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Abstract

Background: Investing efficiently in future research to improve policy decisions is an important
goal. Expected Value of Sample Information (EVSI) can be used to select the specific design and
sample size of a proposed study by assessing the benefit of a range of different studies. Estimating
EVSI with the standard nested Monte Carlo algorithm has a notoriously high computational burden,
especially when using a complex decision model or when optimizing over study sample sizes and de-
signs. Recently, several more efficient EVSI approximation methods have been developed. However,
these approximation methods have not been compared and therefore their comparative performance
across different examples has not been explored.

Methods: We compared four EVSI methods using three previously published health economic
models. The examples were chosen to represent a range of real-world contexts, including situations
with multiple study outcomes, missing data, and data from an observational rather than a randomized
study. The computational speed and accuracy of each method were compared.

Results: In each example, the approximation methods took minutes or hours to achieve reasonably
accurate EVSI estimates, whereas the traditional Monte Carlo method took weeks. Specific methods
are particularly suited to problems where we wish to compare multiple proposed sample sizes, when
the proposed sample size is large, or when the health economic model is computationally expensive.

Conclusions: As all the evaluated methods gave estimates similar to those given by traditional
Monte Carlo, we suggest that EVSI can now be efficiently computed with confidence in realistic
examples. No systematically superior EVSI computation method exists as the properties of the
different methods depend on the underlying health economic model, data generation process and
user expertise.

Introduction

The Expected Value of Sample Information (EVSI) [1, 2] quantifies the expected benefit of undertak-
ing a potential future study that aims to reduce uncertainty about the parameters of a health economic
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model. The expected net benefit of sampling (ENBS), which is the difference between EVSI and the
expected research study costs [3], can be used to inform decisions regarding study design and research
prioritization. The future study with the highest ENBS should be prioritized if we wish to maximize
economic efficiency. Thus, EVSI has the potential to determine the value of future research and to guide
its design when accounting for economic constraints.

Despite this potential, EVSI has rarely been used in practical settings for a variety of reasons [4, 5].
Among these is the high computational cost associated with obtaining precise estimates of EVSI in real-
world scenarios using nested Monte Carlo (MC) sampling [6]. This computational burden is increased
further when we aim to identify the optimal research study (i.e., the study with the highest ENBS)
and must compute EVSI for multiple trial designs [7, 8]. High performance computing can be used
to overcome some of these barriers, but this requires additional programming skills and increases the
complexity of the analysis.

Several methods have been developed to overcome these computational barriers and, thus, use EVSI
for research prioritization and trial design optimization [9–20]. However, as many of these methods have
been developed concurrently, they have not been compared. Additionally, these EVSI estimation methods
have mostly been evaluated using health economic models and trial designs chosen for computational
convenience rather than to reflect real-world decision making. Thus, the accuracy of the majority of
these methods has not been assessed in, for example, multi-state models combined with survival or
quality-of-life outcomes, a setting that would occur frequently in real-life health economic modelling.

We aim, therefore, to address these gaps by comparing the relative performance of EVSI calculation
methods across three realistic health economic models and trial designs to gain a greater understanding
of their behaviour in practice. We will evaluate the accuracy of the EVSI estimation methods across our
three examples and the computational time required to obtain these estimates. These examples exhibit
features that reflect real-world trial design and may influence the behaviour of these EVSI estimation
methods in practice. These are: the presence of multiple trial outcomes, missingness or loss to follow-up
in the data, and a study design that is observational rather than randomized.

Our comparison is considers four recent calculation methods that impose very limited restrictions
on the structure of the underlying health economic model, the number of evidence sources and the
study design. These methods are the Regression Based (RB) method developed by Strong et al. [12],
the Importance Sampling (IS) method developed by Menzies [13], the Gaussian Approximation (GA)
method developed by Jalal and Alarid-Escudero [15] (extending a method proposed in Jalal et al. [14]),
and the Moment Matching (MM) method developed by Heath et al. [17–19]. These methods are based on
different approaches and assumptions, but they all provide EVSI estimates with a smaller computational
burden compared to the nested MC sampling methods whilst retaining accuracy.

Notation and Key Concepts

Health economic decision making aims to determine the intervention, from some set of feasible al-
ternatives, that is expected to be optimal in terms of some measure of benefit (which is usually net
monetary benefit or net health benefit [21]). We characterize a health economic model as a function that
takes the vector of parameters θ as an input, and returns the costs and health effects associated with
each intervention in the set of alternatives. Uncertainty in the input parameters is represented using
a probability distribution p(θ). To find the optimal intervention, costs and effects are combined into
a single measure of economic value by calculating the net benefit for each of the T treatment options
considered relevant, conditional on θ. Uncertainty about θ induces uncertainty about the net benefit
for each treatment t = 1, . . . , T . We denote the net benefit for treatment t given parameters θ as NBθt .
Under the assumption of a rational, risk neutral decision maker, the optimal intervention given current
evidence is the intervention associated with the maximum expected net benefit.

We consider that we are interested in collecting additional information about a subset of the model
parameters φ. In this setting, θ is split into two sets of parameters θ = (φ,ψ), where ψ are all the
remaining model parameters not in φ. For example, clinical trials are informative for clinical outcomes
but may not collect information about health state utilities or costs. The economic value of eliminating
all uncertainty about φ (assuming risk neutrality) is equal to the Expected Value of Partial Perfect
Information (EVPPI) [22–24]. This is given by

EVPPI = Eφ

[
max
t

Eθ|φ

[
NBθt

]]
−max

t
Eθ

[
NBθt

]
. (1)

In this paper, EVSI is defined as the value of collecting additional data, denoted X, to inform φ,
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where φ could be equal to θ if the additional data updates all the underlying model parameters. By
assuming that X directly updates φ only, we implicitly state that X |= ψ | φ. This implies that EVSI is
bounded above by the EVPPI for φ. If these data X had been collected and observed to have a value x,
they would be combined with the current evidence to generate an updated distribution for φ, p(φ | x).
Under a Bayesian approach, this would in turn be used to update the distribution of the net benefit of
each treatment. The optimal intervention conditional on the data x is the treatment associated with
the maximum expected net benefit based on the updated knowledge about the relevant parameters φ. If
the optimal intervention changes, compared to the current decision, then the information in x has value.
However, as the data have not been collected yet (and may never be), the average value over all possible
datasets is considered. Mathematically, EVSI is defined as

EVSI = EX

[
max
t

Eθ|X

[
NBθt

]]
−max

t
Eθ

[
NBθt

]
, (2)

where the distribution ofX can be defined through p(X,θ) = p(θ)p(X | θ) where p(X | θ) = p(X | φ) is
the sampling distribution for the data given the parameters. We assume that the sampling distribution
for the data is only defined conditional on φ, i.e., does not provide information on the value of the
parameters ψ, except through any relationship with φ.

Calculation Methods for EVSI

It is rarely possible to compute EVSI analytically as the net benefit is often a complex function of θ.
Additionally, it is challenging to compute the expectation of a maximum analytically as required in the
first term of equation (5). Therefore, a range of methods have been developed to approximate EVSI.

Nested Monte Carlo Computations for EVSI

The simplest approximation method [6] computes all the expectations in equation (5) using MC
simulation. The second term can be computed by simulating s = 1, . . . , S parameter values, θs, from
p(θ). The simulated values are used as inputs to a health economic model to obtain S simulations of
the net benefit for each intervention, denoted NBθst . Note that this process is required to perform a
“probabilistic analysis” (PA) [25], used to assess the impact of parametric uncertainty on the decision
uncertainty, which is mandatory in various jurisdictions [26–28]. The average of NBθ1t , . . . ,NBθSt for each

intervention can be computed and maxt Eθ

[
NBθt

]
is estimated by the maximum of these means.

The first term in equation (5) is more complex to compute by simulation. Firstly, S datasets Xs

must be generated conditional on the simulated θs from the assumed sampling distribution p(X | θs).
For each Xs, we simulate R values from the updated distribution of the model parameters p(θ | Xs).
These R simulations are used as inputs to the health economic model to simulate from the updated
distribution of the net benefit for each intervention. The mean net benefit for each treatment option is

then calculated to estimate Eθ|X

[
NBθt

]
for t = 1, . . . , T . The maximum of these simulated means is

then selected for each Xs. Thus, to compute EVSI by MC simulation, we require S × R runs of the
health economic model. This is computationally expensive for standard choices of S and R, which are
typically in the thousands. Therefore, the following methods focus on approximating the updated mean
of the net benefit associated with each intervention t using a smaller simulation burden. We denote the
expectation of the net benefit, conditional on data X, as

µXt = Eθ|X

[
NBθt

]
.

In a similar manner, we also denote the expectation of the net benefit, conditional on some value of the
parameters of interest φ, as

µφt = Eθ|φ

[
NBθt

]
.

Finally, we can increase the numerical stability of the following approximation methods by working
in terms of the incremental net benefit or loss, defined, without loss of generality, as INBθt = NBθt −NBθ1
for t = 2, . . . , T . This is because we must estimate µX for each of the T − 1 incremental net benefit
options rather than the T net benefits. EVSI can then be estimated by setting µX1 = 0 and calculating

ÊVSI =
1

S

S∑
s=1

max
t
µXs
t −max

t

1

S

S∑
s=1

µXs
t , (3)
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where µXs
t is the estimated posterior expectation for the dataset Xs, s = 1, . . . , S.

Regression Based Method

The RB method [12] estimates EVSI by fitting T − 1 regression models. For each t = 2, . . . , T ,
the simulated values of the incremental net benefit are the ‘response’ variable and a low-dimensional
summary of the simulated dataset X is the ‘predictor’ variable(s) [12]. This low-dimensional summary
for X should reflect how the data would be summarized if the study were to go ahead and must be
computed for each simulated dataset Xs. The fitted values from this regression model are then used to
estimate µXt . EVSI is then estimated directly from these estimates of µXt using equation (6).

Importance Sampling Method

Initially, two IS methods were proposed to estimate EVSI [13], the most accurate of these estimates

µXt by reweighting simulations of µφt . This reweighting is based on the likelihood of observing a simulated
dataset Xs conditional on different values for φ. The term likelihood is used in the statistical sense and
is equal to p(X | φ).

This method simulates S future datasets Xs from p(X | φs). The likelihood for every simulated
vector for φ is then calculated conditional on Xs. For the sample Xs, µ

Xs
t is estimated as the weighted

average of µφt , weighted by the likelihood of the dataset Xs. Thus, the IS method is an example of
importance sampling [29, 30] and performs (T − 1)S2 likelihood calculations for each EVSI estimate.
EVSI is estimated from equation (6) based on the estimate of µXs

t for each future sample.

Gaussian Approximation Methods

The GA method [14, 15] fits a “linear” metamodel1, a secondary model that captures the relationship
between the simulated incremental net benefit values, as the response variable, and simulations for φ, as
the predictor variables. Each term of the linear metamodel is then rescaled based on a Gaussian-Gaussian
Bayesian updating approach to estimate its ‘posterior’ expectation across different future datasets X.
These estimated distributions are then recombined using the coefficients of the linear metamodel to
estimate µXt and compute EVSI.

For a proposed future data collection strategy of size N , the rescaling factor for each term of the
linear metamodel is equal to

N

N +N0
,

where N0 is known as the prior effective sample size [31]. Essentially, N0 represents the number of
independent observations who would be required to generate the amount of evidence in the prior. In
some prior-likelihood pairs, N0 can be obtained analytically. In other settings, Jalal et al. suggest two
estimation methods for N0. Firstly, if the data X can be summarized using a summary statistic W (X),
then N0 can be computed as a function of the variance of W (X). Secondly, if a suitable statistic cannot
be derived, then nested posterior sampling can be used to estimate N0. In this method, S future datasets
Xs, s = 1, . . . , S are simulated. Each of these samples is used to update the information about the model
parameters p(θ | Xs), typically using R simulations and computing the mean for φ. The variance of
the mean for φ, across different samples Xs, is then used to estimate N0. Computationally, this nested
sampling method to compute N0 is relatively expensive compared to the other two proposals to determine
N0. However, calculation of N0 is only needed once to compute EVSI across study size.

Moment Matching Method

The MM method [18, 19] combines the simulations µφt and a modified nested MC sampling method
to estimate EVSI. This method reduces the number of times the updated distribution of the net benefit
must be simulated to estimate EVSI from S, typically at least 1000, to Q, usually between 30 and 50
[19]. Thus, EVSI is estimated with Q×R health economic model runs.

The MM method uses nested MC sampling to estimate the variance of the incremental net benefit
for different future datasets. These estimated variances rescale simulations of µφt for t = 2, . . . , T to
approximate simulations of µXt which can be used to estimate EVSI using equation (6). The MM

1A linear metamodel is required for this method. However, non-linear functions of φ can be defined and combined
linearly to account for flexible relationships between the incremental net benefit and the parameters φ.

4



method only requires a single nested simulation procedure to estimate EVSI across different sample sizes
of the future trial [19].

Of note, this comparison has been restricted to these four methods as the alternative EVSI methods
typically place restrictions on the structure of the underlying health economic model, the number of
evidence sources and/or the study design [9–11, 11, 20]. These restrictions limit the applicability of
these methods. Some of these methods make assumptions about the distribution of the parameters
and the study data to ensure that the prior and posterior model parameter distributions take the same
form (conjugacy). This allows for computationally efficient EVSI estimation. The minimal modelling
approach [20] assumes that a comprehensive clinical trial is available to inform EVSI estimation and,
thus, restricts the required data sources. These methods are competitive in terms of computational time
and accuracy compared to the methods presented in this review but are restricted to the settings in
which they are relevant which limits their general purpose application.

Case Studies

These EVSI methods are applied to three case studies designed to explore different trial designs and
health economic models. These designs and models were chosen to assess the accuracy of these EVSI
estimation methods in settings that are reflective of real-world decision making. The first case study is a
stylized Chemotherapy side effects example used to evaluate EVSI estimation in the presence of multiple
outcomes, reflecting a realistic trial design with a single primary, and multiple secondary, outcomes.
The second case study evaluates EVSI methods in the presence of missingness in the data using a
previously published health economic model to explore EVSI estimation when we account for standard
considerations in trial design and development. Finally, we evaluate EVSI methods for a health economic
model based on a time-dependent natural history model where the main data source is observational.

Case Study 1: A Model for Chemotherapy Side Effects

This model was presented in Heath and Baio [18] to evaluate two chemotherapy interventions, i.e.,
the current standard of care and a novel treatment that reduces the number of adverse events. These
two options are equal in their clinical outcomes so we focus on the adverse events. The probability of
adverse events for the standard of care is denoted π0 and ρ denotes the proportional reduction in the
probability of adverse events with the novel treatment.

All patients incur a treatment cost of £110 for the standard of care or £420 for the novel treatment.
Patients without adverse events or those that have recovered have a quality of life (QoL) measure of q.
The health economic impact of adverse events is modelled with a Markov model depicted in Figure 1. In
this model, γ1 and γ2 denote the constant probability of requiring hospital care and dying, respectively,
and λ1 and λ2 denote the constant probability of recovery given that an individual is not or is admitted
into hospital, respectively. The cycle length is 1 day, the time horizon is 15 days, and we assume that
only hospitalised patients will die. Recovered patients incur no further cost while patients who die have
a one-time cost of terminal care. There are costs and QoL measures associated with home and hospital
care. PA distributions for the model parameters are informed using previous data or defined using expert
opinion with all distributional assumptions given in the supplementary material.

Figure 1: A four state Markov model used to model the health economic impact of adverse events from
a chemotherapy treatment.
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Sampling Distributions for X

The EVSI is computed for a future two-arm randomized control trial whose primary outcome is the
number of adverse events. As a secondary set of measures, the study monitors the treatment pathway
for patients who experience adverse events. Thus, the trial directly informs six model parameters φ =
(π0, ρ, γ1, γ2, λ1, λ2) by collecting six outcomes with 150 patients per arm.

To define the sampling distribution for the six outcomes, we model the number of patients who
experience adverse events using binomial distributions conditional on π0 and ρ;

XAE0
∼ Bin(150, π0) and XAE1

∼ Bin(150, ρπ0).

The number of patients treated in hospital and the number of patients who die are modelled as

XHosp ∼ Bin(XAE0
+XAE1

, γ1) and XDeath ∼ Bin(XHosp, γ2).

Finally, recovery time for patients who experience adverse events but recover whilst remaining at home
is modelled with an exponential distribution conditional on the transition probability λ1,

T iHC ∼ Exponential(η1)

for each individual who remains at home whilst recovering from adverse events i = 1, . . . , XAE0 +XAE1−
XHosp and η1 = − log(λ1). The recovery time for every patient (j = 1, . . . , XHosp−XDeath) who recovers
in hospital is modelled as and exponential distribution conditional on λ2

T jH ∼ Exponential(η2)

with η2 = − log(λ2). Exponential distributions were used to model the recovery time as we assumed a
constant transition probability in the Markov model.

Case Study 2: A Model for Chronic Pain

This example uses a cost-effectiveness model developed by Sullivan et al. [32], and extended in Heath
et al. [19], to evaluate treatments for chronic pain. This is based on a Markov model with 10 states,
where each state has an associated QoL and cost. Patients initially receive treatment for chronic pain
and can either experience adverse events or not. Patients may then withdraw from this initial treatment
due to adverse events or lack of efficacy. Following this, they can be offered an alternative therapy
or withdraw completely from treatment. Patients may experience adverse events from this second-line
treatment and can either withdraw from this treatment due to these adverse events or lack of efficacy.
If patients withdraw from this second-line treatment, they can receive further treatment or discontinue,
both considered absorbing states as the model does not include a death state.

Initially, patients can either be offered morphine or an innovative treatment, and our model evaluates
the cost-effectiveness of the innovative treatment. If patients require a second-line treatment, they are
offered oxycodone. Thus, the only difference between the two treatment options is the first-line treatment
where the innovative treatment is more effective, more expensive, and causes fewer adverse events. A
more in-depth presentation of all the model parameters is given in [32] where the distributions for the
PA are gamma for costs and beta for probabilities and utilities. In the original publication of this model,
the means of these distributions were informed by relevant studies identified following a literature review
and the standard error of these mean estimates was taken as 10% of the underlying mean estimate. This
paper computed the per-person lifetime EVSI, assuming a discount factor of 0.03 per year over 15 years.

Sampling Distributions for X

EVSI is computed for a study that investigates the QoL weights for patients who remain on treatment
without any adverse events and for patients who withdraw from the first-line treatment due to lack
of efficacy. The individual level variability in these two QoL weights is modelled, for simplicity, as
independent beta sampling distributions although the assumption of independence may be invalid [33].
The population level mean QoL weight, i.e., the mean of the sampling distribution for the QoL weights,
is defined as the value of those two health states in the Markov Model. The standard deviations of the
individual level sampling distributions is then set equal to 0.3, for patients who remain on treatment,
and 0.31, for patients who withdraw due to lack of efficacy [34]2. We compute EVSI for trials enrolling

2This sampling distribution for the data causes some minor issues for the Gibbs sampling procedure used in the JAGS
program for Bayesian updating.
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10, 25, 50, 100 and 150 patients. We assume that only a proportion of the questionnaires are returned,
leading to missingness in the data.

To generate the data, a response rate of 68.7% is assumed, consistent with the return rate observed in
[35]. We generate a response indicator for each patient in the trial using a Bernoulli distribution. If this
indicator is 1, then we assume the patient returned the questionnaire and therefore we have observed
utility scores for both states for that patient, simulated from the beta distributions specified above,
conditional on the model parameters.

Case Study 3: A Model for Colorectal Cancer Screening

This example uses a health economic model developed by Alarid-Escudero et al. [36] to evaluate
a screening strategy for colorectal cancer (CRC) and pre-cancerous lesions known as adenomas. The
model is based on a nine-state Markov model with age-dependent transition intensities which govern the
onset of adenomas (pre-cancerous growths) and the risk of all-cause mortality. The onset of adenomas
is modelled using a Weibull hazard conditional on age

l(a) = λ1ga
g−1

where λ1 and g are the shape and scale parameters of the Weibull distribution and a is the age of the
patient. Model parameters are chosen to reflect the prevalence of adenomas seen in the literature. To
determine the PA distribution for the model parameters g and λ1, the level of uncertainty in the observed
prevalence was characterized and the parameters were re-estimated across the distribution of prevalence.

The costs and QoL associated with each health state are used to evaluate the economic burden of
CRC. The screening strategy is assumed to capture patients with adenomas and early cancer so they can
be operated on before the cancer progresses and becomes clinically detected. The proposed screening
strategy has a sensitivity with a mean of 0.98 and a specificity with a mean of 0.87. When the model is
initiated, some members of the general population have undiagnosed adenomas and early stage CRC.

Sampling Distributions for X

EVSI is computed for a study that investigates the onset of adenomas in the general population to
inform the shape and scale of the Weibull hazard function. A cross-section of the general population
aged between 25 and 90 without any screening history will be screened for the presence of adenomas
with a gold standard test with 100% sensitivity and specificity. Upon enrollment, the age of the subjects
is recorded to determine the age-specific risk. EVSI is computed for trials enrolling 5, 40, 100, 200, 500,
750, 1000 and 1500 participants.

To generate prospective data, we simulate the enrolment age for participants. Demographic data
from Canada in 2011, obtained from the Human Mortality Database [37], were used to generate study
subjects with an age distribution representative of the general population, with study enrolment restricted
between 25 and 90 years. Conditional on their age a, a participant has a probability

p(a) = 1− e−λ1a
g

of having an adenoma or CRC. The outcome for a specific subject was simulated from a Bernoulli
distribution conditional on p(ai)

Xi ∼ Ber (p (ai)) .

We assumed that there is no missing data as participants are enrolled and undergo the test at the same
clinic visit and no other data are collected.

Analysis

It is challenging to compare the four efficient EVSI estimation methods as their accuracy and com-
putational time are dependent on choices made by the modeller and the computational efficiency of the
method implementation. Thus, Table 3 outlines the simulation choices that were made for the case
studies in this paper. We chose these assumptions to reflect realistic choices that would be made by
modellers calculating EVSI in practice. These choices all aim to estimate EVSI with a reasonable level
of precision, while keeping the computation time manageable. Based on these choices, we compared the
speed and accuracy of each method, and identified their relative advantages and challenges in practice.

The Chemotherapy side effects and Chronic pain models had low computational cost and, thus, we
selected a large PA simulation size S as VoI methods require an accurate representation of the decision
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uncertainty [38]. The CRC screening model had greater computational cost and thus, we used a smaller
simulation size to reflect choices that would be made in practice. In all case studies, we used all the PA
simulations to calculate EVPPI and estimate µφt .

For the MC nested simulation, we used all the PA simulations for the outer simulation loop. To
accurately characterise the PA distribution for the inner loop, we use the same size as the outer loop.
This gives a very high simulation burden but leads to accurate results for EVSI that can be compared
with the novel computation methods.

Simulation Choices
Case Study

Chemotherapy
side effects (1)

Chronic pain (2) CRC screening
(3)

Initial PA size (S) 100,000 100,000 5,000

Number of µφt simulations
from EVPPI calculation

100,000 100,000 5,000

Nested simulation outer loop
size (S)

100,000 100,000 NA

Nested simulation inner loop
size (R)

100,000 100,000 NA

RB simulation size 100,000 100,000 5,000
IS simulation size 20,000 5,000 2,500
GA N0 computation method nested posterior

sampling
nested posterior
sampling

nested posterior
sampling

GA N0 estimation outer loop
size

1,000 1,000 5,000

GA N0 estimation inner loop
size

10,000 10,000 5,000

GA N0 estimation future
sample size

30 40 40

MM outer loop size (Q) 50 50 50
MM inner loop size (R) 10,000 10,000 5,000

Table 1: The simulation choices to compute EVSI for the four recent approximation methods and the
nested MC method for case study 1, 2 and 3.

For all case studies, the RB method uses all the PA simulations as regression modelling requires
larger simulation sizes to accurately estimate EVSI. The computational cost of using all the simulations is
minimal. In contrast, we used a smaller simulation size for the IS method as it has a higher computational
cost compared to the other methods that increases proportional to S2 and we wanted to ensure a
comparable analysis in terms of computation time.

For the GA method, we used nested posterior sampling to estimate the prior effective sample size for
all three case studies. N0 is estimated using a proposed future sample with a given sample size but only
needs to be computed once to estimate the EVSI across sample size. As posterior updating is slower for
larger sample sizes, we can reduce the computational cost of estimating N0 by using a small sample size
for the proposed sample X. However, as the estimation of N0 also relies on a Gaussian approximation,
the sample size of X should be sufficiently large to assume normality. Thus, we selected future sample
sizes for the GA updating of around 30 (or 40 to adjust for missingness) to ensure the assumption of
normality holds but to decrease computational complexity. The simulation sizes for the nested simulation
were chosen to balance accuracy and computation time. Specifically, we chose more simulations for the
CRC screening model as the posterior of the parameters for a Weibull distribution is highly correlated
and therefore challenging to estimate using Gibbs sampling [39].

Finally, Heath and Baio determined that Q = 50 is sufficient to estimate EVSI using MM method,
provided the inner loop size R is sufficient to capture the posterior for the model parameters [19].
Thus, we selected relatively large inner loop sizes to capture the posterior distribution of the model
parameters, with the CRC screening model simulation size reduced due to the computational complexity
of that example.

In general, larger PA simulation sizes lead to increased computational time and accuracy for all
methods. The improvements associated with larger sample sizes change depending on the method and
the case study. For example, the RB and GA methods require a greater number of PA simulations if
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there are a large number of outcomes in the proposed trial as the regression model or the metamodel
increases in complexity. Elsewhere, the MM method requires more PA simulations if the underlying
EVSI is small compared to the overall value of resolving parametric uncertainty. Nonetheless, we believe
that the choices highlighted in Table 3 represent a fair comparison of these methods that supports the
use of these methods based on modelling choices that could be implemented in practice.

To characterise uncertainty in the EVSI estimation procedure for each method, we computed a
standard error for the EVSI estimates by recomputing the EVSI 200 times, based on the same PA
simulations for the first two case studies. The computational time for the four recent approximation
methods is presented based on computations undertaken on a computer with an i7 Intel processor with
16 GB of RAM in R version 3.5.1. The computation time for the nested MC computation is based on the
total computation time required across 32 cores on the Hospital for Sick Children’s High Performance
Computing environment. Code to undertake the computations in this paper is available from GitHub at
https://github.com/convoigroup/EVSI-in-practice.

Results

Case Study 1: Chemotherapy Side Effects

Figure 6 displays the 95% central intervals for the four fast EVSI approximation methods, with
the nested MC estimate shown as a vertical line. All the methods produce EVSI estimates that are
relatively close to the EVSI estimated by nested MC sampling. The 95% central interval for the RB and
MM methods contain the ‘true’ value, represented by the nested MC EVSI. In this example, however,
the MM estimate is associated with substantial variability compared to the other methods as the EVSI
is smaller compared to the overall EVPI.

29 30 31 32 33 34

EVSI

MC
RB
IS
GA
MM

Figure 2: The mean per-person EVSI estimates, across 200 simulated estimation procedures, for the five
methods under consideration for the Chemotherapy side effects example with a future sample size of 150
and willingness-to-pay of £30, 000. The considered methods are: the nested Monte Carlo estimator (MC),
the Regression Based method (RB), the Importance Sampling method (IS), the Gaussian approximation
method (GA) and the Moment Matching method (MM). The 95% central intervals from these 200
simulations are shown as horizontal lines and the gold standard MC estimator is shown as a vertical line.

Implementing the RB and GA methods involves finding a flexible regression model that fits well and
is computationally feasible to estimate. As there are six parameters in this example, finding such a model
was relatively challenging and required examination of residual plots.

Case Study 2: Chronic Pain

Figure 7 shows that the 95% central intervals for the MM and the IS methods contain the nested MC
estimate for all sample sizes. In addition to this, EVSI calculated by all four methods increase as the
sample size increases, representing that the more information is collected, the greater its value. EVSI
estimates should also remain below EVPPI (marked as a dashed line on Figure 7), which represents an
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upper limit on EVSI. The EVSI estimates are also relatively close to the nested MC estimate. The RB
method produced the shortest 95% central intervals while the three alternatives are relatively comparable.
Note that the IS estimate is based on a smaller PA simulation size but still offers similar variability
compared to the other methods.
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Figure 3: The mean EVSI estimates, across 200 simulated estimation procedures, for the five methods
under consideration for the Chronic pain example. EVSI was calculated across 5 different sample sizes
for the future trial. The considered methods are: the nested Monte Carlo estimator (MC), the Regression
Based method (RB), the Importance Sampling method (IS), the Gaussian approximation method (GA)
and the Moment Matching method (MM). The 95% central intervals from these 200 simulations are
shown as horizontal lines and the gold standard MC estimator is shown as a vertical line.

In this example, the summary statistic used for the RB method is the geometric mean of X and
1−X. These statistics are sufficient to estimate the model parameters of the beta distribution and were
derived using the Fisher-Neymann factorization theorem [40]. Summarizing X using the arithmetic
mean and variance gives incorrect EVSI estimates for this case study as these statistics are not sufficient.
Low-dimensional sufficient statistics should be used, when available, to estimate EVSI if the proposed
analysis following the trial will use Bayesian methods to incorporate the additional information into the
evidence base of the health economic model.

Case Study 3: Colorectal Cancer Screening

Figure 8 demonstrates EVSI estimates (y-axis) for the CRC screening model across the considered
sample sizes (x-axis, on the log-scale but marked on the natural scale). We can see that the four EVSI
calculation methods give a broad consensus. Nested MC simulations are not undertaken for this case
study due to the computational time required to obtain suitably accurate estimates for comparison. Thus,
while we note that the four methods give similar results, we cannot assert that these EVSI estimates are
‘correct.’
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Of note, for a sample size of 1,500, the IS EVSI estimate is incorrect. This is because the likelihood
tends to 0 for large sample sizes making the weights in the weighted sum challenging to approximate.
Furthermore, the IS method slightly over-estimates the EVSI for sample sizes between 500 and 1,000.
This is because we only use a subset of the PA simulations to obtain this EVSI estimate and the EVPPI,
upper limit for EVSI, estimated using this subset is slightly over-estimated, judging from the full 5,000
PA simulations.
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Figure 4: EVSI estimates for the four methods under consideration for the CRC screening model. The
considered methods are: the Regression Based method (RB), the Importance Sampling method (IS), the
Gaussian approximation method (GA) and the Moment Matching method (MM). EVSI is calculated for
9 different sample sizes for the future trial and is plotted across sample size. The sample size is plotted
on the log scale with the sample sizes marked on the natural scale. The EVPPI, computed using the
Strong et al. EVPPI computation method [41], is included as a black line on this Figure.

Computational Time

Table 4 shows the computational time for the five EVSI computation methods for each of the three
case studies. For the first two case studies, all four alternatives are considerably faster than the nested
MC method. For the third case study, the computational cost of the underlying CRC screening model
meant that it was not computationally feasible to use the nested Monte Carlo method.

For the first two case studies, the MM method has the lowest computation time as the underlying
health economic model is fast. The MM method also estimates EVSI across multiple sample sizes
simultaneously which improves the computational time for the Chronic pain example compared to the
RB, and IS methods. For these two examples, the computation time required to fit an accurate regression
model is relatively high, increasing the computation time for the RB method. The GA method has the
highest computation time as it uses nested MC simulation to calculate N0. However, after estimating
N0, EVSI can be re-estimated for any sample size. Thus, if EVSI was to be estimated across more
sample sizes, the GA method would offer computational savings on the RB and IS methods. For the
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Chemotherapy side effects example, the IS method has a similar computational cost to the other three
methods. However, it is estimated based on a reduced simulation size; if all 100,000 PA simulations are
used, the computation time is greater than 2 hours. For the Chronic pain example, the IS method is
noticeably slower as the computation time for the likelihood increases when the proposed sample size of
X is larger.

Case Study
Computational Time (mins)

Nested MC RB IS GA MM
1: Chemotherapy side
effects

37646 5.35 4.56 8.20 2.01

2: Chronic pain 223200 12.05 86 22.27 2.46
3: CRC screening ∗ 27.24 91 7.17 492

Table 2: The computational time required to produce EVSI estimates for the five methods under con-
sideration for the three case studies presented in this review.

For the CRC screening example, the GA method is fastest because, even though N0 is estimated
through nested MC simulation, it must only be computed once to estimate the EVSI across sample size.
In contrast, for the RB method, X is summarized by finding the maximum likelihood estimates (MLE)
for g and λ1 that must be estimated, using relatively slow computational optimization procedures, for
each sampleXs, s = 1, . . . , S and sample size. Thus, estimating the summary statistics is slow in this case
study. The MM method is more computationally expensive as the underlying probabilistic sensitivity
analysis for the CRC screening health economic model is expensive and must be rerun Q× S = 250, 000
times to compute EVSI. The computational time of the IS method is similar to the previous case studies.

Discussion

The paper uses three case studies to compare the accuracy and computational time for four novel
methods for approximating EVSI as no previous head-to-head comparison had been done. Additionally,
we assessed the performance of these methods using health economic models that were designed to cover a
number of different trial designs, interventions and health economic model structures. Thus, we assessed
the comparative performance of these efficient EVSI estimation methods across a number of scenarios
that may make the EVSI estimation more challenging.

In general, the EVSI estimates are accurate when the underlying assumptions for the respective
methods were met and can, thus, be used with confidence in practice. The computational complexity of
these methods varies for different health economic models, different sampling distributions for the future
data, and depending on whether optimization over different sample sizes is required. Although, the IS
method is generally more computationally intensive than the other methods.

In this analysis, we have not identified an efficient EVSI estimation method that is systematically
superior to the alternatives. Specifically, the “optimal” estimation method that trades off accuracy,
precision, computational time and ease of implementation will change depending on the health economic
model structure, proposed trial design and analyst expertise [42].

Nonetheless, the analysis in this paper has emphasized some distinctions between the methods.
Firstly, the RB method is accurate and efficient, provided the analyst can correctly summarize the
trial data and fit a regression model, which can be challenging either statistically or computationally.
The IS method is accurate but computationally expensive for large PA simulation sizes. The GA method
is efficient when estimating EVSI across sample sizes but often requires nested posterior sampling when
considering realistic data collection exercises and also relies on an accurate “linear” metamodel. Finally,
the MM method is accurate and efficient when the health economic model has a low computation time
but becomes more unfeasible as the model run time increases. The GA and MM methods require ex-
pertise in Bayesian methods/thinking. The IS method requires the repeated evaluation of the likelihood
function, and hence relies on this function being both known and computationally tractable. Beyond
these remarks, future research is required to fully articulate the relative strengths and limitations of
these methods for different health economic models and trial designs and to support the widespread
implementation of these methods.
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Abstract

Background: Investing efficiently in future research to improve policy decisions is an important
goal. Expected Value of Sample Information (EVSI) can be used to select the specific design and
sample size of a proposed study by assessing the benefit of a range of different studies. Estimating
EVSI with the standard nested Monte Carlo algorithm has a notoriously high computational burden,
especially when using a complex decision model or when optimizing over study sample sizes and
designs. Therefore, a number of

:::::::
Recently,

::::::
several

:
more efficient EVSI approximation methods have

been developed. However, these approximation methods have not been compared and therefore
their relative advantages and disadvantages are not clear

::::::::::
comparative

:::::::::::
performance

:::::
across

::::::::
different

:::::::
examples

::::
has

:::
not

::
be

::::::::
explored.

Methods: We compared four EVSI methods using three previously published health economic
models. The examples were chosen to represent a range of real-world contexts, including situations
with multiple study outcomes, missing data, and data from an observational rather than a randomized
study. The computational speed and accuracy of each method were compared.

Results: In each example, the approximation methods took minutes or hours to achieve reasonably
accurate EVSI estimates, whereas the traditional Monte Carlo method took weeks. Specific methods
are particularly suited to problems where we wish to compare multiple proposed sample sizes, when
the proposed sample size is large, or when the health economic model is computationally expensive.
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Conclusion
:::::::::
Conclusions: As all the evaluated methods gave estimates similar to those given by

traditional Monte Carlo, we suggest that EVSI can now be efficiently computed with confidence in
realistic examples.

::
No

::::::::::::
systematically

:::::::
superior

:::::
EVSI

:::::::::::
computation

::::::
method

:::::
exists

:::
as

:::
the

:::::::::
properties

::
of

:::
the

:::::::
different

:::::::
methods

::::::
depend

:::
on

:::
the

:::::::::
underlying

::::::
health

::::::::
economic

::::::
model,

::::
data

:::::::::
generation

::::::
process

::::
and

:::
user

:::::::::
expertise.

Introduction

The Expected Value of Sample Information (EVSI) [1, 2] quantifies the expected benefit of undertak-
ing a potential future study that aims to reduce uncertainty about the parameters of a health economic
model. The expected net benefit of sampling (ENBS), which is the difference between EVSI and the
expected research study costs [3], can be used to inform decisions regarding study design and research
prioritization. The future study with the highest ENBS should be prioritized if we wish to maximize
economic efficiency. Thus, EVSI has the potential to determine the value of future research and to guide
its design when accounting for economic constraints.

Despite this potential, EVSI has rarely been used in practical settings for a variety of reasons [4, 5].
Among these is the computational cost that has typically been

::::
high

:::::::::::::
computational

:::::
cost associated with

obtaining precise estimates of EVSI in real-world scenarios using nested Monte Carlo (MC) sampling
[6]. This computational burden is further increased when one aims to compute EVSI for multiple trial
designs in order to determine the optimal

::::::::
increased

:::::::
further

:::::
when

:::
we

::::
aim

::
to

:::::::
identify

::::
the

:::::::
optimal

::::::::
research

:::::
study (i.e.,

:::
the

:::::
study

:
with the highest ENBS) research study

:::
and

:::::
must

::::::::
compute

:::::
EVSI

:::
for

::::::::
multiple

:::::
trial

::::::
designs

:
[7, 8]. High performance computing resources can be used to overcome some of these barriers,

but often at the expense of an increased requirement for
::::
this

:::::::
requires

::::::::::
additional programming skills and

an increase in
:::::::
increases

:
the complexity of the analysis.

Several methods have been developed to unlock the potential of EVSI as a tool
::::::::
overcome

::::::
these

:::::::::::::
computational

:::::::
barriers

::::
and,

:::::
thus,

::::
use

:::::
EVSI

:
for research prioritization and trial design optimization by

overcoming these computational barriers. [9–19].
:::::
[9–20].

::
However, as many of these methods have

been developed concurrently, they have not been directly compared
:::::::::
compared,

:
making it challenging to

select an appropriate method. Additionally, the initial publications for these EVSI estimate methods
typically evaluate these methods

:::::
these

::::::
EVSI

::::::::::
estimation

::::::::
methods

:::::
have

:::::::
mostly

:::::
been

:::::::::
evaluated

:
using

health economic models and trial designs chosen for computational convenience rather than to reflect
real-world decision making. Thus, the accuracy of the majority of these methods has not been assessed
in, for example, multi-state models combined with survival or quality of life outcomes. A

::::::::::::
quality-of-life

:::::::::
outcomes,

:
a
:
setting that would occur frequently in real-life health economic modelling.

We aim, therefore, to address these gaps by comparing the relative performance of EVSI calculation
methods across three realistic health economic models and trial designs to gain a greater understanding of
their behaviour in practice. We will evaluate the accuracy of

::
the

:
EVSI estimation methods across these

:::
our

:
three examples and the computational time required to obtain these estimates. These examples

have several key
::::::
exhibit

:
features that reflect real-world trial design and may make it challenging to

estimate EVSI
:::::::
influence

::::
the

:::::::::
behaviour

:::
of

:::::
these

:::::
EVSI

::::::::::
estimation

:::::::::
methods in practice. These are: the

presence of multiple trial outcomes, missingness or loss to follow-up in the data, and a study design that
is observational rather than randomized. This comparison can aid researchers in selecting between these
methods while also ensuring they can be used to estimate EVSI accurately in practice.

Due to the complexity of the three case studies, our comparison is restricted to four recent calculation
methods developed by (in chronological order)

:::
the

::::::::::
Regression

:::::
Based

:::::
(RB)

:::::::
method

::::::::::
developed

::
by

:
Strong et

al. [12],
:::
the

:::::::::::
Importance

::::::::
Sampling

::::
(IS)

::::::::
method

:::::::::
developed

:::
by Menzies [13],

:::
the

:::::::::
Gaussian

::::::::::::::
Approximation

:::::
(GA)

:::::::
method

::::::::::
developed

::
by

:
Jalal and Alarid-Escudero [15] (extending a method proposed in Jalal et

al. [14]), and
:::
the

::::::::
Moment

:::::::::
Matching

::::::
(MM)

:::::::
method

::::::::::
developed

::
by

:
Heath et al. [17–19]. These methods

are all based on different approaches and assumptions, but they all provide estimation techniques for
approximating EVSI that, in comparison with

::::
EVSI

:::::::::
estimates

:::::
with

::
a
:::::::
smaller

::::::::::::::
computational

:::::::
burden

::::::::
compared

:::
to

::::
the nested MC sampling methods , are less computationally demanding whilst retaining

accuracy.
Alternative EVSI methods either place restrictions on the structure of the underlying health economic

model, the number of evidence sources and/or the study design [9–11]. These restrictions typically take
the form of an assumption about the study data that ensures that the prior and posterior model parameter
distributions take the same form (conjugacy), and by doing so, allow for computationally efficient EVSI
estimation. EVSI estimation methods based on minimal modelling, where a comprehensive clinical trial
is available to inform EVSI estimation, have also been proposed [20]. These methods are competitive
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in terms of computational time and accuracy compared to the methods described in this review but are
restricted to the settings in which they are relevant which limits their applicability in realistic health
economic models and study designs.

Notation and Key Concepts

Health economic decision making aims to determine the intervention, from some set of feasible al-
ternatives, that is expected to be optimal in terms of some measure of benefit (which is usually net
monetary benefit or net health benefit [21]). We characterize a health economic model as a function that
takes the vector of parameters θ as an input, and returns the costs and health effects associated with
each intervention in the set of alternatives. Uncertainty in the input parameters is represented using
a probability distribution p(θ). To find the optimal intervention, costs and effects are combined into
a single measure of economic value by calculating the net benefit for each of the T treatment options
considered relevant, conditional on θ. Uncertainty about θ induces uncertainty about the net benefit
for each treatment t = 1, . . . , T . We denote the net benefit for treatment t given parameters θ as NBθt .
Under the assumption of a rational, risk neutral decision maker, the optimal intervention given current
evidence is the intervention associated with the maximum expected net benefit.

We consider that we are interested in collecting additional information about a subset of the model
parameters φ. In this settings

::::::
setting, θ is split into two sets of parameters θ = (φ,ψ), where ψ are

all the remaining model parameters not in φ. For example, clinical trials are informative for clinical
outcomes but may not collect information about health state utilities or costs. The economic value of
eliminating all uncertainty about φ (assuming risk neutrality) is equal to the Expected Value of Partial
Perfect Information (EVPPI) [22–24]. This is given by

EVPPI = Eφ

[
max
t

Eθ|φ

[
NBθt

]]
−max

t
Eθ

[
NBθt

]
. (4)

In this paper, EVSI is defined as the value of collecting additional data, denoted X, to inform φ,
where φ could be equal to θ if the additional data updates all the underlying model parameters. By
assuming that X directly updates φ only, we implicitly state that X |= ψ | φ. This implies that EVSI is
bounded above by the EVPPI for φ. If these data X had been collected and observed to have a value x,
they would be combined with the current evidence to generate an updated distribution for φ, p(φ | x).
Under a Bayesian approach, this would in turn be used to update the distribution of the net benefit of
each treatment. The optimal intervention conditional on the data x is the treatment associated with
the maximum expected net benefit based on the updated knowledge about the relevant parameters φ. If
the optimal intervention changes, compared to the current decision, then the information in x has value.
However, as the data have not been collected yet (and may never be), the average value over all possible
datasets is considered. Mathematically, EVSI is defined as

EVSI = EX

[
max
t

Eθ|X

[
NBθt

]]
−max

t
Eθ

[
NBθt

]
, (5)

where the distribution ofX can be defined through p(X,θ) = p(θ)p(X | θ) where p(X | θ) = p(X | φ) is
the sampling distribution for the data given the parameters. We assume that the sampling distribution
for the data is only defined conditional on φ, i.e., does not provide information on the value of the
parameters ψ, except through any relationship with φ.

Calculation Methods for EVSI

It is rarely possible to compute EVSI analytically as the net benefit is often a complex function of θ.
Additionally, it is challenging to compute the expectation of a maximum analytically as required in the
first term of equation (5). Therefore, a range of methods have been developed to approximate EVSI.

Nested Monte Carlo Computations for EVSI

The simplest approximation method [6] computes all the expectations in equation (5) using MC
simulation. The second term can be computed by simulating s = 1, . . . , S parameter values, θs, from
p(θ). The simulated values are used as inputs to a health economic model to obtain S simulations of
the net benefit for each intervention, denoted NBθst . Note that this process is required to perform a
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“probabilistic analysis” (PA) [25], used to assess the impact of parametric uncertainty on the decision
uncertainty, which is mandatory in various jurisdictions [26–28]. The average of NBθ1t , . . . ,NBθSt for each

intervention can be computed and maxt Eθ

[
NBθt

]
is estimated by the maximum of these means.

The first term in equation (5) is more complex to compute by simulation. Firstly, S datasets Xs

must be generated conditional on the simulated θs from the assumed sampling distribution p(X | θs).
For each Xs, we simulate R values from the updated distribution of the model parameters p(θ | Xs).
These R simulations are used as inputs to the health economic model to simulate from the updated
distribution of the net benefit for each intervention. The mean net benefit for each treatment option is

then calculated to estimate Eθ|X

[
NBθt

]
for t = 1, . . . , T . The maximum of these simulated means is

then selected for each Xs. Thus, to compute EVSI by MC simulation, we require S × R runs of the
health economic model. This is computationally expensive for standard choices of S and R, which are
typically in the thousands. Therefore, the following methods focus on approximating the updated mean
of the net benefit associated with each intervention t using a smaller simulation burden. We denote the
expectation of the net benefit, conditional on data X, as

µXt = Eθ|X

[
NBθt

]
.

In a similar manner, we also denote the expectation of the net benefit, conditional on some value of the
parameters of interest φ, as

µφt = Eθ|φ

[
NBθt

]
.

Finally, we can increase the numerical stability of the following approximation methods by working
in terms of the incremental net benefit or loss, defined, without loss of generality, as INBθt = NBθt −NBθ1
for t = 2, . . . , T . This is because we must estimate µX for each of the T − 1 incremental net benefit
options rather than the T net benefits. EVSI can then be estimated by setting µX1 = 0 and calculating

ÊVSI =
1

N

1

S
:

S∑
s=1

max
t
µXs
t −max

t

1

N

1

S
:

S∑
s=1

µXs
t , (6)

where µXs
t is the estimated posterior expectation for the dataset Xs, s = 1, . . . , S.

Strong et al. (2015)
:::::::::::::
Regression

::::::::
Based

::::::::::
Method

The Strong et al. method
:::
RB

::::::::
method

::::
[12] estimates EVSI by fitting T − 1 regression models. For

each t = 2, . . . , T , the simulated values of the incremental net benefit
:::
are

:::
the

:::::::::
‘response’

::::::::
variable

::::
and

::
a

::::::::::::::
low-dimensional

:
summary of the simulated dataset X is the ‘independent’ or ‘predictor’ variable(s) [12].

This low-dimensional summary for X should reflect how the data would be summarized if the study were
to go ahead and must be computed for each simulated dataset Xs. The fitted values from this regression
model are then used to estimate µXt is estimated by the fitted values from this regression model. EVSI
is then estimated directly from these estimates of µXt using equation (6).

Menzies (2016)
::::::::::::::
Importance

:::::::::::
Sampling

::::::::::
Method

Menzies [13] presents two EVSI estimation methods
::::::::
Initially,

::::
two

:::
IS

::::::::
methods

:::::
were

:::::::::
proposed

:::
to

:::::::
estimate

::::::
EVSI

::::
[13], the most accurate of which

:::::
these estimates µXt by reweighting simulations of µφt .

This reweighting is based on the likelihood of observing a simulated datasetX
:::
Xs:

conditional on different
values for φ. The term likelihood is used in the statistical sense and is equal to p(X | φ).

This method simulates S future datasets Xs from p(X | φs). The likelihood for every simulated
vector for φ is then calculated conditional on Xs. For the sample Xs, µ

Xs
t is estimated as the

::::::::
weighted

average of µφt , weighted by the likelihood of the dataset Xs. Thus, the Menzies method can be seen as

::
IS

:::::::
method

::
is

:
an example of importance sampling [29, 30] and performs (T − 1)S2 likelihood calculations

for each EVSI estimate. EVSI is estimated from equation (6) based on the estimate of µXs
t for each

future sample.
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Jalal et al. (2018)
::::::::::
Gaussian

:::::::::::::::::::
Approximation

:::::::::::
Methods

The Jalal et al. method published by Jalal and Alarid-Escudero [15], building on work from Jalal et
al. [14],

:::
GA

:::::::
method

::::::::
[14, 15] fits a “linear” metamodel3, a secondary model that captures the relationship

between the simulated incremental net benefit values, as the response variable, and simulations for φ,
as the predictor variables. Each term of the linear metamodel is then rescaled based on a Gaussian-
Gaussian Bayesian updating approach to estimate its “posterior”

:::::::::
‘posterior’

:
expectation across different

future datasets X. These estimated distributions are then recombined using the coefficients of the linear
metamodel to estimate µXt and compute EVSI.

For a proposed future data collection strategy of size N , the rescaling factor for each term of the
linear metamodel is equal to

N

N +N0
,

where N0 is known as the prior effective sample size [31]. Essentially
:
,
:
N0 represents the number of

independent observations who would be required to generate the amount of evidence in the prior. In
some prior-likelihood pairs, N0 can be obtained analytically. In other settings, Jalal et al. suggest two
estimation methods for N0. Firstly, if the data X can be summarized using a summary statistic W (X),
then N0 can be computed as a function of the variance of W (X). Secondly, If

:
if
:

a suitable statistic
cannot be derived, then nested posterior sampling can be used to estimate N0. In this method, S future
datasets Xs, s = 1, . . . , S are simulated. Each of these samples is used to update the information about
the model parameters p(θ | Xs), typically using R simulations and computing the mean for φ. The
variance of the mean for φ, across different samples Xs, is then used to estimate N0. Computationally,
this nested sampling method to compute N0 is relatively computationally expensive compared to the
other two proposals to determine N0. However, calculation of N0 is only needed once to compute EVSI
across study size.

Heath et al. (2018)
:::::::::
Moment

::::::::::::
Matching

:::::::::::
Method

The Heath et al. [18, 19] estimation method
::::
MM

:::::::
method

:::::::
[18, 19] combines the simulations µφt and a

modified nested MC sampling method to estimate EVSI. This method reduces the number of times the
updated distribution of the net benefit must be simulated to estimate EVSI from S, typically at least
1000, to Q, usually between 30 and 50 [19]. Thus, EVSI is estimated with Q×R health economic model
runs.

The Heath et al.
::::
MM

:
method uses nested MC sampling to estimate the variance of the incremental net

benefit for different future datasets. These estimated variances rescale simulations of µφt for t = 2, . . . , T
to approximate simulations of µXt which can be used to estimate EVSI using equation (6). The Heath
et al.

::::
MM

:
method only requires a single nested simulation procedure to estimate EVSI across sample

size
:::::::
different

:::::::
sample

::::
sizes

:::
of

:::
the

::::::
future

::::
trial

:
[19].

::
Of

:::::
note,

::::
this

:::::::::::
comparison

:::
has

:::::
been

:::::::::
restricted

::
to

:::::
these

::::
four

::::::::
methods

:::
as

:::
the

::::::::::
alternative

::::::
EVSI

::::::::
methods

::::::::
typically

:::::
place

::::::::::
restrictions

:::
on

::::
the

:::::::::
structure

::
of

::::
the

::::::::::
underlying

::::::
health

:::::::::
economic

:::::::
model,

::::
the

:::::::
number

:::
of

:::::::
evidence

::::::::
sources

::::::
and/or

::::
the

::::::
study

::::::
design

:::::::::::::
[9–11, 11, 20].

:::::::
These

:::::::::::
restrictions

:::::
limit

:::
the

::::::::::::
applicability

:::
of

::::
these

:::::::::
methods.

:::::::
Some

::
of

::::::
these

::::::::
methods

:::::
make

::::::::::::
assumptions

::::::
about

::::
the

:::::::::::
distribution

::
of

::::
the

:::::::::::
parameters

:::
and

::::
the

:::::
study

:::::
data

::
to

::::::
ensure

:::::
that

:::
the

:::::
prior

::::
and

:::::::::
posterior

:::::
model

::::::::::
parameter

::::::::::::
distributions

::::
take

::::
the

:::::
same

::::
form

::::::::::::
(conjugacy).

:::::
This

::::::
allows

:::
for

:::::::::::::::
computationally

::::::::
efficient

:::::
EVSI

:::::::::::
estimation.

::::
The

::::::::
minimal

::::::::::
modelling

::::::::
approach

:::::
[20]

:::::::
assumes

::::
that

::
a
:::::::::::::
comprehensive

:::::::
clinical

:::::
trial

::
is

::::::::
available

:::
to

:::::::
inform

:::::
EVSI

::::::::::
estimation

:::::
and,

::::
thus,

::::::::
restricts

:::
the

::::::::
required

:::::
data

:::::::
sources.

::::::
These

::::::::
methods

:::
are

:::::::::::
competitive

::
in

::::::
terms

::
of

:::::::::::::
computational

:::::
time

:::
and

:::::::::
accuracy

:::::::::
compared

:::
to

:::
the

:::::::::
methods

:::::::::
presented

::
in

::::
this

:::::::
review

::::
but

:::
are

:::::::::
restricted

:::
to

::::
the

:::::::
settings

:::
in

:::::
which

:::::
they

:::
are

:::::::
relevant

::::::
which

::::::
limits

:::::
their

::::::
general

::::::::
purpose

:::::::::::
application.

:

Case Studies

These EVSI methods are applied to three case studies designed to different explore
:::::::
explore

::::::::
different

trial designs and health economic models. These designs and models were chosen to estimate EVSI
:::::
assess

:::
the

::::::::
accuracy

:::
of

:::::
these

::::::
EVSI

::::::::::
estimation

::::::::
methods

:
in settings that are reflective of real-world decision

making. The first case study is a stylized chemotherapy
:::::::::::::
Chemotherapy

::::
side

::::::
effects

:
example used to

3A linear metamodel is required for this method. However, non-linear functions of φ can be defined and combined
linearly to account for flexible relationships between the incremental net benefit and the parameters φ.
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evaluate EVSI estimation in the presence of multiple outcomes, reflecting a realistic trial design with a
single primary, and multiple secondary, outcomes. The second case study evaluates EVSI methods in the
presence of missingness in the data using a previously published health economic model to explore EVSI
estimation when we account for standard considerations in trial design and development. Finally, we
evaluate EVSI methods for a health economic model based on a time-dependent natural history model
where the main data source is observational.

Case Study 1: A New
:::::::
Model

::::
for

:
Chemotherapy Treatment

:::::
Side

:::::::::
Effects

This model was presented in Heath and Baio [18] to evaluate two chemotherapy interventions, i.e.,
the current standard of care and a novel treatment that reduces the number of adverse events. These
two options are equal in their clinical outcomes so we focus on the adverse events. The probability of
adverse events for the standard of care is denoted π0 and ρ denotes the proportional reduction in the
probability of adverse events with the novel treatment.

All patients incur a treatment cost of £110 for the standard of care or £420 for the novel treatment.
Patients without adverse events or those that have recovered have a quality of life (QoL) measure of q.
The health economic impact of adverse events is modelled with a Markov model depicted in Figure 1. In
this model, γ1 and γ2 denote the constant probability of requiring hospital care and dying, respectively,
and λ1 and λ2 denote the constant probability of recovery given that an individual remains at home
or enters

:
is
::::

not
:::
or

::
is

:::::::::
admitted

::::
into

:
hospital, respectively. The cycle length is 1 dayand

:
,
:
the time

horizon is 15 days
:
,
::::
and

:::
we

:::::::
assume

:::::
that

::::
only

:::::::::::
hospitalised

::::::::
patients

::::
will

::::
die. Recovered patients incur

no further cost while patients who die have a one-time cost of terminal care. There are costs and
QoL measures associated with home and hospital care. PA distributions for the model parameters are
informed using previous data or defined using expert opinion with all distributional assumptions given
in the supplementary material.

Figure 5: A four state Markov model used to model the health economic impact of adverse events from
a chemotherapy treatment.

Sampling Distributions for X

The EVSI is computed for a future two-arm randomized control trial whose primary outcome is the
number of adverse events. As a secondary set of measures, the study monitors the treatment pathway
for patients who experience adverse events. Thus, the trial directly informs six model parameters φ =
(π0, ρ, γ1, γ2, λ1, λ2) by collecting six outcomes with 150 patients per arm.

To define the sampling distribution for the six outcomes, we model the number of patients who
experience adverse events using binomial distributions conditional on π0 and ρ;

XAE0
∼ Bin(150, π0) and XAE1

∼ Bin(150, ρπ0).

The number of patients treated in hospital and the number of patients who die are modelled as

XHosp ∼ Bin(XAE0 +XAE1 , γ1) and XDeath ∼ Bin(XHosp, γ2).

Finally, recovery time for patients who experience adverse events but recover whilst remaining at home
is modelled with an exponential distribution conditional on the transition probability λ1,

T iHC ∼ Exponential(η1)
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for each individual who remains at home whilst recovering from adverse events i = 1, . . . , XAE0
+XAE1

−
XHosp and η1 = − log(λ1). The recovery time for every patient (j = 1, . . . , XHosp−XDeath) who recovers
in hospital is modelled as and exponential distribution conditional on λ2

T jH ∼ Exponential(η2)

with η2 = − log(λ2). Exponential distributions were used to model the recovery time as we assumed a
constant transition probability in the Markov model.

Case Study 2: A Model for Chronic Pain

This example uses a cost-effectiveness model developed by Sullivan et al. [32], and extended in Heath
et al. [19], to evaluate treatments for chronic pain. This is based on a Markov model with 10 states,
where each state has an associated QoL and cost. Patients initially receive treatment for chronic pain
and can either experience adverse events or not. Patients may then withdraw from this initial treatment
due to adverse events or lack of efficacy. Following this, they can be offered an alternative therapy or
withdraw completely from treatment. Patients may experience adverse events from this second line of

::::::::::
second-line treatment and can either withdraw from this second line of treatment due to these adverse
events or lack of efficacy. If patients withdraw from this second

::::::::::
second-line

:
treatment, they can receive

further treatment or discontinue, both considered absorbing states as the model does not include a death
state.

Initially, patients can either be offered morphine or an innovative treatment
:
,
:
and our model evaluates

the cost-effectiveness of the innovative treatment. If patients require a second
::::::::::
second-line treatment,

they are offered oxycodone. Thus, the only difference between the two treatment options is the first-line
treatment where the innovative treatment is more effective, more expensive

:
,
:
and causes fewer adverse

events. A more in-depth presentation of all the model parameters is given in [32] where the distributions
for the PA are gamma for costs and beta for probabilities and utilities. In the original publication of
this model, the means of these distributions are

::::
were

:
informed by relevant studies identified following a

literature review and the standard error of these mean estimates is
::::
was taken as 10% of the underlying

mean estimate. This paper computed the per-person lifetime EVSI, assuming a discount factor of 0.03
per year over 15 years.

Sampling Distributions for X

EVSI is computed for a study that investigates the QoL weights for patients who remain on treatment
without any adverse events and for patients who withdraw from the first line of

::::::::
first-line treatment due

to lack of efficacy. The individual level variability in these two QoL weights is modelled, for simplicity, as
independent beta sampling distributions although the assumption of independence may be invalid [33].
The population level mean QoL weight, i.e., the mean of the sampling distribution for the QoL weights,
is defined as the value of those two health states in the Markov Model. The standard deviations of the
individual level sampling distributions is then set equal to 0.3, for patients who remain on treatment,
and 0.31, for patients who withdraw due to lack of efficacy [34]4. We compute EVSI for trials enrolling
10, 25, 50, 100 and 150 patients. We assume that only a proportion of the questionnaires are returned,
leading to missingness in the data.

To generate the data, a response rate of 68.7% is assumed, consistent with the return rate observed in
[35]. We generate a response indicator for each patient in the trial using a Bernoulli distribution. If this
indicator is 1, then we assume the patient returned the questionnaire and therefore we have observed
utility scores for both states for that patient, simulated from the beta distributions specified above,
conditional on the model parameters.

Case Study 3: A Model for Colorectal Cancer
::::::::::::
Screening

This example uses a health economic model developed by Alarid-Escudero et al. [36] to evaluate a
screening strategy for colorectal cancer (CRC) and pre-cancerous lesions known as adenomas. This

::::
The

model is based on a nine-state Markov model with age-dependent transition intensities which govern the

4This sampling distribution for the data causes some minor issues for the Gibbs sampling procedure used in the JAGS
program for Bayesian updating.
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onset of adenomas (pre-cancerous growths) and the risk of all-cause mortality. The onset of adenomas
is modeled

::::::::
modelled using a Weibull hazard conditional on age

l(a) = λ1ga
g−1

where λ1 and g are the shape and scale parameters of the Weibull distribution and a is the age of the
patient. Model parameters are chosen to reflect the prevalence of adenomas seen in the literature. To
determine the PA distribution for the model parameters g and λ1, the level of uncertainty in the observed
prevalence was characterized and the parameters were re-estimated across the distribution of prevalence.

The costs and QoL associated with each health state are used to evaluate the economic burden of
CRC. The screening strategy is assumed to capture patients with adenomas and early cancer so they can
be operated on before the cancer progresses and becomes clinically detected. The proposed screening
strategy has a sensitivity with a mean of 0.98 and a specificity with a mean of 0.87. When the model is
initiated, some members of the general population have undiagnosed adenomas and early stage CRC.

Sampling Distributions for X

EVSI is computed for a study that investigates the onset of adenomas in the general population to
inform the shape and scale of the Weibull hazard function. A cross-section of the general population
aged between 25 and 90 without any screening history will be screened for the presence of adenomas
with a gold standard test with 100% sensitivity and specificity. Upon enrollment, the age of the subjects
is recorded to determine the age-specific risk. EVSI is computed for trials enrolling 5, 40, 100, 200, 500,
750, 1000 and 1500 participants.

To generate prospective data, we simulate the enrolment age for participants. Demographic data from
Canada in 2011, obtained from the Human Mortality Database [37], were used to generate study subjects
with an age distribution representative of the general population, with study enrollment

:::::::::
enrolment

restricted between 25 and 90 years. Conditional on their age a, a participant has a probability

p(a) = 1− e−λ1a
g

of having an adenoma or CRC. The outcome for a specific subject was simulated from a Bernoulli
distribution conditional on p(ai)

Xi ∼ Ber (p (ai)) .

where ai is the age of participant i. We assumed that there is no missing data as participants are enrolled
and undergo the test at the same clinic visit and no other data are collected.

Analysis

Comparing the presented
:
It
::
is
:::::::::::
challenging

::
to

::::::::
compare

::::
the

::::
four

:::::::
efficient

:
EVSI estimation methods is

challenging as their accuracy and computational time are dependent on choices made by the modeller
and the computational efficiency of the method implementation.

:::::
Thus, Table 3 outlines the simulation

choices that were made for the case studies . These choices were made to achieve EVSI estimates
::
in

:::
this

:::::::
paper.

::::
We

:::::
chose

::::::
these

:::::::::::
assumptions

:::
to

::::::
reflect

::::::::
realistic

:::::::
choices

::::
that

::::::
would

:::
be

:::::
made

:::
by

::::::::::
modellers

:::::::::
calculating

::::::
EVSI

::
in

::::::::
practice.

::::::
They

:::
all

::::
aim

::
to

::::::::
estimate

:::::
EVSI

:
with a reasonable level of precision, while

keeping the computation time manageable. For example, smaller sample sizes were necessary for models
with a greater computational cost. We

:::::
Based

:::
on

:::::
these

::::::::
choices,

:::
we compared the speed and accuracy

achievable by
::
of

:
each method, and identified their relative advantages and challenges in practice.

These choices impact our results as larger sample sizes would lead to greater computational time
andaccuracy for all methods . Depending on the method and the underlying case study, the impact of
sample size will change. For example, more simulations are needed for the Strong et al. and Jalal et
al. methods if there are a large number of outcomes in the proposed trial, increasing the complexity
of the regression model or the metamodel, and for the Heath et al. method if the underlying EVSI is
small compared to the overall value of resolving parametric uncertainty. Nonetheless, we believe that the
choices highlighted in Table 3 represent a fair comparison of these methodsin practice

:::
The

::::::::::::::
Chemotherapy

:::
side

:::::::
effects

::::
and

::::::::
Chronic

::::
pain

:::::::
models

::::
had

::::
low

::::::::::::::
computational

::::
cost

:::::
and,

:::::
thus,

:::
we

::::::::
selected

::
a
:::::
large

::::
PA

:::::::::
simulation

::::
size

::
S
:::
as

::::
VoI

::::::::
methods

:::::::
require

:::
an

::::::::
accurate

:::::::::::::
representation

:::
of

::::
the

:::::::
decision

:::::::::::
uncertainty

::::
[38]

:
.

:::
The

:::::
CRC

:::::::::
screening

::::::
model

::::
had

:::::::
greater

:::::::::::::
computational

:::::
cost

::::
and

:::::
thus,

:::
we

::::
used

::
a
:::::::
smaller

::::::::::
simulation

::::
size

::
to

::::::
reflect

:::::::
choices

::::
that

::::::
would

::
be

::::::
made

::
in

::::::::
practice.

:::
In

:::
all

::::
case

:::::::
studies,

:::
we

:::::
used

:::
all

:::
the

::::
PA

::::::::::
simulations

:::
to

::::::::
calculate

:::::::
EVPPI

::::
and

::::::::
estimate

:::
µφt .
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:::
For

::::
the

::::
MC

::::::
nested

:::::::::::
simulation,

:::
we

:::::
used

:::
all

:::
the

::::
PA

::::::::::
simulations

::::
for

:::
the

::::::
outer

::::::::::
simulation

:::::
loop.

::::
To

:::::::::
accurately

:::::::::::
characterise

::::
the

:::
PA

:::::::::::
distribution

:::
for

::::
the

:::::
inner

:::::
loop,

:::
we

::::
use

:::
the

:::::
same

::::
size

:::
as

:::
the

::::::
outer

:::::
loop.

::::
This

:::::
gives

::
a

::::
very

:::::
high

:::::::::
simulation

:::::::
burden

::::
but

:::::
leads

::
to

:::::::::
accurate

::::::
results

:::
for

::::::
EVSI

::::
that

::::
can

::
be

::::::::::
compared

::::
with

:::
the

::::::
novel

:::::::::::
computation

:::::::::
methods.

:

Simulation Choices
Case Study

Chemotherapy
side effects (1)

Chronic Pain

::::
pain (2)

CRC screening
(3)

Initial PA size (S) 100,000 100,000 5,000

Number of µφt simulations
from EVPPI calculation

100,000 100,000 5,000

Nested simulation outer loop
size (S)

100,000 100,000 NA

Nested simulation inner loop
size (R)

100,000 100,000 NA

Strong et al.
:::
RB

:
simulation

size

100,000 100,000 5,000

Menzies
::
IS

:
simulation size

20,000 5,000 2,500

Jalal et al.
:::
GA

:
N0 computa-

tion method

nested posterior
sampling

nested posterior
sampling

nested posterior
sampling

Jalal et al.
:::
GA N0 estimation

outer loop size

1,000 1,000 5,000

Jalal et al.
:::
GA N0 estimation

inner loop size

10,000 10,000 5,000

Jalal et al.
:::
GA N0 estimation

future sample size

30 40 40

Heath et al.
:::
MM

:
outer loop

size (Q)

50 50 50

Heath et al.
::::
MM inner loop

size (R)

10,000 10,000 5,000

Table 3: The simulation choices to compute EVSI for the four recent approximation methods and the
nested MC method for case study 1, 2 and 3.

Note that the simulation size for the Menzies method is typically smaller than for the other methods
as the computational cost increases with S2. This makes it computationally challenging for

:::
For

:::
all

::::
case

:::::::
studies,

:::
the

:::
RB

::::::::
method

::::
uses

::
all

::::
the

:::
PA

::::::::::
simulations

:::
as

:::::::::
regression

:::::::::
modelling

:::::::
requires

:
larger

simulation sizes .
::
to

::::::::::
accurately

::::::::
estimate

::::::
EVSI.

::::
The

:::::::::::::
computational

:::::
cost

::
of

:::::
using

:::
all

::::
the

::::::::::
simulations

:::
is

::::::::
minimal. In contrast,

::
we

:::::
used

:
a
:::::::
smaller

:::::::::
simulation

::::
size

:::
for

:::
the

:::
IS

:::::::
method

::
as

::
it

:::
has

::
a

::::::
higher

:::::::::::::
computational

:::
cost

::::::::::
compared

:::
to

:::
the

::::::
other

::::::::
methods

:::::
that

:::::::::
increases

::::::::::::
proportional

::
to

::::
S2

::::
and

:::
we

:::::::
wanted

:::
to

:::::::
ensure

::
a

::::::::::
comparable

::::::::
analysis

::
in

:::::
terms

:::
of

:::::::::::
computation

:::::
time.

:

:::
For the Strong et al. method requires larger simulation sizes to accurately estimate EVSI. For all three

case studies the Jalal et al. methods requires
:::
GA

::::::::
method,

:::
we

:::::
used nested posterior sampling to estimate

the prior effective sample size . To decrease the computational time of this estimation, we note that
:::
for

::
all

:::::
three

::::
case

::::::::
studies. N0 :

is
:::::::::
estimated

:::::
using

::
a
::::::::
proposed

::::::
future

:::::::
sample

::::
with

::
a
:::::
given

:::::::
sample

::::
size

:::
but

:
only

needs to be computed once to estimate the EVSI across sample size. As posterior updating is slower for
larger sample sizes, it is preferable to estimate

::
we

::::
can

::::::
reduce

::::
the

:::::::::::::
computational

::::
cost

:::
of

:::::::::
estimating

:
N0

with a small
::
by

::::::
using

:
a
::::::
small

::::::
sample

::::
size

:::
for

:::
the

:
proposed sample X. However,

::
as

:
the estimation of N0

also relies on a Gaussian approximationso
:
,
:
the sample size of X should be sufficiently large to assume

normality. Thus, the table above (Jalal et al. future sample size) highlights the sample size of X used in
the nested posterior sampling to estimate N0 that balances accuracy and computational speed. Finally,
the Heath et al. loop sizes were chosen based on Heath and Baio [19], which highlights that Q = 50
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::
we

::::::::
selected

::::::
future

:::::::
sample

::::
sizes

:::
for

::::
the

::::
GA

::::::::
updating

:::
of

:::::::
around

::
30

::::
(or

:::
40

::
to

::::::
adjust

:::
for

::::::::::::
missingness)

:::
to

::::::
ensure

:::
the

:::::::::::
assumption

::
of

::::::::::
normality

:::::
holds

::::
but

:::
to

::::::::
decrease

:::::::::::::
computational

:::::::::::
complexity.

:::::
The

::::::::::
simulation

::::
sizes

:::
for

:::
the

:::::::
nested

::::::::::
simulation

::::
were

:::::::
chosen

::
to

:::::::
balance

:::::::::
accuracy

::::
and

:::::::::::
computation

:::::
time.

::::::::::::
Specifically,

:::
we

:::::
chose

:::::
more

::::::::::
simulations

::::
for

:::
the

:::::
CRC

:::::::::
screening

::::::
model

:::
as

:::
the

:::::::::
posterior

::
of

::::
the

::::::::::
parameters

:::
for

::
a
::::::::
Weibull

::::::::::
distribution

::
is
::::::
highly

::::::::::
correlated

::::
and

::::::::
therefore

::::::::::
challenging

:::
to

::::::::
estimate

:::::
using

::::::
Gibbs

::::::::
sampling

::::
[39]

:
.

:::::::
Finally,

::::::
Heath

::::
and

::::
Baio

:::::::::::
determined

::::
that

:::::::
Q = 50

:
is sufficient to estimate EVSI

::::
using

:::::
MM

:::::::
method,

provided the
:::::
inner

::::
loop

::::
size

::
R

::
is

::::::::
sufficient

::
to

:::::::
capture

:::
the

:
posterior for the model parameters is adequately

captured.
:::
[19]

:
.
:::::
Thus,

::::
the

:::::
inner

::::
loop

::::
sizes

:::::
were

::::::
chosen

::::::::
relatively

:::::
large

::
to

:::::::
capture

::::
the

::::::::
posterior

:::::::::::
distribution

::
of

:::
the

::::::
model

::::::::::
parameters,

:::::
with

:::
the

:::::
CRC

::::::::
screening

::::::
model

::::::::::
simulation

:::
size

:::::::
reduced

::::
due

::
to

::::
the

:::::::::::::
computational

::::::::::
complexity

::
of

::::
that

:::::::::
example.

For the first two case studies, we
::
In

:::::::
general,

::::::
larger

:::
PA

:::::::::
simulation

:::::
sizes

::::
lead

::
to

:::::::::
increased

:::::::::::::
computational

::::
time

::::
and

:::::::::
accuracy

:::
for

:::
all

:::::::::
methods.

::::::
The

:::::::::::::
improvements

::::::::::
associated

:::::
with

::::::
larger

:::::::
sample

:::::
sizes

:::::::
change

:::::::::
depending

:::
on

::::
the

::::::::
method

::::
and

::::
the

::::
case

:::::::
study.

:::::
For

:::::::::
example,

::::
the

:::
RB

:::::
and

::::
GA

::::::::
methods

::::::::
require

::
a

::::::
greater

::::::::
number

::
of

::::
PA

:::::::::::
simulations

::
if

:::::
there

::::
are

::
a

:::::
large

:::::::
number

:::
of

:::::::::
outcomes

:::
in

:::
the

:::::::::
proposed

:::::
trial

:::
as

:::
the

:::::::::
regression

::::::
model

:::
or

::::
the

::::::::::
metamodel

::::::::
increases

:::
in

:::::::::::
complexity.

::::::::::
Elsewhere,

::::
the

::::
MM

::::::::
method

::::::::
requires

::::
more

::::
PA

::::::::::
simulations

::
if

:::
the

::::::::::
underlying

:::::
EVSI

::
is

:::::
small

:::::::::
compared

::
to

:::
the

::::::
overall

:::::
value

::
of
:::::::::
resolving

::::::::::
parametric

::::::::::
uncertainty.

::::::::::::
Nonetheless,

:::
we

:::::::
believe

::::
that

:::
the

:::::::
choices

:::::::::::
highlighted

::
in

:::::
Table

::
3
:::::::::
represent

:
a
::::
fair

:::::::::::
comparison

::
of

:::::
these

::::::::
methods

:::::
that

::::::::
supports

::::
the

::::
use

::
of

::::::
these

::::::::
methods

::::::
based

:::
on

:::::::::
modelling

:::::::
choices

:::::
that

::::::
could

:::
be

:::::::::::
implemented

:::
in

::::::::
practice.

:

::
To

::::::::::::
characterise

:::::::::::
uncertainty

::
in

::::
the

::::::
EVSI

::::::::::
estimation

:::::::::
procedure

::::
for

:::::
each

::::::::
method,

:::
we

:
computed a

standard error for the EVSI estimates by recomputing the EVSI 200 times, each time with
::::
based

:::
on

:
the

same PA samples, so that this standard error reflects uncertainty arising from any simulation involved
in the EVSI estimation procedure itself.

To obtain the
::::::::::
simulations

:::
for

:::
the

::::
first

::::
two

::::
case

::::::::
studies.

::::
The

:
computational time for the four recent

approximation methods , computations were
:
is

:::::::::
presented

::::::
based

::
on

:::::::::::::
computations undertaken on a com-

puter with an i7 Intel processor with 16 GB of RAM in R version 3.5.1. The nested MC computations
were undertaken on a Linux Google Compute Engine virtual machine. The computation time give below
is the total time across all cores

:::::::::::
computation

:::::
time

:::
for

::::
the

:::::::
nested

::::
MC

::::::::::::
computation

::
is

::::::
based

:::
on

::::
the

::::
total

::::::::::::
computation

:::::
time

:::::::
required

::::::
across

:::
32

:::::
cores

:::
on

::::
the

::::::::
Hospital

:::
for

::::
Sick

::::::::::
Children’s

:::::
High

::::::::::::
Performance

::::::::::
Computing

:::::::::::
environment

::
[]. Code to undertake the computations in this paper is available from GitHub

at https://github.com/convoigroup/EVSI-in-practice.

Results

Case Study 1: Chemotherapy Side Effects

Figure 6 displays the 95% central intervals for the four faster
::::
fast

:
EVSI approximation methods,

with the nested MC estimate shown as a vertical line. All the methods produce EVSI estimates that
are relatively close to the EVSI estimated by nested MC sampling, which we assume is accurate given
the large simulation size. The 95% central interval for the Heath et al. method is the only interval
that contains the “true”

:::
RB

::::
and

::::
MM

::::::::
methods

::::::::
contain

:::
the

:::::
‘true’

:
value, represented by the nested MC

EVSI. At the same time, the Heath et al.
:
In

::::
this

:::::::::
example,

::::::::
however,

:::
the

:::::
MM estimate is associated with

substantial variability compared to the other methods
::
as

:::
the

::::::
EVSI

::
is

:::::::
smaller

:::::::::
compared

:::
to

:::
the

:::::::
overall

:::::
EVPI.

Implementing the Strong et al. and Jalal et al.
:::
RB

::::
and

::::
GA

:
methods involves finding a flexible

regression model that fits well and is computationally feasible to estimate. As there are six parameters
in this example, finding such a model was relatively challenging and required examination of residual
plots.

Case Study 2: Chronic Pain

Figure 7 shows that the 95% central intervals for the Heath et al. and the Menzies
::::
MM

::::
and

:::
the

:::
IS

methods contain the nested MC estimate , which we assume to be accurate given the large simulation
size, for all sample sizes. In addition to this, EVSI calculated by all four methods increase as the sample
size increases, representing that the more information is collected, the greater value the value

::
its

:::::
value.

EVSI estimates should also remain below EVPPI (marked as a dashed line on Figure 7), which represents
an upper limit on EVSI. The EVSI estimates are also relatively close to the nested MC estimate. The
Strong et al.

:::
RB method produced the shortest 95% central intervals while the three alternatives are
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Figure 6: The mean per-person EVSI estimates, across 200 simulated estimation procedures, for the
five methods under consideration for the chemotherapy

:::::::::::::
Chemotherapy

::::
side

::::::
effects

:
example with a fu-

ture sample size of 150 and willingness-to-pay of £30, 000. The 95% central intervals from these 200
simulations are shown as horizontal lines and the gold standard MC estimator is shown as a vertical line.

relatively comparable. Note that the Menzies
::
IS estimate is based on a smaller PA simulation size but

still offers similar variability compared to the other methods.
In this example, the summary statistic used for the Strong et al.

:::
RB method is the geometric mean of

X and 1−X. These statistics are sufficient to estimate the model parameters of the beta distribution and
were derived using the Fisher-Neymann factorization theorem [40]. Summarizing X using the arithmetic
mean and variance gives incorrect EVSI estimates for this case study as these statistics are not sufficient.
Low-dimensional sufficient statistics should be used, when available, to estimate EVSI if the proposed
analysis following the trial will use Bayesian methods to incorporate the additional information into the
evidence base of the health economic model.

Case Study 3: Colorectal Cancer
:::::::::::
Screening

Figure 8 demonstrates EVSI estimates (y-axis) for the CRC
::::::::
screening

:
model across the considered

sample sizes (x-axis, on the log-scale but marked on the natural scale). We can see that the four EVSI
calculation methods give a broad consensus. Nested MC simulations are not undertaken for this case
study due to the computational time required to obtain suitably accurate estimates for comparison.
Thus, while we can note that the four methods give similar results, we cannot assert that these EVSI
estimates are “correct.”

:::::::
‘correct.’

:

For
::
Of

:::::
note,

:::
for

:
a sample size of 1,500, the Menzies

:
IS

:
EVSI estimate is incorrect. This is because

the likelihood tends to 0 for large sample sizes making the weighted samples difficult
::::::
weights

:::
in

::::
the

::::::::
weighted

::::
sum

::::::::::
challenging

:
to approximate. Furthermore, the Menzies

::
IS

:
method slightly over-estimates

the EVSI for sample sizes between 500 and 1000.
:::::
1,000.

:
This is because we only use a subset of the PA

simulations to obtain this EVSI estimate and the EVPPI, upper limit for EVSI, estimated using this
subset is slightly over-estimated, judging from the full 5,000 PA simulations.

Computational Time

Table 4 shows the computational time for the five EVSI computation methods for each of the three
case studies. For the first two case studies, all four alternatives are considerably faster than the nested
MC method. For the third case study, the computational cost of the underlying CRC

::::::::
screening model

meant that it was not computationally feasible to use the nested Monte Carlo method.
For the first two case studies, the Heath et al.

::::
MM

:
method has the lowest computation time as

the underlying health economic model is fast. The Heath et al.
::::
MM

:
method also estimates EVSI

across multiple sample sizes simultaneously which improves the computational time for the Chronic
Pain

::::
pain example compared to the Strong et al., and Menzies

:::
RB,

::::
and

:::
IS

:
methods. For these two

examples, the computation time required to fit an accurate regression model is relatively high, increasing
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Figure 7: The mean EVSI estimates, across 200 simulated estimation procedures, for the five methods
under consideration for the chronic

:::::::
Chronic pain example. EVSI was calculated across 5 different sample

sizes for the future trial. The 95% central intervals from these 200 simulations are shown as horizontal
lines and the gold standard MC estimator is shown as a vertical line.

the computation time for the Strong et al.
:::
RB

:
method. The Jalal et al.

:::
GA

:
method has the highest

computation time as it uses nested MC simulation to calculate N0. However, after estimating N0, EVSI
can be re-estimated for any sample size. Thus, if EVSI was to be estimated across more sample sizes,
the Jalal et al.

:::
GA

:
method would offer computational savings on the Strong et al., and Menzies

:::
RB

:::
and

:::
IS

:
methods. For the Chemotherapy

:::
side

::::::
effects

:
example, the Menzies

:
IS

:
method has a similar

computational cost to the other three methods. However, it is estimated based on a reduced simulation
size; if all 100,000 PA simulations are used, the computation time is greater than 2 hours. For the
Chronic Pain

::::
pain example, the Menzies

::
IS method is noticeably slower as the computation time for the

likelihood increases when the proposed sample size of X is larger.

Case Study
Computational Time (mins)

Nested MC RB IS GA MM
1: Chemotherapy side
effects

37646 5.35 4.56 8.20 2.01

2: Chronic pain 223200 12.05 86 22.27 2.46
3: CRC screening ∗ 27.24 91 7.17 492

Table 4: The computational time required to produce EVSI estimates for the five methods under con-
sideration for the three case studies presented in this review.

For the CRC screening example, the Jalal et al.
:::
GA method is fastest because, even though N0 is

estimated through nested MC simulation, it must only be computed once to estimate the EVSI across
sample size. In contrast, for the Strong et al.

:::
RB

:
method, X is summarized by finding the maximum
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Figure 8: EVSI estimates for the four methods under consideration for the CRC
::::::::
screening model. EVSI

is calculated for 9 different sample sizes for the future trial and is plotted across sample size. The sample
size is plotted on the log scale with the sample sizes marked on the natural scale. The EVPPI, computed
using the Strong et al. EVPPI computation method [41], is included as a black line on this Figure.

likelihood estimates (MLE) for g and λ1 that must be estimated, using relatively slow computational
optimization procedures, for each sample Xs, s = 1, . . . , S and sample size. Thus, estimating the
summary statistics is slow in this case study. The Heath et al.

::::
MM

:
method is more computationally

expensive as the underlying probabilistic sensitivity analysis for the CRC
::::::::
screening

:
health economic

model is expensive and must be rerun Q × S = 250, 000 times to compute EVSI. The computational
time of the Menzies

::
IS method is similar to the previous case studies.

Discussion

The paper uses three case studies to assess
:::::::
compare

::::
the

::::::::
accuracy

::::
and

::::::::::::::
computational

::::
time

:::
for

:
four

novel methods for approximating EVSI . These methods were developed in response to the immense
computational burden required to estimate EVSI using nested MC simulations. As these methods were
developed concurrently, no

:
as

:::
no

::::::::
previous

:
head-to-head comparison had previously been undertaken

::::
been

::::
done. Additionally, these methods have typically been assessed

::
we

::::::::
assessed

:::
the

::::::::::::
performance

::
of

::::::
these

:::::::
methods

:
using health economic models designed for computational simplicity rather than reflecting

real-life decision making.
Thus, we compared these four methods using case studies designed

::::
that

:::::
were

::::::::
designed

:
to cover a

number of different trial designs, interventions and health economic model structures.
::::::

Thus,
:::
we

::::::::
assessed

:::
the

:::::::::::
comparative

::::::::::::
performance

::
of

:::::
these

::::::::
efficient

:::::
EVSI

::::::::::
estimation

::::::::
methods

::::::
across

::
a
::::::::
number

::
of

:::::::::
scenarios

that may make the EVSI estimation more challenging.
In general, the EVSI estimates were

::
are

:
accurate when the underlying assumptions for the respective

methods were met , highlighting the importance of checking these assumptions. It should be noted,
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however, that appropriately assessing accuracy is challenging because differences in EVSI estimates could
lead to alternative future research recommendations, even when the difference is small. The appropriate
level of accuracy for EVSI estimates will, therefore, depend on the decision problem. Estimates should
be accurate enough to ensure that the future research recommendation would not be expected to change
if the estimates are made more accurate.

In general, the
::::
and

::::
can,

:::::
thus,

::
be

:::::
used

:::::
with

:::::::::
confidence

:::
in

::::::::
practice.

::::
The

:
computational complexity of

these methods varies for different health economic models, different sampling distributions for the future
data, and depending on whether optimization over different sample sizes is required. This analysis has
highlighted that the Menzies

::::::::
Although,

::::
the

::
IS

:
method is generally more computationally intensive than

the other methods.
Additionally, this analysis has highlighted that there is not a single systematically superior

::
In

::::
this

:::::::
analysis,

:::
we

:::::
have

:::
not

:::::::::
identified

::
an

::::::::
efficient EVSI estimation method

::::
that

::
is

::::::::::::
systematically

::::::::
superior

::
to

::::
the

::::::::::
alternatives. Specifically, the “optimal” estimation method trading

::::
that

::::::
trades

:
off accuracy, precision,

computational time and ease of implementation will change depending on the health economic model
structure, proposed trial design and analyst expertise . Thus, these methods should also be compared
on their ease of implementation.

:::
[42]

:
.
:

While future research is required to fully articulate the relative strengths and limitations of these
methods for different health economic models and trial designs

::::::::::
Nonetheless, the analysis in this paper has

emphasized some distinctions between the methods. Firstly, the Strong et al.
:::
RB

:::::::
method

:
is accurate and

efficient, provided the analyst can correctly summarize the trial data and fit a regression model, which
in some settings can be challenging either statistically or computationally. The Menzies

::
IS

:
method is

accurate but computationally expensive for large PA simulation sizes. The Jalal et al.
:::
GA

:
method is

efficient when estimating EVSI across sample size
::::
sizes

:
but often requires nested posterior sampling when

considering realistic data collection exercises and
::::
also relies on an accurate “linear” model

::::::::::
metamodel.

Finally, the Heath et al.
::::
MM

:
method is accurate and efficient when the health economic model has a low

computation time but becomes more unfeasible as the model run time increases. The Jalal et al. and
Heath et al.

:::
GA

::::
and

::::
MM

:
methods require expertise in Bayesian methods/thinking. The Menzies

::
IS

method requires the repeated evaluation of the likelihood function, and hence relies on this function
being both known and computationally tractable.

:::::::
Beyond

:::::
these

:::::::::
remarks,

::::::
future

::::::::
research

:::
is

::::::::
required

:::
to

:::::
fully

:::::::::
articulate

::::
the

:::::::
relative

:::::::::
strengths

:::::
and

:::::::::
limitations

:::
of

:::::
these

:::::::::
methods

:::
for

::::::::
different

:::::::
health

:::::::::
economic

:::::::
models

::::
and

:::::
trial

:::::::
designs

::::
and

:::
to

::::::::
support

:::
the

::::::::::
widespread

::::::::::::::
implementation

:::
of

:::::
these

::::::::
methods.

:

A Inputs for the Chemotherapy Side Effects Model

Model Input Distribution 1st Prior Parameter 2nd Prior Parameter Previous Data
π0 - Probability of adverse events Beta 1 1 Number of adverse events
ρ - Reduction in adverse events with
treatment

Normal Mean: 0.65 Precision: 100 No

q - QoL weight with no adverse events Beta 18.23 0.372 No
Γ1 - Probability of hospitalization Beta 1 1 Number of hospitalizations
Γ2 - Probability of death Beta 1 1 Number of deaths
γ1 - Daily transition probability to hos-
pital

Γ1

15 - - -

γ2 - Daily probability of death Γ2

15 - - -
λ1 - Daily probability of recovery from
home care

Beta 5.12 6.26 No

λ2 - Daily probability of recovery from
hospital

Beta 3.63 6.74 No

Cost of death LogNormal 8.33 0.13 No
Cost of home care LogNormal 7.74 0.039 No
Cost of hospitalization LogNormal 8.77 0.15 No
QoL weight for home care Beta 5.75 5.75 No
QoL weight for hospitalization Beta 0.87 3.47 No

Table 5: The prior specification for the parameters underlying the Chemotherapy example including the
distributional assumption and its parameters. Unless specified, the parameters are specified in the order
used in the JAGS language for Bayesian updating. We indicate whether the stated prior is combined
with data in the probabilistic health economic model.
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