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Abstract: The international classification of diseases (ICD) is a widely used tool to describe patient diagnoses. At 
University Medical Center Utrecht (UMCU), for example, trained medical coders translate information from 
hospital discharge letters into ICD-10 codes for research and national disease epidemiology statistics, at 
considerable cost. To mitigate these costs, automatic ICD coding from discharge letters would be useful. 
However, this task has proven challenging in practice: it is a multi-label task with a large number of very 
sparse categories, presented in a hierarchical structure. Moreover, existing ICD systems have been 
benchmarked only on relatively easier versions of this task, such as single-label performance and performance 
on the higher “chapter” level of the ICD hierarchy, which contains fewer categories. In this study, we 
benchmark the state-of-the-art ICD classification systems and two baseline systems on a large dataset 
constructed from Dutch cardiology discharge letters at UMCU hospital. Performance of all systems is 
evaluated for both the easier chapter-level ICD codes and single-label version of the task found in the literature, 
as well as for the lower-level ICD hierarchy and multi-label task that is needed in practice. We find that state-
of-the-art methods outperform the baseline for the single-label version of the task only. For the multi-label 
task, the baselines are not defeated by any state-of-the-art system, with the exception of HA-GRU, which does 
perform best in the most difficult task on accuracy. We conclude that practical performance may have been 
somewhat overstated in the literature, although deep learning techniques are sufficiently good to complement, 
though not replace, human ICD coding in our application.

1 INTRODUCTION 

ICD-10 is the 10th edition of the International 
statistical Classification of Diseases, a repository 
maintained by the World Health Organization to 
provide a standardized system of diagnostic codes for 
classifying diseases (Atutxa et al., 2019; Baumel et 
al., 2018). These classification codes are vastly used 
in clinical research and are a part of the electronic 
health records (EHRs) in the University Medical 
Center Utrecht (UMCU), The Netherlands. Currently, 
the task of assigning classification categories to the 
diagnoses is carried out manually by medical staff. 
Manual classification of diagnoses is a labor-
intensive process that consumes significant resources. 
For this reason, a number of systems have been 

proposed to automate the disease coding process with 
machine learning algorithms trained on data 
generated by medical experts. 

The ICD coding task is challenging due to the use 
of free-text, multi-label setting of diagnosis codes and 
the large number of codes (Atutxa et al., 2019; 
Boytcheva 2011). Several attempts have been made 
to automatically assign ICD codes to medical 
documents, ranging from rule-based (Baghdadi et al., 
2019; Boytcheva 2011; Koopman et al., 2015a; 
Nguyen et al., 2018) to machine learning approaches 
(Atutxa et al., 2019; Baumel et al., 2018; Cao et al., 
2019; Chen et al., 2017; Du et al., 2019; Duarte et al., 
2018; Karimi et al., 2017; Kemp et al., 2019; 
Koopman et al., 2015b; Lin et al., 2019; Liu et al., 
2018; Miranda et al., 2018; Mujtaba et al., 2017; 
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Mullenbach et al., 2018; Nigam et al., 2016; 
Pakhomov et al., 2006; Shing et al., 2019; Xie et al., 
2019; Zweigenbaum and Lavergne, 2016). Rule-
based methods have good performance when: (1) the 
terms to be categorized follow regular patterns, (2) 
the number of ICD labels is quite small, and (3) the 
task is limited to single-label classification (Atutxa et 
al., 2019). Unfortunately, with ICD classification 
these conditions seldom apply. 

When a coded dataset is available and the range 
of the ICDs to label is large, machine learning based 
techniques have been successful (Atutxa et al., 2019; 
Baumel et al., 2018; Cao et al., 2019; Duarte et al., 
2018; Miranda et al., 2018; Nigam et al., 2016). An 
approach for automatic matching of ICD-10 
classification of Bulgarian free text (Boytcheva, 
2011) was based on support vector machines (SVM). 
Zweigenbaum and Lavergne (Zweigenbaum and 
Lavergne, 2016) suggested a hybrid method for ICD-
10 coding of death certificates based on a dictionary 
projection method and a supervised learning 
algorithm. They used the SNOMED (systemic 
nomenclature of medicine) and UMLS (unified 
medical language source) to set up the dictionary 
projection method. Koopman et al. (Koopman et al., 
2015b) trained 86 SVM classifiers to identify cancers, 
first identifying the presence of a cancer by one 
classifier and later in a cascaded architecture 
classifying the cancer type according to ICD-10 codes 
using 85 different SVM classifiers. 

Recently, deep learning methods boosted 
benchmarked results in various text mining studies 
(Gargiulo et al., 2018; Shickel et al., 2017; 
Subramanyam and Sivanesan, 2020; Xiao, 2018), 
including in automated ICD coding (Atutxa et al., 
2019; Baumel et al., 2018; Du et al., 2019; Duarte et 
al., 2018; Karimi et al., 2017; Lin et al., 2019; Liu et 
al., 2018; Miranda et al., 2018; Mujtaba et al., 2017; 
Mullenbach et al., 2018; Nigam et al., 2016; Shing et 
al., 2019). Karimi et al. (Karimi et al., 2017) 
described a deep learning method for ICD coding, 
reporting on tests over a dataset of radiology reports. 
The authors proposed to use a convolutional neural 
network (CNN) architecture, attempting to quantify 
the impact of using pre-trained word embeddings for 
model initialization. The best CNN model 
outperformed baseline SVM, random forest, and 
logistic regression models using bag-of-words 
(BOW) representations. BOW is a vector 
representation method, demonstrating each document 
by one vector of features, i.e. words or combinations 
of words (n-grams). In (Nigam et al., 2016), recurrent 

 
1 https://www.who.int/classifications/icd/ 

neural networks (RNNs) have been applied to the 
multi-label classification task for assigning ICD-9 
labels to medical notes, finding that an RNN with 
long short-term memory (LSTM) units shows an 
improvement over the binary relevance logistic 
regression model. Atutxa et al. (Atutxa et al., 2019) 
evaluated different architectures of neural networks 
for multi-class document classification as a language 
modeling problem. In their experiments, the results of 
ICD-10 coding using the RNN-CNN architecture 
outperformed alternative approaches. Baumel et al. 
(Baumel et al., 2018) investigated four models 
namely SVM, continuous-BOW (CBOW), CNN and 
hierarchical attention bidirectional gated recurrent 
unit (HA-GRU) for attributing multiple ICD-9 codes. 
The HA-GRU model achieved the best performance. 
A drawback of the existing literature is that the 
performance of different systems is difficult to 
compare, because the ICD classification task is often 
made easier by only considering the top-level 
“chapters” of the ICD hierarchy, or by only 
considering a single label as the output. 

In the current application, we sought to implement 
a system to support human ICD coding of Dutch-
language discharge letters at UMCU hospital. We 
explicitly aim at multi-label classification of three-
digit ICD-10 codes, a task that is relatively difficult. 
Here, we present a benchmark of five state-of-the-art 
systems, all deep learning models, and two baseline 
methods based on BOW and pretrained embeddings 
with SVM. We aim to evaluate both the relative 
performance of these systems, which were all 
reported to outperform others, as well as the overall 
level of performance for potential support of human 
ICD coding, using a dataset of UMCU cardiology 
discharge letters. 

2 METHODS 

2.1 Case Study 

Table 1 provides the characteristics of the dataset of 
discharge letters collected at the department of 
Cardiology in the UMCU. A hospital discharge letter 
is a medical text summary describing information 
about patient’s hospital admission and treatments. 
UMCU cardiology discharge letters are coded based 
on the ICD-10 of cardiovascular diseases.  

ICD-10 has a hierarchical structure, connecting 
specific diagnostic codes through is-a relations1. The 
hierarchy has several levels, from less specific to 
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more specific. ICD codes contain both diagnosis and 
procedure codes. In this paper, we focus on diagnosis 
codes. ICD-10 codes consist of three to seven 
characters. For example, I50.0 shows the “congestive 
heart failure” disease, and I50 is its rolled-up code that 
shows the heart failure category in chapter IX: 
“Diseases of the circulatory system”. 

Table 1: UMCU dataset. 

Feature Description 

Taxonomy ICD-10 

Language Dutch 

Nb of records 5,548 

Nb of unique tokens 148,726 

Avg nb of tokens / records 936 

Nb of full labels 1,195 

Nb of rolled-up labels 608 

Label cardinality 4.7 

Label density 0.0039 

% labels with 50+ records 8.03% 

 

 

Figure 1: ICD rolled-up codes with more than 400 
appearances in the UMCU dataset. 

In Table 1, cardinality is the average number of 
codes assigned to records in the dataset. Density is the 
cardinality divided by the total number of codes. We 
filtered out ICD codes with less than 50 observations 
on their frequency. We note that there are 
approximately 64 frequent labels with at least 200 
records in UMCU dataset. ICD codes in this dataset 
are mainly from chapters 4, 9, and 21. Figure 1 
illustrates the ICD rolled-up codes with more than 
400 appearance in the UMCU dataset. I25, Z95, I10, 
I48 and I50 are the top frequent rolled-up codes (at 
least 1000 counts) in our dataset. 

In this study, we experimented with two versions 
of the label set: one with the 22 ICD chapters and one 
with the labels rolled up to their three-digit equivalent. 

2.2 Preprocessing 

Preprocessing the dataset of discharge letters 
comprised the following steps: (i) we anonymize the 
letters for legal and privacy reasons. We used 
DEDUCE (Menger et al., 2018), a pattern matching 
tool for automatic de-identification of Dutch medical 
texts; (ii) we use the tm (Feinerer, 2018) and tidytext 
(Silge and Robinson, 2016) packages in R to trim 
whitespace, remove numbers, and convert all 
characters to lower case; (iii) we tokenize all texts 
using the Python scikit-learn (Pedregosa et al., 2011) 
feature extractor, gensim library (Rehurek and Sojka, 
2010) and the tokenizer in the keras library (Chollet 
et al., 2015). 

2.3 Classification Methods 

To employ the classification methods, we investigate 
two methods of vector representation: 
• Bag-of-words (BOW; baseline) 
• Word embeddings (average word vectors) 

We use SVMs with each of the vector 
representations. We also assess the following neural 
network architecures for the automatic ICD coding of 
the Dutch discharge letters. 
• CNN 
• LSTM and BiLSTM 
• HA-GRU 

With these deep learning architectures, the first 
layer is the word embedding layer to represent 
patients’ discharge letters. Hyperparameters of the 
models are formulated on the corresponding cited 
studies, while we tuned some based on the 
development set using a random parameter search. 
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2.3.1 Baseline: Support Vector Machines 
using Bag-of-Words 

We use a one-vs-all, multi-label binary SVM 
classifier as the baseline learning method for ICD-10 
classification. Baghdadi et al. (Baghdadi et al., 2019), 
Koopman et al. (Koopman et al., 2015a), Mujtaba et 
al. (Mujtaba et al., 2017) and Boytcheva (Boytcheva, 
2011) applied SVM classifers for the task of ICD 
coding. We calculate the BOW representations using 
the preprocessed discharge letters. We also use the tf-
idf vectorizer. The baseline model fits a one-vs-all 
binary SVM classifier with linear kernel for each ICD 
code against the rest of the codes. 

2.3.2 Word Embeddings: Support Vector 
Machines using Average Word Vectors 

Word embeddings (Mikolov et al., 2013a; Mikolov et 
al., 2013b) are vector representations for texts, 
representing words by capturing similarities between 
them (for a recent review on word embeddings in 
clinical natural language processing see 
Subramanyam and Sivanesan, 2020). Skip-gram and 
CBOW are two ways of learning word embeddings. 
Both approaches use a simple neural network to 
create a dense representation of words. The CBOW 
tries to predict a word (target word) from the words 
that appear around it (context), while skip-gram 
inverts contexts and targets, and tries to predict 
context from a given word. Baumel et al. (Baumel et 
al. 2018) examined the word embedding 
representations for ICD coding and achieved better 
scores comparing to the BOW representations. In this 
study, we train CBOW word embeddings in gensim. 
We set the vector dimensionality to 300, the window 
size to 5, and discard the words that appear only once 
in the training set. We then use the average of word 
embeddings to represent each discharge letter. These 
embeddings are then inputs to the classification 
model defined by the baseline SVM. 

2.3.3 Convolutional Neural Networks 

To be able to capture the order of the words as well 
as multi-word expressions, the next model we 
investigate is a CNN model. CNN has proven to be a 
good method for text classification and is also applied 
for the task of ICD coding (Baumel et al., 2018; Du 
et al., 2019; Karimi et al., 2017). The CNN represents 
texts at different levels of abstraction, essentially 
choosing the most salient n-grams. We perform one 
dimensional convolutions on the embedded 
representations of the words. The architecture of this 
model is very similar to the average word embeddings 

model, but instead of averaging the embedded words 
we apply a one dimensional convolution layer with 
filter f, followed by a max pooling layer. One 
dimensional convolution layers have proven effective 
for deriving features from sequences data (Du et al., 
2019). In our experiments, we used the same 
embedding parameters as in the average word 
embeddings model. In addition, we set the number of 
filters to 128, and the filter size to 5. On the output of 
the max pooling layer, a fully connected neural 
network (two dense layers) was applied for the 
classification of the ICD-10 codes. The hidden dense 
layer contains 128 units and uses the relu activation 
function, and the output layer uses a softmax function 
to determine if the ICD code should be assigned to the 
letter. We also examine the CNN model with two 
convolution layers and two max pooling layers. In 
this setting, we employed a dropout layer after the 
first max pooling layer with rate 0.15. 

2.3.4 Long Short-term Memory and 
Bidirectional Long Short-term 
Memory 

Feedforward neural networks require fixed length 
contexts that need to be specified ad hoc before 
training (Chung et al., 2014). For automated ICD 
coding, this means that neural networks see relatively 
few preceding words when predicting the next one. 
RNNs avoid this problem by not consuming all the 
input data at once (Chung et al., 2014; Mikolov et al., 
2010; Miranda et al., 2018). An RNN is a 
straightforward adaptation of the standard feed 
forward neural network to allow it to model 
sequential data (Hochreiter and Schmidhuber, 1997; 
Sutskever et al., 2011). At each timestep, the RNN 
receives an input, updates its hidden state, and makes 
a prediction (see Figure 2). 

 
Figure 2: RNN architecture overview. 

By using recurrent connections, information can 
cycle inside these networks for an arbitrarily long 
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time. LSTM (Hochreiter and Schmidhuber, 1997) 
models are variants of RNNs with memory gates that 
take a single input word at each time step and update 
the models’ internal representation accordingly. RNN 
is extended to use LSTM units, simply replacing the 
nodes in hidden layers in Figure 2 with LSTM units.  

To overcome the limitations in RNNs using all 
available input information in the past and future of a 
specific time frame, bidirectional LSTM (BiLSTM) 
model is introduced by Schuster and Paliwal 
(Schuster and Paliwal, 1997). The BiLSTM model as 
shown in Figure 3 is an extension of the RNN model 
using LSTM units, that combines two LSTMs with 
one running forward in time and the other running 
backward. Thus the context window around each 
word consists of both information prior to and after 
the current word. 

 
Figure 3: BiLSTM architecture overview. 

RNN models have been applied extensively on 
textual data for natural language processing, as well 
as in the medical domain and ICD coding (Atutxa et 
al., 2019; Baumel et al., 2018; Du et al., 2019; Duarte 
et al., 2018; Miranda et al., 2018; Nigam, 2016). 

In this study, we used the keras library to 
implement RNN models for automated ICD coding. 
We implemented LSTM and BiLSTM. We keep the 
same embedding parameters as in the average word 
embeddings model. We experimented with RNN 
models directly on the word sequence of all the 
discharge letters. However, as in previous studies on 
textual data, the fact that our data contains long texts 
creates a challenge for preserving the gradient across 
thousands of words. Therefore, we used dropout 
layers to mask the network units randomly during the 
training (Gal and Ghahramani, 2016). We set the 
number of hidden units in the RNN layers at 100. 
Dropout and recurrent dropout were added to avoid 
overfitting, both at a 0.2 rate. On the output of the 
recurrent layer, a fully connected neural network with 

the setting in CNN was applied for classification of 
the ICD-10 codes. 

2.3.5 Hierarchical Attention Bidirectional 
Gated Recurrent Unit 

GRU can be considered as a variation on the LSTM, 
that is a gating mechanism in RNN (Figure 4) aims to 
solve the vanishing gradient problem (Cho et al., 
2014). Figure 4 compares the memory cell structures 
of the LSTM and the GRU. 

 

 
Figure 4: (a) LSTM memory cell: c is the memory cell, �̃� is 
the new memory cell content. i, f and o are the input, forget 
and output gates, respectively. (b) h and ℎ෨  are the activation 
and candidate activation, respectively. r and z are the reset 
and update gates. 

The GRU has a slightly different architecture 
where it combines both the input (gate i) and forget 
(gate f) gates into a single gate called the update gate 
(gate z). Also, it merges the cell state and the hidden 
state. This results to a reduced number of parameters 
as compared to LSTM architecture and in some cases 
has resulted in faster convergence and a more 
generalized model (Duarte et al., 2018). 

Baumel et al. (Baumel et al., 2018) proposed a 
HA-GRU model with label-dependent attention layer 
to classify diseases codes. Since the GRU model is 
too slow when applied to long documents as it 
requires as many layers as of the document length, 
they developed a HA-GRU to be able to handle multi-
label classification. In this paper, we implemented the 
HA-GRU (Baumel et al., 2018) for the ICD-10 
classification of cardiovascular diseases. The HA-
GRU is a hierarchical model with two levels of 
bidirectional GRU encoding. The first bidirectional 
GRU operates over tokens and encodes sentences. 
The second bidirectional GRU encodes the entire 
document, applied over the encoded sentences. In this 
architecture, each GRU is applied to a much shorter 
sequence compared with a single GRU.  

We applied the HA-GRU model using the Dynet 
deep learning library (Neubig et al., 2017) for ICD 
coding. The attention mechanism in the HA-GRU has 
the advantage that each label is invoked from 
different parts of the text. This allows the model to 
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focus on the relevant sentences for each label (Choi 
et al., 2016). As for our previous deep learning 
models, we kept the same embedding parameters in 
the average word embeddings model. We used a 
neural attention mechanism with 128 hidden units to 
encode the bidirectional GRU outputs. The first GRU 
layer encoded the sentences into a fixed length vector. 
Then the second bidirectional GRU layer uses 128 
attention layers to generate an encoding specific to 
each class. Finally, we applied a fully connected layer 
with softmax activation. 

2.4 Evaluation Measures 

Two evaluation measures are considered: accuracy, 
and F1. In the single-label classification scenario, 
accuracy is the fraction of correctly classified 
discharge letters to the whole collection of discharge 
letters. F1 is the harmonic mean of the fraction of 
positively coded discharge letters and the fraction of 
actual discharge letters that are positively classified. 
Accuracy is a simple and intuitive measure, yet F1 
takes both false positives and false negatives into 
account. F1 score is a good measure for the ICD 
classification task as this task has a large number of 
catergories and usually contains imbalanced data. To 
evaluate the multi-label classification performance, 
we use the following sample-based metrics for 
accuracy and F1: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  1𝑛  |𝑌 ∩ 𝑍||𝑌 ∪ 𝑍|

ୀଵ  

𝐹1 =  1𝑛  2|𝑌 ∩ 𝑍||𝑌| + |𝑍|
ୀଵ  

Where: |𝑌| = 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐼𝐶𝐷 𝑐𝑜𝑑𝑒𝑠 |𝑍| = 𝑠𝑒𝑡 𝑜𝑓 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝐼𝐶𝐷 𝑐𝑜𝑑𝑒𝑠 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 
We evaluate our experimental results in two 

scenarios: (1) single-label prediction: a model assigns 
one label to each patient letter; and (2) multi-label 
prediction: a model assigns multiple labels per patient 
letter. 

3 RESULTS 

We used the train-test split function from the model 
selection module implemented in the scikit-learn 
library to randomly split the dataset into train and test 
sets. We separate 25% of the data as the test set and 
the rest as for training. To evaluate the proposed 
models on the dataset of cardiovascular discharge 

letters, we conducted the following experiments. In 
the first setting, we trained the models on the training 
set separately using chapters as the labels. All models 
were evaluated on the test set according to the 
evaluation measures. In the second setting, we only 
considered the rolled-up ICD-10 codes to their three-
digit codes. 

3.1 Single-label Prediction 
Performance 

Table 2 presents the obtained results for each 
model for both experimental settings (ICD chapters 
and rolled-up ICD codes) on the single-label scenario. 
In this case, a single code is predicted for every 
testing patient’s letter. Bolded values in Table 2 
indicate the best-performing model for each category. 

Table 2: Single-label performance: accuracy and F1 score 
on two settings (ICD chapters and rolled-up ICDs) for the 
models when trained on the UMCU discharge letters. 

 ICD chapters Rolled-up ICD 
codes

Accuracy F1 Accuracy F1
BOW SVM 
(baseline) 54.8 54.8 14.1 14.1 

Average 
word 
embeddings 
(SVM)

54.9 54.9 18.2 18.2 

CNN(1conv) 57.3 49.2 22.1 17.4 
CNN(2conv) 59.2 54.0 22.5 18.1 
LSTM 73.0 38.1 19.1 14.1 
BiLSTM 73.9 41.3 23.2 21.8 
HA-GRU 72.5 43.5 23.7 19.8 

 
BiLSTM gives the best accuracy in the ICD-10 

chapters i.e. 73.9%, while the SVM classifier using 
the average word embedding has the highest F1 score 
of 54.9%. HA-GRU gives the best accuracy results in 
the rolled-up ICD-10 setting i.e. 23.7%, while the 
BiLSTM model has the highest value in F1 score with 
21.8%.  

Table 2 shows that the difference between the 
results of the rolled-up ICDs and the ones for the 
chapters is considerable. This is expected given the 
large number of the rolled-up ICD codes comparing 
to the number of the ICD chapters. We note that the 
SVM classifier is still competitive with the deep 
learning architectures in our application. 
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3.2 Multi-label Prediction Performance 

Table 3 presents the results for the multi-label task. In 
this scenario, corresponding to the prediction made 
by the classification models, every ICD label that 
presents a probability above a defined threshold is 
considered as a predicted output code. We assign the 
threshold in such a way that the label cardinality for 
the test set is in the same order as the label cardinality 
in the training set. Bolded values in Table 3 indicate 
the best-performing model for each category. 

Table 3: Multi-label performance: accuracy and F1 score 
on two settings for the models when trained on the UMCU 
discharge letters. 

 ICD chapters Rolled-up ICD 
codes 

 Accuracy F1 Accuracy F1 
BOW SVM 
(baseline) 62.3 74.3 11.6 20.2 

Average 
word 
embeddings 
(SVM) 

60.4 72.6 12.5 25.8 

CNN(1conv) 38.1 46.3 09.0 16.1 
CNN(2conv) 42.2 49.0 12.4 19.1 
LSTM 53.4 59.6 11.7 18.8 
BiLSTM 55.0 70.1 13.7 23.2 
HA-GRU 56.8 71.3 15.9 24.3 

 
For the multi-label scenario, the SVM classifier 

gives the best results in F1 score for the chapter labels 
and for the rolled-up codes with values equal to 
74.3% and 25.8%, respectively. The former is the F1 
score for the BOW representation and the latter is the 
one for the word embeddings. In terms of accuracy, 
when the number of ICDs to be coded are large the 
HA-GRU has the best results with 15.9%. 

By comparing Table 2 and Table 3, it is notable 
that the difference between the results on chapters and 
the results on the rolled-up codes is more consistent 
when we applied the CNN models using our case 
study. With regard to the single-label task, CNNs 
have the highest values of F1 of about 54% and 
18.1%, respectively, for the ICD chapters and the 
rolled-up codes. For the multi-label task these values 
are equal to 49% and 19.1%. 

 
 
 
 
 

4 DISCUSSION 

Automated ICD-10 classification can potentially save 
valuable time and resources in a clinical setting. In 
this study, we compared several state-of-the-art ICD 
coding systems on a dataset of Dutch-language 
discharge letters. 

Classification performance of the 22 higher-level 
codes is very promising, especially when only a 
single label is considered. For this version of the task, 
RNNs (LSTM, BiLSTM, and HA-GRU) showed 
good performance, as reported in the literature. 
However, in many practical applications, including 
our own, a lower level of classification is required, 
and each letter receives multiple ICD codes. For this 
version of the task, performance was somewhat 
disappointing, and state-of-the-art systems failed to 
outperform the baseline BOW SVM with linear 
kernel. An exception is the HA-GRU system, which 
had the best accuracy, and showed an F1 performance 
close to that of the baseline. 

While none of the systems were able to achieve a 
level of classification accuracy on the most difficult 
versions of the ICD classification task that would 
allow them to completely replace a human coder, 
they do show performance that is good enough to 
suggest codes in an interaction with the human. 
Future work could investigate the performance of 
human-in-the-loop systems, for example by 
employing active learning.  

A question that may arise is whether machine 
learning could be supplanted with a rule-based 
system. This is possible for the higher-level codes 
using information retrieval and natural language 
processing methods (Pakhomov et al., 2006). 
However, developing rule-based systems with 
manually coded rules is tremendously difficult for the 
lower levels of ICDs. There are a large number of 
ICD codes in lower levels of the ICD hierarchy, and 
a small number of observations per ICD code. Deep 
learning-based models are useful here because they 
obviate the need for manual feature engineering 
(Atutxa et al., 2019). For this reason, we believe 
machine learning remains an attractive alternative to 
rule-based systems. 

A second consideration is the question of model 
interpretability. Here, the deep learning models that 
form the current state of the art are especially 
challenging in this regard, and this may be a point in 
favor of “simpler” methods such as BOW: the more 
opaque the model, the less willing clinicians may be 
to accept artificial intelligence recommendations. 
Although it is not clear whether this is a problem for 
ICD-10 coding specifically, future work could focus 
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on developing more interpretable systems or generic 
prediction explanation methods that mitigate this 
problem. Moreover, such systems could be very 
powerful when combined with a human-in-the-loop 
approach, by allowing the human to learn how text 
can be written to teach the correct code to the system. 
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