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Abstract  

Long-term decarbonisation pathways to achieve ambitious low-carbon targets involve a 

range of uncertainties. Different energy system modelling approaches can be used to 

systematically evaluate the influence of the uncertainties, but this often leads to an 

unmanageable number of pathways. Summarising the large ensemble through a more 

limited number of representative pathways, to inform stakeholders, can be challenging. This 

study thus explores how to identify representative decarbonisation pathways using 

clustering algorithms, which can assist in grouping similar data points in uncategorised 

datasets, such as pathway ensembles. However, the suitability of clustering algorithms for 

pathway characterisation has not been investigated to date. Hence, k-means, hierarchical 

clustering, Gaussian mixture model, spectral clustering, and density-based clustering are 

adopted for comparisons. An illustrative pathway ensemble for the United Kingdom is 

applied to evaluate their performance based on cluster validity indices. Three metric 

transformations, including power, standardisation and sectoral standardisation, are also 

applied to create three additional sets of pathways for testing. The k-means algorithm is 

found to outperform others consistently, although hierarchical clustering might also be 

applicable if the distribution of pathway proximity is uneven. The results also highlight the 

utility of the approach in revealing distinctive trade-offs between technologies among the 

identified representative pathways. For instance, the electrification of heating can be 

replaced by district heating in the residential sector. The described, novel approach can be 

applied to characterise other sets of pathways, with greater technological details generated 

by any energy system models, to reveal insights for long-term decarbonisation. 
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1. Introduction 

Energy system models (ESMs) are an essential tool to help policy-makers and 

researchers investigate how to transform national energy systems, e.g. in order to achieve 

the ambitious targets set by Paris Agreement [1]. These ESMs, such as TIMES models [2], 

typically adopt a cost optimisation-based framework, exploring least-cost energy system 

configurations, subject to greenhouse gas (GHG) emissions targets and other constraints. To 

explore possible low-carbon technology portfolios, these models take into account 

numerous technologies in all energy-related sectors. For instance, the Irish TIMES model 

and TIMES-Sweden comprise about 1,700  and 1,800 technologies respectively [3,4].  

Nonetheless, the projection of future technology costs and other characteristics (e.g. 

efficiency, lifetime) is highly uncertain. In addition to the continuous, but uncertain, 

technology improvements, unexpected technology breakthroughs, sudden policy changes, 

global demand variations, social acceptance issues etc. [5] can significantly alter the 

prospects of individual technologies. For example, before Tesla Motor entered the car 

market, it was hard to imagine the high acceptance of electric vehicles (EVs) [6], with no 

major car manufacturers being willing to offer battery EVs on a commercial basis in early 

2010s [7]. With breakthroughs in fast charging technologies [8] and longer driving ranges [9], 

EV sales have increased to 2.6% in the Netherlands and to near 40% in Norway in their car 

markets in 2017 [10]. Traditional car manufacturers, consequently, showed their ambitious 

in the global EV market [11]. Moreover, in the UK, the introduction of feed-in tariff in 2010 

has boosted the installation of small scale solar photovoltaic (i.e. less than 10 kW) [12], 

followed by a sudden plummet in 2016 due to a dramatic cut to feed-in tariff for solar, 

announced by the UK government [13]. In addition, future electricity demand has been 

shown to be significantly affected by future temperature and economy, both are highly 

uncertain [14]. Finally, even though smart grid technologies can increase system flexibility to 

accommodate intermittent renewable energy, the potential of smart grid technologies 

heavily depends on public’s acceptance, which is influenced by perceived ease of use and 

risk, and is thus uncertain [15]. Consequently, the long-term decarbonisation pathways 
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suggested by ESMs, under varying assumptions about future technology performance, lead 

to significantly different low-carbon technology portfolios. While  scenario analyses are a 

common and useful approach for investigating the influences of uncertain future 

assumptions, in practise they usually considers only a limited number of futures around a 

few key technologies or system features. For example, only five scenarios were considered 

for Denmark in [16], and four scenarios for China in [17]. Six global scenarios were 

generated considering various climate uncertainties and GHG reduction targets [18]. Panos 

et al. used two scenarios to investigate benefits of flexibility options for long-term 

decarbonisation of Switzerland [19]  

In recent years, there have been several studies focusing on developing new 

approaches to systematically explore techno-economic uncertainties, in order to help 

policy-makers make more robust decisions. For example, global sensitivity analysis (GSA) is 

applied in Fais et al. [20] to explore the influences of uncertainty across a range of low-

carbon technologies on the 28 generated long-term decarbonisation pathways. The 

Modelling to Generate Alternatives (MGA) approach has been used to explore the 

uncertainty of model structure by identifying possible near-optimal pathways [21]. This 

approach shows that the model structure, in respect of what is or is not explicitly modelled, 

together with the formulation of optimality, can also strongly affect the conclusions one 

draws about the role different technologies could play in the future. For instance, Price and 

Keppo [22] used MGA to reveal elements that are robust across global decarbonisation 

pathways, even when differences to previous runs are explicitly rewarded in the objective 

function. Similarly, MGA was applied to explore UK’s potential decarbonisation pathways 

that might deviate from the cost optimal ones [23]. In addition, Monte-Carlo analysis (MCA) 

based approaches have also been adopted to systematically investigate the influences of 

multiple uncertain input parameters, represented by probability distributions, on long-term 

decarbonisation pathways [24]. A large number of pathways can be fairly easily generated 

with this technique. For example, Pye et al. [25] generated 500 decarbonisation pathways 

and Li and Trutnevyte [23] created 800 different scenario pathways. Moreover, 1800 and 

2048 decarbonisation pathways were created for the UK [26] and for the world [27] 

respectively using MCA to reflect the uncertainties in the energy system transtions. For 

more detailed review on these approaches, please refer to Yue et al. [24]. Using these 
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systematic approaches, especially MCA, to explore uncertain decarbonisation pathways 

comprehensively can, therefore, often generate large amounts of data, e.g. tens of 

thousands of technology metrics, due to the numerous technologies in ESMs.  

However, approaches for helping decision makers determine a limited number of 

distinct strategic alternatives (as reflected by the representative pathways) amongst the 

numerous  plausible long-term decarbonisation pathways are still lacking to date. In most of 

previous studies, only simple data visualisation measures, correlation analysis or regression 

models were applied to explore the most influential technologies or resources on 

predefined system-wide indicators, such as GHG emissions and total system costs. For 

example, Fais et al. [20] used box-and-whisker plots and correlation coefficients to 

investigate the impacts of a few key technological changes on energy consumption and GHG 

emissions across 28 scenarios. In Li and Trutnevyte [23], visualisation of installation capacity 

of electricity generation technologies, such as fossil-fuel, nuclear power plants, and 

renewable energy, across 800 scenarios were applied to show the variation in technology 

deployment levels. Only maximally-different pathways were further investigated, instead of 

trying to identify ones that would best represent the full sample. Pye et al. [25], in turn, 

focused on realising the influences of a few key uncertain factors, such as biomass 

availability, gas prices, and nuclear capital costs, on total GHG emissions across 1000 

pathways using scatter plots and linear regressions between predefined variables. Again, 

scatter plots were adopted by Fragkos et al. [27] to explore the relationships between 

crucial system indicators, such as carbon prices and gas reserves, across 2048 scenarios. No 

representative decarbonisation pathways were revealed from their scenarios and the 

indicators used to illustrate the pathway ensemble were handpicked by the modellers. 

Similarly, visualisation of the electricity mix by technology across 200 pathways was created 

to quantify wind deployment capacity in 2050 for Denmark [28]. More recently, clustering 

algorithms have also been applied to investigate uncertain pathways, but still focused on 

realising the influence of individual technologies. For example, Moksnes et al. [29] used 

Gaussian mixture model (GMM) to group similar scenarios based on estimated system costs 

and GHG emissions alone. Determinants of grouped scenarios were then identified by the 

Patient Rule Induction Method. Pye et al. [26] applied a hierarchical clustering (HC) 

algorithm to group highly correlated technologies across 1800 decarbonisation pathways, 



5 

 

but focusing on the interdependencies between individual technologies, as opposed to full 

pathways. Overall, past studies have largely used ad hoc approaches for illustrating 

differences between the pathways and the focus has been on illustrating uncertainty in 

outcomes, rather than trying to summarise the large number of pathways as a smaller set of 

distinct strategic alternatives. Finally, the  few studies that have used more advanced, less 

user dependent, methods have not focused much on the exact formulation of the problem 

or the choice of the algorithms to use. 

Identifying a few representative pathways from a huge pathway ensemble can be 

challenging. This is due to the large, multidimensional information embedded in pathways, 

including all technology metrics over the modelling years. Moreover, the absence of 

label/category on generated pathways makes the task even more daunting. A systematic 

approach is thus desirable to characterise these long-term pathways, to extract what might 

be the key types of pathways that together represent the larger ensemble.  

Clustering algorithms, a type of unsupervised machine learning approach, could be 

useful in characterising a long term energy system pathway ensemble, something that they 

have not been applied for previously. These algorithms are used for grouping unlabelled, 

multi-dimensional data points (in our case pathways, as reflected through their pathway 

metrics) based on their characteristics so that data points in a cluster are as similar to each 

other, and as distinct from those in other groups, as possible [30]. Such algorithms could 

thus provide a promising approach for defining the distinct pathway families, or clusters, 

that differ in terms of the strategies they suggest for the development of the future energy 

system.  

Nevertheless, different clustering algorithms group data points based on various 

presumptions on the distribution of the target dataset. The performance of these 

algorithms is thus extremely sensitive to the actual distribution of data points. Given the 

structure of the pathway dataset is not known a priori, it is thus essential to try and assess 

various clustering algorithms to determine an appropriate one to characterise 

decarbonisation pathways, as different algorithms often result in entirely different 

partitions even on the same data [31]. In this paper, we explore the application of clustering 

algorithms to the analysis of decarbonisation scenarios, a field to which this approach has 

been rarely applied in the past, and assess the performance of different techniques.  
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This study thus aims to fill the research gap by applying five different clustering 

algorithms to characterise long-term decarbonisation pathways. 

The contribution of this study is threefold: 

1. Explore how to apply clustering algorithms to investigate a large number of detailed, 

long-term decarbonisation pathways 

2. Compare the suitability and relative strengths of a range of clustering algorithms for 

this task 

3. Identify distinct decarbonisation pathway families to summarise the “archetype 

alternatives” for the highly uncertain system transition toward a low-carbon target 

This paper is structured as follows: applications of clustering algorithms in energy-

related fields are firstly reviewed in Section 2. The research approach for assessing the 

application of five different clustering algorithms is briefly introduced in Section 3. Then, 

Section 4 compares the performances of the five clustering algorithms, based on five cluster 

validity indices, and discusses the identified representative pathways. Finally, some 

conclusions on the application of clustering algorithms for finding representative pathways 

are drawn in Section 5. 

 

2. Application of clustering algorithms for energy related studies 

Clustering algorithms have been widely adopted in a range of energy studies, covering 

the evaluation of energy performance of buildings [32], identification of representative 

demand patterns of buildings [33], improvement of prediction ability for short-term energy 

demand of buildings [34], identification of level of energy efficiency of industrial sub-sectors 

[35], design of distributed generators [36], wind resource analysis and prediction [37], 

among others. 

In the field of energy and buildings, Schütz et al. [33] used several clustering algorithms, 

such as k-means (KM) and k-medoids, to cluster energy demands of two buildings into 

representative periods to reduce the computational complexity of energy system 

optimisation models for buildings. They found that k-medoids performed the best in terms 

of designing an energy system close to the optimal one. Papadopoulos et al. [38] applied KM 

to group commercial and housing buildings in New York City into clusters with distinct 
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energy use intensities over a six-year period, to explore the influential factors on the 

temporal patterns of energy performance for these identified representative buildings. 

Larger, newer, and higher valued commercial buildings were found to be the main driver of 

energy reduction in the building sector. Unternährer et al. [36] used KM to cluster buildings 

according to their spatial locations to simplify the required input data for an optimisation 

model used to identify potential areas for deploying district heating. Tang et al. [34] 

grouped energy consumption records of a building with a KM algorithm for energy 

consumption prediction. The prediction errors of the built models based on clustered 

records reduced considerably. Yilmaz et al. [39] applied KM to identify representative daily 

electricity demand profiles of Swiss households using five features of daily profiles (mean of 

morning, daytime, evening, night and standard deviation). Three typical daily demand 

profiles were found for households. Four distinct demand profiles were further revealed for 

a single household to represent the variety of demand profiles over time. The findings 

suggest that a mean demand profile cannot represent households’ demand characteristics 

well. Boudet et al. [40] used KM to reveal households’ typical energy-saving behaviours 

using five energy-saving attributes, including cost, frequency of performance, required skill 

level, observability, and locus of decision. Four distinct energy-saving behaviours were 

found. 

Clustering techniques have also been applied for other end-use sectors. For instance, 

Liao and He [35] adopted a clustering algorithm to categorise the levels of energy efficiency 

of 37 industrial sub-sectors in China, to evaluate the influencing factors on their energy 

performance. Technological progress, energy consumption structure, and enterprise scale 

were found to be the most influential factors. Arias and Bae [41] used a HC algorithm to 

classify traffic patterns based on real-world traffic volume data in South Korea. A decision 

tree-based model was then developed to classify traffic pattern types, considering a set of 

influential factors, such as maximum temperature and average humidity, for the prediction 

of EV charging demand. 

Furthermore, clustering algorithms have been proven to be a valuable technique in 

wind power analysis and prediction. For example, Dong et al. [42] used KM to divide 

meteorological data into clusters, comprising records with similar characteristics. Another 

regression model was then applied to reveal the patterns in the records in a cluster with 
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similar meteorological characteristics to the prediction day. Using this approach, the 

accuracy of day-ahead wind prediction was improved considerably. Similarly, Sun et al. [43] 

used a hybrid-clustering method to group similar wind speed days, which have similar wind 

variance trends, into clusters as training data to build a prediction model for short-term 

wind power forecasts (hours ahead). The prediction accuracy for two wind farms in China 

was improved with this model.  

However, clustering algorithms have rarely been applied to the broader energy system 

– or to characterise energy system wide transition pathways. To the best knowledge of the 

authors, Csereklyei et al. [44] is the only example, applying a model-based clustering 

algorithm to categorise the energy mix in 28 EU member states over past 40 years into 7 

groups. This was done to investigate the major drivers on national energy transitions from 

high to low fossil fuel systems over time. Lower shares of fossil fuels were found to be 

typically associated with higher national income and energy use per capita. However, as this 

research used the energy ladders concept, it focused only on primary energy use. ESM-

generated decarbonisation scenarios, which include large amounts of information on the 

potential roles of individual technologies, have not been used with clustering approaches to 

date.   

 

3. Methodology 

3.1 Research procedure 

Our approach to the research, illustrated in Figure 1, has been developed to explore 

how clustering algorithms can be used to explore representative pathways from large 

scenario ensembles. First, we selected our ensemble of scenarios, representing 

decarbonisation pathways generated based on multiple techno-economic uncertainties and 

taken directly from a previous study [26]. The various pathway metrics (e.g. use of specific 

fuel for heating, or electricity produced with a specific technology) were then subjected to 

three different transformation approaches, including power-transformation, standardisation 

and sectoral standardisation. This was done so that the considered algorithms can be tested 

with different ensembles of pathways with various distribution of technology metrics to 

determine the most robust one for characterising pathways. Proximity matrices were then 
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constructed using the original and the transformed pathways. Five clustering algorithms 

were then used to analyse the original as well as the transformed ensembles of pathways 

for comparison and exploration of the suitability for grouping specific decarbonisation 

pathways as reflected through their technology metrics (in 2030 and 2050). Each algorithm 

was chosen from one of five major clustering algorithm categories, including distance-based, 

model-based, density-based, agglomerative and graph-based clustering algorithms. 

Algorithms from different categories are likely to generate different results [31,45]. The 

performance of clustering algorithms was then compared based on several performance 

indices to reveal the most suitable one for the clustering analysis done for our specific 

dataset. Finally, five groups of pathways were determined using the best performing 

algorithm. Centroid pathways, which were comprised of the mean metrics of those of 

pathways in individual clusters, were regarded as representative pathways and further 

discussed. 

Scikit-learn [46], a widely-adopted and well-developed machine learning toolkit, was 

used to carry out the clustering analyses.  

 

Figure 1. Research procedure to characterise decarbonisation pathways 

3.2 Decarbonisation pathways under techno-economic uncertainties 

A set of 600 decarbonisation pathways, all achieving UK’s 2050 GHG emissions targets, 

were taken from Pye et al. [26] for demonstrating our approach. These pathways were 
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generated with the Energy System Modelling Environment model (ESME) [47], a technology-

explicit whole energy systems model for the UK, by Monte Carlo sampling of techno-

economic parameters [25] of the model. ESME uses linear programming to determine 

portfolios of technologies across all sectors of the UK energy system that lead to the lowest 

cumulative discounted total energy system cost until 2050, while simultaneously satisfying 

the UK decarbonisation targets of 53% reduction in GHG emissions by 2030 and 80% by 

2050. In the parameter sampling, not only the uncertainties of technology costs and 

resource costs were taken into account, but also the uncertainties related to technology 

build rates and resource availability, such as maximum potential of biomass produced 

sustainably in the UK or via import from the international market. The variance of 

parameters was set according to the maturity of technologies, with a higher variance for 

novel or emerging technologies, for which the uncertainties are still greater. Probability 

functions were constructed to represent the uncertainty of the considered parameters using 

triangular distributions [26]. For each simulation, values for intermediate years (prior to 

2050) were determined based on interpolation back to the base year (2010) value, following 

a linear trajectory between 2010 and 2050. For more details regarding pathway generation 

under techno-economic uncertainties, please refer to Pye et al. [26]. 

3.3 Proximity matrix 

A proximity matrix, representing relationship between any two pathways, were 

constructed for clustering algorithms to group similar pathways. The proximity (distance) 

between pathways is defined as follows: 

𝑑௜,௝ = ට∑ ∑ (𝑥௜,௬,௠ − 𝑥௝,௬,௠)ଶெ
௠ୀଵ௬    (1) 

where 𝑥௜,௬,௠, 𝑥௝,௬,௠ are the metrics of technology m in pathway i and j in year y; 𝑀 is the 

total number of technologies in a pathway. In this study, only technology metrics in 2030 

and 2050 were considered for simplification. A lower proximity value means the two 

pathways under consideration are more similar to each other than pathways with a higher 

value. A proximity matrix was then created to describe the distance between any two 

pathways. The size of the full matrix is thus N × N, where N is the total number of pathways. 

This matrix can then be used as the basis for the clustering analysis. 
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3.4 Metric transformation 

As clustering algorithms are sensitive to the distribution of data points, it is essential to 

test those algorithms with different distributions of pathways to determine the most robust 

one. Three metric transformation approaches, including power transformation, 

standardisation, and sectoral standardisation, are thus applied to twist the distribution of 

the adopted pathways. Four ensembles of pathways were then applied for sensitivity 

analysis of the performance of each clustering algorithm.  

In addition, the metric transformations can help to reduce the dominance of a few, 

high volume metrics, so that the importance of other metrics in the end-use sectors can also 

be stressed in the clustering processes. Otherwise qualitatively different decarbonisation 

strategies may be missed by the algorithm, as even small relative changes for a dominating 

variable could dwarf qualitatively more dramatic shifts in other variables. Consequently, 

metric transformations provide additional flexibility for the pathway grouping, by focusing 

on different perspectives of technology switching across pathways. Several transformation 

approaches are tested, as while specific approaches can mitigate certain problems, they can 

also introduce new ones. 

The three proposed transformation approaches are explained as follows. 

i) Power transformation:  

Power transformation is used to transform technology metrics using a power function 

with a coefficient of 0.35 to lower the scale of high metric values: 

𝑥௜,௬,௠
ᇱ = 𝑥௜,௬,௠

଴.ଷହ   (2) 

where 𝑥௜,௬,௠
ᇱ  is the transformed metric m in pathway i in year y. 

The coefficient 0.35 is adopted to bring the transformed value close to that one would 

get from using natural logarithm transformation. However, unlike natural logarithm 

transformation, power transformation will not cause numerical difficulties when a metric 

has zero value.  

As the high variance of metrics is significantly reduced, the distribution of the 

transformed pathways is more condensed than that of the original pathways. The variance 
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of end-use metrics becomes more evident, compared to that of supply-side metrics, after 

transformation. 

ii) Standardisation:  

With standardisation, the metrics of pathways are transformed with average metrics 

and  metrics’ standard deviations. The transformation can be formulated as follows. 

𝑥௜,௬,௠
ᇱ =

௫೔,೤,೘ି௫̅೤,೘

௦௧ௗ೤,೘
   (3) 

where 𝑥̅௬,௠ and 𝑠𝑡𝑑௬,௠ is the mean and standard deviation of technology metric m across 

pathways in year y respectively. As a result, every metric has an influence more closely 

linked to relative changes, even those with extremely low absolute values. Thus while this 

approach reduces the dominance of high absolute value variables, the transformation could 

lead to an exceptionally irregular distribution of pathways.  

 

 

iii) Sectoral standardisation: 

Sectoral standardisation transformation, in turn, replaces the standard deviation of 

individual metrics with the average standard deviation of all metrics in the sector to which 

the metrics belong.  

𝑥௜,௬,௠
ᇱ =

௫೔,೤,೘ି௫̅೤,೘

௦௧ௗ೤,ೞ
   (3) 

where 𝑠𝑡𝑑௬,௦ is the sectoral standard deviation of the sector s across pathways in year y. 

Metrics will have a stronger influence when their variance is relatively higher than that of 

the other metrics in the same sector. This transformation can thus emphasise the 

technology replacement within a sector, by equalising the relative weights of the sectors. 

However, the variance of metrics with extremely low absolute values would not be 

dramatically amplified as that transformed with standardisation. 

3.5 Clustering algorithms 
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Five clustering algorithms are adopted for the comparison: KM, HC, GMM, Spectral 

clustering (SC), and Density-based spatial clustering of applications with noise (DBSCAN), all 

of which are explained briefly below.  

3.5.1 K-means (KM) 

KM is one of the most popular clustering algorithms to group similar data points into a 

predefined C number of clusters. The algorithm initialises C centroids randomly from all the 

data points. The rest of the data points are then assigned to their nearest centroids to form 

C clusters. Centroids, in turn, are updated as the means of the data points in clusters. The 

assigning of data points and updating of centroids are repeated iteratively until the 

centroids remain the same [30].  

This algorithm performs well when the data points are gathered together in circular-

like groups [30]. In addition, due to its clustering procedure, the grouped clusters tend to 

have similar numbers of data points [48].  

3.5.2 Hierarchical clustering (HC) 

HC groups data points based on the proximity between data points through an iterative 

procedure and ultimately generates a hierarchy of clusters [30]. Both bottom-up 

(agglomerative) and top-down (divisive) approaches can be adopted to determine the 

clusters. The agglomerative approach starts with treating each data point as an individual 

cluster. The most similar pairs of clusters are then merged to form larger clusters iteratively 

until there is a single cluster that includes all data points. The divisive approach, on the 

other hands, starts with a single cluster containing all data points and divides clusters into 

smaller ones until each cluster contains only one data point. The order of cluster merging 

determined by the HC algorithm can be represented as a tree-like diagram, dendrogram, 

with leaves correspond to clusters. A specific number of clusters can then be determined by 

intersecting the tree through a proximity chosen by the algorithm. In this study, the widely 

used bottom-up approach is adopted to iteratively merge a pair of clusters in which the 

most dissimilar members are closest, known as complete-linkage merge strategy. 

This algorithm is typically used to understand the underlying hierarchical structure of 

data points. Furthermore, there is no need to choose an anticipated number of clusters 

beforehand. However, once two subsets of points are merged at an intermediate step, the 
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grouped arrangement cannot be changed later on, potentially leading to a locally optimal 

solution. Due to this, the approach may not be suitable for noisy and high-dimensional data 

[30].  

3.5.3 Gaussian Mixture Model (GMM) 

A GMM is a probabilistic model that can fit a mixture of a finite number of multivariate 

Gaussian distributions to the distribution of data points by adjusting the shapes of the 

probability distributions [49]. Each subset of data points that can be represented by a single 

or multiple Gaussian distributions forms a cluster. As such, the clustering problem 

transforms to a statistical learning problem, to optimise the number of model components 

(Gaussian distributions), associated weights, and the parameters of each component [50].  

An expectation-maximisation (EM) algorithm is applied to determine the unknown 

parameters of the Gaussian distributions, such as the means and covariances. The EM 

algorithm is an iterative procedure with two alternating stages, expectation (E) and 

maximisation (M) stages. In the E stage, parameters are first estimated by maximising the 

log-likelihood function of parameters and then, based on the Bayes rule, each data point 

can be assigned to a specific cluster with the highest probability for the specific point. Then, 

in the M stage, the parameters are derived by maximising the log-likelihood function again 

under new posterior probabilities. The E and M stages are repeated iteratively until the 

improvement of the log-likelihood is smaller than a stopping criterion [49,51].  

Compared with KM, GMM is more flexible as it can group data points distributed in any 

kind of elliptical shapes and assigns a data point to multiple clusters probabilistically [44,52]. 

3.5.4 Spectral clustering (SC) 

SC algorithm performs dimensionality reduction before clustering data points [49,53]. 

Data points are transformed into a weighted, undirected graph from the proximity matrix, 

representing the distances between data points. When the constraints on the assignments 

of points to clustering are relaxed from binary conditions to continuous status, the data 

clustering problem is then transformed into a spectral partition problem. This can be dealt 

with eigenanalysis techniques, cutting the set of points into separate subsets of points, 

where the similarity among points in the same subset is high and across different subsets is 

low. The algorithm can be summarised as follows [54]: 
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Step 1: Construct a proximity matrix for the sample data. 

Step 2: Calculate the first k eigenvalues and eigenvectors to construct an eigenvector 

space.  

Step 3: Cluster the eigenvectors within the eigenvector space with a clustering 

algorithm, such as KM. 

In this study, KM is adopted to determine the clustering of data points; therefore, a 

predefined number of clusters is required as an input parameter.  

Unlike KM and GMM, SC can be applied to sample spaces of any shape and perform 

clustering analysis on a non-convex distribution, a polygon with one or more of interior 

angles is more than 180 degrees [49,54]. However, this algorithm performs poorly to divide 

datasets that contains structures at different scales of size and density [55]. 

3.5.5 Density-based spatial clustering of applications with noise (DBSCAN) 

DBSCAN is also a popular algorithm for grouping data points into clusters, with the 

advantage of not requiring as input a predefined number of clusters [30]. Points in high-

density regions are aggregated together and separated by low-density regions. Those points 

in low-density regions are treated as noise and ignored, removing the influence of outliers 

on the clustering.  

This algorithm classifies all points into three categories, including core, border, and 

noise points, according to two user-defined parameters, radius (Eps) and minimum number 

points (MinPts). Core points are those with at least MinPts neighbouring points within the 

distance of Eps, which is relatively small. Border points are not core points but within the 

neighbourhood of core points. The rest of the points are noise points and are discarded. 

Edges are put between core points if they are within a distance Eps of each other. Core 

points connected by edges are grouped into a separate cluster. Border points are then 

assigned to the nearest clusters.  

Consequently, this algorithm is relatively resistant to noise (outliers) and can handle 

data points distributed in arbitrary shapes and sizes. However, it might have trouble with 

high-dimensional data or data distributed with widely varying densities [30].  

3.6 Performance evaluation and the choice of number of clusters 
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Since there are no labels indicating the assignments of pathways to individuals clusters, 

it is challenging for clustering algorithms to determine the optimal number of clusters [31].  

Instead, cluster validity indices are usually applied to evaluate the performance of clustering 

algorithms and to provide a sensible way to determine a suitable number of clusters. These 

indices measure the performance of a clustering structure based on cluster cohesion and 

cluster separation, the former indicating how closely related data points in a cluster are, and 

the latter how well-separated the clusters are from each other [30]. As no one single index 

can adequately reflect clustering performance, several indices, explained as follows, are 

adopted for performance comparisons of clustering algorithms and for informing a suitable 

choice for the number of clusters.  

In the following sections, arrows next to index names in headings suggest the direction 

of value change for better performance of a clustering algorithm.  

3.6.1 Sum of the squared error (↓) 

 Sum of the squared error (SSE) is a measure to represent the cohesion of clusters. It is 

simply the summation of squared difference between individual data points (pathways) in 

clusters and their centroids (i.e. the mean of  the metrics of pathways for each cluster) and 

can be evaluated as follows [30]: 

SSE =  ∑ ∑ ∑ ∑ ฮ𝑥௜,௬,௠ − 𝑥̅௖,௬,௠ฮ
ଶெ

௠ୀଵ௬௜∈௖
஼
௖ୀଵ    (4) 

where 𝑥̅௖,௬,௠ is the mean technology metric m of pathways in the cluster c in year y; C is the 

total number of clusters. A lower coefficient indicates better performance of a clustering 

algorithm as the data points in clusters are closer to each other.  

3.6.2 Davies-Bouldin index (↓) 

The Davies-Bouldin (DB) index estimates cluster cohesion based on the average 

distance from the points in a cluster to its centroid and cluster separation based on the 

distance between cluster centroids. The index is defined as follows: 

DB =  
ଵ

஼
∑ max

௖ᇱ
൜

ௌ೎ାௌ
೎ᇲ

ฮ௫̅೎ି௫̅೎ᇲฮ
ൠ஼

௖ୀଵ    (5) 
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where 𝑐′ is another cluster other than cluster 𝑐;  𝑥̅௖ is the centroid of cluster c; 𝑆௖ is the 

average distance of data points of the cluster c to its centroid. As cluster separation is used 

as the denominator, a better clustering structure would have a lower value of the index.  

3.6.3 Calinski-Harabaz index (↑) 

The Calinski-Harabaz (CH) index is another widely adopted measure for unlabelled 

clustering analysis, with a higher value suggesting better performance of a clustering 

algorithm. Cluster cohesion is estimated based on the distances from the pathways in a 

cluster to its centroid. Cluster separation, on the other hand, is based on the distance from 

clusters’ centroids to the global centroid. The index can be defined as follows: 

CH =
∑ ௡೎ฮ௫̅೎ି௫̅೒ฮ

మ಴
೎సభ /(஼ିଵ)

∑ ∑ ‖௫೔ି௫̅೎‖మ
೔∈೎

಴
೎సభ /(ேି஼)

   (6) 

where 𝑥̅௖ is the centroid of cluster c, which, as before, is simply the average of all pathways 

in the cluster; 𝑥̅௚ is the global centroid, which is the average of the centroids of all clusters; 

𝑛௖  is the number of pathways in cluster c [30,56].  

3.6.4 Dunn index (↑) 

The Dunn (DN) index , in turn, evaluates the performance of clustering algorithms with 

the minimal distance between points of different clusters (cluster separation) and the 

largest within-cluster distance (cluster cohesion) [56]. The index is simply the ratio of the 

separation to the cohesion. The index can be defined as follows: 

DN =  
min

೔∈೎,ೕ∈೎ᇲ
ฮ௫೔ି௫ೕฮ

max
೔,ೕ∈೎

ฮ௫೔ି௫ೕฮ
   (7) 

Consequently, a higher value of the index indicates a better performance of a 

clustering algorithm.  

3.6.5 Silhouette index (↑) 

The Silhouette (SL) coefficient evaluates the performance of clustering algorithms with 

the relationship between the cluster cohesion (a) and cluster separation (b). Cluster 

cohesion is measured using the average distance between a data point and the other data 

points in the same cluster. Cluster separation, on the other hand, is the average distance 
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between a data point and all data points in the nearest cluster. The Silhouette coefficient 

then can be calculated as follows: 

SL =  
ଵ

ே
∑ ∑

௕೔ି௔೔

୫ୟ୶ {௕೔,௔೔}௜∈௖
஼
௖ୀଵ    (8) 

where max {𝑏௜, 𝑎௜} is the greater one of a data point’s cohesion and separation value. When 

the Silhouette coefficient is higher, implying clusters are more condense and the distances 

between clusters are larger, the performance of the clustering analysis is regarded better 

[30,56].  

3.6.6 Ideal number of clusters 

These indices are often plotted against various numbers of clusters, to give an 

understanding of how the performance changes as a function of the number of clusters.  

Elbow measure is usually applied to illustrate the improvement of SSE as the number of 

clusters increases. When drawing out the relationship between the SSE and the number of 

clusters, an elbow point, or turning point, of the line can be found. The number of clusters 

at this point is a natural choice for clustering, as the marginal improvement of performance 

is much lower after that point. 

The other 4 indices are also plotted against various numbers of clusters, to judge the 

best choice for how many clusters to use. For indices where higher values indicate better 

performance, the corresponding number of clusters at the peak point could be a reasonable 

choice. On the other hand, for those where lower values suggest better performance, the 

number of clusters with the lowest index value in the diagram should be identified. 

However, the plotting approach does not always work as clusters might be considerably 

more intertwined or overlapping than those which can be separated clearly [30].  

4 Results and Discussion 

In this section, the characteristics of the adopted pathways are first discussed, followed 

by the exploration of the influences of the different metric transformations on the pathway 

clustering analysis. Then, the performance of clustering algorithms is evaluated based on 

the identified groups of transformed pathways and using the five cluster validity indices. 

Finally, five representative pathways, which are the centroid pathways reflecting the mean 

metrics of the pathways within individual clusters, are identified using the most robust 
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clustering algorithm. Centroid pathways are regarded as the representative pathways in this 

study, since grouped pathways are more likely to be similar to the centroid pathway of their 

cluster than that of other clusters. It needs to be noted, however, that the centroid 

pathways may well differ to some extent from all individual pathways within the cluster18.  

4.1 Set of scenarios for exploring clustering algorithms 

Figure 2 shows the distributions of 40 aggregated technology metrics in 2030 and 2050 

across the 600 pathways, creating a dataset of 48,000 values. Aggregated technology 

metrics were applied in this study for simplification. The metrics reflect sector and fuel 

specific activities and the definitions of the individual metrics can be found in Appendix A.  

There is a clear trend of transitioning from more fossil-fuel based technologies in 2030 

to low-carbon technologies in 2050 across all sectors. For example, in the building sector 

(BLD), the high gas consumption (BLD-GAS) for heating, hot water and cooking in 2030 is 

replaced by higher consumption of electricity (BLD-ELC) and use of more district heating for 

heat provision (BLD-DH). In the electricity sector, fossil fuel-based electricity generation 

(ELC-FOS) is fully phased out by 2050 and replaced by other low-carbon generation 

technologies, such as nuclear (ELC-NUC), wind (ELC-WIND), and power plants with carbon 

capture and storage (ELC-CCS), in 2050. Similarly, in the transport sector, oil consumption 

(TCAR-OIL) is reduced dramatically by 2050, with higher deployment of vehicles using 

electricity (TCAR-ELC). As for the industrial sector and the aviation sector, these two sectors 

see less mitigation of CO2 as fewer technologies are available for decarbonisation. However, 

fuel-switching can still be found in these two sectors, e.g. more hydrogen is used to replace 

oil and gas in the industrial sector.  

Some technology metrics, however, are highly uncertain across pathways, due to the 

uncertainty of future technology development, deployment speed limitations, etc. 

Obviously, the variance of technology metrics is much higher in 2050 than in 2030 as the 

technology mix in 2030 will more likely be influenced by the status of the existing energy 

system. Some technology metrics are more sensitive to the changes in technology 

assumptions. This leads to higher variances of those technologies in 2050, such as district 

heating, the majority of electricity generation technologies, hydrogen production 
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technologies, and oil-based vehicles. The high variability in resulting pathways due to 

technology uncertainty makes it difficult to identify representative pathways. 

 
(a) 

 
(b) 

Figure 2 Distribution of technology metrics with narrower variations in (a) 2030 and wider 

variations in (b) 2050 across all pathways (bars show the average values, while vertical 

black lines indicate the maximum and minimum values of metrics in pathways). 

 

 

 



21 

 

4.2 Transformation approaches applied to scenarios 

As clustering analysis is sensitive to distribution of proximities between pathways, 

three transformation approaches were applied to transform pathways for the comparison 

of the clustering algorithms. The effects of the different metric transformations are 

illustrated in Figure 3.  As the proximity matrices are later formulated based on these 

distributions, the transformed distribution will influence how pathways are grouped by 

clustering algorithms. The influences of the transformation on clustering results will be 

addressed in the next section. 

Figure 3(a) represents the distribution of differences between metrics and their 

averages. In the figure, the boxes represent ranges of the first quartile (Q1) and the third 

quartile (Q3) of the metric differences; whiskers indicate the possible highest and lowest 

values of metrics that are at most 1.5 times of interquartile range (Q3 – Q1) higher than Q3 

and lower than Q1 respectively. Outliers beyond this range are not included. The variations 

are similar to those in Figure 2, except outlier cases, such as high solar thermal in buildings 

(BLD-SOL) and hydrogen production by gas (steam methane reformer, SMR) with CCS (H2-

GCCS) in 2050 in Figure 2, which are outside the ranges covered by the box-and-whisker 

plots. 

After the power-transformation, the scale of difference between transformed metrics 

and averages has been reduced dramatically, as shown in Figure 3(b). Relatively speaking, 

the distribution of metrics with lower values was increased, such as hydrogen production by 

coal gasification with CCS (H2-CCCS) in 2050, whereas the distribution of metrics with higher 

values was reduced, such as electricity generation with CCS (ELC-CCS) in 2050. Those metrics 

with limited deviations remained insignificant, such as in the industrial sector.  

As illustrated in Figure 3(c), distributions of standardised differences between metrics 

and their averages became more similar. As this transformation aims to focus on the 

relative changes for a given metric, the variances of individual metrics are valued more 

equally than in the previous two transformation cases. This represents a case in which the 

possible dominance of large absolute value metrics is not only mitigated, but completely 

ignored, and thus very small absolute changes to marginal variables can change the metrics 

dramatically from one scenario to the other.  
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Finally, sectoral standardisation amplified the variances of metrics that are, compared 

to other metrics in the same sector, more uncertain (Figure 3(d)). For example, the variance 

of the oil consumption for light-good vehicles (TLGV-OIL) in 2050 was widened after 

transformation as the original variances of other transport technologies in 2050 are much 

smaller, as shown in Figure 3(a). Conversely, the variance of electricity generation with CCS 

(ELC-CCS) in 2050 was lowered, as the variances of electricity technologies are generally 

high, again as shown in Figure 3(a). This transformation thus aims to mitigate both, the 

dominating impact of high value metrics in a given sector and the impact of focusing only on 

relative changes. It thus stresses the importance of metric-switching within a sector, while 

mitigating the influences of metric replacement across sectors. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3 Distribution of differences between (a) individual metric and average metric, showing 
unproportionally wide variations of a few dominating metrics; (b) power-transformed 
metric and average metric, with reduced variations of the dominating metrics; (c) 
individual metric and average metric as times of standard deviation, with almost equal 
variations of all metrics; (d) individual metric and average metric as times of sectoral 
standard deviation, reducing variations of the dominating metrics while emphasising the 
importance of metrics in each sector, in 2050. Note the different scales of the y-axis. 

 

The influences of metric transformation on representative pathways, the centroid 

pathways in pathway clusters determined by KM, are summarised in Table 1, with 

additional detail in Appendix C. Only KM is considered here for simplification. The major 

effects of the transformations on the grouped clusters are rescaling the boundaries of 

extreme metrics and shifting the signal strengths of metrics. For example, the extreme 

values of original metrics are in the range of 100 to -100 TWh (i.e. 360 to -360 petajoules), 
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as shown in Figure C.1, whereas those values are much lower (between 60 and -60 TWh) (i.e. 

216 and -216 petajoules) after applying power-transformation, as shown in Figure C.2.  

Consequently, with transformed metrics the clustering analysis can alleviate the 

dominance of a few technology metrics in the power sector, so that the influence of some 

end-use metrics can be stressed in various ways. This is caused directly by the modified 

distribution produced by the transformation, as shown in Figure 3. For example, as shown in 

Figure 4(b) and Figure 5(b), variance of oil cars (TCAR-OIL) and EVs (TCAR-ELC) in the 

clustered pathways based on sectoral standardised metric is more evident than that in the 

clustered pathways based on original metrics, while the variance of metrics in the power 

sector decreases. In Figure 3(d), similar changes to the variations of those metrics can also 

be found. This allows one to observe clear, qualitative differences between the clusters, 

which may remain hidden, if the clustering is dominated by the few, high absolute value 

variables.  

In other word, the metric transformation can emphasise the trade-offs between 

metrics across pathways from different perspectives. For instance, power transformation 

can stress the metric replacement across sectors as the dominance of a few metrics is 

mitigated. Sectoral standardisation, on the other hand, can highlight the trade-offs between 

metrics within individual sectors since the transformation highlights relationships between 

metrics within sectors. 
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Table 1 Influences of metric transformation on clustered metrics by k-means 

Metric 
transformation Characteristics of clustered metrics 

None 
 All metrics are close to averages in 2030 
 Power sector is the only sector with obvious variation in 2050, as 

shown in Figure 4 and Figure C.1 

Power 

 Influence of high variance of a few metrics, such as those in the 
power sector, is mitigated 

 Variation of some metrics becomes more obvious, such as 
bioenergy consumption in the buildings (BLD-BIO) in 2030 and 
hydrogen production by gas and CCS (H2-GCCS) in 2050, as shown 
in Figure C.2  

Standardisation 
 Variance of every metric is treated equally 
 Variance of many clustered metrics is more obvious in both 2030 

and 2050, as shown in Figure C.3 

Sectoral 
standardisation 

 Relatively high variance of metrics in a sector are more likely to be 
revealed 

 Trade-off between metrics in a sector is clearer, such as oil cars 
(TCAR-OIL) and EVs (TCAR-ELC) in 2050, as shown in Figure 5 and 
Figure C.4 

 

 

(a) 
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(b) 

Figure 4 Differences between the average metrics of all pathways and the mean metrics of the five 
clusters in 2050 as identified by k-means based on original, untransformed metrics, 
showing that the clustering results majorly reflect the variations of a few key metrics in 
the electricity sector. Metrics of the building, electricity, and hydrogen sectors are shown 
in (a) and metrics of the transport sector are shown in (b). 

 

(a) 
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(b) 

Figure 5 Differences between the average metrics of all pathways and the mean metrics of the five 
clusters in 2050 as identified by k-means based on sectoral standardised metrics, showing 
that variations of metrics in both the electricity sector and the end-use sectors, such as the 
residential and the transport sectors, are emphasised. Metrics of the building, electricity, 
and hydrogen sectors are shown in (a) and metrics of the transport sector are shown in 
(b). 

4.3 Comparison of clustering algorithms 

Having transformed the data, each of the five clustering algorithm was applied to the 

original and the three transformed datasets, and assessed using a set of validity indices. The 

performance rankings of the clustering algorithms are listed in Table 2, with lower values 

indicating better performance. For example, based on the SSE index for the non-

transformed dataset, KM performs best, whereas SC is the worst performing algorithm of 

the ones used. In Figure 6, the rankings based on various indices are aggregated to show the 

performance tendency of each individual algorithm. For more detailed comparisons, please 

refer to Appendix B. DBSCAN is not included in the table and figures as the number of 

clusters is determined automatically by the algorithm depending on the two essential input 

parameters. 

Overall, KM performs the best based on the considered validity indices, e.g. the 

algorithm is ranked the best for 4 of the 5 indices, with original and power-transformed 
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pathways. In fact, KM scores highest in 65% of all comparisons. HC also performed well as it 

scores the best or the second best in 60% of comparisons. For GMM, it ranks second best in 

40% of comparisons. It is obvious that SC is the worst performing algorithm as it is lowest 

ranked 95% of times. This implies that SC might not be a good choice for pathway groupings.  

The better performance of KM, compared to GMM, may suggest the pathways are 

distributed continuously and densely in the feature space, but that the shape of those areas 

is probably fairly irregular. This would make it difficult for GMM to cover well with the same 

number of clusters as KM. The shape, in turn, could result from the ESME probability 

distribution functions of technology costs being triangular, leading to a higher probability for 

costs around the central value. Therefore, the joint distribution of cost assumptions of 

technologies would also be more likely to have a shape concentrating at a central area and 

spreading outward continuously as the number of data points drops. The resulting pathways 

were thus likely to be distributed closely in groups, separated as a result of the system 

dynamics from the ESM’s sensitivity to technology cost changes. Similarly, since ESME is a 

linear model and can thus demonstrate abrupt changes to pathways resulting even from 

small input changes, known as “bang-bang” effect [57], this can also contribute to the 

irregular boundary of the pathway distribution. 

As HC divided pathways into groups with a chosen minimum required distance 

between groups, distinct subsets of pathways, that are apart from each other less than the 

chosen proximity, might be more likely to be integrated into a larger group. KM, on the 

other hand, would not require a minimum distance between groups. A subset of such 

distinct pathways thus has a higher chance to be grouped as a standalone cluster. Therefore, 

KM outperforms HC in most of our cases. HC does, however, outperform KM when 

standardised pathways are clustered, given that HC is ranked as the best in 3 of the 5 indices, 

as shown in Table 2. This is even more evident when the number of cluster is low, as shown 

in Figure B.3. One possible explanation is that the standardisation made the distribution of 

pathways extremely uneven in the feature space as the variances of all technologies were 

rescaled to a similar range, as illustrated in Figure 3(c), meaning that any technology, even if 

insignificant in its absolute value contribution, could easily influence the proximity between 

pathways. 
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The worst performing algorithm, SC, might suffer from the distribution of the pathways 

in the feature space. This algorithm represents the distribution of pathways as a graph in an 

eigenspace and tries to determine superior splitting, but the dense and continuous 

distribution of pathways means the vertices (pathways) in the transformed graph could still 

be closely connected without clear separations. This could make it difficult for the algorithm 

to find proper separations, resulting in lower indices scores. The poor clustering with SC for 

condense datasets has also been found by Nadler and Galun [55]. 

While not presented here, it is evident that DBSCAN is not suitable for grouping 

pathways. No matter the transformation used, DBSCAN always grouped a high percentage 

of pathways into a single cluster (e.g. about 437 pathways (72.8%) with power 

transformation), with small numbers of remaining pathways allocated to a few clusters and 

a significant number of pathways (e.g. 22.7% with power transformation) considered as 

noise and ignored. This is due to the grouping mechanism of the algorithm, which tends to 

merge nearby pathways together iteratively as long as the pathways can be reached within 

a predefined distance from any pathway already included. As for the other clusters, they are 

more likely to be comprised of pathways at the extremes since those pathways are 

disconnected from the major part of the pathways and located in the tail of the distribution.  

Table 2. Performance ranking of clustering algorithms for grouping the original and three 
transformed pathway ensembles based on five clustering validity indices (lower number 
means better performance). 

Metric 
transformation 

Clustering 
algorithm 

Clustering validity index 
SSE DB CH DN SL 

None (original) 

KM 1 1 1 2 1 
HC 2 1 2 1 2 

GMM 3 3 3 3 3 
SC 4 4 4 4 4 

Power 

KM 1 1 1 2 1 
HC 3 2 3 1 3 

GMM 2 3 2 3 2 
SC 4 4 4 4 4 

Standardisation 

KM 1 2 1 2 2 
HC 3 1 3 1 1 

GMM 2 4 2 3 3 
SC 4 3 4 4 4 

Sectoral 
standardisation 

KM 1 2 1 2 1 
HC 3 1 3 1 3 

GMM 2 3 2 3 2 
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SC 4 4 4 4 4 
* KM: K-means; HC: hierarchical clustering; GMM: Gaussian mixture model; SC: spectral clustering; SSE: sum of 

squared error index; DB: Davies-Bouldin index; CH: Calinski-Harabasz index; DN: Dunn; SL: Silhouette index 

 

 

Figure 6. Share of rankings of clustering algorithms considering all four pathway ensembles based 

on four clustering validity indices (lower ranking number means better performance), 

showing KM is likely to outperform other algorithms in most cases. 

Various clustering algorithms can lead to different pathway groupings, as illustrated in 

Figure 7, which presents the standard deviation of the number of pathways in the 5 

identified clusters, for each combination of a clustering algorithm and a transformation 

metric. Lower standard deviation means that the distribution of the number of pathways 

across the different clusters is more uniform. Note that we focus here on five clusters of 

pathways, as the SSE analysis suggests that marginal benefits diminish with a larger number 

of clusters (see Appendix B).  

KM and GMM have a similar distribution of numbers of pathways in clusters, with 

usually a much lower variation across clusters than with HC and SC. This is because KM tries 

to minimise the total distance between data points and their cluster centroids; as a result, 

and due to the pathways being fairly evenly distributed in the feature space, every cluster 

tends to cover a similar range of pathways so that the total distance is minimised. GMM, on 

the other hand, matches multiple Gaussian distributions to the distribution of pathways and 
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thus is less likely to group extreme pathways into an individual cluster. The numbers of 

grouped pathways are thus also more uniform.  

Standardisation transformation amplifies the influence of the fluctuation of minor end-

use metrics to make the distribution of pathways much more uneven. Groupings of HC and 

SC are thus affected by the extreme cases to form 4 and 3 clusters with less than 2 pathways 

respectively, whereas KM and GMM still have fairly even distributions of pathways across 

clusters. Due to the adopted merge strategy of HC, i.e. complete-linkage, only the maximum 

distance between boundary pathways (i.e. the two most dissimilar pathways in two clusters 

being merged) in two subsets of pathways is taken into account and HC therefore is more 

likely to leave out a smaller number of pathways in edge areas. Nonetheless, these 

groupings seem to be reasonable, as suggested by validity indices DB, DN, and SL, which also 

take extreme distances between pathways into account, in Table 2 and Appendix B.3. 

Even with the highly distorted distribution of standardised pathways, KM is still able to 

catch the extreme cases, with one cluster comprised of only 2 pathways, and to group 

pathways properly, as validity indices in Table 2 show the performance of KM is either the 

best or the second best among all clustering algorithms.  

As for SC, the significantly twisted distribution of standardised pathways might create 

higher dissimilarity between a few pathways and the major part of pathways; so that SC cuts 

those pathways into separate clusters. Nonetheless, the separations are still not ideal, as 

shown by the validity indices in Table 2  and Appendix B.3.  
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Figure 7 Standard deviation of numbers of pathways in 5 clusters identified by various algorithms 
for four considered metric transformation approaches to demonstrate the sensitivity of 
clustering algorithms to the distribution of proximity between transformed pathways. This 
result shows KM is the most robust algorithm.  

 

4.4 Characteristics of representative pathways 

KM, the most robust clustering algorithm for our specific dataset, is then adopted to 

characterise the pathway ensembles based on the sectoral-transformed metrics. This 

transformation was chosen as it can stress the importance of technologies in each sector in 

a balanced way. As shown in Table 3, the centroid pathways, i.e. representative pathways, 

of the five identified clusters represent the most distinctive combinations of technology 

metrics to decarbonise the whole energy system by 2050. The plus and minus signs 

represent the deviation level of mean metrics of pathways in clusters from the 

corresponding mean metrics of all pathways in 2030 and 2050. The variations in the 

industrial sector are ignored here as those are relative low in 2030 and negligible in 2050. 

The reader should note that the deviation of metrics in the table is based on the original 

scale rather than on the transformed scale that was used for the clustering. 

Cluster 1 (“low carbon power generation”) suggests that more oil-based transport 

technologies can be used prior to 2050, if the building sector contributes more to mitigation 
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through increased use of bioenergy for heating and cooking in 2030. Less CCS-related 

technologies are deployed for electricity generation, which instead sees more wind and RE 

generation, and hydrogen production in 2050, possibly due to higher cost assumption of CCS 

under the pathways in this cluster. 

Alternatively, as found in cluster 2 (“low carbon power generation with district heating 

and hydrogen cars”), district heating is deployed early on and to an even greater extent by 

2050. This is augmented with higher solar thermal usage in 2050 to decarbonise the building 

sector. Furthermore, the higher production of hydrogen from coal and gas with CCS enables 

the replacement of oil cars with hydrogen vehicles. 

Cluster 3 (“generation with CCS and wind, along with transport electrification”) 

illustrates yet another decarbonisation strategy to decarbonise the transport sector, with 

early and high level deployment of EVs. More electricity is generated with CCS-based power 

plants and wind turbines to meet the increased demand from EVs, while less hydrogen is 

required. 

In cluster 4 (“more CCS for generation and extremely high BECCS for hydrogen 

production”), more bioenergy (only in 2030) and electricity-based end use technologies, 

such as heat pumps, are adopted to reduce the requirement of district heating in the 

building sector. Furthermore, much more hydrogen is produced through biomass 

gasification with CCS (BECCS) which contributes to negative GHG emissions. As a result of 

these negative emissions, more oil vehicles can still be used by 2050. 

Finally, cluster 5 (“extremely high generation with CCS and high BECCS for hydrogen 

production”) is very similar to cluster 4, except that there is more gas consumption in 2030 

and much more electricity is generated with CCS-fitted power plants. 

Table 3. Deviation level of mean metrics of pathways in identified clusters by KM from the 
corresponding mean metrics of all pathways in 2030 and 2050, showing the characteristics of the 
identified representative pathways in clusters. 

Sector 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

2030 2050 2030 2050 2030 2050 2030 2050 2030 2050 

Building 

BIO +    -  +  -  
DH   + ++ +  - -- - -- 
ELC    -    +  + 
GAS -  -    -  +  
SOL    +       



34 

 

Electricity 

CCS  ---  ---  ++ - ++  +++ 
FOS -    +      
NUC  +++ + +++  -  -- - --- 
ORE + ++  ++    --  -- 

WND  ++  ++  ++  --  --- 

Hydrogen 
BCCS  -  -  --- + +++  ++ 
CCCS    +  + - ---  - 
GCCS  -  +  +  -  - 

Trans-
port 

AV 
GAS --  +      +  
OIL ++  - -    + - + 

CAR 
ELC    - + +++  --  - 
H2  +  ++  -  -  - 
OIL +  +  -- --- + +++ + +++ 

HGV 
GAS  -         
OIL  +         

LGV 
ELC    +    -  - 
H2    +       
OIL +   -- +   + - + 

Note: BIO: bioenergy; DH: district heating; ELC: electricity; GAS: gas; SOL: solar thermal; FOS: fossil fuel; NUC: 
nuclear; ORE: other renewable energy; WND: wind; H2: hydrogen; BCCS: bioenergy+CCS; CCCS: coal+CCS; 
GCCS: gas+CCS; AV: aviation; CAR: passenger car; HGV: heavy-good vehicle; LGV: light-good vehicle; +/-: 
positive/negative variation less than 5 TWh; ++/--: positive/negative variation about 10 TWh; +++/---: 
positive/negative variation about or more than 15 TWh. 
The deviation of metrics in the five identified clusters also shows that some 

technologies have strong interdependencies, i.e. increasing/decreasing together or being 

substituted by each other. For instance, the increase of electricity generation with CCS could 

lead to the decrease of electricity generation with renewable energy and nuclear. The 

relationships between technology metrics across pathways are further described in Figure 8 

and Figure 9, which illustrate the differences between each pathway and the average 

pathway by metric in 2030 and 2050 respectively. Each point represents a relationship 

between two metrics of a pathway, with the colour indicating the cluster to which the 

pathway belongs. Stacked bar charts on the diagonal represent the distribution of metrics of 

different clusters. For example, the stacked bar chart circled in Figure 8 shows that gas 

consumption in the building sector (BLD-GAS) shows two peaks in 2030, with clusters 

distributing almost evenly at these points. 

Stronger correlations between metrics are found more frequently in 2050 than in 2030. 

In 2030, only the building sector has obvious trade-offs between technology metrics using 

different fuels for heating and cooking, i.e. gas usage can be replaced by bioenergy or 

district heating. Similar trade-offs in the building sector can also be observed in 2050. The 
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heating provision can be decarbonised either with more district heating or via electrification, 

using technologies such as heat pumps and electric storage heaters. Moreover, in 2050, 

increased electricity generation with CCS is likely to reduce the need of electricity from 

nuclear, wind and other renewable energy sources. Meanwhile, wind power and other 

renewable energy seem to have a positive correlation. 

In 2050, hydrogen production by coal gasification with CCS (H2-CCCS) has a clear 

negative correlation with that by BECCS (H2-BCCS). Moreover, the way that hydrogen is 

produced is likely to influence the vehicle stock in 2050. Hydrogen production by BECCS can 

lead to negative GHG emissions, meaning more oil-based vehicles can remain on the road by 

2050. Otherwise, oil-based vehicles are replaced by more EVs, as hydrogen is produced from 

coal with CCS.  

Figure 8 and Figure 9 also show the KM has successfully divided pathways into clear 

groups on some metrics, such as EVs (TCAR-ELC) and oil-based vehicles (TCAR-OIL and TLGV-

OIL) in 2050. However, on most metrics, clear separations between clusters cannot be found 

due to the complicated interactions among metrics. This is also the reason why a proper 

clustering algorithm should be applied to identify distinct pathways as presented just before. 
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Figure 8. Scatter plots for technology metrics with higher variances in 2030 (lines indicate the 
obvious correlations between metrics) to show the potential substitutions between technologies 
across pathways. 
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Figure 9. Scatter plots for technology metrics with higher variances in 2050 (lines indicate the 
obvious correlations between metrics) to show the potential substitutions between technologies 
across pathways. 

 

4.5 Different clustering results of the other clustering algorithms 

To understand how the choice of clustering algorithm can affect the identification of 

representative pathways, HC, GMM, and SP were also applied to group the sectoral 

standardised pathways into five clusters. The representative pathways identified by those 

algorithms are illustrated in Table D.1 to Table D.3 in Appendix D. In general, similar trade-

offs between metrics within individual sectors can be clearly observed from the pathways 

identified by various algorithms. For instance, the trade-off between power generation with 

CCS and low-carbon power generation in the electricity sector can be found in the 
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representative pathways identified by almost all the considered algorithms, except SC 

doesn’t suggest centroid pathways with a similar trade-off, as shown in Table D.3. 

Nonetheless, not all scenarios revealed by the representative pathways from KM analysis 

can be found in those for the other considered algorithms. For example, the scenario with 

high generation with CCS and strong transport electrification (i.e. cluster 3 from KM) is not 

identified by the other algorithms. Furthermore, low-carbon power generation scenario (i.e. 

cluster 1 from KM) is only identified by KM, not the other algorithms.  

Therefore, the application of various clustering algorithms can lead to very different 

representative pathways to characterise pathway ensembles. It is thus crucial to adopt a 

suitable algorithm for this task based on the distribution characteristics of pathways. 

 

5 Conclusions 

Clustering algorithms provide a powerful approach to grouping data points with high 

dimensional features into clusters based on the similarity between those data points. This 

study thus adopted clustering algorithms to group 600 decarbonisation pathways (based on 

2030 and 2050) reflecting multiple uncertainties, to identify distinct characteristics of 

representative pathways. Four transformation approaches, including original scale, power-

transformation, standardisation and sectoral standardisation, were applied to pre-process 

the pathways to strengthen the variances of individual metrics. Transformed pathways were 

then grouped with five clustering algorithms and the results were compared using five 

cluster validity indices. K-means was found to be the best algorithm for our pathway dataset 

as it consistently outperformed the other considered algorithms. This finding was generally 

robust across the transformation approaches and validity indexes used. Furthermore, 

sectoral standardisation, a novel transformation approach proposed in this study, was 

shown as a useful transformation approach for revealing the distinct variances of metrics in 

the end-use sectors for clustering, in addition to mitigating the influence of a few dominant 

metrics in the power sector.  

The application of clustering algorithms to characterise long-term pathways has been 

shown to find distinct, yet representative pathways, from a large set of pathways. This 

allows decision makers to make robust decisions, when exposed to the wide range of 
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uncertainties reflected by the original scenario ensemble. Furthermore, the approach is 

flexible in grouping pathways with different pathway transformations, e.g. sectoral 

standardisation, to emphasise trade-offs between metrics in pathways from various 

perspectives. 

However, the applied clustering algorithm should be carefully chosen since various 

clustering algorithms can, based on our results, lead to very different representative 

pathways. Even though k-means could be the preferred choice for pathway clustering when 

the distribution of pathways is continuous and condensed, the results based on the 

standardisation transformation suggest that hierarchical clustering algorithm may perform 

better, if the distribution of pathways is less regular and sparser.  

Pathway distribution is, thus, a key factor influencing the performance of clustering 

algorithms, which means that our findings are linked to the specific model based dataset we 

have used here. For future studies, broader, and differently shaped parameter distributions 

could also be imposed in the pathway generation process, to see how this affects the 

performance of different clustering algorithms. Pathway ensembles generated by different 

models can also be put together for further testing. In addition, other types of clustering 

algorithms, such as kernel k-means and support vector machine, can be applied to 

characterise pathways to further validate the robustness of the findings.  

Clustering algorithms can also be applied to group individual technology metrics 

directly, rather than pathways, to identify highly correlated metric sets, as done  in[26] using 

hierarchical clustering. Finally, the proposed approach can easily be applied to analyse 

pathways generated by any national or global scale energy system models, not only the 

energy system model adopted in this study.  
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Appendix A. Definitions of technology metrics 

Metric Definition Units 

ELC-WND Wind generation level TWh 
ELC-NUC Nuclear generation level TWh 
ELC-CCS CCS generation level TWh 
ELC-ORE Other renewable generation level TWh 
ELC-FOS Fossil generation level TWh 
BLD-BIO Building bioenergy consumption TWh 
BLD-ELC Building electricity consumption TWh 
BLD-GAS Building gas consumption TWh 
BLD-OIL Building oil consumption TWh 
BLD-DH Building district heating consumption TWh 
BLD-SOL Building solar energy consumption TWh 
H2-BCCS H2 production by biomass gasification with CCS TWh 
H2-CCCS H2 production by coal gasification with CCS TWh 
H2-ELC H2 production by electrolysis TWh 
H2-GCCS H2 production by gas (SMR) with CCS TWh 
H2-GAS H2 production by gas (SMR) TWh 
IND-BIO Industry bioenergy consumption TWh 
IND-COA Industry coal consumption TWh 
IND-ELC Industry electricity consumption TWh 
IND-GAS Industry gas consumption TWh 
IND-H2 Industry hydrogen consumption TWh 
IND-OIL Industry oil consumption TWh 
TAS-GAS Aviation & shipping - gas TWh 
TAS-OIL Aviation & shipping - oil TWh 
TAS-BFL Aviation & shipping - biofuel TWh 
TCAR-ELC Cars - electricity TWh 
TCAR-GAS Cars - gas TWh 
TCAR-H2 Cars - H2 TWh 
TCAR-OIL Cars - oil TWh 
TCAR-BFL Cars - biofuels TWh 
THGV-ELC Heavy goods vehicles - electricity TWh 
THGV-GAS Heavy goods vehicles - gas TWh 
THGV-H2 Heavy goods vehicles - H2 TWh 
THGV-OIL Heavy goods vehicles – oil TWh 
THGV-BFL Heavy goods vehicles - biofuels TWh 
TLGV-ELC Light goods vehicles - electricity TWh 
TLGV-H2 Light goods vehicles - H2 TWh 
TLGV-OIL Light goods vehicles - oil TWh 
TLGV-BFL Light goods vehicles - biofuels TWh 
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Appendix B. Comparison of performance of clustering algorithms using technology metrics 

with various transformations 

We present below the validity indices as a function of the number of clusters for the 

four clustering algorithms and the four different transformations. The arrows in the vertical 

titles indicate the improvement direction of an index, e.g. upward arrow means the index is 

better if its value is larger.  
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B.1 No transformation 

 

 

Figure B.1. Validity indices against various numbers of clusters of pathways for four 

clustering algorithms using technology metrics without transformation  
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B.2 Log-transformation 

 

 

 

Figure B.2. Validity indices against various numbers of clusters of pathways for four 

clustering algorithms 
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B.3 Standardisation transformation 

 

Figure B.3. Validity indices against various numbers of clusters of pathways for four 

clustering algorithms  
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B.4 Sectoral standardisation transformation 

 

Figure B.4. Validity indices against various numbers of clusters of pathways for four 

clustering algorithms  
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Appendix C. Influence of metric transformations on k-means clustering analysis 

The influence of metric transformations on the clustering of pathways is discussed 

below. For simplicity’ sake, we show only clustering done with k-means (KM); those 

determined by other clustering algorithms would be broadly similar and KM was found in 

this study to be the most robust algorithm for clustering the pathways in our dataset.  

The differences between the mean technology metrics of the pathways in the 5 

clusters and the average metrics of all pathways in 2030 and 2050 are illustrated in Figure 

C.1 to Figure C.4. It should be noted that technology metrics in those figures are on the 

original scales. 

The major effects of the transformations on the grouped clusters are rescaling the 

boundaries of extreme metrics and shifting the signal strengths of metrics. For example, the 

extreme values of original metrics are in the range of 100 to -100 TWh, as shown in Figure 

C.1, whereas those values are much lower (between 60 and -60 TWh) after applying power-

transformation, as shown in Figure C.2. 

As the fluctuations of original metrics vary widely, the clustering results are thus 

dominated by the metrics with high variance, such as those in the electricity sector. The 

deviation from the average metrics of pathway groups in the end-use sectors are almost 

negligible, as shown in Figure C.1, since the proximity between pathways is most likely to be 

determined by a few metrics with higher variance.  

Clustering results for the power-transformed pathways, on the other hand, strengthen 

the variance of some extreme cases in the end-use sectors by mitigating the influences of a 

few metrics with high variance. Variance of bioenergy consumption in the buildings in 2030 

(BLD-BIO) and hydrogen production by gas (SMR) and CCS in 2050 (H2-GCCS) are thus more 

obvious in Figure 3(b) and Figure C.2.  

In addition, clustering results for the standardised pathways emphasise the variance of 

every metric almost equally and thus leads to more obvious fluctuations of metrics in 2030 

and 2050 than those for original pathways. For example, the variation of gas consumption of 

heavy good vehicles in 2050 (THGV-GAS) is almost zero, as shown in Figure C.1, while a 

higher variance can be found in one identified pathway cluster, as shown in Figure C.3 . 



53 

 

Finally, sectoral standardisation strengthens the influence of metrics variance in 

individual sectors, as shown in Figure 3(d), on the determination of proximity between 

pathways. Relatively high variance of metrics in a sector are thus more likely to be revealed, 

such as gas consumption of aviation in 2030 (TAS-GAS) and electricity consumption of cars 

in 2050 (TCAR-ELC), as shown in Figure C.4. Those variances are less obvious in the 

clustering results of original pathways (Figure C.1) but occasionally can be emphasised in 

the standardised case (Figure C.3 ). Moreover, the trade-off between technology metrics is 

less clear in the case with power-transformed pathways (Figure C.2), such as the 

replacement of oil cars (TCAR-OIL) with EVs (TCAR-ELC) in 2050 among clusters is missing.  

Overall, as discussed above, grouping pathways with KM using sectoral-transformed 

pathways could be a better approach to identify distinct pathway groups in terms of the 

variations of metrics across pathways. 
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Figure C.1 Differences between the average metrics of all pathways and the mean metrics 

of clusters in 2030 and 2050 
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Figure C.2 Differences between the average metrics of all pathways and the mean metrics 

of clusters in 2030 and 2050 identified with power-transformed metrics  
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Figure C.3 Differences between the average metrics of all pathways and the mean metrics 

of clusters in 2030 and 2050 identified with standardised metrics  
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Figure C.4 Differences between the average metrics of all pathways and the mean metrics 

of clusters in 2030 and 2050 identified with sectoral standardised metrics  
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Appendix D. Different clustering results of various algorithms 

Table D.1 Deviation level of mean metrics of pathways in identified clusters by hierarchical 
clustering from the corresponding mean metrics of all pathways in 2030 and 2050 

Sector 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

2030 2050 2030 2050 2030 2050 2030 2050 2030 2050 

Building 

BIO -  -  +    +  
DH + ++  +  +    - 
ELC  -         
GAS     -      
SOL           

Electricity 

CCS  ---  -- - +++  -  ++ 
FOS     +      
NUC + +++  ++  ---  +  -- 
ORE  ++    --    - 

WND  +++  ++  --    - 

Hydrogen 
BCCS  --  --      + 
CCCS  --  +      - 
GCCS  +++         

Trans-
port 

AV 
GAS -          
OIL + -   -      

CAR 
ELC  +  +  +    - 
H2  +++    -     
OIL  --- - --- - --    ++ 

HGV 
GAS      +     
OIL      -     

LGV 
ELC  +         
H2           
OIL  --    +    + 

Note: BIO: bioenergy; DH: district heating; ELC: electricity; GAS: gas; SOL: solar thermal; FOS: fossil fuel; NUC: 
nuclear; ORE: other renewable energy; WND: wind; H2: hydrogen; BCCS: bioenergy+CCS; CCCS: coal+CCS; 
GCCS: gas+CCS; AV: aviation; CAR: passenger car; HGV: heavy-good vehicle; LGV: light-good vehicle; +/-: 
positive/negative variation less than 5 TWh; ++/--: positive/negative variation about 10 TWh; +++/---: 
positive/negative variation about or more than 15 TWh. 
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Table D.2 Deviation level of mean metrics of pathways in identified clusters by Gaussian mixture 
model from the corresponding mean metrics of all pathways in 2030 and 2050 

Sector 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

2030 2050 2030 2050 2030 2050 2030 2050 2030 2050 

Building 

BIO   -  +      
DH        +  - 
ELC        -   
GAS     -      
SOL    +       

Electricity 

CCS  +++  -  --  ---  ++ 
FOS           
NUC  --  +  +  ++  -- 
ORE  -  +  +  +  - 

WND  -  +  +  ++  -- 

Hydrogen 
BCCS    --      ++ 
CCCS    +    +  - 
GCCS    +    +   

Trans-
port 

AV 
GAS     -      
OIL     +   -   

CAR 
ELC    ++      - 
H2        +  - 
OIL   - ---  +    ++ 

HGV 
GAS           
OIL           

LGV 
ELC           
H2           
OIL    -    -  + 

Note: BIO: bioenergy; DH: district heating; ELC: electricity; GAS: gas; SOL: solar thermal; FOS: fossil fuel; NUC: 
nuclear; ORE: other renewable energy; WND: wind; H2: hydrogen; BCCS: bioenergy+CCS; CCCS: coal+CCS; 
GCCS: gas+CCS; AV: aviation; CAR: passenger car; HGV: heavy-good vehicle; LGV: light-good vehicle; +/-: 
positive/negative variation less than 5 TWh; ++/--: positive/negative variation about 10 TWh; +++/---: 
positive/negative variation about or more than 15 TWh. 
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Table D.3 Deviation level of mean metrics of pathways in identified clusters by spectral clustering 
from the corresponding mean metrics of all pathways in 2030 and 2050 

Sector 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

2030 2050 2030 2050 2030 2050 2030 2050 2030 2050 

Building 

BIO   +  --  --  +  
DH   - --  -  -  ++ 
ELC        +  - 
GAS   -  ++  ++  -  
SOL           

Electricity 

CCS    +++  ++  +++  - 
FOS         +  
NUC   - ---    --- - --- 
ORE    ++  - -   ++ 

WND    -- + -  ++  ++ 

Hydrogen 
BCCS        +  - 
CCCS    -       
GCCS           

Trans-
port 

AV 
GAS           
OIL           

CAR 
ELC    +    -  + 
H2    -    ++  - 
OIL   - -  + +  - -- 

HGV 
GAS           
OIL           

LGV 
ELC           
H2           
OIL      +  +   

Note: BIO: bioenergy; DH: district heating; ELC: electricity; GAS: gas; SOL: solar thermal; FOS: fossil fuel; NUC: 
nuclear; ORE: other renewable energy; WND: wind; H2: hydrogen; BCCS: bioenergy+CCS; CCCS: coal+CCS; 
GCCS: gas+CCS; AV: aviation; CAR: passenger car; HGV: heavy-good vehicle; LGV: light-good vehicle; +/-: 
positive/negative variation less than 5 TWh; ++/--: positive/negative variation about 10 TWh; +++/---: 
positive/negative variation about or more than 15 TWh. 

 

 

 

 

  


