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Abstract

We present SPECULATOR—a fast, accurate, and flexible framework for emulating stellar population synthesis
(SPS) models for predicting galaxy spectra and photometry. For emulating spectra, we use a principal component
analysis to construct a set of basis functions and neural networks to learn the basis coefficients as a function of the
SPS model parameters. For photometry, we parameterize the magnitudes (for the filters of interest) as a function of
SPS parameters by a neural network. The resulting emulators are able to predict spectra and photometry under both
simple and complicated SPS model parameterizations to percent-level accuracy, giving a factor of 103–104 speedup
over direct SPS computation. They have readily computable derivatives, making them amenable to gradient-based
inference and optimization methods. The emulators are also straightforward to call from a GPU, giving an
additional order of magnitude speedup. Rapid SPS computations delivered by emulation offers a massive reduction
in the computational resources required to infer the physical properties of galaxies from observed spectra or
photometry and simulate galaxy populations under SPS models, while maintaining the accuracy required for a
range of applications.

Unified Astronomy Thesaurus concepts: Galaxies (573); Neural networks (1933); Galaxy photometry (611)

1. Introduction

Inferring the physical properties of galaxies from observa-
tions of the spectral energy distribution (SED) of their emitted
light is one of the cornerstones of modern extragalactic
astronomy. At the heart of this endeavor is stellar population
synthesis (SPS): predictive models for galaxy SEDs that fold
together the initial stellar mass function, star formation and
metallicity enrichment histories, stellar evolution calculations
and stellar spectral libraries, phenomenological dust and gas
models, black hole activity etc., to predict the spectrum of a
galaxy given some input physical parameters associated with
each model component. SPS modeling has a rich history, with a
plethora of parameterizations of varying complexity available
(see Conroy 2013 and references therein).

The computational bottleneck in both inferring galaxy
properties from observations and simulating catalogs under
SPS models is running the SPS models themselves. Forward-
simulating upcoming Stage IV galaxy surveys will demand
∼1010 SPS evaluations per catalog simulation. For data
analysis, inferring11 of the order of 10 SPS model parameters
for a single galaxy (given some photometric or spectroscopic
data) typically requires ∼105–106 SPS model evaluations. If
inference is then to be performed for a large sample of galaxies,
the number of SPS evaluations and associated computational
demands quickly becomes prohibitive. For recent context,

Leja et al. (2019) analyzed ∼6×104 galaxies under a
14 parameter SPS model, with a total cost of 1.5 million
CPU hours.12 With upcoming surveys such as the Dark
Energy Spectroscopic Instrument (DESI; Levi et al. 2013;
DESI Collaboration et al. 2016a, 2016b) posing the challenge
of analyzing millions of galaxy spectra, the need to address
the bottleneck posed by SPS is clear and urgent.
There are two principal ways of reducing the cost of

inference and simulation under SPS models: speeding up
individual SPS computations and (in the case of inference)
reducing the number of SPS computations required to obtain
robust inferences per galaxy. In this paper, we present neural
network emulators for SPS spectra and photometry that gain
leverage on both fronts. For galaxy spectra, our emulation
framework uses a principal component analysis (PCA) to
construct a basis for galaxy SEDs and then trains a neural
network on a set of generated SPS spectra to learn the PCA
basis coefficients as a function of the SPS model parameters.
For photometry, we train a neural network to learn the
magnitudes directly (for some set of bandpasses) as a function
of the SPS parameters. The result in both cases is a compact
neural network representation of the SPS model that is both fast
to evaluate, accurate, and has analytic and readily computable
derivatives, thus making it amenable to efficient gradient-based
optimization and inference methods (e.g., Hamiltonian Monte
Carlo sampling). Furthermore, calling the emulators from a
GPU is straightforward, enabling an additional order of
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9 NSF Fellow.
10 NASA Einstein Fellow.
11 E.g., Markov Chain Monte Carlo sampling.

12 For added context, the CPU time for the Leja et al. (2019) analysis would
cost around $20,000 USD from Amazon Web Services (estimated in 2019).
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magnitude speedup when evaluating many SPS models in
parallel.

We demonstrate and validate the emulator on two SPS
models13: one relatively simple eight parameter model
targeting upcoming DESI observations (for which we emulate
spectra) and the more flexible 14 parameter Prospector-α
model from the recent Leja et al. (2019) analysis (for which we
emulate both spectra and photometry). For both models, we
show that the emulator is able to deliver percent-level accuracy
over broad parameter prior and wavelength ranges and gives a
factor of ∼103–104 speedup over direct SPS model evaluation.
T use of gradient-based inference methods enabled by the
emulators will provide further reductions in the cost of
inference under SPS models.

The structure of this paper is as follows: in Section 2 we
outline the emulation framework. In Sections 3 and 4 we
validate the spectrum emulator on two SPS model parameter-
izations. In Section 5 we validate the photometry emulator for
the Prospector-α model. We discuss the implications for
current and future studies in Section 6.

2. SPECULATOR: Emulating SPS

In this section we describe the framework developed for fast
emulation of SPS spectra (Section 2.2) and photometry
(Section 2.3). Some background knowledge of PCA and neural
networks is assumed in this section; see e.g., Bishop (2006) for
a comprehensive and pedagogical review. For previous work
on representing spectra as interpolations over PCA bases, see
Han & Han (2014), Czekala et al. (2015), and Kalmbach &
Connolly (2017).

2.1. Notation

We will denote galaxy SEDs by ql º ll l;( ) (luminosity per
unit wavelength) and log SEDs by ºl lL lln for wavelength λ
and SPS model parameters q. Photometric fluxes, denoted by

qfb ( ), for a given bandpass b with filter Wb(λ) and SPS
parameters q are given by

òq q
p

l l l=
+

+
¥

f
g z d z

l z W d
1

4 1
1 ; ,

1

b
L

bAB 2 0
( )
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where gAB is the AB flux normalization, dL(z) is the luminosity
distance for redshift z, and the filter is assumed to be
normalized to unity, ò l l =W d 1b ( ) . The associated apparent
magnitudes are denoted by qmb ( ).

The goal of emulation is to find an efficient representation
for the galaxy spectra qll ( ) or photometry qmb{ ( )} as a
function of the SPS model parameters that is as fast as possible
to evaluate, while maintaining accuracy.

2.2. Emulation of Galaxy Spectra

2.2.1. Parameterization Considerations

There are a couple of simplifications to the SED-emulation
problem setup that will make emulation significantly easier.

We will emulate the rest-frame SEDs only, redshifting
(analytically) afterward as needed. This is motivated by the fact

that emulator is contingent on finding a compact PCA basis for
galaxy SEDs; constructing this basis is greatly simplified when
working within the rest frame only, i.e., without requiring that
the basis can capture arbitrary stretches in wavelength.
Meanwhile, emulating rest-frame SEDs only does not reduce
functionality, since redshifted spectra can be obtained straight-
forwardly (and exactly) from the rest-frame SEDs.
Redshifting involves three transformations on the emulated

rest-frame SEDs: a stretch by l l + z1( ), rescaling by
+ -z d z1 L

2 1[( ) ( ) ] , and adjusting the age of the universe at the
lookback time for a given redshift, tage(z), so that the age
of the stellar population is consistent with that lookback
time. Therefore, tage(z) must be included in the list of SPS
parameters q.
Similarly, we fix the total stellar mass, M, for the emulated

spectra to 1Me and scale the mass analytically afterward as
required (the total stellar mass that formed M enters as a simple
normalization of the SED). Hence, a galaxy spectrum for a
given redshift z, total stellar mass formed M, and SPS model
parameters q can be obtained from the corresponding emulated
rest-frame unit stellar mass SED qll ;( ) as

q ql l +
+

l M z l z
z d z

M; , , 1 ;
1

1
.

2

t z
L

2age( ) ( ( ) )∣
( ) ( )
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2.2.2. PCA Neural Network Emulator Framework

A schematic overview of the PCA network emulator
framework described below is given in Figure 1 for reference
throughout this section.
To build an emulator for a given SPS model parameteriza-

tion, we begin by generating a training set of Ntrain galaxy
SEDs q q ql l lL L L, , , ,..., , N1 2 train{( ) ( ) ( ) } under the target SPS
model, by drawing SPS parameters from the prior and
computing the associated SEDs.
From this training set, we construct a basis lq i,{ } for the

SEDs by performing a PCA decomposition of the training
spectra and by taking the first Npca principal components as
basis vectors. The number of PCA components retained is
chosen such that the resulting PCA basis is comfortably able to
recover the model SEDs at the desired accuracy (i.e., =1% if
we want to ensure that the errors associated with the PCA basis
are a small fraction of the total error budget).
With the PCA basis lq i,{ } in hand, we model the (log) SED

as a linear combination of the PCA basis functions:

åq qa=l l
=

L q , 3
i

N

i i
1

,

pca

( ) ( ) ( )

where the vector of coefficients a q( ) are some unknown
(nonlinear) functions of the SPS parameters q. The remaining
step, then, is to learn some convenient parametric model
a q w;ˆ ( ) (with parameters w) for the basis coefficients a q( ) as
a function of the SPS parameters.
We parameterize the basis coefficients as a function of

the model parameters by a dense, fully connected neural
network with n hidden layers, with {h1, h2, K, hn} hidden
units, and nonlinear activation functions {a1, a2, K, an},

13 Implemented with the SPS code FSPS (Conroy et al. 2009; Conroy &
Gunn 2010) with python bindings PYTHON-FSPS (Foreman-Mackey et al.
2014).
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respectively, i.e.,
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The weight matrices and bias vectors for each network layer
are denoted by Î ´ -Wk

h hk k 1 and Î bk
k, so we use

=w W b,k k{ } as shorthand for the full set of weights and
biases of the whole network, and yk denotes the output from
layer k.

Finally, to train the emulator, we optimize the network
parameters w by minimizing the loss function:

åq a a a q- = -
=

w wU
N

ln ; ,
1

; , 5
m

N

m m
train 1

2
train

( { }) ∣ ˆ ( )∣ ( )

where am{ } are the PCA basis coefficients for the SEDs {Lλ}
in the training set, and qm is the corresponding SPS model
parameters for those training set members. This loss function is
just the mean square error between neural network predicted
and true PCA basis coefficients over the training set.

The emulator model is succinctly summarized by

q a q=L Q w; , 6ˆ ( ) ˆ ( ) ( )

where q q q q= l l l lL L L L, ,..., N,1 ,2 ,
ˆ ( ) ( ˆ ( ) ˆ ( ) ˆ ( )) is the emulated

SED for parameters q, =l lQ qi i, is the set of basis functions,
and a q w;ˆ ( ) is given by Equation (4). The neural network
emulator is specified entirely by the set of matrices and
nonlinear activation functions, W b Q a, , ,k k k{ }. Calculating an
emulated SPS model spectrum using Equations (6) and (4) is
hence reduced to a series of linear matrix operations and passes
through simple nonlinear (e.g., tanh) activation functions.
Furthermore, the neural network in Equation (4) is straightfor-
wardly differentiable (by the chain rule), so derivatives of the
model spectra with respect to the SPS parameters are readily
available. We highlight that implementation of the trained

emulator using Equations (4) and (6) is simple, so incorporat-
ing the trained emulator into existing (or future) analysis codes
should be straightforward.
In the limit of a large PCA basis, large training set, and

complex neural network architecture, the emulator described
above can represent any (deterministic) SPS model to arbitrary
precision. However, the power of this emulation framework
comes from the fact that, as we will demonstrate in the
following sections, a relatively small PCA basis and neural
network architecture can achieve percent-level precision over
broad parameter ranges, even for relatively complex SPS
parameterizations. It is this fact that allows the emulator to
achieve such significant speedups.

2.2.3. Discussion

The use of neural networks in this context is solely as a
convenient parametric model for an unknown function that we
want to learn, in a situation where the dimensionality is too
high to make direct interpolation efficient. Neural networks
have a number of useful features that make them well suited to
this sort of emulation task. The universal approximation
theorem tells us that a neural network with a single hidden
layer and finite number of nodes can approximate any
continuous function on compact subsets of n under some
mild assumptions about the activation function (Csáji 2001).
Their derivatives can be computed efficiently (by back-
propagation), making for efficient training. Once trained, they
are straightforward and fast to evaluate, and importantly the
computational cost of evaluation is fixed ahead of time and
independent of the size of the training set (in contrast to
Gaussian processes,14 where the cost of evaluation naïvely
scales as N3 with the training set size).
In this study, we show that relatively simple dense fully

connected network architectures are able to perform well in the
context of SPS emulation. However, for more complex SPS
models than those considered here, or where fidelity

Figure 1. Schematic of the PCA neural network emulator setup. A dense neural network parameterizes the PCA basis coefficients as a function of the SPS model
parameters (i.e., taking SPS parameters as an input and predicting the basis coefficients). These basis coefficients are then multiplied by their respective PCA basis
functions and summed to give the predicted spectrum.

14 For use of PCA and Gaussian processes in a similar context, see Czekala
et al. (2015).

3

The Astrophysical Journal Supplement Series, 249:5 (13pp), 2020 July Alsing et al.



requirements are very high, more sophisticated architectures
may prove beneficial (for a further discussion, see Section 6).

We note that training an emulator on a given SPS
parameterization is performed over some predetermined prior
ranges for the parameters. Care should be taken to train the
emulator over well-chosen priors in the first instance, since
emulated SEDs outside of the predetermined prior ranges of the
training set should not be expected to be reliable.

2.3. Emulation of Galaxy Photometry

For applications where photometry rather than spectra are
the primary target, it makes sense to emulate the photometry
directly, i.e., to learn a compact model for the fluxes or
magnitudes for some set of filters, as a function of the SPS
parameters. Emulating photometry presents a simpler problem
than emulating spectra: the number of bands of interest is
typically  10( ) (or fewer), so no basis construction or
dimensionality reduction is necessary.

To emulate photometry for some set of bandpasses {b1, b2,
K, bk} under a given SPS model, we parameterize the
magnitudes q q q q= ¼m m m m, , ,b b bk1 2( ) ( ( ) ( ) ( )) by a dense
fully connected neural network, i.e., (Figure 2):
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where qm w;ˆ ( ) denotes the neural network emulated photo-
metry. As before, the weight matrices and bias vectors for each
network layer are denoted by Î ´ -Wk

h hk k 1 and Î bk
k, and

we use =w W b,k k{ } as shorthand for the full set of weights
and biases of the whole network.

2.4. Activation Function Choice for Neural SPS Emulation

We find that SPS spectra and photometry as functions of the
model parameters are mostly smooth but exhibit some non-
smooth features. In particular, the behavior as a function of
stellar and gas metallicity parameters exhibits discontinuous
changes in gradient. When considering neural network
architecture choices for SPS emulation, it is therefore
advantageous to choose activation functions that are able to
capture both smooth features and sharp gradient changes; well-
chosen activation functions will allow us to achieve higher
fidelity emulation with smaller (faster) network architectures.
To this end, we adopt activation functions of the following

form:

g g= + + -b- -x xa e1 1 , 8x 1( ) [ ( ) ( )] ( )

where g and b are included as additional free parameters of the
network to be trained alongside the network weights and
biases. This activation function is able to cover smooth features
(small β) and sharp changes in gradient (as b  ¥). In
experiments, we find that activation functions of this form
outperform other popular neural network activation choices for
the SPS emulation problem (including the tanh, sigmoid,
Rectified Linear Unit (ReLU), and leaky-ReLU; see Nwankpa
et al. 2018 for recent trends in activation function choice).
Nonlinear activation functions of the form Equation (8) are
hence adopted throughout this work.

2.5. Target Accuracy for SPS Emulation

While a great deal of progress has been made in reducing
modeling uncertainties associated with SPS, some fundamental
uncertainties remain (e.g., the effect of binaries and rotation on
the ionizing photon production from massive star; Choi et al.
2017; for a review of SPS model uncertainties, see Conroy
2013). When analyzing galaxies under SPS models it is
therefore common practice to assume an error floor of 2%–5%
on the SEDs or photometry to account for the theoretical SPS
model uncertainties (e.g., Leja et al. 2019). On the observa-
tional side, for photometry, it is also common practice to put an
error floor (typically 5%) on the measured fluxes to account for
systematic uncertainties in the photometric calibration (e.g.,
Muzzin et al. 2013; Chevallard & Charlot 2016; Pacifici et al.
2016; Belli et al. 2019; Carnall et al. 2019).
This context provides a natural accuracy target for SPS

emulation (for both spectra and photometry): 5% accuracy or
=5% if we want to ensure the emulator error is a small fraction
of the total error budget. While this covers a range of use cases,
we note that for an analysis of high signal-to noise ratio (S/N)
spectra under very complex SPS models, the fidelity require-
ments may be more like =1% (see Section 6 for a discussion).

3. Validation I: DESI Model Spectra

In this section, we demonstrate and validate the emulator on
a relatively simple eight parameter SPS parameterization. The
model is outlined in Section 3.1, the emulator setup is
described in Section 3.2, and validation tests and performance
are discussed in Sections 3.3 and 3.4.

3.1. Model and Priors

Our first model (hereafter, the DESI model) is motivated by
upcoming analyses of large numbers of optical, low-S/N

Figure 2. Schematic of the emulator setup for photometry under SPS models;
the magnitudes (for some chosen set of bandpass) as a function of the SPS
model parameters are parameterized as a dense, fully connected neural network
(see Equation (7)).
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spectra being collected by current and future surveys. The
specifics of the model presented in this section are targeted at the
analysis of low-redshift spectra for the upcoming DESI Bright
Galaxy Survey (BGS; DESI Collaboration et al. 2016a). The
BGS will be a flux-limited survey that will target 10 million
galaxies with z0.45 over 14,000 deg2. It will measure spectra
over a wavelength range between 360 and 980 nm with a
resolution of R=λ / Δ λ between 2000 and 5500, depending
on the wavelength. Individual spectra will have a median S/N of
∼2–3 per pixel. The key features and free parameters of the
model, and associated prior ranges, are as follows.

We model the star formation and chemical enrichment
histories as a function of lookback time as linear combinations
of a set of precomputed basis functions (Figure 3). The shape and
number of basis functions were determined by applying a
nonnegative matrix factorization (NMF) to the star formation and
chemical enrichment histories of galaxies above 109 Me in the
Illustris simulation (Vogelsberger et al. 2014a). We sought to
construct a basis with the minimal number of components that
would reconstruct the history of galaxies, and therefore their
optical spectra, to an accuracy dictated by the typical DESI S/N.
In practice, the chosen basis has a dependence on the optical
colors of the galaxies. The basis used here is an indicative
example of what will be used to analyze DESI spectra; further
details are given in R. Tojeiro et al. (2020, in preparation).

The star formation history (SFH)15 for a galaxy at redshift z
is implemented as a linear combination of four SFH basis
functions, s ti

SFH{ ( )} (shown in Figure 3):

å
ò

b=
=

t t z
s t

s t dt
SFH ; , 9

i
i

i
t z

i

age
1

4
SFH

SFH

0
SFHage

( ( )) ( )

( )
( )( )

where the SFH basis coefficients b i
SFH{ } are free parameters of

the model, the basis functions are normalized to unity over the

age of the universe at the lookback time of the galaxy tage(z),
and time runs from 0 to tage(z). We train the emulator over a
flat-Dirichlet prior for the basis coefficients, i.e., a uniform
prior over all combinations of basis coefficients under the
constraint that bå == 1i i1

4 SFH (ensuring that the total SFH is
normalized to unity for the emulated spectra).
The metallicity enrichment history (ZH) is similarly

parameterized as a linear combination of two basis functions,
s ti

SFH{ ( )} (shown in Figure 3):

å g=
=

t s tZH , 10
i

i i
1

2
ZH ZH( ) ( ) ( )

where again the ZH basis coefficients g i
ZH{ } are free parameters

of the model, and time runs from 0 to tage(z). We take uniform
priors for the ZH basis coefficients, g Î ´ ´-6.9 10 , 7.33i

ZH 5[
-10 3].
Dust attenuation is modeled using the Calzetti et al. (2000)

attenuation curve, with the optical depth τISM as a free
parameter with a uniform prior t Î 0, 3ISM [ ].
The eight model parameters, their physical meanings, and

associated priors are summarized in Table 1.

3.2. Emulation

We generated a training and validation set of 5×105 and
105 SEDs, respectively, for model parameters drawn from their
respective priors (see Table 1) and covering the wavelength
range of 200–1000 nm.
The PCA basis was constructed by performing a PCA

decomposition of all of the training SEDs.16 We choose the
number of PCA components to keep in the basis such that the

Figure 3. Basis functions for the SFH (left) and metallicity history (right) for the DESI model (see Section 3.1). The SFH basis functions are normalized such that the
total mass formed is one solar mass. The metallicity components are unnormalized, but the values refer to the mass fraction in metals (Ze=0.019).

Table 1
Summary of SPS Model Parameters and Their Respective Priors for the DESI Model (Section 3.1)

Parameter Description Prior

b b b b, , ,1
SFH

2
SFH

3
SFH

4
SFH SFH basis function coefficients Flat-Dirichlet

g g,1
ZH

2
ZH ZH basis function coefficients Uniform [6.9×10−5, 7.3×10−3]

tage Age of the universe at lookback time of the galaxy Uniform [9.5, 13.7] Gyr
(equivalent to 0<z<0.4)

τISM Dust optical depth (Calzetti et al. 2000; attenuation model) Uniform [0, 3]

15 I.e., stellar mass formed per unit time, [Me Gyr−1].

16 Performing a PCA decomposition over large training sets can be memory
intensive. Here we used SCIKIT-LEARNʼs “incremental PCA,” which constructs
a PCA basis while only processing a few training samples at a time, keeping
the memory requirements under control.
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basis is able to describe the validation SEDs to =1% accuracy
over the whole wavelength range and parameter volume.
Figure 4 shows the fractional error distribution of the validation
spectra represented in the PCA basis with 20 components
retained; the 20 component basis is able to describe the SEDs
to 0.5% accuracy over the whole wavelength and parameter
prior range. Note that the PCA basis is constructed for log
SEDs, but accuracy in Figure 4 is displayed in linear space.

The PCA basis coefficients are parameterized by a dense
neural network with two hidden layers of 256 hidden units,
with nonlinear activation functions (Equation (8)) on all except
the output layer, which has linear activation. The network is
implemented in TENSORFLOW (Abadi et al. 2016) and trained
with the stochastic gradient descent optimizer ADAM (Kingma
& Ba 2014). Overfitting is mitigated by early stopping.17

Network training is performed on a Tesla K80 GPU18 and
takes of the order of a few minutes for the network architecture
and training set described above; the computational cost of
building the emulator is overwhelmingly dominated by
performing the direct SPS computations (using FSPS) to
generate the training set (∼10 hr compared to minutes).

3.3. Results and Validation

For validating the trained emulator, we generated 105 SEDs
for model parameters drawn from the prior and compared the
emulated and exact SPS spectra for this validation set. The
results are summarized in Figure 5. The upper panels show
typical, low, and extreme case performances of the emulator,
taken as the 50th, 99th, and 99.9th percentiles of the mean
(absolute) fractional error per SED (over the full wavelength
range). The bottom left panel shows the 68%, 95%, 99%, and
99.9% intervals of the fractional error as a function of
wavelength, and the bottom right panel shows the cumulative
distribution of the mean (absolute) fractional error for the

validation samples (over the wavelength range). Note that the
emulator is trained on the PCA coefficients of log SEDs, but
accuracy is shown in Figure 5 in linear space.
The emulator is accurate at the <1% level over the full

wavelength range for >99% of the SEDs in the validation set.
A small fraction (<1%) of validation samples have errors at the
few-percent level at the shortest wavelengths. We note that this
small number of “outliers” occur where the recent SFH turns
on/off and the SEDs are very sensitive to the most recent SFH
coefficients. While even in these cases the emulator errors are
acceptable, they may be further improved by re-parameteriza-
tion of the SFH or by better sampling of the prior volume in
this part of parameter space.
There are two distinct sources of emulator error: the

adequacy of the PCA basis and the accuracy of the neural
network in learning the PCA basis coefficients as functions of
the SPS parameters. Comparing Figures 4 and 5 (bottom left),
we see that the error budget in this case is dominated by the
neural network rather than the PCA basis. Accuracy could
hence be further improved with a larger neural network
architecture (accompanied by a larger training set if necessary),
at the cost of some reduction in the performance gain (since a
larger network will be more expensive to evaluate).

3.4. Computational Performance

With the network architecture described above (Section 3.2),
we find that the trained emulator is able to generate predicted
SEDs a factor of 104 faster than direct SPS computation with
FSPS on the same (CPU) architecture.
Implementation in TENSORFLOW allows the emulator to

automatically be called from a GPU, allowing for easy
exploitation of GPU-enabled parallelization. Generating 106

emulated SEDs takes around ∼2 s on a Tesla K80 GPU,
compared to ∼0.2 s per direct SPS computation on an Intel i7
CPU; an overall effective factor of 105 speedup.
When inferring SPS model parameters from galaxy observa-

tions, additional performance gains are expected from the use
of gradient-based inference and optimization methods that are
enabled by the emulator (which has readily available
derivatives). We leave investigation of these extra gains to
future work.

4. Validation II: Prospector-α Spectra

In this section we demonstrate and validate the spectrum
emulator on a more flexible 14 parameter SPS parameterization
—the Prospector-α model (Leja et al. 2017, 2018, 2019). The
model is outlined in Section 4.1, the emulator setup described
in Section 4.2, and validation tests and results are discussed in
Sections 4.3 and 4.4.

4.1. Model and Priors

The Prospector-α model includes a nonparametric SFH, a
two component dust attenuation model with a flexible
attenuation curve, variable stellar and gas phase metallicity,
dust emission powered via energy balance, and emission from a
dusty active galactic nucleus (AGN) torus. Nebular line and
continuum emission is generated using CLOUDY (Ferland
et al. 2013) model grids from Byler et al. (2017). Modules for
Experiments in Stellar Astrophysics (MESA) Isochrones and
Stellar Tracks (MIST) stellar evolution tracks and isochrones

Figure 4. Validation of the PCA basis for the DESI model (Section 3). The
central 95% (red), 99% (salmon), and 99.9% (gray) intervals of the fractional
errors on the DESI model spectra represented in the basis of the first 20 PCA
components are shown. The 20 PCA component basis is able to describe the
model spectra to0.5% accuracy over the whole wavelength range and
parameter volume.

17 The training set is split 9:1 into training and validation subsets, and the
networks are trained by minimizing the loss for the training subset only, but the
loss for the validation subset is tracked during training. Overfitting is observed
when the validation loss stops improving, while the training loss continues to
decrease. Training is terminated when the loss of the validation set ceases to
improve over 20 training epochs.
18 Freely available with Google Colab: https://colab.research.google.com/.
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Figure 5. Validation of the emulator for the DESI model (Section 3). Top figure: “typical,” “low,” and “extreme case” accuracy of the emulated SEDs from a
validation set of 105 spectra generated with parameters drawn from the prior (Table 1). These cases correspond to the 50th, 99th, and 99.9th percentiles of the mean
(absolute) fractional error between emulated and true SED (over the wavelength range). Bottom left: 68 (dark red), 95 (red), 99 (salmon), and 99.9 (gray) percentiles of
the fractional emulator error as a function of wavelength. Bottom right: cumulative distribution (blue) and 68 (dark red), 95 (red), 99 (salmon), and 99.9 (gray)
percentiles of the mean (absolute) fractional errors (over the wavelength range). We see that the emulator is broadly accurate to 1%, with a small fraction (<1%) of
validation samples having errors at the few-percent level or more at the lower end of the wavelength range.

Table 2
Summary of SPS Model Parameters and Their Respective Priors for the Prospector-α Model (Section 4.1)

Parameter Description Prior

M Total stellar mass formed Log uniform [107, 1012.5]Me

¼r r, ,SFH
1

SFH
6 Ratio of log SFR between adjacent bins Clipped student’s-t: σ=0.3, ν=2, r 5i

SFH∣ ∣
tage Age of universe at the lookback time of galaxy Uniform [2.6, 13.7] Gyr, (0<z<2.5)
τ2 Diffuse dust optical depth Normal μ=0.3, σ=1, min=0, max=4
τ1 Birth cloud optical depth Truncated normal in τ1/τ2

μ=1, σ=0.3, min=0, max=2
n Index of Calzetti et al. (2000) dust attn. curve Uniform [−1, 0.4]
ln(Zgas/Ze) Gas phase metallicity Uniform [−2, 0.5]
fAGN Fraction of bolometric luminosity from AGN Log uniform [10−5, 3]
τAGN Optical depth of AGN torus Log uniform [5, 150]

Z Zln( ) Stellar metallicity Truncated normal with μ and σ from
Gallazzi et al. (2005) mass–metallicity relation (see Section 4),
limits min=−1.98, max=0.19

z Redshift Uniform [0.5, 2.5]

Note. Note that for emulating spectra under this model (Section 4), generated training spectra are computed in the rest frame (but over a range of values for tage) and
renormalized such that they correspond to =M M1  (see Section 2 for motivation). When emulating photometry under this model (Section 5), M and z are kept as
free parameters to be emulated over.
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are assumed (Choi et al. 2016; Dotter 2016), based on MESA
(Paxton et al. 2010, 2013, 2015).

The model has been tested and calibrated on local galaxies
(Leja et al. 2017, 2018), and recently used to analyze a sample
of ∼60,000 galaxies from the 3D-Hubble Space Telescope
(HST) photometric catalog (Skelton et al. 2014) over
0.5<z<2.5 (Leja et al. 2019). The model is described in
detail in Leja et al. (2017, 2018, 2019); we review the salient
features, model parameters, and associated priors below. A
summary of model parameters and priors is given in Table 2.

The SFH is modeled as a piece-wise constant, with seven
time bins spaced as follows. Two bins are fixed at [0, 30] Myr
and [30, 100] Myr to capture recent SFH. A third bin is placed
at the other end at [0.85, 1] tage, where tage is the age of the
universe at the lookback time of the galaxy, to model the oldest
star formation. The remaining four bins are spaced equally in
logarithmic time between 100 Myr and 0.85 tage. The six ratios
of the logarithmic star formation rate (SFR) in adjacent SFH
bins ri

SFH{ } are included as free model parameters. Following
Leja et al. (2017, 2018, 2019) we take independent Student’s-t
priors on the log SFR ratios (see Table 2). This prior is chosen
to allow similar transitions in the SFR as seen in the Illustris
hydrodynamical simulations (Torrey et al. 2014; Vogelsberger
et al. 2014b, 2014c; Diemer et al. 2017), although care is taken
to ensure a wider range of models is allowed than is seen in
those simulations.

A single stellar metallicity is assumed for all stars in a
galaxy. The observed stellar mass–stellar metallicity relation-
ship from z=0 Sloan Digital Sky Survey (SDSS) data
(Gallazzi et al. 2005) is used to motivate the metallicity prior.
For a given stellar mass, the stellar metallicity prior is taken to
be a truncated normal with limits19 of 1.98<log(Z/Ze)<
0.19, a mean set to the Gallazzi et al. (2005) z=0 relationship,
and a standard deviation taken to be twice the observed scatter
about the z=0 relationship (to allow for potential redshift
evolution in the mass–metallicity relation).

As discussed in Section 2 we fix the integral normalization
of the SFH to 1Me for the spectra in the training set, and stellar
mass can then be set by adjusting the normalization of the
emulated spectra. However, because in this case the metallicity
prior is taken to be mass-dependent, we sample the total stellar
mass formed from a log uniform prior from 107Me to 1012.5Me
first (for the purpose of sampling from the metalliticy prior
correctly) and then renormalize the spectra to 1Me afterward
when training the emulator.

Gas phase metallicity is decoupled from the stellar
metallicity and is allowed to vary (uniformly) between 2<
log(Zgas/Ze)<0.5.

Dust is modeled with two components—birth cloud and
diffuse dust screens—following Charlot & Fall (2000; see Leja
et al. 2017 for details). The birth cloud (τ1) and diffuse (τ2)
optical depths are free model parameters, with truncated normal
priors: t ~  0.3, 12 ( ) with limits τ2ä[0,4], and t t ~1 2
 1, 0.3( ) with limits τ1/τ2ä[0,2]. The power-law index of
the Calzetti et al. (2000) attenuation curve for the diffuse
component is also included as a free model parameter, with a
uniform prior nä[−1, 0.4].

AGN activity is modeled as described in Leja et al. (2018),
with the fraction of the bolometric luminosity from the AGN
fAGN and optical depth of the AGN torus τAGN as free

parameters with log uniform priors Î -fln ln 10 , ln 3AGN
5[ ( ) ( )]

and t Îln ln 5 , ln 150AGN [ ( ) ( )], respectively.
The model parameters, their physical meanings, and

associated priors are summarized in Table 2.

4.2. Emulation

We generated a training and validation set of 2×106 and
105 SEDs, respectively,20 for model parameters drawn from the
prior (see Table 2) and covering the wavelength range of
100 nm to 30 μm (using the SPS code FSPS).
To emulate higher-dimensional SPS models over very broad

wavelength ranges, such as this case, it is advantageous to split
the emulation task into a number of wavelength subranges,
which can be stitched together afterward. Here, we will emulate
100–400 nm (ultraviolet (UV)), 400–1100 nm (optical–near-
infrared (NIR)), and 1100 nm–30 μm (IR) separately. We find
in experiments that that do not split into wavelength subranges,
more PCA components are required (in total) to achieve the
same consistent accuracy across the full wavelength range.
Furthermore, from the perspective of training the neural
networks, emulating relatively smaller PCA bases (for each
wavelength subrange) represents an easier learning task
compared to emulating a single large (>100 component) basis.
This means that relatively smaller networks can be used for
each subrange, requiring less training data and being faster at
evaluating once trained. We do not find any evidence for
discontinuities in the emulated spectra at the boundaries
between wavelength regions (within the accuracy of the
emulator at the boundaries, Figure 7).
The PCA basis was constructed as before by performing a

PCA decomposition of all of the training SEDs (for the three
wavelength ranges separately), and the number of PCA
components retained was chosen such that the resulting basis
is able to capture the (validation) SEDs with 1% level
accuracy. Figure 6 shows the distribution of errors on the
validation SEDs for the PCA basis with 50 components for UV
and 30 components for optical–NIR and IR, respectively. This
basis is sufficient to describe the SEDs to 1% over the full
wavelength range and parameter volume. The errors can be
reduced further by increasing the size of the PCA basis but are
sufficient for our current purposes. Note that the PCA basis was
constructed for log SEDs, but accuracy is shown in Figure 6 in
linear space.
The basis coefficients for each wavelength range are

parameterized by a dense neural network with three hidden
layers of 256 hidden units, with nonlinear activation functions
(Equation (8)) on all hidden layers and linear activation on the
output. Network implementation and training follows exactly
as described in Section 3.2.

4.3. Results and Validation

Similar to the DESI model, for validating the trained
emulator, we generated 105 SEDs for model parameters drawn
from the prior, and compared the emulated and exact SPS
spectra for this validation set. The results are summarized in
Figure 7. The upper panels show typical, low, and extreme case

19 Set by the range of the MIST stellar evolution tracks.

20 We used a larger training set for the Prospector-α compared to the DESI
model, owing to the larger parameter space. Training set sizes for both models
were chosen so that they could be generated in less than days and achieved
percent-level accuracy upon validation. For a further discussion on optim-
ization of training set sizes, see Section 6.
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performances of the emulator, taken as the 50th, 99th, and
99.9th percentiles of the mean (absolute) fractional error per
SED (over the full wavelength range). The bottom left panel
shows the 68%, 95%, 99%, and 99.9% intervals of the
fractional error as a function of wavelength, and the bottom
right panel shows the cumulative distribution of the mean
(absolute) fractional error for the validation samples (over the
full wavelength range). Note that the emulator is trained on the

PCA coefficients of log SEDs, but accuracy is shown in
Figure 7 in linear space.
The emulator has typical fractional SED errors (68th

percentile) at the =1% level over the full wavelength range
and parameter volume. Of the validation samples, 99.9% are
accurate to better than 2% down to 200 nm, below which the
accuracy steadily degrades with tails out to ∼6% at the lowest
wavelengths (100 nm).

Figure 6. Validation of the PCA basis for the Prospector-α model (Section 4). The central 95% (red), 99% (salmon), and 99.9% (gray) intervals for the fractional
errors on the 105 validation spectra represented in the basis of the first 50, 30, and 30 PCA components for UV, optical–NIR, and IR wavelength ranges, respectively,
are shown. The basis is able to capture the Prospector-α model spectra to 1% accuracy over the entire wavelength and parameter ranges.

Figure 7. Validation of the emulator for the Prospector-α model (Section 4). Top figure: “typical,” “low,” and “extreme” case accuracy for the emulated SEDs from a
validation set of 105 spectra generated with parameters drawn from the prior. These cases correspond to the 50th, 99th, and 99.9th percentiles of the mean (absolute)
fractional error between the emulated and true SED (over the wavelength range). The displayed fractional errors (middle row) are faded out where the SEDs  0.
Bottom left: 68 (dark red), 95 (red), 99 (salmon), and 99.9 (gray) percentiles of the fractional emulator error as a function of wavelength. Bottom right: cumulative
distribution and 68th (dark red), 95th (red), 99th (salmon), and 99.9th (gray) percentiles of the mean (absolute) fractional errors on the SEDs (over the full wavelength
range). Typical errors (68%) are sub-percentages across the whole wavelength range. Of the samples, 99.9% are accurate to <2% over most of the wavelength range,
with the tails of the error distribution extending out to ∼6% at the shortest wavelengths.
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4.4. Computational Performance

For the Prospector-α model, with the network architecture
described in Section 4.2, the emulator is able to generate
predicted SEDs a factor of 103 faster (per wavelength range)
than direct SPS computation with FSPS on the same CPU
architecture.

For applications where parallel SPS evaluations can be
leveraged, the emulator can be called on a GPU without any
additional development overhead. Generating 106 emulated
SEDs takes around ∼2 s on a Tesla K80 GPU, compared to
∼0.05 s per FSPS call on an Intel i7 CPU: an overall factor of
104 effective speedup per SPS evaluation.

We leave investigation of additional performance gains
enabled by the use of gradient-based optimization and
inference methods to future work.

5. Validation III: Prospector-α Photometry

In this section we demonstrate and validate direct emulation
of photometry on the same Prospector-α model as considered
in the previous section (see Section 4.1 and Table 2 for the
model and parameters).

For this demonstration, we emulate the 24 bands associated
with the All-Wavelength Extended Groth Strip International
Survey field for the 3D-HST photometric catalog (Skelton et al.
2014), supplemented by Spitzer/Multiband Imaging Photo-
meter for Spitzer (MIPS) 24 μm fluxes from Whitaker et al.
(2014). This is motivated by the recent Leja et al. (2019)
analysis of the 3D-HST galaxies using the Prospector-α model.
The 24 bands are as follows (shown in Figure 8): Canada-
France-Hawaii Telescope Legacy Survey ugriz (Erben et al.
2009); Cosmic Assembly Near-infrared Deep Extragalactic
Legacy Survey F606W, F814W, F125W, and F160W (Grogin
et al. 2011; Koekemoer et al. 2011); NEWFIRMMedium-Band
Survey J1, J2, J3, H1, H2, and K (Whitaker et al. 2011);
WIRCam Deep Survey J, H, and Ks (Bielby et al. 2012); 3D-
HST F140W (Brammer et al. 2012); SEDS 3.6 and 4.5 μm
(Ashby et al. 2013); Extended Groth Strip 5.8 and 8.0 μm
(Barmby et al. 2008); and Spitzer/MIPS 24 μm (Whitaker et al.
2014).

In contrast to spectrum emulation in Section 4 where only
rest-frame unit-mass SEDs were emulated (and mass and
redshift adjusted afterward as required), when emulating
photometry, we keep both mass M and redshift z as free
parameters to be emulated over. Recall also that for
photometry, we will emulate the apparent magnitudes directly
(Section 2.3); there is no need for an intermediate (PCA) basis
construction step in this case.

5.1. Emulation

We generated a training and validation set of 2×106 and
1×105 SEDs and associated photometry, for model
parameters drawn from the prior (see Table 2). We
parameterized the apparent magnitudes for each band
individually by a dense neural network with four hidden
layers of 128 units each, with nonlinear activation functions
(Equation (8)) on all but the output layer, which has linear
activation.
Network implementation and training follows exactly

Section 3.2.

5.2. Results and Validation

The performance of the emulator is summarized in Figure 9,
which shows the frequency density (black) and 95% (red), 99%
(salmon), and 99.9% (gray) intervals of the emulator errors
over the validation set for all 24 emulated bands. Across the
board, the standard deviations of the error distributions are
<0.01 mag. For the majority of bands, 99.9% of validation
samples are accurate to better than 0.02 mag and better than
0.04 in the worst cases. In applications where an error floor of
0.05 mag is adopted due to SPS modeling and/or photometric
calibration systematics, the emulator errors will make up a
modest fraction of the total error budget.

5.3. Computational Performance

We find that with the neural network architecture described
above, the emulator is able to predict photometry a factor of
2×103 faster (per band) than direct SPS computation for the
Prospector-α model, with an additional order of magnitude
speedup when calling the emulator from the GPU. We find in
experiments that larger network architectures give further
improvements in accuracy, at the cost of some computational
performance, and leave further optimization of network
architectures for this problem to future work.

6. Discussion and Conclusions

SPS emulation offers a factor of ∼103–104 speedup over
direct SPS computation, while delivering percent-level accur-
acy over broad parameter and wavelength ranges. Parallel SPS
evaluations can be further leveraged by calling the emulator
from a GPU, giving an overall speedup factor of 104–105

compared to direct SPS evaluations on a CPU (for the models
considered). In addition to the direct speedup of SPS calls, the
emulated SEDs and photometry come with readily accessible
derivatives (with respect to the SPS model parameters),
enabling the use of gradient-based inference and optimization
methods; this is expected to reduce the number of SPS
evaluations required when analyzing galaxy spectra or

Figure 8. The filters for the 24 bands emulated (for the Prospector-α model) in Section 5, spanning the wavelength range of 300 nm–24 μm.

10

The Astrophysical Journal Supplement Series, 249:5 (13pp), 2020 July Alsing et al.



photometry under SPS models. The implications of the speedup
are clear: analyses that previously required significant high-
performance computing investment could now be performed on
a laptop, and previously intractable analyses of large popula-
tions of galaxies will now be tractable. For context, the ∼1.5
million CPU hour analysis of Leja et al. (2019) could now be
performed in nearly days on 16 cores, and leveraging the
gradients for inference is expected to give additional orders of
magnitude improvement on top of that (e.g., Seljak &
Yu 2019). Similarly, the computational cost associated with
SPS evaluation when forward-simulating large surveys will be
radically reduced.

While the specific SPS models presented in this paper were
motivated by the analysis of photometry and low-S/N spectra,
respectively, another promising area for emulation is SPS
models designed to fit high-S/N, high-resolution galaxy

spectra. These models are often computationally expensive
(∼1 minute per SPS evaluation) and are thus particularly
attractive candidates for speedup by emulation. However, the
model dimensionality and required precision can be demand-
ing. For the simple case of quiescent galaxies, state-of-the-art
models have up to ∼40 parameters that control components
such as the initial mass function and individual elemental
abundances, as well as detailed models of continuum line
spread functions (e.g., Conroy & van Dokkum 2012; Conroy
et al. 2018). The systematic residuals for such models are of the
order of 1%, so in practice, an emulator would need to
reproduce thousands of pixels to sub-percent-level accuracy.
Star-forming galaxies bring additional challenges; notably,
nebular emission photoionization codes can have hundreds of
parameters controlling hundreds of emission lines (Ferland
et al. 2017), of which each emission line in principle could

Figure 9. Frequency densities (black) and 95 (red), 99 (salmon), and 99.9 (gray) percent intervals of the errors on the emulated apparent magnitudes for the 24 bands
considered (Section 5), over the 105 samples in the validation set. For the chosen neural network architecture (Section 5), the emulator is able to deliver percent-level
accuracy across the board, with 99.9% of validation samples being accurate to 0.02 mag for most bands and 0.04 in the worst cases.
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have its own line spread function. Although the model
complexity and fidelity requirements are higher for this use
case, because these models are so much more expensive, one
has considerably more leeway in using larger and more
sophisticated neural network architectures, while still poten-
tially achieving significant computational speedup.

Another avenue that SPS emulation opens up is a Bayesian
hierarchical analysis of large galaxy populations under SPS
models, i.e., jointly inferring the physical properties of
individual galaxies in a sample along with the intrinsic (prior)
distribution of galaxy characteristics. The high-dimensional
inference tasks associated with such analyses typically requires
gradient-based inference algorithms, such as Hamiltonian
Monte Carlo sampling, which will be made substantially easier
with emulated SPS.

There are a number of areas where the neural network
emulation framework presented here can be improved upon.
First, we did not go to great lengths to optimize the neural
network architectures to deliver the optimal trade-off between
accuracy and speedup. Once the training sets have been
generated, training the emulator networks is sufficiently cheap
so that a search over network architectures (including more
sophisticated architecture types) to deliver the best performance
is computationally feasible.

Regarding basis construction for galaxy spectra, we have
shown that PCA is effective for a range of applications.
However, for complex SPS models or where fidelity require-
ments are very high, alternative basis constructions such as a
NMF in the linear flux (Hurley et al. 2014; Lovell 2019), or
nonlinear representation construction with autoencoders, may
prove more powerful.

The other area where some additional effort could give
substantial improvements is intelligently sampling the para-
meter space when building the training set. In this study, little
focus was given to optimizing parameter space sampling and
training set size; training set sizes were simply chosen so that
they could be generated inless thandays and deliver percent-
level accuracy in the trained emulators. However, it is clearly
advantageous to use online learning to optimally sample the
parameter space on-the-fly in conjunction with the emulator
training (see e.g., Alsing et al. 2019; Rogers et al. 2019). This
approach has the benefit that it both enables more optimal
sampling of the parameter space and, by generating the training
set synchronously with training, the size of the training set
required to achieve a given accuracy target can be determined
on-the-fly (i.e., training and acquisition of training data can be
stopped when the accuracy reaches the desired threshold).

For inference applications when the emulator error cannot
safely be assumed to be a negligible fraction of the total error
budget, it will be desirable to have some quantification of the
emulator uncertainties that can be folded into the likelihood
function. This can be achieved within the neural network
paradigm by using Bayesian neural networks: performing
posterior inference over the network weights given the training
data (and some priors), hence providing posterior predictive
distributions over the output SEDs or photometry rather than
simple point estimates. This sophistication comes at the cost of
having to perform many forward passes through the network to
obtain an emulator error estimate at a given set of SPS
parameters.

The emulation code, SPECULATOR, is publicly available at
https://github.com/justinalsing/speculator.
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