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Abstract

This thesis gives an account of work done on semi-classical and quantum 

Monte Carlo simulations in far-detuned optical lattices.

Firstly, the basic principles of laser cooling of atoms are presented includ­

ing a short introduction to optical lattices in the near and far-detuned regime. 

A detailed analysis is made of the band-structure of optical lattices, using the 

Bloch formalism, and of the bound-state population distribution appropriate 

for a thermal sample of trapped atoms. Secondly, a general overview is given 

of the quantum Monte Carlo method for simulating the dynamics of atom- 

light interactions. This is followed by a detailed study of the concept of 

Raman cooling, which is a useful tool to prepare atoms in the ground mo­

tional state of the lattice and an important first step to achieving quantum 

state control with ultra-cold atoms. A simplified model of Raman cooling 

is introduced and simulated using the quantum Monte Carlo wave-function 

approach. Then the implementation of simulations of resolved-sideband Ra­

man cooling based on this model is discussed as is how the results were used 

to optimize the experimental work done by our group. The results of these 

simulations show for the first time that the quantum Zeno effect has a crucial 

impact on the efficiency of Raman cooling experiments. Also the experimen­

tal measurements of the temperature of Raman sideband cooled atoms for a 

range of parameters are compared with theoretical results and show a good 

qualitative agreement.

Thirdly, the results of semi-classical numerical simulations of parametric 

excitation in optical lattices are presented. It is shown that the modulation of



the potential can result in selective parametric excitation of trapped atoms. 

The theoretical results show good qualitative agreement with experiment.

The thesis is concluded with a description of possible avenues for future 

studies on quantum state control in optical lattices.
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Chapter 1

Principles o f laser cooling

This section gives a short introduction to the atom-light interactions impor­

tant in laser cooling. The chapter starts out with a short historical overview 

of laser cooling followed by a discussion of radiation pressure on a model two- 

level atom. Then the basic principles of Doppler-cooling are introduced and 

the mechanism underlying Sisyphus cooling discussed. The last part of the 

chapter consists of a discussion of the aims of this thesis and an outline of 

the rest of this work.

1.1 Introduction

This section gives a short introduction to the history of laser cooling. Several 

review papers have been written over the years and the more interested reader 

is invited to have a look at them [1 - 8 ].

The basic idea of laser cooling was first proposed by Hansch and Schawlow 

[9] and independently by Wineland and Dehmelt [10] in 1975. Hansch and

17
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Schawlow showed that in a low-density gas of neutral atoms illuminated by 

intense, quasi-monochromatic light confined to the lower-frequency half of 

a resonance line’s Doppler width, the translational kinetic energy can be 

transferred from the gas to the scattered light, this process ending when the 

atomic velocity is reduced to the ratio of the Doppler width to the natural 

line width. This type of cooling is nowadays know as Doppler cooling. The 

first experimental realisation of this idea was achieved by Chu et al. [1 1 ] in 

1985. In their work, an atomic gas was cooled in three spatial dimensions by 

a viscous force arising from the radiation pressure exerted by a set of laser 

beams. The force is viscous in the sense that it, like a frictional force, is 

proportional to the speed of the atom, but does not achieve trapping of the 

atomic gas. The same group was also the first to observed optical trapping 

in an optical dipole force trap in 1986 [12]. At the same time Midgall et 

al. [13] succeeded in trapping neutral atoms magnetically and Pritchard et 

al. [14] proposed a stable cold atom trap based only on light forces. The 

latter proposal avoided problems arising from the optical Earnshaw theorem 

described in [15]. Shortly afterwards another major milestone was achieved 

with the first experimental realisation of a magneto-optical trap (MOT) [16]. 

This trap not only allowed cooling of an atomic gas, but provided for its 

spatial confinement.

In the following year, experiments carried out by Lett et al. [17] resulted 

in measured temperatures of (43 ±  20 ̂ K), well below the theoretical limit 

predicted for Doppler cooling (240/xK for sodium). This observation puzzled 

many researchers and led to the proposal of the Sisyphus cooling mechanism, 

based on the interplay of optical pumping and polarization gradients [18-21].
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These processes were not included in the simple theoretical model of Doppler 

cooling. The beauty of Sisyphus cooling is that it has the potential of lo­

calizing the atoms to arrays of sub-wavelength sized potential wells known 

as optical lattices. The interested reader can find a more detailed discussion 

of optical lattices and the ideas behind them in the review articles [22-26]. 

This ability to confine atoms in periodic sub-wavelength potential wells made 

them an ideal testing ground for the investigation of properties of particles 

in periodic potentials. The advantage over conventional solid state physics 

materials is that the time-scales involved are much slower, facilitating the ob­

servation of processes not accessible in condensed matter experiments. Fur­

thermore, optical lattices display almost perfect long-range correlations in 

particle positions, without defects, unlike solid-state crystalline materials. 

Studies of atoms in periodic structures bound by light showed the existence 

of Bloch oscillations [27], Wannier-Stark ladders [28,29] and Landau-Zener 

tunnelling [30]. Optical lattices also have been used in proposals for quantum 

computation schemes [31,32], as testing ground for quantum chaos [33] and 

lithography [34].

1.1.1 Atom -light interactions and light-induced forces

The fundamental principle of momentum conservation during the emission 

and absorption of a photon by an atom plays a crucial role in the mecha­

nism of laser cooling. Most fundamentally, laser cooling describes the process 

of loss of translational energy associated with the centre-of-mass motion of 

atoms induced by repeated optically-induced transitions between their inter-
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nal states. The important fact about laser cooling is that the velocity spread 

about the mean velocity of the cooled atomic sample needs to be reduced. 

Reduction of the mean velocity only, such in atomic beam slowing, is not 

laser cooling. To gain an understanding of the physics involved, we introduce 

a quantum mechanical description of the atom. The total wave-function is 

split into internal and external parts, i.e. |^ ) =  \p) (g) |^, F,m). Here \p) rep­

resents the external part determined by the atomic momentum wave-function 

Ip) and IC, F,m)  the internal part, determined by the angular momentum F, 

the magnetic quantum number m  and (  describing the remaining internal 

variables.

We start by looking at the atom-light interaction first in the internal 

atomic states. Consider a two level atom with an excited state je) and a 

ground state \g) interacting with a monochromatic quasi-resonant beam with 

frequency The system is described completely by the angular frequency, 

cjo, of the atomic transition, the natural line width of the excited state, F, 

the detuning of the laser beam with respect to the atomic transition, A =  

— and the Rabi frequency, Q, for a transition with unit Clebsch-Gordan 

coefficient. From these parameters, one can define a saturation parameter by

(W,A2  +  F2/4'

For low saturation (s <C 1) the population is mostly in the ground state, 

whereas for high saturation (s )$> 1 ) the population is equally distributed 

between ground and excited states. We can deduce the stationary excited- 

state population to be (cf. [4]):
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Hence the atoms emits HeF spontaneous photons per time unit, each emission 

being preceded by the absorption of a photon. It is also worth noting that 

the square of the Rabi frequency is proportional to the laser intensity. This 

allows us to define the on-resonance saturation parameter (as in [2 2 ]):

where

(1.4)

Here h is the Planck constant, Xl the wavelength of the laser light and c the 

speed of light.

Next we consider the external degrees of freedom of the atom-field inter­

action. As mentioned above, momentum conservation plays a central role 

in the atom-light interaction via the external wave-function. Consider an 

atom having a momentum of p =  and incident photons having a mo­

mentum of ^kp.. When the atom absorbs an incident photon, the total mo­

mentum of the atom-photon system after the absorption process changes to 

h\a'̂  = hka-\-hkp^. After a time interval proportional to the corresponding ex­

cited state life-time, F“ ,̂ the atom spontaneously decays back to the ground 

state. The photons carries away a quantity of momentum h kp^, leaving the 

atom with a momentum of ^krec =  ^k^ — hkp^. Over many such scattering
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events the momentum kicks due to the spontaneously emitted photons can­

cel out on average (cf. 1 .6 ) and the atom experiences a net momentum kick 

parallel to the direction of the momentum of the incident photons hkpr.

N

HU^ = hK + Nhk̂ , + Y,fiK.’ ( 1.5)
r= l

N

lim =  0 , (1 .6 )
N large ^  P- ’ V /

r = l

where N  is the number of scattered photons from the incident beam and ^kp. 

the momentum transfer from the absorption of an incident photon; /ikj^ is 

the momentum transfer from the r-th single spontaneous emission event and 

h kj%c the recoil the atom experiences scattering N  incident photons. It is seen 

that an atom in a travelling wave always absorbs photons along a determined 

direction and emits spontaneous photons isotropically. The net momentum 

transfer associated with this process is often referred to as radiation pressure. 

From 1.5 three more quantities can be defined. These are the recoil velocity 

Vr, the recoil energy Er which can be associated with a recoil temperature 7 :̂

^|krec| ^ ^ 0  / 1

T, =  ^ ,  (1,9)

where M  is the mass of the atom and ks  the Boltzmann factor. The force on
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the atom from one of the laser beams is proportional to the rate of sponta­

neous emission, File, times the momentum of a single incident photon from 

this beam, Pph =  /ik  [4]

F d i s s i p  =  TUeh\ p̂̂  =  —hkp. ^ ^  ( 1 . 1 0 )

The total dissipative force the atoms experiences from all incident laser beams 

is then the sum of all Fdjssip of each individual incident beam and given by

Fdissip — ^   ̂rriefikp^ — ^   ̂ ^^kp. , (1.11)

In the low-saturation limit (s <C 1) equation 1.10 takes the form

r F /p2
F dissip ^  — h ,k p .S  =  — h-kp. ^ 2y p 2  _|_ ( 1 . 1 2 )

Taking caesium as an example with A =  — ̂  and =  F the dissipative 

force experienced by the atom is about 3000Mcs,g- A study of the heating 

and cooling processes involved [24] [35] showed that in ID for A =  —Ç the 

minimum temperature is achieved and is given by

To =  £ .  (1.13)

For caesium the minimum temperature, the Doppler temperature, defined as 

Td = 125 fiK, corresponding to an atomic root-mean-square velocity of about 

9cm s“ .̂ Hence the minimum achievable temperature is limited by the width 

of the cooling transition used. The first experimental evidence of radiation 

pressure was obtained in 1933 in an experiment [36] using atomic beams. This
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ability to change the atomic momentum allows the acceleration and decelera­

tion of atomic beams, but as mentioned above, it doesn’t necessarily give rise 

to the cooling of an atomic vapor. For cooling the velocity distribution must 

be narrowed and not only the mean value of the velocity reduced. Further 

research into possible schemes led to the idea of Doppler-cooling.

1.1.2 Doppler cooling

Doppler cooling has the ability to narrow the atomic velocity distribution of 

atomic vapors and was first proposed in 1975 by Hansch and Schawlow [9]. It 

relies on the Doppler effect to make the scattering force velocity dependent. 

An atom moving with a velocity V& will see the frequency of incident photons 

of a laser beam shifted by i/' =  i/ ^ 1  =p ^ , where kp is the wave vector of 

the incident photon. The direction of kp is defined to be the z-direction in 

the following discussion.

It is worth noticing in 1.10 that, if the incident laser beam is red-detuned 

(A < 0 ) then the atoms experience a net force against their direction of 

motion along the z-direction [4]. Cooling is achieved during the absorption- 

émission cycle. Here the atoms always absorb red-detuned photons, but on 

average emit photons with a frequency of the respective atomic transition. 

Hence the emitted photons carry away more energy than the atoms gain 

through the absorption process. The result is an optical molasses, where a 

viscous type of force slows the atoms down. The name optical molasses is 

derived from the fact that the atoms experience a viscous force, i.e. F  oc v. A 

detailed theoretical study of Doppler cooling can be found in [26]. The first
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a" polarized

> i
CT + polarized 
Flow of current in coils

Optical Molasses
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Magnetic field coils 
in anti-Helmholtz 

configuration
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a"*" polarized

Figure l.l: Schematic diagram of a MOT. The two coils carry currents flowing 
in opposite direction with respect to each other to provide a magnetic field 
gradient. Three pairs of counter-propagating laser beams along the principal 
axis provide a 3D radiation pressure force. See text for detailed discussion.

experimental realization was achieved in 1985, sodium atoms being cooled 

with a dye laser |11]. Theoretical work carried out to find a stable configura­

tion of cooling and trapping, obtained only by radiation forces, demonstrated 

that it is impossible to trap a two-level atom in a stable configuration by 

radiation pressure alone induced by a set of laser beams. This is known as 

the optical Eamshaw theorem [15]. Research on how to bypass this limitation 

led to the suggestion by Dali bard of a magneto-optical trap.

1.1.3 The magneto-optical-trap (MOT)

The two-level-approximation correctly describes the Doppler cooling mecha­

nism. In real experiments often atoms with more complex energy level struc­

tures are used. The atom used in our experiment is caesium, which possesses
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Figure 1.2: Energy-level diagram and corresponding Clebsch-Gordan coeffi­
cients squared for a |  Jg =  |  transition.
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Increasing

Figure 1.3: Schematic energy level diagram for a magneto-optical trap, also know 
as a MOT. An atom with aF^ — 0 ^ F ^ = 1  transition transverses a region with 
an in homogeneous magnetic field. The B-field is zero at the centre of the trap 
introducing a position dependent energy level shift (Zeeman shift) depending on 
the magnetic quantum number rrif of the level. Two counter-propagating beams 
with opposite circular polarization detuned from resonance by A  are chosen in 
a way as to bring closer to resonance the photons which propagate towards the 
centre of the trap relative to the position of the atom. See text for a detailed 
description.
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multiply degenerate Zeeman sub-levels in the ground and excited states. This 

multiplicity in the energy level structure coupled with the angular momentum 

conservation principle introduces two new phenomena into the model system. 

There exist selection rules for the various possible transitions arising from the 

scattering of photons of differing polarizations. The absorption of a <r̂  (cr"*) 

polarized photon increases (reduces) the z-component of the atomic angular 

momentum, whereas a vr-polarized photon does not change it. In addition the 

different transition amplitudes are weighted by vector-coupling coefficients, 

better known as Clebsch-Gordan coefloicients. The Clebsch-Gordan coeffi­

cients govern the coupling strengths of the different possible transitions and 

have equal value for absorption on the transition |F, m/?) \F',m!) and

emission of a photon on the same transition. Figure 1.2 on the page before 

shows the energy-level diagram of an atom on a Jg =  |  > Je =  |  transition

and the corresponding Clebsch-Gordan coefficients squared. The two factors 

described above govern optical pumping and its effect on the Zeeman level 

populations as described in [37].

The principle of a MOT is to exert a force on the atoms directed to 

the centre proportional to their excursion from the trap centre. This can 

be achieved either by changing the stationary populations of the Zeeman 

sub-levels with the aid of optical pumping [14] or by inducing a position de­

pendent shift of the energy levels of the trapping transition with the aid of an 

inhomogenous magnetic field. Figure 1 . 1  on page 25 shows the experimental 

implementation of a MOT confining atoms in 3D. The operation of a MOT 

can be understood in terms of radiation pressure effects similar to those at 

work in Doppler cooling in optical molasses. However, it has been demon-
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strated that polarization gradient cooling is also occurring at the trap centre. 

Let us assume an atom with zero spin o n a j  =  0 - ^ j "  =  1 transition as 

shown in figure 1.3 on page 26. A static magnetic field B(z) = b z z i s  applied 

(with b the field gradient), which induces a position dependent energy shift 

to the atomic energy levels. The centre of the trap is located at z =  0. Two 

counter-propagating laser beams having and a~ polarization respectively 

provide a friction force as described above. The frequency of the laser beams 

are detuned to the red side of the resonance transition. At the centre of the 

trap the radiation pressure experienced by the atom from each of the laser 

beams cancel. If the atom is positioned away from the centre of the trap, the 

atomic levels experience a Zeeman energy shift proportional to their magnetic 

quantum number. The energy level interacting with the laser beam travelling 

towards the trap centre is shifted more into resonance than the energy level 

interacting with the laser beam travelling away from the trap centre. The 

atom experiences a restoring force which pushes it to the centre of the trap. 

Notice also that the linear magnetic field gradient induces a linear spatial 

variation of the Zeeman shifts. Thus the net force has a restoring character 

and varies linearly in space with the distance the atoms are away from the 

trap centre.

This method can be easily generalised to 3D by using a quadrupolar mag­

netic field configuration and three pairs of counter-propagating laser beams. 

The first experimental implementation of a MOT loaded from an atomic 

beam was reported in [16] and the first MOT loaded from a low-pressure va­

por cell in [38]. A key experiment in 1988 demonstrated that temperatures 

below the theoretical limit deduced from the Doppler-cooling model could be
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achieved |17]. An explanation of this experimental observation was proposed 

by two research groups independently in 1989 [19,20] and is discussed in the 

next section.

1.1.4 Sisyphus polarization-gradient cooling

|e >
2/32/3

m =-1/2

lg>

m =+1/2 •

0.25 0.75 1.000.500
Z/Â

o ' o  -o ' o-o-
Mil. Mil. ^  Mil. CT" Mil.

Figure 1.4: The figure shows the level scheme used in the simplest angular 
momentum configuration giving rise to Sisyphus cooling. The polarization 
gradients are created by a linXlin laser beam configuration. Zero light shift 
is between the excited level je) and the ground state level jg'). The ground 
state levels are red detuned.

Most atoms used in real experiments, like caesium, possess a Zeeman 

structure in the ground state. In a general beam configuration the laser po­

larization varies in space, thus inducing position dependent light-shifts and 

optical pumping rates for the different magnetic sub-levels of the ground state. 

These two effects combined are the essential ingredients for what is known as 

polarization-gradient cooling. The type of polarization-gradient cooling that
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Figure 1.5: The figure shows the semiclassical pictures of Sisyphus cooling 
on a Jg =  2 —)> Je =  3 transition, (a) “local cooling” due to optical pumping 
within a given lattice site, (b) “hopping cooling”: The motional coupling 
between causes transitions between the adiabatic potentials and atoms are 
optically pumped between lattice sites. Taken from [39].

is relevant to the formation of optical lattices is Sisyphus cooling. For sim­

plicity we consider here the ID laser configuration shown in figure 1.4, which 

shows the level scheme of the simplest angular momentum configuration giv­

ing rise to Sisyphus cooling. Two counter-propagating laser beams having 

orthogonal linear polarizations and equal frequency and intensity travelling 

along the z-direction create a polarization-gradient with a periodicity of -  

between sites of opposite circular polarization, where A is the optical wave­

length. The change in polarization is a result of the phase shift between the 

two waves varying linearly with z [40].

To elucidate the mechanism behind Sisyphus cooling, consider an atom at 

a site of g~ polarization of the optical field, in the internal state \m =  —1/2) 

and moving to the right of figure 1.4. Sites of maximum light-shifts are located 

at sites of pure circular polarization and form a string of potential wells. The
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atom moves up the potential hill out of the a~ well into a regions of increasing 

0 T+ light. When the atom climbs the potential hill it converts kinetic energy 

into potential energy. Also the probability of scattering a photon increases 

more and more and the atom is eventually pumped into the state \m =  +1/2). 

In this anti-Stokes Raman process, the energy of the spontaneously emitted 

photon is larger than the energy of the absorbed laser photon. The atom 

looses an amount of energy of order of the depth of the optical potential 

wells^. When the kinetic energy of the atoms is reduced below the well depth 

of the optical potential, the atoms become trapped in the wells. In general the 

atoms climb more potential hills than they decend, a situation reminiscent 

of the predicament of Sisyphus in Greek mythology, who was doomed to roll 

a stone up a hill only to have to start again at the bottom of the hill after 

reaching the top.

It is worth noting that the situation described above does not account for 

the cooling mechanism operating in atoms with angular momentum F > 1. 

In the situation described above the cooling mechanism relied on atoms prop­

agating over many lattice wells to take part in the cooUng cycle. In atoms 

with angular momenta F  > 1, there exists the possibility of local cooling, as 

an atom can undergo a cooling cycle without changing potential wells. Con­

sider for example a caesium atom with an angular momentum of F  =  4. The 

ground state manifold is composed of nine degenerate Zeeman sub-levels. 

When the atoms interacts with the polarization gradients created by the 

beam configuration described above, each magnetic sub-level experiences dif-

^The potential depth is defined as the energy difference between the absolute maximum 
and minimum of the hght shifted potentials.
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ferent gradients depending on its magnetic quantum number. This situation 

is shown in figure 1.5 on page 30.

In the local cooling scheme, the atoms rise steep potential hills. The 

atom is eventually optically pumped onto another potential surface with a 

minimum at the same spatial location and starts to descend to the bottom 

of the shallower potential surface. There it is optically pumped back to the 

lowest potential surface. This comprises one cooling cycle in the local cooling 

scheme. More kinetic energy is lost in the steep climb than is gained in the 

descent due to the different curvature of the potential surfaces. Hence energy 

is dissipated on average in the optical pumping process.

1.2 Aims of this thesis and outline

In general far-detuned optical lattices present an ideal system with which to 

investigate and develop techniques for coherent control of motional and inter­

nal states of trapped atoms. The main advantage of non-dissipative optical 

potentials is their conservative nature. In them the spontaneous scattering 

rate is highly suppressed compared to the near-detuned case. Thus deco­

herence from spontaneous emission is strongly suppressed. Additionally the 

atoms are isolated from their environment and from the other atoms, allow­

ing for an enhanced coherent life-time of the atomic state. The first step 

to quantum state control of atoms in far-detuned optical potentials is their 

preparation in a chosen motional state.

In this thesis I present work I have done on quantum state preparation 

and manipulation in far-detuned optical lattices. The main goal is to find a
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suitable set of parameters to optimize 2D resolved-sideband Raman cooling 

in the experiments of our group. First in chapter 2 an understanding of the 

properties of the optical lattice used in our experiments are gained through 

deducing the light-shifted potential surfaces arising from a given lattice beam 

configuration. This allowed us to calculate the corresponding band-structure 

and is followed by a study of the population distribution in a harmonic and 

anharmonic optical potential and the connection between the concepts of 

vibrational and kinetic temperature.

Chapter 3 provides an introduction to resolved-sideband Raman cooling 

and deduces a model used in subsequent QMCWF simulations. The results 

of these simulations offer the possibility to estimate a priori an optimal set 

of parameters and guidance for our experiment. This is followed by the sug­

gestion and discussion of a new beam configuration for 3D resolved-sideband 

Raman cooling.

Chapter 4 introduces the Quantum Monte Carlo Wavefunction Method 

(aka. QMCWF Method) and outlines the steps needed to implement a simu­

lation using this formalism. The dependence of the results on the parameters 

are discussed and for the first time the influence of the quantum Zeno effect 

on the resolved-sideband Raman cooling efficiency is shown. This is followed 

up by a short historical overview and discussion of the Quantum Zeno Effect 

Additionally a way to minimize that effect is provided.

Chapter 5 discusses theoretical work I have done for experiments under­

taken by Silvia Bergamini [41]. They include simulations of band population 

measurements using magnetic fields (Zeeman state analysis), which are mod­

elled using semi-classical Monte-Carlo simulations. These allow us to better
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understand the time-of-flight measurements obtained in those experiments 

and assess the efficiency of the measurement method used. Also these sim­

ulations allow us to determine a convenient set of parameters to implement 

the Zeeman state analysis set-up. The remainder of chapter 5 is dedicated to 

an investigation of the effects of parametric heating in a far-detuned optical 

lattice induced by intensity fluctuations of the laser beams. These parametric 

excitation experiments allow us also to estimate the anharmonicity of a lat­

tice potential and provide us with a tool either to selectively cool or to heat 

a sample of trapped atoms.

The last chapter provides an outlook into the future and gives a conclusion 

encompassing the whole thesis.



Chapter 2

Optical lattices

In this chapter 1 discuss the cooling and trapping of atoms in periodic struc­

tures bound by light, also know as optical lattices. In brief a spatially depen­

dant optical field composed of the lattice beams creates position dependent 

AC Stark shifts in the atomic energy levels with periodicity on the scale of 

the optical wavelength. The potentials created in this way can trap atoms 

with velocities below the critical escape velocity of the lattice which is similar 

to the well depth, typically of order of magnitude of some tens to hundreds 

of Er. The lattices created are ideal lattices and have perfect periodicity. To 

compare the situation with condensed matter physics, the optical lattice plays 

the role of the atomic potential and the atoms interact with it as the electrons 

do in a solid. Contrary to solid state physics where an increasing number of 

lattice defects (empty atomic positions) result in an increasing perturbation 

of the potential, in optical lattice the situation is opposite. At low occupancy 

the optical lattice potential is hardly perturbed by the interaction with the 

atoms. The higher the occupancy is, the more the optical lattice potential

35
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gets perturbed. In typical optical lattice encountered in experiments, the oc­

cupancy is about 1 in 10, i.e. one atom occupies every tenth potential well 

on average.

Many effects observable in solid state physics like tunnelling, paramag­

netism and diamagnetism, and transport phenomena can also be observed in 

optical lattices. The advantage is that the periodicity in the latter is three 

orders of magnitude longer than in solids. This results in observables have 

time scales of the same order of magnitude slower. Hence these effects can 

be measured more readily than in condensed matter physics.

This chapter is structured in the following way. First I will derive an ex­

pression for the light-shift operator A/, for the case of a near-resonant optical 

field. Then the scheme is extended to far-detuned optical lattices, often called 

non-dissipative optical lattices^. This is achieved by detuning to the red from 

the resonance frequency of the lattice trapping resonance frequency as shown 

in figure 2.1 on the next page. This is followed by a discussion of different ex­

perimental configurations in ID, 2D and 3D and their corresponding optical 

potential. These examples are used to illustrate how to calculate the optical 

potential the atoms see from an arbitrary beam configuration. From there I 

move on to deduce the band-structure in these optical potentials using the 

Bloch formalism and introduce a general algorithm implemented in Matlab 

to calculate the corresponding band-structure of an optical lattice created by 

an arbitrary beam configuration. The final part of the chapter is dedicated to 

an estimation of the vibrational level populations in an optical lattices using

^due to their nature of reducing the impact of heating by scattering of lattice photons 
and the related spontaneous emission process.
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a given band-structure.

2.1 Light shifts in optical lattices

i
' 1i

<
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o
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Figure 2.1: This figure shows the ground and excited state levels, \Fg) and 
|Fe) respectively, of a multi-level atom with hyperfine structure. Here F  is 
the total angular momentum of the atom. The level is {2Fg + l)-fold 
degenerate and the level |Fe) is (2Fg +  l)-fold degenerate. A red-detuned 
laser beam with detuning A interacts with the system.

In this section I derive an expression for the light-shift operator A l in 

a near-resonant optical lattice. This expression is then used to calculate 

the light-shifts experienced in the ground state hyperfine manifold. Figure 

2.1 shows the two level scheme we adopt in this section. The system has a 

ground state and an excited state, |Fg) and |Fe) respectively. Each manifold is 

composed of (2F +  1) degenerate energy levels. In the case of caesium on the 

|F  =  4) 4-» |F  =  5') transition the ground and excited states are composed 

of nine and eleven degenerate hyperfine levels respectively. A red-detuned^ 

laser beam interacts with the system.

'The frequency of the laser beam is lower than the resonance frequency.
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The derivation is split into five parts. First the form of the atom-light in­

teraction in the electric-dipole approximation is outlined. Then the equation 

of motion for the ground state density matrix is derived initially neglecting 

the degeneracy of the ground and excited state manifolds. The third step is 

the adiabatic elimination of the excited state and all its coherences from the 

density matrix. The next step is to put back the degeneracy of the ground 

state manifold. Finally, the level shifts are deduced by neglecting the ground 

state relaxation terms, i.e. optical pumping.

2.1.1 The electric-dipole interaction

In this section we consider the interaction Hamiltonian of an atom interaction 

with an optical field. First an expression for the optical field operator is 

deduced followed by the derivation of an expression for the atomic dipole 

operator. We start out with an optical field E created by the interaction of 

two counter-propagating laser beams. The optical field can then be written 

as

E/, =  —ElElc +  C.C.,

where êf, is a unit vector pointing in the same direction as the polarization of 

the corresponding laser beams. By changing from the cartesian to the circular 

basis

E l = - E l ^ 2  + C.C.. (2.1)
fc=—1,0,+ 1
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In this equation the {e*} represent the unit vectors of the circular basis. This 

basis consists of the vectors e_,e+ and Gq defined as

( x ± iÿ ) ,

eo =  z.

The unit vectors are defined in a way so that e± represents cr=̂ -Iight and Gq 

for TT-light. It is useful in calculations to remember that

=  -e _ , e l  = -ê + , ê% = ê^.

In the following it is assumed that the single beam amplitude is real and 

that the amplitudes of the polarization components comprising the beam 

polarization are normalized to one, i.e.

k

3To make the notation more manageable the raising and lowering operators 

are normalized so that

ajfe \n) =  |n -  1), (2.2)

and the normalization factor is subsequently absorbed into Ei,. Using the 

above results, the optical field can be written as

^which are also called photon creation and destruction operators.
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E = E * e ~ * ^  +  E"e+“ ‘, (2.3)

E+ =^£têfcait,
k

k

The atomic dipole-moment is defined as

d =  —er. (2.4)

Here e is the elementary charge of an electron and r  the position operator 

of the valence electron. The operator d causes transitions between different 

states. Remembering that Yli =  1 the atomic dipole moment

can be written as

d =  —e r  =  ^  I Ji rrii) {Ji rrii | d |^  rrij) {Jj rrij| 

k

= \Ji rrii) {Ji rrii | rrij) {Jj m j \êk 

k

= (2.5)
t,j=g,e

k

where we have assumed the Wigner-Eckart theorem and D is the reduced
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dipole operator matrix element D =  {Jg | |d|| Jg) with =  D /  In equation 

2.5 the diagonal terms are zero, since the corresponding Clebsch-Gordan co­

efficients are, and the equation for the atomic dipole operator can be split 

into two distinctive parts. This leads to

k

k

— d_ -}- d^. (2.6)

The calculation of Clebsch-Gordan coefficients can be quite tedious and it is 

more convenient to refer to published tables. Having both these ingredients, 

the optical field operator and the atomic dipole operator, an expression for 

the interaction Hamiltonian can be derived. The operator depends on the 

scalar product of both and substituting equations 2.3 and 2.6, it is given by

^It states that for any vector operator ô with components ôfc the relation

holds. In this relation the first term is a Clebsch-Gordan coefficient and the second one 
the reduced matrix element. The two angular momenta linked together via the operator 
are \ Ji rrii) +  |1 A:) —> \ Jj rrij). The Clebsch-Gordan coefficients are only different from zero 
if the angular momenta involved satisfy the triangle rvle, i.e. are a linear combination of 
each other^, A(JiJ2I), and if, in addition, mi = m 2 +  k.
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Hj — —E ■ d

= -  (E + e-"‘ +  E -e“ ‘) (d+ + d “ ) 

=  f  [E+ ■ d+ +  E+ • d"] e"“ ‘

+  [E- • d+ +  E" • d"] . (2.7)

The Hamiltonian has four distinct terms of which two can be eliminated by 

using the rotating-wave approximation. The Hamiltonian then takes the form

H f  =  -  (E+ • d+) e " " ‘ -  (E" • d")

=  - b e - “ ‘ -  bte“ ‘ , (2 .8 )

where the operators b and W, are introduced, which are the raising and 

lowering operators previously, but which drive transitions in which a quantum 

of angular momentum is either gained or lost via a dipole transition. They 

are =  (E“ • d~) and b =  (E""" • d" )̂ respectively. This leads us to the next 

step, the equation of motion of the ground state density matrix, where the 

interaction Hamiltonian 2.8 is applied to the evolution of the density matrix 

of the system.
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2.1.2 Equation of m otion o f th e ground state density  

m atrix

The density matrix can be written in matrix form as

(2.9)
\^Éfeg Qee

where Qĝ  is the 9 x 9  ground state density sub-matrix block and the 

11x11 exited state one. To make the derivation more tractable, the structure 

in the ground and excited states is at first neglected and then reintroduced 

later. The density matrix formalism is completely equivalent and replaces 

the Schrodinger equation formalism with a master equation description. The 

differential equation which describes the dynamics of the system is now

dt h + I 3 7  I ’ (2 ' 1 0 )dt J relax

where the Hamiltonian of the system is given by

H =  H® + (2.11)

where H® is the atomic Hamiltonian of the isolated system and the 

Hamiltonian of the atom-field interaction. By writing out the above matrix 

equation it can be seen that it separates into four expressions, one for each 

Qij. To deduce these four equations, firstly we consider the left-hand side of 

equation 2.10 and secondly the right-hand side. The last step is to split the 

full matrix equation into four separate equations for each component of the
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density matrix 2.9. The left hand side becomes

dg
dt

H

dt
dQge
dt

dQeg
y dt

dĝ f,
dt

( î l ç ç H,e

^Heg

(2 .12)

(2.13)

On the right hand side first the commutator is considered and then the 

relaxation term. The density matrix 2.9 and Hamiltonian matrix 2.13 are 

substituted into the commutator definition, as shown in appendix B.l, and 

substituted into 2.10 giving

(iÈ^ dĝ e
dt dt

dQeg dQee
 ̂ dt dt

^1 Û2 1 /  d g \

Û3 U4

ai = Hge^eg “  Qge^eg,

Ü2 — îlggQge +  ^geQee ~  Ùgg^g ~ Qge^e, 

^3 =  i^egÙgg +  Hee^eg “  Qeg^gg ~ Qee^eg,

Û4 =  Hegggg — Q̂ ghlge.

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

Separating all the terms for the different parts of the matrix equation we 

get the following differential equations for the evolution of the excited state 

density matrix:
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dQe, 
dt

= _ 1  {_  (E+ . d+) ê,e + êe, (E- • d -)} -  r' ê„, (2.20)

ê,e =  ê,ee“ ‘, (2 .2 1 )

Â , =  èe, (2 .2 2 )

In the differential equation for the excited state density matrix the relax­

ation term describes spontaneous emission. This means it can be written 

as (^)relax ~  Also to make the notation simpler the in 2.20 are

replaced by 2.21 and 2.22. Next we consider the matrix equations for the 

ground and excited state coherences Qĝ  and g^g,

dQ e-^Lt (2.23)
dt dt ^

=  -  ^  {Hejêgg -  êe«Hee| -

- \ { E e -  E , )  (2.24)

^  (d^ • E+) ègg +  Qgg (d+ ' E+) }

~  ( ' Ô  ~  «̂9’ (2.25)
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(2.26)
r

- - ( £ , -  % ) (2.27)

%  = -  ^ { -  (d“ ■ E -) êe. +  êgg (d“ ' E“) }
r

(2.28)

where we have set A  = — cjq, Hujq — Ee — Eg and the relaxation term to

^reiax ~  We are left with the ground state density matrix Qgg.

Its differential equation can be written as

dQ,99
dt "  ~  H (Î)

=  - ^  { -  ( d “  • E “ )  ê e g  +  8 g e  ' E + )  }  +  ( ‘^ )  ' ( 2 - 3 0 )

In this equation the relaxation term describes the optical pumping between 

the different sub-levels involved. The relaxation term F, A. This

means that the density matrices Q̂ g, Qĝ  and evolve much more quickly 

than the ground state density matrix Qgg opening the possibility to adia- 

batically eliminate them. The whole density matrix can be replaced by the 

steady state values of its components. This is accomplished by setting all 

time derivatives of the density matrix to zero, i.e.
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(&) -

(% *) ■ “• ( ^ )  ■ »
We have derived an expression for the evolution of the density matrix and

split it into four distinct parts. We are now ready to adiabatically eliminate 

the excited state and its coherences using the condition above that the time 

derivatives of the components of the density matrix are zero.

2.1.3 Adiabatic elim ination o f the excited state coher­

ences

We now adiabatically eliminate the excited state and its coherences from the 

density matrix. We start by considering the steady state solution of equation 

2.20 first by setting the left hand side to zero:

0 =  { -  (E+ • d+) +  ê ., (E- ■ d - ) } -  r'

hence

^ee -  { -  Qge +  Peg ' ^  ) } . (2.31)

Here stands for the steady state solution excited state density matrix. The 

superscripts ss will also be used for the steady state solution density matrices 

of the ground-excited state coherences. For the differential equations for the 

ground and excited state coherences, 2.25 and 2.28, we then have



2.1. LIGHT SHIFTS IN OPTICAL LATTICES 48

0  =  4 { - ( d + - E + ) ê , ,  + êe ,(d + -E + )}

2

ê :  =  +  Â , (d+ -E + )} , (2.32)

0 -  - ^  { -  (d ' E ) ggg + ggg (d • E ) } 

-  l ? + * A | ê e . ,2

è :  =  " i ( Â ^  { -  ■ ®” ) ê «  + %, (d- • E - ) } . (2.33)

We are left with the equation for the ground state density matrix Qgg given 

in 2.30. All occurrences of the density matrices are replaced by their steady 

state values, giving

dQ99
dt ■ }+ (Ï)

^  { (d - . E -)  èe, -  Qçe (d+ • E + )} +  (2.35)

99
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where we have rationalized the denominators in the fractions and used the 

fact that the term

(d - . E -)  êee • E+)
;i(A  +  f )  f i ( A - f )

( d - - E - ) g ^ ( d + - E + )  / ( A - f ) - ( A  + f )  
h [  Â  + Ç

= 0 (2.37)

cancels out®. To calculate the light-shifts from this equation, the relaxation 

term (^)reiax’ ^hich is much smaller than T or A, is neglected in addition to 

the anti-commutator terms^. By setting

dQ,99 Â, (2.38)dt H

the light-shift operator can be deduced to have the functional form

Â ^  • (2-39)

This concludes the section on the adiabatic elimination of the excited state 

and its coherences. We have arrived at a stage, where we can reconsider the 

hyperfine structure in the ground state and introduce it into equation 2.39. 

This is done in the next section.
step by step version is shown in appendix B.l 

■̂oc ir
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2.1.4 Inclusion o f the degeneracy of the ground state  

manifold

The next step is to consider the terms (d” • E~) and (d^ • E"^) in equa­

tion 2.39 on the preceding page. The components of the different terms are 

given in equations 2.3 on page 40 and 2.6 on page 41. Substitution gives

(d - • E -)  =

= J 2 \ e l D sI c j ; |J ,m ,)  (J . m .|â+ , (2.40)
k

(d+ • E+) =  ^  D £, Je m M j ç  â,, (2.41)

(d --E-) (d+ -E+) =
k I ^ /

\Jg ^g) {Jg K  âf. (2.42)

We have used the fact that (jgme | Jem^) =  ■ From this follows that

+ Z =  TTie =  +  A: or =  m'  ̂ -h k — 1. These operators now

include the level structure of the ground state with its manifold of hyperfine

magnetic sub-states. Using equation 2.41 and 2.42 into 2.39 allows us to 

introduce the structure in the ground state into the light-shift operator A in 

the next section.
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2.1.5 The functional form of th e light-shift operator

Introducing the Rabi frequency and substituting equations 2.41

and 2.42, the light shift operator becomes

\Jg^g) {Jg'm'gl (2 43)

We are now ready to calculate the matrix elements of the light-shift operator. 

They are

{ j „  m ,  I Â | J , m , )  =  i f i A  [ E E  4 ^ , C i ; - ' ' C i ; : ; "
\  4  /  t  f

(Jg, rri2 I Jg, rUg) (Jg, nig | âfjjg, m i)

=  ( ^ T ç )  Ç Ç  (2.44)

The last step follows due the chosen normalization in 2.2 for the operators 

and âf. The possible combinations of an are shown in figure 2.2. The local 

polarization amplitudes are function of positions, Sk — 6t(r), and so determine 

the spatial dependency of the light-shift operator. The final step to find the 

adiabatic potential surfaces is to diagnonalize the light-shift operator A(r) 

where the matrix elements are given by
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Figure 2.2: This figure shows the different contributions to light-shift operator 
matrix elements. The Sj are the amplitudes of the different local polarization 
components when using the circular basis.

(2.45)
k,l

This concludes this section where an expression for the matrix elements of 

the light-shift operator in the near-detuned limit was deduced. To illustrate 

how the light-shift operator can be used to deduce the optical potential as 

seen by the atoms, it is used to calculated the adiabatic potential of a ID 

linTlin optical lattice on a =  1/2 —> Jg =  3/2 transition.

2.1.6 Adiabatic potential o f a ID  lin_LIin optical lattice  

on a — 1/2 Je =  3/2 transition

To illustrate how this can be used in calculations the light-shift operator 

introduced in the previous section is apphed to a theoretical two-level atom
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1

Figure 2.3: This figure shows the level scheme of a ID lin_Llin optical lattice 
on a =  1 / 2  ^  Je =  3/2 transition. Also shown are the squared Clebsch- 
Gordan coefficients of the relevant transitions.

on a Jg =  1/2 —> Je =  3/2 transition. First an optical lattice is created by two 

counter-propagating laser beams propagating along z having polarizations 

along X and ÿ as shown in figure 2.6 on page 65. The total electric lattice 

field is then given by

E  (z) =Eo (xe‘‘  ̂+  ye-’**) +  c.c.

='v2Ei {ê+ cos kz  +  ê_ sin kz} . (2.46)

The total lattice light field contains no 7r-polarized light. Using the rele­

vant Clebsch-Gordan coefficients shown in figure 2.3, the matrix elements are 

deduced to be

Ai 1 =  16 0 -4-p X 1 +  |ê:^-P X i  • i / ï a  s =  Uqcos  ̂ 4- ^sin^ kz 
2 2  3 2 3

=  U q
1 2  2 :-  +  - C O S  kz (2 .47)
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A_i_i  = U o
2 2

1  2 . 2 ,-  +  -s m  kz (2.48)

=0 . (2.49)
2 2

Thus the eigenstates of A are the Zeeman sub-states. This is not generally 

true in atoms with Jg > I, when the eigenstates are spatially dependent 

linear superpositions of the Zeeman sub-eigenstates \Jg, m). Here Raman 

transitions with and a~ can link states with Am =  ±2. Figure 2.4 shows 

the light-shifted potentials represented by equations 2.47 and 2.48. We see 

that the periodicity of the lattice is A/ 2  for sites with the same m / and A/4 

for sites of alternating m/. The theory is extended to the case of far-detuned 

optical lattices in the following section.

2.2 Non-dissipative Optical Lattices

In the previous section we discussed near-resonant optical lattices. Now we 

consider what happens to the interaction between the lattice light and atoms 

when the laser light is detuned further away from resonance and discuss why 

this is advantageous for quantum state preparation and control experiments. 

The disadvantage with Sisyphus cooling in near-detuned optical lattices is 

that the spontaneous scattering which leads to localization is also responsible 

for decoherence effects, thus limiting the lifetime of the vibrational coherences. 

As mentioned in 1 .1 . 1  on page 19, the light shift, I/q, induced by the lattice 

optical beams is proportional to J ,  whereas the scattering rate T' scales as
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Figure 2.4: This figure shows the light-shifts of a ID lin_Llin optical lattice on 
8i Jg = 1/2 —* Je = 3/2 transition. We see that the periodicity of the lattice 
is A/ 2  for sites with the same rrif and A/4 for sites of alternating rrif.

Hence the latter decreases much faster than the first when the lattice 

light is detuned further and further away from resonance. If we increase the 

lattice laser power in proportion to the detuning, the well depth of the optical 

potential can be keep constant. It is therefore possible to create a far-detuned 

optical trapping potential with similar well depth and spatial periodicity as 

a near-detuned optical potential, but with a highly reduced scattering rate. 

A typical near-detuned lattice has a scattering rate of about ~  500 kHz 

which can be reduced to about F̂  ~  100 Hz in a far-detuned one for detunings 

of several thousands of line-widths.

Additionally, the reduction in the photon scattering rate also decreases 

the rate of decoherence associated with spontaneous emission and makes
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far-detuned optical potentials an interesting environment for quantum state 

preparation and control experiments, which depend on the coherent evolution 

of the atomic wavepackets.

As the potential is non-dissipative, it is necessary to pre-cool the atoms 

before making use of this useful feature of far-detuned optical potential. This 

is normally done by cooling the atoms in a near-resonant lattice first and 

transferring them to a superimposed far-detuned lattice with similar poten­

tial well depth and periodicity. The best transfer efficiencies were observed 

when the near-detuned light was slowly ramped down and the far-detuned 

light ramped up, with the aim to maintain a constant potential well depth. 

Efficiencies of up to 90% were observed in our experiment.

Two useful limits of the spatial dependency of the light-shifts in a far- 

detuned optical lattice are provided by the adiabatic and diabatic cases. The 

adiabatic potentials are found by first diagonalizing the optical potential op­

erator 2.62 and then calculating its eigenvalues. The new eigenstates are 

then superpositions of the Zeeman basis states |F, mp). Diabatic potentials 

are calculated by neglecting all off-diagonal contributions to the optical po­

tential operator 2.62. The adiabatic potentials cannot be associated with 

a pure Zeeman state |F, m =  ±4), but at positions with pure circular po­

larization, where Raman coupling between states with Am =  ± 1  is almost 

non-existent, they nearly coincide with the diabatic potentials associated with 

the stretched states |F, m =  ±4). When the atoms move away from regions of 

pure circular polarization, the contribution of the eigenstates from other mag­

netic sub-levels increases gradually giving rise to avoided crossings midway 

between the regions of alternate pure circular polarization.
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If the Raman coupling between states A m  =  ± 1  is significant, then adi­

abatic potentials describe the lattice better as long as the atoms move slow 

enough through the avoided crossing and undergo Raman transitions to other 

magnetic sub-states. For fast moving atoms diabatic potentials are a more 

appropriate description. Since we are considering mostly tightly bound atoms 

at regions of pure circular polarization, we can use either adiabatic or diabatic 

potentials. Both nearly coincide at these locations. This also makes calcula­

tions easier and faster, since the off-diagonal elements of the optical potential 

operator are neglected and no diagonalization is necessary to calculate the 

light-shifts.

2.3 Derivation of the Optical Potential in the  

Far-detuned Regime and the Fictitious Mag­

netic Field

We have seen in the foregoing chapters how potentials for cold atoms can 

be designed through their interactions with electro-magnetic fields. These 

interactions can be grouped into three categories, namely light-shifts, Zeeman 

shift and Stark shift.

In the following we are interested in the interaction of atoms with a low- 

intensity monochromatic light source and static external magnetic fields, a 

common situation in laser cooling. The aim is to derive a convenient form 

for the optical potential of alkali-metal atoms in a far-detuned optical trap. 

Considering a low-intensity monochromatic fight source and an static external
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magnetic field, the potential the atom sees, can be written as [42]

Û (x) = -Ez, (x) • Ô • E l (x) -  a  • B, (2.50)

EL(x,t) =  R e { E L (x )e --‘ ‘} ,

Here E ,̂ (x, t) represents the total electric field of the lattice beams and ct the 

atomic polarizability tensor operator in the far-off resonant limit; A^g is the 

detuning from the |g) —*■ \e) resonance and d^e the electric dipole operator 

coupling the states involved. Governing the interaction with a magnetic field 

is the magnetic dipole operator fi =  /1 7 F, where 7  is the gyromagnetic ratio 

and F  the total angular momentum operator.

The adiabatic potentials can now be found by diagonalising Û (x). The 

atom used in our experiment is caesium, an alkali-metal atom with a hyperfine 

level structure. This means that the atomic polarizability tensor becomes [42]

where

Pf = ^ | F , m ) ( F , m |
m

and
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PF' =  ^ | F ' , m ' )  ( F ' .to'I
m'

are the projection operators for the ground and excited hyperfine manifolds. 

Making a change of basis to the spherical one and using the notation

• â  ' Gg, (2.52)

we can write the atomic polarizability tensor as

6 ^ . , - a E  E  x \F ,m  + q - q ' )  {F, m\.
F' m j

(2.53)

In this expression fp 'r  represent the relative oscillator strengths for the de­

cay |F ') —)• |F), A f,f' the detuning of the laser beams from the resonance 

involved, IF^ax = J  -\-1) and — F  + / )  the “stretched” states and the

are the Clebsch-Gordan coefficients for the |F, m) dipole

transition. See [42] for a derivation of this equation.

Last but not least the characteristic polarizability scalar for the \J) \J')

transition is defined as

(2.54)
hAp pf

max

where {J' | |d|| J) is the reduced matrix element of the dipole operator and 

A p p/ the detuning from the resonance of the “stretched” states involved.
F max I- max ^

This more complex system will in general create coherences between the
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ground-state magnetic sub-levels via stimulated Raman transitions. These 

coherences can then be exploited to control and manipulate the state of the 

atomic wavepacket.

As mentioned earlier we are interested in the coherent evolution of the 

atomic state and its manipulation. We should therefore be as far-detuned as 

possible from the atomic resonance to minimize decoherence effects as much 

as possible. Now in the limit where the detuning is much larger than the 

hyperfine level splitting, equation 2.54 on the page before reduces to [42]

a ^ P p a ( J  ^  J ' )P f , (2.55)

where a {J J') is the polarizability tensor of the j J) \J') transition. 

Thus for a very far-detuned optical lattice the alkali-metal atoms behave in a 

similar way as atoms on the well studied | J  =  | transition. The

operator d  ( J  —> J') is a rank-2 tensor and as shown in [42] it can be written 

as

àij (J = a ~  -Sijkài^ . (2.56)

where Sijk is the total anti-symmetric tensor and the matrices &k are the 

Pauli spin matrices as given in appendix C. The Pauli spin matrices and the 

identity matrix form a complete set and form a basis for the vector space of

all 2 X 2 matrices. If we express the lattice light as

E l  (x , t) = Re {E iSl  (x) , (2.57)
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where (x) is the local polarization of the lattice light and Ei the single 

beam amplitude®, we can rewrite the optical potential in the form

^ f (x )  =  - ^ U i  |£L (x ,y)|^ / +  ^ t/i |e l(x ,y )  x (x ,y )|. (2.58)

The first term is proportional to the modulus squared of the local laser light 

polarization and independent of the hyperfine state the atom is in. Addition­

ally it scales like the local intensity of the lattice light. Its functional form is 

given by

Uj =  kz, (x, y)|^. (2.59)

Here U\ represents the single beam light shift for a transition with unit 

Clebsch-Gordan coefficient and ez, (x,y) the local lattice light polarization. 

It can easily be calculated as shown in section 2.5.1 on page 65 for a ID 

far-detuned optical lattice.

The second term has the form of the Zeeman interaction with a fictitious 

transverse magnetic field, whose direction depends on the local polarization 

of the lattice light field. The usefulness of the fictitious magnetic field is that 

its varies with the same periodicity as the optical potential, i.e. on a sub­

wavelength scale. This cannot be achieved with an applied external transverse 

magnetic field and so opens up new experimental applications to be explored. 

A useful one is resolved-sideband Raman cooling, which is described in detail

®It was assumed for convenience that the beams all have equal amphtudes , so it can 
be conveniently factored out.
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in chapter 3. The shift to the energy levels due to the fictitious magnetic field 

is dependent on the hyperfine state of the atom and is given by

Bac (x, y) = ^Ui \sl  (x, y) x (x, y) | . (2.60)

Using Landé’s projection theorem for the stretched ground hyperfine level 

with F  =  /  +  J , equation 2.58 on the page before can be recast as

ùp  (x) =  Uj (x) Î  + Bac (x) • (2.61)

The advantage of this representation is that it is basis independent and 

very convenient for calculations. Prom equations 2.58 on the preceding page 

and 2.61 it can be seen that in the limit of infinite detuning coherences be­

tween the states |F, m) and |F, m ±  2) go to zero. Also the fictitious magnetic 

field described with equation 2.60 goes to zero if the light field is everywhere 

linearly polarized. In this case only the term 2.59 on the page before survives, 

which gives rise to a light shift independent of the magnetic substate of the 

atom.

This concludes the section on light-shifts in non-dissipative optical lattices. 

The next two sections show examples of calculated optical potentials and 

describes ways how to manipulate them by means of changing the beam 

configuration.
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Figure 2.5: This figure shows the effect of an applied external parallel mag­
netic field in a ID optical lattice. Note th a t the sign of the shift is dependent 
on the sign of the ruf level.

2.4 Effects of Static Magnetic Fields in Opti­

cal Lattices

This section describes w hat happens when an additional static  m agnetic field 

is added to an optical lattice. Applying a s ta tic  m agnetic field to an optical 

lattice modifies equation 2.61 to

( x )  — U j  ( x )  Î  T (Bfic ( x )  +  Bext) • -p- (2.62)

The applied external m agnetic field Bext splits into two parts, a  transverse 

com ponent B^ and a parallel component Bp to the chosen quantization axis 

of the lattice. For simplicity we assume here th a t the quantization axis is 

oriented along th e  positive z-direction, i.e. Bp -  B^ and B t =  Bx +  By.
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A magnetic field parallel to the quantization axis along the z-direction 

simply adds a Zeeman shift to the m/-level. This energy shift is given by

A E  = gp (2.63)

where gp is the gyromagnetic ratio and the Bohr magneton. This term 

adds only to the diagonal elements of the optical potential operator U and is 

different for each m/-level. Figure 2.5 shows this. The difference between the 

fictitious magnetic field Bgc and an applied parallel external static magnetic 

field Bz is that the first changes over a length scale of order of magnitude 

of the optical wavelength whereas the latter gives rise to a uniform m/-level 

dependent shift of the \F,mp) states. This effect can be exploited to modify 

the optical potential to give rise to paramagnetism as reported in [43] and 

enhance the populations of the stretched states [44] [43].

A transverse magnetic field Bt =  Bx +  By on the other hand, mixes 

the atomic states and establishes coherences between different magnetic sub- 

levels with A m  =  ± 1 . It contributes off-diagonal matrix elements to the 

optical potential operator U  and arises from the transverse components of 

the angular momentum operator F. Expressed in the {|F, m)} basis set, 

the angular momentum operator is a combination of raising and lowering 

operators coupling states with Am =  ± 1 , i.e

F± [F, mp) =  hy/F{F  +  1 ) — m(m ±  1 ) [F, mp ±  1 ) (2.64)

Using these coherences one can enhance the population of the stretched states 

by optical pumping. The effects of a static parallel and transverse magnetic
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field are used in resolved-sideband Ram an cooling, where two vibrational 

level pairs |F , m.p =  —4) and |F, =  —4) are shifted into resonance by the

parallel m agnetic held and optical coherences are established by the transverse 

hctitious m agnetic held B rc by adding a 7r-polarization com ponent to the 

lattice light held.

2.5 Examples of Optical Lattices

This section shows examples of ID , 2D and 3D far-detuned optical lattices. 

I describe here how the optical potential can be deduced from the beam  con- 

hguration used to produce the lattice and how the la ttice geom etry can be 

m anipulated by the choice of laser beam polarization and incidence angles. A 

comprehensive theoretical review of beam  conhgurations and the correspond­

ing optical lattice can be found in [45].

2.5.1 Optical lattices in ID

Figure 2.6: This figure shows the linTlin configuration to create an optical lattice 
in ID. It uses two counter-propagating laser beams with crossed polarizations.

In this section I present examples of ID  far-detuned optical lattices using
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the Hamiltonian 2.61 derived by Jessen and Deutsch in [42]. Consider the 

beam configuration depicted in figure 2.6. It is composed of two counter 

propagating laser beams along the z-axis with crossed polarizations along 

the X and y directions. The polarization of the beam travelling along the 

negative z-direction is chosen to subtend an angle of Q with the polarization 

of the counter propagating one. The latter is chosen to have a polarization 

along the the positive y-direction. This configuration is often referred to as 

the lin-0-lin configuration. The electric fields for the two beams are given by

E ,+ = £ :i ,y e ‘*=* (2.65)

E ;- =  Ez, (ÿ cos 0 +  X sin S) , (2.66)

E , =  E i {E;+ +  E j- } ,

=  E i { (e'*  ̂+  cos B) +  sin Bê-'*‘̂  } , (2.67)

where El is the single beam amplitude assumed to be the same for both 

counter propagating beams and relates to the intensity by Ibeam =

The lattice has a quantization direction along z. The Hamiltonian (cf. 2.61) 

is given by

H — - - |e ^ ( z )|^I  +  -(e2(z) x eL{z)) - — (2.68)

=  --b^const +  -(Hfic) • —, (2.69)
F TTli

 ..................rrii
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To deduce the functional form of the Ught shift operator, the quantities 

|e2,(z)|^ and e 2 (z) x Ql {z) are needed. Substitution gives

( 2 .7 0 )

e sin ̂  

e“*̂  ̂cos 9 4 - 

0

( sin 9 

cos 9 +

0

e cos 9 + 

0

= sin^ 9 4 - cos  ̂^ 4 - cos ̂  4 - e cos 9 

=  2(14- cos 9 cos 2 kz ) , ( 2 .7 1 )

X G I, —

glfcZ g- Q

COS 0  4 - 

0

0 ^

0

X e cos 9 4 - 

0

2  sin 0  sin 2 kz

(2 .72)
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Substituting this into the Hamiltonian gives

4
H(z) =  — - E l  (1 + cos 6  cos 2kz) I

+  ‘̂ E l  sine sin 2fcz ^  |Fg, rrig) {Fg,mg\. (2.73)
rrii ^

This Hamiltonian can now be used to calculated the light-shifts for the dif­

ferent m / levels. In the band-structure near the bottom of the wells the 

atoms are in the Lamb-Dicke regime and the centre-of-mass motion can be 

approximated by a thermally excited harmonic oscillator. Thus expanding 

the potential around a minimum and only considering the quadratic term in 

the displacement, the oscillation frequency can be deduced to be

= 9  y/UoEr, (2.74)

where p is a constant depending on the lattice geometry. By applying a trans­

verse magnetic field the different light-shifted m j  levels can be mixed together 

and optical double well potential created. Here one has full control over the 

barrier width and height by adjusting the angle 9. Adding random perturba­

tions to the optical potential one then could study the tunnelling dynamics

in noisy environments. Another possibility is to rotate the polarization of

one laser beam using an opto-electric modulator. The effect would be two 

potentials associated with m / =  —1 / 2  and rrif = 1 / 2  respectively moving in 

opposite directions acting like a conveyor belt. If the rotation speed is slow 

enough so that tightly bound atoms remain localized they would be acceler­
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ated in opposite directions. Another use for the opto-electric modulator is 

the possibility to simulate a fluctuating barrier. By choosing 6 (t) = 6 q±l ̂ mod 

one could simulated a periodic or random variation for ^mod and for the cor­

responding barrier height and width.

2.5.2 Going to  Higher Dim ensions

▲V

Figure 2.7: This figure shows the two possible beam configurations to achieve a 
2D optical lattice. We use this type of set-up in our experiments. Shown also is 
the corresponding lattice symmetry below the respective beam configuration.

In 1993 Grynberg et al [3] suggested that the topography of an optical 

lattice can be kept constant without having to phase-lock the trapping lasers. 

They showed that one only needs N  laser beams to create [N — l)-dimensional 

optical lattices. Then the relative phase fluctuations of the individual beams 

are simply producing a spatial translation of the optical lattice. In general
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Figure 2.8: This figure shows a possible beam configurations to achieve a 3D 
optical lattice. This is the beam configuration with the smallest number of beams 
to achieve a 3D lattice.

these fluctuations are slow enough for the atoms to be able to follow them 

adiabatically. This insight reduced the complexity in creating higher dimen­

sional optical lattices and this geometry is used in our experiment.

The interested reader is referred to an excellent paper by Petsas et al [45] 

in which many theoretical possible beam configurations are discussed and 

investigated. Figure 2.7 shows two possible beam configurations to create a 

2D optical lattice taken from this paper. First we consider the configuration 

on the left of this figure. This configuration is also the one used in our 2D 

resolved-sideband Raman cooling experiment, where an angle of ^ = 7t / 3  is 

used. The different possible choices of the relative polarizations of the beams 

change the relative positions of and (t~ sites, i.e. change the basis of the



2.5. EXAMPLES OF OPTICAL LATTICES 71
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Figure 2.9: This figure shows a 2D lattice calculated using the beam config­
uration on the left of figure 2.7 on page 69. 6  was chosen to be 60°.

unit cell. From [42] the lattice electric field is given by

P f,-iky
E l  ( x ) = — [ -  e+ {1 + 26*'^»'' cos (K^x)} 

+ e_ { 1  + 2 6 ''^»  ̂cos (K^x -  26>)} ],
(2.75)

where =  ksinO^ Ky = k{l cos9), Ei is the single beam amplitude and 

Gq the unit vectors of the rotating basis, Gq G { g+, g_ , Gtt}. The quantization 

axis of the lattice is chosen to be the z-direction. The direct and reciprocal 

unit vectors for this configuration are given by
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Figure 2.10: This figure shows a 2D lattice calculated using the beam config­
uration on the right of figure 2.7 on page 69. d was chosen to be 60°.
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(2.76)

(2.77)

These form a basis associated with a primitive cell consisting of a and a~ 

site. An interesting conclusion from this calculation is, that for a choice of 

Q — t:jZ the two direct lattice vectors are equal in length.

The second configuration described in figure 2.7 has the polarizations of 

two of the lattice beams perpendicular to the lattice plane. As stated in [45] 

this necessitates a choice for the different amplitudes to be E2  =  Eg =  E i/ 2 ,
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where Ei  is the amplitude of the beam travelling along the x-direction. The 

lattice electric field is then given by

p .  p - i k y
E l (x) = ---------- [ -  e+ {l +  cos

v 2  (2.78)
+  e_ { 1  + cos {K^x)} ]

and the quantization axis is chosen to be in the x  — ^-plane along ki. This 

configuration represents an anti-ferromagnetic optical lattice owing to the fact 

that there are as many potential wells of one circular polarization as from 

the other with equal potential depth. The main difference between the two 

configurations is that for the configuration of figure 2 .1 0 , the lattice possesses 

potential wells of pure circular polarization at all positions of maximum light 

shift for any angle 0. On the contrary the configuration of figure 2 . 1 0  only 

possesses potential wells with pure circular polarization for a choice of ^ =  

7t/3 .

This concludes the discussion of 2D optical lattices and we end this section 

with a look at 3D optical lattices. We start with the configuration described 

in figure 2.6 in ID. First one beam is split into two in the x  — z-plane with 

an including angle of 6  as shown in figure 2.8. Then the other laser beam is 

split into two in the z — y-plane with including angle 77. The polarizations of 

the beams are kept as in the ID configuration. This configuration produces a 

3D optical lattices with pure cr+ and a~ lattice sites. This configuration was 

first discussed in [46].
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Figure 2.11: This figure shows calculated potential surfaces for a 2D optical 
lattice with varying 0. The beam configuration on the left of figure 2.7 on 
page 69 was used. The angles 9 are: (a) 9 = 30°, (b) 9 = 45°, (c) 9 — 60°, 
(d) 9 -  75°.
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2.6 Band-Structure Calculations

Optical lattices can also be described as periodic structures bound by light. 

As in solid state physics this periodicity gives rise to a band-structure of the 

energy levels in the optical potential wells. We base our treatment of the 

band-structure in periodic structures bound by light on the Bloch formalism 

presented in [47, pp 138-139]. We apply this formalism to ID and implement 

it in Mat Lab. Thus we can deduce the band energy eigenvalues and eigen­

functions for arbitrary optical lattice geometries. The eigenfunctions allow us 

to deduce a localized Wannier basis for the individual potential wells. These 

localized Wannier function have the advantage that they are localized in con­

trast to the delocalized Bloch basis. Using this Wannier basis is useful to 

discuss atoms localized in potential wells.

- 2 0 -

-4 0

-6 0

- 8 0 -

- 160 -

- 180 -

- 2 0 0 -

- 2 2 0 -

- 0,5 - 0,4 - 0,3  - 0,2 - 0,1 0,2 0,3 0,4 0.5

Figure 2.12: Band structure for a potential depth of 170Er , cut in the x-direction.
and are respectively the period of the potential and the component of the quasi­

momentum in the x-direction.

Consider an atom in a ID optical lattice. The Schrodinger equation gov-
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Figure 2.13: Band structure for a potential depth of 170E r ,  cut in the y-direction. 
ay and qy are respectively the period o f the potential and the component o f the quasi­
momentum in the y-direction.

erning the dynamics of the atom has a general form of

2M
+ U(r) = (2.79)

In this equation M is the mass of the atom and the potential U has the peri­

odicity of the optical lattice. Bloch’s theorem now states that the eigenstates 

'ip of the Hamiltonian 2.79 for a potential with periodicity U(r + R) =  U(r), 

where R is a vector of the Bravais lattice, can be chosen to be plane-waves 

times a function with the periodicity of the Bravais lattice, i.e.

^nk(r) =  (2.80)

The index n is know as the band index. It arises due to the fact that for a
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given wavevector k  there exist many independent eigenstates labelled by this 

index. It is important to note that the periodicity in the functions Wnk(r) 

also imply the same periodicity in the wave-functions ^nk(r), i.e.

V>„k(r + R) =  e"‘ '̂ V>~k(r) (2.81)

for every R in the Bravais lattice. We impose the Born-von Karman boundary 

conditions on the wave-function. Using the primitive cell of the underlying 

Bravais lattice this condition is given by [47]

+ = ^ (r). (2.82)

The parameters are the three primitive vectors defining the primitive unit 

cell and the Ni € {1,2,..., are integers. N  is the total number of

primitive cells in the optical lattice and N  =  N\ N2 N 3 . Hence the general 

form of the allowed Bloch vectors can be deduced to be

3

k = ^ ^ b i ,  rrii G Zq. (2.83)
i=i *

Another point worth noting is, that the number of allowed wave vectors in 

a primitive cell of the reciprocal lattice is equal to the number of potential 

wells in the optical lattice.

We will now deduce a set of algebraic equations which will allow us to 

calculate the band-structure of an arbitrary optical lattice. First the wave- 

function is expanded in the set of all plane waves that satisfy the Born-von 

Karman boundary conditions:
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(2.84)
q

In this equation q is a reciprocal lattice vector allowed by the boundary con­

ditions imposed. Next the potential U{r) is also expanded using plane waves. 

Since the potential is periodic in the lattice, this expansion will only contain

plane waves with wave vectors that are vectors of the reciprocal lattice. Hence

the potential becomes

[/(r) =  (2.85)
K

The expansion coefficients are given by the Fourier integral

Uk  = -  (  dre-' '^ 'U{T),  (2.86)
^ 7ceU

where v  is the volume of the unit cell. Note also that since the potential U (r) 

is real, the Fourier coefficients satisfy I7_k =  Uk- It is convenient to set the 

spatial average Uq of the potential over a primitive cell to zero, i.e.

Uo = -  I dr U ( t )  = 0. (2.87)
^  VceU

Substituting both the wave-function ^ (r) and the potential U(t)  into the 

Schrodinger equation 2.79 Ashcroft and Mermin showed that the Schrodinger 

equation can be replaced by a set of algebraic equations and be restated in 

momentum space as [47]
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-  K)^ -  6:^ Ck-K +  ^ 2  ^ k ' - kQc- k ' (2.88)

and using the relation q — k — K. The vectors k, K and K are reciprocal 

lattice vectors. This allows us to rewrite the wave-function expansion as

V;k(r) =  (2.89)
K

=  (2.90)

=  e*‘‘ 'u (r) (2.91)

showing the Bloch form 2.80. Since we are interested in tightly bound atoms 

in an optical lattice, it is advantages to use a localized Wannier basis than an 

unlocalized plane wave basis like the Bloch basis. They can be defined as [47]

(/>n(r -  R) =  — f dke"^ 'V nk(r), (2.92)
^0 J

where vq is the volume in A;-space of the first Brillouin zone. Figures 2.12 

and 2.13 on page 76 show the calculated band-structure of two ID cuts 

through an optical lattice potential well using this formalism. The code to 

do these calculations was implemented using MatLab.
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n

U o =  

E n

2 3 0  E r

<^n

U q =  

E n

1 7 0  E r

0 - 2 2 0  E r <  1 0 - 4 - 1 6 2  E r <  1 0 - 4

1 - 2 0 1  E r <  1 0 - 4 - 1 4 5  E r <  1 0 - 4

2 — 1 8 3  E r <  1 0 - 4 — 1 3 0  E r <  1 0 - 4

3 — 1 6 5  E r <  1 0 - 4 — 1 1 5  E r <  1 0 - 4

4 - 1 4 8  E r <  1 0 - 4 — 1 0 1  E r 1 0 - 4

5 — 1 3 2  E r <  1 0 - 4 -  8 7  E r 1 .6  X 1 0 - 3

6 - 1 1 6  E r 6 X 1 0 - 4 -  7 4  E r 2 .0  X 1 0 - 2

7 - 1 0 2  E r 7 .5  X 1 0 - 3 — 6 3  E r 1 .8  X 1 0 - 1

8 — 8 8  E r 7 .2  X 1 0 - 2 — 5 3  E r 1 .1

9 -  7 6  E r 5 .1  X 1 0 - 1 — 4 4  E r 3 .9

1 0 -  6 5  E r 2 .4 — 3 6  E r 7 .9

11 — 5 6  E r 6 .4 -  2 5  E r 11

1 2 — 4 6  E r 11 — 1 4  E r 1 3

Table 2.1: This table shows the results of a ID band-structure calculations 
for two different well depths. Also shown is the level width The effects of 
anharmonicity broadens higher lying energy levels. A calculated potential of 
% 700 data points was used and 70 wells were included in the calculation.

2.7 Population Distribution over Vibrational 

Levels

This section deals with the characteristics of the population distribution over 

the vibrational levels in a harmonic and anharmonic oscillator. Firstly we 

introduce the concept of the kinetic temperature of an ensemble of atoms 

and link it to the corresponding vibrational temperature. Then we examine 

the level populations for a ID and 2D harmonic oscillator and finally extend 

them to the anharmonic case.
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Tly < ^ n /E a A „ / E r Tlx ( T n /E a A „ / E r

0 <  1 0 - 4 1 6 0 <  1 0 - 4 1 6

1 <  1 0 - 4 1 6 1 <  1 0 - 4 1 6

2 <  1 0 - 4 1 5 2 <  1 0 - 4 1 5

3 <  1 0 - 4 1 4 3 <  1 0 - 4 1 4

4 <  1 0 - 4 1 3 4 1 .0  X 1 0 - 4 1 4

5 <  1 0 - 4 1 2 5 1 .7  X 1 0 - 3 1 3

6 <  1 0 - 4 11 6 2 .1  X 1 0 - 2 1 2

7 <  1 0 - 4 8 .2 7 0 .1 9 1 0

8 <  1 0 - 4 3 .5 8 1 .1 8 .6

9 <  1 0 - 4 5 .5 9 4 .0 8 .4

Table 2.2: Calculated band energy separations A„ and level widths cr„ for ID 
cuts through the light-shift potential along the x  and y directions respectively, 
for the case of Umax = 170 E r  (giving cjq «  27tx  33kHz and nine bound 
bands in the x-direction). For increasing n the anharmonicity becomes more 
significant, which results in the broadening of the bands and, because of the 
lack of rotational symmetry of the potential wells, the difference between x  
and y characteristic vibrational frequencies becoming increasingly large.

2.7.1 K inetic Temperature

There are two temperature concepts frequently used to characterize atoms 

bound in optical lattices, the vibrational temperature, and the kinetic 

temperature, T\^.  The kinetic temperature of a sample of atoms is related 

to its spread in its momentum distribution. This spread can be characterized 

statistically by its variance (Ap)^ as

/ + 0 0  /  r+ oo  \  2

p^U{p)dp-  I p H(p)dp ] , (2.93)
■oo \ J —oo J

where p is the momentum and H(p) the normalized momentum probability

distribution of the atomic sample. In the harmonic approximation H(p) is

generally assumed to be a Gaussian with a variance (Ap)^ =  cr̂ :
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1 —dn(p) = .——e (2.94)
y  2 -nap

This allows us to define the kinetic temperature of the atomic sample in terms 

of its variance by

~  m I b

where M  is the mass of an atom in the sample and the Boltzmann constant.

2.7.2 Vibrational Temperature

Consider an atomic sample bound in an optical lattice. The diabatic potential 

wells can be approximated by harmonic oscillator potentials. The eigenstates 

then become |F, m/r)<8)|n). In this representation |F, mp) describes the atomic 

state characterized by the angular momentum F  and the magnetic quantum 

number m  and \n) describes a state in the vibrational level manifold seen by 

the atoms. The vibrational temperature is related to the distribution of the 

atoms over the available vibrational states in a potential well. For a thermally 

excited sample the population II„ of level \n) is a function of the vibrational 

energy. Hence the normalized population distribution over the vibrational 

levels is given by

En
_  e  -«V ib

=  E m  (2.96)
V  e‘B̂ v,b

where En is the energy of the n-th vibrational level. This allows us to define 

the mean vibrational excitation of the atomic sample as an ensemble average
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of the occupation number n as

n ^ n n „  (2.97)

Thus if n is known, the vibrational temperature of the ensemble can be 

deduced and vice versa. So how can we relate the kinetic temperature to the 

corresponding vibrational temperature of the sample? They are related to 

each other by looking at the relationship of the momentum distributions of 

the individual vibrational levels and the measured momentum distribution of 

the same sample. In general an optical lattice is a large ensemble of indepen­

dent harmonic oscillators. Hence the measured momentum distribution will 

be a population weighted sum of the individual momentum probability dis­

tributions of the individual vibrational levels. In other words the variance of 

momentum (Ap)^ for all atoms in the optical lattice is a population weighted 

sum of the variances of the momentum probability distributions (Ap„)^ of 

the individual vibrational levels:

(Ap)" =  y ](A p » )"n . (2.98)
n

From this equation the kinetic temperature of the sample can be deduced. 

Hence the kinetic temperature scales with respect to the recoil temper­

ature Tj. as the momentum variance (Ap)^ to the recoil momentum variance 

i.e.
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where the recoil temperature is given by Tr =  To calculate the variances

of momentum (Ap)^ of the vibrational levels we consider a harmonic oscillator 

model in the following. The variance (Ap„)^ is then given by

(Ap„)^ =  (n I p^|n) -  ((n | p|n))^ (2.100)

=  {n I P^|n) -  (2.101)

The last step follows, since for a harmonic oscillator the matrix element 

(n I p|n) =  0. Thus using the ground state variance pj =  these matrix

elements are given by

pl  = pl{2 n + l) (2.102)

Hence the variance in momentum becomes

(Ap)^ =  p ^ ( 2 n+ l )  (2.103)

Since for a thermally excited harmonic oscillator the ensemble average mo­

mentum distribution is exactly described by a Gaussian, the kinetic temper­

ature can be expressed in terms of the mean vibrational excitation as

l ^  = ^  = (2n + l) (2.104)
Po ^0

where we have introduced the ground state kinetic temperature as Tq =  

Another useful quantity which can be defined here is a Boltzmann factor:
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Q B = e  ( 2 .1 0 5 )

This Boltzmann factor simplifies the calculations of the population distribu­

tions in multi-dimensional harmonic traps. In ID the population distribution 

and mean occupation number become

n „  =  =  (1  -  9 b ) ? S  ( 2 .1 0 6 )

”  =  (1  -  g f i )  ( 2 .1 0 7 )
„  1 - 9 b

The last steps were achieved by recognizing the geometrical sum involved. In 

D dimensions the population becomes

n„ =  (1 -  gsfgl  (2.108)

Real optical lattices are anharmonic and the quantities introduced in this sec­

tion are appropriate only for deeply bound atoms. The next section discusses

how the anharmonicity of the lattice can be taken into account.

2.7.3 Population D istribution of an Anharmonic Oscil­

lator in ID  and 2D

In this section we discuss the characteristics of the population distribution 

over the vibrational levels in an anharmonic oscillator. Firstly, we examine the 

distribution in an one dimensional anharmonic oscillator and then extend the
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Figure 2.14: The figure shows the population distribution of a ID anharmonic oscilla­
tor for 12 different vibrational temperatures. The maximum light shift is U q  = 230 E r .  
Each colour represents one of a set of vibrational temperatures ranging from 1 fiK to
12/iK.
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discussion to two spatial dimensions. We need this information to compare 

our experimental results with the calculated ones.

In the previous section we have been looking at the population distribu­

tion in a harmonic oscillator type of potential. The population distribution 

function II„ of an oscillator level n and the ensemble average of the occupation 

number n are given by

Er,
e v̂ib

c Em (2.109)

n =  ^ « n „  (2.110)

with the definitions as in equation 2.96 and 2.97. Those definitions are quite 

general. Section 2.6 introduced the formalism to deduce the band-structure 

in an optical lattice potential will. This calculations allow us to deduce the 

energies of the levels in the anharmonic oscillator potential well. Thus instead 

of using the harmonic oscillator energies En — fkj(n+ l/2), we can use the real 

anharmonic energies in equation 2.109 and 2.110. This allows us to deduce 

the normalized population distribution function and ensemble average of the 

occupation number for a one dimensional anharmonic oscillator. Figure 2.14 

shows calculated normalized population distributions for different vibrational 

temperatures and different well depths in an ID anharmonic oscillator.

This scheme can easily be extended to higher dimensions. Here the energy 

levels are n  T 1-fold degenerate and the total populations are given by
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n ;»  = n :  x nr

e kg TVib
— — e kg TVib m -I

(2 .111)

(2 .112)

(2.113)

where n — n^+ny = s+t. Since the energy levels are 1-fold degenerate, the 

populations of the degenerate sub-levels are all equal. Hence we only need to 

calculate the relative populations of the \ u x )  \riy  =  0) vibrational levels. The 

remaining relative populations can be derived from those values.

A similar procedure can be adopted for the mean vibrational excitation

n:

n (2.114)

Equipped with these two equations the appropriate quantities for an anhar­

monic oscillator can be deduced as have been for an harmonic one in the 

previous section. This 2D anharmonic oscillator population model is used 

subsequently to derive the mean excitation of atoms in the simulation after 

a Raman cooling sequence of given length. The calculated populations show 

also that for low enough vibrational temperatures the populations of higher 

lying levels is negligible compared to lower lying levels. Table 2.3 on the next 

page shows some calculated population distribution for a maximum light shift 

of Uq = 230 E r of the stretched states with rrif = ±4 and are subsequently
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\tIx  ̂n.y)
p |0,0) |1,0) |2,0) |3,0) 140) |5,0) |6,0)

1.87 0.701 0.112 0.019 0.003 5.9 • 10-^ 1.1 • 10-4 2.5 • 10"^
0.62 0.198 0.108 0.059 0.033 0.019 0.011 0.007
0.31 0.076 0.056 0.042 0.031 0.023 0.018 0.015
0.21 0.050 0.040 0.033 0.027 0.023 0.019 0.018
0.16 0.039 0.034 0.029 0.025 0.019 0.019 0.019

Table 2.3: This table shows 2D level populations for diflFerent vibrational 
temperatures using a Maxwell-Boltzmann distribution. Shown are the pop­
ulations n„ for n = Tlx -\-ny,riy =  0, € {0,1,2 ,3 ,4 ,5,6}. Section 2.7.1 on
page 81 describes in detail how the values in the table are calculated.

used in the data analysis of the results of the resolved-sideband Raman cool­

ing quantum Monte Carlo wave-function simulations. This is complemented 

by figure 2.15, which shows the population distribution for a set of values of 

/?, where

P =
hujQ (2.115)

2.8 Conclusion

In this chapter I have given an introduction to optical lattices and their 

properties. The chapter started with an introduction to light-shifts in near­

detuned optical lattices and a formalism on how to calculate them was intro­

duced. This was followed by an treatment of light-shifts on non-dissipative 

optical lattices. In this section the idea of a fictitious magnetic field was in­

troduced and a compact form of the light shift Hamiltonian deduced. Then 

the effects of static magnetic fields in optical lattices were reviewed, followed 

by some examples of optical lattices. To deduce the allowed energy states
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of bound atoms in optical lattices a Bloch formalism was used to deduce 

the energy bands in the lattice and to construct a basis of localized Wannier 

functions. Lastly, the population distribution over vibrational levels in an 

optical lattice was discussed in detail and the harmonic model extended to 

take account of the anharmonicity present in a real optical lattice. Equipped 

with those tools, we can now move on to discuss the powerful formalism of 

QMCWF simulations in the next chapter.
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Figure 2.15: The figure shows the population distribution of a 2D anharmonic oscilla­
tor for 12 different vibrational temperatures for i/  ̂ = n  and Vy =  0 . The maximum light 
shift is U q  —  2 3 0  E r .  Each colour represents one of a set of vibrational temperatures 
ranging from 1 fiK to 12 fiK.



Chapter 3

Resolved Sideband-Ram an

Cooling

3.1 Introduction

One of the great challenges of modern science is to prepare, manipulate and 

measure the quantum state of a physical system. Indeed the ability to carry 

out these types of operations reliably is one of the main requirements to imple­

ment quantum computational schemes. Mastering the control of a system of 

quantum states may also allow us to study the detailed interaction of atoms 

with their environment and investigate how they respond to perturbations 

introduced in a controllable fashion.

An interesting system to study in this context are non-dissipative optical 

lattices discussed in section 2.2. The main advantage they provide is the 

isolation of the atoms from their environment. Subsequently, incoherent in­

teractions can be deliberately introduced to study in detail the decoherent

92
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responses of the system related to them. In these structures bound by light 

the scattering of lattice photons is highly suppressed compared to a similar 

near-detuned system. Another advantage is the ability to easily manipulate 

a wide range of physical parameters which characterize the trapping poten­

tial. These can be achieved through changes to the laser beam geometry, 

beam polarization, laser frequency and the addition of static electric or mag­

netic fields. Also the multi-level nature of the atom-lattice interactions let 

us explore Hamiltonian evolutions beyond the Jaynes-Cummings modeH and 

open up a window to a wide variety of theoretical and experimental stud­

ies [42]. Another encouraging fact is that the incoherent processes present in 

photon-atom interactions can largely be suppressed in the far-detuned regime, 

allowing atomic wavepackets to evolve coherently over longer times [48].

The aim of this chapter is to present theoretical work done on the 2D 

Raman cooling scheme presented in [49] and of a discussion of our own imple­

mentation of a 3D Raman cooling scheme. To implement an efficient Raman 

cooling scheme two basic ingredients are needed. First optical potentials have 

to be designed to provide an efficient trapping potential with well defined lo­

cal polarization variations. Secondly the lattice needs to provide a suitable 

Raman coupling which can transfer enough atoms to the ground state before 

recoil heating becomes important. The design of optical potentials was al­

ready described in 2.2 on page 54. In this chapter we deduce an expression for 

Raman coupling in 2D and 3D optical lattices. The 2D scheme is then used in 

the next chapter to implement a theoretical description of resolved-sideband 

Raman cooling in 2D with the aid of a quantum Monte Carlo formalism.

^Interaction of a spin-4 system with an harmonic oscillator.
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3.2 Resolved Sideband-Raman Cooling

TUf =  3 rrif = A TTif = 5
F' =  5

=  4

F' =  3

F  =  4

F  =  3

|Fe =  5 >

Figure 3.1: Raman cooling level scheme. Two vibrational levels are brought into 
resonance by a transverse magnetic field. Raman transitions transfers populations 
from \rrif =  4 ,n  >  to \m.f =  3 ,n  — I >  represented by the dark blue arrows 
(coherent coupling). By optical pumping (red arrow) with the Raman pumper 
beam ((%+ polarized), tuned to F  =  4 F ' =  4, the atom loses one quantum of 
vibration in the overall process. After several cycles most o f the atoms end up in 
the vibrational ground state. The atoms can also decay to F ' =  3 and are recycled 
by a Raman repumper beam (<7  ̂ polarized), tuned to the F  =  3 F ' =  4 
transition.

Resolved-sideband Ram an cooling was discussed in detail by Jessen and 

Deutsch in |42] and the first experim ent was successfully undertaken in 1998 

[49]. As described earlier the atom s are in the tigh t binding regime and are 

found mostly a t the bottom  of the potential wells. Thus tunnelling between 

different potential wells is negligible and we can consider each potential well 

independently from each other. At the potential minimum, i.e. a t locations 

of maximum light shift, the optical potential has pure circular polarization. 

Hence th e  most deeply bound states have negligible adm ixture of Zeeman 

sub-states other than  m  =  ± F .
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If now vibrational levels associated with different light-shifted surfaces 

become degenerate by applying an external magnetic field (c.f. figure 3.1), 

a coupling between these two surfaces is established. The coupling strength 

is described by a transverse component of the fictitious magnetic field (c.f. 

equation 2.62 on page 63 in section 2.3). Thus the near-degenerate vibra­

tional levels get coherently mixed and population transfer between them is 

initiated. Resolved-sideband Raman cooling relies on this coupling between 

magnetic sub-levels in an atom. Figure 3.3 on page 97 shows the two low­

est energy light-shifted potential surfaces of a a'*' potential well, belonging 

to the magnetic sub-levels m /  = 4  and m / =  3 respectively. Superimposed 

on them is their corresponding band-structure. In the following the consider 

atoms bound in the optical lattice with an angular momentum of F  =  4 in 

sub-states with magnetic quantum numbers m / = 4 and rrif = S. These 

are described by kets of the form |F, m /). Each potential well possesses a 

vibrational manifold associated with it. This is described by the state kets 

\n = tIx4 - riy) where n is the vibrational quantum number. Hence the atoms 

are being described to be in states |F, m /) (8> \n) = |F, rrif) |n). By applying a 

weak magnetic field with the appropriate sign and magnitude the level pairs 

|F  =  4,771/ =  4) |ti) and |F  =  4 ,m / =  3) |t7 — 1) can be brought successively 

into degeneracy. The necessary magnetic field strengths are shown in Fig­

ure 3.4 on page 99. An optical coherence between this level pair is introduced 

by an added 7r-component to the lattice optical field. This coupling initiates 

a coherent evolution between the two states and is often referred to as Rabi 

oscillations. By adding a Raman pumper beam with cr+ polarization to the 

system the population in \4^rrif = 3) \n — 1) can be optically pumped into the
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Figure 3.2: This figure shows a three-beam 2D optical lattice. The polarizations 
of the lattice beams is in the plane. The beam along the ^-direction has 
an additional 7r-component with a phase shift of ip with respect to the in-plane 
component.

excited state manifold F' = 4. Since we are in the Lamb-Dicke regime this 

level predominantly decays into |F  = 4, m/ = 4) |n — 1), i.e. the wavepacket 

predominately preserves its symmetry.

There is also the possibility for the atom to decay into the F  = 3 manifold. 

The disadvantage in this case being that atoms decaying from F' = 4 end up 

on a potential hill. Leaving the atoms too long in this level causes unwanted 

heating and spreading of the atomic wavepacket. To avoid this a Raman 

repumper beam with the same polarization as the Raman pumper beam is 

used to recycle these atoms quickly back to the F ' =  4 manifold providing 

quick enough recycling before the atomic wavepacket can evolve significantly. 

Looking at the transition strengths given in [22] we see that the repumper 

beam can efficiently pump the atoms back into the F' — A manifold. On av­

erage the atoms scatter one pumper and one repumper photon in one cooling
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Figure 3.3: The figure shows the band-structure for a potential well with ruf 
3 (dashed) and m / =  4 (solid). The maximum light shift is U q  =  150E r

cycle [49], an assertion that is also supported by our quantum Monte Carlo 

simulations.

Figure 3.2 on the preceding page shows the beam configuration for a 

three-beam 2D lattice. The beam along the y-direction has an additional 

TT-component with a phase shift of cp with respect to the in-plane component. 

This additional component provides the Raman coupling.

The first step in the modelling of resolved-sideband Raman cooling was to 

use the already implemented band structure code to deduce the vibrational 

levels structure as shown in figure 3.3. The potential wells for F=4 with 

m / = 3 (dashed) and rrif =  4 (solid) are shown and the corresponding band 

structure is superimposed. This allows us to calculate the necessary magnetic 

fields to bring the two levels |F  =  4, m/ =  4) |?t) and \ F  =  4, m j  =  3)  \n — 1)
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Transition Br in mG
|4 ,4 ) |1 > ^ |4 ,3 )  |0) 21
|4,4) |2 )^ |4 ,3 ) |1 ) 25
|4,4> |3 ) ^ |4 ,3 )  |2) 28
|4,4) |4 ) ^ |4 ,3 )  |3) 31
|4,4) |5 ) ^ |4 ,3 )  |4) 34

Table 3.1: This table shows calculated values for the required magnetic field 
Br to bring the levels involved in the corresponding transition into resonance.

into resonance. As an example, the R-fields necessary for a lattice with max­

imum light shift of U q =  150 E r to bring the levels |4,4) \n )  and |4,3) \n  — 1) 

into resonance are shown in table 3.1. These results are readily used in the 

simulations implemented in the next chapter.

Extending the existing Matlab code base, these calculations have been au­

tomated to produce graphs like figure 3.4. These show the calculated ^Raman 

versus well depths. This information is subsequently used to aid the choice 

of our experimental parameters. The graph also shows that the lowest tran­

sition crosses the zero B-field line at around 247 E r . This is an upper limit 

for the maximum light shift we can chose in our experiments^.

Another useful number can be determined by looking at the first and 

second Raman sidebands. Taking the difference between the magnetic fields 

required to bring a pair of vibrational states into resonance, one with An =  1 

and An =  2, we see that this is nothing more than the energy difference 

between the second and first exited state of the m / =  4 potential. Hence this 

method provides an independent measurement of the vibrational frequency 

of an optical lattice by invoking the relation^ A E [E r] =  0.17 x  B[mG].

^We usually work in the regime of small light-shifts, U q < 247 E r .
^This can easily be derived by considering the Zeeman energy shift formula, substituting 

for the constants and changing units to E r  and mG.
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This finishes our short introduction to resolved-sideband Raman cooling. 

The next section describes the scheme used in our experiments.

B v s  m axim um  to tal ligtit stiift U

-4 0

-6 0

-80
50050 too 150 200 250 300 350 400 450U„/E,

Figure 3.4: The figure shows the required Raman magnetic field for different maximum 
light-shifts. From this graph we can can read the required Bpaman range for a given 
maximum light shift, ( b l u e )  : | 4, 1 |3 ,0  ( g r e e n )  : | 4, 2 > —̂ | 3 ,1 > , (red) :
I 4,3 > —> I 3,2 >, ( l i g h t  b l u e )  : | 4,4 > —̂ | 3,3 >, ( l i l a c )  : | 4, 5 | 3,4 > .

3.3 Scheme used in our experiment

There are different experimentally feasible implementations of resolved-sideband 

Raman cooling in a 2D optical lattice possible. We have chosen to follow the 

experimental realization of [49] and a more in-depth description can be found 

in it. The only difference to the configuration discussed in the paper is how 

the beam configuration is orientated. In our experiment the beam configu­

ration is rotated by 90° as shown in 3.5 on the next page with respect to
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120 '

Figure 3.5: This figure shows the beam configuration we use in our experiment. Note 
that it is the same configuration used in [49] but rotated by 90°.

the one in the paper. We have chosen this beam configuration due to space 

constraints on our optical bench.

First the atoms are trapped with a MOT. After that they are loaded into a 

near-detuned lattice and subsequently adiabatically transferred to a superim­

posed far-detuned lattice. The use of non-dissipative potentials is necessary 

to minimize the interaction of the atoms and the lattice beams so to avoid 

unwanted heating. Then the atoms in the optical lattice are spin-polarized 

to maximize the population of the proper magnetic sub-states used in the 

following Raman cooling cycle. Next a static magnetic field introduces an 

additional energy shift to the magnetic sub-levels and brings the lowest pair, 

|F  =  4,m / =  4 ) |l)  ^  |F  =  4 ,m / =  3) |0), into resonance. The subsequent 

Raman cooling cycle splits into two processes, a coherent evolution and an 

incoherent scattering event. The Raman coupling is strong enough to also 

provide coupling to higher lying state pairs. The atoms descend the vibra-
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tional level ladder and end up in the lowest state of the m / =  4 vibrational 

manifold. We have achieved resolved Raman sideband cooling in our ex­

periment and experimental results will be discussed in the next chapter in 

context with our simulations. With this method we can prepare the atoms in 

the lowest vibration state of motion. Up to 80% end up in this ground state, 

far above the maximum value of ~  30% achieved by polarization-gradient 

cooling alone corresponding to a temperature of «  1 /xK. Elsewhere tempera­

tures down to 290 n K  have been observed [50] with similar resolved-sideband 

Raman cooling schemes. This leads us to deduce expressions for the Raman 

coupling strength in 2D and 3D in the remainder of this chapter.

3.4 Calculation o f the Raman Coupling in 2D

In this section I will derive an expression for the Raman coupling matrix 

elements given the spatial dependence of the optical field in the optical lattice. 

Section 2.3 on page 57 describes in detail how the lattice electric field can 

be derived for an arbitrary beam configuration. We follow the treatment of 

Jessen and Deutsch [42] using the electric field of a 2D lattice, which is given 

by

■p p -iky
E l (x) [ -  e+ {1 -1- cos (K^x)}

+  e_ {1 +  cos (K^x — 29)} ]
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where = ks in 6 , Ky =  k(l  cos#), Ei is the single beam amplitude 

and Gq the unit vectors of the rotating basis, Gq E { g+ , g_ , g,t}- The lattice 

electric field contains a 7r-polarized component with a real amplitude Ejr and 

a relative phase e*̂ . The beam configuration for this symmetry is shown in 

figure 3.2 on page 96 and for simplicity in the following, the relative phases 

of the beams were chosen so as to put a maximum of the intensity of the 

cr^-polarized light at the origin.

From equation 3.1 on the preceding page we can derive the effective field 

governing the coupling between the \m= F) and |m =  F  — 1) levels using the 

optical potential 2.50 on page 58 and substituting for the local polarizations 

from equation 3.1 on the preceding page. The effective magnetic field Bes is 

then given by

{2 sin e sin (K^x -  6 ) cos (KyV -  y)

2i cos 9 cos (K^x — 9) sin (Kyy — y?) — z sin </?}.

Here Ui represents the single beam light shift. The coupling matrix elements 

are given by (cf. equation 16 in [42])

C/,m,m±l — 2F (3.3)

where Btot is given by the sum of the effective and all external magnetic fields 

applied, Btot =  Bgc +  Bext, ^  the vibrational level under consideration in the
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respective manifolds | m ± l , n ± l )  and |m, n). F± is the Pranck-Condon 

overlap given by

F± |F, ttif) — hy/F(F  +  1) — m{m ±  1) \F, m ± l ) (3.4)

Substituting 3.2 on the page before into 3.3 on the preceding page and ex­

panding around the minimum of the potential well at the origin to first order 

in the small parameters kx  and ky results in [42]

+ i [ e ' * - ^ e  ' A  ky] | . •f’)
(3.5)

Ui
i e  I |n !,}  ,

V 2 F E 1

+ ( { « ; } ,  F  -  1 1 i { e ^  -  ky \ {« ;}  ,

+  ( { n l ,n 'y } ,F - l  (3.6)

where a harmonic approximation for the vibrational levels was used. Choosing 

=  7t/2  gives maximum coupling for the odd parity states in which case the 

coupling matrix elements for vibrational change of one quantum along x  and 

y can be rewritten as

r{y) (3.7)
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where

, (3.9)

" '-A # ' ■ <“ “>
Here r} is the Lamb-Dicke parameter and is given by

For the worst possible phase of ^  =  n7r,n G No, both couplings have equal 

magnitude.

Figure of merit for coherent manipulation

Jessen and Deutsch define a figure of merit k for coherent manipulation in [42],

K =  —— )$> 1. (3.12)

In this definition H/Ur  is the time scale for coherent manipulation and % the 

photon scattering rate. For good coherent manipulation of the atomic state 

one requires that the time scale H/Ur  for coherent evolution is shorter than the 

lifetime of the Raman coherence between the states |F, n) and |F  — 1, n +  1). 

The latter one is dominated by the decay of the \F — l ,n  +  1) due to optical
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pumping which is of order of magnitude of the inverse photon scattering rate 

7 7 .̂ Jessen and Deutsch derived for the 2D configuration

The larger this figure of merit is the better. Consider for example Cs {F =  4) 

in a lattice with Ui = 54 E r, A =  —5 • lO^F and Et̂ =  0.3EJi, which are 

similar in order of magnitude to values used in our experiment. Substituting 

this into equation 3.13 gives k % 13. It can easily be seen that increasing the 

detuning, provided that sufficient laser power is available, or increasing the 

TT-component E t̂ can improve the feasibility of coherent manipulation. We 

recently bought a Ti-Sapphire laser which can provide sufficient power for 

much higher detunings A than the MOPAs used before.

Figure of merit for sideband cooling

As we are interested in preparing most atoms in the vibrational ground state,

i.e. preparing well localized Wannier states, a figure of merit for sideband 

cooling can be defined. Since the atoms are in the Lamb-Dicke regime, 

resolved-sideband Raman cooling allows in principle the removal of one quan­

tum of vibration every few oscillation periods. This means that the vibra­

tional excitation must be much smaller than the oscillation period of the 

atomic wavepacket, i.e.

WoBc- (3.14)

In the harmonic approximation this condition can be rewritten as



3.4. CALCULATION OF THE RAM AN COUPLING IN 2D 106

(^ )  » %
This condition is easily met by several orders of magnitude in lattices with 

detunings of more than several thousands line widths. Considering now the 

time scale of population transfer in resolved-sideband Raman cooling, a 

figure of merit for sideband cooling can be defined as

=  «' >  1. (3.16)

The rate of vibrational excitation is to leading order in the Lamb-Dicke pa­

rameter rj given by

—  =  75 {AkzoŸ . (3.17)

In this relation, % is the photon scattering rate of the lattice beams and (HAk) 

the mean-squared momentum transfer of a photon scattering event, calculated 

by averaging the momentum components along the lattice directions over the 

dipole emission pattern. Last and not least, zq is the ground-state variance 

and is related to the Lamb-Dicke parameter to lowest order by

7) = kiZQ = y/Er/hJosc (3.18)

where we have ignored the difference in curvature of the wells involved. Jessen 

and Deutsch deduced in [42] for the figure of merit for sideband cooling in a 

configuration as in figure 3.5 on page 100
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4  «  0 . 1 7 ^ ^  ( 1 ^ )  , 4  =  3 4 . (3.19)

For parameters used in our experiment(C/i %; 54Er, A 1% — lOOOF, E'tt/Fi

0.3) the figure of merits are ^  553 and k % 1659.

3.5 Calculation o f the Raman Coupling in 3D

This section discusses resolved-sideband Raman cooling in a 3D far-detuned 

optical lattice. The configuration chosen is the one depicted in figure 2.8 on 

page 70. One advantageous property of this configuration is that phase fluc­

tuations in the laser beams translate only into spatial shifts of the locations 

of maximum light shifts and do not change the structure of the lattice as 

such [3]. Raman cooling in higher dimensions is an important tool which can 

improve the accuracy of atomic clocks and deliver a more advantageous start­

ing point for atomic fountains. This section is structured in the following way. 

We place a well at the origin. Then a Raman coupling is introduced by 

adding a 7r-component to the electric lattice field. This is achieved by tipping 

the polarization of two lattice beams out of their usual position. It is found 

that the magnitude of the Raman coupling connecting states with A m  = 1 

is a function of the relative spatial phase of the <r and tt field components. 

Therefore, the Raman coupling for this configuration is calculated and the 

optimal relative spatial phase of the vr-component, which maximizes the odd 

coupling, is deduced. Last the coupling matrix elements are derived. A closer 

look at the various 7r-components resulting from the tipping of different pairs
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of laser beams shows that we have to tip the polarization of two beams having 

opposite sign of out of their usual positions. Tipping the polarization of 

two beams with the same sign of kz doesn’t work and no Raman coupling is 

induced along the 2 -direction. Figure 3.6 shows the configuration we are sug­

gesting for resolved-sideband Raman cooling in 3D and our choice of lattice 

beam which are going to be tipped. The named quantities shown are also 

used in the subsequent equations in this section.

having phase <̂ i

Looking along 
. laser beam  /

Looking along 

V. laser beam  /

having phase

Figure 3.6: This figure shows a possible beam configurations to achieve resolved- 
sideband Raman cooling in a 3D optical lattice. The beams are numbered 1-4. 
The polarizations of beam 1 and 4 are tipped out of their usual position by an 
angle or 0 : 4  respectively. Additionally a phase shift <^14 respectively is 
applied to the 7r-components of beams 1 and 4 to maximize the odd parity 
coupling. The green arrows represent the wave vectors of the corresponding 
lattice beam.

In this configuration we can introduce a phase shift to the two tipped beams 

by changing their linear polarization to an elliptical one. This elliptical po­

larization can be decomposed into two orthogonal linear polarizations with 

arbitrary phase shift between them (cf figure 3.7). We will exploit this later
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to maximize the odd Raman coupling which couples states of different parity. 

There are two possible configurations. We can vary the phases between the

orthogonal components of each tipped lattice beam individually. This gives

rise to the cases where

1. <̂ 1 ^ 0  and ( ^ 4  =  0

2 . ^ 1 ^ 0  and < ^ 4  ^  0 .

To deduce the lattice light-field, a script using the symbolic toolbox in Matlab 

was written. The necessary quantities needed in the implementation of the 

script are the wave vectors for the different lattice beams and the polarization 

vectors of each beam. The wave vectors are shown here and are the same for 

both cases:

ki =  &

y cos# y

ko — k

^sin#^

y cos 6  y

ks =  k — sin#

— cos#

 ̂ 0 ^

sin#

y— COS # y

The numbering of the wave vectors follows the scheme described in figure 3.6. 

The polarization vectors are listed in the appropriate section below including 

the phase shifts.
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3.5.1 Tipped configuration with one beam having a 

phase shift ( f i

In this configuration we tip the polarization of the beam numbered 1 in figure 

3.6 by an angle ai counterclockwise. We then can decompose the resulting 

polarization vector into two orthogonal components, one along the original 

direction'^ and one perpendicular to it. By varying the relative phase between 

the two components we can maximize the odd coupling and the resulting 

polarization is elliptical. This situation is shown in figure 3.7.

Qi

Figure 3.7: This figure shows what happens when we tip one of the polarizations 
out of the its normal position by an angle a i .  When the phase shift y? is zero, the 
resolved components (blue) are in phase and the sum polarization vector of both 
components is linear (red). Adding a phase shift (p ^  0 to  one of the components 
produces elliptical polarization as is shown for a phase shift of

Hence the polarization vectors used to deduce the total light-field including 

along ûi = 0.
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a phase-shift are given by

Pi cosai 

° /

+

^cos 9 sin Ofi exp(i^)^

0

sinai sin ̂  exp(%y?)

^cos 6  sin « 1  exp(i(^)^

cos ai 

sin ai sin 0  exp(2 </?)

( i \ /  \
COS OÎ4

1 P 3  = 0 P 4  = — COS 9 sin « 4

 ̂ sin « 4  sin 0  y

P2

We can then write the electric field vectors of the lattice beams as

El =  Ai Pi exp(% ^ ( k i  • r)) E 2  =  ^ 1  P2  exp(i ^ ( k g  • r))

Eg =  Ai p 3  exp(z ^ ( k g  • r)) E 4  =  Ai p^ exp(i ^ ( k 4  • r)) (3.20)

Thus the total light-field decomposed into its circular components reads as

= ^ ( 1  — — cos Usinai exp(i<^i) exp(—ifcrcsin^ +  ikz cos 0 )

— exp{—iky  sin 9 — ikz  cos 9) — i cyjp(ikx sin 9 +  ikz cos 9)

— cos Q!4 exp(«fcy sin 9 — ikz cos 9) — i cos o;i exp(— sin 9 T ikz  cos 9)

— i cos 9 sin 0 : 4  exp(zA:  ̂sin 9 — ikz cos 9) |  (3.21)
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E_ = ^ ( 1  — z ) | cos^sinai exp(iipi)exp(—ikx sin 0 -\-ikz cos 9)

+ exp(—ikysm9 — ikz cos 6 ) — iexp(ikxsm9  +  ikz cos 9)

+ cos « 4  exp(iky sin 9 — ikz cos 9) — i cos a\ exp{—ikx  sin 9 +  ikz cos 9) 

— i cos 9 sin « 4  cxp(iky sin 9 — ikz cos 9) |  (3.22)

Et, — ^ I  — ( 1  — z) sinai exp(z(/?i) + (!+%) sin « 4

-^ikx{\  — i) sin Usinai exp(2 (/?i) -\-iky{l + z) sin 0 sino ;4  

— zfc^cos^ [(1 +  i) sin A4  + (1 — i) sin Ai exp(z</?i)] |  (3.23)

Using the formalism described in section 2.3 on page 57, the Raman coupling 

can be deduced using [42]

( { n '} ,m ± l |  [B^t^iBS^]F±|{ra},m)

where Btot is the sum of the external and the effective magnetic field. Sub­

stituting equations 3.21, 3.22 and 3.23 into 2.60 we deduce for the effective 

field governing the coupling
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%  +
V2

i U i ^  Atj.
48 v4]

Si sin « 4  + 8  cos (pi sin a i +  8  cos ̂ pi sin a i cos « 4

— 8 % sin «I sin (/?i +  8 z cos ai sin « 4  — Si cos «i sin Qi sin ipi 

+  4 cos ifi sin 0 ! 4  sin +  4i cos ipi sin « 4  sin ai

+ kx(4y/3 sin (pi sin «i +  2\/3 sin sin « 4  sin «i 

+  4 V s  sin ipi sin Q i c o s  « 4  +  2i\/3 sin sin sin Q i 

+ 8% Vs sin ai cos (/?i)

+ % ( 8 VSsin Q4  +  4 Vs sin ( ^ 1  s inai cos « 4

— 4 Vs sin (fi sin a i + 2 Vs sin ipi sin « 4  sin a i 

+  2 % Vs sin sin « 4  sin Qi)

+ 8  sin ( ^ 1  sin a i — 8  sin y?i sin a% cos 0 : 4

— 4 sin ipi sin « 4  sin «i — 4z sin ( ^ 1  sin « 4  sin «i )

} (325)

We are interested in the matrix elements hence substituting S.25

into S.24 allows us to find the functional dependence of the Raman coupling 

around the minimum of the potential well. Furthermore we use the harmonic 

approximation for the band structure. Thus we find for to first order for the 

Raman coupling for the small parameters kx, ky and kz,
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Si sin « 4  +  8  cos ipi sin «i +  8  cos ipi sin ai cos « 4

— Si sin « 1  sin (fi +  Si cos a\ sin 0 : 4  — Si cos a\ sin ai sin ipi 

+ 4 cos If I sin « 4  sin ai +  4i cos f i  sin « 4  sin ai

+ kx{4:Vs sin (fi sin ai + 2 y/S sin f i  sin sin o;i 

+ 4 Vs sin f i  sin Q i c o s  0 : 4  +  2i\/3 sin ( ^ 1  sin sin a i  

+ Siy/S sin ai cos f i )

+ Art/ ( 8  Vs sin « 4  +  4 Vs sin cpi sin ai cos « 4

— 4 Vs sin f i  sin ai +  2 Vs sin f i  sin « 4  sin Qi 

+ 2 i Vs sin (/?i sin « 4  sin «i )

+  kz(—S sin (/?! sin 0 !i — 8  sin (fi sin a i cos « 4

— 4 sin (/?i sin sin «i — 4i sin ( ^ 1  sin « 4  sin 0 :1 )

I  \{ria:,ny,n^},F) (S.26)

Maximum coupling is achieved for a phase of (/? =  ± |  as can be seen from 

figures S.8 and S.9. For a choice of phase of ^ the odd Raman coupling has 

equal magnitude for the x  and ^-coupling and the 2 -coupling is maximized. 

Another interesting choice of phase is at 9? =  0 , where the 2 -coupling vanishes. 

Here the x  and y coupling have equal magnitude again. Thus we have the 

situation of 2D Raman cooling in a 3D lattice. Choosing ^  |  to maximize
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Figure 3.8: This figure shows the phase dependence of the odd Raman coupling
for Qi =  «4.

the odd coupling term, the matrix elements for a vibrational change of one 

quantum along jr, y and z are hence

Up)p_i % (2zsinof + 2% sin a  cos a  T sin^ a(i — 1)) (3.27)

~  —̂ URTjy  (2 is in a  +  2% sin a  cos A +  sin^<a(z — 1)) (3.28)
V3

^^F,F-i ^  Ur r}z(2i sin a j-2i sin a  cos a  d sin^a(z— 1)  ̂ (3.29)
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Figure 3.9: This figure shows the phase dependence of the odd Raman coupling
for Ofi =  —a 4 .

U r  = ^ 1 2  Ai

where the Lamb-Dicke parameters are

(3.30)

f x̂,y,z E r
huj. (3.31)

x,y, z

Thus it is possible with this configuration to implement 3D resolved-sideband 

Raman cooling. The next step is to investigate the situation where both 

tipped beams possesses a phase shift.
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3.5.2 Tipped configuration w ith  two beam s having phase 

shifts or (̂ 4 respectively

This part covers the deduction of the Raman coupling strength when we vary 

the phase relation between the orthogonal components of each tipped beam 

independently by or ( ^ 4  respectively. Again a well is shifted to the 

origin. Changing the relative phase between the polarization components of 

each tipped beam, the polarization vectors used to deduce the total light-field 

including the phase-shifts are thus given by

Pi cos a i  

0

+

^cos 6 sin «1 exp(z(/?i)^ 

0

^sinofi sin^exp(2(/?i)y

^cos Usinai exp(%Y?i)̂  

cos «1 

^sin a i  sin 9 exp(%y?i ) y

P2

( i )

1 P 3  = 0

[ V kV

P 4

I  \cos «4 

0 

0

+

(

\

0

-  COS 9 sin «4 exp («994) 

sin 0:4 sin 9 exp («(^4)

\ ( \cos «4

— COS 9 sin «4 exp(2y?4)

^ sina4sin0exp(z(^4) y

We can then write the electric field vectors of the lattice beams again as
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El =  Ai Pi exp(i ^ ( k i  • r)) Eg =  Ai  pg exp(% ^ ( k g  • r))

Es =  Ai  ps exp(« ^ ( k s  • r)) E 4  =  Ai  p 4  exp(i ^ ( k 4  ■ r)) (3.32)

and deduce the different components of the total light field as

E+ = - ^  j  — cos 6  sin ai exp(«(^i) &cç>{—ikx  sin 0 +  ikz cos 9 — —)

îTT
— exp(—2% sin 6  — ikz cos 9 — —)

27T
— cos «4 exp(î(^4) exp(2% sin 9 —  ikz cos 9 — —)

ZTT
— 2 cos a \  exp(—ikx  sin 9 + ikz cos 9 — —)

27T
— 2 exp(2A:T sin 9 +  ikz cos 9 — — )

—  2 cos 9 sin «4 exp(2< 4̂) exp(2% sin 9 —  ikz cos 9 —  |  (3 .33 )

E -  j  cos Usinai exp(2 y?i) exp(—2 A;T sin^ +  ikz cos 9 — ^ )

iiT
+  exp(—ifcy sin 9 — ikz  cos 9 — —)

Z7T
+  cos « 4  exp(2 (/?4 ) exp(2 %  sin 9 — ikz cos 9 — —)

VK
— 2 cos ai exp(—ikx  sin 9 + ikz  cos 9 — —)

27T
— 2 exp(2 A:T sin 9 + ikz cos 9 — —)

— 2 cos 9 sin Of4  exp(2 (/?4 ) eyi^{iky sin 9 — ikz cos 9 — ^ )  |  (3.34)
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Ett =Ai  sin — sin Qi exp(%( î) exp(—zfcrc sin 6  +  ikz cos 6  —

+ sin « 4  exp(2 )̂4 ) exp(2 %  sin 6  — ikz  cos 6  — ^ ) } (3.35)

Again we have chosen ^ =  f . Using these local polarization vector compo­

nents, we can easily deduce the effective magnetic field,
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_ iU iy /^A^(
24 A l l

— Ai cos 0 ( 1  sin ai sin <̂ i +  4 sin « 4  sin ( /? 4 +  Ai cos ai sin ( 1 4  cos ( ^ 4  

+ 4 sin ai cos ipi +  Ai sin « 4  cos </?4 +  2 sin « 4  sin o;i cos(< î — (̂ 4 )

+ 2i sin « 4  sin ai cos((^i — y?4 ) +  4 cos((^i — (̂ 4 ) sin ai cos « 4

— Ai sin Qi sin

+ kx{2 y/S sin a i sin (fi +  y/S sin 0 : 4  sin a i sin(y?i — (/?4 )

+ 2>/3sin((/?i — (̂ 4 ) sinai cosa 4  +  2 i'\/3 sina 4  sin ( ^ 4  

+ 2 \ / 3 sina 4  sinai sin(</?i — (̂ 4 ) — 2%\/3cosai sina 4 sin ( ^ 4  

+ AiVs sin a i cos (/?i )

+  ky{y/3 sina 4  sin a i sin((^i — (̂ 4 ) +  2 y/S sin((^i — (P4)  sin a i cos a 4  

+ 4 Vs sin a 4  cos ( ^ 4  +  iVs  sin a 4  sin a i sin(y?i — (̂ 4 )

— 2 iy/s sin a 4  sin ( ^ 4  — 2 zVs cosai sin a 4  sin ( ^ 4  — 2 Vs sinai sin (pi)

+ kz{—A sin(y?i — (̂ 4 ) sin a i cos a 4  — 2 sin a 4  sin a i sin((/?i — y?4 )

— 4 sin a i sin (fi +  Ai cos a i sin a 4  sin ( ^ 4  + Ai sin a 4  sin ( ^ 4

— 2i sin a 4  sinai sin((^i — (̂ 4 ))|  (3.36)

We are interested in the matrix elements hence substituting 3.25

into 3.24 allows us to find the functional dependence of the Raman coupling 

around the minimum of the potential well. Furthermore we use the harmonic 

approximation for the band structure. Thus we find for to first order for the
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Raman coupling for the small parameters kx^ ky and kz,

f ' -  1 1 1%  f  \{n^,ny,n^},F)

— 4i COS ai sin ai sin v̂ i +  4 sin sin ̂ 4  +  4i cos ai sin « 4  cos ^ 4  

+ 4 sin Qi cos kpi +  4i sin CK4  cos ( ^ 4  +  2  sin 0 ^ 4  sin ai cos(c^i — <̂4 )

+  2i sin « 4  sin a i cos((^i — <̂4 ) +  4 cos((^i — (̂ 4 ) sin a i cos « 4

— 4i sin « 1  sin (/?i 

kx{2\/Z sin a\  sin +  Vs sin Q4  sin a\ sin((^i — (̂ 4 )

2 Vs sin((^i — (̂ 4 ) sin a\  cos 0 : 4  +  2%V3 sin « 4  sin ( ^ 4  

zVS sin « 4  sin o;i sin((^i — (̂ 4 ) — 2i\/3 cos qi sin « 4  sin ( /? 4

+

+

+

+ 4i Vs sin Qi cos ipi)

+ ky{Vs  sin sin ai  sin(< î — (̂ 4 ) +  2 VS sin(v?i — (̂ 4 ) sin ai  cos « 4  

+ 4 Vs sin « 4  cos y? 4  +  %Vs sin « 4  sin «i sin(y?i —

— 2 % Vs sin A4  sin y? 4  — 2 ïVScosq;i sin « 4  sin ( /? 4 — 2  VS sinai sin y?i)

+  kz{—4 sin((/?i — (̂ 4 ) sin a i cos a 4  — 2 sin a 4  sin a i sin((/?i — ip̂ )

— 4 sin a i sin <pi +  4i cos a i sin 0 4  sin ( ^ 4  +  4i sin sin ( ^ 4

— 2 i sin a 4  sin a i sin((^i — (̂ 4 ))

} \{rix,riy,n^},F) (S.S7)

Maximum coupling is achieved for a phase of (̂  =  ( ^ 1  =  ( /? 4  =  f  when a i =
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« 4  as can be seen from figures 3.10 on page 124. If we choose ai =  — « 4  

and (fi = — ^ 4  the optimal phase is % 6 8 ° (cf 3.11). In the following, we 

calculate the coupling matrix elements for the case depicted in figure 3.10 

for which ai = « 4  and <̂ =  <̂ i =  </?4 =  f . For this choice of phase the odd 

Raman coupling has equal magnitude for the x  and y-component and the z- 

component is maximized. Thus the matrix elements for a vibrational change 

of one quantum along rr, y and z are hence

\/3
^F^F-i ^  (sina(i — 1) +  cos a  sin a) (3.38)

r{y) - \ / 3^F,F-i ^  (sin «(I — i) +  cos a  sin a) (3.39)

^  'Hz (— sin « ( 2  +  1 ) — cos a  sin a) (3.40)

where the Lamb-Dicke parameters are

(3.42)
•^x,y,z
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3.6 Conclusion

In this chapter I have discussed resolved-sideband Raman cooling in two and 

three dimensions. The 2D case is based on the paper by Jessen and Deutsch 

[42], whilst I have investigated an original scheme for Raman cooling in 3D. 

Quantum Monte-Carlo wavefunction simulations have been implemented for 

the 2D case and the results are presented and discussed in the next chapter. 

It is of interest to implement and run also simulations for the 3D resolved- 

sideband Raman cooling scheme discussed here. This hasn’t been done to 

date and such work is beyond the scope of this thesis.
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Figure 3.10: This figure shows the phase dependence of the odd Raman coupling 
for a i  — a 4 and ipi =  <̂ 4 . The figure for =  —« 4  gives a is similar result. The 
optimal phase to maximize the odd coupling is | .
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Figure 3.11: This figure shows the phase dependence o f the odd Raman coupling 
for a i  ^  —üf4 and =  if4 . The figure for a i   ̂ —Q4 gives a is similar result. 
The optimal phase to maximize the odd coupling is % 6 8 °.



Chapter 4

QM CW F Sim ulations

This section presents the theoretical basis used to implement a quantum 

Monte Carlo simulation of resolved sideband-Raman cooling in a far-detuned 

optical lattice. First a general introduction to the quantum Monte Carlo for­

malism is given followed the description of the general method which is the 

basis for all quantum Monte Carlo models. Then the previous treatment of 

light-shifts (cf. section 2.1 on page 37) is revisited and recast in the view 

of this quantum Monte Carlo formalism. Subsequently a detailed derivation 

of the optical Raman coupling in 2D is presented and a model system con­

structed with which resolved-sideband Raman cooling is simulated. Finally 

the transition amplitudes are calculated for the different event channels in 

the model.

125
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4.1 The Quantum M onte Carlo W avefunction 

M ethod

Dissipation plays a central role in quantum optics. In 1993 a new calculational 

approach was published in [51] and coined the quantum Monte Carlo wave­

function method. Often a master equation approach is used for small system 

coupled to a large reservoir. Here a linear equation for the time evolution 

of the reduced system density matrix is written down and traced over the 

reservoir variables of the total density matrix, i.e. ps — Tr^s (p). This leads 

to a master equation of the form

Ps =  Hg] +  /Irelax(Pg) (4-1)

where H 5  is the Hamiltonian of the isolated system and jCreiax is the relaxation 

superoperator acting on the density matrix pg. It is assumed here the density 

matrix is local in time and that p  therefore only depends on pg. This is called 

the Markov approximation.

The quantum Monte Carlo wave-function approach is equivalent to a mas­

ter equation treatment. This approach is of interest because if a Hilbert space 

of a quantum system of dimensions iV ^  1 is considered, the number of vari­

ables involved in a wave-function treatment is of order TV, whereas for a 

density matrix treatment is of order TV̂ . Hence the computational effort is 

reduced significantly. Additionally, also new insights into the study of single­

quantum systems can be gained through this method.

The article by Mplmer, Castin and Dalibard [51] provides a detailed in­
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troduction and several short examples of how this method works and how 

the formalism can be applied to real world physical problems. The interested 

reader is referred to this article for a detailed discussion of the QMCWF 

method.

4.2 QMCW F formalism and far-detuned op­

tical lattices

The aim of this section is to relate the treatment of light-shifts using a density- 

matrix formalism to the quantum Monte Carlo wave-function technique de­

scribed earlier. This is done in order to identify the appropriate Hermitian 

and non-Hermitian parts of the Hamiltonian. In the density matrix formal­

ism, the evolution of the density matrix can be written as:

f  = S { K  K  • ^-) K
(4.2)

after the excited states have been eliminated from the system, as shown in 

section 2 .1 . In this equation a  = |yp) (y?|, A is the detuning from resonance 

of the lattice beams, F the natural linewidth, d the dipole operator and £ 

the field amplitude associated with the trapping laser. This equation can be 

rewritten in a more compact form as

|Al, ^  (4.3)
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where the light-shift operator A was introduced as

A =  ^ f iA s (r ) (d  - e l )  (4.4)

Hfi =  ^  (4.6)

Here s(r) is the saturation parameter at low saturation^ and Qr is the Rabi 

frequency. To connect the two approaches we use the following reasoning:

â  = \ip) {ip\ (4.7)

. ' .à  = \(p){ip\-^\(p){^p\ (4.8)

= y { H |y )  (y| +  |y ) (y |H + j (4.9)

Substituting a non-Hermitian Hamiltonian H  =  H h — ^  composed of an

Hermitian part H h and a non-Hermitian one equation 4.9 becomes

—t
h -

(4.10)

Comparing equation 4.10 with 4.3 relates the light-shift operator \ l and 

the non-Hermitian operator 7  of the quantum Monte Carlo wave-function 

formalism to give

În the regime of high saturation,
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N 1 0 0 0

2 F
E J E ^ 0.5

ôt

Table 4.1: This table shows the parameters chosen for figures 4.2 to 4.3 
on pages 147-148. N  represents the number of atoms, A r the detuning of 
the Raman repumper, E^^/Ei the ratio of the 7r-component of the lattice 
field to the single beam electric amplitude and 6t the time step used in our 
finite difference implementation of the dynamical evolution of the QMCWF 
Hamiltonian.

zT
h  =  h „ - ^ a . (4.11)

This result is used next to derive the transition amplitudes for our model of 

resolved-sideband Raman cooling.

4.3 Im plementation

This section describes the implementation of a quantum mechanical descrip­

tion of Raman cooling using the quantum Monte Carlo wavefunction method. 

First we introduce a model system and then derive the appropriate channel 

amplitudes for the transitions involved. Finally we characterise the random 

number generator chosen and give a brief overview of the model implemen­

tation in C++.

4.3.1 The model

In this section we introduce a model for resolved-sideband Raman cooling 

which we use in our numerical simulations. The model is shown in fig-
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F  =  4

F  =  4

| n >

|n -  1 >  

l n - 2 >

|n -  1 >

n i f  =  4 mf =  3

F  =  3

Figure 4.1; Raman cooling scheme. Two vibrational levels are brought into 
resonance by a transverse magnetic field. Raman transitions transfers populations 
from |m / — 4 ,n  >  to |m / — 3, n  — 1 >  represented by the dark blue arrow 
(coherent coupling). By optical pumping (red arrow) and subsequent decay (black 
arrows) the atom looses one quantum of vibration in the overall process. After 
several cycles most of the atoms end up in the vibrational ground state. The 
atoms can also decay to F ' =  3 and are recycled by a Raman repumper beam 
tuned to this resonance (green arrow).
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lire 4.1 on the preceding page. It is the basic building block of the Raman 

cooling ladder. The full system consists of a string of these basic building 

blocks coupled together by optical pumping. The lowest vibrational state 

|4,0) is dark with respect to the Raman coupling. In this state the atoms 

accumulate after they have descended the Raman cooling ladder.

The system is modelled on a two level atom with a coherent coupling 

between the two levels |m / =  4,n) and \rrif =  3 ,n  — 1 ), known as the Ra­

man coupling, and optical pumping provided by the Raman pumper beam as 

shown in figure 4.1. To maximize the population transfer between the two 

levels |m/ =  4, n) and |m/ =  3,n — 1) , they are shifted into resonance using 

a static magnetic field. Typical values of the apphed magnetic field B r are 

of the order of 0 —> 200 mG. Figure 3.4 on page 99 shows the magnitudes 

of B r for a set of maximum light-shifts for different vibrational levels. The 

coherent coupling is provided by the lattice light itself. This coherent evo­

lution is interrupted by scattering a photon from the Raman pumper beam. 

This transfers the atom into the F ' =  4 excited state manifold from which 

the atom can decay into one of several states as described in 3.2 on page 94.

This model is used to drive a quantum mechanical description of our 

system which will provide the necessary equations to implement a quantum 

Monte Carlo simulation of resolved-sideband Raman cooling. The first step 

is to derive the Hamiltonian of our system. It is given by

H =  Ho + +  Af, +  A r  +  Ap (4.12)

Here Hq is the Hamiltonian of the isolated system being Hq|(/?) = f}w\ip)
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and the term ^  describes the motional couplings of the wave-function. 

describes the effect of the lattice light field, A r  the effect of the Raman 

coupling and Ap takes the effect of the Raman pumper beam into account. 

The wave-function of our two level system can be written as

Iv?) =  a(t) |ua (p) + b(t) \u^ (f) (4.13)

where (p represents the external part of the wave-function and the in­

ternal ones.The coefficients a and b are complex time-dependent quantities, 

which are normalized so that {p\p)  =  1. The external part of the wave­

function describes the atomic wavepacket evolving on the fight shifted po­

tential. The internal part describes the evolution in context of the vibra­

tional level structure and the ac-stark shifted rrif levels. We generally choose 

Uo, = \F = 4,rrif = 4) and =  |4,3) for a given vibrational level n in our 

two level model^. We can now substitute this expression into the Schrodinger 

equation

p — ——a p  (4.14)

yielding

\p) = a{t)ucP +  a{t)uap T à{t)u^ p  +  a(0^/3 ^  (4.15)

Multiplying the Schrodinger equation 4.14 by {pUaa{t)\ from the left, results 

in
^Remember that it splits into sub-systems connected by optical pumping
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à(t) + a{t) {tp\ip) = -  +  (</5«c,|At|vp«c>
(4.16)

{(pUc\AR\ipUc) +  ((/9W«| — |(̂ Wa) I+

Neglecting the motional coupling {(pui3 \-^\(pUa), which are the off-diagonal 

matrix elements of the kinetic energy operator, and using the fact that

(y|ÿ> =  +  Uk{x)\tp) (4.17)

we see that some terms in 4.16 cancel out and we are left with

à(t) = - iu^a ( t )  4 - 6 (f) (4.18)

We can follow the same steps by multiplying 4.14 on the page before with 

{ipuph(t)\ from the left and get

h{t) =  -iu)cc 6 (f) +  a{t) {^pu0 | Ar \̂ Pu^) -  6 (f) (4.19)

where the last term arises from {^pUa | hp\^pUa). This last term doesn’t show 

up in equation 4.18 since only levels |F  =  4, m / =  3, n — 1) are coupled to the 

excited state manifold through the Raman pumper. FJ, is the scattering rate 

and A the detuning from resonance of the Raman pumper. FJ, can easily be 

calculated from the relation
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in the limit of small saturation parameter s. Here F is the natural linewidth, 

5.22 MHz, for caesium and A the detuning of the Raman pumper beam from 

atomic resonance. This detuning is of order of 2F in our experiment. Last 

but not least we can rewrite the Raman coupling part as

=  Ur  { iy /n^  + 3^fÇ) (4.21)

{ipUa\A*R\(fUi3) = U*ji (4.22)

where n = Ux riy \s the total vibrational excitation of the atoms at the

start of one Raman cycle. Ur  =  UR{x,y)  is the 2D Raman coupling as

defined in 3.4 on page 101. Looking at equation 3.5 on page 103, the Raman 

coupling separates into terms proportional to kx  and ky to first order. Hence 

equations 4.18 and 4.19 separate for our 20 Raman coupling scheme to first 

order. The set of differential equations to consider is therefore

àx = -iuJ^ a{t) + {ifUff I A^|u«v?) bx(t) (4.23)

bx = -iuj0  b{t) +  I {A%y\up(f) ax{t) -  bx(t) (4.24)

ày =  -iuj^ a(t) +  ((pu0  I A l̂uaV?) by(t) (4.25)

by = - i u l  b{t) + I {Â R)*\u0 ip) ay(t) -  by{t), (4.26)

where is defined in 4.20 on the page before and Ap is the detuning of the 

Raman pumper beam. Numerical solutions of this set of linear differential
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equations are used in the simulation. The next step is to look at what happens 

if a photon is scattered from the Raman pumper beam.

If the atoms has scattered a photon from the Raman pumper beam it is 

transferred into the excited state manifold |F ' =  4 ,m / =  4). Prom this ex­

cited state |F ' =  4, m / =  4, n — 1) the atom can decay into one of the 5 differ­

ent states \F =  3 ,m / =  3 ,n — 1 ), |F  =  4 ,my =  4 ,n), \F = 4 ,my =  4 ,n  — 1), 

|F  =  4, m / =  4, n — 2) and |F  =  4, m / =  3, n — 1 ). This is illustrated in the 

level scheme diagram 4.1 on page 130. By considering the oscillator strengths 

for Caesium (cf. section 4.3.2 on page 137), we can deduce that 51% of the 

atoms decay into the |F  -- 3 ,my =  3,n — 1), 3% into |F  =  4 ,my =  3) and 

46% decay into the |F  =  4, my =  4) vibrational states. The z-dependence 

separates out in our 2D problem. This means that the matrix element 

{n\z\n) — 1  and does not need be considered in the following treatment. 

The transition matrix elements for going from surface |z) —>■ \j) by absorbing 

a photon and emitting one in directions and kg is proportional to the 

matrix element

r =  x x  +  z/ÿ

M l («J I exp l - i  (k, -  V )  • r] |n?) \n’i) =  (*) (4.27)

where \n^) |nf) represents the vibrational state of the atom. Equation 4.27 

can be expanded to first order assuming harmonic oscillator eigenfunctions 

|nf) \n\) resulting in
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E [—i (k, — k^) ■ r]
e\

\nf ) |nV)

 ̂ («Il («II [-* (Kl -  Iv) • r] |n|) |n|)
=  (« Il (« Il [1 -  * ( k |  -  k j )  x]

+ [ - i  (k» -  k|,) y]

+ [-* (k | -  k|,) z] |n |)  |n|> 

=<5n|nf5„»„» -  *■{ (k | -  k j )  (n || (n | | :r|n |) \n^)

+  (k | -  k |,) (n || (nj | y\nj) |n?)

+  (k | -  k|,) («Il («II 2 |« |) |« |) }

(kg -  k^) Sn^nf
h

2mQo

<^n^(nf-l)\Aïf +  <^n^(nf-l)\AT+Tj 

Ky{n\-l)\f^i  +  +  l |  I

— t { ( ik ^  ■ i r i l )  ’̂• K \ / 5  [5-?K-i)\A?+ <5"îK -i)xA ^] 

M  " w )  V ^ + V " l  + 1]}

where we have introduced the recoil energy E r and the recoil momentum 

hkji  using the relations
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E .=  ^  (4,28)

*  ‘ (4.29)V 2mQ.Q IIcrI V Mlo

The last step follows, since the Raman pumper beam is incident perpendicular 

to the plane of the lattice which is defined by the x-?/-plane, i.e.

k g/   k jl  Q

w
This expansion is justified, since the atoms are in the Lamb-Dicke regime. 

In the next section we use this result to calculate the channel amplitudes to 

go from a initial state |%) to a final state \j). This describes the incoherent 

scattering of a Raman pumper photon.

4.3.2 Calculation of the transition probabilities

In this section we derive an expression for the relative transition probabilities 

for the various possible channels for the incoherent scattering of a Raman 

pumper photon. The following notation is used here: \ip) is the external 

atomic state, and |ti,) =  |m/) 0  |n =  +  riy) the internal one. Generally the

probability go from a surface i to j  by scattering of a photon of polarization êg/ 

and emission of one with polarization êg in a direction kg/ and kg respectively 

is proportional to
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P i ^ j  oc I 4 )  (d+ey) |«i)
qqf

(4.30)

Here Sk is the associated field amplitude of the laser field, i.e. El =  €q £gàq 

and (d“£g) is the vacuum field amplitude^. If we include the external wave- 

functions \(p) equation 4.30 reads

P i  (p—*j (p' OC ' Y ^ { u j i p \ e  ’V* (d e") (d+e^(x)) e tp)
qqf

(4.31)

where ip* is the kicked external wave-function after the event and p  the initial 

one. Sg is the vacuum field amplitude and assumed to be constant'^ and 

the associated field amplitude of the scattering event. The kicked 

wave-function can also be written as

<p' (x) =  exp {ix (Iv -  k,)} (x) (4.32)

Substituting this into 4.31 we get

P i% if—̂2 / (X ^  f  <ir(«  ̂ |(d  e”) (d+£^(x)) e '"'/)|%)|y(x,((g))|' 
gg' Jv

(4.33)

Equation 4.33 can now be broken up into its different parts to simplify the 

calculation of the channel amplitudes. Let us consider the matrix element of 

the internal wave-functions first. It is given by

1,0, +1} for a , tt and a  respectively, 
“̂as in simple cases like free space
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Il =  {u j  I (d~e°) (d+ey(x)) (4.34)

= (j I (d~s“) (d+e.^(x)) |j) (ni | V i )  (4 35)

=/« • h-  (4.36)

Here la is the matrix elements for the light shifted surfaces and Ib for the vi­

brational structure associated with each surface. /„ can readily be calculated

to be

la — (Cg) (4.37)

The dependence on the vibrational structure is explicitly taken into account in 

the model described in section 4.3, hence it can be neglected in the calculation 

of the relative channel amplitudes. Putting everything together the final 

channel amplitude is given by

/  OC

gg'
j=i+q'-q

(4.38)

The Raman pumper is polarized and hence q' = + 1 . Additionally the 

Clebsch-Gordan coefficients are independent of the position vector x  and the 

initial surface is given by i =  3. Thus equation 4.38 reduces to

dx\ifi(x,t{e))f^  X ^  CljC34: (4.39)

j=A-q
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Looking up the Clebsch-Gordan coefficients in appendix A.4 on page 2 1 0  and 

neglecting the modulus of the external wave-function^ this reduces to the 

following relative channel amplitudes

^ 3  ip—*4 p f OC c u C 3 4

P 3 (p—*3 p f OC C l s C 3 4

P 3 p - ^ 2 ( ^ OC 0

(4.40)

(4.41)

(4.42)

The last one is zero since only cr'̂  Raman pumper photons take part in the 

optical pumping process under consideration. Hence the ratio between the 

two non zero rates is

(4.43)
-̂ 3 ip—>3 (fi* 1

Using the formalism in [52]® we can calculate the relative intensities for the 

different emission directions. These are often referred to as the oscillator 

strengths. Carrying out this calculation results in a probability of 84% to 

emit a tt photon and 16% to emit a a~ photon. Hence the total relative 

channel amplitudes are given by

P(7t) «  0.914 (4.44)

P((T+) % 0.086. (4.45)

^as we are only interested in the relative amplitudes 
®cf. page 160
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We also have to calculate the transition probabilities from the \F* =  4,4) to 

the |F  =  3,771/ =  3) manifold. To make things easier I have used the transi­

tion matrix elements given in [2 2 ] .̂ A simplified version is shown in A 3 on 

page 210, which shows only the relevant strengths. The relative channel am­

plitudes Pij are then proportional to

P ij OC |CGi/| • / ,  (4.46)

where |CGjj| is the corresponding Clebsch-Gordan coefficient for the transi­

tion under consideration and /  the oscillator strength. Table 4.2 shows the 

calculated relative channel amplitudes which are relevant in our system.

Transition GG f |CG [. /

[4,4) 4-4. |4,4) 0.89447 2352 46%
14,4)4^14,3) 0.44721 588 3%
14,4)^13,3) 1 . 0 2 1 0 0 51%

Table 4.2: The table shows the calculated relative channel amplitudes for 
the different transitions \F,m) ^  important in our Raman cooling
model. GG is the Clebsch-Gordan coefficient and /  the oscillator strength 
taken from [2 2 ].

4.3.3 Random  number generator

After a long search on the internet to find a suitable research grade random 

number generator I decided to use one from the GNU scientific library GSL®. 

This library provides a uniform interface for all random number generators it

^The channel amplitudes for the |4,3) ^  |4 ,4) and |4,4) *-*■ |4 ,4) transitions agree with 
the previous calculated ones using the formalism from [52].

®cf. http://www.gsl.org

http://www.gsl.org
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supplies and makes it easy to change between different ones without changing 

the implementation in the code.

The random number generator I have chosen is called gfsr4 and is like 

a lagged-Fibonancci generator. It produces each number as an xor’d sum 

of four previous values. This type of generators is also know as Four-tap 

shift-register-sequence random-number generators [53]. A simple test which 

produced 1 0 0 0 0 0 0 0  random numbers was implemented to see if the result­

ing random number distribution is adequate for our problem. The random 

number generator passes the tests and is subsequently used in all simulations 

presented in this chapter.

4.3.4 Im plem entation in detail

This section gives a short overview of how the QMCWF Raman cooling code 

is implemented. The program is controlled by an input file which contains 

the details of all simulations the code should execute. This control file has 

the following entries:

• Number of atoms N  in simulation

• Raman pumper detuning Ap in units of F

• Maximum light-shift Ui in units of E r

• Ratio E ttIE i

• Vibrational frequency of lattices fio

• Initial vibrational excitation Uq of atom along x-direction
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• Initial vibrational excitation tiq of atom along y-direction

• Initial value of wave function expansion coefficient a j for Ket |4,4) \nx)

• Initial value of wave function expansion coefficient 6 q for Ket |4,3) In̂ ;)

• Initial value of wave function expansion coefficient 0 % for Ket |4,4) \uy)

•  Initial value of wave function expansion coefficient 6 q for Ket |4,3) \ny)

• Start of Raman pumper beam intensity ramp tp in units of ms

• End of Raman pumper beam intensity ramp tp in units of ms

• Value of Raman pumper beam intensity before start of ramp

• Value of Raman pumper beam intensity before at the end of ramp

• Start of Raman re-pumper beam intensity ramp tp in units of ms

• End of Raman re-pumper beam intensity ramp tp in units of ms

• Value of Raman re-pumper beam intensity before start of ramp

• Value of Raman pumper beam intensity before at the end of ramp

Each line is an individual simulation run. A control file can contain as many 

simulations and is only limited by the resources the computer system is able 

to provide to it®. To illustrate the usage of the control file, an excerpt of one 

is shown in table 4.3 on the next page.

The information about the energies of the vibrational levels is hard-coded. 

The values for the energy levels are provided by using the results of a band

Tike memory, disk space etc.



1 1 0 0 0 2 0 . 0 0 1 230 0.5 39000 1 0 1 0 1 0 15 2 0 0 . 0 0 2 0 . 0 0 2 15 2 0 1  1

2 1 0 0 0 2 0 . 0 0 1 230 0.5 39000 1 0 1 0 1 0 15 2 0 0.004 0.004 15 2 0 1  1

3 1 0 0 0 2 0 . 0 0 1 230 0.5 39000 1 0 1 0 1 0 15 2 0 0.006 0.006 15 2 0 1  1

4 1 0 0 0 2 0 . 0 0 1 230 0.5 39000 1 0 1 0 1 0 15 2 0 0.008 0.008 15 2 0 1  1

5 1 0 0 0 2 0 . 0 0 1 230 0.5 39000 1 0 1 0 1 0 15 2 0 0 . 0 1 0 , 0 1 15 2 0 1  1

6 1 0 0 0 2 0 . 0 0 1 230 0.5 39000 1 0 1 0 1 0 15 2 0 0 . 0 1 2 0 . 0 1 2 15 2 0 1  1

7 1 0 0 0 2 0 . 0 0 1 230 0.5 39000 1 0 1 0 1 0 15 2 0 0.014 0.014 15 2 0 1  1

8 1 0 0 0 2 0 , 0 0 1 230 0.5 39000 1 0 1 0 1 0 15 2 0 0.016 0.016 15 2 0 1  1

9 1 0 0 0 2 0 . 0 0 1 230 0.5 39000 1 0 1 0 1 0 15 2 0 0.018 0.018 15 2 0 1  1

M

!
O

Table 4.3: This example shows some lines from a control file for the 2D QMCWF simulations.

A.
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structure calculation for a particular maximum light-shift. Given these values, 

the code then subsequently derives the appropriate level-shifts to bring the 

lowest three levels given by |4,4) \ux = 0,Uy = 0), |4,3) \ux — \,ny — 0) and 

|4 ,3) \ux =  0,rij, =  1), into resonance.

The rest of the code loops over the number of simulations specified in the 

control file. At the beginning of the loop all parameters are initialized with 

the appropriate values from the control file. The control file specifies the num­

ber of atoms for which independent QMCWF simulations should be carried 

out. For each atom a finite difference method is used to numerically evaluate 

the time evolution of the expansion coefficients of the atomic wavefunction. 

After each time step^° it is checked if a quantum jump has occurred. On 

the one hand, if none happened, the wavefunction is renormalized and a new 

iteration is started. On the other hand, if a quantum jump has occurred, the 

appropriate interaction channel is chosen by considering the channel ampli­

tudes deduced in section 4.3.2. After the quantum jump the resultant atomic 

wavefunction is reset according to the interaction channel and normalized. 

Possible interaction channels are: |4,n), |4 ,n — 1 ), |4,n —2) and |3 ,n — 1 ). 

After each simulation the results are written to disk for subsequent data anal­

ysis. Additionally a log-file is saved with the simulation parameters used and 

the filename of the data file.

Since many simulations have been run during the course of this thesis, the 

data analysis was automated to save time and reduce the amount of human 

error. The data analysis is based on a set of scripts using AWK, C-I-+ and 

PERL. The data analysis usually takes about 10 h. The script approach also

maximum evolution time of 20ms was used in all simulations.
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has the advantage that it was easy to extract different views of the data. It 

is possible to produce a set of files which shows the dependence of the ki­

netic energy versus the Raman pumper intensity on the fly from the analyzed 

data. Another script using the same analyzed data, produced graphs show­

ing the dependency of the kinetic energy versus the Raman cooling duration. 

The visualization is automated using MatLab. A script was written to au­

tomatically read in the results files and plot the data using a template. All 

simulations results in this section have been produced in this way. Taking the 

time to develop a sophisticated data analysis paid off in the end by saving a 

lot of time on data analysis considering the large amount of data produced.

4.4 Calculation results

In this section the results from quantum Monte Carlo simulations of resolved- 

sideband Raman cooling are presented and discussed. Calculations for differ­

ent set of parameters were run using the model described in section 4.3. The 

ultimate aim was to find optimized parameters for Raman cooling to be used 

in our experimental implementation of resolved sideband Raman cooling to 

maximize the number of atoms in the vibrational ground state. At the end of 

this chapter these results are compared to experimental measurements from 

our experiment.

Table 4.1 on page 129 shows the common parameters used to produce 

figures 4.2 to 4.8 on pages 147-153.
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1 m s

3 m s
4 m s
5 m s
6 m s
7 m s
8 m s
9 m s
10 m s
11 m s
12 m s
13 m s
14 m s
15 m s
16 m s
17 m s

19 m s

Figure 4.2: This figure shows the kinetic temperature T^in plotted against the 
Raman pumper intensity I r  in units of the saturation intensity Ig. The atoms 
were assumed to have had an initial vibrational temperature T^ib of 3^K  at the 
start of the Raman cooling cycle. The calculated final kinetic temperatures are 
shown for Raman cooling durations from 0 ms to 19 ms.

4.4.1 Discussion of simulation results

In this section I will discuss the results of my simulations. Each section 

highlights a different parameter dependence of Raman cooling and how its 

efficiency depends on the chosen value.

Dependence on the  ratio of E^r/Ei

Inspecting equations 3.7 to 3.9 on pages 103-104 it can be seen that the Ra­

man coupling strength is directly proportional to the ratio of the 7r-component 

of the lattice light held to the single beam electric held amplitude Ei, i.e.
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Figure 4.3: This figure shows the kinetic temperature Tkin plotted against the 
Raman pumper intensity Ir  in units of the saturation intensity Ig. The atoms 
were assumed to have had an initial vibrational temperature T^n, of 9/iK at the 
start of the Raman cooling cycle. The calculated final kinetic temperatures are 
shown for Raman cooling durations from 0 ms to 19 ms. Note that there is about 
13.5% of atoms in vibrational levels with n  — 71̂  +  riy > 5. We only include 
levels with n  < — 5 into our calculations. Hence the graph shows smaller kinetic 
temperatures than there are actual in the lattice. See text for a detailed discussion 
of this.

Tr
t / « «  — (4.47)

Several simulations were run for Ê /̂Ei in the range of 0.1 to 0.5 and are 

show for comparison in figure 4.9 on page 154.

As expected the efficiency of the  transfer to the vibrational ground state  

via resolved-sideband Ram an cooling is dependent on this ratio. The higher 

th is ratio  the be tte r is the transfer, hence the aim should be to choose an
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5 10 15
Raman cooling duration in ms

Figure 4.4: This figure shows the final kinetic temperature T^in plotted against 
the Raman pumper intensity In  in units of the saturation intensity U for Raman 
cooling durations of 0 ms to 19ms. The atoms were assumed to have had an 
initial vibrational temperature %n, of 3//K  at the start of the Raman cooling 
cycle. The figure shows that good Raman cooling can be achieved for Raman 
pumper intensities In < 0.2/^ and Raman cooling durations of 5 ms to 10 ms. At 
this set of parameters the Raman pumper intensity In  is o f the order of magnitude 
of the Raman coupling Un as discussed in the text.

as high value as possible for this param eter. It is also an easy way to  see 

the effect of the quantum  Zeno effect. By changing the ratio  in subsequent 

Ram an cooling experim ents is should be possible to  see a direct dependence 

on the efficiency of the  transfer to the vibrational ground state. If this is 

done for a Ram an pum per strength  up to hVp ~  0 .0 5 ///o  for different Et̂ /Ei 

and then the same set at hTp ~  0.51/I q, a  dependence on the final kinetic 

tem peratures similar as shown in the figures 4.9(a)-(c) should be observed.
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Figure 4.5: This figure shows the contribution to the kinetic temperature of 
the different vibrational levels at the start of the Raman cooling. See text for a 
detailed description. The colours represent different vibrational levels. They are 
ordered in ascending order {n \̂riy)\ (OlO), (0|1), (1|0), (0|2), (1|1), (2|0) etc.

Hence the higher the ratio  is chosen the lower should the m easured

final kinetic tem peratu re be for a particular Ram an pum per strength.

Also shown in the figures 4.10, 4.11 and 4.5-4.8 is the dependence of the 

final kinetic tem perature on the ratio  of E^ /̂Ei for different Ram an cooling 

durations. For small ratios of Et, /E\  ~  0.1 the Ram an coupling strength  IJr 

is small and the quantum  Zeno e f f e c t k i c k s  in earlier freezing the population 

transfer. Longer Ram an cooling times hardly improve th e  to tal transfer effi­

ciency. Going to  higher values for Ê ÎEi improves the efficiency and Ram an 

pum per intensities which are com parable to the  Ram an coupling strength  a 

good transfer efficiency can be achieved.
n See appendix D and section 4.4.2.
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Figure 4.6; This figure shows the contribution to the kinetic temperature of the 
different vibrational levels after 4 ms of Raman cooling. See text for a detailed 
description. The colours represent different vibrational levels. They are ordered 
in ascending order {rix\ny)\ (0 |0), (0|1), (0 |2), (1|1), (2|0) etc.

Dependence on Ram an pum per intensity

A nother degree of freedom in resoived-sideband Ram an cooling is the inten­

sity of the Ram an pum per beam. As can be seen in figure 4.2 on page 147 

the transfer efficiency to the vibrational ground sta te  is dependent on the 

m agnitude of this intensity. O ptim al transfer is achieved when the R a­

man pum per strength  is chosen to  be com parable to the smallest Ram an 

coupling involved. In the configuration under investigation this is the cou­

pling U r  (ux =  l,7iy =  0) between the states \ m j  =  4, =  l,riy  =  0}) and

|m / =  3, [rix =  0, TTy =  0}), i.e. when

U r  {jlxi ^ y )
1, (4.48)
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Figure 4.7: This figure shows the contribution to the kinetic temperature of the 
different vibrational levels after 9 ms of Raman cooling. See text for a detailed 
description. The colours represent different vibrational levels. They are ordered 
in ascending order (n \̂ny): (OlO), (0|1), (1|0), (0|2), ( I j l ) ,  (2l0) etc.

where Tj, is the effective scattering rate  of the Ram an pum per as described in 

equation 4.20 on page 133. (cf. equation 3.8 on page 104). This dependence 

strongly suggests th a t the part of the Ram an cooling cycle responsible for 

the freezing of the population transfer is related to the last steps in the 

Ram an cooling ladder as can be seen in figures 4.5 to  4.8 on pages 150- 

153. Population gets trapped  in higher lying states and further transfer to 

the vibrational ground sta te  is inhibited. The detrim ental effect sets in when 

the Ram an pum per strength  h'y'p becomes com parable to  the  Ram an coupling 

strength  of the respective level and increases beyond it. Passing this threshold 

suppresses the population transfer between the level pair. Therefore every 

vibrational level pair has a different Ram an pum per strength threshold, where
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Figure 4.8: This figure shows the contribution to the kinetic temperature of the 
different vibrational levels after 14 ms of Raman cooling. See text for a detailed 
description. The colours represent different vibrational levels. They are ordered 
in ascending order (n^jriy): (0 |0), (0|1), (1 |0), (0 |2), (1|1), (2|0) etc.

the effects of the quantum  Zeno effect kick in. The consequence of this is th a t 

the lower lying levels, for which the Ram an coupling is smallest, will be the 

first to  freeze out, when the Ram am  repum per strength  is increased beyond 

th is threshold. Since the m ajority of the population is in those lower lying 

vibrational levels, the im pact will be greatest there. The result of this is, 

as can be seen in figure 4.6 after 4 ms of Ram an cooling, th a t a  considerable 

am ount of population cannot be transferred via a Ram an cooling cycle to any 

lower lying vibrational levels.

This dependence on the Ram an pum per intensity limits the efficiency of 

the  pum ping to  the vibrational ground sta te  for too high Ram an pum per 

intensities. The reason for this turns out to be an analogue of the Q uantum
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Figure 4.9: This figure shows a plot of the final kinetic tem perature ver­
sus the Ram an pum per strength in units of the lowest Ram an coupling 
Ur {rij. — l,Uy =  0) for different ratios The ratios are: (a) E^ /̂Ei =
0.1, (b) Et̂ IEi =  0.3 and (c) E^ /̂Ei — 0.5. The same colour scheme as in 
figure 4.2 on page 147 was used.

Zeno effect. The Zeno effect is introduced in appendix D on page 220 and the 

connection between Ram an cooling and this quantum  Zeno effect is discussed 

in sum m ary in section 4.4.2.

Dependence on maximum well depth

The next dependence we want to have a closer look a t is the one on the 

maximum well depth  of the optical lattice. The Ram an coupling is directly
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Figure 4.10; This figure shows a plot of the final kinetic tem perature ver­
sus the Ram an pum per strength in units of the lowest Ram an coupling 
Ur (^x =  l,n,y =  0) a t different times during the  Ram an cooling cycle. The 
m agnitude of Et̂ was chosen to be O .lE i. The Ram an cooling times are: 
(a) 4 ms, (b) 9 ms, (c) 14 ms and (d) 19 ms. The colours represent dif­
ferent vibrational levels. They are ordered in ascending order (nj.\riy): 
(0 |0 ) ,(0 |1 ),(1 |0 ),(0 |2 ),(1 |1 ),(2 |0 ) etc.

proportional to this quantity. Hence we expect an improved transfer to the 

vibrational ground s ta te  for larger well depths. A problem arises when the 

m aximum well depth crosses the 243 E r level. Then the lowest Ram an level 

pair |m / =  4, {n =  0}) and |m / =  3, {n =  1}) become degenerate. For bigger 

light-shifts, the Ram an B-field m ust change sign to bring them  into resonance 

again in contrast to  higher lying level pairs. Since we want generally to 

re tu rn  to zero applied m agnetic field a t the end of the Ram an cooling cycle 

to undertake quantum  sta te  control experiments, higher lying resonance are
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Figure 4.11: This figure shows a plot of the final kinetic temperature ver­
sus the Raman pumper strength in units of the lowest Raman coupling 
Ur (rix = l , 77,y = 0) at different times during the Raman cooling cycle. The 
magnitude of Et̂ was chosen to be 0.3JFi. The Raman cooling times are: 
(a) 4 ms, (b) 9 ms, (c) 14 ms and (d) 19 ms. The colours represent dif­
ferent vibrational levels. They are ordered in ascending order {nx\ny): 
(0 |0 ),( 0 | 1 ) ,( 1 |0 ) ,( 0 |2 ) ,( 1 | 1 ) ,( 2 |0 ) etc.

re-coupled again. Those unwanted level crossings can give rise to unwanted 

heating.

Another important fact to note is that in real experiments the beam profile 

is not absolutely flat. Depending on the beam source, the maximum well 

depth can vary by several percent. Special care has to be taken for efficient 

Raman cooling experiments as a basis for subsequent quantum state control. 

If we are near the cut-off at Uq = 2 4 3  E r  mark, some wells might have a light-
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Figure 4.12: This figure shows the Raman pumper strength hT^ in units o f  the 
lowest Raman coupling Ur (n^ = l,ny =  1) plotted against the kinetic tem pera­
ture Tkin- The atom s were assumed to  have had an initial vibrational temperature 
Tyib o f 12 /iK at the start o f the Raman cooling cycle. The calculated final kinetic 
tem peratures are shown for Raman cooling durations from 0 ms to  19 ms.

shift already larger than this and some might be below it. These levels are 

not properly coupled together and only inefficient coherent coupling exists. 

Thus it is important to get an as clean beam profile as possible, so that the 

number of degenerate level pairs is maximized.

4.4.2 The Quantum Zeno Effect and Raman Cooling

The simulations results strongly suggest that for particular choices of Raman 

pumper intensities the population transfer to the vibrational ground state 

is inhibited. Further investigations into this observation allowed us to link
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Figure 4.13: This figure shows the kinetic temperature plotted against the 
Raman pumper intensity [ft in units of the saturation intensity U . The atoms 
were assumed to have had an initial vibrational temperature T^ib of \2  fiK  at the 
start of the Raman cooling cycle. The calculated final kinetic temperatures are 
shown for Raman cooling durations from Oms to 19ms.

this suppression of the population transfer induced by the coherent coupling 

to the quantum Zeno effect. Some background information on this effect 

is agglomerated in appendix D. To our knowledge we have been the first 

to make this connection. A schematic of what happens is shown in figure 

4.15. A coherence is established between two degenerate level pairs |p4 ,n) 

and |p3 , n — 1 ). The coherent coupling is induced by the lattice light-held. 

In the situation (a) the intensity of the Raman pumper is low enough not to 

destroy the population transfer induced by the coherent coupling. Increasing
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Figure 4.14: This figure shows a plot of the final kinetic tem perature ver­
sus the Ram an pum per strength in units of the lowest Ram an coupling 
Ur (tIj: =  i,Tiy = 0) a t different tim es during the Ram an cooling cycle. The in­
tensity  of the Ram an pum per was ram ped to 0.5 / / /s a t between 5 ms and 10 ms 
from its initial value. The Ram an cooling tim es are: (a) 4 ms, (b) 9 ms, (c) 
14 ms and (d) 19 ms. The colours represent different vibrational levels. They 
are ordered in ascending order {rij.\ny): (0|0), (0|1), (1|0), (0|2), (1|1), (2|0) etc.

the intensity of the R am an pum per as shown in (b) has a detrim ental effect 

on the coherent coupling and the population transfer freezes out.

Many QM CW F simulations have been run for a variety of param eter 

ranges. The observation was th a t when the Ram an pum per intensity becomes 

com parable to the strength  of the coherent coupling, the population transfer 

is inhibited. This can be linked directly to the resoived-sideband Ram an 

cooling scheme. Here a set of Ram an cooling unit systems (c.f. figure 4.1)
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Figure 4.15: This figure shows a schematic of the Q uantum  Zeno Effect in 
resoived-sideband Ram an cooling. A coherence exists between two degenerate 
level pairs |^4 ,n )  and \g3 ,n — 1) induced by the lattice light-field. A Ram an 
pum per beam optically pum ps the atoms. If the  intensity of it is chosen to be 
larger than the coherent or Ram an coupling, then the quantum  Zeno effect 
freezes out the population transfer (cf (b)). For low enough intensities the 
population transfer is not affected (cf (a)).

are linked together by optical pumping. A property of the Ram an cooling 

is th a t its strength  is dependent on the vibrational quantum  num ber of the 

level |F  =  4,n)  in the level pair and is proportional to  y/n. If we call the 

strength  of the Ram an coupling for this lowest level pair w ith n  =  0 Ur, the 

population transfer freezes out if the Ram an pum per strength  surpasses U r .  

Hence population can be trapped  in higher lying level pairs and the increase 

in ground sta te  population is minimal. This can be seen in figure 4.14. Here 

the x-axis shows the initial Ram an pum per intensity in units of the lowest 

Ram an coupling. For low enough intensities population is transferred to lower 

lying levels. Between 5 ms and 10 ms we ram p Ram an pum per intensity to 

0 .5 //7saf The population transfer freezes out and even for longer Ram an 

cooling durations haidly  any population is transferred to a lower lying state. 

Since Ram an cooling is an im portan t and efficient tool for quantum  state
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preparation, it is worth looking for ways how to minimize the impact of the 

quantum Zeno effect. One suggestion to do so is described in the next section.

4.4.3 How to  circumvent the quantum  Zeno effect

The aim of the investigations in this chapter is to deduce optimized param­

eter ranges to improve our Raman cooling experiment. Hence the inhibition 

of population transfer to the vibrational ground state due to the Zeno effect 

needs to be addressed. Subsequent investigations using the QMCWF formal­

ism showed that the freezing out of the population transfer due to quantum 

Zeno can be circumvented by ramping the Raman pumper intensity In from 

an initial higher value {Ir % 0 .0 5 / / / s a t  ^  Ur(tIx = l,Uy = 0) to approxi­

mately the size of the lowest Raman coupling in the Raman cooling ladder 

( I r  % 0 .0 5 / / / s a t  ^  Ur  (ux = l,riy = 0 ) ) .  Figures 4.17(a) to 4.17(f) show the 

simulation results when the Raman pumper intensity is ramped in that way.

The converse happens when the Raman pumper intensity is ramped up 

from 0.05///soi to 0.5///sot- Then the population transfer is almost frozen 

out at the beginning of the ramp and not much more cooling is achieved 

afterwards anymore, even for longer Raman cooling times as is shown in 

figure 4.14.

4.4.4 Experim ental R esults

This section is dedicated to the experimental results obtained by our group. 

They are not exhaustive but confirm the general trend outlined in 4.4.1 on 

page 147. In the experiment shown in figure 4.16 the atoms were Raman
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Figure 4.16: This figure shows some experimental results for the final tem­
perature of resolved sideband Raman cooling for different Raman pumper 
intensities. The atoms were cooled for 10 ms in a far-detuned optical lat­
tice 4000r detuned from resonance. The other parameters were Ui = 54 E r , 
^Raman =  200 mG, error AT % ±0.5//K.

cooled for a duration of 10 ms. The lattice beams had a single beam light 

shift of Ui = 54 E r ,  giving a total potential well depth of U q = 243 E r .  The 

far-detuned lattice beams had a diameter of 3 mm and 83 mW per beam, 

which is 1048 saturation intensities. The detuning was A =  4000F and a 

magnetic field B r  of 200 mG was applied to shift the levels |m / =  4,n =  1 ) 

and \mf =  3,n =  0) into resonance.

Looking at figure 4.16 we can readily see that the final temperature has 

a minimum when the Raman pumper intensity is comparable to the smallest 

Raman coupling U r  in the system. For higher Raman pumper intensities
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the final temperatures rise again, suggesting an inhibition of the population 

transfer to the vibrational ground state. We attribute this to the quantum 

Zeno effect and it is the first time indications for this have been observed.

4.5 Conclusion

This section introduced the Quantum Monte Carlo Wavefunction Method, 

a versatile formalism used to develop a model for resoived-sideband Raman 

cooling. The formalism is then applied to far-detuned lattices and the neces­

sary equations deduced to implement a model for resoived-sideband Raman 

cooling.

Many simulations have been carried out for this work and selected results 

are reviewed in the course of this chapter. A surprising and original obser­

vation was the discovery of the role of the quantum Zeno effect in resoived- 

sideband Raman cooling and its detrimental effect on the efficiency of the 

coherent population transfer when the Raman pumper intensity becomes 

greater than the magnitude of the Raman coupling introducing the coher­

ence. Being aware of the quantum Zeno effect allowed us to devise a scheme 

by which we can circumvent its effect by ramping the Raman pumper intensity 

from an arbitrary higher lying value to about the size of the smallest Raman 

coupling present in the system. This allows a lot of freedom for the choice of 

the initial Raman pumper intensity provided it is ramped down at any time 

during the duration Raman cooling cycle. Another interesting consequence of 

the fact that the Raman coupling is three times bigger along the ^/-direction 

than along the x-direction is that the quantum Zeno effect can trap a signif-
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Figure 4.17: This figure shows a plot of the final kinetic tem perature ver­
sus the Ram an pum per strength  in units of the lowest Ram an coupling 
Ur (n  ̂ — l^Uy — 0) a t different times during the Ram an cooling cycle. The 
intensity of the R am an pum per was ram ped to 0.05 ///sa t between 5 ms and 
10 ms from its initial value. The Ram an cooling times are: (a) 4 ms, (b) 
6 ms, (c) 8 ms, (d) 9 ms, (e) 14 ms and (f) 19 ms. The colours represent 
different vibrational levels. They are ordered in ascending order {nx\ny): 
(0 |0 ),(0 |1 ),(1 |0 ),(0 |2 ),(1 |1 ),(2 |0 ) etc.
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icant amount of population in the vibrational state |m/ =  4, =  l,nj, =  0)

if the Raman repumper intensity is to larger than the corresponding Raman 

coupling along x.

In the last part of this chapter we present some experimental results from 

out group. Due to experimental constraints we have not been able to much 

more experimental work on this, but it will be very interesting to investigate 

this phenomenon of the quantum Zeno effect in resoived-sideband Raman 

cooling and its consequences further experimentally.



Chapter 5

D iagnostic Tools for A tom s in 

Optical Lattices

5.1 Introduction

To prepare, manipulate and measure the quantum state of a physical system 

is one of the great challenges of modern science. The introduction section 

in [42] provides a detailed account of the contribution that work on optical 

lattices could make to achieve this goal. The advantage of optical lattices 

over other systems is that the experimenter has a wide ranging control over 

the characteristics of the trapping potential through the manipulation of laser 

beam geometry, beam polarization, beam intensity, laser beam frequency and 

through the addition of static electric and magnetic fields.

This variety of control possibilities naturally raises the need for suitable di­

agnostic tools to accompany them to monitor their impact on the system and 

optimize their efficiency. Quantum state preparation using resoived-sideband

166
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Raman cooling aims to prepare as many atoms as possible in the vibrational 

ground state of the lattices in one of the stretched states |F  =  4,m  =  ±4). 

The efficiency of this preparation method can be increased if we start with 

a maximized population in the appropriate stretched state with regard to 

the other states of the \F — 4, m)-manifold. This requires a diagnostic tool 

providing us with the means to measure the population distribution over the 

different |F  =  4, m) states. This Zeeman state analysis can be achieved with 

a Stern-Gerlach type set-up. These measurements also can be used to opti­

mize the far-detuned lattice set-up and correct alignment errors of the lattice 

beams. Another tool needed in the context of Raman cooling is one to moni­

tor the population distribution over the vibrational states of the lattice. This 

turned out to be all the more important when we realized laser beam fluc­

tuations could cause parametric heating of our atomic sample, which could 

limit the vibrational temperature that we could reach by Raman cooling. 

Parametric excitation is in itself an interesting topic, as we are working in 

anharmonic trapping potentials and it is therefore considered in some detail 

in the following.

In general parametric excitation is a useful tool to investigate the proper­

ties of far-detuned optical lattices [54-57]. It was used, for example, by Priebel 

et al. [54] and by Anderson et al. [58] to measure the vibrational frequency 

of the lattice and enabled them to characterize important lattice parame­

ters in their experiments. Parametric excitation was also used as a model 

to evaluate heating induced by excitation through intensity fluctuations of 

the laser beams both in the time and space domain. Jauregui [59] provided 

an exhaustive theoretical study of parametric heating in harmonic potentials.
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investigating it with a non-perturbative and perturbative approach. The non- 

perturbative approach establishes a link between the classical and quantum 

description of the system and gives useful insights into the problem. In the 

rest of the chapter we will use the perturbative approach, which allows us 

to take into account the effect of the anharmonicity of the optical lattice, 

which is prevalent in shallow traps. Such a model can be used to study the 

vibrational frequency, potential well depth and anharmonicity of the lattice 

under investigation. It enables us to understand the consequences of anhar­

monicity of the lattice potential and the influence of the non-uniformity of the 

laser beam intensity profile in experiments. The main motivation to investi­

gate these effects more closely is to evaluate the different heating sources in 

our resoived-sideband Raman cooling experiments and after identifying them, 

trying to minimize their impact. An important conclusion of this investiga­

tion was that heating due to stochastic intensity fluctuations shouldn’t play 

a significant role on the typical time scales of our experiments [41].

The other useful diagnostic tool in laser cooling that is described is the 

measurements of the distribution of Zeeman state populations using a Stern- 

Gerlach type set-up. These measurements can be used to monitor and im­

prove the efficiency of laser-cooling in far-detuned optical traps. Monitoring 

the population distribution allows one to make sure that more than 80% of 

the atoms end up in the stretched states of the lattice before the start of the 

Raman cooling cycle, providing more advantageous initial conditions for this 

method. Simulations of a Zeeman state analysis type of measurement have 

been implemented with Matlab, where atoms are released from an optical 

lattice, fall through a magnetic field gradient and are subsequently measured
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by recording their time-of-arrival spectrum. The results of this simulations 

allowed us to make the right design choices for the magnetic field coils produc­

ing the necessary magnetic field gradient and deduce appropriate parameters, 

like coil current and coil position, to resolve the different Zeeman state peaks. 

These measurements have also been used by Silvia Bergamini to investigate 

the phenomenon of spin-temperature in optical lattices in her thesis [41]. 

First I will discuss our work on Zeeman state analysis. The second part 

of this chapter is then dedicated to a discussion of our work on parametric 

excitation.

5.2 Zeeman State Analysis

In the absence of any external magnetic fields, equal numbers of atoms become 

trapped in the and a~ sites of an optical lattice as a consequence of Sisy­

phus cooling . This symmetry can be broken by applying an external static 

magnetic field parallel to the quantization axis of the lattice [43]. In the 

case of the 2D symmetry used in our experiments (cf. figure 3.5 on page 100) 

this is the direction perpendicular to the lattice plane. This magnetic field 

introduces a Zeeman state dependent energy shift to the atomic eigenstates 

|F, TTii?). This opens up the possibility, discussed in section 2.4 on page 63 of 

increasing the population of one of the stretched states [F,m =  àzF) at the 

expense of the other one. This is used, for example, in resoived-sideband Ra­

man coohng, described in detail in section 3 on page 92. There an external 

static magnetic field is imposed on the far-detuned lattice phase to spin- 

polarize the lattice and increase the population of the particular stretched
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state used in the Raman cooling cycle [43]. This increases the efficiency of 

resoived-sideband Raman cooling as a simple consequence of the fact that 

fewer atoms start in wells with the wrong polarization and therefore reduces 

the number of optical pumping photons scattered. Raithel et al [60] have 

shown that the different energy-shifts of the ground state sub-levels give rise 

to a local cooling mechanism for large total angular momenta F in addition to 

cooling on the F  — 1 / 2  F ' =  3/2 transition often used as a model for Sisy­

phus cooling. There the cooling process is non-local, i.e. the atoms change 

their initial state and reverse their polarization when they are cooled through 

the optical pumping process and end up in the neighbouring potential well. 

For atoms with large angular momenta F  the hyper fine state manifold offers 

the possibility for the atom to undergo an optical pumping cycle without 

changing the potential well. The reasoning for this can be found in more 

detail in section 1.1.4 on page 29.

The Zeeman state-dependent force on an atom is exploited in the Zeeman 

state analysis method discussed in this chapter. Here a magnetic field, which 

changes linearly with position, induces a spatial variation in the Zeeman 

energy shift and thus of the magnetic interaction energy of the atoms. The 

latter gives rise to a spatially dependent force which can be used to distinguish 

atoms in different Zeeman sub-states and thereby to measure their relative 

populations in experiments.

The experimental procedure is as follows. The atoms are released from a 

spin-polarized optical lattice by switching off the trapping beams. If no mag­

netic field gradient is present the atoms in different magnetic sub-levels feel 

the same acceleration due to gravity. The time-of-arrival spectrum is then
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similar to a Gaussian as shown in figure 5.1 on page 178. If a magnetic field 

gradient is present the atoms feel an additional state-dependent magnetic 

dipole force besides gravity, proportional to their mp  quantum number. For 

large enough field gradients the time-of-arrival spectra separates into distin­

guishable peaks associated with individual mp  quantum numbers as shown in 

figure 5.2. This allows one to measure the relative populations of the Zeeman 

sub-states associated with distinct mp  magnetic dipole moments as well as to 

deduce a phenomenological spin temperature associated with these sub-states.

The exploitation of the Zeeman shifts arising from the interaction of the 

atomic magnetic dipole moment and a magnetic field gradient is also ex­

tensively used to tailor atomic beams. For example, experiments on mag­

netic atom optical components have been carried out, such as magnetic mir­

rors [61] [62], refractive components [63], and magnetic surface traps [64]. 

Stern-Gerlach type of experiments have also recently been use to measure the 

quantum state of an atom with an arbitrarily large angular momentum [65].

This rest of the section is organized as follows. First the interaction of 

an atom with a magnetic field is discussed and the magnetic field of a square 

coil is deduced. Next the implementation of a Zeeman state analysis time- 

of-arrival measurement is described followed by a discussion and comparison 

with experimental results.

5.2.1 Atom s interacting w ith  a m agnetic field

The interaction of an atom with an external magnetic field is governed by the 

magnetic dipole moment of the atom. It is given by
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M = 7 F  =  - ^ F  (5.1)

[/z] =  JT  [F] = Js rad  [7 ] =  rads ^T ^

where 7  is the gyromagnetic ratio, gp the Lande factor associated with the 

angular momentum state F  and fis the Bohr magneton. Subjecting an atom 

to a magnetic field gives rise to an interaction energy W  [6 6 ], a torque T  [67] 

and a net force F  [67]:

W  = - t J , B  (5.2)

r  =  /X X B (5.3)

F =  - V W  (5.4)

Combining equations 5.2 and 5.4 gives for the components of the force F

F = - V W

V(/x-B)

Since this net force F  is proportional to the gradient of the magnetic field B, 

an atom in a uniform magnetic field experiences no net force. The magnetic 

dipole precesses with a frequency
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called the Larmor frequency. Hence the projection of the magnetic dipole 

moment along the direction of the magnetic field B remains constant. If 

the atom is placed in an inhomogenous magnetic field, the magnetic dipole 

experiences a net force proportional to the magnitude of the magnetic field 

and proportional to its magnetic dipole moment. Quantum mechanically an 

atom placed in a uniform magnetic field directed along the quantization axis 

of the atom possesses simultaneous eigenstates =  iF^mp) belonging to 

both operators and For simplicity we define the quantization axis to 

coincide with the z-direction. The magnetic field B^ =  z gives rise to an 

energy shift of [67]

AEm = fJ'B9F'^TT'F\^z\ (5.6)

The time dependence can be introduced as usual in quantum mechanics by

=  X ;  (5 .7 )
m

m

=  X 7 lm e " '”“"'-‘ l^m)
m

Hence the time evolution of the coefficients Cm can be written as
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Cmit )  = exp {-2 muJLt}Cm (5.8)

This allows us to deduce the time evolution of the populations associated 

with the different magnetic sub-levels which are — \cm{t)\^.

Substituting 5.8 reveals that the populations do not change with time. A 

change in only changes the magnitude of the Larmor frequency.

Allowing for the magnetic field to have also transverse components Bt =  

Ba- +  By, in addition to a parallel one B^, also induces couplings between 

different Zeeman sub-states [67]. The consequence of this is that the popu­

lations of the different magnetic sub-states are no longer constant with time, 

unless the magnitude of the transverse field component is much smaller than 

the parallel component or equally |B|, i.e.

If the Larmor frequency is much bigger than the rate of change of the mag­

netic field, then the internal and external degrees of freedom decouple and 

the angular momentum of the atom can adiabatically follow those variations 

and maintain the component of the magnetic dipole moment along the quan­

tization axis. Time averaging the magnetic dipole moment over the Larmor 

period results in only a constant component along the quantization axis and 

it follows from equation 5.4 and 5.9 that

F =  W V |B(r)| (5.10)
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where (/z) is the time-averaged magnetic dipole moment. The consequence of 

this is also that the force is only dependent on the magnitude of the magnetic 

field alone and not on its direction.

5.2.2 Outline o f Simulation

To simulate time-of-arrival spectrum measurements a model was implemented 

based on a classical Monte Carlo method. The atoms were assumed to be 

released from an optical lattice characterised by a kinetic temperature and 

atomic cloud size.

The first step of the implementation was to deduce the magnetic field of a 

square current-carrying coil and its spatial dependence (cf. section F). This 

magnetic field gradient gives rise to an additional force on the atoms besides 

gravity and influences the atomic motion dependent on the magnetic dipole 

moment of the atom. The zero of the magnetic field was chosen to be above 

the optical lattice region to ensure that the atoms do not experience a region 

of zero magnetic field. Consider, for example, an atom in a magnetic sub­

state 772/. When it moves into a region of zero magnetic field, the orientation 

of the atomic magnetic dipole can freely evolve as it looses its quantization 

direction. When the atom moves again into a region of non-zero magnetic field 

a new quantization axis is introduced. The atomic magnetic dipole realigns 

itself. The process is random and the magnetic moments before and after 

transversing the zero magnetic field region are uncorrelated. Thus atoms 

moving through this zero can be subject to a magnetic dipole realignment 

rendering the experimental measurement of Zeeman sub-state populations
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invalid. Initially an atom with a magnetic dipole moment is put at the 

origin. The atoms in an optical lattice are assumed to have a Maxwell- 

Boltzmann velocity distribution. At typical temperatures of optical lattices 

this distribution is similar to a Gaussian. Hence we base the choice of initial 

velocity on a Gaussian distribution and choose a random direction for the 

velocity vector. The defining mean velocity is defined by the temperature of 

the optical lattice. The next step is to calculate the trajectory of the atom 

until it passes through the time-of-fight measurement plane. When the atom 

passes through this plane we can deduced if it is detected by the time-of- 

flight beam or not, hence offering us a method to assess the efficiency of our 

experimental time-of-flight set-up as a function of the applied magnetic field 

gradient, the atomic cloud size and the kinetic temperature of the atoms 

before their release.

To extend the above method to a cloud of atoms trapped in an optical 

lattice some enhancements have been introduced. To reflect the initial posi­

tion spread of the atoms in an optical lattice the starting position of the atom 

was chosen randomly assuming a Gaussian density distribution over the size 

of the optical lattice. The centre of the optical lattice was chosen to be the 

origin of our coordinate system. The effect of this position spread is that the 

time-of-arrival spectrum is broadened. Hence to deduce the temperature in 

an optical lattice from a time-of-arrival spectrum necessitates an correction 

for the initial size of the atomic cloud. In addition the atoms in an optical 

lattice are assumed to have a Gaussian velocity distribution which is assumed 

to be spatially isotropic. Hence the time-of-arrival spectrum for a cloud of 

atoms released from an optical lattice without a magnetic field gradient is
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then similar to a Gaussian as can be seen in figure 5.1. The atoms in the dif­

ferent magnetic states cannot be not resolved. Switching on a magnetic field 

gradient slowly before the atoms are released and repeating the above time-of- 

flight measurement adds additional state-dependent force to the gravitational 

one. If the gradient is high enough, the time-of-arrival spectrum splits into 

distinctive peaks associate with atoms populating different magnetic dipole 

moment states. This situation is shown in figure 5.2. In the end of each 

simulation the results are saved to disk to facilitate further data analysis.

5.2.3 R esults and Discussion

The first implementation step of the Zeeman state analysis implementation 

was to simulate a time-of-arrival spectrum of atoms released from an optical 

lattice accelerated by gravity in zero magnetic field. The expected time-of- 

arrival spectrum is a Gaussian with a standard deviation proportional to the 

kinetic temperature of the atoms in the optical lattice. The result is shown in 

figure 5.1. The simulation allowed us not only to calculate the expected time- 

of-arrival spectrum, but also to identify the contribution of different magnetic 

Zeeman states to the overall signal.

The next step was to introduce the effect of atoms falling through a mag­

netic field gradient. As described above the atoms experience a nif-level 

dependent force and for large enough magnetic field gradients the time-of- 

arrival spectrum can be resolved into a set of peaks corresponding to an 

individual Zeeman state. This is shown in figure 5.2 and for comparison an 

experimental time-of-arrival measurement is shown on figure 5.3. The re-
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Figure 5.1: The figure shows a calculated time-of-arrival spectrum. The atoms 
were assumed to have had an initial temperature of 10 pK. No magnetic field 
gradient was present. A initial cloud size was 1 mm and 10000 atoms were 
used to calculate the figure. 4.4% of the atom missed the TOF beam.

suits of these calculations allowed us to deduce the distribution of the atoms 

over the different Zeeman states and optimize the far-detuned lattice cooling 

efficiency. The overall aim of our Zeeman state analysis and parametric exci­

tation experiments was to prepare as large a fraction of the atoms as possible 

in the stretched states of the far-detuned lattice, thus providing an improved 

starting point for efficient Raman cooling and state preparation and to study 

the effects of laser beam noise and the corresponding heating effects.

This ends the section on our Zeeman state analysis experiments. The code 

was used in conjunction with experiments presented in the thesis by Silvia
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Figure 5.2: The figure shows a calculated time-of-arrival spectrum. The 
atoms were assumed to have had an initial temperature of 3 //K.

Bergamini |41].

5.3 Parametric Excitation

5.3.1 Perturbative Treatment

The content of this section extends the work of Jauregui et. al. [55], Savard 

et al. [56], Jauregui [59] on parametric excitation. The perturbât ive ap­

proach is the approach of choice here, since it can easily take the effect of 

anharmonicity into account prevalent in optical lattice potentials, whereas 

the non-perturbative approach is valid only in quadratic potentials and can 

only offer qualitative guidance. In the systems of shallow traps, anharmonic-
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Figure 5.3: The figure shows a measured time-of-arrival spectrum. The TOF 
beam was 5 cm below the optical lattice. There is a time offset on the temporal 
axis. The figure is courtesy of Silvia Bergamini.

ity is an important property and necessitates the introduction of appropriate 

modifications to the standard perturbative treatment based on the harmonic 

oscillators approximation.

In our experiments parametric heating is obtained by applying small in­

tensity fluctuations to the laser beams in a periodic fashion. This can be 

described by an effective Hamiltonian

H ^  +  - M ujI [ 1  +  e(t)]

=  H o  +  H mod

(5.11)

(5.12)
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where e(t) is the fractional modulation in the spring constant and given by

<t) = (5.13)

In this expression I(t) is the intensity at time t and Iq the unmodulated 

intensity. Additionally it is assumed that e(t) 1. Considering a far-detuned 

trap, the effective potential can be written as [56]

V (x )=  = ~ a \ e ( x ) Ÿ  (5.14)

In this equation a  is the atomic polar inability and S{x) the slowly-varying 

radiation field amplitude. The unperturbed Hamiltonian of the system is 

defined by

H =  ^  +V{x)  (5.15)

In the following we will work in the interaction picture where the equation of 

motion of a state is given by the differential equation

(5.16)

To be able to use this picture we have to convert the state ket and 

the potential operator V(x, t) from the Schrodinger picture to the interaction 

picture. This is achieved by introducing time-dependent unitary operators 

resulting in the following transformation equations:
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(5.17)

(5.18)

Thus the unitary evolution operator U(t) satisfies the integral equation

0(t) = I - ^  f  e(i) V(x, t) Ù{t') dt' 
 ̂Jo

(5.19)

These are all the ingredients we need to deduce the transition matrix elements 

as [59]

( /  I C7(«)|*) =Sji -  ^  Vji j  dt’ £(t')e-“" ' ' (5.20)

\  I ]  VsnV„i r  dt: e(t')e'“' “*' r  dt" eCt'Oe'""**" + ...

with

(5.21)

Hence an average transition rate for a transition from state |%) to [/) in a 

time period t can be evaluated, providing the changes in the wave function 

induced by the unitary operator U(t) are small enough in the interval (0, t). 

Thus

-  f (5.22)
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using n-th order perturbation theory. Additionally, if the heating is induced 

by a controlled modulation of the confining potential, i.e. e{t) = cq cos{ujt), 

the transition rate can be approximated up to second order in cq by

I —Sfi +  ^ 0̂  ̂Vfi [( {(^fi +  f  ~  ‘̂ )01 (5.23)

-  ( S )  * E  ^

— ( {(^fk + — (  ({^fk — ^)t) ]

+ i ( c ^ -  CJ) ^

(  + ‘̂ )t) — i  — w)() ] I

where we have introduced the function ^(rc) =  g* % /2  to simplify the

notation. As pointed out in [59] this is only valid if the unitary evolution 

induced by U(t) changes the wave function in the interval [0 , t] only by a small 

amount. Thus the matrix elements for a harmonic oscillator with frequency 

Wo become

^ f k  — —̂  1̂ (2/ + l)(̂ /fc + y / f i f — l)<̂ /,fc+2 + \ / ( /  + !)(/ + 2)(̂ /,fc_2
(5.24)

Substituting this into equation 5.23 results in the following three combinations 

of VfkVki being different from zero:

(i) Vfj± 2 Vf±2j±A- Here the resonant terms appear in the combination



5.3. PARAMETRIC EXCITATION__________________________^

(  ((4wo ±  2uj)t)—^ ((2 wo ±  u)t) and the transitions associated with this 

are highly suppressed.

(ii) VfkVkf. Here resonances occur at w € {0,2wo}. For w  ~  2(Jq the 

contribution of the transition amplitude is given by

|2 /( (0 )  — ( (—plJQ —[\Vf.n2\
2 H üJq L ’ y  i(jjj  — c jq )

(iii) V/j± 2 V/±2 , / ± 2  and V/jV /j± 2 - Here the transitions can be viewed as 

a combination of two virtual transitions

i. The corresponding resonance frequency is the fractional frequency 

LÜ =  \u jf i \ /2 = ujq. Hence the transition probability for a modulation 

frequency of w ^  Wo is given by

(5.26)

-  1024 ~  “  l)< /̂,i+2

+ (/ + 1)(/ + 2)Sf,i-,]

In all the above cases, the non-resonant terms a/ ^  0, give rise to an

oscillatory behaviour in the transition probabilities. This is consistent with 

the results found in [59] for the exact evaluation of the transition probability 

amplitudes for the problem. Considering sufficiently long evolution times 

u / t ^ l  and the delta-function representation
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m  ^ ( - )

only the resonant terms give rise to significant contributions. Thus the dom­

inant transition probability amplitudes of a fractional frequency resonance 

at uj =  arises, when n-th order perturbation theory is applied to the

problem. These transitions can be viewed as n-steps procedures consisting of 

n  virtual transitions, in which n — 1  of them do not change the state and only 

one of them does. Hence equation 5.26 describes approximately the transi­

tion probability amplitudes for a transition i —>■ z ±  2 , where the source has a 

frequency oi u  = ujq.

5.3.2 First Order Perturbation Theory

In this section we apply first order perturbation theory to the problem of 

parametric excitation and subsequently -  in the next section -  extend the 

formalism to a second order perturbation theory treatment. Considering the 

matrix elements of the perturbation perturbing the system

we can calculate the average transition rates between two different levels 

1/ > and \i > as [55]
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i l  — '
/  dt' exp{icjfil!} (5.29)

7T

2 ^

w/, =  (5.31)

where T( f , i )  = {f\Ves\i) is the matrix element of the space part of the 

perturbation and S(uj) is the one-sided power spectrum of the two-time cor­

relation function associated with the excitation field amplitude. It is defined 

as

2
S(cj) = — cos((jj t )  {£{t)£{t + t ) )  dr (5.32)

7T Jo

and (£ { t )  £ { t  - \ -t )) is the correlation function for the fractional intensity fiuc- 

tnations. The one-sided power spectrum is defined in a way, so that if it

integrated over all frequencies it equals the square of the root-mean-squared

fractional modulation of the spring constant £q, i.e.

/•oo roo
/ dujS{<jj)— / di/S[v) = (£^{t)) = £q (5.33)

Jq Jo

Thus, in the harmonic approximation, the only terms different from zero are

7 ^ /^  =  ^ 5 !(0 ) (2 2  +  l)^ (5.34)
2

=  ^ S ( 2 ü j a ) ( i  +  1 ±  l)(i ±  1) (5.35)
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These rates can be used to deduced, that the heating rate in a harmonic trap 

has exponential character and depends on the modulation frequency cjq- An 

exponential heating rate is typical for a parametric excitation processes. Con­

sider the probability P(i,t) that the atom occupies a state |i) at time t. The 

average heating rate is then given by the sum of the different contributions 

of all processes involved which cause a change of state to another level. In 

the harmonic model these are only the rates 5.35. Hence the heating rate is 

given by [56] [57] [6 8 ]

where we have introduced the average energy as

(E{t)) = Ç  P{i, t) (* +  0  (5.37)

Hence equation 5.36 shows that the heating rate is proportional to the average 

energy 5.37 itself, i.e. follows an exponential behaviour. Additionally it is 

proportional to the vibrational frequency uq of the lattice. This allows the 

introduction of a characteristic time also called the energy e-folding time, 

in which the average energy (E{t)) increases by a factor e as [56]

u  =  (ttiuo)'^ (S'(2wo))-' (5.38)

It is interesting to note that in the expression for the heating rate h does not
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appear as a factor explicitly, stipulating that it can be calculated classically.

So far we only have considered resonances at a frequency 2oJo. Classically 

there are also resonances possible at 2ujQ/n  ̂ with n € N. These resonances 

cannot be described with first-order perturbation theory. It can be shown that 

one needs to consider n-th order perturbation theory to be able to model a 

resonance at a; =  2 wo/n [59]. Since the aim of this exercise is to model 

the experimental results of our group which show resonances at 2cjq and ljq, 

the formalism is extended to second-order perturbation theory in the next 

section.

5.3.3 Second-order Perturbation Theory

In this section we apply second order perturbation theory to the problem of 

parametric excitation. The previous section discussed parametric excitation 

in the light of harmonic traps. Optical lattices in general are governed by an­

harmonic potentials. Thus only deeply bound states are well described by the 

harmonic approximation and the energy band structure differs significantly 

for higher lying levels due to anharmonicity. In the paper by Jauregui et 

al. [55] an extension to the model described in [56] was proposed which in­

cludes features like broad spectral lines and the effect of anharmonicity. Our 

theoretical model of parametric excitation is based on this modified formal­

ism. Employing second-order perturbation theory results in a second-order 

correction to the transition rates between states [i) and [/) described by
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j '  e(i!')df (5.39)

allowing for the transition process to be viewed as a two-step procedure: a 

first step 1%) —> I A;) and a second step |A:) |/) . For harmonic parametric

excitation, as shown in the previous section, only matrix elements for the 

space part of the perturbation with An € {0 , ± 2 } are non-zero. This leaves 

us with the possible transitions between states |n) —>■ |n) and |n) —> |n ±  2 ).

Consider now a first virtual transition |n) —> |n) and a second virtual 

transition |n) —>■ |n ±  2). Here the net energy change is 2Ml and a resonance 

occurs when the total energy if the two excitations coincides with the net 

energy change, i.e. if il =  Wo. These ideas can readily be extended to include 

the effect of anharmonicity, where the difference is that the transition matrix 

elements are non-zero for a wider set of level pairs (z, / )  and the calculated 

energies of the underlying anharmonic optical lattice can be used instead of 

the harmonic ones. The work presented here takes for the first time these ideas 

into account. Calculated transition anharmonic transition matrix elements 

are shown in table 5.1.

Within this scheme of average transition rates, the probability P*(t) of 

finding an atom in a level |z), is then described by a set of finite difference 

equations for each level |z) as
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pm  =Pi{to)+ ^  nfi,  (Pm) -  pm)) (t -  <o) (5.40)
/

+  Y ,  -  p m ) )  (t -  t o f  (5.41)

valid up to second order perturbation theory providing t to and subject to 

the condition =  1 -

Following further the suggestion in [55] in assuming a Gaussian distri­

bution for the density of states, we can introduce broad spectral lines by 

considering an effective spectral density 5eff(cti) given by

Ses{mi) =  Sq exp _  (5.42)

where is dependent in the modulation frequency and energies of the appro­

priate transition. This allows us to introduce broadening effects not only orig­

inating from the anharmonicity of the potential, but also from other sources, 

such as laser intensity, pointing fluctuations and intensity in homogeneities 

over the lattice region. These sources are absorbed into an effective width 

(Jeff already containing information about the frequency widths of the atomic 

levels involved and the excitation source. The functional forms of and cjgff 

are deduced in appendix E. They are given by

= + ^ 0  (5.43)

(Jeff =  CJmod ~  (^f ~  ^i) (5.44)
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where orj f are the frequency widths of the levels involved (|z) and |/)) , ao 

the frequency width of the excitation source and w^od the frequency of the 

modulation. We have now reached a stage where it is possible to implement 

simulations of parametric excitation in anharmonic potentials with the prob­

lem being reduced to one of solving a set of simple coupled rate-equations for 

the time-evolution of the populations of the bound bands.

5.3.4 Outline o f the Simulation

This section describes the implementation of simulations of parametric excita­

tions in shallow traps using the theory described in the previous section. The 

simulation is split into different parts: First the band structure of the optical 

potential used to trap the atoms is calculated using the method discussed in 

section 2.6 on page 75. The results are used to deduce the initial popula­

tion distribution over the vibrational levels as described in section 2.7.1 on 

page 81. The user has to specify the characteristic parameters describing 

the parametric excitation. These are the range of modulation frequencies for 

which the simulation should be run, the initial width of the atomic sample 

(To (cf. equation 5.43 on the preceding page), the fractional modulation in 

the spring constant £ (cf. equation 5.13 on page 181) and the duration of the 

parametric excitation in units of the modulation frequency w. The simu­

lation results of the variation in the mean energy of the atoms trapped in the 

lattice and the number of atoms remaining are plotted. In addition the re­

sults are saved into a file to allow for subsequent data analysis. In preparation 

of the paper [69], the calculation of anharmonic transition matrix elements
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was added to the code and a future plan is to use these calculated transition 

matrix elements in future simulations.

In principle, the rates 5.39 need to be determined for each of the N  states 

belonging to every band. However, we simplify the problem by representing 

each band by a single state, which we choose to be the appropriate Wannier 

state localized on a particular site of the lattice. Since the light-shift potential 

U(x) is not harmonic, the spatial matrix-elements are non-zero for larger 

range of pairs mn  than in the harmonic approximation. This is illustrated 

in table 5.1 where some of the calculated matrix-elements connecting bound 

Wannier states for the case of a maximum light-shift of 170Er are tabulated. 

For low /  and i the only matrix elements with a non-negligible value are 

those for \ f  — i \ =2 ,  consistent with the harmonic approximation, whilst for 

larger values of /  and i it is clear that other transitions need to be taken into 

account.

5.3.5 R esults o f simulation

Simulations were run for a range of values of the modulation frequency from 

well below the mean vibrational frequency in the harmonic oscillator approx­

imation to several times this value and for various values of the duration of 

the modulation phase. At the end of the modulation phase, the mean kinetic 

energy of the atoms was evaluated to facilitate comparison with experimental 

time-of-flight measurements of the temperature of the atoms. To gain quali­

tative information on the modulation-induced loss of atoms from the lattice, 

a simple cut-off procedure was used: the population in bands higher in energy
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Table 5.1: Shown are the squares of some representative anharmonic tran­
sition matrix elements |T^„P in units of Er^ for an optical lattice with 
Umax =  170 E r , for which approximately ten bands are bound. The prin­
cipal non-zero matrix elements are those for which An =  0  and An =  ± 2 , 
as in the harmonic approximation. However, for bands near the top of the 
potential well the values of some matrix elements with A„ ^  0 , ± 2  become 
significant.

A n 2 4
Band

6 9

-4 - 0.14 2 . 6 0.15
-3 - <  10--4 <  10--4 120
-2 34 180 410 110
-1 < 10-^ <  10--4 <  10--4 1.2 X 10^
0 450 1.5 X 103 3.2 X 10^ 8.0 X lO'̂
1 < IQ-^ <  10--4 0.92 1.1 X 10^
2 18 410 170 150
3 < IQ-^ 0.13 120 120
4 2.6 3.6 32 120

than the ^-direction shoulder in the potential was deemed to have escaped 

the lattice. This procedure was expected to give good qualitative agreement 

with the true loss rate, since, for atoms with an energy above the shoulder, 

there are unbound trajectories which take the atom out of the lattice, the 

effectiveness of these channels being enhanced in the vertically oriented lat­

tice used in the experiments by the action of gravity. It is worth noting that 

the band structure is nearly identical for cuts through the x  and {/-directions 

with energies below the shoulder in the {/-direction. The potential wells have 

almost spherical symmetry and hence justifies our use of a ID band structure 

calculation weighted with the appropriate geometrical factor. Sample results 

from the simulations are shown in figures 5.4 and 5.5.

Figure 5.4 shows, as a function of the modulation fi'equency and the duration
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Figure 5.4: Simulation of the m odulation-induced loss versus m odulation 
frequency and tim e for: Umax = ^70 Er , mp =  —4, Tin =  eo =  0.1,
(Tq -— 1.5 ER,

of the m odulation-phase, the fraction of the atom s loaded into the far-detuned 

lattice rem aining trapped  a t the end of the m odulation phase. In this simu­

lation, the maximum potential depth was set equal to 170 E r ,  corresponding 

to  a harm onie-approxim ation vibrational frequency üüq =  17 E r / H  and the 

initial kinetic tem peratu re of the sample is taken to  be 30 close to

the typical value realized in the experim ents of 3/iK (corresponding to a 

population of the ground vibrational s ta te  of approxim ately 54%). The plot 

exhibits features corresponding to the principal resonance a t m odulation fre­

quency uj % 2ljq and some higher-order resonances. It is clear th a t the centre
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Figure 5.5: Simulation of the modulation-induced temperature variation ver­
sus modulation frequency and time for: Umax — ^7QEr , mp  =  —4, Tin = 3/xK, 
Cq — 0.1, (7q  — 1.5 E/j.

of mass of the 2cjq resonance occurs at a frequency lower than 2ujq, an effect 

that may be ascribed to the anharmonicity of the wells. In the contrast to the 

harmonic case, where the energy level spacing is equi-distant, the energy level 

separation between energy level pairs decreases. This results in a decrease in 

the average energy separation and the position of the resonance is below the 

harmonic value. Another effect of anharmonicity is that the resonances are 

spread over a wider frequency range making the resonance feature less well 

resolved than in the harmonic case.

Figure 5.5 shows, as a function of the modulation frequency and of the 

duration of the modulation-phase, the mean kinetic energy of the atoms re-
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maining trapped in the lattice at the end of the modulation phase. These 

results suggest that it should be possible to induce either heating or cool­

ing of the sample remaining trapped, depending on the chosen modulation 

frequency. An analysis of the simulation data reveals that for a modulation 

frequency for which higher-lying bound states are predominantly excited, a 

parametric excitation sequence results in the expulsion from the lattice of 

these energetic atoms and therefore in a net cooling of the remaining trapped 

sample. Conversely, when it is predominantly the population in lower-lying 

bound levels that is excited, the excitation results a net transfer of this popu­

lation into higher vibrational bands and thus in a net heating of the trapped 

sample, which is not, however, accompanied by a significant population loss 

from the lattice. However, whilst the distinction between the processes oc­

curring for low-frequency and high-frequency excitation can clearly be drawn 

from the simulation data, it has to be borne in mind that the inhomogeneous 

broadening arising from the intensity inhomogeneity in a real lattice and the 

multiplicity of resonances arising from the non-zero matrix elements in the 

case of anharmonic wells, would be expected to make difficult such a precise 

phenomenological interpretation of real experimental data.

Furthermore, Zeeman-state population measurements made of the atoms 

in the far-detuned lattice showed that atoms could significantly populate sev­

eral distinct Zeeman states if the experimental configuration was not properly 

calibrated. Potentials associated with different Zeeman states have different 

depths and spring-constants and therefore the characteristics of the excitation 

dynamics depend on the mp  quantum number as well. Indeed we were able 

to characterize the contribution of different Zeeman states averaging the cal-
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Figure 5.6: The graph compares the harmonic matrix elements with the cal­
culated anharmonic ones. We see good agreement for tightly bound states 
and the effect of anharmonicity for higher lying states.

culated results over the different Zeeman states and deduce the corresponding 

time-of-arrival spectrum. It was found that the Zeeman state population dis­

tribution can play a significant role in the broadening of the resonances and 

can make the interpretation of experimental results very difficult or nearly 

impossible in the light of selective excitation measurements and the determi­

nation of characteristic parameters of the lattice. Hence the Zeeman state 

analysis measurements and simulations discussed in section 5.2 on page 169 

offered us a convenient way to optimize and check our experimental configu­

ration before carrying out experiments on selective parametric excitation in 

optical lattices.
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5.3.6 R esults o f Experim ent and Discussion

The experiments described in this section were carried out by Silvia Bergamini 

and presented in her thesis [41]. In the experiments a sample of atoms was 

prepared in a far-detuned lattice induced by light with a detuning to the 

low-frequency side of the D2 resonance of A =  — ( 2 0 0 0  ±  1 0 0 )T and a single­

beam intensity of Ibeam = (400 ±  50) mW/cm^, giving a maximum light- 

shift of 170 ±  15 and a harmonic-oscillator vibrational frequency for the 

lowest-lying potential surface of cjq =  27t x (33 ±  3) kHz. This was achieved 

by polarization-gradient cooling in a two-dimensional near-resonance lattice 

followed by adiabatic transfer to a spatially-coincident, far-off resonant lattice 

as in [70]. After a period of 1 0  ms, a time sufficient for all atoms not trapped 

after the adiabatic transfer to leave the interaction region, the intensity of the 

lattice light was modulated with a depth of 10% for a fixed period of 25 ms. 

This was achieved by modulating the power of the radio-frequency drive of 

an acousto-optic modulator placed in the path of the lattice beams.

At the end of the modulation phase, the lattice optical field was suddenly 

extinguished in less than 1 0 /xs, using the acousto-optic modulator and an 

auxiliary shutter. The number of atoms remaining trapped in the lattice and 

their kinetic temperature were determined using a time-of-flight method. For 

this purpose, a thin sheet of light tuned close to resonance with the caesium 

0 2  transition was located 6  cm below the trapping region and the absorption 

of this light by the atoms falling through the beam was recorded. Thus 

the temperature measured was in a single dimension, corresponding to the 

ar—direction of our lattice (cf. figure 2.7 on page 69). However, owing to
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Figure 5.7: Comparison between experimental data and the predictions of 
numerical simulations for the modulation-induced population loss. The solid 
line shows, as a function of the modulation frequency, the measured number 
of atoms remaining in the lattice after a fixed period of 25 ms of modulation 
whilst the dotted line shows the result of the corresponding simulations.

the rotational symmetry of the lattice potential below the shoulder in the 

(/-direction, we expected this temperature to be isotropic. Measurements 

were taken for a range of modulation frequencies from well below the mean 

harmonic-oscillator vibrational frequency of the atoms in the lattice to several 

times this frequency.

In figure 5.7, the measured fraction of atoms remaining in the lattice at 

the end of the modulation phase is plotted as a function of the modula­

tion frequency and is compared with the fraction predicted by the numerical 

simulations. The classical theory of the harmonic oscillator predicts a reso­
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Figure 5.8: Comparison between experimental and simulation data for the 
modulation-induced heating. The data shown by the solid line depict, as a 
function of the modulation frequency, the change in the kinetic temperature of 
the atoms remaining in the lattice after a fixed period of 25 ms of modulation 
whilst the dotted line shows the result of the simulations.

nance in the loss rate of atoms at twice the vibrational frequency, w «  2 wo, 

and a secondary resonance at w % Wo. The data in figure 5.7 shows losses 

over a broad range of frequencies, with a width comparable to the resonance 

frequency itself. However, two resonances are just resolved, at frequencies, 

w =  2% X 35kHz w  u)q and a; =  27t x 58kHz «  l.Tcub- The frequencies of 

these resonances do not agree with those predicted within the harmonic ap­

proximation, but are, however, in good agreement with those predicted by the 

anharmonic model. This follows from the fact that atoms in the lowest levels 

are partly excited to higher lying levels but are not lost (as would happen for
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a harmonic potential), while the most energetic atoms, which have a smaller 

excitation energy due to the anharmonicity come into resonance at a lower 

modulation frequency and are immediately excited out of the lattice. This 

explains why the resonance expected for u; =  2uJo in the harmonic approxi­

mation actually appears shifted to the low-frequency side. The asymmetry of 

the resonances is also well reproduced by the model and reinforces the role of 

anharmonicity in the loss rate of the atoms. Higher harmonic resonances are 

also predicted by the model, leading to the broad feature of width comparable 

to (jJq seen in figure 5.7, at a; ~  3wo. Here the experimental data is not in good 

agreement with the simulations and the resonance is poorly resolved. This 

due to the fact that the simulation used to produce the graphs only considers 

transitions with An  € {0, ± 2 } and neglects any other possible transitions.

The kinetic temperature of the sample of atoms remaining trapped at 

the end of the modulation phase was also measured as a function of the 

modulation frequency. Typical results are plotted in figure 5.8. Whilst the 

correlation in the frequency-dependence of the experimental and simulation 

data is poor, both numerical and experimental results do confirm that both 

cooling and heating of the remaining trapped atoms can be achieved for a 

suitable choice of the modulation frequency. This result is in agreement with 

those of [71], in which the exploitation of the anharmonicity of shallow traps 

in parametric excitation processes was proposed as a method to boost evapo­

rative cooling. We ascribe differences between the data from the simulations 

and those from the experiment to the difficulty of quantifying precisely the 

inhomogenous broadening of the vibrational transitions due to the spatial 

profile of the lattice laser beams.
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5.3.7 Conclusion

Numerical simulations and experiments aimed at studying the excitation dy­

namics in an intensity-modulated, two-dimensional optical lattice have been 

performed. The simulations were based on a perturbative approach that was 

applied in [59] to a one-dimensional, sinusoidal optical lattice and incorpo­

rated explicitly the effects of the anharmonicity of the lattice potential and the 

inhomogeneous broadening of the vibrational resonances. In particular, the 

experimental results show qualitative agreement with the numerical model, 

when the latter is modified to account for the effects of the broadening of the 

vibrational transitions arising from the anharmonicity of the lattice potential, 

the intensity-modulation itself and the non-uniform spatial intensity profile 

of the lattice optical beams. It is worth noting that the affect of a discrete 

distribution of resonance frequencies that would arise from atoms occupying 

differently light-shifted potential surfaces could not be well accounted for by 

the effective level-width model and monitored the distribution over Zeeman 

sub-states obtained on loading the far-detuned lattice in order to be able to 

eliminate this as a source of broadening in our experiments as discussed ear­

lier. From the results, we infer that the anharmonicity of the lattice potential 

wells could enable the selective vibrational excitation of atoms originating 

in particular bound motional states of the lattice. This offers the prospect 

that vibrational-state selective excitation could be manipulated to prepare 

samples of atoms in a desired motional band of the lattice. However, for this 

to be achieved, the limitations arising from the various broadening mecha­

nisms that have been investigated, would clearly have to be addressed and
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the inclusion of transitions encompassing a wider range of level pairs pursued.



Chapter 6

Conclusion

In this thesis I have investigated atoms in far-detuned optical lattices with 

semi-classical and quantum Monte Carlo simulations. Far-detuned systems 

offer the advantage of a reduced spontaneous scattering rate and hence less 

unwanted associated heating. They also have the advantages of long decoher­

ence times and are only weakly coupled to their environment. Furthermore, 

these systems possess a low filling factor typical of optical lattices, which 

provides additional isolation of the atoms from each other. In these systems, 

perturbations to the atomic environment can be introduced in a controlled 

manner and studied individually. Hence far-detuned optical lattices are an 

ideal tool for quantum state preparation and control, quantum transport and 

quantum chaos studies and provide a rich and flexible system. Furthermore, 

through altering the beam geometry, beam intensity and beam polarization 

or by the action of external fields one can control depth, shape and period­

icity of the trapping potential. Being able to control and manipulate neutral 

atoms in optical lattices provides the basic requirements to implement quan-

204
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turn computational schemes in these system, as was suggested by several 

groups [31]. Tools to manipulate and read-out q-bits for each atom sepa­

rately have been discussed in the literature recently [72,73]. The similarity 

to condensed matter periodic structures, albeit on an entirely different length 

scale, that of the optical wavelength, allows the investigation of solid state 

physics problems in a context of much more favourable time scales. Hence 

these far-detuned systems provide an ideal starting point for quantum state 

preparation based on a resolved-sideband Raman cooling scheme [42]. This 

research aimed to optimize the preparation of a large fraction of atoms in 

the vibrational ground-state of the 2D lattice and get a better and detailed 

understanding of experimental results.

I now provide a brief chapter by chapter summary of the contents of this 

thesis. Chapter 1  discusses the principles of laser cooling and provides a 

short historical overview. The atom-light interaction and light-induced forces 

exploited in laser cooling are introduced. This is followed by a discussion 

of the principles of Doppler cooling, a Magneto-Optical Trap (MOT) and 

Sisyphus polarization-gradient cooling.

After having discussed the theoretical background of laser cooling. Chap­

ter 2 provides an introduction to optical lattices and their properties. First 

the light-shift operator in the near and far-detuned regime is deduced and the 

advantages of non-dissipative optical lattices discussed. Examples of lattices 

in one, two and three dimensions are deduced from their lattice beam configu­

ration. Having derived the form of the optical potential allows us to calculate 

the band-structure of the lattice. The rest of the chapter is dedicated to a 

discussion of the population distribution of the atoms over the vibrational
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levels of the lattice taking the anharmonicity of the lattice into account.

Chapter 3 introduces the concept of resolved-sideband Raman cooling in 

two and three dimensions. The functional form of the Raman coupling is 

deduced using the formalism described in [42] and a new scheme for cooling 

in 3D is suggested. The three dimensional case is especially interesting in 

connection with atomic fountains and atomic clocks.

Chapters 1 to 3 provide the necessary tools to implement QMCWF sim­

ulations of resolved-sideband Raman cooling in a far-detuned optical lattice, 

and this is thoroughly discussed in chapter 4. First, a theoretical system is in­

troduced which includes all the necessary physics to model resolved-sideband 

Raman cooling. The second part of the chapter discusses the results of our 

QMCWF simulations and shows for the first time the influence of the quan­

tum Zeno effect on the efficiency of resolved-sideband Raman cooling and the 

choice of experimental parameters. Furthermore, a procedure for how to sup­

press the impact of the quantum Zeno effect which leads to most favourable 

populations in the vibrational ground-state of an optical lattice is presented.

Chapter 5 discusses diagnostic tools for atoms in optical lattices, Zeeman 

state analysis and parametric excitation. Zeeman state analysis is a use­

ful tool to monitor the population distribution of atoms over the different 

Zeeman sub-states and quantify the overall magnetization of an atomic sam­

ple. It was a useful tool to check, that a significant fraction of atoms ended 

up in the stretched states |F  =  4,m  =  ±4). This provided us with a more 

favourable starting population for resolved-sideband Raman cooling to either 

of the |F  =  4, m =  ±4) vibrational ground states. In this manner, the overall 

efficiency of our quantum state preparation experiments was improved.
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The second part of the chapter is dedicated to an investigation of para­

metric excitation in optical lattices. Perturbative simulations implemented 

in this chapter allowed the study of the effects of anharmonicity of the op­

tical potential and the effects of non-uniform intensity profiles of the lattice 

beams. Contrary to the harmonic case these cause a significant spreading 

of the vibrational resonances. These simulations are also used to simulate 

heating induced by intensity fluctuations in the laser beams. It emerged that 

they are reasonably low for atoms in far-detuned optical lattices and do not 

affect the efficiency of sideband cooling significantly.

In conclusion, this thesis presents an extensive study of neutral atoms in 

far-detuned optical lattices using theoretical models to simulate and better 

understand their behaviour. The simulations were aimed at optimizing the ef­

ficiency of our resolved-sideband Raman cooling experiments. An interesting 

by-product from this investigation was the first observation of the influence of 

the quantum Zeno effect on the efficiency of this quantum state preparation 

technique. Furthermore, an original three dimensional scheme to implement 

sideband cooling was suggested, of which the experimental realisation could 

be used to improve the accuracy of atomic clocks and the efllciency of atomic 

fountains which are important in high precision measurements [74]. Thus 

the conclusions of this work open up the possibility of performing a wide 

range of experiments to investigate coherent manipulation of single quantum 

states using adiabatic rapid passage, which is closely related to the method 

of resolved-sideband Raman cooling as it uses the same coherent coupling. 

Eventually further investigations into this area may open up the way to con­

trolled engineering of individual quantum states and to useful techniques for
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quantum computation.



A ppendix A

Caesium D ata

A .l Spectroscopic Properties

The following table contains data on the D2 line of caesium used for the laser 

cooling experiments of this thesis. Further data is available in reference [75].

Q uantity Symbol Value U nit
wavelength (vacuum) A 852.347 nm

wavevector k 2ir X 1.17 X  10® m“^
excited state lifetime T 30.5 ns

natural linewidth F 27t X 5.22 MHz
saturation intensity I  sat 1 . 1 2 mWcm“^

recoil energy F rcc 1.37 X 10-^" J
recoil frequency ^Rec 2.07 kHz
recoil velocity VRec 3.5 mms~^

recoil temperature T rec 198 nK
Doppler temperature Td 125 fiK

Zeeman shift 6 ‘̂ Si/2 (F = 4) +351mf
T0.170?7ip

kHz/C
En^/mG

Zeeman shift Çi^P̂ /2 (F' = 5) -\-560mFf 
TO.271771̂ /

kHz/C
F rgc/ ^ G

Table A.l: Caesium 6 5̂ 'i/ 2  —̂ ^^^3 /2  transition spectroscopic data.
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A.2 Physical Properties

The next table is a summary of useful physical properties of caesium.

Q uantity Symbol Value U nit
mass mcs 2.207 X lQ-25 kg

atomic number Z 55
melting point Tm 28.44 °C
boiling point n 671 °c

Table A.2: Caesium Physical data

A.3 Other data

A detailed description of the level scheme, transition strengths and is available 

in reference [75] and [22].

A.4 Clebsch-Gordan Coefficients



>

Je -5 -4 -3 - 2 - 1 0 1 2 3 4 5

-4 1 0.447214 0.149071 0 0 0 0 0 0 0 0

-3 0 0.894427 0.596285 0.258199 0 0 0 0 0 0 0

- 2 0 0 0.788811 0.68313 0.365148 0 0 0 0 0 0

- 1 0 0 0 0.68313 0.730297 0.471405 0 0 0 0 0

0 0 0 0 0 0.57735 0.745356 0.57735 0 0 0 0

1 0 0 0 0 0 0.471405 0.730297 0.68313 0 0 0

2 0 0 0 0 0 0 0.365148 0.68313 0.788811 0 0

3 0 0 0 0 0 0 0 0.258199 0.596285 0.894427 0

4
4

0 0 0 0 0 0 0 0 0.149071 0.447214 1

o

g

?
O
O

;
O
0  

3

1C/3
Table A.3: This table shows the Clebsch-Gordan coefficients for =  4 Jg =  5.

to



A ppendix B

Supplem ents to  the derivation  

of the light-shift operator

This appendix supplements the derivation of the light-shift operator in the 

near-detuned limit in section 2.1 on page 37. Each supplement is referenced 

in the corresponding section in the main text.
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B .l  Supplement 1

H g - g H

ai &2

as 34

^ g g 6 g e \

^^eg Q e e )

g^Qeg H g g P g e^ggQgg I

+ Heeêej ^ c g Q g e  +

êH
 ̂̂  A  ̂ / TJ W

Qge f ^ g g  ^ g e

^ ^ e g  Q ee  

/

\

\

7 H e g  H e e7

âi

^ g g H g g  +  ^ g e H g g  ^ g g H g g  4 "

^eg^^gg Q e^^^g Qeg^^g^ ^ e e ^ e c

“t~ Hggggg ^^gHgg^99 ^gg

HgePeg Qg^^eg

^2 — Hggg^g 4- Hge^ee “  PggHeg — gggH

â s  =  Y l e g Q g g  +  H c e ^ e g  ~  Q e g ^ g g  ~  Q e e ^

h ^̂ egQge Qeĝ ĝc&4 = H e e ,  Qe

ee

eg

èeg^gc

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6 )

The last step in equations B.3 and B . 6  follows, since 2.9 and 2.13 are her-
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mitian matrices,.i.e. =  0. To get a better=  0  and H e e ,  Qe

understanding for the terms involved in the above expressions, the formalism 

is apply to a two level atom with a ground state |p) and an excited state 

|e). The two-level atoms is assumed to have a similar Hamiltonian as used 

in the rapid adiabatic passage formalism, where two levels are coupled with 

a coupling strength of V  and the ground and excited state have energies Eg 

and Ee respectively. This gives for the above matrices

\
^99

Q eg Qee

OC

H
H e g  H e e

\g) {g\ \g) (e| 

|e) (g\ \e) (e\

' e ,  V  

%
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H ,g

H g

OC

gH

H g - g H

^ g g Q g g  ^ g e Q e g  ^ g g Q g e  ^ g e Q e

B ^ e ^ e g  ^^cgQge

E ,\g){g \-^V \e){g \ E , \g) {e\ + V  \e) {e\

yV* \g) {g\ +  E^ \e) (g\ \g) (e| +  E^ \e) (e|

^ g g B g ÿ  4 "  ^ g g B e g  ^ g g B g e  ~\~ Q g e ^ e e

/

OC

y^eg^^gg ' treê ^eg Keĝ ^ge

' eç Is) (si +  V  Is) (e| y  |s) (si +  E . |s) {e\\ 

\e) (si + y  \e) (e| V  |e) (s| + E ,  |e) (e| J

(B.7)

(B.8 )

(B.9)

(B.IO)

H ,g H g - g H

( \
Cl C2

ycs C4  j  

Ci =  V ^ |e )(s |-y * |9 )(e |

C2  =  {E, -  Ee) Is) (e| +  y  (|e) (e| -  |s) (s|) 

C3  = y* (Is) (si -  je) (e|) +  (Ee -  E ,) |e) (s| 

C4  = y  Is) (e| -  y  |e) (si

(B .ll)

(B.12)

(B.13)

(B.14)

(B.15)

This ends the example.
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B.2 Supplement 2

This section supplements the deduction of the steady state ground state den­

sity matrix 2.1 after the excited state and its coherences were eliminated. The 

ground state density matrix is then given by

%  “ “ Î + (§)
i  { ( d -  . E - )  è e ,  -  ( d +  ■ E + ) }  +  ^  ( B . 1 7 )

(d‘  ■ E -) ^ ^ V f )  }

+  +  ê , ,  ( d -  • E - ) }  ( d -  • E - )  }

4 ( w a  , i n  ( d - ■ E - )  ( d + ■ E + )  g
h  ( a  T f )

1

h  ( a  T f )
1

h { A - f )
1

h { A - f ) '

(

W  relax

99

+  r r m r v  ■ e “ )  Â e  ( d +  • e + )  

( d -  ■ E - )  ê . e  ( d +  ■ E + )

* ( ^ )  (B.19)
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(d- . E -) (d+ . E+) 6 , ,

+

(d- ■ E -) (d+ . E+) }

relax
(B.20)

dâ99

g ,, (d - • E -) (d+ . E+) }

99

+ 1 ^ '‘ dt relax
(B.21)

where we have rationalized the denominators in the fractions and used the 

fact that

(d- . E -) ê e e  (d+ • E+)

. (d- ■ E -) (d+ - E+) /  (A -  f  ) -  (A + f  )
h A2  +  Ç

0. (B.22)



A ppendix C

Pauli Spin m atrices

The Pauli spin matrices are given by

0 1

1 0

0 - i

i  0

1 0

0 - 1
(C.l)

Using the spherical basis they can be written as

cr_

+ i à y  _

2
0 2 

0 0

-  iày 1 0 0 

2 0

—O' z

(C.2)

(C.3)

(C.4)

The Pauli spin matrices and the identity matrix form a complete set and form
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a basis for the vector space of all 2  x 2  matrices.



A ppendix D

The Quantum Zeno Effect

This appendix gives a short introduction to the quantum Zeno effect. The 

name origins from from Zeno of Elean a Greek philosophy living in southern 

Italy. The main source of knowledge about him and his lives comes from the 

dialogue Parmenides written by Plato. A more comprehensive summary of 

his life and work can be found in [76]. He was famed for his paradoxes and 

conundrums. One of them was that motion doesn’t exist. Zeno said that [77]

There is no motion because that which is moved must arrive at 

the middle of its course before it arrives at the end.

He argued that because at any given point in an arrow’s flight, it must have 

transversed the midpoint, it actually can never move.

People had Zeno in mind when they studied the inhibition of the decay 

of a unstable quantum system due to suflaciently frequent observation or 

measurements on it. It was first proposed by Misra and Sudarshan [78] in 

1977 and coined the Zeno effect. It followed the early work of Khalfin [79]
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and Fonda [80]. Colloquially, this can be phrased as a watched pot never 

boils [81].

Recently also the opposite of the quantum Zeno effect was proposed and 

demonstrated, the anti-Zeno effect. The anti-Zeno effect is described in [82]. 

The experiment undertaken by Raizen et al. [83] showed both the quantum 

Zeno and anti-Zeno effect using sodium atoms trapped in an accelerated far- 

detuned standing-wave of light by studying the escape via tunnelling. It was 

the first demonstration of both the Zeno and anti-Zeno effects by repeated 

measurements. Recent theoretical and experimental developments have ini­

tiated new research on this effect. An important motivation to study the 

Zeno and anti-Zeno effect is to elucidate one of quantum computing’s biggest 

problems, errors due to the decay of coherence.



A ppendix E

Derivation o f the Effective 

Spectral D ensity

In this appendix the method to deduce the effective spectral density Ses used 

in the parametric excitation simulations is described and explicit expression 

for the effective width and effective frequency are provided.

The first step is to assume a Gaussian distribution Si{uj) for the density 

of states associated with a level |i) having an energy of Ei =  hwi. This can 

be cast in functional form as

=  ( E . l )
y/l'K Gi

where the Gaussian distribution is centred around hjJi having a frequency 

spread of cr̂ . The effective spectral density 5eff associated with a transition 

between the states |i) —>■ |/)  can then be obtained by considering the convo­

lution of Si(uS) with Sf{üj),
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The parametric excitation is provided by a monochromatic excitation 

source in our experiment. It can be included in the model by assuming 

also a Gaussian density distribution for its spectral density and convolution 

it with the convolution of and Sf(uj). It is defined in that way that

once integrated over all frequencies it yields the square of the intensity of the 

modulation source (cf. equation 5.33 on page 186).

Hence the net result is a effective spectral density Sea(uJif) given by

=  ^ 0  exp (E.2)

where

+ <7? +  o-g (E.3)

=  ^mod — (^f — ^i) (E.4)



A ppendix F

M agnetic Field o f a Square Coil

To provide a strong magnetic field gradient across the trapping region two 

square coils in anti-Helmholtz configuration are used. The easiest way to 

calculate the magnetic field of a square coil is to use the Biot-Savart law,

(F l)

where cfB is the magnetic field due to the current element I  d£ induced at a 

point with relative position vector r  from the current element, /zq is the free 

space permeability and is defined to have the value fio = Att x  1 0 ~^Hm~^. 

Using the Biot-Savardt law F .l as given in [6 6 ] on page 170, the magnetic 

field of any circuit can be calculated by integrating around the loop, i.e.

B

A square coil can be thought of as being composed of 4 straight current- 

carrying finite wires along each side as shown in figure F .l. The magnetic

224



225

Wire 2

CP

CO

+

Wire 4 
Coil 1 : Front view

Wire 1
Coil 1 : Side view

Figure F.l: The figure shows a schematic of a square coil composed of 4 
straight current carrying wires. The magnetic field at a point P in space is 
can be calculated using the quantities angles a  and /3 and the distance |r| 
relative to the the wire. The direction of the magnetic field vector is given 
by the Biot-Savart law to be x r.

field of a straight current-carrying wire is deduced in [6 6 ] on page 172 to be

(F.3)B Mol . d £ x r(cos p — cos a)
47rr ' ' ' \ d i xT\

Four such wires are now connected into a square coil as shown on the left of 

figure F.l. With the help of the symbolic toolbox of Matlab the calculation 

of the magnetic field of a rectangular coil with arbitrary dimensions was 

implemented. The centre of the atomic cloud was chosen to be the origin. 

Then using a vectors in MatLab the two coils are created by four wires each 

and put a distance D away from the origin. Then by using simple vector 

algebra using equation F.3 the total magnetic field of two square coils can be 

calculated by summing up the contributions of each wire:

(F.4)
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where B^(r^) is the induced magnetic field of wire i at a point away from 

wire i. This set-up is shown in figure F.2.
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coil 1

-►

cloud of 
cold atoms

o3

PCM

T O F 3 cani

coil 2

Figure F.2: The figure shows a schematic of a anti-Helmholtz square coil 
setup composed of two square coils a distance 2D apart. When the atoms are 
released from the optical lattice, they fall through a magnetic field gradient. 
Underneath the trapping region is a time of flight beam to measure the time 
of arrival for atoms in different ruf levels.



Bibliography

[1 ] D.R. Meacher. Optical lattices - crystalline structures bound by light. 

Contemp. Phys., 39:329, 1998.

[2 ] P.S. Jessen and l.H. Deutsch. Optical lattices. Adv. Atom. Mol. Opt. 

Phys., 37:95, 1996.

[3] G. Grynberg and C. Triché. Atoms in optical lattices. In A. Aspect, 

W. Barletta, and R. Bonifacio, editors. Proceedings of the international 

school of physics Enrico Fermi, Course CXXI  (1995), page 243. lOS 

Press, Amsterdam, 1996.

[4] L. Guidoni and P. Verkerk. Optical lattices: cold atoms ordered by light. 

J. Opt. B: Quantum Semiclass. Opt., 1:R23, 1999.

[5] M.G. Prentiss. Bound by light. Science, 46:17, 1993.

[6 ] G.P. Collins. Three dimensional optical molasses binds a new type of 

crystal. Physics Today, page 17, 1993.

[7] Steve Rolston. Optical lattices. Physics World, 11:27, 1998.

228



BIBLIOGRAPHY____________________________________________^

[8 ] O. Morsch. Ein Baukasten fiir Quantensysteme. Spektrum der Wis- 

senschaft^ page 24, 1998.

[9] T.W. Hansch and A.L. Schawlow. Cooling of gases by laser radiation. 

Opt. Commun.., 13:68, 1975.

[10] D. Wineland and H. Dehmelt. Proposed 10̂ '̂ Ai/ < i/ laser fluores­

cence spectroscopy on Tl^  mono-ion oscillator III. Bull. Am. Phys. Sac., 

20:637, 1975.

[11] S. Chu, L. Hollberg, J.E. Bjorkholm, A. Cable, and A. Ashkin. Three- 

dimensional viscous confinement and cooling of atoms by resonance ra­

diation pressure. Phys. Rev. Lett., 55:48, 1985.

[12] S. Chu, J.E. Bjorkholm, A. Ashkin, and A. Cable. Experimental obser­

vation of optically trapped atoms. Phys. Rev. Lett, 57:314, 1986.

[13] A.L. Migdall, J.V. Prodan, W.D. Phillips, T.H. Bergeman, and H.J. 

Metcalf. First observation of magnetically trapped neutral atoms. Phys. 

Rev. Lett, 54:2596, 1985.

[14] D.E. Pritchard, E.L. Raab, V. Bagnato, C.E. Wieman, and R.N. Watts. 

Light traps using spontaneous forces. Phys. Rev. Lett, 57:310, 1986.

[15] A. Ashkin and J.P. Gordon. Stability of radiation-pressure particle traps: 

an optical Earnshaw theorem. Opt Lett, 8:511, 1983.

[16] E.L. Raab, M. Prentiss, A. Cable, S. Chu, and D.E. Pritchard. Trap­

ping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett, 

59:2631, 1987.



BIBLIOGRAPHY____________________________________________^

[17] P.D. Lett, R.N. Watts, C.I. Westbrook, W.D. Phillips, P.L. Gould, and 

H.J. Metcalf. Observation of atoms laser cooled below the Doppler limit. 

Phys. Rev. Lett, 61:169, 1988.

[18] C. Cohen-Tannoudji and W.D. Phillips. New mechanisms for laser cool­

ing. Physics Today, page 33, 1990.

[19] J. Dalibard and C. Cohen-Tannoudji. Laser cooling below the Doppler 

limit by polarization gradients. J. Opt. Sac. Am. B, 6:2023, 1989.

[20] P.J. Ungar, D.S. Weiss, E. Riis, and S. Chu. Optical molasses and mul­

tilevel atoms: theory. J. Opt. Soc. Am. B, 6:2058, 1989.

[21] P.D. Lett, W.D. Phillips, S.L. Rolston, C.E. Tanner, R.N. Watts, and

C.I. Westbrook. Optical molasses. J. Opt. Soc. Am. B, 6:2084, 1989.

[22] Metcalf, Harold J. and Straten, Peter van. Laser Cooling and Trapping. 

Graduate Texts in Contemporary Physics. Springer, 1999.

[23] H. Metcalf and P. van der Straten. Cooling and trapping of neutral 

atoms. Phys. Rep., 244:203, 1994.

[24] C. Cohen-Tannoudji. Atomic motion in laser light. Les Houches Summer 

School, Session LHI, 1990.

[25] C. Cohen-Tannoudji. Laser cooling and trapping of neutral atoms: the­

ory. Phys. Rep., 219:153, 1992.

[26] S. Stenholm. The semiclassical theory of laser cooling. Rev. Mod. Phys., 

58:699, 1986.



BIBLIOGRAPHY____________________________________________^

[27] M.B. Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon. Bloch 

oscillations of atoms in an optical potential. Phys. Rev. Lett.., 76:4508, 

1996.

[28] Q. Niu, X.-G. Zhao, G.A. Georgakis, and Raizen. M.G. Atomic landau- 

zener tunneling and Wannier-Stark ladders in optical potentials. Phys. 

Rev. Lett., 76:4804, 1996.

[29] K.W. Madison, M.G. Fischer, and M.G. Raizen. Observation of the 

Wannier-Stark fan and the fractional ladder in an accelerated optical 

lattice. Phys. Rev. A, 60:R1767, 1999.

[30] C.F. Barucha, K.W. Madison, P.R. Morrow, S.R. Wilkinson, B. Sun- 

daram, and M.G. Raizen. Observation of atomic tunneling from an ac­

celerating optical potential. Phys. Rev. A, 55:R857, 1997.

[31] G.K. Brennen, C.M. Caves, P.S. Jessen, and l.H. Deutsch. Quantum 

logic gates in optical lattices. Phys. Rev. Lett., 82:1060, 1999.

[32] H.-J. Briegel, T. Calarco, D. Jaksch, J.I. Cirac, and P. Zoller. Quantum 

computing with neutral atoms. J. Mod. Opt., 47:415, 2000.

[33] B.C. Klappauf, Oskay. W.H., D A. Steck, and M.G. Raizen. Experi­

mental study of quantum dynamics in a regime of classical anomalous 

diffusion. Phys. Rev. Lett., 81:4044, 1998.

[34] B. Brezger, T. Schulze, P.O. Schmidt, R. Mertens, T. Pfau, and 

J. Mlynek. Polarization gradient light masks in atom lithography. Euro- 

phys. Lett, 46:148, 1999.



BIBLIOGRAPHY____________________________________________^

[35] W.D. Phillips. Atomic motion in laser light. Les Houches Summer School, 

Session LHI, 1990.

[36] O.R. Frisch. Experimenteller Nachweis des einsteinischen Strahlungs- 

riickstosses. Z. Phys., 86:42, 1933.

[37] C. Cohen-Tannoudji. Théorie quantique du cycle de pompage optique. 

Ann. Phys., 7:423, 1962.

[38] C. Monroe, W. Swann, H. Robinson, and C. Wieman. Very cold trapped 

atoms in a vapor cell. Phys. Rev. Lett., 65:1571, 1990.

[39] l.H. Deutsch, J. Grodalski, and P.M. Alsing. Local dynamics of laser 

cooling in an optical lattice. Phys. Rev. A, 56:R1705, 1997.

[40] C. Cohen-Tannoudji. Manipulating atoms with photons. Rev. Mod. 

Phys., 70:707, 1998.

[41] Silvia Bergamini. Atoms in non-dissipative optical lattices. PhD thesis. 

University College London, 2002.

[42] l.H. Deutsch and P.S. Jessen. Quantum-state control in optical lattices. 

Phys. Rev. A, 57(3):1972, 1998.

[43] D.R. Meacher, S. Guibal, C. Mennerat, J.-Y. Courtois, K.I. Petsas, and 

G. Grynberg. Paramagnetism in a caesium optical lattice. Phys. Rev. 

Lett., 74(11):1958, 1995.

[44] D.L. Haycock, S.E. Hamann, G. Klose, G. Raithel, and P.S. Jessen. 

Enhanced laser cooling and state preparation in an optical lattice with 

a magnetic field. Phys. Rev. A, 57(2):R705, 1998.



BIBLIOGRAPHY____________________________________________^

[45] K.I. Petsas, A.B. Coates, and G. Grynberg. Crystallography of optical 

lattices. Phys. Rev. A, 50:5173, 1994.

[46] P. Verkerk, D.R. Meacher, A.B. Coates, J.-Y. Courtois, S. Guibal, 

B. Lounis, C Salomon, and G. Grynberg. Designing optical lattices: 

an investigation with caesium atoms. Europhys. Lett, 26:171, 1994.

[47] N. Ashcroft and N. Mermin. Solid State Physics. Holt-Saunders Inter­

national edition, 1981.

[48] S. Wolf, S.J. Oliver, and D.S. Weiss. Suppression of recoil heating by an 

optical lattice. Phys. Rev. Lett, 85:4249, 2000.

[49] S.E. Hamann, D.L. Haycock, G. Klose, P.H. Pax, l.H. Deutsch, and 

P.S. Jessen. Resolved-sideband Raman cooling to the ground state of an 

optical lattice. Phys. Rev. Lett, 80:4149, 1998.

[50] A. J. Kerman, V. Vuletic, C. Cheng, and S. Chu. Beyond optical molasses: 

3d Raman sideband cooling of atomic caesium to high phase-space den­

sity. Phys. Rev. Lett., 84:439, 2000.

[51] K. M0 lmer, Y. Castin, and J. Dalibard. Monte-Carlo wave-function 

method in quantum optics. J. Opt. Soc. Am. B, 10:524, 1993.

[52] W.K. Woodgate. Elementary Atomic Structure. Oxford University Press, 

2nd edition, 1986.

[53] Robert M. Ziff. Four-tap shift-register-sequence random-number gener­

ators. Computers in Physics, 4(12):385-392, 1998.



BIBLIOGRAPHY___________________________________________ ^

[54] S. Friebel, C D. D’Andrea, J. Walz, M. Weitz, and T.W. Hansch. CO2 - 

laser optical lattice with cold rubidium atoms. Phys. Rev. A, page R20, 

1998.

[55] R. Jauregui, N. Poli, G. Roati, and G. Modugno. Anharmonic parametric 

excitation in optical lattices. Phys. Rev. A., 64(3):033403, 2001.

[56] T.A. Savard, K.M. O’Hara, and J.E. Thomas. Laser-noise-induced heat­

ing in far-off resonace optical traps. Phys. Rev. A, page R1095, 1997.

[57] C.W. Gardiner, J. Ye, H.C. Nagerl, and H.J Kimble. Evaluation of 

heating effects on atoms trapped in an optical trap. Phys. Rev. A, page 

045801, 2000.

[58] M.F. Andersen, A. Kaplan, and N. Davidson. Echo spectroscopy and 

quantum stability of trapped atoms. Phys. Rev. A, 90:023001, 2003.

[59] R. J ’auregui. Nonperturbative and perturbative treatments of paramet­

ric heating in atom traps. Phys. Rev. A., page 053408, 2001.

[60] G. Raithel, W.D. Phillips, and S.L. Rolston. Magnetization and spin-flip 

dynamics of atoms in optical lattices. Phys. Rev. A, 58(4):R2660, 1998.

[61] R.P. Bertram, H. Merimeche, M. Miitzel, H. Metcalf, D. Haubrich, and

D. Meschede. Magnetic whispering-gallery mirror for atoms. Phys. Rev. 

A, 63:053405, 2 0 0 1 .

[62] T.M. Roach, H. Abele, M.G. Boshier, H.L. Grossman, K.P. Zetie, and

E.A. Hinds. Realization of a magnetic mirror for cold atoms. Phys. Rev. 

Lett, 75(4):629, 1995.



BIBLIOGRAPHY____________________________________________^

[63] W.G. Kaenders, F. Lison, I. Müller, A. Richter, R. Wynands, and 

D. Meschede. Refractive components for magnetic atom optics. Phys. 

Rev. A, 54(6):5067, 1996.

[64] E.A. Hinds, M.G. Boshier, and I.G. Hughes. Magnetic waveguide for 

trapping cold atom gases in two dimensions. Phys. Rev. Lett., 80(4):645, 

1998.

[65] G. Klose, G. Smith, and P.S. Jessen. Measuring the quantum state of a 

large angular momentum. Phys. Rev. Lett., 86(21):4721, 2001.

[6 6 ] W.J. Duffin. Electricity and Magnetism. McGraw-Hill, 4th edition, 1990.

[67] B.H. Bransden and C.J. Joachain. Physics of atoms and molecules. Long­

man Scientific & Technical, 1 st edition, 1991.

[6 8 ] M.E. Gehm, K.M. O’Hara, T.A. Savard, and J.E. Thomas. Dynamic of 

noise-induced heating in atom traps. Phys. Rev. A., page 3914, 1998.

[69] S Bergamini, S.P. Winklbauer, P.H. Jones, H.E. Saunders-Singer, and

D.R. Meacher. Selective parametric excitation of atoms in a two- 

dimensional non-dissipative optical lattices, submitted for publication, 

2003.

[70] D. L. Haycock, S. E. Hamann, G. Klose, and P.S. Jessen. Atom trapping 

in deeply bound states of a far-off-resonance optical lattice. Phys. Rev. 

A, 55:R3991, 1998.



BIBLIOGRAPHY____________________________________________^

[71] N. Poli, R.J. Brecha, G. Roati, and G. Modugno. Cooling atoms in 

an optical trap by selective parametric excitation. Phys. Rev. A, page 

021401, 2002.

[72] I. E. Protsenko, G. Reymond, N. Schlosser, and P. Grangier. Operation 

of a quantum phase gate using neutral atoms in microscopic dipole traps. 

Phys. Rev. A, 65:52301, 2002.

[73] N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier. Sub-poissonian 

loading of single atoms in a microscopic dipole trap. Nature (London)^ 

411:1024, 2001.

[74] G. Santarelli, A. Clairon, and C. Salomon. Quantum projection noise in 

an atomic fountain: A high stability caesium frequency standard. Phys. 

Rev. Lett, 82(7):4619, 1999.

[75] george.ph.utexas.edu/ dsteck/alkalidate/cesiumnumbers.pdf.

[76] www-gap.dcs.st-and.ac.uk/ history/Mathematicians/Zeno_of_Elea.html.

[77] T.L. Heath. A History of Greek Mathematics, volume 1 . Oxford, 1931.

[78] B. Misra and E.C.G. Sudarshan. J. Math. Phys, 18:756, 1977.

[79] L.A. Khalfin. JEPT Lett, 8:65, 1968.

[80] L. Fonda, G.C. Ghirardi, A. Rimin, and T. Weber. Frequent observations 

accelerate decay: the anti-Zeno effect. Nuovo Cim., 15A:689, 1973.

[81] P.L. Knight. The quantum Zeno effect. Nature (London), 344:493, 1990.



BIBLIOGRAPHY____________________________________________^

[82] A.G. Kofman and G. Kurizki. Frequent observations accelerate decay: 

The anti-zeno effect. Z. Naturforsch. 56:83, 2001.

[83] M.G. Fischer, B. Gutierrez-Medina, and M.G. Raizen. Observation of 

the Quantum Zeno and Anti-Zeno effects in an unstable system. Phys. 

Rev. Lett, 87(4):040402, 2001.


