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Abstract

In the context of sustainable development, a nundferural domestic sewage
treatment facilities had been built in China toveothe problem of rural domestic
sewage pollution. The comprehensive, quantitatived aobjective efficiency
assessment of facilities is urgent. This study useabn-radial slacked-based data
envelopment analysis model combined with clustealyemms to construct an index
system covering multiple aspects, including thmeguts and four outputs to assess
681 facilities. These samples selected from thgdsgdemonstration area are the most
representative for and exceed 2/5 of the runnirgitias all over the country. The
average efficiency score of samples was 0.496 mgathie improvement potential
was about 50.4%. Only 27 samples were relativégcebe, scoring 1. The remaining
654 facilities had different levels of input exaes®r output shortfalls, which should
be the key objects to improve overall performarineaddition, there was evidence
that output indicators had more room for improvemiran input indicators. The
analysis of sensitivity on inputs and outputs conéd that the idleness and poor
treatment effects of rural sewage treatment faeslishould be concerned. Finally,
Kruskal-Wallis non-parametric test verified thathieology and load rate of facilities
have significant impacts on efficiency. The perforogaavaluation results could not
only provide guidance for the local government tersgthen the supervision and
operation of facilities, but also potentially prdei reference for the construction,

operation and management of rural sewage treatfagiities in China.

Keywords Data envelopment analysis, Efficiency assessmentl Riomestic
sewage, Potential improvement, Sensitivity ana)ySxplanatory factors
1 Introduction

In recent years, the water pollution has becomeeréos challenge to the
development of rural areaBy 2015, the direct emission of rural domestic svaas
about 20 million tons every day. The annual chehugggen demand (COD) emission
was about 10.69 million tons and the annual ammaitragen emission was 0.73

million tons (China Environmental Statistics Annirgport, 2015). Due to economic
1
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and geographical factors, the coverage of treatfaeilities is extremely low in most
rural areas of China. 96 % of rural villages carefédctively treat sewage (Gu et al.,
2016).To control water pollution in rural areas, the cahgovernment had proposed
an ambitious plan, that the treatment coveragerad area will reach 33.6% by 2020. A
few rural domestic sewage treatment projects haea et up and demonstrated in key
river valleys (Chen et al., 2018; Wu et al., 20ljhough certain progress has been
made, the existing rural sewage treatment faaliiave problems such as scattered
locations, jagged technical levels and weak supemvi Thus, it is urgent to evaluate
performance of existing facilities and answer whgkthe best.

The environmental performance evaluation provektan effective and suitable
environmental management tool to find out the pold existing in rural sewage
treatment facilities (Alemany et al., 2005; Benéidatal., 2008; Gallego et al., 2008). It
can help the local governmersiisd sewage companies formulate reasonable pdities
promote the effective development of rural sewagatinent facilities, and also to
provide targeted improvement recommendations. Kadlbaal. (2012) assessed the
applicability of 4 common rural sewage treatmerhimlogies in India based on
scenario analysis. Xia et al. (2012) evaluatedrimeat technologies from the economic
and technical aspects by the fuzzy advantagesiaadvéintages coefficient method in
a village of Changzhou. Shen et al. (2014) combitredanalytic hierarchy process
with the entropy method to select 10 advanced t@olgies from 15 commonly used
rural domestic sewage treatment technologies. Xistirg research mainly focused on
the simple evaluation of the treatment technoldggsides, artificially assigning
weights to indicators led to subjective errors. Bonportantly, these methods failed to
distinguish inefficient from efficient facilitiesna quantify the improvement potential.

Data envelopment assessment (DEA) has been widelg¢ un the performance
evaluation of water sector in recent years (Dorad.e2017; Hu et al., 2019; Jiang et al.,
2020). This method obtains relative efficiency etidion-making units (DMUs) with
multiple inputs and multiple outputs based on Im@@gramming (Mostashari-Rad et
al., 2019). A significant advantage of the DEA naeths that it is not necessary to

assume a correlation between input and outputatalis (Hosseinzadeh-Bandbafha et
2
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al., 2018). Thus, the evaluation results are objectraditional DEA models are radial,
which fail to calculate the theoretical target \edwof inputs and outputs for inefficient
plant (Gomez et al., 2017; Lombardi et al., 20I%)e slack-based measure (SBM)
model proposed by Tone (2002) perfectly solved tmisblem.On other hand,
SBM-DEA model can be combined with clustering as@yo minimize the impact of
scale effect on plants performance.

In this context, this study selected SBM-DEA mooigted on clustering analysis
to evaluate the efficiency scores of 681 faciliiresural area of Wuxi district, Jiangsu
Province, located in southeastern China. As th@dsg demonstration area, these
samples are the most representative for and ex@&eaf the running facilities all over
the country. The purpose of the study is (1) tdwata the performance efficiency of
681 rural sewage treatment facilities; (@) identify the improvement potential of
inefficient facilities and provide specific imprawent suggestions; (3) to identify
implicit factors that affect the facility performeg The results can help select out the
state-of-art for the construction, operation anchaggment of rural sewage treatment
facilities in China, effectively promoting the saistable development of rural water
resources.

2 Methodology
2.1 SBM-DEA model

DEA is a powerful non-parametric comprehensive @atbn method to measure
relative efficiency of a large number of decisioaking units (DMUSs)
(Nabavi-Pelesaraei et al., 2019). This method telbe efficient DMUs as reference
benchmark to identify levels and causes of inehtiDMUSs. Different DEA models
had been proposed for different purpose. At presemventional radial models, such
as Charnes-Cooper-Rhodes (CCR) and Banker-ChamwagseC (BCC) have been
widely used. However, these models assume chanfygapuots or outputs are
proportional, failing to consider the slack of iogliors (Carvalho and Marques, 2011).

By comparison, non-radial SBM-DEA model is more tabie for assessing
samples with vague interconnections inputs (Thi&B6). It considers input excesses

and output shortfalls of DMUs further, providinggat improvement value for each
3



91 inefficient DMU’s input and output separately (Galt and Molinos-Senante, 2016;
92 Wang et al., 2018)What’s more, this method can treat environmentgaaots as
93 undesirable outputs in the index system to achéeraulti-dimensional assessment of
94 the environment impacts, resources consumptiorsandce value (Guo et al., 2017,
95 Robaina-Alves et al., 2015). Finally, SBM model das combined with clustering
96 analysis by grouping samples according to the ddsggtment capacity to evaluate the
97 sample efficiency based on the group-frontier,sthaeduce the impact of scale effect
98 (Jiang et al., 2020).

99 Based on the above reasons, this study composedtpnt-oriented SBM-DEA
100 model based on constant scale return (CRS) combimiéd cluster analysis to
101 evaluate rural sewage treatment facilities. Supples@umber of DMYis n and each
102 DMU has m inputs and s outputs. The matrices apgessed aX=[x;] eER™" and

103 Y=[y;] R The fractional programming form of SBM model ioan as follows:

1 S;~
1 _mzﬁl ' /xio

min p* =
L+ %Zlﬁlsﬁ/}’ro
104 s.t.
105 Xo=X1+ s~ (2)
Yo=YA— s*

A=20,s=0,st=>0

106 where s—and s* represent the input excesse and output shoméslhectivelya
107 indicates non-negative weight vector. The valug®franges from 0 to 1. The higher
108 the value ofp*, the better the efficiency of the DMU. Wherr1, the DMU is
109 relative efficient means no input excess and ouspottfall. Otherwise, the DMU is
110 inefficient. Inefficient DMUs can improve score lmecreasing input excesses or
111  making up output shortfalls as follows:

112 Xo—S =X Yo+ st =y (2)

113 Traditionally, DEA model assumed all samples to ehdke same or similar
114 characteristics when efficiency is evaluated. Ttoeeg all DMUs were taken as
115 reference set to construct meta-frontiers. In tgalkhe DMUs not always are
116 homogeneity, which will affect the accuracy of DE&Ssults (Corton and Berg, 2009).

117  Clustering analysis approach can usefully deal intterogeneous DMUs (Galar et al.,

4
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2014). This method divides DMUs into different gpswaccording to certain attributes,
which can maximize the homogeneity of samples enghime cluster to decrease the
effect of heterogeneity on efficiencies. Then, gvgoup takes itself as reference set,
constructing group-frontier separately.

The definition of meta-frontier and group-frontiaccording to output sets and
output distance functions (BATTESE et al., 2004D@nell et al., 2007) are as
follows. Assumey andx are the output and input vectors of dimensfor 1 andY x
1, respectively. All DMUsnake up the meta-technology set:

TM%= {(x, y)[x = 0; y > 0: x productiony}

The corresponding output gefor input vector can be defined as:

P™9(x) = {yl(x, y) €T™3

The upper bound of this set is the meta-frontédrthis time, meta-distance
function can be expressed as:

D™®(x, y) = infy {0 > 0: (y/0) EP™3(x)}, if and only if D™"¥(x, y) = 1, the
DMU is efficient.

Similarly, if all samples are divided into subgresugccording to specific criteria,
the DMUs in the kth group are contained in the grepecific technology set:

T*= {(x, y)| x> 0; y > 0; x productiony}

The corresponding output d&for input can be defined as:

P (x) = {yl(x,y) €T

The upper bound of this set is the group-fronthdrthis time, group-distance
function can be expressed as:

DX(x, y) = inf, {8 > 0: (y/0) EPX(X)}, if and only if D*(x, y) = 1, DMU is
efficient.

D™%?(x, y) < D*(x, y), TE™®@(x, y) < TE*(X, y), which means the meta-frontier
envelops the group-frontier. The difference betwesnlts based on two frontiers can
be measured by technical gap rate (TGR):

TGR(x, y) = TE™®@(x, y)TE (X, y) (3)

The value of TGR ranges from 0 to 1. Assuming Tt*?is 0.6 and TEis 0.8,

the TGR would equal 0.75. This means that if theuinvector is determined, the
5
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maximum output that could be produced by a fornugrk is 75% of the output that
is feasible when using the meta-frontier as a bewack. The higher value of TGR, the
smaller gap between the meta-frontier and grouptieo and the smaller gap between
technology used by the DMU and technology frontier.
2.2 Data collection and variables
2.2.1 Data source

This study investigated 681 rural sewage treatnfigritities in Wuxi, Jiangsu
Province. All facilities removed contaminants byngentional secondary treatment,
ensuring the comparability fundamentally. The eleity consumption and water
quality data were sampled once a month. In thidystthe monthly average data of
2017 was used as the benchmark. The investment@ardtional data come from the
information system of Wuxi Wastewater Treatmentsuity.
2.2.2 Inputs and outputs

DEA is a data-oriented method, thus, selecting @mpate inputs and outputs is
the key to accurately evaluate relative performagifieiencies of samples. In order to
comprehensively evaluate the performance of ruealagle treatment facilities for
construction, operation and management, an indeesyshould be constructed from
multiple dimensions such as economy, environmemt anergy consumption. It
should be noted that the more variables, the mdfieult to distinguish DMUs
performance because the number of efficient DMUseiases. This study referred to
the indicators selected by the previous researdhesenzo-Toja et al.,, 2015;
Sala-Garrido et al., 2011; Wang et al., 2018) afagge treatment plants evaluation
and takes into account the availability of data #rel characteristics of the selected
model. The minimum number of indicators was setttbeensure the integrity of the
evaluation elements. The units of the input ancguwuvariables do not affect the
efficiency score.

The necessary inputs had been grouped into thtegarées: (1) capital cost {x
10*CNY); (2) operating cost: mainly including laborstand maintenance cosb,(x

10" CNYlyear); (3) electricity consumption: the largesnergy consumption of



177 operation (3, 10°kWh/year). These indicators really reflected reseuronsumption
178  of rural sewage treatment facilities.

179 Four operational indicators had been chosen asutmuitfl) treatment capacity
180  (y, 10" ton/year); (2) chemical oxygen demand removed (C@B/year) (y); (3)
181 ammonia nitrogen removed (NHN) (ys, ton/year); (4) total phosphorus removed (TP)
182  (ya, ton/year). The selection of outputs reflected s¢kevice value of rural sewage
183 treatment facilities to improve the quality of rumaater environment by treating
184 sewage discharged.

185 2.2.3 Implicit explanatory factors

186 In addition to the selected three input factors d&odr output factors, the
187 performance of the DMUs may also be affected byymather implicit factors. To
188 further determine the best operating conditions,rilxt step is to identify the implicit
189 factors. Based on the reported studies and théablasstatistical information, another
190 three factors were considered (Molinos-Senantel.e2@13; Teklehaimanot et al.,
191 2015; Zeng et al., 2017)(i) technology, (ii) load rate: expressed as ridwdo of the
192 actual treatment capacity to the designed treatnuapiacity, (iii) standard of
193 discharge.

194 3 Resultsand discussion

195 3.1 Sampledescription

196 Previous studies confirmed that scale has sigmfic@pacts on the efficiency
197 scores of sewage treatment facilities: the planith Warger size operate more
198 effectively (Dong et al., 2017; Hernandez-Sancha &wala-Garrido, 2009). To
199 minimize scale effect, the DMUs were divided inteefgroups according to design
200 treatment scale of facilities: group 1 ([0, 5) t/djoup 2 ([5, 10) t/d), group 3 ([10, 20)
201 t/d), group 4 ([20, 30) t/d) and group 5 ([30, &d). A brief description of the inputs
202 and outputs was listed in Table 1. With the inceeafsthe treatment scale, the average
203 values of three inputs and four outputs also grilgliecreased. The degree of data

204 dispersion (standard deviation) did not show obwinues.
205



206 Table 1 The descriptive statistics of the variables feefgroups.
rou variables (;54 x(10° x(10° ,(10 (t/year) (t/year) (t/year)
group CNYl/year) kWhl/year) t/year) ALY Wy WLy
CNY)
1 average 4.316 0.979 0.079 0.109 0.181 0.073 0.004
stdev 1.390 0.027 0.0270 0.039 0.143 0.034 0.003
2 average 10.000 1.074 0.175 0.254 0.3854 0.166 0.008
stdev 0.000 0.018 0.018 0.033 0.183 0.058 0.003
3 average 17.592 1.335 0.278 0.446 0.632 0.279 0.016
stdev 2.567 0.181 0.041 0.088 0.326 0.1189 0.020
4 average 26.775 1.620 0.420 0.754 1.192 0.488 0.026
stdev 1.143 0.047 0.047 0.111 0.731 0.177 0.014
average 51.500 2.101 0.901 1.661 2.491 1.246 0.058
stdev 20.809 0.398 0.398 0.960 1.441 0.720 0.034
207 3.2 Efficiency analysis and potential improvement
208 3.2.1 Efficiency scores
209 In this study, The SBM model based on CRS and gfoargier was established
210 by MaxDEA Ultra 8 (No 812-182) software. Detaileata and results could be found
211 in Table S1 in Appendix. The average TGRs of thie firoups ranged from 0.477 to
212 0.898, indicating that the gap between the twotfeos was obvious.
213 Fig. 1 compared the efficiency scores of 681 DMslar group-frontier with
214 the scores based on the meta-frontier. Based omgringp-frontier, the number of
215 DMUs with high scores (> 0.5) increased signifitarand the number of efficient
216 facilities (score equals to 1) increased from 1@7oThis result verified the necessity
217 of evaluating operating performance of rural sewagmatment facilities under
218 different scale frontiers. Therefore, the followiagalysis in the study was all based
219  on group-frontier.
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Fig. 1. Efficiency scores of 68tteatment facilities based on meta-frontier andigrfsontier
respectively.

Fig. 2 showed the number of facilities at differenbintervals of efficiency
scores based on group-frontier. 27 treatment fasliwere relatively efficient,
meaning that less than 4% of DMUs located on therab production frontier, i.e.,
maximizing outputs. Considering these treatmentilifi@s as the best benchmark,
nearly half of samples (305 out of 681) scored thas or equal to 0.5, which meant
that there was great room for improvement in tredficient facilities. Fig. 3 showed
that the average score of the samples was 0.49%esmefficient DMUs had about
50.4% improvement potential. Thus, how to optimike allocation of inputs and
outputs of inefficient DMUs should be the focusitaprove the overall efficiency

scores of treatment facilities.
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Fig. 3. Efficiency scores of 681 DMUs based on group-frantie
3.2.2 Potential improvement
As shown in Fig. 4, the difference in the capitatlaperational costs between
inefficient DMUs and efficient DMUs were not sigicidint, showing that the
investment of construction and operation for atilfaes was overall reasonable. The
mean electricity of inefficient DMUs (2379.181 kWhaAr) was higher than that of
inefficient DMUs (1843.836 kWh/year). Significantutput shortfalls existed in

10
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inefficient samples. The average values of fourpoutvariables for the efficient
DMUs were obviously higher than those for the imeght DMUs. The average
annual treatment capacity of efficient plants waS44.963 tons, while that of
inefficient plants was only 2,831.661 tons. Funthere, the pollutants removal of an

efficient treatment facility was 2 to 3 times tlo&tan inefficient facility.

[ inefficient DMUs [l efficient DMUs

v4

y3
y2

yl

Variables

x3

X2

x1

T T T T T T T T T
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 4. Comparison of the inputs and outputs for the igfficand inefficient DMUs.

SBM model directly constructs slack variables ia tbjective function to take
the slack of the inputs and the outputs into actouanother words, taking efficient
samples as benchmark, it can quantify potentialravgment of each item for
inefficient DMUs to improve scores of inefficiergdilities. The results were shown in
Fig. 5 and Table 2. The level of output shortfallo54 inefficient treatment facilities
was serious. For these samples, the treatment ibap@a) had the greatest
improvement potential, which could improve abou#82 (1.61x1®ton/year) under
the current input level. Moreover, the potentiaprovement for the removal of COD,
NHs3-N and TP was 45.49% (357 ton/year), 91.97% (11year) and 25.33% (20
ton/year) respectively. Under the current outputlethe capital cost, the operating
cost and electricity consumption could be respettiveduced by 1.74% (130x%10
CNY), 4.67% (35x1HCNY/year) and 8.60% (1.06x1&Wh/year). There was almost
no input excess. Therefore, the manager of thetglahould focus on solving

problems of low load operation and poor removgafutants.
11
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266 Fig. 5. Potential improvement of each item for every DMU.
267 Table 2 The mean improvement potential of 681 DMUs.
capital operating electricity
. treatment COD NH3-N TP removed
cost cost consumption .
capacity (10 removed removed
(10 (10°CNY (10 (ton/year)
ton/year) (ton/year) (ton/year)
CNY) lyear) kWh/year)
origin value 7483 744 117 0.214 0.654 0.139 0.027
target value 7613 779 127 0.197 0.298 0.128 0.007
slack
-130 -35 -10 0.017 0.357 0.011 0.020
movement
potential for
, -1.74% -4.67% -8.60% 92.45% 45.49% 91.97% 25.33%
improvement
268 3.3 Sengitivity analysisof inputs and outputs
269 The efficiency scores of DMUs are influenced diedty the change of inputs
270 and outputs because each vector introduced unugrt@ito DEA model (Castellet
271 and Molinos-Senante, 2016). Changing the inpututput of the DMUs to observe
272 the changes in efficiency is the main sensitivibalgisis method (Hu et al., 2019).
273 SBM model, as a non-parameter model, the efficiescgre has no specific
274  quantitative relations with the number of inputsl autputs (Guo et al., 2017). Thus,

12
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omitting one input or one output variable once tiimeexamine degree of change in
efficiency score is an effective approach for snsi analysis. Fitting the scatters to
calculate slope and coefficient of correlatiorf)(Bf proportional function. Then, the
sensitivity of the variables can be identified e tgap between 1 and slope of the
function (Hu et al., 2019). The greater the gap, lilgher the sensitivity. Fig. 6 and
Table 3 showed the result of sensitivity analydisseven variables. Omitting the
variable (y), the highest value of |1-slope| (0.167) occurmedicating the removal of
NHs-N (f) was the most sensitive factor. Other sigmifit factors include TP removed
(9), treatment capacity (d) and operating costThg electricity consumption was the
least sensitive factor mainly because of the sditi#rence in power consumption of
treatment facilities at the same scale. Overadl,dhitputs were more sensitive than the
inputs. Therefore, improving the removal rate ofragen and phosphorus and
increasing the treatment capacity are the keydcaethcient operation of rural sewage

treatment facilities.

Fig. 6. Sensitivity analysis for capital cost (a), opergtcost (b), electricity consumption (c),

treatment capacity (d), COD removed (e),;NHremoved (f) and TP removed (g).
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Table 3 Sensitivity analysis results and variable sengjtrankings.

Ranking Variables Slope |1-slope| R? Classification

1 operating cost (F@NY /year) 0.916 0.084 0.881

2 capital cost (10CNY) 0.946 0.054 0.975 Input

3 electricity consumption (f&Wh/year) 1.012 0.012 0.971

4 NHz-N removed (t/year) 0.833 0.167 0.836

5 TP removed (t/yeay 0.842 0.158 0.857

Output
6 treatment capacity (0year) 0.888 0.112 0.844
7 COD removed (t/year) 0.962 0.039 0.844

3.4 Implicit explanatory factors

DMUs were grouped according to three selected esmpbey factors. The

characteristics of efficiency scores were showhig 7.
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Fig. 7. Box charts of the explanatory factors.

Due to non-normal distribution of analyzed samplése Kruskal-Wallis

non-parametric test, as the most suited way, hauh tbaken to verify significant
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differences among different groups in this studyu@kal and Wallis, 1952; Sueyoshi
and Aoki, 2001). The statistical significance (p)ueais equal or less than 0.05
meaning the explanatory factor significantly impatticiency scores of samples.
Otherwise, the explanatory factor has no significampact on efficiency score of
samples. Table 4 displayed detailed results.

Table 4 Kruskal-Wallis test statistics for explanatoryttas.

total

explanatory factors mean std.dev. P-value Chi-sg.
DMUs
Technology 0 38.251
AAO 334 0.519 0.257
MBR 222 0.515 0.259
SBR 116 0.382 0.235
BF 9 0.681 0.162
Load rate 0 258.706
(50,60] 157 0.316 0.160
(60,70] 218 0.404 0.178
(70,80] 187 0.564 0.237
(80,90] 119 0.799 0.216
Discharge standard 0.589 0.293
First class A 6 0.422 0.250
First class B 675 0.497 0.259

3.4.1 Technology

The sewage treatment technology means removingitpots in wastewater
through physical, chemical and biological procesdesctly influencing the removal
of pollutants. The process is generally dividea itliree levels: primary, secondary
and tertiary treatment (Jin et al., 2014). Basedthmn classification of secondary
treatment (Rodriguez-Garcia et al., 2011), the 68mples were divided into four
categories: (i) anaerobic-anoxic-oxic process (AAQ) membrane bio-reactor
process (MBR), (iii) sequencing batch reactor psscé€SBR) and (iv) Bio-trickling
Filter (BTF).

According to the K-W test results (Table 4), théedence in performance of
DMUs across the categories of technology was saamf (p < 0.05). Hence,
selecting efficient and economical technology camprove the performance of

facilities. The boxplot for the four technologigfi@ency scores were shown in Fig. 7
15
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(a). The average score of AAO, MBR, SBR and BTF @&d9, 0.515, 0.382 and
0.681, respectively. SBR and MBR had lower scoramiy resulting from their low
efficiency in removing contaminants. In addition,FSBnd MBR required aerators to
provide oxygen source, which increased operatigtscand electricity consumption.
This conclusion was consistent with previous vidWwslkou and Zouboulis, 2016).
BTF had the highest scoM/hen operating cost and energy consumption wergasjm
BTF had an advantage in pollutant removal, esggdat the removal rate of COD
(75%) and NH-N (94%). Therefore, BTF was suitable for underdigyed rural areas
effectively dealing with small-scale domestic sewatp improve rural water
environment. This result agreed with the conclusibMang (2011).

The percentages of the number and total treatnag@otity of facilities adopting
different technologies in WUXI city were shown imgF8. At present, 556 sewage
treatment facilities had adopted AAO and MBR angl tibital treatment capacity was
1.61 x 16 T/A. Only 9 facilities adopted the BTF, accountifog 1.94% of the total
treatment capacity. Assuming that all facilitiesopd BTF, when the treatment
capacity and effect are the same, the average hmpgmating cost and power
consumption of each facility will be reduced by GD4CNY and 49.54 kWh,
respectively, and the capital cost will also beucsti by 6,400 CNY. Therefore, it is
necessary for local government to upgrade of rui@nestic sewage treatment

facilities and to promote appropriate technology kR

I ~~0 [ veR Il seR [l BF I ~~0 [l ver I seR [l s

32.6% 33.43%

17.03%

12.4%
1.94%

1.32%
52.23%

49.05%

(a) Number of facilities (b) Total treatmemtpacity
Fig. 8. Percentage of different treatment technologies.
3.4.2 Load rate

A common problem in treatment facilities of ruraleas is that the design
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treatment capacity is significantly higher than thetual treatment water volume,
resulting in the idleness of the facilities (Li akd, 2015; Yang et al., 2016). In other
words, the operating condition of facilities can dféected by not only the design
capacity but also actual capacity. Thus, this pasbected load rate as the second
implicit factor. DMUs had been divided into fourogips based on load rate: (i)
50%-60%, (ii) 60%-70%, (iii) 70%-80% and (iv) 80%%. As shown in Table 4 and
Fig. 7 (b), the impact of the capacity load rateswga@nificant (p<0.05). The average
efficiency scores of four groups was 0.316, 0.4D864 and 0.799, respectively. The
performance efficiency of DMUs with a high loadeaiperate relatively better than
that of those with a low load rate. Our result wassistent with the finding of Hu et
al. (2019). As shown in Fig. 9, the load ratesadilities were all less than 100% also
confirmed that phenomenon of idle facilities men&éd above. Therefore, it is
essential to design the scale of treatment fagsliteasonably to ensure the high load
operation of the facilities.

There were also a few DMUs that do not obey this:rdespite the relatively
lager scale and higher load rate, the scores oh twere very unsatisfactory. This
phenomenon had also appeared in M.Molinos-Senastietsy (2013). For example,
DMU 31 processed 5694 tons sewage in 2017, witlad tate of 78%, but efficiency
score of this plant was only 0.06. Studies showkdt tthe component and
concentration of influent influence sewage treathpeErformance (Dong et al., 2017;
Hu et al., 2019). These abnormal inefficient DMWsl how concentration of pollutant
inflows, resulting in a poor removal of pollutan&erious shortfalls of outputs were
considered to be the main explanation for the pimammn. Besides, the relatively
higher energy consumption and operation costs s reasons for low score.
Therefore, increasing the concentration of influbgta certain pretreatment while
taking the reduction of inputs and the increaséhefcapacity load rate into account

can be a good way to improve the performance atrtrent facilities.
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Fig. 9. Efficiency scores of DMUs in WUXI. Bubble size repents the actual capacity of the
facilities, and every color represents one facility

3.4.3 Discharge standard

The discharge standards directly affect the coostm, operation and
management of rural domestic sewage treatmeniti@sil According to “Discharge
Standard of Pollutants for Municipal Wastewateraingent Plant (GB18918-2002)”
currently implemented in Wuxi rural areas, the sk®ipwere divided into two
categories: (i) the first class A, (ii) the firdass B. As shown in Fig. 7 (d), with the
discharge standard more stringent, the efficiemoyesof samples became lower. The
average score decreased from 0.497 to 0.422. Aeptethe effluent quality of 681
rural sewage treatment facilities all met the fickiss B standard and 6 (0.89%)
facilities met the first class A. Compared with (h&Us that met class B standard,
the DMUs meeting the class A can increase the rahavCOD, NH-N and TP by
0.292, 0.150, and 0.012 tons equally each yeartheubperating cost and electricity
consumption will equally increase by 5000 CNY ar&82 kWh, respectively. The
result of the K-W test showed that discharge stadsldad no significant effect on
performance scores of DMUs. Therefore, upgradirgstiandard seems not an ideal
measure to improve performance scores of rural gewteatment facilities.
Considering the effluent water quality was goodk thil water reuse should be the
focus of the local government, which will not ontgprove the reuse rate of water
resources, but also greatly reduce the cost ofl meder environmental pollution

treatment.
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4 Conclusion

With the number and capacity of rural sewage treatnfiacilities increasing, a
comprehensive, quantitative and objective evalnabb them is becoming urgent.
DEA is considered to be an effective performancaluation tool to solve this
problem. In this paper, 681 rural sewage treatnfaniiities were evaluated by
SBM-DEA model based on group-frontier from multiptBmensions including
economy, environment and society. The main resukisas follows: (1) the average
efficiency score of samples was 0.496, of whichyo?f facilities were operating
effectively; (2) compared with efficient DMUs, theefficient DMUs had significant
shortfalls in the outputs, especially in treatmeaipacity and NEN removal,
respectively with the improvement potential of ®&#land 91.97%; (3) the removal
of nitrogen and phosphorus and treatment capacéyttee sensitive factors to the
efficiencies of rural sewage treatment facilitie®);, technology and capacity load rate
had significant impacts on the performance of faed.

Based on the results above, the targeted recommienslgpresented as follows
to improve the performance of rural sewage treatnm#rastructures in China: (1)
upgrade and optimize treatment technologies: apglyechnologies which achieve
the trade-off between pollutant removal and copuis, such as BTF process; (2)
adjust operating conditions: increasing the opegaload to avoid facilities idleness
and increasing the concentration of influent bytne@ment; (3) encourage reuse of
reclaimed water: reusing reclaimed water in variewg/s to achieve environment
benefits and reduce the cost of rural water palfutreatment.

The SBM model selected in this paper identifiesdfficient DMUs as the best
practices, calculating slack improvement valuenpiuts and outputs to maximize the
efficiencies of the inefficient facilities. It camelp government and mangers of water
companies to evaluate the operation performance ddrge number of sewage
treatment facilities and realize the effective su@son and management of local
facilities. On the other hand, this method obtaihe relative efficiency of the
evaluation object, its absolute environmental inbjietng unknown yet. Besiddhjs

article has not given the quantitative suggestibimproving the performance score.
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Thus, further research can combine DEA with quatité analysis methods such as
life cycle assessment or cost-effectiveness armtgsevaluate efficiency of facilities

more accurately and provide quantitative improveinegasures.
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Highlights

® Efficiency scores of 681 rural sewage treatment facilities were assessed by
SBM-DEA model based on group-frontier.

® Theimprovement potential for samples was about 50.4%.

® 27 treatment facilities were regarded as best practices.

® Explicit factors affecting the performance of treatment facilities were discussed.

® Suggestions to improve efficiency of facilities in rural areas of China were

proposed.
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