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Abstract 14 

Replication-dependent histones (RDH) are required for packaging of newly synthetized DNA 15 

into nucleosomes during S-phase when their expression is highly upregulated. However, the 16 

mechanisms of this upregulation in metazoan cells remain poorly understood. Using iCLIP 17 

and ChIP-seq, we found that human cyclin-dependent kinase 11 (CDK11) associates with 18 

RNA and chromatin of RDH genes primarily in the S-phase. Moreover, its N-terminal region 19 

binds FLASH, RDH-specific 3´end processing factor, which keeps the kinase on the 20 

chromatin. CDK11 phosphorylates serine 2 (Ser2) of the C-terminal domain (CTD) of RNA 21 

polymerase II (RNAPII), which is initiated at the middle of RDH genes and is required for 22 

further RNAPII elongation and 3´end processing. CDK11 depletion leads to decreased 23 

number of cells in S-phase, likely due to the function of CDK11 in RDH gene expression. 24 
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Thus, the reliance of RDH expression on CDK11 could explain why CDK11 is essential for 25 

growth of many cancers. 26 
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Introduction 51 

Transcription of protein-coding genes is mediated by RNA polymerase II (RNAPII) in 52 

several stages including initiation, elongation and termination 1-3. RNAPII contains an 53 

unstructured C-terminal domain (CTD) with a series of evolutionarily conserved heptapeptide 54 

(YSPTSPS) repeats, where the individual serines (Ser), threonine (Thr), and tyrosine (Tyr) 55 

can each be phosphorylated to regulate various RNAPII functions 4-6. Several kinases 56 

phosphorylate serine in position 2 (P-Ser2) 6,7. This modification promotes RNAPII 57 

elongation and is necessary for coupling transcription with co-transcriptional processes, such 58 

as 3´end processing 8-10.  59 

Replication-dependent histone (RDH) proteins are required for packaging of newly 60 

synthetized DNA into nucleosomes before each cell division. Thus RDH genes have distinct 61 

regulation (and structure) from the rest of protein coding genes; they are expressed 62 

predominantly in S-phase and are short and intron-less. In humans there are approximately 80 63 

genes localized in 2 genomic clusters. Their transcripts are the only cellular non-64 

polyadenylated mRNAs, carrying instead a conserved stem loop (SL) at their 3´end 11. 65 

Expression of RDH genes is highly regulated by specific transcription and processing factors, 66 

including FLASH and SLBP proteins 12. The ongoing transcription is linked with cascade 67 

recruitment of mRNA processing factors that form a platform to position the histone cleavage 68 

complex (HCC) at the 3´end of the RDH genes 11. The HCC cleaves the pre-mRNA 5 69 

nucleotides after the SL, in a single processing step typical for the intron-less RDH 70 

transcripts 13. Inefficient 3´end processing leads to transcriptional read-through and 71 

accumulation of small quantities of misprocessed and polyadenylated RDH transcripts (read-72 

through RNAPII uses cryptic polyA sites) 13,14. Notably, depletion of transcription elongation 73 

factors or slow elongation by mutant RNAPII results in production of small amounts of RDH 74 



4 
 

polyadenylated transcripts suggesting a link between transcriptional elongation and optimal 75 

3´end processing 15-17.  76 

As with other protein coding genes, the CTD of RNAPII participates in transcription 77 

and 3´end processing of RDH genes. Earlier studies suggested that CDK9-dependent P-Ser2 78 

and P-Thr4 regulate RDH-specific 3´end processing without affecting their transcription 79 

15,18,19. However, genome-wide analyses of Thr4/Ala CTD mutants demonstrated that P-Thr4 80 

is needed for the global regulation of transcriptional elongation independently of CDK9 20. 81 

Thus it remains unclear if or how any CTD-modifying enzyme (kinase) regulates RDH-82 

specific transcription. 83 

CDK11 (cyclin-dependent kinase 11) acts in complex with cyclins L1 and L2 84 

(CYCL1 and CYCL2) 21 and is expressed as two protein isoforms, CDK11p110 and CDK11p58 85 

22.  CDK11p58 is weakly expressed only in G2/M-phase of the cell cycle 23,24. In contrast, 86 

abundantly and cell cycle-independently expressed CDK11p110 differs from CDK11p58 in the 87 

presence of 380 amino acid long N-terminal region which carries many charged amino acids 88 

and has an unknown function 25. CDK11p110 is ubiquitously expressed in all tissues and the 89 

CDK11p110 null mouse is lethal at an early stage of development indicating an important role 90 

for CDK11p110 in the adult as well as during development 26. CDK11p110 (from here on 91 

CDK11) is believed to play a role in RNAPII-directed transcription and co-transcriptional 92 

mRNA-processing 27-29. However, its genome-wide function in regulating the human 93 

transcriptome is unknown. Notably, numerous recent studies identified CDK11 as a candidate 94 

essential gene for growth of several cancers 30-35. Therefore, understanding the molecular 95 

mechanism(s) of CDK11-dependent gene expression would be of significant clinical interest. 96 

In this study we find that CDK11 specifically regulates the expression of RDH genes. 97 

It binds to RDH RNAs and FLASH and associates with chromatin of RDH genes in a cell 98 

cycle-dependent manner. We further demonstrate that CDK11 can phosphorylate Ser2 in the 99 
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CTD of RNAPII positioned on the RDH genes to specifically control their transcriptional 100 

elongation and recruitment of 3´end processing factors. 101 

 102 

Results 103 

CDK11 binds chromatin of RDH genes and promotes their transcription. 104 

To understand the role of CDK11 in human gene expression, we performed RNA-seq 105 

analyses from nuclear extracts of HCT116 cells treated with either control or CDK11 siRNA. 106 

CDK11 depletion resulted in down-regulation of 1131 genes (log2FoldChange<-1, p-107 

adj<0.01) (Fig. 1a, Supplementary Table 1), with enrichment in gene ontology (GO) terms 108 

for nucleosome and chromatin organization (Extended Data Fig. 1a, b), indicating a role for 109 

CDK11 in regulating histone gene expression. Strikingly, 93% of expressed RDH genes (Fig. 110 

1a) were significantly downregulated (Fig. 1b), as confirmed by RT-qPCR for seven genes 111 

(Extended Data Fig. 1c, d). Nuclear run-on assays demonstrated a decrease in nascent 112 

mRNA of selected RDH genes in CDK11 knockdown cells (Extended Data Fig. 1e), 113 

indicating a transcriptional role of CDK11. 114 

Next, we performed chromatin immunoprecipitation (ChIP-seq) to identify 393 peaks of 115 

CDK11 occupancy across the genome, which were enriched in GO terms for nucleosome and 116 

chromatin functions (Extended Data Fig. 1f). The peaks were present in 31 RDH genes, or 117 

71% of expressed RDH genes (see Extended Data Fig. 1g), but not in the remaining down-118 

regulated genes (Fig. 1c, Supplementary Table 2). We confirmed specificity of signal with 119 

ChIP-qPCR on selected RDH genes from cells treated with control and CDK11 siRNAs 120 

(Extended Data Fig. 1h). These results indicate that CDK11 is recruited to the chromatin of 121 

RDH genes to participate in their transcription. 122 

FLASH recruits CDK11 to the RDH genes. 123 
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To understand how CDK11 is specifically recruited to the chromatin of RDH genes, 124 

we tested whether CDK11 interacts with any known RDH-specific factors. For instance, the 125 

serine/threonine-rich FLASH protein associates only with the chromatin of RDH genes to 126 

regulate RDH-specific transcription and 3´end processing 36,37. Notably, immunoprecipitation 127 

of endogenous FLASH resulted in a specific pulldown of CDK11 protein but not of CDK1238 128 

(Fig. 2a). Reciprocal immunoprecipitation of endogenous CDK11 from a cell line expressing 129 

flag-tagged FLASH (F-FLASH) showed an interaction between the proteins (Extended Data 130 

Fig. 2a), and F-FLASH also immunoprecipitated endogenous CDK11 (Extended Data Fig. 131 

2b), further confirming the result. To find whether interaction between FLASH and CDK11 132 

is direct, we expressed his-tagged fragments of FLASH (Fig. 2b) in E. coli and performed 133 

GST pulldown assay with GST-CDK11 purified from insect cells. The N- and C-terminal 134 

fragments of FLASH showed strong binding to CDK11, indicating the direct interaction 135 

between both proteins (Fig. 2c). Moreover, we found a strong overlap between the CDK11 136 

and FLASH36 ChIP-seq occupancies solely on RDH genes (Fig. 2d, Extended Data Fig. 2c), 137 

indicating that the two proteins interact when present on chromatin. To test if CDK11 138 

recruitment depends on its interaction with FLASH we depleted FLASH from cells and 139 

measured CDK11 occupancy on RDH genes by ChIP-qPCR.  This resulted in lower 140 

recruitment of CDK11 to the RDH genes (Fig. 2e) without affecting CDK11 protein levels 141 

(Extended Data Fig. 2d). Notably, the FLASH occupancy on the RDH genes was decreased 142 

comparably to the CDK11 occupancy (Extended Data Fig. 2e). Altogether, these results 143 

show that interaction with FLASH is needed for CDK11 recruitment to the RDH genes. 144 

CDK11 is recruited to RDH genes predominantly in S-phase. 145 

Transcription of RDH genes occurs mostly in S-phase 39. To understand if abundance and 146 

associations of FLASH and CDK11 with chromatin are cell cycle-dependent, we 147 

synchronized the cells by double thymidine treatment, which was confirmed by expression of 148 
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cell cycle markers (Extended Data Fig. 3a), RDH transcripts (Extended Data Fig. 3b) and 149 

by flow cytometry (Extended Data Fig. 3c). The abundance and phosphorylation of FLASH, 150 

as evident by its slower mobility on the gel (Fig. 3a), and its occupancy on RDH genes (Fig. 151 

3b) were highest in S-phase. Strikingly, CDK11 was required for the phosphorylation of 152 

FLASH in S-phase (Fig. 3a, c, d). In agreement, F-CDK11 can in vitro phosphorylate the N-153 

terminal and central fragments of FLASH protein purified from bacteria (Fig. 3e). Notably, 154 

long treatments with CDK11 siRNA led to a strong decrease of FLASH protein levels 155 

(Extended Data Fig. 3d), whereas depletion of FLASH did not affect CDK11 protein levels 156 

(Extended Data Fig. 3e). Protein levels of CDK11 did not change during the cell cycle 157 

(Extended Data Fig. 3a, Fig. 3a), but it is enriched on RDH transcripts and chromatin in S-158 

phase, as evident through F-CDK11 IP followed by RT-qPCR and ChIP-seq, respectively 159 

(Fig. 3f, g). For example, change is seen in HIST1H4E and HIST1H1C RDH genes 160 

(Extended Data Fig. 3f), but not on the control non-canonical histone H3F3A mRNA or on 161 

the non-RDH down-regulated genes identified from the RNA-seq experiment (Fig. 3f, g). 162 

Cell cycle analyses of CDK11-depleted cells manifested decreased numbers of cells in S- and 163 

their accumulation in G1-phase (Fig. 3h). The phenotype can result from deficient expression 164 

of RDH genes 40.  Collectively, our findings demonstrate that interaction with FLASH 165 

ensures that CDK11 is recruited to RDH genes specifically in S-phase, CDK11 also 166 

phosphorylates and maintains protein levels of FLASH and depletion of CDK11 leads to 167 

accumulation of cells in G1-phase at the expense of S-phase.  168 

RNA promotes CDK11 recruitment to the FLASH-containing RDH chromatin 169 

The N-terminal region (corresponding to amino acids 1-220) of human CDK11 is highly 170 

conserved, suggesting an important biological function (Extended Data Fig. 4a). It is rich in 171 

arginines and lysines, reminiscent of the intrinsically disordered regions that are common in 172 

non-canonical RNA-binding proteins 41 (Fig. 4a). Moreover, CDK11 was identified as a 173 
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candidate RNA-binding protein in two proteome-wide screens 41,42. To examine the potential 174 

role of RNA binding in CDK11 functions, we performed individual-nucleotide resolution UV 175 

crosslinking and immunoprecipitation (iCLIP) (Extended Data Fig. 4b) 43 with an anti-Flag 176 

antibody from 293 cell lines stably expressing Flag-tagged CDK11 (F-CDK11), its N-177 

terminal deletion mutant (F-CDK11226-783), or empty plasmid vector (F-EV) (Extended Data 178 

Fig. 4b, c). Two biological replicates of libraries crosslinked with 4-thiouridine (4SU) + 179 

365nm UV or 254nm were prepared from cells carrying F-CDK11 and F-CDK11226-783, with 180 

no-antibody or no-UV as negative controls (Extended Data Fig. 4d, Supplementary Table 181 

3). At least 5-15x more cDNAs were obtained from full length F-CDK11 compared to F-182 

CDK11226-783 (FDR<0.05) (Supplementary Table 3), indicating that RNA interaction is 183 

mediated primarily by the conserved N-terminal region. The unique cDNA counts of four 184 

replicates of F-CDK11 iCLIP revealed high correlation (R2=0.64-0.84) (Extended Data Fig. 185 

4d), and therefore we combined the replicates for further analyses. Largest proportion of 186 

binding was observed on noncoding RNAs (especially snRNAs) and 3’ UTRs of mRNAs 187 

(Extended Data Fig. 4e). 188 

We analysed the density of iCLIP significant crosslink sites (iCount, FDR < 0.05) in 189 

mRNAs, which identified 371 mRNAs with highest density (CLIP crosslink density > 0.01, 190 

Supplementary Table 4) enriched in GO terms for nucleosome and chromatin organization 191 

(Extended Data Fig. 5a). Notably, 30 RDH mRNAs were among the 100 most bound 192 

transcripts (Supplementary Table 4). A metaplot of summarised F-CDK11 crosslinking, and 193 

examples of HIST1H3B and HIST1H1E mRNAs, show that F-CDK11 binds primarily at the 194 

3’ends of RDH genes, just upstream of the conserved SL sequence (Fig. 4b, c, Extended 195 

Data Fig. 5b). Binding was strongly diminished in the F-CDK11226-783 mutant and absent in 196 

the uncrosslinked F-CDK11. In contrast, other abundant protein-coding mRNAs, including 197 

cell cycle-independent non-canonical histones, either do not bind CDK11 or have much 198 



9 
 

weaker binding as compared to RNA-seq (Extended Data Fig. 5c, d, e), excluding scenario 199 

of false positive binding of highly expressed genes, such as RDH genes, in iCLIP assays 44. A 200 

comparison of CDK11 iCLIP to eCLIP data from ~200 proteins in the ENCODE database 44 201 

indicates that CDK11 likely binds nascent mRNAs, suggesting it interacts with RDH 202 

transcripts during transcription (data not shown).  The specificity of CDK11 enrichment on 203 

RDH transcripts and the importance of the N-terminal region was further validated with UV-204 

RNA immunoprecipitation (UV-RIP) followed by RT-qPCR, using F-CDK11226-783, CDK11 205 

knockdown, mock IP (no Ab) and the non-canonical histone H3F3A mRNA as controls 206 

(Extended Data Fig. 5f-i). We constructed myc-tagged variants to demonstrate that the 207 

residual association of F-CDK11226-783 with RDH mRNA (Extended Data Fig. 5h) most 208 

likely results from its interaction with full length CDK11 (Extended Data Fig. 5j). We could 209 

not identify any strongly enriched unique sequence motif at CDK11-binding sites (data not 210 

shown), a situation common for non-canonical RNA-binding proteins. 211 

To understand if RNA binding contributes to the association of CDK11 with chromatin, we 212 

performed subnuclear fractionation 45, which was then either left untreated or incubated with 213 

RNases before further fractionating it into nucleoplasmic (soluble2) and chromatin (nuclear 214 

insoluble) fractions (Extended Data Fig. 6a). Optimal fractionation was verified by the 215 

presence of phosphorylated RNAPII and histone 3 (H3) only in the chromatin fractions (Fig. 216 

4d). CDK11 was found in both nuclear soluble (1&2) and chromatin fractions (Fig. 4d), in 217 

agreement with a previous study 21. Importantly, RNase treatment disengaged CDK11 from 218 

the chromatin fraction, in contrast to the proteins CDK9 and FUS, which were disengaged 219 

from the soluble2 fraction (Fig. 4d) 45. In agreement with the reliance of the CDK11-220 

chromatin interaction on RNA (Fig. 4d), the interaction between CDK11 and FLASH was 221 

partly RNase-sensitive (Extended Data Fig. 6b) even though chromatin association of 222 

FLASH was not dependent on RNA (Extended Data Fig. 6c). In concordance, CDK11 binds 223 
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FLASH via its N-terminal RNA-binding region (Extended Data Fig. 6d). Moreover, 224 

RNAPII transcription inhibition with either Amanitin or Triptolide led to considerable 225 

dissociation of CDK11 from chromatin (Fig. 4e) without affecting CDK11 proteins levels 226 

(Extended Data Fig. 6e). Thus, both RNA and active transcription are essential to bring 227 

CDK11 to the FLASH-containing RDH chromatin. 228 

CDK11 promotes elongation of RDH genes. 229 

CDK11 can phosphorylate the CTD of RNAPII in vitro 46, and Ser2 in the CTD during HIV 230 

transcription 47. We used an in vitro kinase assay (IVKA) to verify that CDK11 231 

phosphorylates GST-CTD, albeit its activity was weaker compared to the canonical and well 232 

characterized CDK9 48 (Fig. 5a). Next, we used P-Ser2 and P-Ser5 phospho-specific 233 

antibodies to find that CDK11 phosphorylated both Ser2 and Ser5, whereas the negative 234 

controls F-EV and CDK11 kinase dead (CDK11 KD) led to no phosphorylation (Fig. 5b). 235 

CDK9 primarily phosphorylated Ser5, and CDK12 phosphorylated both Ser2 and Ser5, 236 

which agrees with expectations (Fig. 5b) 49. P-Ser2 is associated with elongating RNAPII 4 237 

and P-Ser2 ChIP-seq signal accumulates at the 3´ends of all genes (Extended Data Fig. 7a), 238 

including RDH genes (Fig. 5c), resembling CDK11 iCLIP and ChIP-seq profiles on RDH 239 

genes (Fig. 4c, Extended Data Fig. 1g, respectively). CDK11 knockdown led to a collapse 240 

of the P-Ser2 signal on RDH genes (Fig. 5c-e, Extended Data Fig. 7b, Supplementary 241 

Table 5), with a much lower (~30%) decrease on highly expressed genes, and little effect on 242 

all other genes (Extended Data Fig. 7a). Notably, P-Ser2 ChIP-seq signal starts 243 

accumulating close to the middle of RDH gene bodies (Fig. 5c), which coincides with the 244 

peak of CDK11 ChIP-seq signal (Fig. 1c, 5d, f), suggesting that a “transition” point in 245 

transcriptional elongation is located approximately in the middle of RDH genes (Fig. 5c). 246 

CDK11 depletion led to the decline in P-Ser2 occupancy (Fig. 5c) from this “transition” point 247 

onward (Fig. 5c, d, f) and to the decrease of RNAPII occupancy specifically on RDH genes 248 
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(Fig. 5g, Supplementary Table 6). However, the decrease in total RNAPII levels was 249 

smaller than in P-Ser2 levels (Fig. 5c-e, Extended Data Fig. 7b, c) and no significant 250 

changes were seen in P-Ser5 or P-Thr4 signal on selected RDH genes (Extended Data Fig. 251 

7d-g) 18. This indicates that CDK11 is required primarily for the onset of Ser2 252 

phosphorylation at the “transition” point in RDH genes, which is essential for their 253 

productive elongation (Fig. 5c). 254 

CDK11 promotes 3´end processing of RDH genes. 255 

Slow RNAPII elongation disrupts RDH mRNA processing 17 and Ser2-phosphorylated CTD 256 

serves as a binding platform for factors involved in 3´end formation and processing 10. 257 

Indeed, following CDK11 depletion, the occupancy of CPSF100, a component of the HCC 13, 258 

(Fig. 6a) decreased on all tested RDH genes to a similar extent as P-Ser2, and more than 259 

RNAPII (Fig. 6a-e). We also observed an increase by a factor of 3-5 in read-through 260 

(uncleaved) RDH transcripts (Fig. 6f, Extended Data Fig. 8a, b, Supplementary Table 7). 261 

No increase in read-through transcript was seen in non-RDH bound genes (MYC, MAZ) and 262 

one RDH gene HIST1H1C, which contains a cryptic polyA signal immediately downstream 263 

of the SL 50 that becomes increasingly used upon CDK11 knockdown (Extended Data Fig. 264 

8b). This phenomenon of increased cryptic polyA use was additionally observed in 265 

HIST1H2AC, HIST1H2BD and HIST1H4E genes, and could be induced also by depletion or 266 

inhibition of CDK9 15, CDK7 51, ARS2 52  and SLBP 53, which contribute to transcription and 267 

mRNA processing of RDH genes (Extended Data Fig. 8c-g, Supplementary Table 7). The 268 

small changes in read-through and/or use of cryptic polyadenylation sites are thus a likely 269 

result of defective 3´end processing upon CDK11 knockdown. We conclude that the CDK11-270 

dependent phosphorylation of Ser2 is required for efficient elongation and 3’ end processing 271 

of RDH genes.  272 

 273 
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Discussion 274 

Our study reveals that CDK11 interacts with FLASH, a factor which has been known 275 

to be present only at RDH genes36. We show that FLASH promotes selective recruitment of 276 

CDK11 to RDH genes predominantly in the S-phase. CDK11 occupies coding regions of 277 

RDH genes; the binding is strongest at the “transition” point close to the middle of the RDH 278 

genes, where it coincides with accumulation of P-Ser2 (Fig. 5c, d), which in turn promotes 279 

efficient elongation and 3´end processing of RDH transcripts (summary of genome-wide 280 

data, working model and iCLIP- and ChIP-seq data on example RDH genes are presented in 281 

Fig. 7a, b and Extended Data Fig. 9a-f, respectively). CDK11 occupancy on RDH genes 282 

does not overlap with promoter-paused RNAPII (Fig. 1c, 5c) hence CDK11 likely does not 283 

mediate RNAPII transition to early elongation, the step regulated by CDK9 on most protein-284 

coding genes48.   CDK11 phosphorylates GST-CTD in vitro, but less efficiently than CDK9 285 

or CDK12 (Fig. 5a and data not shown), indicating that it might phosphorylate just a subset 286 

of CTD repeats, which could ensure an RDH-specific function of CDK11 in RNAPII-287 

mediated transcription. CDK11 also phosphorylates FLASH, perhaps regulating FLASH 288 

stability however the exact in vivo function(s) of the phosphorylation(s) remains to be 289 

determined. We find that the arginine-rich N-terminus of CDK11 contacts RNA, we used 290 

iCLIP to identify its binding to RDH transcripts, particularly strong at their 3´ends, and we 291 

show that such RNA binding helps to maintain CDK11 on chromatin (Fig. 7a, b, Extended 292 

Data Fig. 9a-f).  293 

CDK11 homolog is absent from yeast Saccharomyces cerevisiae, while the CDK11 294 

homolog in Schizosaccharomyces pombe contains only the kinase domain without the N-295 

terminus 54. CDK11 is an essential gene in metazoans 26, but not in S. pombe 54,55, possibly 296 

because yeast species transcribe RDH genes only in the S-phase, and all RDH mRNAs are 297 

polyadenylated 56. Thus, the role of CDK11 in promoting S-phase specific RDH 298 
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transcriptional elongation and processing appears to have evolved only in metazoans. We 299 

conclude that the RNA binding capacity contributes to maintaining metazoan CDK11 close to 300 

chromatin, where it further achieves specificity for RDH genes through direct interactions 301 

with FLASH.  302 

Downregulation of RDH mRNAs by knockdown of various RDH-specific 303 

transcription/3´end processing factors causes a disruption of cell cycle by accumulation of 304 

cells in either G1- or early S-phase (this study, Fig. 3h and 12,40,57). Alternatively, the 305 

downregulation can be explained by the reduction of number of cells in S-phase (when RDH 306 

expression occurs). Although we cannot completely exclude a direct role of CDK11 in 307 

regulation of cell cycle progression, it´s binding to RDH chromatin and nascent transcripts 308 

and interaction with FLASH strongly suggests direct and specific function in RDH 309 

transcription. CDK11-specific inhibitor (when available) will allow to determine whether the 310 

kinase also directly regulates cell cycle progression. As P-CTD-specific antibodies have 311 

limitations in recognition of the specific epitopes 58, the inhibitor in combination with mass 312 

spectrometric analyses 59 can be also used for identification of any CDK11- or RDH- 313 

specific-P-CTD pattern. 314 

Altogether, considering the fundamental role of RDH gene expression for cellular 315 

replication and proliferation, the mechanism identified in our study could underlie the 316 

essential role of CDK11 in many cancers 25,32,33, and could serve as a framework for 317 

developing CDK11 inhibitors with therapeutic potential. Indeed, when this paper was in 318 

revision, the first potent CDK11 inhibitor was reported, identified as the mischaracterized 319 

anticancer agent 60. 320 

 321 
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Figure legends 351 

Figure 1 CDK11 binds chromatin of RDH genes and promotes their transcription. 352 

a, RNA-seq analysis of HCT116 cells following siRNA-mediated CDK11 knockdown. 353 

Down- and up-regulated genes (-1>log2FoldChange>1; p-adj<0.01) are shown in red and 354 

blue, respectively. Symbols of 41 down-regulated RDH and 5 most up-regulated genes are 355 

shown for  n=3 biologically independent experiments. 356 

b, RNA-seq metaplots (top) and heatmaps (bottom) of the RDH genes in control (siCTRL) 357 

and CDK11 (siCDK11) siRNA treated cells. TSS=transcription start site; SL=stem loop. 358 

c, CDK11 ChIP-seq on RDH and 200 other down-regulated genes. CDK11 and input data are 359 

from n=4 and n=3 biologically independent experiments, respectively. TSS=transcription 360 

start site, SL/TES=stem loop/transcription end site.  361 

Figure 2 FLASH recruits CDK11 to the RDH genes. 362 

a, Western blot analyses of immunoprecipitates of endogenous FLASH from HCT116 cells. 363 

The blots were probed with the indicated antibodies.  364 

b, Depiction of human FLASH protein and four his-tagged deletion mutants expressed in 365 

bacteria. Deletion mutants A and B have an overlapping region between amino acids 490-366 

571. 367 

c, Western blot analyses of in vitro binding assays of GST-CDK11 purified from insect cells 368 

and his-tagged FLASH (HIS-FLASH) deletion mutants expressed in bacteria and depicted in 369 

Figure 2b.  370 

d, FLASH ChIP-seq in hTERT cells (GSE69149) 36 (left panel) in comparison to CDK11 371 

ChIP-seq (middle panel) and no Ab input control (right panel) on 44 regulated (expressed) 372 

RDH (RDH with base mean expression>10), all RDH  and 200 other downregulated genes.  373 
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e, Endogenous CDK11 ChIP-qPCR on indicated RDH genes or control intergenic region (Ir) 374 

in HCT116 cells treated either with control (CTRL) or FLASH siRNAs for 24 h. n=3 375 

biologically independent experiments, error bars=SEM, *P<0.05, Student´s two-sided   t-test. 376 

Source Data for graphs in panel e are available with the paper on line. 377 

Figure 3 CDK11 is recruited to RDH genes predominantly in S-phase. 378 

a, Western blot analyses of extracts of HCT116 cells released from double thymidine 379 

synchronization. Time points after the release and cell cycle phases are indicated. Cell cycle 380 

phase markers: CCNA2=cyclin A2, SLBP. A=asynchronous cells, 0 h=time of the release. 381 

b, FLASH ChIP-qPCR on selected RDH genes in asynchronous and G1/S, S and G2/M 382 

synchronised HCT116 cells. FLASH ChIP-qPCR signals are normalised to the maximum 383 

signal which was set as 1. n=3 biologically independent experiments, error bars=SEM, 384 

Ir=intergenic region. 385 

c, Western blot analyses of FLASH and phosphorylated FLASH (P-FLASH) in cell lysates of 386 

HCT116 cells treated with either control or CDK11 or FLASH siRNAs for 48 h. 387 

d, Western blot analyses of lysates of HCT116 cells synchronized by double thymidine 388 

treatment in G1/S-phase and released 2 h into the S-phase. The lysates were treated or were 389 

not with alkaline phosphatase (AP). The phosphorylated and dephosphorylated forms of 390 

FLASH and control RNAPII and Ser2 are indicated at right by clip marks and arrows, 391 

respectively. The blots were probed with indicated antibodies. P-FLASH, P-RNAPII and F-392 

CDK11 are phosphorylated FLASH, RNAPII and Flag-tagged CDK11, respectively. 393 

e, IVKA visualized by autoradiography (upper panel). His-tagged deletion mutants of FLASH 394 

expressed in bacteria were incubated with purified CDK11 in the presence of [γ- 32P] ATP. P-395 

FLASH=phosphorylated FLASH. Western blotting of inputs of FLASH deletion mutants 396 

(lower panel). 397 
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f, Graph displays RNA immunoprecipitation (RIP) of histone transcripts with F-CDK11 from 398 

HCT116 cells synchronized in G1/S-, S- and G2/M-phases. Graph shows fold change of 399 

CDK11 binding to RDH mRNA normalized to MAZ mRNA binding. mRNA levels in G1/S 400 

were set as 1 for each transcript. n=3 biologically independent experiments, error bars=SEM.    401 

g, CDK11 ChIP-seq on the RDH and 200 other down-regulated genes in either HCT116 cells 402 

asynchronous or synchronized in S- or G2/M-phases. For asynchronous and S or G2/M n=4 403 

and 2 biologically independent experiments, respectively. 404 

h, Histograms of cell cycle analyses of HCT116 cells transfected with control (CTRL) or 405 

CDK11 siRNA for 36 h. Percentage of cells in G0/G1-, S- and G2/M-phases are displayed. 406 

Source data for panels b and f are available with the paper on line. 407 

Figure 4 RNA promotes CDK11 recruitment to the RDH chromatin. 408 

a, Schematic diagram highlighting the kinase domain and basic region of human CDK11 409 

protein.  410 

b, Metagene analyses of F-CDK11 and F-CDK11 (226-783) iCLIP binding at all RDH 411 

transcripts from the TSS to the SL. iCLIP data k-means clustered, based on RNA-seq 412 

expression (high, medium and low). n=4 biologically independent experiments. 413 

c, Biodalliance genome browser view of F-CDK11, F-CDK11 (226-783) and uncrosslinked 414 

control (no UV) iCLIP binding at HIST1H3B transcript. Stem loop (SL) is indicated by a 415 

black line.  416 

d, Western blot analysis of association of the indicated factors in soluble and insoluble 417 

fractions of chromatin either treated or not treated with RNase A/T1. Arrows mark 418 

phosphorylated (upper) and non-phosphorylated (lower) forms of RNAPII. For CDK11, long 419 

and short exposures of the film are shown. 420 

e, CDK11 ChIP-qPCR on RDH genes in HCT116 cells expressing stably integrated F-421 

CDK11 and treated either with Amanitin (4 µg/ml) or Triptolide (10 µM) or untreated 422 



18 
 

(CTRL). n=4 biologically independent experiments, error bars=SEM, *P<0.05, Student´s t-423 

test, Ir=intergenic region.  Source data for panel e are available with the paper on line. 424 

Figure 5 CDK11 promotes transcriptional elongation of RDH genes. 425 

a, GST-CTD or BSA was incubated with the indicated cyclins/CDKs in the presence of [γ- 426 

32P] ATP, the resulting kinase reactions (IVKA) were resolved on SDS-PAGE gel and 427 

visualized by autoradiography. Phosphorylated GST-CTD (P-GST-CTD) and 428 

autophosphorylated CDK11 is shown (upper panel). Equal input of flag-tagged cyclins/CDKs 429 

and GST-CTD to the IVKA were confirmed by western blotting with anti-flag antibody 430 

(middle panel) or by Coomassie staining (lower panel), respectively.  431 

b, Displayed cyclins/CDKs purified from HCT116 cells were incubated with GST-CTD in 432 

IVKA. Phosphorylation was monitored by the indicated antibodies by Western blotting (upper 433 

panel). Input of equal amounts of flag-tagged CDKs into IVKA was validated by flag 434 

antibody (lower panel). F=flag tag, X=xpress tag, KD=kinase dead mutant, end=endogenous, 435 

EV=empty vector.  436 

c, ChIP-seq analyses of RNAPII  and P-Ser2  occupancies on expressed RDH genes in 437 

HCT116 cells treated with either control (CTRL) or CDK11 siRNA. Transcription elongation 438 

“transition” point is indicated by dashed line. n=3 biologically independent experiments. 439 

d, P-Ser2/RNAPII normalized ChIP-seq log2 fold change on RDH genes after CDK11 440 

knockdown within differential P-Ser2 MACS2 peaks (depicted as P-Ser2 start (vertical 441 

dashed line) and P-Ser2 end).  442 

e, HIST1H4E gene tracks with raw RNAPII and P-Ser2 ChIP-seq data and RNAPII, P-Ser2 443 

and P-Ser2/RNAPII log2 fold change after CDK11 depletion. Black line indicates differential 444 

peaks identified by MACS2 program (p<0.05). 445 
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f, CDK11 ChIP-seq occupancy is most abundant just upstream of the differential P-Ser2 446 

MACS2 peaks in RDH genes. The start of the P-Ser2 peaks is indicated by vertical dashed 447 

line (see also Fig. 5d for metaplot and heatmap).   448 

g, Violin-plots measure RNAPII occupancy on the TSS (top panel, flank 500 nt) and SL or 449 

TES (bottom panel, 250 nt upstream and 750 nt downstream) of expressed RDH and 200 450 

highly expressed and randomized genes. 451 

Figure 6 Recruitment of 3´ end processing factor CPSF100 to the RDH genes depends 452 

on CDK11-mediated phosphorylation of Ser2. 453 

a, b, c, Graphs present ChIP-qPCR data for CPSF100 (a), RNAPII (b) and P-Ser2 (c) in 454 

HCT116 cells transfected with control (siCTRL) or CDK11 (siCDK11) siRNA. qPCR 455 

primers were designed in coding regions of RDH genes. n=4, n=3 and n=3 biologically 456 

independent experiments for (a), (b) and (c), respectively; error bars=SEM, Ir = intergenic 457 

region. 458 

d, e. Graphs present ratios of CPSF100/RNAPII (d) and CPSF100/P-Ser2 (e) ChIP-qPCR 459 

signals. n=4 and 3 biologically independent experiments for (d) and (e), respectively; error 460 

bars=SEM, *P<0.05, Student´s two-sided t-test. 461 

f, Subtracted RNA-seq (siCDK11 - siCTRL) RPKM normalized downstream of the SL until 462 

the next conserved polyadenylation site (33 RDH genes; distance from 27 nt to 15 kb) (upper 463 

panel). The read-through is depicted for indicated individual RDH genes carrying cryptic 464 

polyadenylation site downstream of SL (lower panel). 465 

Source data for panels a-e are available with the paper on line. 466 

Figure 7 Summary of iCLIP and ChIP-seq data and working model. 467 

a,  Each column in the table depicts distribution of iCLIP and ChIP-seq peaks over selected 468 

genes either affected or not in CDK11 RNA-seq (Fig. 1a). See Online Methods for further 469 

description. iCLIP peaks density of significant cross links cDNA normalized by gene length 470 
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(sig. > 0.01). CDK11 ChIP-seq bound RPGS inside MACS2 significant peak (p<0.05) to 471 

selected genes (sig. > 0.01). RNA-seq DE-Seq2 differentially expressed genes (-472 

1>log2FoldChange>1, p-adj < 0.05). P-Ser2 ChIP-seq RPGC siCDK11 log2 fold change 473 

inside the MACS2 differential expressed peaks (-1>log2FoldChange>1, p-adj < 0.05, 474 

supplementary table 5). RNAPII ChIP-seq RPGC siCDK11 log2 fold change inside the 475 

differentially expressed peaks (-1>log2FoldChange>1, p-adj < 0.05, supplementary table 6). 476 

P-Ser2/RNAPII normalised ChIP RPGC siCDK11 log2 fold change inside the differential 477 

expressed peaks (-1>log2FoldChange>1, p-adj < 0.05, supplementary table 6). The groups of 478 

genes: 44 regulated RDH (base mean expression>10); 39 low- and non-expressed RDH (base 479 

mean expression<10); 10 most down- and up-regulated genes in CDK11 RNA-seq (in fuchsia 480 

and blue, respectively), 10 selected cell cycle-related genes (in green). All genes were sorted 481 

by base mean expression within each group. Gene symbols are shown on the right. 482 

b, Schematic working model. CDK11 regulates transcription elongation of RDH genes and 483 

contributes to their 3´end processing. FLASH (grey flash) recruits CDK11 (red oval) 484 

collaboratively with nascent RDH mRNAs (black line) to chromatin of RDH genes (grey 485 

double helix) and phosphorylates (arrow) Ser2 (red ball) in the CTD (red and grey balls) of 486 

RNAPII (violet oval). The Ser2 phosphorylation promotes the RNAPII elongation on RDH 487 

genes. CDK11 also phosphorylates FLASH in S-phase which may be needed for its stability 488 

and/or yet unknown function in transcription/3´end processing of RDH genes. CDK11 is 489 

bound abundantly at the 3´end of RDH mRNAs and this binding likely occurs on or in the 490 

close vicinity of RDH chromatin. CDK11-dependent phosphorylation of Ser2 contributes to 491 

the recruitment of 3´end processing HCC complex (SYMPLEKIN (blue oval), CPSF100 492 

(green circle), CstF64 (brown circle) and CPSF73 (yellow circle) allowing CPSF73 to cleave 493 

nascent RDH mRNA (black line). FLASH interaction with U7 snRNP (white/blue circular 494 

complex) also contributes to the recruitment of the HCC to pre-mRNA 11. 495 
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