVC ratio despite a normal FEV1 and 

FVC; this condition, known as dysanapsis, occurs when growth in lung volume and 

airway length outpaces the increase in airway caliber 31. This may explain the association 

with a module enriched for dysregulated cell cycle processes in children.  

 

The “asthma microRNAs” gene module, based on microRNA target sits, was enriched for 

seven microRNA regulatory motifs, which have previously been implicated in lung 
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function and asthma severity: hsa-miRNA-339-5p has been shown to be differentially 

expressed in the blood of asthmatics 32 and serum miR-331-3p has been associated with 

FEV1/FVC ratio in childhood asthma 33. Additionally, expression of miR-874 has been 

shown to be upregulated in patients with allergic rhinitis 34, while miR-874 and miR-423 

have both been demonstrated to be upregulated in response to antigens in mouse models 

35. Crucially, in an independent population a summary score based on the expression 

levels of the genes of this module was again associated with FEV1 BDR. 

 

Analysis of the metabolomic profiles from the same children at the same time-point also 

identified six modules associated with metrics of FEV1 and FEV1/FVC ratio. The “lipid” 

metabolite module is of particular interest, as lipid mediators influence asthmatic airway 

inflammation, in which the conversion of arachidonic acid in membrane phospholipids to 

eicosanoids, leukotrienes and prostaglandins results in bronchoconstriction and 

inflammation 36. It has also been shown that essential omega n-3 fatty acids in foods and 

oily fish such as eicosapentanoic acid and docosapentanoic acid are capable of displacing 

arachidonic acid from the cell membrane and promote resolution of inflammation and 

dampening of airway hyper-responsiveness 37,38. Both GPI and glycerophospholipids are 

key constituents of cell membranes, and the identification of these pathways in a 

metabolite module associated with FEV1 further highlights the importance of fatty acids 

and lipid mediators in the pathogenesis of asthma.  

 

Sphingolipids have also been implicated in asthma pathogenesis 39. ORMDL3; one of the 

most replicated genes for childhood asthma, is thought to exert its effect through the 
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sphingolipid metabolism pathway via negative regulation of serine palmitoyltransferase 

(SPT), which catalyzes the initial step of sphingolipid biosynthesis 27. In mouse models, 

knockout of SPT has been shown to result in alterations in de novo lung epithelial tissue 

sphingolipid biosynthesis and an increase in inflammation and airway hyper-

responsiveness 40. However, direct evidence of an association in human studies is 

lacking.  

 

In the integrated-omics analysis the “lipid” metabolite module correlated with the 

“asthma microRNAs” transcriptomic module that included ORMDL3, providing evidence 

for a mechanistic connection between ORMDL3, microRNA regulatory motifs, and 

sphingolipid metabolism in asthma. Furthermore, we were able to demonstrate a SNP 

within the 17q21 locus; rs8079416 which has previously been associated with asthma 41 was 

significantly associated with both the expression of ORMDL3 and with the lipid metabolomics 

module and its constituent metabolites. The “asthma microRNAs” module also encompassed 

several other asthma genes which, like ORMDL3, map to the 17q21 locus including 

CCL21 and GSDMB. This suggests variants in this region systematically contribute to the 

pathogenesis of asthma through a dysregulation of sphingolipid metabolism, potentially 

due to the binding of these genes to the regulatory microRNAs. Intriguingly, the “asthma 

microRNAs” module also included CRISPLD2; previously identified as an asthma 

candidate gene due to its role as a regulator of the anti-inflammatory effects of 

glucocorticoids in the airway smooth muscle 42. Sphingolipids have been shown to 

mediate the effects of glucocorticoids 43, further supporting the observed link between the 

“asthma microRNAs” and “lipid” modules and suggesting a possible connection between 
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the CRISPLD2 gene and sphingolipid metabolism. Full replication and validation of these 

findings was not possible as there was incomplete crossover between the known 

metabolites measured in Costa Rica and CAMP, and the crossover between the unknown 

metabolites cannot be computed. However, in the independent CAMP population there 

was evidence that a lung function associated lipid module correlated with this module in 

blood samples taken at the same timepoint. This adds weight to the theory that the genes 

enriched for microRNA targets may be acting on lung function though the dysregulation 

of lipid metabolism. 

 

To date, relatively few studies have attempted to combine metabolomic and 

transcriptomic data in any human disease, and no analytical gold-standards exist. 

However, statistical integration using pathway and network-based approaches has shown 

promising results 44. This study demonstrated relationships between transcriptomic and 

metabolomic modules, which were generated independently and which were 

independently associated with lung function. The integrative analysis enhanced single-

omics analysis and improved pathway recovery; capturing associations that may be 

missed based on a significance threshold when a single-omics data type is analyzed. The 

downstream metabolites “anchored” the transcriptome 44, providing a functional readout 

of the changes taking place at a transcriptional level. This makes these transcriptomic 

changes more biologically interpretable, and provided mechanistic evidence to support 

the role of common asthma genes such as ORMDL3 and CRISPLD2.  
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A major strength of this study included the innovative use of validated 29 network 

methods to perform–for the first time–integrative-omics in a large well-characterized 

cohort of asthmatic children, allowing the simultaneous exploration of multiple clinically 

relevant phenotypic characteristics of lung function. Blood is well suited for future 

clinical translation; mounting research suggests that plasma is an excellent resource for 

metabolic profiling in asthma and it is known that gene expression patterns in peripheral 

blood show systematic changes when asthma exacerbations occur 45.  However, it is 

difficult to determine how the mixture of different cell types in whole blood may affect 

gene expression.  

There were some other limitations. Both known and unknown metabolites are required to 

build a complete metabolomic network. In this study, only 574 (7%) of 8185 metabolite 

features could be annotated to known metabolites; subsequent pathway enrichment 

analysis was therefore limited, and thus additional dysregulated metabolomic pathways 

within the modules could not be identified. Although there is likely some redundancy in 

the metabolite features, we consider the inclusion of all features necessary to generate the 

truest metabolic network possible. If only named metabolites were included in an 

unsupervised clustering approach such a WGCNA, multiple connections would be 

missed leading to metabolites not being assigned to their optimal module. Although 

nominal significance thresholds were employed to consider module relationships, 

reflecting the exploratory nature of the analysis, the biologically plausibility of the 

reported results render them worthy of further exploration.  

The samples were not originally collected for metabolomic and transcriptomic profiling; 

and therefore there is the potential that some of the methods employed may have 
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impacted on our omic profiles and subsequently on the results. However, the majority of 

samples were processed within four hours of collection and additionally both the 

metabolomic and transcriptomic data underwent rigorous QC and processing, which 

aimed to reduce noise, identify outliers and eliminate systematic bias. There was a lack of 

extreme phenotypes in this population; nevertheless, a variety of studies have 

demonstrated that omics profiling can capture phenotypic differences within populations 

of non-severe asthmatics 10,11,20,29,45. Children from the central valley of Costa Rica 

represent a genetically homogenous population, which may limit generalizability, 

however there is abundant evidence that the results of previous genetic analyses in this 

population can be replicated in outbred populations from different geographical locations 

28,46,47. Crucially, some of the most intriguing findings could be replicated in an 

independent cohort. The ability to replicate between studies remains an ongoing issue in 

metabolomics due to heterogeneity in approach, technology and the fact that no one 

method is capable of capturing the complete metabolome. Accordingly, the current 

replication is limited by the fact that information was not available in CAMP for all of the 

relevant metabolites from Costa Rica and thereforeshould be interpreted with caution. 

Furthermore the differeing biological media used for metabolomics profiling in the two 

studies may have damped the ability to replicate 48.  Further replication and functional 

validation is still necessary, and should considered targeted metabolomics profiling of the 

most interesting findings to obtain absolute metabolite quantification Such work is 

necessary before the potential for the clinical translation of these findings into biomarkers 

for asthma prognosis or endotyping can be considered. 
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In conclusion, this hypothesis-generating study demonstrates how integrating multiple 

omics technologies provides a more informative picture of asthmatic lung function 

biology than a single-omics approach, and suggests that network-based methods 

represent viable integrative strategies. 

 

 

 

 

 

FIGURE LEGEND 

 

Figure 1: Correlation between the eigenvectors of the transcriptomic and metabolomics modules 

 

Correlation coefficients are shown for each module-trait pair and the associated p-value in brackets; 

colors indicate direction of association and darker colors indicate more significant associations
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