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Abstract

This thesis gives an account of work done on semi-classical and quantum
Monte Carlo simulations in far-detuned optical lattices.

Firstly, the basic principles of laser cooling of atoms are presented includ-
ing a short introduction to optical lattices in the near and far-detuned regime.
A detailed analysis is made of the band-structure of optical lattices, using the
Bloch formalism, and of the bound-state population distribution appropriate
for a thermal sample of trapped atoms. Secondly, a general overview is given
of the quantum Monte Carlo method for simulating the dynamics of atom-
light interactions. This is followed by a detailed study of the concept of
Raman cooling, which is a useful tool to prepare atoms in the ground mo-
tional state of the lattice and an important first step to achieving quantum
state control with ultra-cold atoms. A simplified model of Raman cooling
is introduced and simulated using the quantum Monte Carlo wave-function
approach. Then the implementation of simulations of resolved-sideband Ra-
man cooling based on this model is discussed as is how the results were used
to optimize the experimental work done by our group. The results of these
simulations show for the first time that the quantum Zeno effect has a crucial
impact on the efficiency of Raman cooling experiments. Also the experimen-
tal measurements of the temperature of Raman sideband cooled atoms for a
range of parameters are compared with theoretical results and show a good
qualitative agreement.

Thirdly, the results of semi-classical numerical simulations of parametric

excitation in optical lattices are presented. It is shown that the modulation of



the potential can result in selective parametric excitation of trapped atoms.
The theoretical results show good qualitative agreement with experiment.
The thesis is concluded with a description of possible avenues for future

studies on quantum state control in optical lattices.
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Chapter 1

Principles of laser cooling

This section gives a short introduction to the atom-light interactions impor-
tant in laser cooling. The chapter starts out with a short historical overview
of laser cooling followed by a discussion of radiation pressure on a model two-
level atom. Then the basic principles of Doppler-cooling are introduced and
the mechanism underlying Sisyphus cooling discussed. The last part of the
chapter consists of a discussion of the aims of this thesis and an outline of

the rest of this work.

1.1 Introduction

This section gives a short introduction to the history of laser cooling. Several
review papers have been written over the years and the more interested reader
is invited to have a look at them [1-8].

The basic idea of laser cooling was first proposed by Hansch and Schawlow

[9] and independently by Wineland and Dehmelt [10] in 1975. Hénsch and

17



1.1. INTRODUCTION 18

Schawlow showed that in a low-density gas of neutral atoms illuminated by
intense, quasi-monochromatic light confined to the lower-frequency half of
a resonance line’s Doppler width, the translational kinetic energy can be
transferred from the gas to the scattered light, this process ending when the
atomic velocity is reduced to the ratio of the Doppler width to the natural
line width. This type of cooling is nowadays know as Doppler cooling. The
first experimental realisation of this idea was achieved by Chu et al. [11] in
1985. In their work, an atomic gas was cooled in three spatial dimensions by
a viscous force arising from the radiation pressure exerted by a set of laser
beams. The force is viscous in the sense that it, like a frictional force, is
proportional to the speed of the atom, but does not achieve trapping of the
atomic gas. The same group was also the first to observed optical trapping
in an optical dipole force trap in 1986 [12]. At the same time Midgall et
al. [13] succeeded in trapping neutral atoms magnetically and Pritchard et
al. [14] proposed a stable cold atom trap based only on light forces. The
latter proposal avoided problems arising from the optical Earnshaw theorem
described in [15]. Shortly afterwards another major milestone was achieved
with the first experimental realisation of a magneto-optical trap (MOT) [16].
This trap not only allowed cooling of an atomic gas, but provided for its
spatial confinement.

In the following year, experiments carried out by Lett et al. [17] resulted
in measured temperatures of (43 + 20 uK), well below the theoretical limit
predicted for Doppler cooling (240 uK for sodium). This observation puzzled
many researchers and led to the proposal of the Sisyphus cooling mechanism,

based on the interplay of optical pumping and polarization gradients [18-21].
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These processes were not included in the simple theoretical model of Doppler
cooling. The beauty of Sisyphus cooling is that it has the potential of lo-
calizing the atoms to arrays of sub-wavelength sized potential wells known
as optical lattices. The interested reader can find a more detailed discussion
of optical lattices and the ideas behind them in the review articles [22-26].
This ability to confine atoms in periodic sub-wavelength potential wells made
them an ideal testing ground for the investigation of properties of particles
in periodic potentials. The advantage over conventional solid state physics
materials is that the time-scales involved are much slower, facilitating the ob-
servation of processes not accessible in condensed matter experiments. Fur-
thermore, optical lattices display almost perfect long-range correlations in
particle positions, without defects, unlike solid-state crystalline materials.
Studies of atoms in periodic structures bound by light showed the existence
of Bloch oscillations [27], Wannier-Stark ladders [28,29] and Landau-Zener
tunnelling [30]. Optical lattices also have been used in proposals for quantum
computation schemes [31,32], as testing ground for quantum chaos [33] and

lithography [34].

1.1.1 Atom-light interactions and light-induced forces

The fundamental principle of momentum conservation during the emission
and absorption of a photon by an atom plays a crucial role in the mecha-
nism of laser cooling. Most fundamentally, laser cooling describes the process
of loss of translational energy associated with the centre-of-mass motion of

atoms induced by repeated optically-induced transitions between their inter-
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nal states. The important fact about laser cooling is that the velocity spread
about the mean velocity of the cooled atomic sample needs to be reduced.
Reduction of the mean velocity only, such in atomic beam slowing, is not
laser cooling. To gain an understanding of the physics involved, we introduce
a quantum mechanical description of the atom. The total wave-function is
split into internal and external parts, i.e. |¥) = |p) ® |{, F,m). Here |p) rep-
resents the external part determined by the atomic momentum wave-function
|p) and |(, F,m) the internal part, determined by the angular momentum F,
the magnetic quantum number m and ¢ describing the remaining internal
variables.

We start by looking at the atom-light interaction first in the internal
atomic states. Consider a two level atom with an excited state |e) and a
ground state |g) interacting with a monochromatic quasi-resonant beam with
frequency wy. The system is described completely by the angular frequency,
wp, of the atomic transition, the natural line width of the excited state, T,
the detuning of the laser beam with respect to the atomic transition, A =
wr, —wyp, and the Rabi frequency, €2, for a transition with unit Clebsch-Gordan

coefficient. From these parameters, one can define a saturation parameter by

0%/2

8= —/ (1.1)
A? +T2/4

For low saturation (s < 1) the population is mostly in the ground state,

whereas for high saturation (s > 1) the population is equally distributed

between ground and excited states. We can deduce the stationary excited-

state population to be (cf. [4]):
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S

L= on sy

(1.2)

Hence the atoms emits I1.I' spontaneous photons per time unit, each emission
being preceded by the absorption of a photon. It is also worth noting that
the square of the Rabi frequency is proportional to the laser intensity. This

allows us to define the on-resonance saturation parameter (as in [22]):

20?2 I
So = —f‘? = z, (13)
where
whlec
l="5— (1.4)

Here h is the Planck constant, A;, the wavelength of the laser light and c the
speed of light.

Next we consider the external degrees of freedom of the atom-field inter-
action. As mentioned above, momentum conservation plays a central role
in the atom-light interaction via the external wave-function. Consider an
atom having a momentum of p = Ak, and incident photons having a mo-
mentum of hk,,. When the atom absorbs an incident photon, the total mo-
mentum of the atom-photon system after the absorption process changes to
hk, = Ak, +hk,,. After atime interval proportional to the corresponding ex-
cited state life-time, I'"!, the atom spontaneously decays back to the ground
state. The photons carries away a quantity of momentum Ak, , leaving the

atom with a momentum of fik.. = hk, — hik,,. Over many such scattering
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events the momentum kicks due to the spontaneously emitted photons can-
cel out on average (cf. 1.6) and the atom experiences a net momentum kick

parallel to the direction of the momentum of the incident photons hk,,:

N
Rk, = hk, + Nhk,, + Y hkD, (1.5)
r=1
N
ngnrge; Rkl =0, (1.6)

where N is the number of scattered photons from the incident beam and hk,,
the momentum transfer from the absorption of an incident photon; hkj_ is
the momentum transfer from the r-th single spontaneous emission event and
Rk _ the recoil the atom experiences scattering N incident photons. It is seen
that an atom in a travelling wave always absorbs photons along a determined
direction and emits spontaneous photons isotropically. The net momentum
transfer associated with this process is often referred to as radiation pressure.
From 1.5 three more quantities can be defined. These are the recoil velocity

Vi, the recoil energy E; which can be associated with a recoil temperature 7;:

 Alkeee|  Biko

"M T M (17)
h2k2

E.=-> .
oM’ (18)
Mu?

T, = =*, (1.9)
ks

where M is the mass of the atom and kp the Boltzmann factor. The force on
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the atom from one of the laser beams is proportional to the rate of sponta-
neous emission, I'Il., times the momentum of a single incident photon from
this beam, ppn = ik [4]

r S

Faisip = IMleky, = SRk .

> (1.10)

The total dissipative force the atoms experiences from all incident laser beams

is then the sum of all Fyssip of each individual incident beam and given by

Faisip = »_TThky, =) gh K,

S
- (1.11)
kp; kp,

1+

In the low-saturation limit (s < 1) equation 1.10 takes the form

r r 0%/1?
ssip ~ —hk, s = —hk, ———r. 1.12
Faiwip ~ ghkes = Thko e 1171 (1.12)
Taking caesium as an example with A = —g— and 2 = I the dissipative

force experienced by the atom is about 3000 Mcs,g. A study of the heating
and cooling processes involved [24] [35] showed that in 1D for A = —L the

minimum temperature is achieved and is given by

D= 2ﬁ;c—l;' (1.13)
For caesium the minimum temperature, the Doppler temperature, defined as
Tp = 125 pK, corresponding to an atomic root-mean-square velocity of about
9cms~!. Hence the minimum achievable temperature is limited by the width

of the cooling transition used. The first experimental evidence of radiation

pressure was obtained in 1933 in an experiment [36] using atomic beams. This
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ability to change the atomic momentum allows the acceleration and decelera-
tion of atomic beams, but as mentioned above, it doesn’t necessarily give rise
to the cooling of an atomic vapor. For cooling the velocity distribution must
be narrowed and not only the mean value of the velocity reduced. Further

research into possible schemes led to the idea of Doppler-cooling.

1.1.2 Doppler cooling

Doppler cooling has the ability to narrow the atomic velocity distribution of
atomic vapors and was first proposed in 1975 by Hénsch and Schawlow [9]. It
relies on the Doppler effect to make the scattering force velocity dependent.
An atom moving with a velocity v, will see the frequency of incident photons
of a laser beam shifted by v’ = v (1 F L‘%), where k,, is the wave vector of
the incident photon. The direction of k, is defined to be the z-direction in
the following discussion.

It is worth noticing in 1.10 that, if the incident laser beam is red-detuned
(A < 0) then the atoms experience a net force against their direction of
motion along the z-direction [4]. Cooling is achieved during the absorption-
emission cycle. Here the atoms always absorb red-detuned photons, but on
average emit photons with a frequency of the respective atomic transition.
Hence the emitted photons carry away more energy than the atoms gain
through the absorption process. The result is an optical molasses, where a
viscous type of force slows the atoms down. The name optical molasses is
derived from the fact that the atoms experience a viscous force, i.e. F oc v. A

detailed theoretical study of Doppler cooling can be found in [26]. The first
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a" polarized

> 1

@+ polarized

. Flow of current in coils
Optical Molasses

a" polarized a polarized

Magnetic field coils
in anti-Helmholtz
configuration

" 1
a" polarized MOT

a*' polarized

Figure 1.1: Schematic diagram of a MOT. The two coils carry currents flowing
in opposite direction with respect to each other to provide a magnetic field
gradient. Three pairs of counter-propagating laser beams along the principal
axis provide a 3D radiation pressure force. See text for detailed discussion.

experimental realization was achieved in 1985, sodium atoms being cooled
with a dye laser |11]. Theoretical work carried out to find a stable configura-
tion of cooling and trapping, obtained only by radiation forces, demonstrated
that it is impossible to trap a two-level atom in a stable configuration by
radiation pressure alone induced by a set of laser beams. This is known as

the optical Eamshaw theorem [15]. Research on how to bypass this limitation

led to the suggestion by Dalibard of a magneto-optical trap.

1.1.3 The magneto-optical-trap (MOT)

The two-level-approximation correctly describes the Doppler cooling mecha-
nism. In real experiments often atoms with more complex energy level struc-

tures are used. The atom used in our experiment is caesium, which possesses
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Figure 1.2: Energy-level diagram and corresponding Clebsch-Gordan coeffi-

cients squared for a Jg = | transition.
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Increasing

Figure 1.3: Schematic energy level diagram for a magneto-optical trap, also know
as a MOT. An atom with aF* —0 ~ F A~ =1 transition transverses a region with
an inhomogeneous magnetic field. The B-field is zero at the centre of the trap
introducing a position dependent energy level shift (Zeeman shift) depending on
the magnetic quantum number rrif of the level. Two counter-propagating beams
with opposite circular polarization detuned from resonance by A are chosen in
a way as to bring closer to resonance the photons which propagate towards the
centre of the trap relative to the position of the atom. See text for a detailed

description.
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multiply degenerate Zeeman sub-levels in the ground and excited states. This
multiplicity in the energy level structure coupled with the angular momentum
conservation principle introduces two new phenomena into the model system.
There exist selection rules for the various possible transitions arising from the
scattering of photons of differing polarizations. The absorption of a o? (¢™)
polarized photon increases (reduces) the z-component of the atomic angular
momentum, whereas a m-polarized photon does not change it. In addition the
different transition amplitudes are weighted by vector-coupling coefficients,
better known as Clebsch-Gordan coefficients. The Clebsch-Gordan coeffi-
cients govern the coupling strengths of the different possible transitions and
have equal value for absorption on the transition |F,mpg) — |F',m') and
emission of a photon on the same transition. Figure 1.2 on the page before
shows the energy-level diagram of an atom on a J, = 3 — J. = 3 transition
and the corresponding Clebsch-Gordan coefficients squared. The two factors
described above govern optical pumping and its effect on the Zeeman level
populations as described in [37].

The principle of a MOT is to exert a force on the atoms directed to
the centre proportional to their excursion from the trap centre. This can
be achieved either by changing the stationary populations of the Zeeman
sub-levels with the aid of optical pumping [14] or by inducing a position de-
pendent shift of the energy levels of the trapping transition with the aid of an
inhomogenous magnetic field. Figure 1.1 on page 25 shows the experimental
implementation of a MOT confining atoms in 3D. The operation of a MOT
can be understood in terms of radiation pressure effects similar to those at

work in Doppler cooling in optical molasses. However, it has been demon-
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strated that polarization gradient cooling is also occurring at the trap centre.
Let us assume an atom with zero spin on a J = 0 — J = 1 transition as
shown in figure 1.3 on page 26. A static magnetic field B(z) = bz 2 is applied
(with b the field gradient), which induces a position dependent energy shift
to the atomic energy levels. The centre of the trap is located at z = 0. Two
counter-propagating laser beams having ¢+ and o~ polarization respectively
provide a friction force as described above. The frequency of the laser beams
are detuned to the red side of the resonance transition. At the centre of the
trap the radiation pressure experienced by the atom from each of the laser
beams cancel. If the atom is positioned away from the centre of the trap, the
atomic levels experience a Zeeman energy shift proportional to their magnetic
quantum number. The energy level interacting with the laser beam travelling
towards the trap centre is shifted more into resonance than the energy level
interacting with the laser beam travelling away from the trap centre. The
atom experiences a restoring force which pushes it to the centre of the trap.
Notice also that the linear magnetic field gradient induces a linear spatial
variation of the Zeeman shifts. Thus the net force has a restoring character
and varies linearly in space with the distance the atoms are away from the
trap centre.

This method can be easily generalised to 3D by using a quadrupolar mag-
netic field configuration and three pairs of counter-propagating laser beams.
The first experimental implementation of a MOT loaded from an atomic
beam was reported in [16] and the first MOT loaded from a low-pressure va-
por cell in [38]. A key experiment in 1988 demonstrated that temperatures

below the theoretical limit deduced from the Doppler-cooling model could be
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achieved |17]. An explanation of this experimental observation was proposed
by two research groups independently in 1989 [19,20] and is discussed in the

next section.

1.1.4 Sisyphus polarization-gradient cooling

e>

2/3 2/3

m=-1/2
lg>

m=+1/2

0 0.25 0.50 0.75 1.00
Z/A

010 -0.0-0-

Figure 1.4: The figure shows the level scheme used in the simplest angular
momentum configuration giving rise to Sisyphus cooling. The polarization
gradients are created by a linXlin laser beam configuration. Zero light shift
is between the excited level je) and the ground state level jg). The ground
state levels are red detuned.

Most atoms used in real experiments, like caesium, possess a Zeeman
structure in the ground state. In a general beam configuration the laser po-
larization varies in space, thus inducing position dependent light-shifts and
optical pumping rates for the different magnetic sub-levels of the ground state.

These two effects combined are the essential ingredients for what is known as

polarization-gradient cooling. The type of polarization-gradient cooling that
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Figure 1.5: The figure shows the semiclassical pictures of Sisyphus cooling
ona J, =2 — J. = 3 transition. (a) “local cooling” due to optical pumping
within a given lattice site. (b) “hopping cooling”: The motional coupling
between causes transitions between the adiabatic potentials and atoms are
optically pumped between lattice sites. Taken from [39].
is relevant to the formation of optical lattices is Sisyphus cooling. For sim-
plicity we consider here the 1D laser configuration shown in figure 1.4, which
shows the level scheme of the simplest angular momentum configuration giv-
ing rise to Sisyphus cooling. Two counter-propagating laser beams having
orthogonal linear polarizations and equal frequency and intensity travelling
along the z-direction create a polarization-gradient with a periodicity of %
between sites of opposite circular polarization, where A is the optical wave-
length. The change in polarization is a result of the phase shift between the
two waves varying linearly with 2z [40].

To elucidate the mechanism behind Sisyphus cooling, consider an atom at
a site of o~ polarization of the optical field, in the internal state |m = —1/2)

and moving to the right of figure 1.4. Sites of maximum light-shifts are located

at sites of pure circular polarization and form a string of potential wells. The
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atom moves up the potential hill out of the o~ well into a regions of increasing
o light. When the atom climbs the potential hill it converts kinetic energy
into potential energy. Also the probability of scattering a photon increases
more and more and the atom is eventually pumped into the state |m = +1/2).
In this anti-Stokes Raman process, the energy of the spontaneously emitted
photon is larger than the energy of the absorbed laser photon. The atom
looses an amount of energy of order of the depth of the optical potential
wells!. When the kinetic energy of the atoms is reduced below the well depth
of the optical potential, the atoms become trapped in the wells. In general the
atoms climb more potential hills than they decend, a situation reminiscent
of the predicament of Sisyphus in Greek mythology, who was doomed to roll
a stone up a hill only to have to start again at the bottom of the hill after
reaching the top.

It is worth noting that the situation described above does not account for
the cooling mechanism operating in atoms with angular momentum F > 1.
In the situation described above the cooling mechanism relied on atoms prop-
agating over many lattice wells to take part in the cooling cycle. In atoms
with angular momenta F > 1, there exists the possibility of local cooling, as
an atom can undergo a cooling cycle without changing potential wells. Con-
sider for example a caesium atom with an angular momentum of F' = 4. The
ground state manifold is composed of nine degenerate Zeeman sub-levels.
When the atoms interacts with the polarization gradients created by the

beam configuration described above, each magnetic sub-level experiences dif-

1The potential depth is defined as the energy difference between the absolute maximum
and minimum of the light shifted potentials.
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ferent gradients depending on its magnetic quantum number. This situation
is shown in figure 1.5 on page 30.

In the local cooling scheme, the atoms rise steep potential hills. The
atom is eventually optically pumped onto another potential surface with a
minimum at the same spatial location and starts to descend to the bottom
of the shallower potential surface. There it is optically pumped back to the
lowest potential surface. This comprises one cooling cycle in the local cooling
scheme. More kinetic energy is lost in the steep climb than is gained in the
descent due to the different curvature of the potential surfaces. Hence energy

is dissipated on average in the optical pumping process.

1.2 Aims of this thesis and outline

In general far-detuned optical lattices present an ideal system with which to
investigate and develop techniques for coherent control of motional and inter-
nal states of trapped atoms. The main advantage of non-dissipative optical
potentials is their conservative nature. In them the spontaneous scattering
rate is highly suppressed compared to the near-detuned case. Thus deco-
herence from spontaneous emission is strongly suppressed. Additionally the
atoms are isolated from their environment and from the other atoms, allow-
ing for an enhanced coherent life-time of the atomic state. The first step
to quantum state control of atoms in far-detuned optical potentials is their
preparation in a chosen motional state.

In this thesis I present work I have done on quantum state preparation

and manipulation in far-detuned optical lattices. The main goal is to find a
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suitable set of parameters to optimize 2D resolved-sideband Raman cooling
in the experiments of our group. First in chapter 2 an understanding of the
properties of the optical lattice used in our experiments are gained through
deducing the light-shifted potential surfaces arising from a given lattice beam
configuration. This allowed us to calculate the corresponding band-structure
and is followed by a study of the population distribution in a harmonic and
anharmonic optical potential and the connection between the concepts of
vibrational and kinetic temperature.

Chapter 3 provides an introduction to resolved-sideband Raman cooling
and deduces a model used in subsequent QMCWF simulations. The results
of these simulations offer the possibility to estimate a priori an optimal set
of parameters and guidance for our experiment. This is followed by the sug-
gestion and discussion of a new beam configuration for 3D resolved-sideband
Raman cooling.

Chapter 4 introduces the Quantum Monte Carlo Wavefunction Method
(aka. QMCWF Method) and outlines the steps needed to implement a simu-
lation using this formalism. The dependence of the results on the parameters
are discussed and for the first time the influence of the quantum Zeno effect
on the resolved-sideband Raman cooling efficiency is shown. This is followed
up by a short historical overview and discussion of the Quantum Zeno Effect.
Additionally a way to minimize that effect is provided.

Chapter 5 discusses theoretical work 1 have done for experiments under-
taken by Silvia Bergamini [41]. They include simulations of band population
measurements using magnetic fields (Zeeman state analysis), which are mod-

elled using semi-classical Monte-Carlo simulations. These allow us to better
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understand the time-of-flight measurements obtained in those experiments
and assess the efficiency of the measurement method used. Also these sim-
ulations allow us to determine a convenient set of parameters to implement
the Zeeman state analysis set-up. The remainder of chapter 5 is dedicated to
an investigation of the effects of parametric heating in a far-detuned optical
lattice induced by intensity fluctuations of the laser beams. These parametric
excitation experiments allow us also to estimate the anharmonicity of a lat-
tice potential and provide us with a tool either to selectively cool or to heat
a sample of trapped atoms.

The last chapter provides an outlook into the future and gives a conclusion

encompassing the whole thesis.



Chapter 2

Optical lattices

In this chapter I discuss the cooling and trapping of atoms in periodic struc-
tures bound by light, also know as optical lattices. In brief a spatially depen-
dant optical field composed of the lattice beams creates position dependent
AC Stark shifts in the atomic energy levels with periodicity on the scale of
the optical wavelength. The potentials created in this way can trap atoms
with velocities below the critical escape velocity of the lattice which is similar
to the well depth, typically of order of magnitude of some tens to hundreds
of Er. The lattices created are ideal lattices and have perfect periodicity. To
compare the situation with condensed matter physics, the optical lattice plays
the role of the atomic potential and the atoms interact with it as the electrons
do in a solid. Contrary to solid state physics where an increasing number of
lattice defects (empty atomic positions) result in an increasing perturbation
of the potential, in optical lattice the situation is opposite. At low occupancy
the optical lattice potential is hardly perturbed by the interaction with the

atoms. The higher the occupancy is, the more the optical lattice potential

35



36

gets perturbed. In typical optical lattice encountered in experiments, the oc-
cupancy is about 1 in 10, i.e. one atom occupies every tenth potential well
on average.

Many effects observable in solid state physics like tunnelling, paramag-
netism and diamagnetism, and transport phenomena can also be observed in
optical lattices. The advantage is that the periodicity in the latter is three
orders of magnitude longer than in solids. This results in observables have
time scales of the same order of magnitude slower. Hence these effects can
be measured more readily than in condensed matter physics.

This chapter is structured in the following way. First I will derive an ex-
pression for the light-shift operator A, for the case of a near-resonant optical
field. Then the scheme is extended to far-detuned optical lattices, often called
non-dissipative optical lattices. This is achieved by detuning to the red from
the resonance frequency of the lattice trapping resonance frequency as shown
in figure 2.1 on the next page. This is followed by a discussion of different ex-
perimental configurations in 1D, 2D and 3D and their corresponding optical
potential. These examples are used to illustrate how to calculate the optical
potential the atoms see from an arbitrary beam configuration. From there I
move on to deduce the band-structure in these optical potentials using the
Bloch formalism and introduce a general algorithm implemented in Matlab
to calculate the corresponding band-structure of an optical lattice created by
an arbitrary beam configuration. The final part of the chapter is dedicated to

an estimation of the vibrational level populations in an optical lattices using

1due to their nature of reducing the impact of heating by scattering of lattice photons
and the related spontaneous emission process.
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a given band-structure.

2.1 Light shifts in optical lattices
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Figure 2.1: This figure shows the ground and excited state levels, |F,) and
|F.) respectively, of a multi-level atom with hyperfine structure. Here F is
the total angular momentum of the atom. The level |Fy) is (2F, + 1)-fold
degenerate and the level |F,) is (2F, + 1)-fold degenerate. A red-detuned
laser beam with detuning A interacts with the system.

In this section I derive an expression for the light-shift operator Ay in
a near-resonant optical lattice. This expression is then used to calculate
the light-shifts experienced in the ground state hyperfine manifold. Figure
2.1 shows the two level scheme we adopt in this section. The system has a
ground state and an excited state, | F,) and |F.) respectively. Each manifold is
composed of (2F + 1) degenerate energy levels. In the case of caesium on the
|F =4) & |F =25) transition the ground and excited states are composed
of nine and eleven degenerate hyperfine levels respectively. A red-detuned?

laser beam interacts with the system.

2The frequency of the laser beam is lower than the resonance frequency.
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The derivation is split into five parts. First the form of the atom-light in-
teraction in the electric-dipole approximation is outlined. Then the equation
of motion for the ground state density matrix is derived initially neglecting
the degeneracy of the ground and excited state manifolds. The third step is
the adiabatic elimination of the excited state and all its coherences from the
density matrix. The next step is to put back the degeneracy of the ground
state manifold. Finally, the level shifts are deduced by neglecting the ground

state relaxation terms, i.e. optical pumping.

2.1.1 The electric-dipole interaction

In this section we consider the interaction Hamiltonian of an atom interaction
with an optical field. First an expression for the optical field operator is
deduced followed by the derivation of an expression for the atomic dipole
operator. We start out with an optical field E created by the interaction of
two counter-propagating laser beams. The optical field can then be written

as

1 ;
EL = EELéLe_Wt + c.c.,

where €7, is a unit vector pointing in the same direction as the polarization of
the corresponding laser beams. By changing from the cartesian to the circular

basis

1 .
E. = §EL Z &’kékéke_Mt + c.c.. (21)
k=-1,0,4+1
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In this equation the {e;} represent the unit vectors of the circular basis. This

basis consists of the vectors e_,e; and ey defined as

os = F 5 (R £15),
90:2.

The unit vectors are defined in a way so that ey represents o*-light and ey

for w-light. It is useful in calculations to remember that

Ax A ar o . A
&, =-é_, & =-8&,, é =é,.

In the following it is assumed that the single beam amplitude Ej, is real and
that the amplitudes of the polarization components comprising the beam

polarization are normalized to one, i.e.

D el =1.
k

To make the notation more manageable the raising and lowering operators®
are normalized so that
a[n) = |n—1), (2.2)

and the normalization factor is subsequently absorbed into Ej. Using the

above results, the optical field can be written as

3which are also called photon creation and destruction operators.
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E =Ete ™ 4 E et (2.3)
Et = Z Exerag,
k
E- =) eiéia)
k
The atomic dipole-moment is defined as
d=—er. (2.4)

Here e is the elementary charge of an electron and r the position operator

of the valence electron. The operator d causes transitions between different

states. Remembering that )", |J;, m;) (J;,m;| = 1 the atomic dipole moment

can be written as

d=—er= Z |Ji ma) (Jim; | A|J; my) (J; my)

i,j=g,¢

= Z dyéy
k

= Y imi) (Jimg | dilJ;m;) (J;my|

i,j=g.

%
Jimi 1k ~
= Z Cyini " D|J;ms) (J; m;| &,

4Lj=g.€
k

(2.5)

where we have assumed the Wigner-Eckart theorem and D is the reduced
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dipole operator matrix element D = (J,||d|]J.) with D' = D.* In equation
2.5 the diagonal terms are zero, since the corresponding Clebsch-Gordan co-
efficients are, and the equation for the atomic dipole operator can be split

into two distinctive parts. This leads to

Jgmyg

d=> Cyme'* D |J,mg) (Jo me| &
k

+3 " Cpme T D [T me) (Jymy| 8k
k

- d_ + d+. (26)

The calculation of Clebsch-Gordan coefficients can be quite tedious and it is
more convenient to refer to published tables. Having both these ingredients,
the optical field operator and the atomic dipole operator, an expression for
the interaction Hamiltonian can be derived. The operator depends on the

scalar product of both and substituting equations 2.3 and 2.6, it is given by

41t states that for any vector operator 6 with components & the relation

(J1mq |6]|Jams) = Cymalk (J1lol]J2)

Jym,
holds. In this relation the first term is a Clebsch-Gordan coefficient and the second one
the reduced matrix element. The two angular momenta linked together via the operator
are |J; m;) + |1 k) — |J; m;). The Clebsch-Gordan coefficients are only different from zero
if the angular momenta involved satisfy the triangle rule, i.e. are a linear combination of
each other®, A(J1J21), and if, in addition, m; = my + k.
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-~

H--E-d
=— (Ete™* + E_ei“t) (d* + d")
— ( [+ d* + E*t-d™] et

+[E™-d* + B -d]e). (2.7)

The Hamiltonian has four distinct terms of which two can be eliminated by

using the rotating-wave approximation. The Hamiltonian then takes the form

~

HY= - (E*-d*)e ™ — (E"-d7) et

1

= —be ™! — bleit | (2.8)

where the operators b and bt, are introduced, which are the raising and
lowering operators previously, but which drive transitions in which a quantum
of angular momentum is either gained or lost via a dipole transition. They
are bf = (E~-d~) and b = (E* - d*) respectively. This leads us to the next
step, the equation of motion of the ground state density matrix, where the
interaction Hamiltonian 2.8 is applied to the evolution of the density matrix

of the system.
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2.1.2 Equation of motion of the ground state density
matrix

The density matrix can be written in matrix form as

é _ ?99 ?95 , (2.9)

Ocg  Oece
where @,, is the 9 X 9 ground state density sub-matrix block and @, the
11 x 11 exited state one. To make the derivation more tractable, the structure
in the ground and excited states is at first neglected and then reintroduced
later. The density matrix formalism is completely equivalent and replaces

the Schrédinger equation formalism with a master equation description. The

differential equation which describes the dynamics of the system is now

A i . dp
w e () 10

where the Hamiltonian of the system is given by

H :ﬁ°+ﬂAF, (2.11)

where H® is the atomic Hamiltonian of the isolated system and H,r the
Hamiltonian of the atom-field interaction. By writing out the above matrix
equation it can be seen that it separates into four expressions, one for each
0;;- To deduce these four equations, firstly we consider the left-hand side of
equation 2.10 and secondly the right-hand side. The last step is to split the

full matrix equation into four separate equations for each component of the
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density matrix 2.9. The left hand side becomes
n dg ddy,.
o | &
—=1 - (2.12)
dt deeg  do,
dt dt
a=| " 7 (2.13)
Heg Hee

On the right hand side first the commutator is considered and then the

relaxation term. The density matrix 2.9 and Hamiltonian matrix 2.13 are

substituted into the commutator definition, as shown in appendix B.1, and

substituted into 2.10 giving

dgg, do

@ i | _ |@ a2} [do

dde;  dp dt ’
ralirs a3 a4 relax

a; = nggeg - égel:leg7
ag = ﬁggége + I:Ige@ee - égg}Ieg - égcﬂeea
as = Hegégg + Heeéeg - éegHgg - éeeﬁem

~

a4 - Hngge - Qegng'

(2.14)

(2.15)
(2.16)
(2.17)

(2.18)

Separating all the terms for the different parts of the matrix equation we

get the following differential equations for the evolution of the excited state

density matrix:
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B — {8, 0, s}~ T, (2.19)
= {-(B* 48,48, (B d)} -Te.,  (220)
Oge = Bge €™, (2.21)
O, = éeg e Wt (2.22)

In the differential equation for the excited state density matrix the relax-
ation term describes spontaneous emission. This means it can be written
as (‘f—ﬂé) relay = L @cc- Also to make the notation simpler the g,; in 2.20 are
replaced by 2.21 and 2.22. Next we consider the matrix equations for the

ground and excited state coherences @, and @,

déeg déeg —iwt wrt
- dr © T WLl (2.23)
i (. r. .
"R {Hegggg - Q“H“} T 90° vt
- % (EC - Eg) écge_iWLta (224)
s X
o= 2 {— (@ BY) 8y, + &, (4" BY)}
dt h
I
- (5 _ z’A) Buy (2.25)
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% :dsze €t 4 g et (2.26)
(Bt 0} - S
_ % (B, — E.) 8,6, (2.27)
.‘il%:_g{ (d™-E7) 8, + B, (d™-E7)}
( +i A) 8., (2.28)

where we have set A = wy, — wp, hwy = E, — E, and the relaxation term to

do

dt relax

= géege_i‘“bt. We are left with the ground state density matrix g,,.

Its differential equation can be written as

déyg (e A ~ 1 do

—c@ e, ra @B+ (R) L e

In this equation the relaxation term describes the optical pumping between
the different sub-levels involved. The relaxation term (%)ml&x < T, A. This
means that the density matrices g,, 8, and @, evolve much more quickly
than the ground state density matrix @,, opening the possibility to adia-
batically eliminate them. The whole density matrix can be replaced by the

steady state values of its components. This is accomplished by setting all

time derivatives of the density matrix to zero, i.e.
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dd,,\ db,,
(‘dT) =0 (_dr =0
déee _ déeg —
(dt>_0’ (dt =0

We have derived an expression for the evolution of the density matrix and

split it into four distinct parts. We are now ready to adiabatically eliminate
the excited state and its coherences using the condition above that the time

derivatives of the components of the density matrix are zero.

2.1.3 Adiabatic elimination of the excited state coher-

ences

We now adiabatically eliminate the excited state and its coherences from the
density matrix. We start by considering the steady state solution of equation

2.20 first by setting the left hand side to zero:

0= —3{- (B*d") B + 8y (")} ~T' e

hence

~s8 __ ¢

Oce = _ﬁf - (E+ ’ d+) ége + éeg (E— ’ d—)} : (2'31)

Here @]’ stands for the steady state solution excited state density matrix. The
superscripts ss will also be used for the steady state solution density matrices
of the ground-excited state coherences. For the differential equations for the

ground and excited state coherences, 2.25 and 2.28, we then have
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0=—+{-(d"-E") g, + 0., (d* - E*)}
r . \-
_ (5 — zA) e
~55 1 R
o RGBT D) {- (@*-E*) g,, + b,, (d* - EY)}, (2.32)
2

0=+ {~(d B) 8+ 0, (4" E)}

r . -
_ (5 + zA) Ocq>

_ﬁ {-(d"-E) @, +8,(d E)}. (2.33)

8=
We are left with the equation for the ground state density matrix g,, given
in 2.30. All occurrences of the density matrices are replaced by their steady

state values, giving

b,y i (o . . ow do
i R nggeg—ggeHeg}—F(E)rehx (2.34)
: -.E )5 5 + .+ do
~ i@ E) 2, -6, @ )} + (F) 239
relax

il

do
* (E)relax, (236)
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where we have rationalized the denominators in the fractions and used the

fact that the term

(h(Ale Iy - h(Al_ %)> (@ -E) g, (d* - EY)

_(d-E)g, (A" -EY) ((A-F)-(A+%)
a h A+ 2

=0 (2.37)

cancels out®. To calculate the light-shifts from this equation, the relaxation

@)rehx, which is much smaller than I' or A, is neglected in addition to

term ( 3t

the anti-commutator terms’. By setting

% - % (A, 8,,) (2.38)

the light-shift operator can be deduced to have the functional form

A

A
2

fil

St =

(@~ -E7) (d*-E"). (2.39)

This concludes the section on the adiabatic elimination of the excited state
and its coherences. We have arrived at a stage, where we can reconsider the
hyperfine structure in the ground state and introduce it into equation 2.39.

This is done in the next section.

SA step by step version is shown in appendix B.1
Toc il
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2.1.4 Inclusion of the degeneracy of the ground state

manifold

The next step is to consider the terms (d~-E~) and (d*-E%) in equa-
tion 2.39 on the preceding page. The components of the different terms are

given in equations 2.3 on page 40 and 2.6 on page 41. Substitution gives

m

1
(d‘ . E“) ( Cj:::::lkD IJ mg) J mc|ek) (ZE )
k
EL De; Cyemet™ |Jgmy) (Jome| &5, (2.40)

) (%

(2.41)

(@ ) (@B = 5 (B ) lealerkot

|Jg mg) (Jg : (2.42)

E
£=

We have used the fact that (J. m. | Je m'e> = Opn,,m,- From this follows that
m, = m; +l=me=my+korm, = m; + k — I. These operators now
include the level structure of the ground state with its manifold of hyperfine
magnetic sub-states. Using equation 2.41 and 2.42 into 2.39 allows us to
introduce the structure in the ground state into the light-shift operator A in

the next section.



2.1. LIGHT SHIFTS IN OPTICAL LATTICES 51

2.1.5 The functional form of the light-shift operator

Introducing the Rabi frequency Q? = —1;:- and substituting equations 2.41

and 2.42, the light shift operator becomes

4

1 =z J melk J mell
A= s (e | T ackz ol
ko
|Jg mg) (Jg m;] aj a. (2.43)

We are now ready to calculate the matrix elements of the light-shift operator.

They are

o2
<Jg, m2]A|J m1> _ —hA (A2 1;2) 2};2{: 1 Cyemelk Cgemell
(ng my | Jg, mg> <Jga mg | ﬁl‘: éll‘]g’ ml)

L T * m, Me=m
i (Zﬁﬁ) D) aaCini wk Cum ™ (249)
i)k 1

The last step follows due the chosen normalization in 2.2 for the operators &;
and &;. The possible combinations of &} &; are shown in figure 2.2. The local
polarization amplitudes are function of positions, €, = €x(r), and so determine
the spatial dependency of the light-shift operator. The final step to find the
adiabatic potential surfaces is to diagnonalize the light-shift operator A(r)

where the matrix elements are given by
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Figure 2.2: This figure shows the different contributions to light-shift operator
matrix elements. The ¢; are the amplitudes of the different local polarization
components when using the circular basis.

Jgma=m1+l-k

Army,my (1) = D €k (R)en(x) Cyzimel ¥,y e ¥ (2.45)
k,l

This concludes this section where an expression for the matrix elements of
the light-shift operator in the near-detuned limit was deduced. To illustrate
how the light-shift operator can be used to deduce the optical potential as
seen by the atoms, it is used to calculated the adiabatic potential of a 1D

lin Llin optical lattice on a J, = 1/2 — J. = 3/2 transition.

2.1.6 Adiabatic potential of a 1D lin | lin optical lattice
onaJ,=1/2 — J. = 3/2 transition

To illustrate how this can be used in calculations the light-shift operator

introduced in the previous section is applied to a theoretical two-level atom
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Figure 2.3: This figure shows the level scheme of a 1D linLlin optical lattice
onaJ, =1/2 — J. = 3/2 transition. Also shown are the squared Clebsch-
Gordan coefficients of the relevant transitions.

onadJy; =1/2 — J. = 3/2 transition. First an optical lattice is created by two
counter-propagating laser beams propagating along Z having polarizations
along X and § as shown in figure 2.6 on page 65. The total electric lattice

field is then given by

E (z) =E, (xe*** + ye™**) + c.c.

=v2Ey, {&, coskz + &_sinkz}. (2.46)

The total lattice light field contains no w-polarized light. Using the rele-
vant Clebsch-Gordan coefficients shown in figure 2.3, the matrix elements are

deduced to be

11 1
A :|60+|2x1+|5,,-[2x§-—hAs:Uocos2kz+§sin2kz

2

=Up [% + gcos2 kz] , (2.47)

11
22
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I

Uo [% + gsin2 kz] : (2.48)

0. (2.49)

D=
|
[N

Thus the eigenstates of A are the Zeeman sub-states. This is not generally
true in atoms with J, > 1, when the eigenstates are spatially dependent
linear superpositions of the Zeeman sub-eigenstates |J,, m). Here Raman
transitions with ¢ and ¢~ can link states with Am = £2. Figure 2.4 shows
the light-shifted potentials represented by equations 2.47 and 2.48. We see
that the periodicity of the lattice is A/2 for sites with the same m; and A/4
for sites of alternating m¢. The theory is extended to the case of far-detuned

optical lattices in the following section.

2.2 Non-dissipative Optical Lattices

In the previous section we discussed near-resonant optical lattices. Now we
consider what happens to the interaction between the lattice light and atoms
when the laser light is detuned further away from resonance and discuss why
this is advantageous for quantum state preparation and control experiments.
The disadvantage with Sisyphus cooling in near-detuned optical lattices is
that the spontaneous scattering which leads to localization is also responsible
for decoherence effects, thus limiting the lifetime of the vibrational coherences.
As mentioned in 1.1.1 on page 19, the light shift, Uy, induced by the lattice

optical beams is proportional to {\-, whereas the scattering rate I/ scales as
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Figure 2.4: This figure shows the light-shifts ofa ID lin Llin optical lattice on
§ Jg = 1/2 —*Je = 3/2 transition. We see that the periodicity of the lattice
is A for sites with the same r7if and A/4 for sites of alternating rrif.

Hence the latter decreases much faster than the first when the lattice
light is detuned further and further away from resonance. If we increase the
lattice laser power in proportion to the detuning, the well depth of the optical
potential can be keep constant. It is therefore possible to create a far-detuned
optical trapping potential with similar well depth and spatial periodicity as
a near-detuned optical potential, but with a highly reduced scattering rate.
A typical near-detuned lattice has a scattering rate of about  ~ 500kHz
which can be reduced to about F* ~ 100 Hz in a far-detuned one for detunings
of several thousands of line-widths.

Additionally, the reduction in the photon scattering rate also decreases

the rate of decoherence associated with spontaneous emission and makes
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far-detuned optical potentials an interesting environment for quantum state
preparation and control experiments, which depend on the coherent evolution
of the atomic wavepackets.

As the potential is non-dissipative, it is necessary to pre-cool the atoms
before making use of this useful feature of far-detuned optical potential. This
is normally done by cooling the atoms in a near-resonant lattice first and
transferring them to a superimposed far-detuned lattice with similar poten-
tial well depth and periodicity. The best transfer efficiencies were observed
when the near-detuned light was slowly ramped down and the far-detuned
light ramped up, with the aim to maintain a constant potential well depth.
Efficiencies of up to 90% were observed in our experiment.

Two useful limits of the spatial dependency of the light-shifts in a far-
detuned optical lattice are provided by the adiabatic and diabatic cases. The
adiabatic potentials are found by first diagonalizing the optical potential op-
erator 2.62 and then calculating its eigenvalues. The new eigenstates are
then superpositions of the Zeeman basis states |F, mp). Diabatic potentials
are calculated by neglecting all off-diagonal contributions to the optical po-
tential operator 2.62. The adiabatic potentials cannot be associated with
a pure Zeeman state |F,m = 14), but at positions with pure circular po-
larization, where Raman coupling between states with Am = 1 is almost
non-existent, they nearly coincide with the diabatic potentials associated with
the stretched states |F,m = +4). When the atoms move away from regions of
pure circular polarization, the contribution of the eigenstates from other mag-
netic sub-levels increases gradually giving rise to avoided crossings midway

between the regions of alternate pure circular polarization.
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If the Raman coupling between states Am = +1 is significant, then adi-
abatic potentials describe the lattice better as long as the atoms move slow
enough through the avoided crossing and undergo Raman transitions to other
magnetic sub-states. For fast moving atoms diabatic potentials are a more
appropriate description. Since we are considering mostly tightly bound atoms
at regions of pure circular polarization, we can use either adiabatic or diabatic
potentials. Both nearly coincide at these locations. This also makes calcula-
tions easier and faster, since the off-diagonal elements of the optical potential
operator are neglected and no diagonalization is necessary to calculate the

light-shifts.

2.3 Derivation of the Optical Potential in the
Far-detuned Regime and the Fictitious Mag-

netic Field

We have seen in the foregoing chapters how potentials for cold atoms can
be designed through their interactions with electro-magnetic fields. These
interactions can be grouped into three categories, namely light-shifts, Zeeman
shift and Stark shift.

In the following we are interested in the interaction of atoms with a low-
intensity monochromatic light source and static external magnetic fields, a
common situation in laser cooling. The aim is to derive a convenient form
for the optical potential of alkali-metal atoms in a far-detuned optical trap.

Considering a low-intensity monochromatic light source and an static external
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magnetic field, the potential the atom sees, can be written as [42]

U(x)=-E(x)-&-Ef(x) - i B, (2.50)

EL (x,t) = Re {EL (x) et}

- Z hAge

Here Ef, (x,t) represents the total electric field of the lattice beams and & the
atomic polarizability tensor operator in the far-off resonant limit; A, is the
detuning from the |g) — |e) resonance and d,. the electric dipole operator
coupling the states involved. Governing the interaction with a magnetic field
is the magnetic dipole operator & = h’yf*‘, where <y is the gyromagnetic ratio
and F' the total angular momentum operator.

The adiabatic potentials can now be found by diagonalising U (x). The
atom used in our experiment is caesium, an alkali-metal atom with a hyperfine

level structure. This means that the atomic polarizability tensor becomes [42]

Ppd P d Pr
= 2.51
Z T — (2.51)

where

and
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PF’ = Z IFlam,) <F’>m,|

are the projection operators for the ground and excited hyperfine manifolds.

Making a change of basis to the spherical one and using the notation

Ggq =€y 0-ey, (2.52)

we can write the atomic polarizability tensor as

max max F,m F,Tn
aqqﬁaz Anr —max_max £ F'Zcpmf;qq' e |Fym 4 q — ) (F,m|.

F?

(2.53)

In this expression fmr represent the relative oscillator strengths for the de-

cay |F') — |F), App the detuning of the laser beams from the resonance

involved, |Fpax = J + I) and |F =J+1 > the“stretched” states and the

CF "™ are the Clebsch-Gordan coefficients for the |F,m) — |F’,m’) dipole
transition. See [42] for a derivation of this equation.

Last but not least the characteristic polarizability scalar for the |J) — |J')

transition is defined as

(I Il )
hAme,F,

a

(2.54)

where (J'||d||J) is the reduced matrix element of the dipole operator and
Apg,... 7. the detuning from the resonance of the “stretched” states involved.

This more complex system will in general create coherences between the
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ground-state magnetic sub-levels via stimulated Raman transitions. These
coherences can then be exploited to control and manipulate the state of the
atomic wavepacket.

As mentioned earlier we are interested in the coherent evolution of the
atomic state and its manipulation. We should therefore be as far-detuned as
possible from the atomic resonance to minimize decoherence effects as much
as possible. Now in the limit where the detuning is much larger than the

hyperfine level splitting, equation 2.54 on the page before reduces to [42]

& ~ Ppé(J — J') Pr, (2.55)

where & (J — J') is the polarizability tensor of the |J) — |J') transition.
Thus for a very far-detuned optical lattice the alkali-metal atoms behave in a
similar way as atoms on the well studied |J = 1) — |J' = 3) transition. The
operator & (J — J') is a rank-2 tensor and as shown in [42] it can be written

as

9 . i
a;(J—-J)=a (55,'_7'1 — %Sijk&k) . (2.56)

where ;55 is the total anti-symmetric tensor and the matrices 6 are the
Pauli spin matrices as given in appendix C. The Pauli spin matrices and the
identity matrix form a complete set and form a basis for the vector space of

all 2 x 2 matrices. If we express the lattice light as

E. (x,t) = Re {E1ep (x) e}, (2.57)
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where €7, (x) is the local polarization of the lattice light and E, the single

beam amplitude®, we can rewrite the optical potential in the form

. 2 C i
Ur (x) = —3U1les ¥ 1+ FU1leL (x,y) x e (xy)I- (2:58)

The first term is proportional to the modulus squared of the local laser light
polarization and independent of the hyperfine state the atom is in. Addition-
ally it scales like the local intensity of the lattice light. Its functional form is

given by

2
Us= —§U1 leL (%, ¥)I°. (2.59)

Here U, represents the single beam light shift for a transition with unit
Clebsch-Gordan coefficient and €y, (x,y) the local lattice light polarization.
It can easily be calculated as shown in section 2.5.1 on page 65 for a 1D
far-detuned optical lattice.

The second term has the form of the Zeeman interaction with a fictitious
transverse magnetic field, whose direction depends on the local polarization
of the lattice light field. The usefulness of the fictitious magnetic field is that
its varies with the same periodicity as the optical potential, i.e. on a sub-
wavelength scale. This cannot be achieved with an applied external transverse
magnetic field and so opens up new experimental applications to be explored.

A useful one is resolved-sideband Raman cooling, which is described in detail

81t was assumed for convenience that the beams all have equal amplitudes E4, so it can
be conveniently factored out.
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in chapter 3. The shift to the energy levels due to the fictitious magnetic field

is dependent on the hyperfine state of the atom and is given by

]
Bﬁc (X, Y) = §Ul |€2 (X,Y) X € (X, Y)I . (260)

Using Landé’s projection theorem for the stretched ground hyperfine level

with F = I + J, equation 2.58 on the page before can be recast as

|

Up (x) = Uy (x) T + Bge (x) - (2.61)

The advantage of this representation is that it is basis independent and
very convenient for calculations. From equations 2.58 on the preceding page
and 2.61 it can be seen that in the limit of infinite detuning coherences be-
tween the states |F,m) and |F, m £ 2) go to zero. Also the fictitious magnetic
field described with equation 2.60 goes to zero if the light field is everywhere
linearly polarized. In this case only the term 2.59 on the page before survives,
which gives rise to a light shift independent of the magnetic substate of the
atom.

This concludes the section on light-shifts in non-dissipative optical lattices.
The next two sections show examples of calculated optical potentials and
describes ways how to manipulate them by means of changing the beam

configuration.
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Figure 2.5: This figure shows the effect of an applied external parallel mag-
netic field in a ID optical lattice. Note that the sign of the shift is dependent
on the sign of the ruf level.

2.4 Effects of Static Magnetic Fields in Opti-
cal Lattices

This section describes what happens when an additional static magnetic field
is added to an optical lattice. Applying a static magnetic field to an optical

lattice modifies equation 2.61 to

(x) —Uj (x) T T (Bfic (x) + Bext) « -p- (2.62)

The applied external magnetic field Bext splits into two parts, a transverse
component B” and a parallel component Bp to the chosen quantization axis
of the lattice. For simplicity we assume here that the quantization axis is

oriented along the positive z-direction, i.e. Bp - B” and Bt = Bx + By.
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A magnetic field parallel to the quantization axis along the z-direction

simply adds a Zeeman shift to the my-level. This energy shift is given by

AFE = grupmy Bz, (263)

where gr is the gyromagnetic ratio and pp the Bohr magneton. This term
adds only to the diagonal elements of the optical potential operator U and is
different for each my-level. Figure 2.5 shows this. The difference between the
fictitious magnetic field Bg. and an applied parallel external static magnetic
field B, is that the first changes over a length scale of order of magnitude
of the optical wavelength whereas the latter gives rise to a uniform mg-level
dependent shift of the |F, mp) states. This effect can be exploited to modify
the optical potential to give rise to paramagnetism as reported in [43] and
enhance the populations of the stretched states [44] [43].

A transverse magnetic field B, = By + B, on the other hand, mixes
the atomic states and establishes coherences between different magnetic sub-
levels with Am = £1. It contributes off-diagonal matrix elements to the
optical potential operator U and arises from the transverse components of
the angular momentum operator F. Expressed in the {|F,m)} basis set,
the angular momentum operator is a combination of raising and lowering

operators coupling states with Am = +1, i.e

Fi|F,mp) = hy/F(F +1) —m(m £ 1) |F,mp £ 1) (2.64)

Using these coherences one can enhance the population of the stretched states

by optical pumping. The effects of a static parallel and transverse magnetic
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field are used in resolved-sideband Raman cooling, where two vibrational
level pairs |F, m.p = —4) and |F, = —4) are shifted into resonance by the
parallel magnetic held and optical coherences are established by the transverse
hctitious magnetic held BRC by adding a 7r-polarization component to the

lattice light held.

2.5 Examples of Optical Lattices

This section shows examples of ID, 2D and 3D far-detuned optical lattices.
I describe here how the optical potential can be deduced from the beam con-
hguration used to produce the lattice and how the lattice geometry can be
manipulated by the choice of laser beam polarization and incidence angles. A
comprehensive theoretical review of beam conhgurations and the correspond-

ing optical lattice can be found in [45].

2.5.1 Optical lattices in ID

Figure 2.6: This figure shows the linTlin configuration to create an optical lattice
in ID. It uses two counter-propagating laser beams with crossed polarizations.

In this section I present examples of ID far-detuned optical lattices using
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the Hamiltonian 2.61 derived by Jessen and Deutsch in [42]. Consider the
beam configuration depicted in figure 2.6. It is composed of two counter
propagating laser beams along the z-axis with crossed polarizations along
the x and y directions. The polarization of the beam travelling along the
negative z-direction is chosen to subtend an angle of § with the polarization
of the counter propagating one. The latter is chosen to have a polarization
along the the positive y-direction. This configuration is often referred to as

the lin-0-lin configuration. The electric fields for the two beams are given by

E,+ = ELy€* (2.65)
E,- = EL e ** (§cos 0 + xsin¥), (2.66)
E,=E; {E,+ +E,-},

= Ey {(¢** + e7** cos 6) + sin &~} | (2.67)

where Ej, is the single beam amplitude assumed to be the same for both
counter propagating beams and relates to the intensity by Iyeem = |Er|%
The lattice has a quantization direction along z. The Hamiltonian (cf. 2.61)

is given by

2 A~ 1 F
H=—Zle(2)>T + =(e}(2) x er(2)) - = (2.68)
3 3 F
2 ] F
— — & Ycon: =(B; c) " T .
S Ueons + 5 (Bic) - (2.69)
F m;
f = - FgIFgamO <Fg’mi|'
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To deduce the functional form of the light shift operator, the quantities

ler(z)|2 and e} (z) x er(z) are needed. Substitution gives

e~ %z gin @
er = | e %% cos + eikz |, (2.70)

0

e~z gin@
2 _ — .
le]® = || e=*= cos O + et*=

0

e sin @ e~z gin @
= | e*% cos 0 + e~k e~ *z cog 0 + eikz
0 0

= sin% 0 + cos® 0 + €2*% cos 0 + e 2*% cos O

= 2(1+ cos 0 cos2kz), (2.71)
( e*zgin @ e~ *zsind
er xer=|e* cosf+ e %= | X | 77 cosf + eiF>

\ 0 0

= 0 . (2.72)

\2 sin @ sin 2kz
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Substituting this into the Hamiltonian gives

H(z) =— %EL (14 cos @ cos 2kz) 1

+ %EL sin @ sin 2kz Z % | Fy,mg) (Fyymy). (2.73)
This Hamiltonian can now be used to calculated the light-shifts for the dif-
ferent my levels. In the band-structure near the bottom of the wells the
atoms are in the Lamb-Dicke regime and the centre-of-mass motion can be
approximated by a thermally excited harmonic oscillator. Thus expanding
the potential around a minimum and only considering the quadratic term in

the displacement, the oscillation frequency can be deduced to be

hwee. =g\ U E,, (2.74)

where g is a constant depending on the lattice geometry. By applying a trans-
verse magnetic field the different light-shifted my levels can be mixed together
and optical double well potential created. Here one has full control over the
barrier width and height by adjusting the angle §. Adding random perturba-
tions to the optical potential one then could study the tunnelling dynamics
in noisy environments. Another possibility is to rotate the polarization of
one laser beam using an opto-electric modulator. The effect would be two
potentials associated with my = —1/2 and my = 1/2 respectively moving in
opposite directions acting like a conveyor belt. If the rotation speed is slow

enough so that tightly bound atoms remain localized they would be acceler-
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ated in opposite directions. Another use for the opto-electric modulator is
the possibility to simulate a fluctuating barrier. By choosing 6(t) = 6p £ Oimod
one could simulated a periodic or random variation for f,.4 and for the cor-

responding barrier height and width.

2.5.2 Going to Higher Dimensions

Figure 2.7: This figure shows the two possible beam configurations to achieve a
2D optical lattice. We use this type of set-up in our experiments. Shown also is
the corresponding lattice symmetry below the respective beam configuration.

In 1993 Grynberg et al [3] suggested that the topography of an optical
lattice can be kept constant without having to phase-lock the trapping lasers.
They showed that one only needs N laser beams to create (N —1)-dimensional
optical lattices. Then the relative phase fluctuations of the individual beams

are simply producing a spatial translation of the optical lattice. In general
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Figure 2.8: This figure shows a possible beam configurations to achieve a 3D
optical lattice. This is the beam configuration with the smallest number of beams
to achieve a 3D lattice.

these fluctuations are slow enough for the atoms to be able to follow them
adiabatically. This insight reduced the complexity in creating higher dimen-
sional optical lattices and this geometry is used in our experiment.

The interested reader is referred to an excellent paper by Petsas et al [45]
in which many theoretical possible beam configurations are discussed and
investigated. Figure 2.7 shows two possible beam configurations to create a
2D optical lattice taken from this paper. First we consider the configuration
on the left of this figure. This configuration is also the one used in our 2D
resolved-sideband Raman cooling experiment, where an angle of * = +t/s is
used. The different possible choices of the relative polarizations of the beams

change the relative positions of ~ and (I~ sites, i.e. change the basis of the
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Figure 2.9: This figure shows a 2D lattice calculated using the beam config-
uration on the left of figure 2.7 on page 69. s was chosen to be 60°.

unit cell. From [42] the lattice electric field is given by

P f,-iky
EL(X) =— [- et {1+ 26%»" cos (K"x)}
(2.75)
+e (1 ta26"Woos (K™x - 260} 1,
where = ksinO™ Ky = k{l cos9), Ei is the single beam amplitude and

Gq the unit vectors of the rotating basis, Gq G {G+, G_, Gm}. The quantization
axis of the lattice is chosen to be the z-direction. The direct and reciprocal

unit vectors for this configuration are given by
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Figure 2.10: This figure shows a 2D lattice calculated using the beam config-
uration on the right of figure 2.7 on page 69. d was chosen to be 60°.

3
bi N —ALE, B —gﬁs; 1 \SLWW, (2.76)
D2 ALGKH — Ay,  b; = NG - (2.77)

These form a basis associated with a primitive cell consisting ofa  and a~
site. An interesting conclusion from this calculation is, that for a choice of
Q—1jZ the two direct lattice vectors are equal in length.

The second configuration described in figure 2.7 has the polarizations of
two of the lattice beams perpendicular to the lattice plane. As stated in [45]

this necessitates a choice for the different amplitudes to be E. = Eg = E i/,
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where E; is the amplitude of the beam travelling along the X-direction. The

lattice electric field is then given by

—ik
Fre [—es {1+ 2654 cos (K.z)}

V2 (2.78)

+e_ {1+ 2 cos (K,z)} |

EL (X) =

and the quantization axis is chosen to be in the z — y-plane along k;. This
configuration represents an anti-ferromagnetic optical lattice owing to the fact
that there are as many potential wells of one circular polarization as from
the other with equal potential depth. The main difference between the two
configurations is that for the configuration of figure 2.10, the lattice possesses
potential wells of pure circular polarization at all positions of maximum light
shift for any angle #. On the contrary the configuration of figure 2.10 only
possesses potential wells with pure circular polarization for a choice of 8 =
/3.

This concludes the discussion of 2D optical lattices and we end this section
with a look at 3D optical lattices. We start with the configuration described
in figure 2.6 in 1D. First one beam is split into two in the  — z-plane with
an including angle of § as shown in figure 2.8. Then the other laser beam is
split into two in the z — y-plane with including angle 7. The polarizations of
the beams are kept as in the 1D configuration. This configuration produces a
3D optical lattices with pure ot and o~ lattice sites. This configuration was

first discussed in [46).
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Figure 2.11: This figure shows calculated potential surfaces for a 2D optical
lattice with varying (. The beam configuration on the left of figure 2.7 on
page 69 was used. The angles 9 are: (a) 9 = 30° (b) 9 = 45°, (c) 9 —60°,

d) 9- 75°.
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2.6 Band-Structure Calculations

Optical lattices can also be described as periodic structures bound by light.
As in solid state physics this periodicity gives rise to a band-structure of the
energy levels in the optical potential wells. We base our treatment of the
band-structure in periodic structures bound by light on the Bloch formalism
presented in [47, pp 138-139]. We apply this formalism to ID and implement
it in MatLab. Thus we can deduce the band energy eigenvalues and eigen-
functions for arbitrary optical lattice geometries. The eigenfunctions allow us
to deduce a localized Wannier basis for the individual potential wells. These
localized Wannier function have the advantage that they are localized in con-
trast to the delocalized Bloch basis. Using this Wannier basis is useful to

discuss atoms localized in potential wells.
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_80.
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-200-
-220-

-0,5 -0,4 -0,3 -0,2 - 0,1 0,2 0,3 0,4 0.5

Figure 2.12: Band structure for a potential depth of 170ER, cut in the x-direction.
and  are respectively the period of the potential and the component of the quasi-
momentum in the x-direction.

Consider an atom in a ID optical lattice. The Schrodinger equation gov-
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Figure 2.13: Band structure for a potential depth of 170 ER, cut in the y-direction.
ay and g, are respectively the period of the potential and the component of the quasi-
momentum in the y-direction.

erning the dynamics of the atom has a general form of

- _
Hy = (_?M'V + U(r)) b = E. (2.79)

In this equation M is the mass of the atom and the potential U has the peri-
odicity of the optical lattice. Bloch’s theorem now states that the eigenstates
9 of the Hamiltonian 2.79 for a potential with periodicity U(r + R) = U(r),
where R is a vector of the Bravais lattice, can be chosen to be plane-waves

times a function with the periodicity of the Bravais lattice, i.e.

Pni(r) = €57 Uy i (x). (2.80)

The index n is know as the band index. It arises due to the fact that for a
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given wavevector k there exist many independent eigenstates labelled by this
index. It is important to note that the periodicity in the functions u,x(r)

also imply the same periodicity in the wave-functions ¢, k(r), i.e.

Ynk(r + R) = %R, (r) (2.81)

for every R in the Bravais lattice. We impose the Born-von Karman boundary
conditions on the wave-function. Using the primitive cell of the underlying

Bravais lattice this condition is given by [47]

¥ (r + Z N; a¢) = 9(r). (2.82)

The parameters a; are the three primitive vectors defining the primitive unit
cell and the N; € {1,2,..., N'/3} are integers. N is the total number of
primitive cells in the optical lattice and N = N; N2 N;. Hence the general

form of the allowed Bloch vectors can be deduced to be

3
k= ;%b m; € Zo. (2.83)
Another point worth noting is, that the number of allowed wave vectors in
a primitive cell of the reciprocal lattice is equal to the number of potential
wells in the optical lattice.

We will now deduce a set of algebraic equations which will allow us to
calculate the band-structure of an arbitrary optical lattice. First the wave-

function is expanded in the set of all plane waves that satisfy the Born-von

Karman boundary conditions:
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P(r) = Z cqe % . (2.84)

q

In this equation q is a reciprocal lattice vector allowed by the boundary con-
ditions imposed. Next the potential U(r) is also expanded using plane waves.
Since the potential is periodic in the lattice, this expansion will only contain
plane waves with wave vectors that are vectors of the reciprocal lattice. Hence

the potential becomes

Ulr) =) Uxe™" (2.85)

The expansion coefficients are given by the Fourier integral

Uk = ;1]-/ dre *¥TU(r), (2.86)
cell

where v is the volume of the unit cell. Note also that since the potential U(r)
is real, the Fourier coefficients satisfy U_g = Uk. It is convenient to set the

spatial average Up of the potential over a primitive cell to zero, i.e.

U = l/ drU(r) =0. (2.87)

v
Substituting both the wave-function ¥ (r) and the potential U(r) into the
Schrédinger equation 2.79 Ashcroft and Mermin showed that the Schrédinger
equation can be replaced by a set of algebraic equations and be restated in

momentum space as [47]
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h2
(m—(k — K)2 — 8) Ck-K + Z Uk'—KCx—K’ (288)
K’

and using the relation q = k — K. The vectors k, K and K’ are reciprocal

lattice vectors. This allows us to rewrite the wave-function expansion as

di(r) = ) e T (2.89)
K
= etkr (Z q_Ke_iK"> (2.90)
K
= e'*Ty(r) (2.91)

showing the Bloch form 2.80. Since we are interested in tightly bound atoms
in an optical lattice, it is advantages to use a localized Wannier basis than an

unlocalized plane wave basis like the Bloch basis. They can be defined as [47]

bu(r —R) = vl—o / dice~R¥y(r), (2.92)

where vy is the volume in k-space of the first Brillouin zone. Figures 2.12
and 2.13 on page 76 show the calculated band-structure of two 1D cuts
through an optical lattice potential well using this formalism. The code to

do these calculations was implemented using MatLab.
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Uy = 230Eg Up = 170 Eg

n E, On E, Or

0 —220Er <10* —162Egx <10

1 -200Er <10* ~145Egx <10
2 —-183Egx <10* -130Eg <10
3 -166Eg <10* —115Egf <10
4 —148Ex <10™* —101 Eg 1074

5 —132Eg <107* — 87Er 1.6x1073
6 —116Er 6x107* — 74Egr 2.0x 1072
7 —102Er 75x107® — 63Er 1.8x 107!
8 — 8Erp 72x1072 — 53 Eg 1.1

9 — 76EgR 5.1x107! — 44 Eg 3.9
10 — 65Eg 2.4 — 36 Eg 7.9
11 — 56 Eg 6.4 — 25 Egr 11
12 — 46 Eg 11 — 14 Eg 13

Table 2.1: This table shows the results of a 1D band-structure calculations
for two different well depths. Also shown is the level width o,. The effects of
anharmonicity broadens higher lying energy levels. A calculated potential of
~ 700 data points was used and 70 wells were included in the calculation.

2.7 Population Distribution over Vibrational
Levels

This section deals with the characteristics of the population distribution over
the vibrational levels in a harmonic and anharmonic oscillator. Firstly we
introduce the concept of the kinetic temperature of an ensemble of atoms
and link it to the corresponding vibrational temperature. Then we examine
the level populations for a 1D and 2D harmonic oscillator and finally extend

them to the anharmonic case.
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ny, G‘n/ER An/ ER Ny 0',,/ ER An/ ER
0 <107* 16 0 <10 16
1 <107* 16 1 <10 16
2 <107* 15 2 <10 15
3 <10t 14 3 <10 14
4 <107* 13 4 10x107* 14
5 <107* 12 5 17x107% 13
6 <107 11 6 21x107%2 12
7 <107 8.2 7 0.19 10
8 <107* 35 8 1.1 8.6
9 <107* 55 9 4.0 8.4

Table 2.2: Calculated band energy separations A,, and level widths o, for 1D
cuts through the light-shift potential along the z and y directions respectively,
for the case of Uper = 170Eg (giving wy =~ 27x33kHz and nine bound
bands in the z-direction). For increasing n the anharmonicity becomes more
significant, which results in the broadening of the bands and, because of the
lack of rotational symmetry of the potential wells, the difference between z
and y characteristic vibrational frequencies becoming increasingly large.

2.7.1 Kinetic Temperature

There are two temperature concepts frequently used to characterize atoms
bound in optical lattices, the vibrational temperature, T.;,, and the kinetic
temperature, Ti;,- The kinetic temperature of a sample of atoms is related
to its spread in its momentum distribution. This spread can be characterized
statistically by its variance (Ap)? as
+00 Fo0 2
(Ap)* = / p* I(p)dp — ( / pIi(p) dp) : (2.93)
- —o0
where p is the momentum and II(p) the normalized momentum probability
distribution of the atomic sample. In the harmonic approximation II(p) is
2

generally assumed to be a Gaussian with a variance (Ap)? = o2:
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2

L i3 (2.94)

H(p) = \/2—7‘_'0_ €

This allows us to define the kinetic temperature of the atomic sample in terms

of its variance by

0.2

in — 2.9

where M is the mass of an atom in the sample and kg the Boltzmann constant.

2.7.2 Vibrational Temperature

Consider an atomic sample bound in an optical lattice. The diabatic potential
wells can be approximated by harmonic oscillator potentials. The eigenstates
then become |F, mp)®|n). In this representation | F, mr) describes the atomic
state characterized by the angular momentum F' and the magnetic quantum
number m and |n) describes a state in the vibrational level manifold seen by
the atoms. The vibrational temperature is related to the distribution of the
atoms over the available vibrational states in a potential well. For a thermally
excited sample the population II,, of level |n) is a function of the vibrational
energy. Hence the normalized population distribution over the vibrational

levels is given by

—En
e k*BTvib

= _Em
E e*BTvib
m

10, (2.96)

where FE,, is the energy of the n-th vibrational level. This allows us to define

the mean vibrational excitation of the atomic sample as an ensemble average
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of the occupation number n as

n=Y nll, (2.97)

Thus if 7 is known, the vibrational temperature T3, of the ensemble can be
deduced and vice versa. So how can we relate the kinetic temperature to the
corresponding vibrational temperature of the sample? They are related to
each other by looking at the relationship of the momentum distributions of
the individual vibrational levels and the measured momentum distribution of
the same sample. In general an optical lattice is a large ensemble of indepen-
dent harmonic oscillators. Hence the measured momentum distribution will
be a population weighted sum of the individual momentum probability dis-
tributions of the individual vibrational levels. In other words the variance of
momentum (Ap)? for all atoms in the optical lattice is a population weighted
sum of the variances of the momentum probability distributions (Ap,)? of

the individual vibrational levels:

(Ap)* =) (Ap.)* I, (2.98)

n

From this equation the kinetic temperature of the sample can be deduced.
Hence the kinetic temperature Ty, scales with respect to the recoil temper-

ature T, as the momentum variance (Ap)? to the recoil momentum variance

h2k, ie.

Ap)? Ty
(hgz)% = ;“ (2.99)




2.7. POPULATION DISTRIBUTION OVER VIBRATIONAL

LEVELS 84
where the recoil temperature is given by T; = %% To calculate the variances

of momentum (Ap)? of the vibrational levels we consider a harmonic oscillator

model in the following. The variance (Ap,)? is then given by

(Apa)® = (n| ?In) - ((n] BIn))’ (2.100)

= (n|p’|n) =p’ (2.101)

The last step follows, since for a harmonic oscillator the matrix element
(n|p|n) = 0. Thus using the ground state variance pj = & these matrix

elements are given by

pP=pi(2n+1) (2.102)

Hence the variance in momentum becomes

(Ap)? =pi (2 +1) (2.103)

Since for a thermally excited harmonic oscillator the ensemble average mo-
mentum distribution is exactly described by a Gaussian, the kinetic temper-
ature can be expressed in terms of the mean vibrational excitation as

(Ap)® _ Tin

ol A 27+ 1) (2.104)

2

where we have introduced the ground state kinetic temperature as Tp = ﬁ”g;.

Another useful quantity which can be defined here is a Boltzmann factor:
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_Bwosc
gp =€ *aTvb (2.105)

This Boltzmann factor simplifies the calculations of the population distribu-
tions in multi-dimensional harmonic traps. In 1D the population distribution

and mean occupation number become

93 n
I, = — = (1—gB)q 2.106
S (1—4gB)dB (2.106)
m=(1-gp)) ngp= lquB (2.107)

The last steps were achieved by recognizing the geometrical sum involved. In

D dimensions the population becomes

I, = (1 - 95)°q3 (2.108)

Real optical lattices are anharmonic and the quantities introduced in this sec-
tion are appropriate only for deeply bound atoms. The next section discusses

how the anharmonicity of the lattice can be taken into account.

2.7.3 Population Distribution of an Anharmonic Oscil-

lator in 1D and 2D

In this section we discuss the characteristics of the population distribution
over the vibrational levels in an anharmonic oscillator. Firstly, we examine the

distribution in an one dimensional anharmonic oscillator and then extend the
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Figure 2.14: The figure shows the population distribution of a ID anharmonic oscilla-
tor for 12 different vibrational temperatures. The maximum light shift is v4 = 230E r.
Each colour represents one of a set of vibrational temperatures ranging from 1fiK to
12/iK.
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discussion to two spatial dimensions. We need this information to compare
our experimental results with the calculated ones.

In the previous section we have been looking at the population distribu-
tion in a harmonic oscillator type of potential. The population distribution
function II,, of an oscillator level n and the ensemble average of the occupation

number 7 are given by

E,

e FBTvib
II, = -5 (2. 109)
Zm € kg Tyip
=Y nll, (2.110)

with the definitions as in equation 2.96 and 2.97. Those definitions are quite
general. Section 2.6 introduced the formalism to deduce the band-structure
in an optical lattice potential will. This calculations allow us to deduce the
energies of the levels in the anharmonic oscillator potential well. Thus instead
of using the harmonic oscillator energies E,, = fw(n+1/2), we can use the real
anharmonic energies in equation 2.109 and 2.110. This allows us to deduce
the normalized population distribution function and ensemble average of the
occupation number for a one dimensional anharmonic oscillator. Figure 2.14
shows calculated normalized population distributions for different vibrational
temperatures and different well depths in an 1D anharmonic oscillator.

This scheme can easily be extended to higher dimensions. Here the energy

levels are n + 1-fold degenerate and the total populations are given by
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&Y =I1% x IIY (2.111)
r ___Bs
e kBTvib

e = | ———
n Em
E ekB Tvib
- m

(2.112)

—_EBs
e kBTvib

_EBe
El ekB Tvib

(2.113)

where n = n,+n, = s+t. Since the energy levels are n+1-fold degenerate, the
populations of the degenerate sub-levels are all equal. Hence we only need to
calculate the relative populations of the |n,) |n, = 0) vibrational levels. The
remaining relative populations can be derived from those values.

A similar procedure can be adopted for the mean vibrational excitation

]

n= Znﬂfgy (2.114)

Equipped with these two equations the appropriate quantities for an anhar-
monic oscillator can be deduced as have been for an harmonic one in the
previous section. This 2D anharmonic oscillator population model is used
subsequently to derive the mean excitation of atoms in the simulation after
a Raman cooling sequence of given length. The calculated populations show
also that for low enough vibrational temperatures the populations of higher
lying levels is negligible compared to lower lying levels. Table 2.3 on the next
page shows some calculated population distribution for a maximum light shift

of Uy = 230ER of the stretched states with my = +4 and are subsequently
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Iz, my)
B I50 [1L0) [0} [0 [ 1400 | 1500 | 16,0)
1.87 [ 0.701 [ 0.112 [ 0.019 [ 0.003 | 5.9-107* [ 1.1-107* | 2.5-10~°
0.62 | 0.198 | 0.108 | 0.059 | 0.033 | 0.019 0.011 0.007
0.31 | 0.076 | 0.056 | 0.042 | 0.031 | 0.023 0.018 0.015
0.21 | 0.050 | 0.040 | 0.033 | 0.027 | 0.023 0.019 0.018
0.16 | 0.039 | 0.034 | 0.029 | 0.025 | 0.019 0.019 0.019

Table 2.3: This table shows 2D level populations for different vibrational
temperatures using a Maxwell-Boltzmann distribution. Shown are the pop-
ulations I, for n = n, +ny,n, = 0,n, € {0,1,2,3,4,5,6}. Section 2.7.1 on
page 81 describes in detail how the values in the table are calculated.

used in the data analysis of the results of the resolved-sideband Raman cool-
ing quantum Monte Carlo wave-function simulations. This is complemented

by figure 2.15, which shows the population distribution for a set of values of

3, where

h Wo

= . 11
T (2.115)

2.8 Conclusion

In this chapter I have given an introduction to optical lattices and their
properties. The chapter started with an introduction to light-shifts in near-
detuned optical lattices and a formalism on how to calculate them was intro-
duced. This was followed by an treatment of light-shifts on non-dissipative
optical lattices. In this section the idea of a fictitious magnetic field was in-
troduced and a compact form of the light shift Hamiltonian deduced. Then
the effects of static magnetic fields in optical lattices were reviewed, followed

by some examples of optical lattices. To deduce the allowed energy states
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of bound atoms in optical lattices a Bloch formalism was used to deduce
the energy bands in the lattice and to construct a basis of localized Wannier
functions. Lastly, the population distribution over vibrational levels in an
optical lattice was discussed in detail and the harmonic model extended to
take account of the anharmonicity present in a real optical lattice. Equipped
with those tools, we can now move on to discuss the powerful formalism of

QMCWEF simulations in the next chapter.
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Figure 2.15: The figure shows the population distribution of a 2D anharmonic oscilla-
tor for 12 different vibrational temperatures for i”* = n and /» = 0. The maximum light
shift is 4 — 230 Er. Each colour represents one of a set of vibrational temperatures
ranging from 1fiK to 12 fiK



Chapter 3

Resolved Sideband-Raman

Cooling

3.1 Introduction

One of the great challenges of modern science is to prepare, manipulate and
measure the quantum state of a physical system. Indeed the ability to carry
out these types of operations reliably is one of the main requirements to imple-
ment quantum computational schemes. Mastering the control of a system of
quantum states may also allow us to study the detailed interaction of atoms
with their environment and investigate how they respond to perturbations
introduced in a controllable fashion.

An interesting system to study in this context are non-dissipative optical
lattices discussed in section 2.2. The main advantage they provide is the
isolation of the atoms from their environment. Subsequently, incoherent in-

teractions can be deliberately introduced to study in detail the decoherent

92
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responses of the system related to them. In these structures bound by light
the scattering of lattice photons is highly suppressed compared to a similar
near-detuned system. Another advantage is the ability to easily manipulate
a wide range of physical parameters which characterize the trapping poten-
tial. These can be achieved through changes to the laser beam geometry,
beam polarization, laser frequency and the addition of static electric or mag-
netic fields. Also the multi-level nature of the atom-lattice interactions let
us explore Hamiltonian evolutions beyond the Jaynes-Cummings model® and
open up a window to a wide variety of theoretical and experimental stud-
ies [42]. Another encouraging fact is that the incoherent processes present in
photon-atom interactions can largely be suppressed in the far-detuned regime,
allowing atomic wavepackets to evolve coherently over longer times [48].
The aim of this chapter is to present theoretical work done on the 2D
Raman cooling scheme presented in [49] and of a discussion of our own imple-
mentation of a 3D Raman cooling scheme. To implement an efficient Raman
cooling scheme two basic ingredients are needed. F'irst optical potentials have
to be designed to provide an efficient trapping potential with well defined lo-
cal polarization variations. Secondly the lattice needs to provide a suitable
Raman coupling which can transfer enough atoms to the ground state before
recoil heating becomes important. The design of optical potentials was al-
ready described in 2.2 on page 54. In this chapter we deduce an expression for
Raman coupling in 2D and 3D optical lattices. The 2D scheme is then used in
the next chapter to implement a theoretical description of resolved-sideband

Raman cooling in 2D with the aid of a quantum Monte Carlo formalism.

1Interaction of a spin—% system with an harmonic oscillator.
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3.2 Resolved Sideband-Raman Cooling

- 3 mif=2a T =5

F'=35
4 [Fe = 5>
F'=3
F=4
F=3

Figure 3.1: Raman cooling level scheme. Two vibrational levels are brought into
resonance by a transverse magnetic field. Raman transitions transfers populations
from \rrif = 4,n > to \lmf = 3,n —1 > represented by the dark blue arrows
(coherent coupling). By optical pumping (red arrow) with the Raman pumper
beam ((%+ polarized), tuned to F = 4 F' = 4, the atom loses one quantum of
vibration in the overall process. After several cycles most of the atoms end up in
the vibrational ground state. The atoms can also decay to F' = 3 and are recycled
by a Raman repumper beam <" polarized), tuned to the F = 3 F' =4
transition.

Resolved-sideband Raman cooling was discussed in detail by Jessen and
Deutsch in |[42] and the first experiment was successfully undertaken in 1998
[49]. As described earlier the atoms are in the tight binding regime and are
found mostly at the bottom of the potential wells. Thus tunnelling between
different potential wells is negligible and we can consider each potential well
independently from each other. At the potential minimum, i.e. at locations
of maximum light shift, the optical potential has pure circular polarization.

Hence the most deeply bound states have negligible admixture of Zeeman

sub-states other than m = +F.
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If now vibrational levels associated with different light-shifted surfaces
become degenerate by applying an external magnetic field (c.f. figure 3.1),
a coupling between these two surfaces is established. The coupling strength
is described by a transverse component of the fictitious magnetic field (c.f.
equation 2.62 on page 63 in section 2.3). Thus the near-degenerate vibra-
tional levels get coherently mixed and population transfer between them is
initiated. Resolved-sideband Raman cooling relies on this coupling between
magnetic sub-levels in an atom. Figure 3.3 on page 97 shows the two low-
est energy light-shifted potential surfaces of a o potential well, belonging
to the magnetic sub-levels my = 4 and my = 3 respectively. Superimposed
on them is their corresponding band-structure. In the following the consider
atoms bound in the optical lattice with an angular momentum of F = 4 in
sub-states with magnetic quantum numbers my = 4 and my = 3. These
are described by kets of the form |F,ms). Each potential well possesses a
vibrational manifold associated with it. This is described by the state kets
|n = n, + n,) where n is the vibrational quantum number. Hence the atoms
are being described to be in states |F,ms) ® |n) = |F,m) |n). By applying a
weak magnetic field with the appropriate sign and magnitude the level pairs
|F = 4,m; = 4) |n) and |F = 4,m; = 3) |n — 1) can be brought successively
into degeneracy. The necessary magnetic field strengths are shown in Fig-
ure 3.4 on page 99. An optical coherence between this level pair is introduced
by an added w-component to the lattice optical field. This coupling initiates
a coherent evolution between the two states and is often referred to as Rabi
oscillations. By adding a Raman pumper beam with o* polarization to the

system the population in |4, m; = 3) |n — 1) can be optically pumped into the
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Figure 3.2: This figure shows a three-beam 2D optical lattice. The polarizations
of the lattice beams is in the plane. The beam along the ~-direction has
an additional 7r-component with a phase shift of ip with respect to the in-plane
component.

excited state manifold F' = 4. Since we are in the Lamb-Dicke regime this
level predominantly decays into |F = 4, m/ = 4) |n —1), i.e. the wavepacket
predominately preserves its symmetry.

There is also the possibility for the atom to decay into the F = 3 manifold.
The disadvantage in this case being that atoms decaying from F' = 4 end up
on a potential hill. Leaving the atoms too long in this level causes unwanted
heating and spreading of the atomic wavepacket. To avoid this a Raman
repumper beam with the same polarization as the Raman pumper beam is
used to recycle these atoms quickly back to the F' = 4 manifold providing
quick enough recycling before the atomic wavepacket can evolve significantly.
Looking at the transition strengths given in [22] we see that the repumper
beam can efficiently pump the atoms back into the F' —A4 manifold. On av-

erage the atoms scatter one pumper and one repumper photon in one cooling
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Figure 3.3: The figure shows the band-structure for a potential well with ruf

3 (dashed) and m/ = 4 (solid). The maximum light shift is vy = 150E r

cycle [49], an assertion that is also supported by our quantum Monte Carlo
simulations.

Figure 3.2 on the preceding page shows the beam configuration for a
three-beam 2D lattice. The beam along the y-direction has an additional
TT-component with a phase shift of @ with respect to the in-plane component.
This additional component provides the Raman coupling.

The first step in the modelling of resolved-sideband Raman cooling was to
use the already implemented band structure code to deduce the vibrational
levels structure as shown in figure 3.3. The potential wells for F=4 with
m/ = 3 (dashed) and rrif = 4 (solid) are shown and the corresponding band
structure is superimposed. This allows us to calculate the necessary magnetic

fields to bring the two levels [F = 4, m/ =4) |%) and \F = 4,mj = 3) \n — 1)



3.2. RESOLVED SIDEBAND-RAMAN COOLING 98

Transition B, in mG
[4,4) |1) < |4,3) |0) 21
14,4) |2) < |4,3) |1) 25
|4,4) |3) < [4,3) |2) 28
|4,4) |4) < [4,3) |3) 31
|4,4) [5) < 14,3) [4) 34

Table 3.1: This table shows calculated values for the required magnetic field
B, to bring the levels involved in the corresponding transition into resonance.

into resonance. As an example, the B-fields necessary for a lattice with max-
imum light shift of Uy = 150 Eg to bring the levels |4, 4) [n) and |4, 3) |n — 1)
into resonance are shown in table 3.1. These results are readily used in the
simulations implemented in the next chapter.

Extending the existing Matlab code base, these calculations have been au-
tomated to produce graphs like figure 3.4. These show the calculated Braman
versus well depths. This information is subsequently used to aid the choice
of our experimental parameters. The graph also shows that the lowest tran-
sition crosses the zero B-field line at around 247 Er. This is an upper limit
for the maximum light shift we can chose in our experiments?.

Another useful number can be determined by looking at the first and
second Raman sidebands. Taking the difference between the magnetic fields
required to bring a pair of vibrational states into resonance, one with An =1
and An = 2, we see that this is nothing more than the energy difference
between the second and first exited state of the m; = 4 potential. Hence this
method provides an independent measurement of the vibrational frequency

of an optical lattice by invoking the relation® AE[Eg] = 0.17 x B[ mG].

2We usually work in the regime of small light-shifts, Uy < 247Eg.
3This can easily be derived by considering the Zeeman energy shift formula, substituting
for the constants and changing units to Eg and mG.
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This finishes our short introduction to resolved-sideband Raman cooling.

The next section describes the scheme used in our experiments.

B vs maximum total ligtit stiift U
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50 too 150 200 250 UZE
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Figure 3.4: The figure shows the required Raman magnetic field for different maximum
light-shifts. From this graph we can can read the required Bpaman range for a given
maximum light shift, (biue) : |4, 1 13,0 (green) : 4,2 >—2]3,1>,(red) :
14,3 >—=13,2 >, (tight blue) :|4,4 >—2|3,3 >, (lilac) : |4,5 |3,4 > .

3.3 Scheme used in our experiment

There are different experimentally feasible implementations of resolved-sideband
Raman cooling in a 2D optical lattice possible. We have chosen to follow the
experimental realization of [49] and a more in-depth description can be found
in it. The only difference to the configuration discussed in the paper is how
the beam configuration is orientated. In our experiment the beam configu-

ration is rotated by 90° as shown in 3.5 on the next page with respect to
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k3

x

Figure 3.5: This figure shows the beam configuration we use in our experiment. Note
that it is the same configuration used in [49] but rotated by 90°.

the one in the paper. We have chosen this beam configuration due to space
constraints on our optical bench.

First the atoms are trapped with a MOT. After that they are loaded into a
near-detuned lattice and subsequently adiabatically transferred to a superim-
posed far-detuned lattice. The use of non-dissipative potentials is necessary
to minimize the interaction of the atoms and the lattice beams so to avoid
unwanted heating. Then the atoms in the optical lattice are spin-polarized
to maximize the population of the proper magnetic sub-states used in the
following Raman cooling cycle. Next a static magnetic field introduces an
additional energy shift to the magnetic sub-levels and brings the lowest pair,
|F =4,m; =4)|1) « |F =4, mys = 3)|0), into resonance. The subsequent
Raman cooling cycle splits into two processes, a coherent evolution and an
incoherent scattering event. The Raman coupling is strong enough to also

provide coupling to higher lying state pairs. The atoms descend the vibra-
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tional level ladder and end up in the lowest state of the m; = 4 vibrational
manifold. We have achieved resolved Raman sideband cooling in our ex-
periment and experimental results will be discussed in the next chapter in
context with our simulations. With this method we can prepare the atoms in
the lowest vibration state of motion. Up to 80% end up in this ground state,
far above the maximum value of ~ 30% achieved by polarization-gradient
cooling alone corresponding to a temperature of ~ 1 uK. Elsewhere tempera-
tures down to 290 nK have been observed [50] with similar resolved-sideband
Raman cooling schemes. This leads us to deduce expressions for the Raman

coupling strength in 2D and 3D in the remainder of this chapter.

3.4 Calculation of the Raman Coupling in 2D

In this section I will derive an expression for the Raman coupling matrix
elements given the spatial dependence of the optical field in the optical lattice.
Section 2.3 on page 57 describes in detail how the lattice electric field can
be derived for an arbitrary beam configuration. We follow the treatment of
Jessen and Deutsch [42] using the electric field of a 2D lattice, which is given
by

—ik
Ey (x) _Be ™ [ — ey {1+ 2¢%¥ cos (K, z)}

V2

+e_ {1+ 259 cos (K,z — 20) } | (3.1)

—iky i
+ e E e e,
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where K, = ksinf, K, = k(1 + cosf), E, is the single beam amplitude
and eq the unit vectors of the rotating basis, eq € {ey,e_,er}. The lattice
electric field contains a w-polarized component with a real amplitude F, and
a relative phase €. The beam configuration for this symmetry is shown in
figure 3.2 on page 96 and for simplicity in the following, the relative phases
of the beams were chosen so as to put a maximum of the intensity of the
o*-polarized light at the origin.

From equation 3.1 on the preceding page we can derive the effective field
governing the coupling between the |m = F) and |m = F — 1) levels using the
optical potential 2.50 on page 58 and substituting for the local polarizations
from equation 3.1 on the preceding page. The effective magnetic field B.g is

then given by

2U, Ex :
Bic ¢ Bgc =- ﬂ—{2 sin @ sin (K,z — 0) cos (Kyy — ¢)

3 B (3.2)
2i cos 6 cos (K,z — 0) sin (K,y — @) —isinp}.

Here U, represents the single beam light shift. The coupling matrix elements

are given by (cf. equation 16 in [42])

U — <{n }om+1 | [B:’Ot(x;; 1Bt (x)] Fi| {n} ,m> 3.3

where By, is given by the sum of the effective and all external magnetic fields

applied, Byt = Bgc + Bext, 2 the vibrational level under consideration in the
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respective manifolds |m+ 1,n+1) and |m,n). F is the Franck-Condon

overlap given by

Fi|F,mp) = A/F(F+1)—m(m£1)|F,m+1) (3.4)

Substituting 3.2 on the page before into 3.3 on the preceding page and ex-
panding around the minimum of the potential well at the origin to first order

in the small parameters kz and ky results in [42]

U ~ U &
BF1™ V2F E;

14 ! 2 1__1
<{nz,ny},F—1‘ [—e“"+§e Ykx

+1 (ei‘P - %e“'“’) ky] |{n;, n;} , F>

(3.5)

__ %ﬁ—’]’{ <{nz} F—1 ‘ [%e—"%:c] | {nx} F>
+ <{ny} JF—1]d (ei"’ - %e"") kyl {n, } F>
+{nom ) F-1| - {nn}, F)} (3.6)

where a harmonic approximation for the vibrational levels was used. Choosing

¢ = m/2 gives maximum coupling for the odd parity states in which case the
coupling matrix elements for vibrational change of one quantum along x and

y can be rewritten as

UF,F—I (nza ny) = UI(’TI)"'—I + UI("'!,J;"—I y (37)
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where
UI("TI)"—I a4 ’LUR\/n—fl: ’ (38)
U1 ~ 3Uryiy (3.9)
Uy Ex
Up= — 3.10
" oVRF By (3.10)
Here 7 is the Lamb-Dicke parameter and is given by
Eo \ V2 1/4
n=[—= _ (2 . (3.11)
hwose 15 U

For the worst possible phase of ¢ = nm,n € Ny, both couplings have equal

magnitude.

Figure of merit for coherent manipulation

Jessen and Deutsch define a figure of merit & for coherent manipulation in [42],

Ug
hrys

K=o > 1 (3.12)

In this definition A/UF is the time scale for coherent manipulation and -y, the
photon scattering rate. For good coherent manipulation of the atomic state
one requires that the time scale i/Ug for coherent evolution is shorter than the
lifetime of the Raman coherence between the states |F,n) and |F — 1,n + 1).

The latter one is dominated by the decay of the |F — 1,n + 1) due to optical
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pumping which is of order of magnitude of the inverse photon scattering rate

v; 1. Jessen and Deutsch derived for the 2D configuration

1/4
Ur _ 0.047E, |A| (gﬁ) (313)

U
The larger this figure of merit is the better. Consider for example Cs (F = 4)
in a lattice with U; = 54Eg, A = —5-10°T and E, = 0.3E;, which are
similar in order of magnitude to values used in our experiment. Substituting
this into equation 3.13 gives k &~ 13. It can easily be seen that increasing the
detuning, provided that sufficient laser power is available, or increasing the
m-component F, can improve the feasibility of coherent manipulation. We

recently bought a Ti-Sapphire laser which can provide sufficient power for

much higher detunings A than the MOPAs used before.

Figure of merit for sideband cooling

As we are interested in preparing most atoms in the vibrational ground state,
i.e. preparing well localized Wannier states, a figure of merit for sideband
cooling can be defined. Since the atoms are in the Lamb-Dicke regime,
resolved-sideband Raman cooling allows in principle the removal of one quan-
tum of vibration every few oscillation periods. This means that the vibra-
tional excitation must be much smaller than the oscillation period of the
atomic wavepacket, i.e.
dn

a K Wese- (3.14)

In the harmonic approximation this condition can be rewritten as
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Fwose \ 2 Frvs
( ER) > 5 (3.15)

This condition is easily met by several orders of magnitude in lattices with

detunings of more than several thousands line widths. Considering now the

time scale of population transfer in resolved-sideband Raman cooling, TULR]’ a

figure of merit for sideband cooling can be defined as

|Ur|
E

=k'>1 (3.16)

The rate of vibrational excitation is to leading order in the Lamb-Dicke pa-
rameter 7 given by
dn

- =" (Akzp)?. (3.17)

In this relation, +, is the photon scattering rate of the lattice beams and (AAk)
the mean-squared momentum transfer of a photon scattering event, calculated
by averaging the momentum components along the lattice directions over the
dipole emission pattern. Last and not least, 2 is the ground-state variance

and is related to the Lamb-Dicke parameter to lowest order by

n=krzo = \/ B, /Ao (3.18)

where we have ignored the difference in curvature of the wells involved. Jessen
and Deutsch deduced in [42] for the figure of merit for sideband cooling in a

configuration as in figure 3.5 on page 100
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, A e,
Ky R 0'17%|—F_| (g—;) , Ky = 3K, (3.19)

For parameters used in our experiment(U; ~ 54 Er, A ~ — 4000T", E,/E; =
0.3) the figure of merits are k,, ~ 553 and n; ~ 1659.

3.5 Calculation of the Raman Coupling in 3D

This section discusses resolved-sideband Raman cooling in a 3D far-detuned
optical lattice. The configuration chosen is the one depicted in figure 2.8 on
page 70. One advantageous property of this configuration is that phase fluc-
tuations in the laser beams translate only into spatial shifts of the locations
of maximum light shifts and do not change the structure of the lattice as
such [3]. Raman cooling in higher dimensions is an important tool which can
improve the accuracy of atomic clocks and deliver a more advantageous start-
ing point for atomic fountains. This section is structured in the following way.
We place a 0% well at the origin. Then a Raman coupling is introduced by
adding a w-component to the electric lattice field. This is achieved by tipping
the polarization of two lattice beams out of their usual position. It is found
that the magnitude of the Raman coupling connecting states with Am = 1
is a function of the relative spatial phase of the o and 7 field components.
Therefore, the Raman coupling for this configuration is calculated and the
optimal relative spatial phase of the m-component, which maximizes the odd
coupling, is deduced. Last the coupling matrix elements are derived. A closer

look at the various w-components resulting from the tipping of different pairs
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of laser beams shows that we have to tip the polarization of two beams having
opposite sign of  out of their usual positions. Tipping the polarization of
two beams with the same sign of &z doesn’t work and no Raman coupling is
induced along the :-direction. Figure 3.6 shows the configuration we are sug-
gesting for resolved-sideband Raman cooling in 3D and our choice of lattice
beam which are going to be tipped. The named quantities shown are also

used in the subsequent equations in this section.

Looking along
. laser beam /

having phase <\

Looking along

V laser beam /

having phase

Figure 3.6: This figure shows a possible beam configurations to achieve resolved-
sideband Raman cooling in a 3D optical lattice. The beams are numbered 1-4.
The polarizations of beam 1 and 4 are tipped out of their usual position by an
angle or o4 respectively. Additionally a phase shift <r14 respectively is
applied to the -r-components of beams 1 and 4 to maximize the odd parity
coupling. The green arrows represent the wave vectors of the corresponding
lattice beam.

In this configuration we can introduce a phase shift to the two tipped beams
by changing their linear polarization to an elliptical one. This elliptical po-
larization can be decomposed into two orthogonal linear polarizations with

arbitrary phase shift between them (cf figure 3.7). We will exploit this later
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to maximize the odd Raman coupling which couples states of different parity.
There are two possible configurations. We can vary the phases between the
orthogonal components of each tipped lattice beam individually. This gives

rise to the cases where

l. 3 #0 and @4=0

2. p1 #0 and 4 #0.

To deduce the lattice light-field, a script using the symbolic toolbox in Matlab
was written. The necessary quantities needed in the implementation of the
script are the wave vectors for the different lattice beams and the polarization

vectors of each beam. The wave vectors are shown here and are the same for

both cases:
—sind sin @ 0 0
ki=k% 0 ke =k 0 ks=k| —sin6 ki=k| sin6
cos@ cos @ —cosf —cos @

The numbering of the wave vectors follows the scheme described in figure 3.6.
The polarization vectors are listed in the appropriate section below including

the phase shifts.



3.5. CALCULATION OF THE RAMAN COUPLING IN 3D 110

3.5.1 Tipped configuration with one beam having a

phase shift (i

In this configuration we tip the polarization of the beam numbered 1 in figure
3.6 by an angle ai counterclockwise. We then can decompose the resulting
polarization vector into two orthogonal components, one along the original
direction'”” and one perpendicular to it. By varying the relative phase between
the two components we can maximize the odd coupling and the resulting

polarization is elliptical. This situation is shown in figure 3.7.

Qi

Figure 3.7: This figure shows what happens when we tip one of the polarizations
out of the its normal position by an angle ai. When the phase shift y? is zero, the
resolved components (blue) are in phase and the sum polarization vector of both
components is linear (red). Adding a phase shift (» * 0 fo one of the components
produces elliptical polarization as is shown for a phase shift of

Hence the polarization vectors used to deduce the total light-field including

along Gi = 0.
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a phase-shift are given by

0 cos 0 sin g exp(iyp) cos @ sin o exp(iyp)
P1= | cosa; | + 0 = cos
0 sin a; sin 6 exp(iy) sin o, sin 6 exp(iyp)
0 1 COS Ory
P2=1]1 Ps=1]0 P4 = | —cosfsinay
0 0 sin a4 sin 6

We can then write the electric field vectors of the lattice beams as

E,=Ap: exp(iZ(kl ‘t)) E;=Ap; exp(z'Z(lq -T))
E3 = Al Ps3 exp(zZ(kg . I')) E4 = Al P4 exp(z' Z(k4 . I')) (320)

Thus the total light-field decomposed into its circular components reads as

E; :%(1 - z){ — cos @ sin ay exp(iyp; ) exp(—tkz sin @ + ikz cos 0)
— exp(—tkysin @ — ikz cos ) — ¢ exp(ikx sin 8 + ikz cos )
— cos a4 exp(ikysin @ — itkz cos§) — i cos a; exp(—ikz sin @ + ikz cos 6)

— i cos @ sin a4 exp(iky sin @ — ikz cos 9)} (3.21)
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E_ :%(1 - z){ cos @ sin o exp(ip; ) exp(—tkz sin @ + ikz cos 0)
+ exp(—tkysin @ — tkz cos §) — i exp(ikz sin @ + ikz cos 0)
+ cos a4 exp(iky sin @ — ikz cos @) — i cos a; exp(—ikz sin @ + ikz cos 6)

— .cos @ sin ay exp(tky sin § — ikz cos 0)} (3.22)

A;siné .
E,.= — (1 — 2) sin a; exp(t +(1+14¢)sina
V2 ( ) 1exp(ip1) + ( ) 4

+ ikz(1 — ©) sin @ sin a; exp(ip1) + tky(1 + ) sin fsinay

—tkzcos@[(1+2)sinay + (1 — ©) sin a; exp(ip;)] } (3.23)

Using the formalism described in section 2.3 on page 57, the Raman coupling

can be deduced using [42]

U _ {n},m+1| (B, F Bl Fsl{n},m)
m,m+l oOF

(3.24)

where By, is the sum of the external and the effective magnetic field. Sub-
stituting equations 3.21, 3.22 and 3.23 into 2.60 we deduce for the effective

field governing the coupling
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:T
_ iUl\/gﬁ{
- 48 A,

8isin oy + 8 cos py sinag + 8 cos g sin ay cos ay
— 8¢sin a4 sin ¢y + 82 cos a; sinay — 82 cos o sin a; sin
+ 4 cos pq sinay sin a; + 47 cos ¢; sinay sin oy
+ ka:(4\/§ sin ¢y sina; + 2v/3sin 1 sin a4 sin a;
+ 4v/3 sin 1 sinay cos oy + 2i/3sin 1 Sin a4 sin aq
+ 8iv/3sin o cos 1)
+ ky(8\/?_)sin ag + 4+/3sin 1 Sin a1 COS Oy
— 4V/3sin p18sina; + 2/3sin 1 8in a4 sin oy
+ 2iv/3sin @1 8inay sin o)
+ kz(—8sin ¢; sinay — 8sin ¢ sin oy cos ay
— 4 sin ¢ sinay sin g — 44 sin @) sinay sinay)

} (3.25)

We are interested in the matrix elements Upr-1, hence substituting 3.25
into 3.24 allows us to find the functional dependence of the Raman coupling
around the minimum of the potential well. Furthermore we use the harmonic
approximation for the band structure. Thus we find for to first order for the

Raman coupling for the small parameters kz, ky and kz,



3.5. CALCULATION OF THE RAMAN COUPLING IN 3D 114

U ~ <{n;:,n;7nlz},F -1 ‘ [Bi:;cot + "‘Bgot] an,n’yanz}a F>
FF-1"7~
' V2F
iUhV3 A,

=—48ﬁ;g({n;,n;,n;},F—1|{

8isin a4 + 8 cos @1 sina; + 8 cos p; sin oy cos ay

— 8¢sin o sin ¢ + 82 cos oy sin a4 — 8¢ cos o sin @ sin @,
+ 4 cos 1 sin @4 sin a; + 41 cos ; sin a4 sin oy

4 kx(4\/§ sin g sinoy + 2v/3sin 1 8in a4 sin a;

+ 44/3sin (1 sinay cos ay + 2iv/3sin (1 sin a4 sin

+ 8iv/3 sin a; cos 1)

+ ky(S\/gsin ay + 4v/3 sin (1 5in @ COS ay

— 44/3sin p1sina; + 2v/3sin 1 Sin a4 sin a;

+ 2iv/3sin @1 8inay sina;)

+ kz(—8sin ¢; sin a; — 8sin ¢y sin a; cos ay

— 4sin ¢y sinay sina; — 4isin g sin ay sin o)

} H{nz,ny,n2}, F) (3.26)

Maximum coupling is achieved for a phase of ¢ = %7 as can be seen from
figures 3.8 and 3.9. For a choice of phase of ¢ = Z the odd Raman coupling has
equal magnitude for the z and y-coupling and the z-coupling is maximized.
Another interesting choice of phase is at ¢ = 0, where the z-coupling vanishes.
Here the z and y coupling have equal magnitude again. Thus we have the

situation of 2D Raman cooling in a 3D lattice. Choosing ¢ = 7 to maximize
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Figure 3.8: This figure shows the phase dependence of the odd Raman coupling
for Qi = «4.

the odd coupling term, the matrix elements for a vibrational change of one

quantum along jr, y and z are hence

Up)p i % (2zsinof + 2sina cosa T sin*a(i —1)) (3.27)

V.
~ —’\EIRij (2isina + 2%sin a cos A + sin<a(z — 1)) (3.28)

MEF-i ~ URrjz(2isina j-2isina cosa d sin“a(z—I1)" (3.29)
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Figure 3.9: This figure shows the phase dependence of the odd Raman coupling
for Ofi = —ay+.

k= .y (3.30)

where the Lamb-Dicke parameters are

f’Zj’:ZEr (3.31)
X, )53

Thus it is possible with this configuration to implement 3D resolved-sideband
Raman cooling. The next step is to investigate the situation where both

tipped beams possesses a phase shift.
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3.5.2 Tipped configuration with two beams having phase
shifts ¢, or ¢4 respectively

This part covers the deduction of the Raman coupling strength when we vary
the phase relation between the orthogonal components of each tipped beam
independently by ¢; or ¢, respectively. Again a o% well is shifted to the
origin. Changing the relative phase between the polarization components of
each tipped beam, the polarization vectors used to deduce the total light-field

including the phase-shifts are thus given by

0 cos @ sin a3 exp(ip1) cos 8 sin a; exp(iyp;)
P1=|cosa; | + 0 = cos a;

0 sin o sin @ exp(ip;) sin o sin § exp(ip; )
0 1
p2= |1 Ps= |0
0 0

COs Oy 0 COS Q4
P4 = 0 + | —cosfsinayexp(ip,) | = | — cosfsin a4 exp(ipy)
0 sin a4 sin 0 exp(iyy) sin ay sin 8 exp(iy4)

We can then write the electric field vectors of the lattice beams again as



3.5. CALCULATION OF THE RAMAN COUPLING IN 3D 118

E;= A p1exp(i Y (ki 1)) Ey=A;psexp(iy (ko -1))

E; =

Arps exp(i Y (ks-1)) Ey= Arpsexp(iy (ki 1)) (3.32)

and deduce the different components of the total light field as

E+:

E_ =

A :
—1—{ — cos @'sin o exp(iy, ) exp(—ikzsin @ + ikz cos 0 — z_7r)

V2 4
- . i
— exp(—tkysin@ — ikzcos 0 — Z)

— cos ay exp(ip,) exp(tky sinf — ikz cos @ — %E)
— icos o exp(—tkzsinf + tkz cos 0 — %r)

— iexp(tkzsin 0 + ikz cos — 342)

— 1 cos 0sin ay exp(ip,) exp(iky sin @ — ikz cos 0 — %r_)} (3.33)

A
715{ cos 8 sin oy exp(ip1 ) exp(—tkz sinf + tkz cos § —
. . . T
+ exp(—ikysinf — ikz cos 0 — -4—)
T

+ cos ay exp(ipy) exp(iky sin @ — ikz cos 6 — —4—)

T

7)

— i cos a; exp(—ikz sinf + ikz cos 0 — %r)
. . . . iT
— texp(ikzsin 0 + ikz cosf — z—)

— 4cos fsin ay exp(ipy) exp(iky sin § — ikz cos 6§ — 2ZW)} (3.34)
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E, =A;sin 0{ — sin a; exp(iy1) exp(—ikz sin @ + ikz cos § — %)

+ sin a4 exp(ip4) exp(tky sin @ — ikz cos @ — Zzﬂ)} (3.35)

Again we have chosen & = 7. Using these local polarization vector compo-

nents, we can easily deduce the effective magnetic field,
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B+ iBeg
V2
z'Un/Gél{
24 A

+ _
Beﬂ_

— 47 cos a; sin o sin ¢ + 4 sin a4 sin @4 + 47 cos o Sin a4 oS @y

+ 4sin a; cos p; + 44 sin a4 cos @4 + 2sin ay sin g cos(p; — @4)

+ 2isin ag sin a; cos(p; — @4) + 4 cos(p; — p4) sinay cos ay

— 4isin a; sin ¢

+ kz(2v/3 sin o sin p; 4 V3 sin ay sin a; sin(p; — @4)

+2v3 sin(p1 — p4) sina; cosay + 2iv/3 sin ay sin P4

+ 4v/3 sin a4 sin oy sin(yp1 — p4) — 2iv/3 cos a; sin a4 sin P4

+ 4iv/3 sin o cos ©1)

+ ky(\/?_)sin aysinag sin(pr — @q) + 2\/§sin(tp1 — (p4) Sin 1 COS (g
+ 44/3 sin a4 cos w4+ iv/3 sin a4 sin ay sin(p; — @4)

— 2iv/3sin 04 Sin g — 2iv/3 cos Q1 Sin a4 sin g — 24/3 sin o4 sin )
+ kz(—4sin(p1 — p4) sina; cos ag — 2sin ay sin a; sin(p; — 4)

— 4 sin a sin @3 + 44 cos o sin a4 sin @, + 42 sin o4 sin Py

_ 2isin aysine; sin(p; — <p4))} (3.36)

We are interested in the matrix elements Urp_;, hence substituting 3.25
into 3.24 allows us to find the functional dependence of the Raman coupling
around the minimum of the potential well. Furthermore we use the harmonic

approximation for the band structure. Thus we find for to first order for the



3.5. CALCULATION OF THE RAMAN COUPLING IN 3D 121

Raman coupling for the small parameters kz, ky and kz,

UFF <{n:c’ny7nz}’ 1 | [Btax;)t :FZ'Bt?ot] I{nﬂ?’ny7n2}’F>
1~
V2F

11\/—
7Zfiw<{ Mz Ty n.}, F - 1'{

— 44 cos o sin ay sin g + 4 sin a4 sin @4 + 41 cos a; sin a4 cos @y

+ 4 sin o cos 1 + 4 sin a4 cos g + 2 sin ay sin a; cos(p; — @4)

+ 2isin ay sin a; cos(p; — @4) + 4 cos(p1 — 4) sin @; cos ay

— 44 sin oy sin ¢

+ km(2\/§ sin a4 sin @ + V3 sin ay sin oy sin(p1 — @4)

+2V3 sin(yp1 — @4) sina; cos ay + 2iv/3 sin Q4 8in @y

+iv/3sin g sin g sin(p1 — @4) — 2iv/3 cos a; sin a4 sin Y4

+ 4iv/3sin Q1 COS 1)

+ ky(\/?;sin agsinag sin(p; — ¢q) + 23 sin{y1 — @4) sin @y cos ay
+ 4v/3 sin a4 cos Yq + iV/3sin a4 sin oy sin(yp1 — ©4)

— 2iv/3sin Q4 Sin g — 2i\/?->cos o Sin a4 sin @y — 2v/3sin o sin )
+ kz(—4sin(p; — ¢4) sina; cos oy — 2 8in ay sin g sin(p; — @4)

— 4sin o sin ¢y + 42 cos o sin ay sin @4 + 42 sin oy sin g4

— 2isinay sin a; sin(p; — ¢4))

} [{rz, ny, m2}, F) (3.37)

Maximum coupling is achieved for a phase of ¢ = ¢; = @4 = 7 when o =
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a4 as can be seen from figures 3.10 on page 124. If we choose a3 = —ay
and ¢; = —¢4 the optimal phase is &~ 68° (cf 3.11). In the following, we
calculate the coupling matrix elements for the case depicted in figure 3.10
for which a3 = a4 and ¢ = ¢; = ¢4 = %. For this choice of phase the odd
Raman coupling has equal magnitude for the z and y-component and the z-
component is maximized. Thus the matrix elements for a vibrational change

of one quantum along z, y and z are hence

< 3 L .
U},}_l ~ —%UR Nz (sina(i — 1) + cosasina) (3.38)
3
U},"'};_l R —%—UR 7y (sina(l — ¢) + cosasina) (3.39)
Ul(;?},. 1 = Ugpn, (—sina(i+ 1) — cos asin a) (3.40)

f U Ar
where the Lamb-Dicke parameters are
T z E
Nzy,z — Boye “R (3.42)
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3.6 Conclusion

In this chapter I have discussed resolved-sideband Raman cooling in two and
three dimensions. The 2D case is based on the paper by Jessen and Deutsch
[42], whilst I have investigated an original scheme for Raman cooling in 3D.
Quantum Monte-Carlo wavefunction simulations have been implemented for
the 2D case and the results are presented and discussed in the next chapter.
It is of interest to implement and run also simulations for the 3D resolved-
sideband Raman cooling scheme discussed here. This hasn’t been done to

date and such work is beyond the scope of this thesis.
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Figure 3.10: This figure shows the phase dependence of the odd Raman coupling
for ai —a4 and ipi = <4. The figure for = —«4 gives a is similar result. The

optimal phase to maximize the odd coupling is |.
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Figure 3.11: This figure shows the phase dependence of the odd Raman coupling
for ai ~ —ifs and = if4. The figure for ai » —Q4 gives a is similar result.
The optimal phase to maximize the odd coupling is % 68°.



Chapter 4

QMCWEF Simulations

This section presents the theoretical basis used to implement a quantum
Monte Carlo simulation of resolved sideband-Raman cooling in a far-detuned
optical lattice. First a general introduction to the quantum Monte Carlo for-
malism is given followed the description of the general method which is the
basis for all quantum Monte Carlo models. Then the previous treatment of
light-shifts (cf. section 2.1 on page 37) is revisited and recast in the view
of this quantum Monte Carlo formalism. Subsequently a detailed derivation
of the optical Raman coupling in 2D is presented and a model system con-
structed with which resolved-sideband Raman cooling is simulated. Finally
the transition amplitudes are calculated for the different event channels in

the model.

125
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4.1 The Quantum Monte Carlo Wavefunction

Method

Dissipation plays a central role in quantum optics. In 1993 a new calculational
approach was published in [51] and coined the quantum Monte Carlo wave-
function method. Often a master equation approach is used for small system
coupled to a large reservoir. Here a linear equation for the time evolution
of the reduced system density matrix is written down and traced over the
reservoir variables of the total density matrix, i.e. ps = Trs (p). This leads

to a master equation of the form

Ps = %[P, Hs] + Lreax(Ps) (4.1)

where Hg is the Hamiltonian of the isolated system and L,q.y is the relaxation
superoperator acting on the density matrix ps. It is assumed here the density
matrix is local in time and that p therefore only depends on pg. This is called
the Markov approximation.

The quantum Monte Carlo wave-function approach is equivalent to a mas-
ter equation treatment. This approach is of interest because if a Hilbert space
of a quantum system of dimensions N > 1 is considered, the number of vari-
ables involved in a wave-function treatment is of order N, whereas for a
density matrix treatment is of order N2. Hence the computational effort is
reduced significantly. Additionally, also new insights into the study of single-
quantum systems can be gained through this method.

The article by Mglmer, Castin and Dalibard [51] provides a detailed in-
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troduction and several short examples of how this method works and how
the formalism can be applied to real world physical problems. The interested
reader is referred to this article for a detailed discussion of the QMCWF

method.

4.2 QMCWFEF formalism and far-detuned op-
tical lattices

The aim of this section is to relate the treatment of light-shifts using a density-
matrix formalism to the quantum Monte Carlo wave-function technique de-
scribed earlier. This is done in order to identify the appropriate Hermitian
and non-Hermitian parts of the Hamiltonian. In the density matrix formal-

ism, the evolution of the density matrix can be written as:

de  —i | A—if A +i%
— == (d-e7)(dt-et)o-0o 2 (d"-e7) (at-et)
dt hz{A2+FT2 r2

(4.2)
after the excited states have been eliminated from the system, as shown in
section 2.1. In this equation o = |¢) (¢|, A is the detuning from resonance
of the lattice beams, I' the natural linewidth, d the dipole operator and &
the field amplitude associated with the trapping laser. This equation can be

rewritten in a more compact form as

do —i . 3 i’ -
= -7 [AL, 6] — 7 {—2—&1\&0} (4.3)
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where the light-shift operator A was introduced as

A= %hA s(r) (d™ - €}) (4.4)
_ _QR/2

s(r) = A4 I (4.5)

Qp = D }f‘ (4.6)

Here s(r) is the saturation parameter at low saturation! and Qp, is the Rabi

frequency. To connect the two approaches we use the following reasoning:

& =l¢) (ol (47
& =10) (el + 1) (9 (48)
== {H10) (¢l + 1) (oI T} (49)

Substituting a non-Hermitian Hamiltonian H = Hy — 35‘ composed of an

Hermitian part Hy and a non-Hermitian one i}, equation 4.9 becomes

. —t R T [ -y
- 'lay, ]—— e 4.10
Tk [, 0 h{ ) ”} (4.10)
Comparing equation 4.10 with 4.3 relates the light-shift operator Ay and

the non-Hermitian operator 4 of the quantum Monte Carlo wave-function

formalism to give

In the regime of high saturation, I'y — %
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N 1000
Apg 2r
E./E, | 0.5
ot lus

Table 4.1: This table shows the parameters chosen for figures 4.2 to 4.3
on pages 147-148. N represents the number of atoms, Ag the detuning of
the Raman repumper, E,/E; the ratio of the m-component of the lattice
field to the single beam electric amplitude and §t the time step used in our
finite difference implementation of the dynamical evolution of the QMCWF
Hamiltonian.

T P 7"
H=Hy— AL =Hy— (4.11)

This result is used next to derive the transition amplitudes for our model of

resolved-sideband Raman cooling.

4.3 Implementation

This section describes the implementation of a quantum mechanical descrip-
tion of Raman cooling using the quantum Monte Carlo wavefunction method.
First we introduce a model system and then derive the appropriate channel
amplitudes for the transitions involved. Finally we characterise the random
number generator chosen and give a brief overview of the model implemen-

tation in C++.

4.3.1 The model

In this section we introduce a model for resolved-sideband Raman cooling

which we use in our numerical simulations. The model is shown in fig-
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[n > [n- 1>

nif = 4 nf:3

Figure 4.1; Raman cooling scheme. Two vibrational levels are brought into
resonance by a transverse magnetic field. Raman transitions transfers populations
from m/ —4,n > to |/m/ —3,n — 1 > represented by the dark blue arrow
(coherent coupling). By optical pumping (red arrow) and subsequent decay (black
arrows) the atom looses one quantum of vibration in the overall process. After
several cycles most of the atoms end up in the vibrational ground state. The
atoms can also decay to F' = 3 and are recycled by a Raman repumper beam
tuned to this resonance (green arrow).
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ure 4.1 on the preceding page. It is the basic building block of the Raman
cooling ladder. The full system consists of a string of these basic building
blocks coupled together by optical pumping. The lowest vibrational state
|4,0) is dark with respect to the Raman coupling. In this state the atoms
accumulate after they have descended the Raman cooling ladder.

The system is modelled on a two level atom with a coherent coupling
between the two levels |mf =4,n) and |m; = 3,n — 1), known as the Ra-
man coupling, and optical pumping provided by the Raman pumper beam as
shown in figure 4.1. To maximize the population transfer between the two
levels [ms = 4,n) and |my = 3,n — 1) , they are shifted into resonance using
a static magnetic field. Typical values of the applied magnetic field B are
of the order of 0 — 200mG. Figure 3.4 on page 99 shows the magnitudes
of Bp for a set of maximum light-shifts for different vibrational levels. The
coherent coupling is provided by the lattice light itself. This coherent evo-
lution is interrupted by scattering a photon from the Raman pumper beam.
This transfers the atom into the F’ = 4 excited state manifold from which
the atom can decay into one of several states as described in 3.2 on page 94.

This model is used to drive a quantum mechanical description of our
system which will provide the necessary equations to implement a quantum
Monte Carlo simulation of resolved-sideband Raman cooling. The first step

is to derive the Hamiltonian of our system. It is given by

2

H=Ho+—+AL+Ar+A, (4.12)

Here Hy is the Hamiltonian of the isolated system being Hp @) = Fw |p)
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and the term g; describes the motional couplings of the wave-function. Ay
describes the effect of the lattice light field, Ag the effect of the Raman
coupling and A, takes the effect of the Raman pumper beam into account.

The wave-function of our two level system can be written as

|0} = a(t) [ua ¢) + b(t) [ug ¢) (4-13)

where ¢ represents the external part of the wave-function and u,/s the in-
ternal ones.The coefficients a and b are complex time-dependent quantities,
which are normalized so that (¢ |¢) = 1. The external part of the wave-
function describes the atomic wavepacket evolving on the light shifted po-
tential. The internal part describes the evolution in context of the vibra-
tional level structure and the ac-stark shifted my levels. We generally choose
Uy = |F =4,m; =4) and ug = [4,3) for a given vibrational level n in our
two level model?. We can now substitute this expression into the Schrédinger

equation

o= —%Hcp (4.14)

yielding

1) = @(t)uap + alt)ua + at)ug ¢ + a(t)ug ¢ (4.15)

Multiplying the Schrédinger equation 4.14 by (@ uaa(t)| from the left, results

in

2Remember that it splits into sub-systems connected by optical pumping
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a(0) + a(t) (p19) = — 3 { v + (pualArlp ue)
\ (4.16)

p
+ (P Ual ARl ) + (P al =l ua) |

Neglecting the motional coupling ((pu5|-§%|<pua) , which are the off-diagonal

matrix elements of the kinetic energy operator, and using the fact that

(616) = % (I 1 ol (417)

we see that some terms in 4.16 cancel out and we are left with

6(t) = —iwa a(t) + (¢ ualArlpua) b(t) (4.18)

We can follow the same steps by multiplying 4.14 on the page before with
(pugb(t)| from the left and get

7

b(t) = iz, bt) + a(t) (pus | Adlus) — 526(0)  (419)

where the last term arises from (@ u, | Ap|¢ ). This last term doesn’t show
up in equation 4.18 since only levels |F' = 4,ms = 3,n — 1) are coupled to the
excited state manifold through the Raman pumper. T7, is the scattering rate
and A the detuning from resonance of the Raman pumper. I', can easily be

calculated from the relation

I L
I == | —lt— 4.20
-5 () o
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in the limit of small saturation parameter s. Here I' is the natural linewidth,
5.22 MHz, for caesium and A the detuning of the Raman pumper beam from
atomic resonance. This detuning is of order of 2I" in our experiment. Last

but not least we can rewrite the Raman coupling part as

(pug|Arlpta) = Ur (ivnz + 3y/ny) (4.21)
(¢ alARloup) = Uy, (—iv/ns +3y/ny) (4.22)

where n = n, + n, is the total vibrational excitation of the atoms at the
start of one Raman cycle. Ur = Ug(z,y) is the 2D Raman coupling as
defined in 3.4 on page 101. Looking at equation 3.5 on page 103, the Raman
coupling separates into terms proportional to kx and ky to first order. Hence
equations 4.18 and 4.19 separate for our 2D Raman coupling scheme to first

order. The set of differential equations to consider is therefore

a; = —iwj a(t) + (pug | AR|uap) ba(t) (4.23)
b=~ + (ol (5 use) 0= - 2500 (428
iy — i a(t) + (s | Abfuag) b, (0 (4.25)
by = i) + (pual (M luse) @)~ 5200, (429

where I', is defined in 4.20 on the page before and A, is the detuning of the

Raman pumper beam. Numerical solutions of this set of linear differential
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equations are used in the simulation. The next step is to look at what happens
if a photon is scattered from the Raman pumper beam.

If the atoms has scattered a photon from the Raman pumper beam it is
transferred into the excited state manifold |F’ = 4,m; = 4). From this ex-
cited state |F' = 4, my = 4,n — 1) the atom can decay into one of the 5 differ-
ent states |[F = 3,m;=3,n— 1), |F =4,my; =4,n), |F =4,m; =4,n—1),
|F =4,m;=4,n—2) and |F =4,ms = 3,n— 1). This is illustrated in the
level scheme diagram 4.1 on page 130. By considering the oscillator strengths
for Caesium (cf. section 4.3.2 on page 137), we can deduce that 51% of the
atoms decay into the |F =3,ms =3,n — 1), 3% into |F =4,my = 3) and
46% decay into the |F = 4, m; = 4) vibrational states. The z-dependence
separates out in our 2D problem. This means that the matrix element
(n]z|n) = 1 and does not need be considered in the following treatment.
The transition matrix elements for going from surface |¢) — |j) by absorbing
a photon and emitting one in directions ky and k, is proportional to the

matrix element

(n¥] (n% | exp [<i (kg — kg) - 7] [nf ) [nd) = () (4.27)

where |n¥) |n?) represents the vibrational state of the atom. Equation 4.27
can be expanded to first order assuming harmonic oscillator eigenfunctions

n?) [n?) resulting in
i i g
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=31

~ (nd| (05 | =i (kg — kg) - 1] Inf) |n)
= (3] (n5| [1 -2 (k] — k7) 2]

+ [~ (k) — k)

+ [~ (k5 — k5) 2] [nf) Inf)
~GngnzOutay — i (K = K5) (nZ| (nd | zln?) [nF)
+ (k4 — k) (53] (n} | yln?) |nf)

+ (i — k) (m3] (¥ ] 2In?) In2) |

m| S e kel lnf> n?)

£

y]

:Jn]?nf (Sngni‘

y x h T z
— ’l,{ ( kq:) 5,,9 y‘/ om Q [ n]z_(n‘;_l)\/n‘- + 5,,:;(,,‘;_1) n; + 1]
Y Yy h Yy Yy
(kq bt kq,) (5,,,;,,'? 2m90 Jn;{(n!‘_l_l) n; + 6,,;4(,,:;_1) n; + 1 }

:613;5”3 n‘yny

kz k* E
~i{ (g~ o) et e [sor - VA 4 Bgion /T
ky ky E
- (Ile lknl)(s"" Vh_QR_[ nj(nd ‘1>[+5”(n v_1)y/ +1}}

where we have introduced the recoil energy Er and the recoil momentum

h kg using the relations
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Rk
Ep = 4.28
R 2 ( )

A 1 [Er
v -/ 4.
2mQ  |kr] V A (4:29)

The last step follows, since the Raman pumper beam is incident perpendicular

to the plane of the lattice which is defined by the z-y-plane, i.e.

0

ke =krjo

1
This expansion is justified, since the atoms are in the Lamb-Dicke regime.
In the next section we use this result to calculate the channel amplitudes to
go from a initial state |i) to a final state |j). This describes the incoherent

scattering of a Raman pumper photon.

4.3.2 Calculation of the transition probabilities

In this section we derive an expression for the relative transition probabilities
for the various possible channels for the incoherent scattering of a Raman
pumper photon. The following notation is used here: |p) is the external
atomic state, and |u;) = |my) ® |n = n, + n,) the internal one. Generally the
probability go from a surface % to j by scattering of a photon of polarization &,
and emission of one with polarization &, in a direction ky and k, respectively

is proportional to
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2

Pjoc Y (u;| (d7€)) (dYeq) |u)| - (4.30)
aq

Here &4 is the associated field amplitude of the laser field, i.e. F = &g zq Eq€,
and (d~e?) is the vacuum field amplitude®. If we include the external wave-

functions |p) equation 4.30 reads

2

P jp Z (ujp l e~ ky® (d_eg) (dtey(x)) e~k |y, o), (4.31)
aq

where ¢’ is the kicked external wave-function after the event and ¢ the initial

one. &?

q is the vacuum field amplitude and assumed to be constant* and

€y(x) the associated field amplitude of the scattering event. The kicked

wave-function can also be written as

¢’ (x) = exp {ix (ky — k)} ¢ (x) (4.32)

Substituting this into 4.31 we get

> / dz (u;| (d€]) (d¥eq(x)) et ;) o (x, ()] -
aq "V
(4.33)

Fipjpr

Equation 4.33 can now be broken up into its different parts to simplify the
calculation of the channel amplitudes. Let us consider the matrix element of

the internal wave-functions first. It is given by

3ge{—1,0,+1} for 0—, 7 and o~ respectively.
4as in simple cases like free space
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I = (u; | (d7€2) (d*ey(x)) e ™k~ |u,) (4.34)
=(j| (d7€3) (dtey (x)) |i) (n; | e >**akr)|n;) (4.35)
=1+ Iy. (4.36)

Here I, is the matrix elements for the light shifted surfaces and I, for the vi-
brational structure associated with each surface. I, can readily be calculated

to be

lo = (52) €¢(X) Ciig Ciing- (4.37)

The dependence on the vibrational structure is explicitly taken into account in
the model described in section 4.3, hence it can be neglected in the calculation
of the relative channel amplitudes. Putting everything together the final

channel amplitude is given by

Pisy %| 3 Cirg;Cisse [ dolo(xt@)F| . (439)
j=itd —q
The Raman pumper is ot polarized and hence ¢ = +1. Additionally the

Clebsch-Gordan coefficients are independent of the position vector x and the

initial surface is given by ¢ = 3. Thus equation 4.38 reduces to

Pspjpr X (/ dz | (x,t(e ) Z Cy;Ca4 (4.39)

]=4—
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Looking up the Clebsch-Gordan coefficients in appendix A.4 on page 210 and
neglecting the modulus of the external wave-function® this reduces to the

following relative channel amplitudes

P3 p—a ¢ x CZ4 C’34 (4.40)
P3¢...39,,l 0.4 CZ3 034 (4.41)
P3<p—r2<p’ x 0 (4.42)

The last one is zero since only ¢+ Raman pumper photons take part in the
optical pumping process under consideration. Hence the ratio between the

two non zero rates is

P, 2
“Semdy 2 (4.43)
Py, 3y 1

Using the formalism in [52]® we can calculate the relative intensities for the
different emission directions. These are often referred to as the oscillator
strengths. Carrying out this calculation results in a probability of 84% to
emit a m photon and 16% to emit a o~ photon. Hence the total relative

channel amplitudes are given by

P(m) ~0.914 (4.44)

P (c+) = 0.086. (4.45)

5as we are only interested in the relative amplitudes
6cf. page 160
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We also have to calculate the transition probabilities from the |F’ = 4,4) to
the |F = 3, my = 3) manifold. To make things easier I have used the transi-
tion matrix elements given in [22]7. A simplified version is shown in A.3 on
page 210, which shows only the relevant strengths. The relative channel am-

plitudes P,; are then proportional to

Py o |CGy4l - f, (4.46)

where [CG;;| is the corresponding Clebsch-Gordan coefficient for the transi-
tion under consideration and f the oscillator strength. Table 4.2 shows the

calculated relative channel amplitudes which are relevant in our system.

Transition CG f |CG|- f

14,4) & |4,4) 0.89447 2352  46%
14,4) & |4,3) 0.44721 588 3%
14,4) - 13,3) 1.0 2100 51%

Table 4.2: The table shows the calculated relative channel amplitudes for
the different transitions |F,m) < |F’,m’) important in our Raman cooling
model. CG is the Clebsch-Gordan coefficient and f the oscillator strength
taken from [22].

4.3.3 Random number generator

After a long search on the internet to find a suitable research grade random
number generator I decided to use one from the GNU scientific library GSLS.

This library provides a uniform interface for all random number generators it

"The channel amplitudes for the |4,3) < }4,4) and |4,4) < |4,4) transitions agree with
the previous calculated ones using the formalism from [52].
8¢f. http://www.gsl.org
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supplies and makes it easy to change between different ones without changing
the implementation in the code.

The random number generator I have chosen is called gfsr4 and is like
a lagged-Fibonancci generator. It produces each number as an xor’d sum
of four previous values. This type of generators is also know as Four-tap
shift-register-sequence random-number generators [53]. A simple test which
produced 10000000 random numbers was implemented to see if the result-
ing random number distribution is adequate for our problem. The random
number generator passes the tests and is subsequently used in all simulations

presented in this chapter.

4.3.4 Implementation in detail

This section gives a short overview of how the QMCWEF Raman cooling code
is implemented. The program is controlled by an input file which contains
the details of all simulations the code should execute. This control file has

the following entries:

e Number of atoms N in simulation

e Raman pumper detuning A, in units of T’
e Maximum light-shift U; in units of Eg

e Ratio E,/E

e Vibrational frequency of lattices {2y

e Initial vibrational excitation n§ of atom along x-direction
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e Initial vibrational excitation n§ of atom along y-direction

Initial value of wave function expansion coefficient af for Ket |4,4) |n,)

e Initial value of wave function expansion coefficient b for Ket |4, 3) |n)

Initial value of wave function expansion coefficient af for Ket |4, 4) |n,)

Initial value of wave function expansion coefficient by for Ket |4, 3) |n,)

Start of Raman pumper beam intensity ramp ¢, in units of ms

End of Raman pumper beam intensity ramp ¢, in units of ms

Value of Raman pumper beam intensity before start of ramp

e Value of Raman pumper beam intensity before at the end of ramp
e Start of Raman re-pumper beam intensity ramp ¢, in units of ms
e End of Raman re-pumper beam intensity ramp ¢, in units of ms
e Value of Raman re-pumper beam intensity before start of ramp

e Value of Raman pumper beam intensity before at the end of ramp

Each line is an individual simulation run. A control file can contain as many
simulations and is only limited by the resources the computer system is able
to provide to it?. To illustrate the usage of the control file, an excerpt of one
is shown in table 4.3 on the next page.

The information about the energies of the vibrational levels is hard-coded.

The values for the energy levels are provided by using the results of a band

9Like memory, disk space etc.
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Table 4.3: This example shows some lines from a control file for the 2D QMCWF simulations.
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structure calculation for a particular maximum light-shift. Given these values,
the code then subsequently derives the appropriate level-shifts to bring the
lowest three levels given by |4,4) |n, = 0,n, = 0), |4,3) |n, = 1,n, = 0) and
|4,3) |n, = 0,n, = 1), into resonance.

The rest of the code loops over the number of simulations specified in the
control file. At the beginning of the loop all parameters are initialized with
the appropriate values from the control file. The control file specifies the num-
ber of atoms for which independent QMCWF simulations should be carried
out. For each atom a finite difference method is used to numerically evaluate
the time evolution of the expansion coefficients of the atomic wavefunction.
After each time step!® 8t, it is checked if a quantum jump has occurred. On
the one hand, if none happened, the wavefunction is renormalized and a new
iteration is started. On the other hand, if a quantum jump has occurred, the
appropriate interaction channel is chosen by considering the channel ampli-
tudes deduced in section 4.3.2. After the quantum jump the resultant atomic
wavefunction is reset according to the interaction channel and normalized.
Possible interaction channels are: |4,n), [4,n— 1), |[4,n —2) and |3,n — 1).
After each simulation the results are written to disk for subsequent data anal-
ysis. Additionally a log-file is saved with the simulation parameters used and
the filename of the data file.

Since many simulations have been run during the course of this thesis, the
data analysis was automated to save time and reduce the amount of human
error. The data analysis is based on a set of scripts using AWK, C++ and
PERL. The data analysis usually takes about 10h. The script approach also

10A maximum evolution time of 20ms was used in all simulations.
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has the advantage that it was easy to extract different views of the data. It
is possible to produce a set of files which shows the dependence of the ki-
netic energy versus the Raman pumper intensity on the fly from the analyzed
data. Another script using the same analyzed data, produced graphs show-
ing the dependency of the kinetic energy versus the Raman cooling duration.
The visualization is automated using MatLab. A script was written to au-
tomatically read in the results files and plot the data using a template. All
simulations results in this section have been produced in this way. Taking the
time to develop a sophisticated data analysis paid off in the end by saving a

lot of time on data analysis considering the large amount of data produced.

4.4 Calculation results

In this section the results from quantum Monte Carlo simulations of resolved-
sideband Raman cooling are presented and discussed. Calculations for differ-
ent set of parameters were run using the model described in section 4.3. The
ultimate aim was to find optimized parameters for Raman cooling to be used
in our experimental implementation of resolved sideband Raman cooling to
maximize the number of atoms in the vibrational ground state. At the end of
this chapter these results are compared to experimental measurements from
our experiment.

Table 4.1 on page 129 shows the common parameters used to produce

figures 4.2 to 4.8 on pages 147-153.
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Figure 4.2: This figure shows the kinetic temperature 7"in plotted against the
Raman pumper intensity /R in units of the saturation intensity /g. The atoms
were assumed to have had an initial vibrational temperature 7ib of 37K at the
start of the Raman cooling cycle. The calculated final kinetic temperatures are
shown for Raman cooling durations from Oms to 19ms.

4.4.1 Discussion of simulation results

In this section I will discuss the results of my simulations. Each section
highlights a different parameter dependence of Raman cooling and how its

efficiency depends on the chosen value.

Dependence on the ratio of E™v/Ei

Inspecting equations 3.7 to 3.9 on pages 103-104 it can be seen that the Ra-
man coupling strength is directly proportional to the ratio of the 7r-component

of the lattice light held to the single beam electric held amplitude Ei, i.e.



4.4. CALCULATION RESULTS 148

0 ms
— 1 ms
2 ms
3 ms
4 ms
5ms
6 ms
7 ms
8 ms
9 ms
10 ms
11 ms
12 ms
13 ms
14 ms
15 ms
16 ms
17 ms
18 ms
19 ms

Figure 4.3: This figure shows the kinetic temperature Tkin plotted against the
Raman pumper intensity /R in units of the saturation intensity /g. The atoms
were assumed to have had an initial vibrational temperature 7"n, of 9/iK at the
start of the Raman cooling cycle. The calculated final kinetic temperatures are
shown for Raman cooling durations from O ms to 19ms. Note that there is about
13.5% of atoms in vibrational levels with n — 7/ + riy > 5. We only include
levels with n <— 5 into our calculations. Hence the graph shows smaller Kinetic
temperatures than there are actual in the lattice. See text for a detailed discussion
of this.

T (4.47)

Several simulations were run for EAVEi in the range of 0.1 to 0.5 and are
show for comparison in figure 4.9 on page 154.

As expected the efficiency of the transfer to the vibrational ground state
via resolved-sideband Raman cooling is dependent on this ratio. The higher

this ratio the better is the transfer, hence the aim should be to choose an
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Figure 4.4: This figure shows the final Kkinetic temperature 7"in plotted against
the Raman pumper intensity /» in units of the saturation intensity U for Raman
cooling durations of O ms to 19ms. The atoms were assumed to have had an
initial vibrational temperature %n, of 3//K at the start of the Raman cooling
cycle. The figure shows that good Raman cooling can be achieved for Raman
pumper intensities /n < 0.2/ and Raman cooling durations of 5 ms to 10 ms. At
this set of parameters the Raman pumper intensity /» is of the order of magnitude
of the Raman coupling Urn as discussed in the text.

as high value as possible for this parameter. It is also an easy way to see
the effect of the quantum Zeno effect. By changing the ratio in subsequent
Raman cooling experiments is should be possible to see a direct dependence
on the efficiency of the transfer to the vibrational ground state. If this is
done for a Raman pumper strength up to AFp ~ 0.05///0 for different EPVEI
and then the same set at hTp ~ 0.51/1Q, a dependence on the final kinetic

temperatures similar as shown in the figures 4.9(a)-(c) should be observed.
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Figure 4.5: This figure shows the contribution to the Kinetic temperature of
the different vibrational levels at the start of the Raman cooling. See text for a
detailed description. The colours represent different vibrational levels. They are
ordered in ascending order {n"riy)l (OlO), (0]1), (1]0), (0]2), (1]1), (2]0) etc.
Hence the higher the ratio is chosen the lower should the measured
final kinetic temperature be for a particular Raman pumper strength.

Also shown in the figures 4.10, 4.11 and 4.5-4.8 is the dependence of the
final kinetic temperature on the ratio of E~VEi for different Raman cooling
durations. For small ratios of EF/E\ ~ 0.1 the Raman coupling strength IR
is small and the quantum Zeno effectkicks in earlier freezing the population
transfer. Longer Raman cooling times hardly improve the total transfer effi-
ciency. Going to higher values for EAIEQ improves the efficiency and Raman

pumper intensities which are comparable to the Raman coupling strength a

good transfer efficiency can be achieved.

M See appendix D and section 4.4.2.
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Figure 4.6; This figure shows the contribution to the kinetic temperature of the
different vibrational levels after 4 ms of Raman cooling. See text for a detailed
description. The colours represent different vibrational levels. They are ordered
in ascending order {rix\ny)\ (0]0), (0|1), 0]2), (1]1), (2|0) etc.

Dependence on Raman pumper intensity

Another degree of freedom in resoived-sideband Raman cooling is the inten-
sity of the Raman pumper beam. As can be seen in figure 4.2 on page 147
the transfer efficiency to the vibrational ground state is dependent on the
magnitude of this intensity. Optimal transfer is achieved when the Ra-
man pumper strength is chosen to be comparable to the smallest Raman
coupling involved. In the configuration under investigation this is the cou-
pling v (ux = 1,71y = 0) between the states 1m; = 4, = Lriy = 0}) and

lm/ = 3, [rix=0,Ty= 0}), i.e. when

(4.48)
UR {jlxi "y)
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Figure 4.7: This figure shows the contribution to the Kinetic temperature of the
different vibrational levels after 9 ms of Raman cooling. See text for a detailed
description. The colours represent different vibrational levels. They are ordered
in ascending order (r*lny): (OlO), (0[1), (1]0), (0]2), (Ij1), (210) etc.

where Tj, is the effective scattering rate of the Raman pumper as described in
equation 4.20 on page 133. (cf. equation 3.8 on page 104). This dependence
strongly suggests that the part of the Raman cooling cycle responsible for
the freezing of the population transfer is related to the last steps in the
Raman cooling ladder as can be seen in figures 4.5 to 4.8 on pages 150-
153. Population gets trapped in higher lying states and further transfer to
the vibrational ground state is inhibited. The detrimental effect sets in when
the Raman pumper strength Aypbecomes comparable to the Raman coupling
strength ofthe respective level and increases beyond it. Passing this threshold

suppresses the population transfer between the level pair. Therefore every

vibrational level pair has a different Raman pumper strength threshold, where
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Figure 4.8: This figure shows the contribution to the Kkinetic temperature of the
different vibrational levels after 14 ms of Raman cooling. See text for a detailed
description. The colours represent different vibrational levels. They are ordered
in ascending order (n*jriy): (0]0), (0|1), (1]0), (0|2), (1|1), (2|0) etc.
the effects of the quantum Zeno effect kick in. The consequence of this is that
the lower lying levels, for which the Raman coupling is smallest, will be the
first to freeze out, when the Ramam repumper strength is increased beyond
this threshold. Since the majority of the population is in those lower lying
vibrational levels, the impact will be greatest there. The result of this is,
as can be seen in figure 4.6 after 4 ms of Raman cooling, that a considerable
amount of population cannot be transferred via a Raman cooling cycle to any
lower lying vibrational levels.

This dependence on the Raman pumper intensity limits the efficiency of
the pumping to the vibrational ground state for too high Raman pumper

intensities. The reason for this turns out to be an analogue of the Quantum
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Figure 4.9: This figure shows a plot of the final kinetic temperature ver-
sus the Raman pumper strength in units of the lowest Raman coupling
UR {rij. — 1, Uy = 0) for different ratios The ratios are: (a) E*VEI =
0.1, (b) EPMEI = 0.3 and (¢c) EAEi —0.5. The same colour scheme as in
figure 4.2 on page 147 was used.

Zeno effect. The Zeno effect is introduced in appendix D on page 220 and the

connection between Raman cooling and this quantum Zeno effect is discussed

in summary in section 4.4.2.

Dependence on maximum well depth

The next dependence we want to have a closer look at is the one on the

maximum well depth of the optical lattice. The Raman coupling is directly
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Figure 4.10; This figure shows a plot of the final kinetic temperature ver-
sus the Raman pumper strength in units of the lowest Raman coupling
UR ("x = ln,y = 0) at different times during the Raman cooling cycle. The
magnitude of E7"was chosen to be O.IEi. The Raman cooling times are:
(a) 4ms, (b) 9ms, (¢) 14ms and (d) 19ms. The colours represent dif-
ferent vibrational levels. They are ordered in ascending order (mj.\riy):
(010),(0[1),(1]0),(0]2),(1[1),(2]0) etc.

proportional to this quantity. Hence we expect an improved transfer to the
vibrational ground state for larger well depths. A problem arises when the
maximum well depth crosses the 243 ER level. Then the lowest Raman level
pair [m/ = 4, {n = 0}) and |m/ = 3, {n = 1}) become degenerate. For bigger
light-shifts, the Raman B-field must change sign to bring them into resonance
again in contrast to higher lying level pairs. Since we want generally to

return to zero applied magnetic field at the end of the Raman cooling cycle

to undertake quantum state control experiments, higher lying resonance are
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Figure 4.11: This figure shows a plot of the final kinetic temperature ver-
sus the Raman pumper strength in units of the lowest Raman coupling
UR (rix = 1,7y= 0) at different times during the Raman cooling cycle. The
magnitude of E7* was chosen to be 0.3JFi. The Raman cooling times are:
(a) 4ms, (b) 9ms, (c) 14ms and (d) 19ms. The colours represent dif-
ferent vibrational levels. They are ordered in ascending order {mx\ny):

G o), [0),Glo)sCo ), ()Gl ) ete.
re-coupled again. Those unwanted level crossings can give rise to unwanted
heating.

Another important fact to note is that in real experiments the beam profile
is not absolutely flat. Depending on the beam source, the maximum well
depth can vary by several percent. Special care has to be taken for efficient
Raman cooling experiments as a basis for subsequent quantum state control.

If we are near the cut-off at {f = 243 Er mark, some wells might have a light-
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Figure 4.12: This figure shows the Raman pumper strength 427" in units of the
lowest Raman coupling Ur (n”* = l,ny = 1) plotted against the kinetic tempera-
ture Tkin- The atoms were assumed to have had an initial vibrational temperature
Tyib of 12/iK at the start of the Raman cooling cycle. The calculated final kinetic
temperatures are shown for Raman cooling durations from Oms to 19ms.

shift already larger than this and some might be below it. These levels are
not properly coupled together and only inefficient coherent coupling exists.

Thus it is important to get an as clean beam profile as possible, so that the

number of degenerate level pairs is maximized.

4.4.2 The Quantum Zeno Effect and Raman Cooling

The simulations results strongly suggest that for particular choices of Raman
pumper intensities the population transfer to the vibrational ground state

is inhibited. Further investigations into this observation allowed us to link
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Figure 4.13: This figure shows the kinetic temperature plotted against the
Raman pumper intensity /f# in units of the saturation intensity U. The atoms
were assumed to have had an initial vibrational temperature 7"b of \2 fiK at the
start of the Raman cooling cycle. The calculated final kinetic temperatures are
shown for Raman cooling durations from Oms to 19ms.

this suppression of the population transfer induced by the coherent coupling
to the quantum Zeno effect. Some background information on this effect
is agglomerated in appendix D. To our knowledge we have been the first
to make this connection. A schematic of what happens is shown in figure
4.15. A coherence is established between two degenerate level pairs [p:,n)
and |ps,n —). The coherent coupling is induced by the lattice light-held.

In the situation (a) the intensity of the Raman pumper is low enough not to

destroy the population transfer induced by the coherent coupling. Increasing
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Figure 4.14: This figure shows a plot of the final kinetic temperature ver-
sus the Raman pumper strength in units of the lowest Raman coupling
UR (1lr = i,Tiy = () at different times during the Raman cooling cycle. The in-
tensity ofthe Raman pumper was ramped to 0.5///sat between 5ms and 10 ms
from its initial value. The Raman cooling times are: (a) 4ms, (b) 9ms, (c)
14 ms and (d) 19ms. The colours represent different vibrational levels. They
are ordered in ascending order {rij.\ny): (0]0), (0]1), (1]0), (0]2), (1|1), (2]0) etc.
the intensity of the Raman pumper as shown in (b) has a detrimental effect
on the coherent coupling and the population transfer freezes out.

Many QMCWF simulations have been run for a variety of parameter
ranges. The observation was that when the Raman pumper intensity becomes
comparable to the strength of the coherent coupling, the population transfer

is inhibited. This can be linked directly to the resoived-sideband Raman

cooling scheme. Here a set of Raman cooling unit systems (c.f. figure 4.1)
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Figure 4.15: This figure shows a schematic of the Quantum Zeno Effect in
resoived-sideband Raman cooling. A coherence exists between two degenerate
level pairs |"4,n) and |g3,m —1) induced by the lattice light-field. A Raman
pumper beam optically pumps the atoms. Ifthe intensity of it is chosen to be
larger than the coherent or Raman coupling, then the quantum Zeno effect
freezes out the population transfer (cf (b)). For low enough intensities the
population transfer is not affected (cf (a)).

are linked together by optical pumping. A property of the Raman cooling
is that its strength is dependent on the vibrational quantum number of the
level |[F = 4,n) in the level pair and is proportional to y/n. If we call the
strength of the Raman coupling for this lowest level pair with n = 0 UR, the
population transfer freezes out if the Raman pumper strength surpasses Ur.
Hence population can be trapped in higher lying level pairs and the increase
in ground state population is minimal. This can be seen in figure 4.14. Here
the x-axis shows the initial Raman pumper intensity in units of the lowest
Raman coupling. For low enough intensities population is transferred to lower
lying levels. Between 5Sms and 10ms we ramp Raman pumper intensity to
0.5//7saf The population transfer freezes out and even for longer Raman

cooling durations haidly any population is transferred to a lower lying state.

Since Raman cooling is an important and efficient tool for quantum state
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preparation, it is worth looking for ways how to minimize the impact of the

quantum Zeno effect. One suggestion to do so is described in the next section.

4.4.3 How to circumvent the quantum Zeno effect

The aim of the investigations in this chapter is to deduce optimized param-
eter ranges to improve our Raman cooling experiment. Hence the inhibition
of population transfer to the vibrational ground state due to the Zeno effect
needs to be addressed. Subsequent investigations using the QMCWF formal-
ism showed that the freezing out of the population transfer due to quantum
Zeno can be circumvented by ramping the Raman pumper intensity Ip from
an initial higher value (Igp =~ 0.05//I, =~ Ug(n;=1,n, =0) to approxi-
mately the size of the lowest Raman coupling in the Raman cooling ladder
(Ir = 0.05] /It = Ug (ny = 1,n, = 0)). Figures 4.17(a) to 4.17(f) show the
simulation results when the Raman pumper intensity is ramped in that way.

The converse happens when the Raman pumper intensity is ramped up
from 0.05 [ /Ie: to 0.51/1,,. Then the population transfer is almost frozen
out at the beginning of the ramp and not much more cooling is achieved
afterwards anymore, even for longer Raman cooling times as is shown in

figure 4.14.

4.4.4 Experimental Results

This section is dedicated to the experimental results obtained by our group.
They are not exhaustive but confirm the general trend outlined in 4.4.1 on

page 147. In the experiment shown in figure 4.16 the atoms were Raman



4.4. CALCULATION RESULTS 162

12 LA L LJ L] L2 ) 'l Ll L] LA L] L) Ll 'll L] LJ LJ L] LS L ll
E B -
] ™
104 = .
x 1 m
3 _ -
=9 =
I_ .
9 84 |
3 ; ]
© 74 -
Q. |
m
% 6"" u [} -
= 1 = ]
1 ]
4 -
L4 "l LJ LS Ll LJ LS L I'l LS L L Ll v "'l
0.1 1 10
hI‘p/21|:UR

Figure 4.16: This figure shows some experimental results for the final tem-
perature of resolved sideband Raman cooling for different Raman pumper
intensities. The atoms were cooled for 10ms in a far-detuned optical lat-
tice 4000I" detuned from resonance. The other parameters were U; = 54 Eg,
BRraman = 200mG, error AT ~ 0.5 uK.
cooled for a duration of 10ms. The lattice beams had a single beam light
shift of U; = 54 Epg, giving a total potential well depth of Uy = 243 Eg. The
far-detuned lattice beams had a diameter of 3mm and 83 mW per beam,
which is 1048 saturation intensities. The detuning was A = 4000I" and a
magnetic field Br of 200mG was applied to shift the levels |m; = 4,n = 1)
and |my = 3,n = 0) into resonance.

Looking at figure 4.16 we can readily see that the final temperature has

a minimum when the Raman pumper intensity is comparable to the smallest

Raman coupling Uy in the system. For higher Raman pumper intensities
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the final temperatures rise again, suggesting an inhibition of the population
transfer to the vibrational ground state. We attribute this to the quantum

Zeno effect and it is the first time indications for this have been observed.

4.5 Conclusion

This section introduced the Quantum Monte Carlo Wavefunction Method,
a versatile formalism used to develop a model for resolved-sideband Raman
cooling. The formalism is then applied to far-detuned lattices and the neces-
sary equations deduced to implement a model for resolved-sideband Raman
cooling.

Many simulations have been carried out for this work and selected results
are reviewed in the course of this chapter. A surprising and original obser-
vation was the discovery of the role of the quantum Zeno effect in resolved-
sideband Raman cooling and its detrimental effect on the efficiency of the
coherent population transfer when the Raman pumper intensity becomes
greater than the magnitude of the Raman coupling introducing the coher-
ence. Being aware of the quantum Zeno effect allowed us to devise a scheme
by which we can circumvent its effect by ramping the Raman pumper intensity
from an arbitrary higher lying value to about the size of the smallest Raman
coupling present in the system. This allows a lot of freedom for the choice of
the initial Raman pumper intensity provided it is ramped down at any time
during the duration Raman cooling cycle. Another interesting consequence of
the fact that the Raman coupling is three times bigger along the y-direction

than along the z-direction is that the quantum Zeno effect can trap a signif-
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Figure 4.17: This figure shows a plot of the final kinetic temperature ver-
sus the Raman pumper strength in units of the lowest Raman coupling
Ur (n® —I"ly —0) at different times during the Raman cooling cycle. The
intensity of the Raman pumper was ramped to 0.05 ///sat between 5 ms and
10 ms from its initial value. The Raman cooling times are: (a) 4ms, (b)
6ms, (c) 8ms, (d) 9ms, (¢) 14ms and (f) 19ms. The colours represent
different vibrational levels. They are ordered in ascending order {nx\my):
(010),(0[1),(1]0),(0]2),(1]1),(2]0) etc.
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icant amount of population in the vibrational state |m; = 4,n, = 1,n, = 0)
if the Raman repumper intensity is to larger than the corresponding Raman
coupling along z.

In the last part of this chapter we present some experimental results from
out group. Due to experimental constraints we have not been able to much
more experimental work on this, but it will be very interesting to investigate
this phenomenon of the quantum Zeno effect in resolved-sideband Raman

cooling and its consequences further experimentally.



Chapter 5

Diagnostic Tools for Atoms in

Optical Lattices

5.1 Introduction

To prepare, manipulate and measure the quantum state of a physical system
is one of the great challenges of modern science. The introduction section
in [42] provides a detailed account of the contribution that work on optical
lattices could make to achieve this goal. The advantage of optical lattices
over other systems is that the experimenter has a wide ranging control over
the characteristics of the trapping potential through the manipulation of laser
beam geometry, beam polarization, beam intensity, laser beam frequency and
through the addition of static electric and magnetic fields.

This variety of control possibilities naturally raises the need for suitable di-
agnostic tools to accompany them to monitor their impact on the system and

optimize their efficiency. Quantum state preparation using resolved-sideband

166
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Raman cooling aims to prepare as many atoms as possible in the vibrational
ground state of the lattices in one of the stretched states |F =4, m = +4).
The efficiency of this preparation method can be increased if we start with
a maximized population in the appropriate stretched state with regard to
the other states of the |F' = 4, m)-manifold. This requires a diagnostic tool
providing us with the means to measure the population distribution over the
different |F = 4, m) states. This Zeeman state analysis can be achieved with
a Stern-Gerlach type set-up. These measurements also can be used to opti-
mize the far-detuned lattice set-up and correct alignment errors of the lattice
beams. Another tool needed in the context of Raman cooling is one to moni-
tor the population distribution over the vibrational states of the lattice. This
turned out to be all the more important when we realized laser beam fluc-
tuations could cause parametric heating of our atomic sample, which could
limit the vibrational temperature that we could reach by Raman cooling.
Parametric excitation is in itself an interesting topic, as we are working in
anharmonic trapping potentials and it is therefore considered in some detail
in the following.

In general parametric excitation is a useful tool to investigate the proper-
ties of far-detuned optical lattices [54-57]. It was used, for example, by Friebel
et al. [54] and by Anderson et al. [58] to measure the vibrational frequency
of the lattice and enabled them to characterize important lattice parame-
ters in their experiments. Parametric excitation was also used as a model
to evaluate heating induced by excitation through intensity fluctuations of
the laser beams both in the time and space domain. Jauregui [59] provided

an exhaustive theoretical study of parametric heating in harmonic potentials,
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investigating it with a non-perturbative and perturbative approach. The non-
perturbative approach establishes a link between the classical and quantum
description of the system and gives useful insights into the problem. In the
rest of the chapter we will use the perturbative approach, which allows us
to take into account the effect of the anharmonicity of the optical lattice,
which is prevalent in shallow traps. Such a model can be used to study the
vibrational frequency, potential well depth and anharmonicity of the lattice
under investigation. It enables us to understand the consequences of anhar-
monicity of the lattice potential and the influence of the non-uniformity of the
laser beam intensity profile in experiments. The main motivation to investi-
gate these effects more closely is to evaluate the different heating sources in
our resolved-sideband Raman cooling experiments and after identifying them,
trying to minimize their impact. An important conclusion of this investiga-
tion was that heating due to stochastic intensity fluctuations shouldn’t play
a significant role on the typical time scales of our experiments [41].

The other useful diagnostic tool in laser cooling that is described is the
measurements of the distribution of Zeeman state populations using a Stern-
Gerlach type set-up. These measurements can be used to monitor and im-
prove the efficiency of laser-cooling in far-detuned optical traps. Monitoring
the population distribution allows one to make sure that more than 80% of
the atoms end up in the stretched states of the lattice before the start of the
Raman cooling cycle, providing more advantageous initial conditions for this
method. Simulations of a Zeeman state analysis type of measurement have
been implemented with Matlab, where atoms are released from an optical

lattice, fall through a magnetic field gradient and are subsequently measured
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by recording their time-of-arrival spectrum. The results of this simulations
allowed us to make the right design choices for the magnetic field coils produc-
ing the necessary magnetic field gradient and deduce appropriate parameters,
like coil current and coil position, to resolve the different Zeeman state peaks.
These measurements have also been used by Silvia Bergamini to investigate
the phenomenon of spin-temperature in optical lattices in her thesis [41].
First I will discuss our work on Zeeman state analysis. The second part
of this chapter is then dedicated to a discussion of our work on parametric

excitation.

5.2 Zeeman State Analysis

In the absence of any external magnetic fields, equal numbers of atoms become
trapped in the % and o~ sites of an optical lattice as a consequence of Sisy-
phus cooling . This symmetry can be broken by applying an external static
magnetic field B, parallel to the quantization axis of the lattice [43]. In the
case of the 2D symmetry used in our experiments (cf. figure 3.5 on page 100)
this is the direction perpendicular to the lattice plane. This magnetic field B,
introduces a Zeeman state dependent energy shift to the atomic eigenstates
| F,mp). This opens up the possibility, discussed in section 2.4 on page 63 of
increasing the population of one of the stretched states |F,m = £F) at the
expense of the other one. This is used, for example, in resolved-sideband Ra-
man cooling, described in detail in section 3 on page 92. There an external
static magnetic field is imposed on the far-detuned lattice phase to spin-

polarize the lattice and increase the population of the particular stretched
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state used in the Raman cooling cycle [43]. This increases the efficiency of
resolved-sideband Raman cooling as a simple consequence of the fact that
fewer atoms start in wells with the wrong polarization and therefore reduces
the number of optical pumping photons scattered. Raithel et al [60] have
shown that the different energy-shifts of the ground state sub-levels give rise
to a local cooling mechanism for large total angular momenta F in addition to
cooling on the F = 1/2 « F' = 3/2 transition often used as a model for Sisy-
phus cooling. There the cooling process is non-local, i.e. the atoms change
their initial state and reverse their polarization when they are cooled through
the optical pumping process and end up in the neighbouring potential well.
For atoms with large angular momenta F' the hyperfine state manifold offers
the possibility for the atom to undergo an optical pumping cycle without
changing the potential well. The reasoning for this can be found in more
detail in section 1.1.4 on page 29.

The Zeeman state-dependent force on an atom is exploited in the Zeeman
state analysis method discussed in this chapter. Here a magnetic field, which
changes linearly with position, induces a spatial variation in the Zeeman
energy shift and thus of the magnetic interaction energy of the atoms. The
latter gives rise to a spatially dependent force which can be used to distinguish
atoms in different Zeeman sub-states and thereby to measure their relative
populations in experiments.

The experimental procedure is as follows. The atoms are released from a
spin-polarized optical lattice by switching off the trapping beams. If no mag-
netic field gradient is present the atoms in different magnetic sub-levels feel

the same acceleration due to gravity. The time-of-arrival spectrum is then
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similar to a Gaussian as shown in figure 5.1 on page 178. If a magnetic field
gradient is present the atoms feel an additional state-dependent magnetic
dipole force besides gravity, proportional to their mr quantum number. For
large enough field gradients the time-of-arrival spectra separates into distin-
guishable peaks associated with individual mz quantum numbers as shown in
figure 5.2. This allows one to measure the relative populations of the Zeeman
sub-states associated with distinct myr magnetic dipole moments as well as to
deduce a phenomenological spin temperature associated with these sub-states.

The exploitation of the Zeeman shifts arising from the interaction of the
atomic magnetic dipole moment and a magnetic field gradient is also ex-
tensively used to tailor atomic beams. For example, experiments on mag-
netic atom optical components have been carried out, such as magnetic mir-
rors [61] [62], refractive components [63], and magnetic surface traps [64].
Stern-Gerlach type of experiments have also recently been use to measure the
quantum state of an atom with an arbitrarily large angular momentum [65].

This rest of the section is organized as follows. First the interaction of
an atom with a magnetic field is discussed and the magnetic field of a square
coil is deduced. Next the implementation of a Zeeman state analysis time-
of-arrival measurement is described followed by a discussion and comparison

with experimental results.

5.2.1 Atoms interacting with a magnetic field

The interaction of an atom with an external magnetic field is governed by the

magnetic dipole moment of the atom. It is given by
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p=~F= - F (5.1)

[t] = JT™Y, [F]= Jsrad™!, [y]= rads™'T™!

where 7 is the gyromagnetic ratio, gr the Landé factor associated with the
angular momentum state F' and pp the Bohr magneton. Subjecting an atom
to a magnetic field gives rise to an interaction energy W [66], a torque I" [67]
and a net force F [67]:

W=-u-B (5.2)
F'=puxB (5.3)
F=-VW (5.4)

Combining equations 5.2 and 5.4 gives for the components of the force F

=V (p-B)
(D)o (D)o (- D)

Since this net force F is proportional to the gradient of the magnetic field B,
an atom in a uniform magnetic field experiences no net force. The magnetic

dipole precesses with a frequency
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wp _ 7[B|

— 5.5
27 2 ( )

vy =

called the Larmor frequency. Hence the projection of the magnetic dipole
moment along the direction of the magnetic field B remains constant. If
the atom is placed in an inhomogenous magnetic field, the magnetic dipole
experiences a net force proportional to the magnitude of the magnetic field
and proportional to its magnetic dipole moment. Quantum mechanically an
atom placed in a uniform magnetic field directed along the quantization axis
of the atom possesses simultaneous eigenstates |®,,) = |F, mr) belonging to
both operators F? and F,. For simplicity we define the quantization axis to
coincide with the z-direction. The magnetic field B, = B, Z gives rise to an

energy shift of [67]

AEm = KUBgFrmMp |Bz| (56)

The time dependence can be introduced as usual in quantum mechanics by

[Pm(t)) = Y cm(t) [Prm) (5.7)
— Z A, e~ Emt/h |(I)m>

— Z Ame—imwz,t I(I)m)

Hence the time evolution of the coefficients c,, can be written as
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Cm(t) = exp {—imwr t} cm (5.8)

This allows us to deduce the time evolution of the populations associated
with the different magnetic sub-levels 7,,(t), which are m,(t) = |em(t)]*
Substituting 5.8 reveals that the populations do not change with time. A
change in B, only changes the magnitude of the Larmor frequency.
Allowing for the magnetic field to have also transverse components By =
B, + B,, in addition to a parallel one B,, also induces couplings between
different Zeeman sub-states [67]. The consequence of this is that the popu-
lations of the different magnetic sub-states are no longer constant with time,
unless the magnitude of the transverse field component is much smaller than

the parallel component or equally |B|, i.e.

2r d|By|

B
>>wL dt

(5.9)

If the Larmor frequency is much bigger than the rate of change of the mag-
netic field, then the internal and external degrees of freedom decouple and
the angular momentum of the atom can adiabatically follow those variations
and maintain the component of the magnetic dipole moment along the quan-
tization axis. Time averaging the magnetic dipole moment over the Larmor
period results in only a constant component along the quantization axis and

it follows from equation 5.4 and 5.9 that

F = (nVIB(r)| (5.10)
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where (1) is the time-averaged magnetic dipole moment. The consequence of
this is also that the force is only dependent on the magnitude of the magnetic

field alone and not on its direction.

5.2.2 Outline of Simulation

To simulate time-of-arrival spectrum measurements a model was implemented
based on a classical Monte Carlo method. The atoms were assumed to be
released from an optical lattice characterised by a kinetic temperature and
atomic cloud size.

The first step of the implementation was to deduce the magnetic field of a
square current-carrying coil and its spatial dependence (cf. section F). This
magnetic field gradient gives rise to an additional force on the atoms besides
gravity and influences the atomic motion dependent on the magnetic dipole
moment of the atom. The zero of the magnetic field was chosen to be above
the optical lattice region to ensure that the atoms do not experience a region
of zero magnetic field. Consider, for example, an atom in a magnetic sub-
state my. When it moves into a region of zero magnetic field, the orientation
of the atomic magnetic dipole can freely evolve as it looses its quantization
direction. When the atom moves again into a region of non-zero magnetic field
a new quantization axis is introduced. The atomic magnetic dipole realigns
itself. The process is random and the magnetic moments before and after
transversing the zero magnetic field region are uncorrelated. Thus atoms
moving through this zero can be subject to a magnetic dipole realignment

rendering the experimental measurement of Zeeman sub-state populations
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invalid. Initially an atom with a magnetic dipole moment mp is put at the
origin. The atoms in an optical lattice are assumed to have a Maxwell-
Boltzmann velocity distribution. At typical temperatures of optical lattices
this distribution is similar to a Gaussian. Hence we base the choice of initial
velocity on a Gaussian distribution and choose a random direction for the
velocity vector. The defining mean velocity is defined by the temperature of
the optical lattice. The next step is to calculate the trajectory of the atom
until it passes through the time-of-fight measurement plane. When the atom
passes through this plane we can deduced if it is detected by the time-of-
flight beam or not, hence offering us a method to assess the efficiency of our
experimental time-of-flight set-up as a function of the applied magnetic field
gradient, the atomic cloud size and the kinetic temperature of the atoms
before their release.

To extend the above method to a cloud of atoms trapped in an optical
lattice some enhancements have been introduced. To reflect the initial posi-
tion spread of the atoms in an optical lattice the starting position of the atom
was chosen randomly assuming a Gaussian density distribution over the size
of the optical lattice. The centre of the optical lattice was chosen to be the
origin of our coordinate system. The effect of this position spread is that the
time-of-arrival spectrum is broadened. Hence to deduce the temperature in
an optical lattice from a time-of-arrival spectrum necessitates an correction
for the initial size of the atomic cloud. In addition the atoms in an optical
lattice are assumed to have a Gaussian velocity distribution which is assumed
to be spatially isotropic. Hence the time-of-arrival spectrum for a cloud of

atoms released from an optical lattice without a magnetic field gradient is
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then similar to a Gaussian as can be seen in figure 5.1. The atoms in the dif-
ferent magnetic states cannot be not resolved. Switching on a magnetic field
gradient slowly before the atoms are released and repeating the above time-of-
flight measurement adds additional state-dependent force to the gravitational
one. If the gradient is high enough, the time-of-arrival spectrum splits into
distinctive peaks associate with atoms populating different magnetic dipole
moment states. This situation is shown in figure 5.2. In the end of each

simulation the results are saved to disk to facilitate further data analysis.

5.2.3 Results and Discussion

The first implementation step of the Zeeman state analysis implementation
was to simulate a time-of-arrival spectrum of atoms released from an optical
lattice accelerated by gravity in zero magnetic field. The expected time-of-
arrival spectrum is a Gaussian with a standard deviation proportional to the
kinetic temperature of the atoms in the optical lattice. The result is shown in
figure 5.1. The simulation allowed us not only to calculate the expected time-
of-arrival spectrum, but also to identify the contribution of different magnetic
Zeeman states to the overall signal.

The next step was to introduce the effect of atoms falling through a mag-
netic field gradient. As described above the atoms experience a m-level
dependent force and for large enough magnetic field gradients the time-of-
arrival spectrum can be resolved into a set of peaks corresponding to an
individual Zeeman state. This is shown in figure 5.2 and for comparison an

experimental time-of-arrival measurement is shown on figure 5.3. The re-
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Figure 5.1: The figure shows a calculated time-of-arrival spectrum. The atoms
were assumed to have had an initial temperature of 10pK. No magnetic field
gradient was present. A initial cloud size was « mm and 10000 atoms were
used to calculate the figure. 4.4% of the atom missed the TOF beam.

suits of these calculations allowed us to deduce the distribution of the atoms
over the different Zeeman states and optimize the far-detuned lattice cooling
efficiency. The overall aim of our Zeeman state analysis and parametric exci-
tation experiments was to prepare as large a fraction of the atoms as possible
in the stretched states of the far-detuned lattice, thus providing an improved
starting point for efficient Raman cooling and state preparation and to study
the effects of laser beam noise and the corresponding heating effects.

This ends the section on our Zeeman state analysis experiments. The code

was used in conjunction with experiments presented in the thesis by Silvia
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TOF signal for TOF widtti « 0.01 m size of doud 0.00075m, T»3 jiK
number ofatoms N « 500004, Standard deviation ¢ » 0.015174 , Mean p =0 10363
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® 0o oo
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Figure 5.2: The figure shows a calculated time-of-arrival spectrum. The
atoms were assumed to have had an initial temperature of 3 //K.

Bergamini [41].

5.3 Parametric Excitation

5.3.1 Perturbative Treatment

The content of this section extends the work of Jauregui et. al. [55], Savard
et al. [56], Jauregui [59] on parametric excitation. The perturbative ap-
proach is the approach of choice here, since it can easily take the effect of
anharmonicity into account prevalent in optical lattice potentials, whereas
the non-perturbative approach is valid only in quadratic potentials and can

only offer qualitative guidance. In the systems of shallow traps, anharmonic-
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Figure 5.3: The figure shows a measured time-of-arrival spectrum. The TOF
beam was 5 cm below the optical lattice. There is a time offset on the temporal

axis. The figure is courtesy of Silvia Bergamini.
ity is an important property and necessitates the introduction of appropriate
modifications to the standard perturbative treatment based on the harmonic
oscillators approximation.

In our experiments parametric heating is obtained by applying small in-
tensity fluctuations to the laser beams in a periodic fashion. This can be

described by an effective Hamiltonian

2

P
H= 2
oM

—  Ho+ Hupoa (5.12)

+ %ng 1+ e(t)] 22 (5.11)
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where €(t) is the fractional modulation in the spring constant and given by

(t) = 5(“70'12 (5.13)

In this expression I(t) is the intensity at time ¢ and I the unmodulated
intensity. Additionally it is assumed that ¢(t) < 1. Considering a far-detuned

trap, the effective potential can be written as [56]

V(z) = %ng 2= —i a|€(2)]? (5.14)

In this equation a is the atomic polarizability and £(z) the slowly-varying
radiation field amplitude. The unperturbed Hamiltonian of the system is

defined by

_
H= - +V(3) (5.15)

In the following we will work in the interaction picture where the equation of
motion of a state is given by the differential equation
d¥y(t) _

ih—2 = e(t) V(2,) [¥n (2)) (5.16)

To be able to use this picture we have to convert the state ket |¥s) and
the potential operator V(z,t) from the Schrédinger picture to the interaction
picture. This is achieved by introducing time-dependent unitary operators

resulting in the following transformation equations:
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@5 () = eFot/H | Ws) (5-17)

V(z,t) = eBot/hy (g, t) et Hot/h (5.18)

Thus the unitary evolution operator U(t) satisfies the integral equation

Uit)=1- % /0 t e(t) V(z,t) Ut dt (5.19)

These are all the ingredients we need to deduce the transition matrix elements

as [59]
(£ 000) =05 =5 Vi [ atetyene (5:20)

1 t | . ny
=" VinVas / dt' €(t')eirm* / 4 (et 4
n 0 0
with

2
Vie=(F V1) = Byba— ( f ] ) (5:21)

Hence an average transition rate for a transition from state |i) to |f) in a
time period ¢ can be evaluated, providing the changes in the wave function
induced by the unitary operator U(t) are small enough in the interval (0, ).

Thus

Rjei = 51: ’( f ' ™ (1))i) lz (5.22)
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using n-th order perturbation theory. Additionally, if the heating is induced
by a controlled modulation of the confining potential, i.e. €(t) = € cos(wt),

the transition rate can be approximated up to second order in ¢ by

(F|TO@N) =5 + o ot Vil (@ + w)t) + € (wpi = ))]  (5:29)

_ (_) tzv,kv,ﬂ{,w Ty € (ors =+ 20)8) + € )

— & (wrk + w)t) — € (wpk — w)t) |

+ ﬁ [€ ((wr: = 20)t) + £ (writ)

— & (wpe +w)t) = € (wre —w))] }

where we have introduced the function £(z) = /2 s—“;%gl to simplify the
notation. As pointed out in [59] this is only valid if the unitary evolution
induced by U (t) changes the wave function in the interval [0, ] only by a small
amount. Thus the matrix elements for a harmonic oscillator with frequency

wo become

Vi = by [(2f + 1ok + VF(f = Dgpsz + V(F + 1)(f +2)054- 2]
(5.24)

Substituting this into equation 5.23 results in the following three combinations

of VyVii being different from zero:

(i) Vigx2Vieo saq. Here the resonant terms appear in the combination
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€ ((4wo £ 2w)t) — € ((2wp = w)t) and the transitions associated with this

are highly suppressed.

(i) VyxViks. Here resonances occur at w € {0,2wp}. For w ~ 2uwp the

contribution of the transition amplitude is given by

e2t [IV:f,f+2|2 (6(0) —&(—[2wp — w]t))

2hwy i(w — wp)
H Vg2l (6(0) _if£+_[2z§)_ w]t)) ] (5.25)

(iii) Vi jsa2Viao sa0 and Vi ¢V sio. Here the transitions can be viewed as
a combination of two virtual transitions £k — ¢ — i or k — k —
i. The corresponding resonance frequency is the fractional frequency
w = |wfi|/2 = we. Hence the transition probability for a modulation

frequency of w ~ wy is given by

KFUB@) 2 ~ (%)2 fzg'VZH?(fo - Wi)Sir(le—ww_o)L::zj{lz]

(5.26)

4 242
08 02 [F(f — 1)drane

1024
sin?[(w — wo)t/2]
+ (f + 1)(f + 2)‘51‘,1'—2] (w _ w0)2t2/4

In all the above cases, the non-resonant terms £(w't), ' # 0, give rise to an
oscillatory behaviour in the transition probabilities. This is consistent with
the results found in [59] for the exact evaluation of the transition probability
amplitudes for the problem. Considering sufficiently long evolution times

't > 1 and the delta-function representation
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5(¢) = —2-lim sin“(C t/2)

T (5.27)
only the resonant terms give rise to significant contributions. Thus the dom-
inant transition probability amplitudes of a fractional frequency resonance
at w = 2wp/n arises, when n-th order perturbation theory is applied to the
problem. These transitions can be viewed as n-steps procedures consisting of
n virtual transitions, in which 7 — 1 of them do not change the state and only
one of them does. Hence equation 5.26 describes approximately the transi-

tion probability amplitudes for a transition ¢ — ¢ & 2, where the source has a

frequency of w = wyq.

5.3.2 First Order Perturbation Theory

In this section we apply first order perturbation theory to the problem of
parametric excitation and subsequently — in the next section — extend the
formalism to a second order perturbation theory treatment. Considering the

matrix elements of the perturbation perturbing the system

1
Hp= SMude(t) < fla?i>, (5.28)

we can calculate the average transition rates R¢._; between two different levels

|f > and |i > as [55]
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2

—_ 9 T

Rf*—i = % _ﬁ,z_/[; dt’ Hﬁ(t,) exp{iwf,-t'} (529)
™ .

= 555 [T(H))” S(wp) (5:30)

where T(f,i) = (f|Veg|?) is the matrix element of the space part of the
perturbation and S(w) is the one-sided power spectrum of the two-time cor-
relation function associated with the excitation field amplitude. It is defined

as

2 T

S(w) = —/ cos(wt) (e(t)e(t + 7)) dr (5.32)
T Jo

and (e(t) (t + 7)) is the correlation function for the fractional intensity fluc-

tuations. The one-sided power spectrum is defined in a way, so that if it

integrated over all frequencies it equals the square of the root-mean-squared

fractional modulation of the spring constant &y, i.e.

/0°° dw S(w) = /000 dv S(v) = (e*(t)) =&} (5.33)

Thus, in the harmonic approximation, the only terms different from zero are

2

Rpi= 7’1—?5(0)(22' +1)2 (5.34)
2
Ripeiss = L S(2u0) (i +1 £ 1)(i 1) (5.35)
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These rates can be used to deduced, that the heating rate in a harmonic trap
has exponential character and depends on the modulation frequency wp. An
exponential heating rate is typical for a parametric excitation processes. Con-
sider the probability P(,t) that the atom occupies a state |¢) at time ¢. The
average heating rate is then given by the sum of the different contributions
of all processes involved which cause a change of state to another level. In
the harmonic model these are only the rates 5.35. Hence the heating rate is

given by [56] [57] [68]

<E(t)> = Z P(i,t) 2hwo (Ryivz — Ryei-2)

TTWo

== 5(2wo) (E(2)) (5-36)

where we have introduced the average energy as

(E(t)) =Y P(i,t) (2 + %) hwo (5.37)

K]

Hence equation 5.36 shows that the heating rate is proportional to the average
energy 5.37 itself, i.e. follows an exponential behaviour. Additionally it is
proportional to the vibrational frequency wp of the lattice. This allows the
introduction of a characteristic time ¢., also called the energy e-folding time,

in which the average energy (E(t)) increases by a factor e as [56]

te = (miug) ™ (S(2wp)) ™ (5.38)

It is interesting to note that in the expression for the heating rate A does not
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appear as a factor explicitly, stipulating that it can be calculated classically.

So far we only have considered resonances at a frequency 2wy. Classically
there are also resonances possible at 2uwp/n, with n € N. These resonances
cannot be described with first-order perturbation theory. It can be shown that
one needs to consider n-th order perturbation theory to be able to model a
resonance at w = 2uwp/n [59]. Since the aim of this exercise is to model
the experimental results of our group which show resonances at 2wy and wy,
the formalism is extended to second-order perturbation theory in the next

section.

5.3.3 Second-order Perturbation Theory

In this section we apply second order perturbation theory to the problem of
parametric excitation. The previous section discussed parametric excitation
in the light of harmonic traps. Optical lattices in general are governed by an-
harmonic potentials. Thus only deeply bound states are well described by the
harmonic approximation and the energy band structure differs significantly
for higher lying levels due to anharmonicity. In the paper by Jauregui et
al. [55] an extension to the model described in [56] was proposed which in-
cludes features like broad spectral lines and the effect of anharmonicity. Our
theoretical model of parametric excitation is based on this modified formal-
ism. Employing second-order perturbation theory results in a second-order

correction to the transition rates between states i) and |f) described by
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t t
it e (1)t / eonste(¢)dt"  (5.39)

to

.\ 2
—1
RE, =% (F) vk [

k 0

allowing for the transition process to be viewed as a two-step procedure: a
first step |¢) — |k) and a second step |k) — |f). For harmonic parametric
excitation, as shown in the previous section, only matrix elements for the
space part of the perturbation with An € {0,+2} are non-zero. This leaves
us with the possible transitions between states |n) — |n) and |n) — |n £ 2).

Consider now a first virtual transition |n) — |n) and a second virtual
transition |n) — |n & 2). Here the net energy change is 2h€2 and a resonance
occurs when the total energy if the two excitations coincides with the net
energy change, i.e. if {2 = wy. These ideas can readily be extended to include
the effect of anharmonicity, where the difference is that the transition matrix
elements are non-zero for a wider set of level pairs (%, f) and the calculated
energies of the underlying anharmonic optical lattice can be used instead of
the harmonic ones. The work presented here takes for the first time these ideas
into account. Calculated transition anharmonic transition matrix elements
are shown in table 5.1.

Within this scheme of average transition rates, the probability P;(t) of
finding an atom in a level [i), is then described by a set of finite difference

equations for each level |z) as
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Py(t) =Pi(to) + Y_ R}, (Pe(to) — Pi(to)) (t — to) (5.40)
f
+ 3 RE. (Pilto) = Pito)) (¢ — to)” (5.41)
k

valid up to second order perturbation theory providing ¢ ~ ¢, and subject to
the condition ), P,(to) = 1.

Following further the suggestion in [55] in assuming a Gaussian distri-
bution for the density of states, we can introduce broad spectral lines by
considering an effective spectral density S.g(w) given by

(w— weff)2

Seg(w) = Soexp — (5.42)

202
where weg is dependent in the modulation frequency and energies of the appro-
priate transition. This allows us to introduce broadening effects not only orig-
inating from the anharmonicity of the potential, but also from other sources,
such as laser intensity, pointing fluctuations and intensity inhomogeneities
over the lattice region. These sources are absorbed into an effective width
oo already containing information about the frequency widths of the atomic
levels involved and the excitation source. The functional forms of g.g and weg

are deduced in appendix E. They are given by

oy =0l +at+o} (5.43)

Weff = Wmod — (Wf — wj) (5.44)
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where a; are the frequency widths of the levels involved (|¢) and |f)), oo
the frequency width of the excitation source and wyea the frequency of the
modulation. We have now reached a stage where it is possible to implement
simulations of parametric excitation in anharmonic potentials with the prob-
lem being reduced to one of solving a set of simple coupled rate-equations for

the time-evolution of the populations of the bound bands.

5.3.4 Qutline of the Simulation

This section describes the implementation of simulations of parametric excita-
tions in shallow traps using the theory described in the previous section. The
simulation is split into different parts: First the band structure of the optical
potential used to trap the atoms is calculated using the method discussed in
section 2.6 on page 75. The results are used to deduce the initial popula-
tion distribution over the vibrational levels as described in section 2.7.1 on
page 81. The user has to specify the characteristic parameters describing
the parametric excitation. These are the range of modulation frequencies for
which the simulation should be run, the initial width of the atomic sample
oo (cf. equation 5.43 on the preceding page), the fractional modulation in
the spring constant ¢ (cf. equation 5.13 on page 181) and the duration of the
parametric excitation ¢,, in units of the modulation frequency w. The simu-
lation results of the variation in the mean energy of the atoms trapped in the
lattice and the number of atoms remaining are plotted. In addition the re-
sults are saved into a file to allow for subsequent data analysis. In preparation

of the paper [69], the calculation of anharmonic transition matrix elements
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was added to the code and a future plan is to use these calculated transition
matrix elements in future simulations.

In principle, the rates 5.39 need to be determined for each of the N states
belonging to every band. However, we simplify the problem by representing
each band by a single state, which we choose to be the appropriate Wannier
state localized on a particular site of the lattice. Since the light-shift potential
U(z) is not harmonic, the spatial matrix-elements are non-zero for larger
range of pairs mn than in the harmonic approximation. This is illustrated
in table 5.1 where some of the calculated matrix-elements connecting bound
Wannier states for the case of a maximum light-shift of 170 Eg are tabulated.
For low f and i the only matrix elements with a non-negligible value are
those for | f —i|= 2, consistent with the harmonic approximation, whilst for
larger values of f and 7 it is clear that other transitions need to be taken into

account.

5.3.5 Results of simulation

Simulations were run for a range of values of the modulation frequency from
well below the mean vibrational frequency in the harmonic oscillator approx-
imation to several times this value and for various values of the duration of
the modulation phase. At the end of the modulation phase, the mean kinetic
energy of the atoms was evaluated to facilitate comparison with experimental
time-of-flight measurements of the temperature of the atoms. To gain quali-
tative information on the modulation-induced loss of atoms from the lattice,

a simple cut-off procedure was used: the population in bands higher in energy
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Table 5.1: Shown are the squares of some representative anharmonic tran-
sition matrix elements IT,,m|2 in units of Eg? for an optical lattice with
Umaez = 170 ER, for which approximately ten bands are bound. The prin-
cipal non-zero matrix elements are those for which An = 0 and An = 2,
as in the harmonic approximation. However, for bands near the top of the
potential well the values of some matrix elements with A, # 0,+2 become
significant.

Band

An 2 4 6 9

-4 - 0.14 2.6 0.15

3 - <10 < 10 120

2 M 180 410 110

-1 <10* <10 <10* 12x108
0 450 1.5x10° 3.2x10° 8.0x10*
1 <107 <10 0.92 1.1 x 108
2 18 410 170 150

3 <10™* 0.13 120 120

4 2.6 3.6 32 120

than the y-direction shoulder in the potential was deemed to have escaped
the lattice. This procedure was expected to give good qualitative agreement
with the true loss rate, since, for atoms with an energy above the shoulder,
there are unbound trajectories which take the atom out of the lattice, the
effectiveness of these channels being enhanced in the vertically oriented lat-
tice used in the experiments by the action of gravity. It is worth noting that
the band structure is nearly identical for cuts through the z and y-directions
with energies below the shoulder in the y-direction. The potential wells have
almost spherical symmetry and hence justifies our use of a 1D band structure
calculation weighted with the appropriate geometrical factor. Sample results
from the simulations are shown in figures 5.4 and 5.5.

Figure 5.4 shows, as a function of the modulation frequency and the duration
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Figure 5.4: Simulation of the modulation-induced loss versus modulation
frequency and time for: Umax = *70ER, mp = —4, Tin = eo = 0.1,
(00— 1.5 ER,

ofthe modulation-phase, the fraction of the atoms loaded into the far-detuned
lattice remaining trapped at the end of the modulation phase. In this simu-
lation, the maximum potential depth was set equal to 170 », corresponding
to a harmonie-approximation vibrational frequency aiq = I7r.,u# and the
initial kinetic temperature of the sample is taken to be 30 close to
the typical value realized in the experiments of 3/iK (corresponding to a
population of the ground vibrational state of approximately 54%). The plot
exhibits features corresponding to the principal resonance at modulation fre-

quency 4 % 2ljqg and some higher-order resonances. It is clear that the centre
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Figure 5.5: Simulation of the modulation-induced temperature variation ver-
sus modulation frequency and time for: Umax — “7QER, mp = —4, Tin = 3/XK,
@—0.1, =g —1.5E/j.

of mass of the 2Cp resonance occurs at a frequency lower than 2uQ an effect
that may be ascribed to the anharmonicity of the wells. In the contrast to the
harmonic case, where the energy level spacing is equi-distant, the energy level
separation between energy level pairs decreases. This results in a decrease in
the average energy separation and the position of the resonance is below the
harmonic value. Another effect of anharmonicity is that the resonances are
spread over a wider frequency range making the resonance feature less well
resolved than in the harmonic case.

Figure 5.5 shows, as a function of the modulation frequency and of the

duration of the modulation-phase, the mean kinetic energy of the atoms re-
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maining trapped in the lattice at the end of the modulation phase. These
results suggest that it should be possible to induce either heating or cool-
ing of the sample remaining trapped, depending on the chosen modulation
frequency. An analysis of the simulation data reveals that for a modulation
frequency for which higher-lying bound states are predominantly excited, a
parametric excitation sequence results in the expulsion from the lattice of
these energetic atoms and therefore in a net cooling of the remaining trapped
sample. Conversely, when it is predominantly the population in lower-lying
bound levels that is excited, the excitation results a net transfer of this popu-
lation into higher vibrational bands and thus in a net heating of the trapped
sample, which is not, however, accompanied by a significant population loss
from the lattice. However, whilst the distinction between the processes oc-
curring for low-frequency and high-frequency excitation can clearly be drawn
from the simulation data, it has to be borne in mind that the inhomogeneous
broadening arising from the intensity inhomogeneity in a real lattice and the
multiplicity of resonances arising from the non-zero matrix elements in the
case of anharmonic wells, would be expected to make difficult such a precise
phenomenological interpretation of real experimental data.

Furthermore, Zeeman-state population measurements made of the atoms
in the far-detuned lattice showed that atoms could significantly populate sev-
eral distinct Zeeman states if the experimental configuration was not properly
calibrated. Potentials associated with different Zeeman states have different
depths and spring-constants and therefore the characteristics of the excitation
dynamics depend on the mz quantum number as well. Indeed we were able

to characterize the contribution of different Zeeman states averaging the cal-
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Figure 5.6: The graph compares the harmonic matrix elements with the cal-
culated anharmonic ones. We see good agreement for tightly bound states
and the effect of anharmonicity for higher lying states.

culated results over the different Zeeman states and deduce the corresponding
time-of-arrival spectrum. It was found that the Zeeman state population dis-
tribution can play a significant role in the broadening of the resonances and
can make the interpretation of experimental results very difficult or nearly
impossible in the light of selective excitation measurements and the determi-
nation of characteristic parameters of the lattice. Hence the Zeeman state
analysis measurements and simulations discussed in section 5.2 on page 169
offered us a convenient way to optimize and check our experimental configu-
ration before carrying out experiments on selective parametric excitation in

optical lattices.
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5.3.6 Results of Experiment and Discussion

The experiments described in this section were carried out by Silvia Bergamini
and presented in her thesis [41]. In the experiments a sample of atoms was
prepared in a far-detuned lattice induced by light with a detuning to the
low-frequency side of the D2 resonance of A = —(2000 £ 100)I" and a single-
beam intensity of Iyeam = (400 & 50) mW /cm?, giving a maximum light-
shift of 170 &+ 15 EFr and a harmonic-oscillator vibrational frequency for the
lowest-lying potential surface of wg = 27 x (33 £ 3) kHz. This was achieved
by polarization-gradient cooling in a two-dimensional near-resonance lattice
followed by adiabatic transfer to a spatially-coincident, far-off resonant lattice
as in [70]. After a period of 10 ms, a time sufficient for all atoms not trapped
after the adiabatic transfer to leave the interaction region, the intensity of the
lattice light was modulated with a depth of 10% for a fixed period of 25ms.
This was achieved by modulating the power of the radio-frequency drive of
an acousto-optic modulator placed in the path of the lattice beams.

At the end of the modulation phase, the lattice optical field was suddenly
extinguished in less than 10 us, using the acousto-optic modulator and an
auxiliary shutter. The number of atoms remaining trapped in the lattice and
their kinetic temperature were determined using a time-of-flight method. For
this purpose, a thin sheet of light tuned close to resonance with the caesium
D2 transition was located 6 cm below the trapping region and the absorption
of this light by the atoms falling through the beam was recorded. Thus
the temperature measured was in a single dimension, corresponding to the

z—direction of our lattice (cf. figure 2.7 on page 69). However, owing to
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Figure 5.7: Comparison between experimental data and the predictions of
numerical simulations for the modulation-induced population loss. The solid
line shows, as a function of the modulation frequency, the measured number

of atoms remaining in the lattice after a fixed period of 25 ms of modulation
whilst the dotted line shows the result of the corresponding simulations.

the rotational symmetry of the lattice potential below the shoulder in the
y-direction, we expected this temperature to be isotropic. Measurements
were taken for a range of modulation frequencies from well below the mean
harmonic-oscillator vibrational frequency of the atoms in the lattice to several
times this frequency.

In figure 5.7, the measured fraction of atoms remaining in the lattice at
the end of the modulation phase is plotted as a function of the modula-
tion frequency and is compared with the fraction predicted by the numerical

simulations. The classical theory of the harmonic oscillator predicts a reso-
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Figure 5.8: Comparison between experimental and simulation data for the
modulation-induced heating. The data shown by the solid line depict, as a
function of the modulation frequency, the change in the kinetic temperature of
the atoms remaining in the lattice after a fixed period of 25 ms of modulation
whilst the dotted line shows the result of the simulations.

nance in the loss rate of atoms at twice the vibrational frequency, w =~ 2wy,
and a secondary resonance at w & wg. The data in figure 5.7 shows losses
over a broad range of frequencies, with a width comparable to the resonance
frequency itself. However, two resonances are just resolved, at frequencies,
w = 27 X 35kHz =~ wy and w = 27 x 58 kHz = 1.7wy. The frequencies of
these resonances do not agree with those predicted within the harmonic ap-
proximation, but are, however, in good agreement with those predicted by the
anharmonic model. This follows from the fact that atoms in the lowest levels

are partly excited to higher lying levels but are not lost (as would happen for
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a harmonic potential), while the most energetic atoms, which have a smaller
excitation energy due to the anharmonicity come into resonance at a lower
modulation frequency and are immediately excited out of the lattice. This
explains why the resonance expected for w = 2wp in the harmonic approxi-
mation actually appears shifted to the low-frequency side. The asymmetry of
the resonances is also well reproduced by the model and reinforces the role of
anharmonicity in the loss rate of the atoms. Higher harmonic resonances are
also predicted by the model, leading to the broad feature of width comparable
to wp seen in figure 5.7, at w ~ 3wy. Here the experimental data is not in good
agreement with the simulations and the resonance is poorly resolved. This
due to the fact that the simulation used to produce the graphs only considers
transitions with An € {0,%2} and neglects any other possible transitions.
The kinetic temperature of the sample of atoms remaining trapped at
the end of the modulation phase was also measured as a function of the
modulation frequency. Typical results are plotted in figure 5.8. Whilst the
correlation in the frequency-dependence of the experimental and simulation
data is poor, both numerical and experimental results do confirm that both
cooling and heating of the remaining trapped atoms can be achieved for a
suitable choice of the modulation frequency. This result is in agreement with
those of [71], in which the exploitation of the anharmonicity of shallow traps
in parametric excitation processes was proposed as a method to boost evapo-
rative cooling. We ascribe differences between the data from the simulations
and those from the experiment to the difficulty of quantifying precisely the
inhomogenous broadening of the vibrational transitions due to the spatial

profile of the lattice laser beams.



5.3. PARAMETRIC EXCITATION 202

5.3.7 Conclusion

Numerical simulations and experiments aimed at studying the excitation dy-
namics in an intensity-modulated, two-dimensional optical lattice have been
performed. The simulations were based on a perturbative approach that was
applied in [59] to a one-dimensional, sinusoidal optical lattice and incorpo-
rated explicitly the effects of the anharmonicity of the lattice potential and the
inhomogeneous broadening of the vibrational resonances. In particular, the
experimental results show qualitative agreement with the numerical model,
when the latter is modified to account for the effects of the broadening of the
vibrational transitions arising from the anharmonicity of the lattice potential,
the intensity-modulation itself and the non-uniform spatial intensity profile
of the lattice optical beams. It is worth noting that the affect of a discrete
distribution of resonance frequencies that would arise from atoms occupying
differently light-shifted potential surfaces could not be well accounted for by
the effective level-width model and monitored the distribution over Zeeman
sub-states obtained on loading the far-detuned lattice in order to be able to
eliminate this as a source of broadening in our experiments as discussed ear-
lier. From the results, we infer that the anharmonicity of the lattice potential
wells could enable the selective vibrational excitation of atoms originating
in particular bound motional states of the lattice. This offers the prospect
that vibrational-state selective excitation could be manipulated to prepare
samples of atoms in a desired motional band of the lattice. However, for this
to be achieved, the limitations arising from the various broadening mecha-

nisms that have been investigated, would clearly have to be addressed and
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the inclusion of transitions encompassing a wider range of level pairs pursued.



Chapter 6

Conclusion

In this thesis I have investigated atoms in far-detuned optical lattices with
semi-classical and quantum Monte Carlo simulations. Far-detuned systems
offer the advantage of a reduced spontaneous scattering rate and hence less
unwanted associated heating. They also have the advantages of long decoher-
ence times and are only weakly coupled to their environment. Furthermore,
these systems possess a low filling factor typical of optical lattices, which
provides additional isolation of the atoms from each other. In these systems,
perturbations to the atomic environment can be introduced in a controlled
manner and studied individually. Hence far-detuned optical lattices are an
ideal tool for quantum state preparation and control, quantum transport and
quantum chaos studies and provide a rich and flexible system. Furthermore,
through altering the beam geometry, beam intensity and beam polarization
or by the action of external fields one can control depth, shape and period-
icity of the trapping potential. Being able to control and manipulate neutral

atoms in optical lattices provides the basic requirements to implement quan-
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tum computational schemes in these system, as was suggested by several
groups [31]. Tools to manipulate and read-out g-bits for each atom sepa-
rately have been discussed in the literature recently [72,73]. The similarity
to condensed matter periodic structures, albeit on an entirely different length
scale, that of the optical wavelength, allows the investigation of solid state
physics problems in a context of much more favourable time scales. Hence
these far-detuned systems provide an ideal starting point for quantum state
preparation based on a resolved-sideband Raman cooling scheme [42]. This
research aimed to optimize the preparation of a large fraction of atoms in
the vibrational ground-state of the 2D lattice and get a better and detailed
understanding of experimental results.

I now provide a brief chapter by chapter summary of the contents of this
thesis. Chapter 1 discusses the principles of laser cooling and provides a
short historical overview. The atom-light interaction and light-induced forces
exploited in laser cooling are introduced. This is followed by a discussion
of the principles of Doppler cooling, a Magneto-Optical Trap (MOT) and
Sisyphus polarization-gradient cooling.

After having discussed the theoretical background of laser cooling, Chap-
ter 2 provides an introduction to optical lattices and their properties. First
the light-shift operator in the near and far-detuned regime is deduced and the
advantages of non-dissipative optical lattices discussed. Examples of lattices
in one, two and three dimensions are deduced from their lattice beam configu-
ration. Having derived the form of the optical potential allows us to calculate
the band-structure of the lattice. The rest of the chapter is dedicated to a

discussion of the population distribution of the atoms over the vibrational
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levels of the lattice taking the anharmonicity of the lattice into account.

Chapter 3 introduces the concept of resolved-sideband Raman cooling in
two and three dimensions. The functional form of the Raman coupling is
deduced using the formalism described in [42] and a new scheme for cooling
in 3D is suggested. The three dimensional case is especially interesting in
connection with atomic fountains and atomic clocks.

Chapters 1 to 3 provide the necessary tools to implement QMCWF sim-
ulations of resolved-sideband Raman cooling in a far-detuned optical lattice,
and this is thoroughly discussed in chapter 4. First, a theoretical system is in-
troduced which includes all the necessary physics to model resolved-sideband
Raman cooling. The second part of the chapter discusses the results of our
QMCWF simulations and shows for the first time the influence of the quan-
tum Zeno effect on the efficiency of resolved-sideband Raman cooling and the
choice of experimental parameters. Furthermore, a procedure for how to sup-
press the impact of the quantum Zeno effect which leads to most favourable
populations in the vibrational ground-state of an optical lattice is presented.

Chapter 5 discusses diagnostic tools for atoms in optical lattices, Zeeman
state analysis and parametric excitation. Zeeman state analysis is a use-
ful tool to monitor the population distribution of atoms over the different
Zeeman sub-states and quantify the overall magnetization of an atomic sam-
ple. It was a useful tool to check, that a significant fraction of atoms ended
up in the stretched states |F =4, m = +4). This provided us with a more
favourable starting population for resolved-sideband Raman cooling to either
of the |F = 4, m = £4) vibrational ground states. In this manner, the overall

efficiency of our quantum state preparation experiments was improved.
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The second part of the chapter is dedicated to an investigation of para-
metric excitation in optical lattices. Perturbative simulations implemented
in this chapter allowed the study of the effects of anharmonicity of the op-
tical potential and the effects of non-uniform intensity profiles of the lattice
beams. Contrary to the harmonic case these cause a significant spreading
of the vibrational resonances. These simulations are also used to simulate
heating induced by intensity fluctuations in the laser beams. It emerged that
they are reasonably low for atoms in far-detuned optical lattices and do not
affect the efficiency of sideband cooling significantly.

In conclusion, this thesis presents an extensive study of neutral atoms in
far-detuned optical lattices using theoretical models to simulate and better
understand their behaviour. The simulations were aimed at optimizing the ef-
ficiency of our resolved-sideband Raman cooling experiments. An interesting
by-product from this investigation was the first observation of the influence of
the quantum Zeno effect on the efficiency of this quantum state preparation
technique. Furthermore, an original three dimensional scheme to implement
sideband cooling was suggested, of which the experimental realisation could
be used to improve the accuracy of atomic clocks and the efficiency of atomic
fountains which are important in high precision measurements [74]. Thus
the conclusions of this work open up the possibility of performing a wide
range of experiments to investigate coherent manipulation of single quantum
states using adiabatic rapid passage, which is closely related to the method
of resolved-sideband Raman cooling as it uses the same coherent coupling.
Eventually further investigations into this area may open up the way to con-

trolled engineering of individual quantum states and to useful techniques for
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quantum computation.



Appendix A

Caesium Data

A.1 Spectroscopic Properties

The following table contains data on the D; line of caesium used for the laser

cooling experiments of this thesis. Further data is available in reference [75).

Quantity Symbol Value Unit
wavelength (vacuum) A 852.347 nm
wavevector k 2w x 1.17 x 10° m~!
excited state lifetime T 30.5 ns
natural linewidth r 2w x 5.22 MHz
saturation intensity Lot 1.12 mWem™?
recoil energy Erec 1.37 x 10730 J
recoil frequency VRec 2.07 kHz
recoil velocity URec 3.5 mms !
recoil temperature TRec 198 nK
Doppler temperature Tp 125 nK
Zeeman shift 625 o(F = 4) :63?716:,1; Eliz//n(l; C
Zeeman shift 62P;o(F' = 5) ;BSS;)IZ;W EI;I;ICZ//H? G

Table A.1: Caesium 625/, — 62P;/2 transition spectroscopic data.
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A.2 Physical Properties

The next table is a summary of useful physical properties of caesium.

Quantity Symbol Value Unit
nass mcs 2.207 x 1072 kg
atomic number Z 99
melting point T 28.44 °C
boiling point Ty 671 °C

Table A.2: Caesium Physical data

A.3 Other data

A detailed description of the level scheme, transition strengths and is available

in reference [75] and [22].

A.4 Clebsch-Gordan Coefficients



-5 -4 -3 -2 -1 0 1 2 3 4 3
-4 {1 0.447214 0.149071 0 0 0 0 0 0 0 0
-3 | 0 0.894427 0.596285 0.258199 0 0 0 0 0 0 0
210 0 0.788811 0.68313 0.365148 0 0 0 0 0 0
-110 0 0 0.68313 0.730297 0.471405 0 0 0 0 0
010 0 0 0 0.57735 0.745356 0.57735 0 0 0 0
110 0 0 0 0 0.471405 0.730297 0.68313 0 0 0
210 0 0 0 0 0 0.365148 0.68313 0.788811 0 0
310 0 0 0 0 0 0 0.258199 0.596285 0.894427 0O
410 0 0 0 0 0 0 0 0.149071 0.447214 1
Jg

Table A.3: This table shows the Clebsch-Gordan coefficients for J, =4 < J. = 5.
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Appendix B

Supplements to the derivation

of the light-shift operator

This appendix supplements the derivation of the light-shift operator in the
near-detuned limit in section 2.1 on page 37. Each supplement is referenced

in the corresponding section in the main text.
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B.1 Supplement 1
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(é H g9 + QgeHeg éggﬁge + égeﬁee
\éegHgg + éeeHesi éegﬁge + éeeﬂee

ﬁegggg + Hcegeg éegl:lgg - éecﬂeg

(B.1)

(B.2)

(B.3)
(B.4)

(B.5)

(B.6)

The last step in equations B.3 and B.6 follows, since 2.9 and 2.13 are her-
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mitian matrices,.i.e. [ﬁgg, @gg] = 0 and [I:Iee, @ee] = 0. To get a better
understanding for the terms involved in the above expressions, the formalism
is apply to a two level atom with a ground state |g) and an excited state
le}. The two-level atoms is assumed to have a similar Hamiltonian as used
in the rapid adiabatic passage formalism, where two levels are coupled with
a coupling strength of V' and the ground and excited state have energies E,

and F, respectively. This gives for the above matrices

Qg9 Oge o |9) (gl 19) (el

0= o
g Dee le) (g] le) (el
I:I: a9 ng _ Eg V
H., H.. V* E.
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[A,6] = fia - oM
. flfggégg+lfge@eg Bty + Pt .
\Hegégg + Ileeéeg Hegége + Heeéce
(Bylo) (6l 4+ V1) (ol Bylg) tel + VIe) (e
x (B.8)
\V’ 19) (9] + Ecle) (gl V™ I|g) (el + Ec|e) (el
éI:I _ (éggl:lgg + égel‘:leg @ggI:\Ige + ége:[;Iec (B9)
\éegHgg + éeeHeg éegng + éeeHee
(E + V* el V + E. e
o | Po lg) (gl l9) (el Vlg) (gl lg) (el (B.10)
\ 2o le) (gl +V*le)(e| Ve){gl+ E.le) (el
(A1, 6] = 15— 611
cy C
e (B.11)
C3 C4
e =Vle) (gl — V*1g) (el (B.12)
c2 = (Eqg — Ee) |g) (e| +V (le) {e] — |g) {g]) (B.13)
c3 = V*(lg) (9] — le} (el) + (Ee — Ey) le) (gl (B.14)
ca=V*|g) (| = Ve) (g] (B.15)

This ends the example.
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B.2 Supplement 2

This section supplements the deduction of the steady state ground state den-
sity matrix 2.1 after the excited state and its coherences were eliminated. The

ground state density matrix is then given by

dOgy i (a4 . - dg

Tt' == g H,e Qeg — Qg He } (dt )re]ax (B'16)
1 do
a0 (2)
) 1 o A
ﬁ{( )h(A+'P){ (d+‘E+)Qgg+geg(d+'E+)}

ey {~(d"E7) Qe + 8 (d-E7)} (d"-E7) }

+ (%g) . (B.18)

d”- E_) (d+ ) E+) éyg
d * E—) éee (d+ M E+)

— Ao (@ ET)e. (d7-EY)

do
+ (a) s (B.lg)
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T %{(A_-Il——%‘—) (d_ ) E_) (d+ ) E+) Oqq
- (A i %) [ (d_ ’ E_) (d+ ' E+) }
+ (%%)m (B.20)

dp i A-% e far oy -
_(éi)zg-g-:_ﬁ{((AZ+Ei))(d E)(d 'E)Qgg
Aty i -.F- + . gt
+<%)l (B.21)

where we have rationalized the denominators in the fractions and used the

fact that

(h(Ale D A (Al_ z)) (@ -E7) g (d* -EY)

2

_ (@ E)p. @ BY) ((A-T)-(A+T)
N h A2+FT2

=0. (B.22)



Appendix C

Pauli Spin matrices

The Pauli spin matrices are given by

6, = 6y = 6, = (C.1)

. G, +idy 1{0 2
Gp=— 2 ¥ (C.2)
V2 210 o
5_ :M _1 00 (C.3)
V2 212 o
6, =6, (C.4)

The Pauli spin matrices and the identity matrix form a complete set and form
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a basis for the vector space of all 2 x 2 matrices.



Appendix D

The Quantum Zeno Effect

This appendix gives a short introduction to the quantum Zeno effect. The
name origins from from Zeno of Elean a Greek philosophy living in southern
Italy. The main source of knowledge about him and his lives comes from the
dialogue Parmenides written by Plato. A more comprehensive summary of
his life and work can be found in [76]. He was famed for his paradoxes and

conundrums. One of them was that motion doesn’t exist. Zeno said that [77]

There is no motion because that which is moved must arrive at

the middle of its course before it arrives at the end.

He argued that because at any given point in an arrow’s flight, it must have
transversed the midpoint, it actually can never move.

People had Zeno in mind when they studied the inhibition of the decay
of a unstable quantum system due to sufficiently frequent observation or
measurements on it. It was first proposed by Misra and Sudarshan [78] in

1977 and coined the Zeno effect. It followed the early work of Khalfin [79]
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and Fonda [80]. Colloquially, this can be phrased as a watched pot never
boils [81].

Recently also the opposite of the quantum Zeno effect was proposed and
demonstrated, the anti-Zeno effect. The anti-Zeno effect is described in [82].
The experiment undertaken by Raizen et al. [83] showed both the quantum
Zeno and anti-Zeno effect using sodium atoms trapped in an accelerated far-
detuned standing-wave of light by studying the escape via tunnelling. It was
the first demonstration of both the Zeno and anti-Zeno effects by repeated
measurements. Recent theoretical and experimental developments have ini-
tiated new research on this effect. An important motivation to study the
Zeno and anti-Zeno effect is to elucidate one of quantum computing’s biggest

problems, errors due to the decay of coherence.



Appendix E

Derivation of the Effective

Spectral Density

In this appendix the method to deduce the effective spectral density S.g used
in the parametric excitation simulations is described and explicit expression
for the effective width o.g and effective frequency weg are provided.

The first step is to assume a Gaussian distribution S;(w) for the density
of states associated with a level |i) having an energy of E; = hw;. This can

be cast in functional form as

1 _ hw—Ey 2
\/2_’”0"6 2(hos) (E.1)

where the Gaussian distribution is centred around Aw; having a frequency

Si(w) =

spread of o;. The effective spectral density Seg associated with a transition
between the states |[¢) — |f) can then be obtained by considering the convo-

lution of S;(w) with Sf(w).
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The parametric excitation is provided by a monochromatic excitation
source in our experiment. It can be included in the model by assuming
also a Gaussian density distribution for its spectral density and convolution
it with the convolution of S;(w) and Sy(w). It is defined in that way that
once integrated over all frequencies it yields the square of the intensity of the
modulation source (cf. equation 5.33 on page 186).

Hence the net result is a effective spectral density Seg(wif) given by

2
Sut(w) = Sy exp —(“’2—;’&‘*) (E.2)
aeff

where

o =0l +at+a? (E.3)

Weff = Wmod — (W5 — wj) (E.4)



Appendix F

Magnetic Field of a Square Coil

To provide a strong magnetic field gradient across the trapping region two
square coils in anti-Helmholtz configuration are used. The easiest way to

calculate the magnetic field of a square coil is to use the Biot-Savart law,

Idéxr

7
dB="2 = (F.1)

where dB is the magnetic field due to the current element I d€ induced at a
point with relative position vector r from the current element. pq is the free
space permeability and is defined to have the value py = 47 x 10~ Hm™?
Using the Biot-Savardt law F.1 as given in [66] on page 170, the magnetic

field of any circuit can be calculated by integrating around the loop, i.e.

B= }[“"Ide” (F.2)

472

A square coil can be thought of as being composed of 4 straight current-

carrying finite wires along each side as shown in figure F.1. The magnetic
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Figure F.1: The figure shows a schematic of a square coil composed of 4
straight current carrying wires. The magnetic field at a point P in space is
can be calculated using the quantities angles o and  and the distance |r|
relative to the the wire. The direction of the magnetic field vector is given
by the Biot-Savart law to be d€ x r.

field of a straight current-carrying wire is deduced in [66] on page 172 to be

B= Z—')I-(cosﬁ—cosa) dé xr (F.3)

r |d€ x r|
Four such wires are now connected into a square coil as shown on the left of
figure F.1. With the help of the symbolic toolbox of Matlab the calculation
of the magnetic field of a rectangular coil with arbitrary dimensions was
implemented. The centre of the atomic cloud was chosen to be the origin.
Then using a vectors in MatLab the two coils are created by four wires each
and put a distance D away from the origin. Then by using simple vector
algebra using equation F.3 the total magnetic field of two square coils can be

calculated by summing up the contributions of each wire:

B= ZB,-(r,-) (F.4)



226

where B;(r;) is the induced magnetic field of wire i at a point r; away from

wire 4. This set-up is shown in figure F.2.
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coil 1

cloud of
cold atoms

T O F scani

coil 2

Figure F.2: The figure shows a schematic of a anti-Helmholtz square coil
setup composed of two square coils a distance 2D apart. When the atoms are
released from the optical lattice, they fall through a magnetic field gradient.
Underneath the trapping region is a time of flight beam to measure the time
of arrival for atoms in different ruf levels.
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