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Abstract

A situation is considered in which a suspect has been found whose 

DNA profile matches that of a sample, assumed to originate from the 

offender, found at the scene of a crime being investigated.

The way in which this evidence should be used is reviewed, high­

lighting the role of the match probability, the probability of a particular 

individual having the profile in question given the suspect’s possession of 

the profile, and a database of individual profiles. The value of this prob­

ability is affected by the heterogeneity of the population, and failure to 

take account of this could result in a false conviction.

A Bayesian hierarchical model designed to represent population sub­

structure is presented. Parameters are clearly defined at each level within 

a model displaying justifiable conditional independence properties. This 

model is then used as a basis for inference about the required match 

probabilities, highlighting errors in previous approaches.

As the match probability calculations described are impossible analyt­

ically, we use MCMC methods to analyse a UK database of DNA profiles. 

A comparison of results with those of previous methods highlights the 

practical importance of a clearly defined hierarchy and conducting the 

correct conditioning upon the database.
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1 Introduction

1.1 Background

Over the past ten years, ‘DNA fingerprinting’ has become an important tool in 

the legal world. High profile cases such as the O.J. Simpson trial [Weir, 1995] 

have increased public awareness of the technique.

At any criminal trial, the ultimate aim is to reach a decision regarding the 

guilt of the defendant. It has been argued [Fienberg and Finkelstein, 1996] that 

Bayesian methods provide a sensible framework for reaching this decision. The 

application of such a method would result in a posterior probability of guilt of 

the suspect given the evidence. The suspect would then be convicted if this 

probability is above a certain value.

A DNA profile consists of pairs of observations, one at each of a small number 

of well defined sites, or loci One member of each pair is inherited from the 

individual’s father, and one from the mother. The possible observations at each 

locus are referred to as alleles, each effectively representing a number of repeats 

of a sequence of base pairs (see Appendix A for further detail).

For our purposes, a DNA profile takes the form of a series of pairs of inte­

gers, one pair for each locus considered, each number representing a different 

allele. The empirical frequencies of various alleles at four loci within a Cau­

casian database can be seen in Figure 1. Within this population, the profile 

{(16,17)(7,10)(5,7)(11,11)} would be considered a relatively common profile, 

while {(13,20)(5,8)(8,8)(8,9)} is a rare profile.

In this thesis we consider a situation in which a crime has been committed 

and a tissue sample (possibly blood, hair, semen, etc.) has been recovered from 

the scene. From this sample we have a DNA profile X c  assumed to be that of 

the culprit C.

In addition we have a suspect s whose DNA profile X s  is found to match 

X c -  We denote the known matching profile by y.

Further profiles are available in a database of individuals Ô. This could
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Figure 1: Relative frequency graphs of alleles in a Caucasian database.

comprise a number of suspects, some of their close relatives, a database of kno'wn 

criminals and a “statistical” database drawn from the general population. We 

restrict ourselves to the instance in which â represents a statistical database. 

The collection of DNA profiles from these individuals is labelled Xâ- Other 

(non-DNA) evidence, such as eye witness accounts or alibis, which may appear 

to be for or against the suspect, is labelled e.

Our ultimate aim is to calculate a probability that the suspect is guilty given

11



all the evidence and data available

Pguilt Pr(C7 =  s | ^ C  ~  ^ s  ~  y ^ X ô  — <̂îj )̂-

Application of Bayes’ Theorem allows this probability to be expressed 

[Dawid and Mortera, 1996, Weir, 1994] as

where

— Pr((7 =  — y^XS ~

— P r ( x c ~  y \ c  ~  -Xs ~  y  1 Xs )

i labels individuals, and V  represents the population of possible culprits.

W ithout knowledge of the culprit profile X c , it is reasonable to assume 

that C  is independent of (X s,^j). In this thesis we assume that the sample 

X c  is definitely that of the culprit, and that there are no errors in the process 

establishing a profile from a sample. In reality this is not necessarily so, but

these assumptions allow us to take rris to be 1, and simplify equation (1) to give

where

7Ti =  Pr(C  =  zle),

— Pl^(Xc — y\C — Z, Xa =  y, Xs — ^)-

A priori the members of the database are potential perpetrators. It is as­

sumed that the DNA profile measurements contain no error, and it is therefore 

possible to eliminate any database individual whose profile does not match y. 

Thus, defining a  =  {g} U as the collection of individuals upon whom we have 

measurements.

12



where j3 is the set of individuals in the complete database a  whose profiles match 

the profile y  of the culprit.

To evaluate (3), prior probabilities of guilt must be specified for each indi­

vidual. In particular, members of the jury use the non-DNA evidence to arrive 

at a subjective prior probability tts of guilt of the suspect. Match probabili­

ties can then be used to update these prior probabilities, leading to a posterior 

probability of guilt for the suspect.

A major problem faced is that of evaluating a match probability for 

each of a potentially large number of individuals in the suspect population V. 

The calculation of a match probability for each individual in the population is 

impracticable.

Some methods previously employed have calculated a single match probabil­

ity for all the individuals. These methods, described in Chapter 2, do not take 

reasonable account of genetic relationships between individuals. In Chapter 2 

we consider why it it is important to take account of these relationships, and 

consider how this might be achieved. Chapter 3 introduces a hierarchical model 

designed to incorporate population substructure. In Chapter 4 we consider how 

this hierarchical model can be used to define two statistical models, and how 

these can be used to calculate the required match probabilities. The hierarchi­

cal model provides a framework which is used in Chapter 5 to clearly define the 

roles of various genetic parameters.

As the calculations required to evaluate match probabilities are impossible 

analytically, Markov Chain Monte Carlo methods are introduced in Chapter 6 

as a precursor to their application in Chapter 7.

Other authors, in particular Foreman, Evett and Smith 

[Foreman, Evett and Smith, 1997] and Roeder, Escobar, Kadane and Balazs 

[Roeder, Escobar, Kadane and Balazs, 1998], have published papers working 

under a similar principle of calculating match probabilities taking account of 

population substructure. These papers are reviewed in Chapter 9 and areas in 

which it is felt omissions have been made outlined. To demonstrate why it is felt

13



that the approach of this thesis represents a step forward, match probabilities 

and posterior probabilities of guilt are calculated under the various methods 

described, and compared.

Chapter 10 considers future work, in particular the generalization of our 

method to an unknown number of subpopulations within the population.

14



2 M ethods of match probability calculation

To calculate a posterior probability of guilt for the suspect we require a match 

probability rrii for each individual i in the population V:

— y \ ^ s  — 2/j X.5 — ^5i ^)-

Frequently close relatives of the suspect can be eliminated from the enquiry. 

If they cannot be eliminated, it is important that they be included in the calcu­

lation. If it is impossible to obtain a DNA profile from a close relative, then the 

match probability of that individual should be calculated separately. Two indi­

viduals having recent ancestors in common have a greatly increased probability 

of inheriting common genes. This means that, for a close relative of the suspect, 

the probability that they have the profile y  given that X s  = y  will generally be 

much higher than for unrelated members of the population, reducing the weight 

of evidence against the suspect. Derivation of close family match probabilities 

is described by Donnelly [Donnelly, 1995].

For the remainder of the thesis we concentrate upon methods for match 

probability calculation for members of the general population.

In this chapter we consider methods of match probability calculation previ­

ously presented in court. The errors in these methods are highlighted, leading 

to an outline of the philosophy employed in this thesis.

2.1 Product rule

The initial method used to calculate the match probability of the offender em­

ployed the product rule [NRC, 1996].

We define gj{k) as the relative frequency of allele k at locus {j = 1 , . . . ,  M)  

within the population under consideration. Under the product rule, the match 

probability is then defined as

M

rrii =  n  (4)
3=1

15



h{r, s) = <

where yjb refers to allele b of the pair observed at locus j  of the suspect profile, 

and
0 if r  =  5 ;

1 if r  ^  s. 

for all individuals i.

This is estimated by substituting empirical relative frequency estimates from 

a suitable database into the product in equation (4).

Derivation of equation (4) requires the assumption of independence of profile 

alleles across loci. To accept this method, one must also consider mating to be 

random across the whole population. This is not a valid assumption, and its use 

can result in prejudice against the suspect.

2.2 Taking account of population substructure

Within a large population, mating cannot be considered random. Individuals 

within sections of the population are more likely to mate with another individual 

in that section than with someone outside it.

We approximate this situation with a model which divides the population 

into discrete subpopulations within which individuals are considered randomly 

mating. These subpopulations are considered to have evolved from a large an­

cestral population, as outlined in Figure 2.

One interpretation of these subpopulations within, say, an American Cau­

casian population would be as groups of people whose ancestors came from 

various countries of Europe. More usually, however, these subpopulations are 

mere artifacts of the model, designed to reflect the fact that individuals within 

a large population do not mate at random. It is thus difficult to clearly define 

these subpopulations, and to allocate individuals to them in the way that we 

could allocate, say, by nationality.

The ceiling principle and interim ceiling principle were recommended by the 

first NRC report [NRC, 1992] as methods of match probability calculation ac­

counting for population substructure.

16
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Figure 2: Population substructure model.
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The ceiling principle was designed to give a deliberately conservative estimate 

of the match probability, i.e. greater than the true value. Its execution involves 

the use of samples from a number of subpopulations and for each allele taking the 

highest frequency among the groups sampled, or 5%, whichever is larger. The 

bound on the profile frequency is then obtained by multiplying together these 

individual allele limits. As the subpopulations are not usually clearly defined in 

terms of observable characteristics, it is difficult to obtain the samples required.

As a result of this difficulty, the interim ceiling principle was developed. This 

has been widely used. The rule states that “In applying the multiplication [of 

frequencies across loci] rule, the 95% upper confidence limit of the frequency 

of each allele should be calculated for separate ‘racial’ groups and the highest 

of these values or 10% (whichever is larger) should be used. Data on at least 

three major ‘races’ should be analyzed.” The ceiling principle has been heavily 

criticized [NRC, 1996]. A clear flaw in the interim ceiling principle is tha t it will 

give the same limit regardless of the racial group of the individual concerned.

Weir [Weir, 1994] introduced a method far more satisfactory than the ceiling 

principle. Relating posterior odds to prior odds in the manner outlined in Chap­

ter 1 , he too stressed the need to take into account the dependence between the 

profiles of culprit and suspect when calculating match probabilities.

Wright [Wright, 1951] introduced parameters Fs t : Fit  and Fis to summarise 

substructure within a population. They are defined as the correlations of genes 

of different individuals in the same subpopulation, of genes within individuals 

and of genes within individuals within populations respectively. This definition 

of “correlations” is unclear as when defining correlations it is necessary to be 

clear upon what we are conditioning. Population structure can be considered to 

be of a hierarchical nature (Figure 2 ). Assuming such a structure, statements of 

relative correlation should be made with reference to the characteristics observed 

at a specified level of the hierarchy. Later studies have introduced quantities 

supposedly equivalently to those of Wright. However, consideration of these 

parameters with the conditioning suggested by their definitions shows tha t they

18



are not equivalent. This further clouds the study of population substructure and 

is discussed in more detail in Chapter 5.

However the principle of introducing a parameter to govern subpopulation 

differentiation within the above model is a very important one. Weir [Weir, 1994] 

considered the effects of inbreeding on forensic calculations using this parameter 

based method.

Two genes at a locus are defined as being identical by descent (ibd) if they

have the same ancestral gene. Weir defines a number of measures of descent

affecting the probabilities of observing a particular set of four genes within two 

pairs. These include

0 the probability that any two genes at a locus are ibd;

7  the probability that any three genes are ibd;

6 the probability that any four genes are ibd;

A the probability that any two pairs of genes are ibd.

Single locus match probabilities

rrii =  =  { y i , y 2 ) \ X s  =  (?/i, 2/2 ), 7, A)

when the individuals i and s are assumed to belong to the same subpopulation 

are derived to be

[(1 — 6 ^ +  8 7  +  3A -  6ô)pi 

+6(0 -  2 7  -  A +  26)pi if yi = 2/2

+ ( 4 7  +  3A -  75)pi +  (5] /  [pi +  (1 -  Pi)9] ; 

rrii =  (5)

[(1 -  60 +  8 7  +  3A -  dô)piPj

+2(0 — 2 7  — A +  20){pi +  pj) if yji ^  yj2

+ 2 ( A - ( ^ ) ] / ( l - 0 ) .

If the population under consideration is in evolutionary equilibrium, the 

quantities 0, 7 , 6 and A are not changing over the time. Li [Li, 1996] showed 

that in this instance 7 , 6, and A can be expressed in terms of 0:

20^
7  = 1 +  0 

19



602à =

A =

(l +  0 )(l +  2 0 ) 
^2(1  +  5^)

(l +  0 )(l +  2 0 )

Substituting these expressions into the conditional probabilities (5) gives expres­

sions in terms of 0 and population-wide allele frequencies 7 . These are similar in 

form to those determined by Balding and Nichols [Balding and Nichols, 1995]. 

If, at a particular locus, the matching gene pair is homozygous (i.e. the two 

alleles displayed are similar),

(2 0 + ( 1 - 0)7 (î/i ))(3 0 + ( 1 - 0)7 (î/i ))
( l  +  0 ) ( l  +  20) ’

and if it is heterozygous,

_  „ (0 +  (1 -  0)7 (01)) +  (1 -  8)y{y2))
(l +  0 )(l +  2 0 )  ̂ ^

Weir and Evett [Weir and Evett, 1998] discuss methods of estimating the 

coancestry coefficient 6 given data from a number of subpopulations. However, 

because of the difficulty in allocating individuals to subpopulations, they suggest 

two possible alternatives to the problem of estimating match probabilities taking 

into account population substructure.

The first is to refer to previous studies of human population structure such 

as that by Cavalli-Sforza et al [Cavalli-Sforza et al, 1994]. Assuming that popu­

lations similar to that under consideration have been studied, appropriate esti­

mates can be substituted into equations 6  and 7.

The other alternative covered was proposed in the second NRC report 

[NRC, 1996] which was produced following heavy criticism of the ceiling principle 

and other aspects of the initial report. The NRC recommended the substitution 

0Î9 = 0.03 into equations (6 ) and (7) when suspect and culprit are considered to 

come from the same subpopulation. This is larger than most empirical estimates 

meaning that the resultant match probability estimates should be conservative.

Foreman et al [Foreman, Evett and Smith, 1997] introduced a Bayesian 

model to represent population substructure. This is used to make inference

20



about the posterior distribution of 6 conditional upon a database of individual 

profiles. The problem of a lack of subpopulation data is overcome by allowing 

the individuals to be partitiioned into a specified number of groups, their like­

lihood assigning most weight to those partitions grouping individuals with the 

most similar profiles. The results are then combined with the theory of Balding 

and Nichols to produce match probability estimates in the presence of popula­

tion substructure. The paper of Foreman et al is discussed in more detail in 

Chapter 9. It proposes the calculation of two match probabilities, one condi­

tional on the suspect being in the same subpopulation as the culprit, and one 

conditional on the two being in different subpopulations. In this thesis we calcu­

late r) match probabilities, each conditional on the suspect being in a particular 

subpopulation (Vi; / =  1 , . . . ,  77).

As random mating is assumed within each subpopulation, all individ­

uals within a particular subpopulation are considered to be exchangeable 

[Dawid and Mortera, 1996]. This means that

P r(X i =  y \Xa =  (8)

is constant for all individuals i (outside the database a) in subpopulation Vi. 

This probability will be referred to as the subpopulation match probability mi. 

Assuming that there are 77 subpopulations, the denominator of the posterior

probability of guilt of the suspect (equation (3)) becomes

^  7T̂ -H Pr(C 0 a) ^  AfTTTf, (9)
ie/3 1=1

where A, =  Pr(C  e Vi\C ^  a).

Calculation of the subpopulation match probabilities (mi] I =  1 , . . . ,  77) is 

based upon the Bayesian hierarchical model outlined in Chapter 3 and is de­

scribed in detail in Chapter 4.

US courtrooms currently follow the methods of the second NRC report when 

dealing with the problem of population substructure in the context of the pre­

sentation of DNA profiling evidence. Databases are now available for a number 

of racial groups, and there is an argument [People vs. Soto, 1999] that mating
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within racial groups is of a sufficiently random nature as to justify the use of 

the product rule in the calcualation of match probabities. This is not so, and 

this thesis is particularly concerned with presenting the correct method of match 

probability calculation. In doing this we are careful to apply the correct condi­

tioning throughout to ensure that the information supplied by the database is 

properly utilised.

22



3 The Hierarchical M odel

3.1 Introduction

The population model described in Chapter 2 displays a clear hierarchical stuc- 

ture with the following three levels:

(i) ancestral population;

(ii) subpopulations, descended from the ancestral population;

(iii) individuals, within the subpopulations.

3.1.1 Exchangeability

Assumptions of exchangeability feature heavily in this model. Variables 

X i , . . . ,X n  are considered exchangeable if their joint probability distribution 

f { x i , . . .  ,Xn) is invariant to permutations of the indices, i.e. there is no in­

formation conveyed by the unit indices themselves.

We assume that, before observing any data, we have no way of distinguishing 

subpopulations, or individuals within subpopulations. We therefore apply the 

assumption of exchangeability to the units at stages (ii) and (iii) of the above 

model.

It is generally appropriate to model exchangeable variables as independently 

and identically distributed (iid) given some unknown parameter 6, say, with 

some distribution p{9). This arises from de Finetti’s theorem which states that 

in the limit as n —>• oo, any suitably well-behaved exchangeable distribution on 

( xi , . . . ,  Xn) can be written in the iid mixture form

p(æ) =  j
- 2 = 1

p{6)d9.

This property is particularly useful in the field of hierarchical modelling in which 

it is often desirable to model the variables at a particular level to be independent 

and identically distributed given those at the level above.
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The structure and exchangeability properties assumed mean that the pop­

ulation model described is readily translated to a Bayesian hierarchical model 

involving parameters that can be interpreted in terms of genetic characteristics.

3.2 Outline of the model

The profile X i  of an individual i is a collection of genotypes, one at each of M  

loci. The genotype at locus j  consists of a pair of values from a finite set IZj of 

alleles. The set I tj  consists of Vj consecutive integers, and at this point we map 

this series onto the sequence (1, . . . ,  rj). One member of the pair (the paternal 

hand) is inherited from the father, the other (maternal band) from the mother. 

Generally we would not know which of the pair was the paternal band. However, 

as it simplifies the notation while making no difference with regard to inference 

from the database profiles, we consider the paternal and maternal bands to be 

distinguishable. These bands are labelled by 6 =  1 (paternal), 2 (maternal). It is 

important to note that, when considering a match between the crime sample and 

the suspect s or a ‘random’ individual z, we must take account of the fact that 

the bands are not truly distinguishable when calculating match probabilities.

The full DNA profile for individual i is

X i  =  {Xijb\j =  1 , . . . ,  M; 6 =  1 , 2 }.

However, during this chapter, when describing the model we assume that 

the subpopulation of each individual is known. This allows us to define an 

alternative notation, replacing Xiji  by Xihjb representing band b at locus j  of 

individual h within subpopulation I.

The model outlined can be represented by the directed acyclic graph of Figure 

3. Circular nodes represent parameters which are unknown, while rectangular 

nodes represent known quantities. An arrow between two variables represents 

a direct influence of one upon another. Once all direct influences upon a node 

are known, all other potential influences are considered irrelevant. A double line 

represents a deterministic link.
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Figure 3: DAG for the case of complete information (at a fixed locus j), introducing 

the parameters of the hierarchical model.
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We consider a heterogeneous population, consisting of (large) subpopulations 

labelled by / =  1 , . . . ,  77, and propose the following 3-stage hierarchical model:

S tage 1 It is assumed that, conditional on some collection { G  = 

(Gij[l) , . . . ,  Gij{rj))] / =  1, . . . ,  77; j  =  1, . . . ,  M }  of “within-population” parame­

ter vectors, there is independence of the values {Xijb) across bands within a pair, 

across loci, and across individuals. We then have, for each individual i e V i

PT{Xihjb = k\G) = Gij{k), independently for all {h,j, b, I). (10)

With reference to the “genetic model” described earlier, Gij{k) could be inter­

preted as a limiting relative frequency of allele k at locus j  in subpopulation Vi, 

if the size of that subpopulation tends to infinity.

S tage 2  As we consider the subpopulations exchangeable, it is appropriate, 

at a fixed locus j ,  to treat [Gij] I = 1 , . . . ,  77) as independently and identically 

distributed given some distribution II.

The distributon II can be chosen based upon a genetic model, 

such as that described by Balding and Nichols [Balding and Nichols, 1994, 

Balding and Nichols, 1995]. At this point we introduce parameters {9j, 7 ^), both 

with a genetic interpretation at the ancestral population level. We consider 7  ̂

to be a probability vector representing the mean, at locus j ,  of the process gener­

ating subpopulation allele probabilities. To govern the variance of this process, 

we define 9j. Such subpopulation differentiation parameters are mentioned fre­

quently in population genetics literature and are discussed further in Chapter 

5. Assuming that the model of Balding and Nichols is reasonable, there is some 

justification for the use, for IT, of the Dirichlet distribution:

Gij ~  Dirichlet(aj(l), aj{2) , . . . ,  aj{rj)), independently for all /, j, (11)

conditionally on hyperparameters (oj(l), Uj(2 ) , . . . ,  aj{rj)), where aj =

Under this distribution,

HGij{k)\'y,e] = = nfj(k), (1 2 )
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where % (+) =  The variance of the subpopulation probabilities

generated is then given by

=  Sj'fj(.k){l ~  jj{k)).  (13)

S tage 3 Finally, we need to give a distribution to II (or, equivalently, to (7 , 6)). 

Assuming 7  and 0 to be independent, a reasonable prior for a  would be based 

upon

7 j ~  Dirichlet{a^j{l), . . .  ,a^j{rj));

6j ~  Beta(ug,6g);

where (aj^ag^be) are hyperparameters to be chosen.

This model can be used as a reference point for a discussion of the pub­

lished methods of tackling the problem of DNA identification using heterogenous 

databases. Of particular interest in a number of studies is the parameter describ­

ing subpopulation differentiation. In this instance, 0 is a parameter controlling 

the variance of allele frequencies generated. An alternative parameter could be 

defined to summarise the variation actually observed in the subpopulations 1 to 

V-
In many cases such parameters are confused and interchanged. Chapter 5 

compares these parameters and clearly distinguishes them using the hierarchical 

framework outlined in this chapter.

3.3 Introducing extra levels to hierarchical models

It has been suggested that subpopulation specific differentiation parameters 

[9i\l = 1, . . . ,??) should be used. This adds an extra level of complexity to 

the model, but could be justified if it gives greater flexibility.

To investigate whether or not this is indeed the case, we must compare the 

models with and without subpopulation specific differentiation parameters. To
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Figure 4: DAG for the case of complete information (at a fixed locus j), introducing 

subpopulation specific differentiation parameters.
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outline the method we initially consider a similar model with Normal distribu­

tions, and then go on to consider the model described in this chapter.

It should be noted that adding extra levels of complexity to a hierarchical 

model does not necessarily result in a more flexible final model. An example is 

provided by the following model;

Stage 1

i = 1 , . . .  ^  Normal(m/, cr )̂,

independently across I.

Stage 2

mil/j,, ~  Normal(yU, r^),

independently across I.

Assuming a, // and r  to be known, this 2 stage model can be expressed as 

follows:

A/ =  m/ -t- aZi

where {Zi) is defined to be a collection of independent standard Normal random 

variables, also independent of {mi)]

mi = 11 + t W i

where (Wi) is also a collection of independent standard Normal random variables. 

Then

A/ =  f i  +  { a Z i  +  t W i )^

A/ ~  Normal()U, -f cĵ )

independently across /, i.e. this two stage model can be expressed as a one stage 

model in which (A;) is a collection of independent and identically distributed 

variables with specified mean and variance.

This is an important result which should be borne in mind when working 

with hierarchical models. Adding extra levels in a bid to extend the model does 

not necessarily alter its form.
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If we now consider the following ‘extra’ levels as a potential extension to 

the hierarchical model introduced in this chapter (at this point simplifying by 

considering a univariate Gi for each subpopulation (Vi] / =  1 , . . . ,  77) and a single 

locus):

Stage 1

GiKOi-z =  1 , . . . ,  77, 7 ) Beta ^“ ^ 7 ,  ~  7)1 , (14)

independently across {l]l = 1 , . . . ,  77).

Stage 2

6i\6 Bei3i{k6,k{l — 6)), (15)

independently across I, where k is a fixed parameter. The density of G{=  

(Gi, . . . ,Grj))  is given by

/(G |e ,7 )  =  I  f iG \0 ,0 , j ) .n{0 \e )d9 i . . .de^

=  /  n / ( G 'l l f t ,7). n ^W 9 )d 0 i  ■■■d9̂

The probability density function of G  conditional upon ^ is a product of 

identical terms, one for each subpopulation /, i.e. the subpopulation allele fre­

quencies {Gi, . . . ,  Gr,) are independent and identically distributed.

This is to be compared with the simpler model originally introduced:

G/16>,7 ~  Beta ~ y ~ ( l  “  7) j

independent across I, identically distributed with density
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The thinking behind the introduction of the extra level in the hierarchy is 

that it increases the flexibility of the model, and that it reflects more closely 

the population substructure exhibited in the ‘real world’. However, it can be 

seen that the form of the model is essentially unchanged. In both cases, con­

ditional upon (0 , 7 ), the random variables (G^) are independent and identically 

distributed.

Adding the extra level will lead to a greater degree of complexity in the

model, increasing the difficulty in calculating results of interest. It is therefore

appropriate to fully establish its necessity before including it in the model to be 

used as a basis for calculations within this thesis.

The conditional expectation and variance of Gi given (0,7 ) are calculated as 

follows:

E[G,|7,^] =  E[E[G,|^z, 7,^117,^]

=  E[7|7,0]

=  7 . (16)

Var(G/|7 , 0 ) =  E[var(G/|^z, 7 , 0 ) |7 , 0]

+var(E[Gi|0;,7,6>]|7,6>]

=  E[6a{l -  7 ) I7 , e] +  var(7 |7 , 9)

= M l - 7 ). (17)

This means that the parameters of the simpler model can be selected to give 

a conditional mean and variance of Gi equal to the those of the ‘extra level’ 

model. This is also true of the multivariate case in which the Beta distribution 

of equation (14) is replaced by

Gi -  Dirichlet ^ ^ ^ ^ 7 (1 ), ^ ^ ^ 7 (2 ) , . . . ,  ~ ^ 7 ( 0 ^

If we decide to choose parameters in such a way, differences in the charac­

teristics of the models will be reflected in the higher moments.
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The third and fourth central moments of the more complicated model are as 

follows;

E[(G/— 7 )^17, =  E[Gf — 8 7 ^^ +  37^G/— 7 ^|7 , 0] (18)

E[(G; — 7 )^17, =  E[Gf — 47Gf +  6 7 ^Gf — 47^Gz +  7 ^|7 , (19)

The conditional expectation of Gi given (7 , 6) is known to be equal under 

both models (16), as is the conditional expectation of Of  (17).

E[Gf\^,6] and E[Gf|7 , 0] can be evaluated exactly under the single level 

model and approximated under the two level model:

_ ^  7((1 ~ ^1)1 +  0 f)((l ~  ^/)7 +  2 ẑ) 
~  [ (1 +  0/)
=  E [7 (( l-% )7  +  % )( ( l-0 ,)7  +  2 0 ;)

|7,0

x ( l  ~  0/ +  0f ~ 0? +  • • -)|7 ,0]*

Similarly,

E[G?|7,0] =  E[E[G3|%,7,0,]

X ((1 — 0 ^ )7  +  30/)(1 — 20/ +  40f — 80f +  . . .  I7 , 0].

Non-centralised moments of 0/ are known for given (0 , 7 ) under the Beta 

distribution of equation 15. Expanding these expressions up to 0" (for a chosen 

value of n), the moments can be approximated for chosen values of 0, 7 . The 

use of such approximations is justified by the fact that 0 / is known to be close 

to zero.

Similarly to Foreman at al [Foreman, Evett and Smith, 1997], we have used 

values of k and 0  which give a conservative prior distribution for 0 / (i.e. giving 

a higher probability density to values of 0/ greater than we would expect based 

on previous studies).

The results of tables 1 and 2 are based upon a chosen value of n == 16 in the 

above approximation. It can be seen that under the 2 stage model, the third
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k 9 7 E[(Q  — 7)^11  s t a g e  m o d e l] E[{Gi -  7 ) 5 12 s t a g e  m o d e l]

50 0 .0 2 5 0 .4 5 .8 5  X 1 0 -^ 9 .9 7  X 1 0 -5

1 0 0 0 .0 2 5 0 .4 5 .8 5  X 1 0 - 5 7 .9 7  X 1 0 -5

5 0 0 .0 2 5 0 .1 8 .7 8  X 1 0 - 5 1 .5 0  X 1 0 - 4

5 0 0 .0 4 0 .1 2 .2 2  X 1 0 -4 3 .1 5  X 1 0 -4

Table 1: Comparison of third centralised moments of 1 and 2 stage models.

k 9 7 E[{Gi -  7 )4 |1  stage model] E[(Gi — 7 )4 [2 stage model]

50 0.025 0.4 1.04 X 10-4 1.73 X 10-4

100 0.025 0.4 1.04 X 10-4 1.40 X 10-4

50 0.025 0.1 1.95 X 10-5 4.30 X 10-5

50 0.04 0.1 5.57 X 10-5 9.82 X 10-5

Table 2: Comparison of fourth centralised moments of 1 and 2 stage models.

and fourth moments of Gi conditional upon {9,7 ) are higher than those under 

the 1 stage model. This suggests that under the two stage model, there is more 

weight given to higher values of 9, and the distribution is more skewed. However, 

the most important consideration is not if there is a difference between the two 

distributions, but what effect this difference has upon the results of ultimate 

interest, i.e. the match probabilities.

One aim of this thesis is to consider subpopulation differentiation parameters 

in the context of the hierarchy introduced in this chapter. By doing this we are 

looking to clarify the differences between some of the parameters previously 

introduced, and present a framework within which they can be more easily 

compared.

Weir and Cockerham [Weir and Cockerham, 1984] use a model which em­

ploys a subpopulation differentiation parameter at a similar level to our 9. This 

is discussed further in Chapter 5. They propose that subpopulation specific
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parameters are used when subpopulations develop in differing proportions. The 

suggestion is that as subpopulations develop, the variance of allele probabilities 

(G/) is greater for smaller subpopulations. This means that larger values of 6i 

would be required to generate Gi for these smaller subpopulations.

However, the major consideration must be the effect of any extension to the 

model upon our final result. As acknowledged by Devlin et al, estimating a 

number of subpopulation differentiation parameters can be inefficient particu­

larly when, as Foreman et al show, results are unlikely to be greatly affected by 

using a single summary measure 9.

In this work we retain the simpler single differentiation parameter model as 

the choice between these two models does not affect the message given by this 

thesis or the methods followed.

The hierarchical model outlined in this chapter forms the basis of inference 

(Chapter 4), MCMC simulation (Chapter 6 ) and parameter comparison (Chap­

ter 5) in later chapters.
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4 Inference

4.1 Introduction

For each subpopulation Vi, we wish to calculate the subpopulation match prob­

ability

Tfii — P r(J f2 =  y\i G "Pî  Xa — ^a)

for individuals i outside the database a.

To calculate this quantity we shall employ the hierarchical model described 

in Chapter 3. This requires the specification of a model generating the data, 

and a prior.

At this point we introduce an additional variable (A) to represent the sub­

population label of each individual i. Assuming there to be rj subpopulations, 

this variable can take values (1,...,??). It is initially assumed that (A) is known 

for all individuals (including the suspect) in the database a.

As Dawid [Dawid, 1986] describes, in a general case there is no reason that a 

particular combination of model density f {x \0)  for observables X  given param­

eters © and prior 7t{0) should be regarded as the only option. Any combination 

of model and prior which implies the same marginal distribution upon X  is 

equally valid. When a choice exists between such combinations of prior and 

model, selection will depend upon the particular application being considered. 

A hierarchical model such as that employed in this thesis provides a clear ex­

ample of this principle.

By ‘splitting’ the hierarchy at a particular level we define our parameters as 

the variables at that level. The model density is then defined as the distribution 

of the observables given these parameters, and the prior is given by combining 

the higher levels. We have a choice of which level to split the hierarchy at, 

each option defining a different combination of model density and prior. It must 

be emphasized that, at whichever level the split is made, the resultant model 

density and prior will imply the same marginal distribution for our data, and 

hence the same values for match probabilities.
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The specific hierarchical model considered here provides a choice of two levels 

at which the described split can made.

Figure 5 shows a directed acyclic graph (DAG) representing the Bayesian 

hierarchical model of Chapter 3.

When such a structure is used for diagnostic purposes, it is referred to as a 

probabilistic expert system [Cowell, Dawid, Lauritzen and Spiegelhalter, 1999]. 

The system provides a tool for specifying the joint distribution of all variables. 

For our purposes, the ‘irrelevancies’ summarised in the DAC describe conditional 

independence properties. For example, G  can be seen to be independent of 

conditional upon a.

The additional labels on the DAC highlight the two possible statistical mod­

els.

Sections 4.1.1 and 4.1.2 consider these models in turn, before Section 4.2 

considers inference about the match probability m/.

4.1.1 M odel I

Under model I, the likelihood is defined by the distribution of the data given the 

“parameter” G, the collection of subpopulation allele probability vectors (G{). 

Calculation of the prior involves collapsing two levels to give a conditional dis­

tribution for G  given the collection of hyperprior parameters ug, he) across 

the loci j  =  1 , . . . ,  M. Thus, the posterior distribution of our “parameter” G  is 

given by

f {G\xa  = I )  oc Pr(xa =  & |G , / ) . 7r(G |a^, ug, he).

Under this model, the individuals are independent given the parameter, mak­

ing the likelihood a straightforward expression (still considering maternal and 

paternal bands to be distinguishable),

M

P^(%a — ^a\G,I)  =  %% %% G i-j{Xij\)G ^
iEa j=l

where a  = {5} U is the database expanded to include the suspect, and Xijb is 

the allele observed at (the distinguishable) band h of locus j  in individual i.
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MODEL IIMODEL I
hyperprior

population

subpopulations

individuals

Figure 5: DAG for the case of complete information (at a fixed locus j), highlighting 

the two possible models. At this point we are assuming subpopulation identifiers (!{) 

known for each database individual.
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The subpopulation allele probabilities (Gi) are not independent given the 

hyperparameters (a^j, a^, bg), but exchangeable. This makes the prior more 

difficult to derive:

7r(Glaj,a0,bd) = E[7r(G|a, ug, oo, 6g]

=  J  TT{G\a)7r{a\ary,a0,be)da (2 0 )

=  / • s s î i g ? g i i î r . w ' » »
_r(aj(+))

( = 1 J = J  ^

a^ j{ k ) - l \  /  1 \ ae+rj-4

i S l S r a J  j l ^ w T î j  ™

This expression for 7r{a\aj,ae, bg) is explained in more detail in Appendix B.

Equation (21) involves an integral across all {aj{k),j  = =

l , . . . , r j ) ,  where aj(k) > 0. The form of this integral makes its calculation 

impossible using algebraic methods.

4.1.2 M odel II

Under model II the “parameter” is now a, and the prior is simply the prior 

of ttj {= ^ ^ 7 j) derived in Appendix B. This prior assumes, at each locus j ,  

independence between the ancestral population allele probabilities 7  ̂ and the 

subpopulation differentiation parameters 9j:

~  Dirichlet(a.yj (1) , . . . ,  a^j(m^));

6j ~  Beta(u0, 6g).

The likelihood involves collapsing the lower levels of the hierarchy to give the 

distribution of the data conditional upon the parameter a. Conditional upon 

a, knowledge of an individual’s profile increases the information available upon 

his subpopulation’s allele frequencies, and thus affects the probability of a fellow 

subpopulation member having a particular profile. We can therefore see that 

the individuals are not independent given the “parameter” , but as there is no
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reason to distinguish individuals a priori, they are exchangeable. The likelihood 

is

Pr(Xa =  =  E[Pr(xa =  ^a\G,a, I)\a, I]

=  / g P r ( X a  =  Ç . l G , r ) . 7 r ( G | a ) d G
p M

— n  n  Giij{xiji)Gi-j{xij2)
i ea 7=1

T] m

n n
i=i j=i

where nij{k) is the number of alleles of type k at locus j  in subpopulation I 

observed in the database. Given the subpopulation allele probability vectors 

{Gij), these numbers (riij) have a multimomial distribution,

{nij{l),nij{2) , . . . ,  nij{rj)) ~  M ultinom ial(G(/l), G z/2 ) , . . . ,  Gij{rj)).

Thus, under model II, the posterior

f{a\Xa = oc Pr(xa =  ^a|a)-7r (a |a ^ ,a 0 , 60)

for the chosen parameter is available up to a constant of proportionality.

4.2 Inference under the two models

The subpopulation match probability

nil — — 3/ 1̂  G 0  O!, Xq — ^aj P)

can be expressed as a posterior expectation of a function of either the model 

I parameters (Gij) (see (24) below) or the model II parameters (aj) (see (25) 

below),

'^1 = 1^   ̂ G Vi, / ,  Xa =  ^ a ) /(0 |î  ^ V i , I , X a  = ^a)d(f>, (22)
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where 4> represents the parameters under the chosen model.

Dawid [Dawid, 1986] notes that if we have data X q and wish to predict 

further observables X i  it is often desirable to use a model in which, given pa­

rameters 9, X q  and X i  are independent. This means that the general predictive 

density of X i  given Xq,

f{xi \xo)  =  j  f {xi \ e , Xo) . f {9\xo)d9

simplifies to

I  f ( x , \ e ) f ( 0 \ xo)d0 , 

the expectation of the density f {x i \9)  with respect to the posterior distribution 

of 9 given the observed data Xq.

This property is achieved by model I, under which the culprit’s profile is 

independent of the observed data given the parameters (G;), implying that

Pr(Xi =  x\i  G 'Pi, Xa — â)

=  Pr(Xi =  y|i e  V,, G) f {G\ i  e P i , X a =  U d G .  (23)

In this instance, however, there is no great advantage provided by this property, 

as under model II the probability of the culprit’s profile given the parameter 

and data is reasonably straightforward to calculate (see (25) below).

As an aside, it is interesting to note that in their consideration of this prob­

lem, Foreman et al [Foreman, Evett and Smith, 1997] make a similar simplifica­

tion to that above, calculating the expectation of the probability of the culprit’s 

profile given their chosen parameters and the suspect’s profile only. However, as 

is described in Chapter 9, the model specification made by Foreman et al does 

not justify the assumption of independence between the culprit’s profile and the 

data conditional upon the parameters.

The match probability can be expressed as the following expectations;

mi =  'E[FT{Xi =  y \ G, i  e Vi , I , Xa  =  ^a)\l ^Pl , I , Xa  =  â]
M

=  =  ( . ]  ( 24)

= E[m\^ \̂i e Vi , I , Xa  =  â],
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where := .Gfj(r/j2) and

h(r, s) =  0  if r  =  s;

=  1 if r  ^  s.

Also,

M

mi = E [E [n  2'‘'W'*'>^)G„fei).Gy(%2)|a, i e  V,, J , Xa =  &]
j = l

|z G 7^1, I ,  Xa  — «Ca]

j=i k ( + )  +  ’̂ o(+))(^j(+) +  ^u(+ ) +  1 )
N e ? , , / , % «  =  &] (25)

=  E[mp^N G 'P/ , / ,  Xa =  ^a], (26)

w V i P r P  • -  ( ° j i ^ n ) + ^ i j ( % i ) ) K ( y j 2 ) + n p - ( % 2 )+ < * j )
wnere rrii . -  llj= i /  (a;(+)+n(;(+))K(+)+nu(+)+i)

0  if Vji f  2/j2 

 ̂ 1 if Vji = Vj2

Ideally we would calculate one or both of the expectations in equations (24) 

and (25) by integrating over the posterior distribution of the appropriate pa­

rameters.

The posterior distribution of G  cannot be calculated even to proportionality. 

The posterior of a  can be calculated to proportionality, but the integration re­

quired to evaluate the normalizing constant is not feasible using non-numerical 

methods. The desire for an inexpensive, easily applied method would then dic­

tate that a reasonable approximation to the match probability mi be considered. 

This is where model I provides a more satisfactory answer, assuming that we 

know the subpopulation labels (A) of each individual.

If the database a  contains extensive data from subpopulation Vi, the expec­

tation of (24) can be approximated by a consistent estimate, for example

M   ̂ ^

=  n  (^j{y)Gij{yji)Gij{yj2), (27)
3=1
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where Cj(y) = and Gij = representing the number of

alleles of type k observed at locus j  within individuals of subpopulation Vi  in 

the database. It should be noted that (n/j) is only known if the individual 

subpopulation labels {Ii) are known.

While data from a large number of individuals will provide a consistent 

estimate of Gi which can be used to estimate the match probability, it is not 

generally possible to employ a similar approximation if the statistical model 

specified defines a as the parameter. As noted, a very large database will provide 

a large amount of information upon each set of subpopulation allele frequencies 

G[. The collection of subpopulation frequencies at locus j  [Gij] I = 1 , . . .  ,ij) can 

be considered a random sample generated from the D irichlet(aj(l),. . .  ,% (rj)) 

distribution, with
1 - 9

— 'o' (7 7 (1)5 • • ' 5 7 7 (^7)),

where (6j) is a collection of subpopulation differentiation parameters and 7  ̂ is 

a vector of ‘ancestral population’ allele frequencies. This means that, however 

extensive the database, the ‘sample size’ from which we may make estimates of 

7  is limited to the number of subpopulations 77. Therefore, under model II a 

consistent empirical estimator of a, which might be substituted in (25) instead 

of calculating the expectation, is not generally available.

Analagous to this situation is the example of a mint producing coins with bias 

varying about a mean, a. Tossing each of a sample of 77 coins a large number of 

times will provide consistent estimates of the bias of each coin [Gi] I = 1 , . . . ,  77). 

However even absolute knowledge of the bias of each of a small number of coins 

will not allow consistent estimation of the mean a of the process generating these 

biases.

A number of simplifications occur if the limit as the number 

77 of subpopulations tends to infinity is considered. Roeder et al

[Roeder, Escobar, Kadane and Balazs, 1998] simplify the likelihood for the pop­

ulation parameters (7 )̂ and {9j) by assuming that the probability of more than 

one database individual belonging to the same subpopulation is negligible. Un­
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der this assumption, all database individuals are independent given these pa­

rameters. The approach of Roeder et al is discussed further in Chapter 9,

4.3 Inference under unknown individual subpopulation  

labels

The assumption that information is available identifying each individual’s sub­

population is generally unrealistic. Therefore, we can no longer condition upon 

I  in the match probability.

Under model I,

=  y |z G Xa ~

=  E[Pr(X i =  y\G, I , i  G Vi,Xa = G Vi.Xa = &]

=  E [ n  e  Vu Xa = &]. (28)

This is identical to equation (24), but excluding the conditioning upon I .  Deriva­

tion of the likelihood of G  now requires a summation over all possible I .  It is 

assumed a priori that subpopulation identifiers (7%) are independent across in­

dividuals. Also assuming that the subpopulation identifiers are independent of 

the subpopulation allele frequencies {Gi):

1{G) =  Pr(x„ = Ç„|G)

= E[Pv(xa = UG, I ) \G) ]

= E
M

iea j=l

where k (1) is the prior probability that an individual chosen at random is a 

member of subpopulation Vi.

This is a sum over 77"“ terms, where ria is the number of individuals in the 

database a. This number of terms is huge for any reasonably sized database.

However, the more important result of losing the subpopulation identifiers 

is that the consistent match probability estimator ?fif is no longer available. 

Calculation of an empirical estimator would now require the above averaging
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across all possible combinations of subpopulation identifiers. If at all possible, 

this would be very computationally expensive, defeating the object of using such 

an estimator.

Under model II,

mi =  Pr(X i =  y\i  e  Vu Xa =  (29)

=  E[E[Pr(Xj =  y | G , a , / , z  G VuXa  =  € VuXa =  («]

I* G VuXa — "Ca] (30)

=  E TT (%(^jl) +  ^/j(^jl))(Qj(^j2) +  ^lj{yj2) +  <̂ j)
j= i  (ûj(+) +  ^0'(+))(%■(+) +  ^ b (+ ) +  1)

\ ^ ^ V u X a  = ^a, (31)

(32)

where ôj indicates yji = yj2- Again, the data are no longer enough to evaluate 

n.

In the absence of an empirical estimator, it would appear necessary to eval­

uate one of the posterior expectations described in (28) and (30). As the inte­

gration required is impossible analytically, an alternative method is required.

4.4 Markov chain M onte Carlo

When direct solutions are unavailable due to the complex nature of the required 

integration, we resort to Markov chain Monte Carlo (MCMC) methods. These 

methods are discussed generally in Chapter 6 , and specific schemes outlined in 

Chapter 7.

It is important to relate ‘real world’ knowledge to the mathematical problem 

at hand. There is a variety of possibilities regarding the state of our knowledge 

of subpopulation identifiers and related quantities such as subpopulation propor­

tions a .  Chapter 8  seeks to describe the effect of varying this knowledge upon 

match probability calculations and consequently upon posterior probabilities of 

guilt.
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5 Measures of subpopulation differentiation

Throughout the extensive literature concerning population substructure, param­

eters which it is claimed quantify the differentiation between subpopulations are 

defined by a number of authors.

Indeed the parameter 0 = {9j\j = 1 , . . . ,  M)  of the model defined in Chapter 

3 can be seen as a subpopulation differentiation parameter. If reasonable models 

are to be developed, it is very useful to be able to relate the parameters of such 

models to meaningful ‘real world’ quantities. W hat does 0 really mean? Which, 

if any, of the population genetics differentiation parameters is it equivalent to? 

These are interesting and important questions which are not always answered 

satisfactorily.

As will be seen in this chapter, the degree of difference between parameters 

which have in some instances been regarded as equivalent is as great as that 

between sample and population variances.

To demonstrate this, the subpopulation differentiation parameters of Nei 

[Nei,1987] and Weir and Cockerham [Weir and Cockerham, 1984] are compared 

in the context of the hierarchical model described in Chapter 3. Papers employ­

ing models of population substructure often make no distinction between the 

two, classing them as equivalent.

To simplify matters, the two allele (0 and 1) single binary locus case is 

considered here, where P r (%*6 =  1 |G) =  Gi for each band (6 =  1 , 2 ) within each 

individual i in subpopulation Vi.

We define n  (= «(/);/ =  1, . . . ,  77) as the collection of prior probabilities of a 

randomly selected individual i being in subpopulation Vi'.

K,{1) =  Fr{Ii = I), 

where (A) is the collection of individual subpopulation identifiers.
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5.1 Nei

Nei considers the fixation index F  to be a function of the parameters defining 

the allele probabilities {Gi) of the 77 actual subpopulations. Using only these 

present generation parameters, no assumption is required about pedigrees of 

individuals, selection and migration in the past.

We define

9 =
/=!

the average of the subpopulation allele ‘1 ’ probabilities, weighted by k .

If the current population is in Hardy-Weinberg equilibrium we have the case 

where 77 =  1 and g = Gi'.

P r(X , =  (0,0)|^,G ) =  ( l - g f - ,

P r(X i =  (0 , l ) | p,G)  =  2 g { l - g ) ;

P r(X , =  ( l , l ) |p ,G )  =  g^.

Following the thinking of Wright [Wright, 1951], any departure from these

Hardy-Weinberg probabilities can be measured by the fixation index F  so that

P r(X , =  (0,0)|^,G ) =  { l - F ) { l - g f F F ( l - g ) -  (33)

P r(X , =  (0 ,l) |p ,G ) =  2 ( l - F ) g { l - g ) ;  (34)

P r(X i =  (l , l ) | ff ,G) =  ( 1 - F ) g ^  + Fg.  (35)

There are a number of possible causes of departure from Hardy-Weinberg pro­

portions, including inbreeding, assortative mating and selection. At this point, 

however, we consider only the effect upon overall proportions of a population be­

ing split into 77 randomly mating subpopulations. The overall pair probabilities 

are then given by

V

/=!

— (1 ~ ^)^ +  ^ ( 0  [(1  ~  ^i)  “  (1  “  g)Ÿ
1=1

= ( l - p ) ^ Tc r ^ ;  (36)
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P r(X , =  (0 ,l) |s ,G )  =  2 Y ^ K { l ) G , ( \ - G i ) - = 2 g { l - g ) - 2 a \  (37)
/=1

P r(X i =  ( l , l ) | 5 ,G)  =  j^K(l)G] = g'  ̂+ a'̂ -, (38)
Z=1

where <7  ̂ =  YJi=i the ‘sample’ variance of the gene ‘1’ proportion

across subpopulations. The homozygotic frequencies are increased above the 

Hardy-Weinberg level by an amount cr̂  with an appropriate reduction in the 

heterozygotic frequency. Comparison of equations (33)-(35) to (36)-(38) shows 

that the fixation index in the case of 2 alleles is then given by

F  =
g { ^ - 9)'

5.2 Weir and Cockerham

In terms of the hierarchical model, Weir and Cockerham work at the level above 

Nei. Weir and Cockerham define a coancestry coefficient 6 that does not depend 

upon the number of subpopulations observed and governs the level of variability 

of allele probability (Gi) across subpopulations. It is a parameter related to the 

ancestral population from which the currently observed subpopulations have 

developed. To Weir and Cockerham, the observed subpopulations are just a 

sample of those that could have evolved from the ancestral population under 

similar conditions. This is directly comparable to the hierarchical model in 

which the 77 subpopulations are a sample generated given the parameters of the 

level above.

The subpopulations (P/; I = 1, . . .  , 77) are assumed to have descended sepa­

rately from the single ancestral population.

Random mating is assumed within subpopulations, and we define 7  as the 

mean of the process generating subpopulation probabilities (Q ), i.e.

E[G/|7 ] =  7 ,

independently for all 1. Weir and Cockerham then define their subpopulation 

differentiation parameter 9 by

Fr{Xi = (1, l)l7 , 0) =  7  ̂ -f- 7 ( 1  -  7 )0 . (39)
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Referring to the DAG of Figure 5, the probabilities {Gi) are defined at the 

level of the subpopulations. We assume that these probabilities are generated 

with a mean 7  and variance V. The important point here is that 7  and V  are 

parameters at the level above (Gi) in the hierarchy. In the previous section, g 

and are defined at the same level as (G/).

Pr(%, =  ( l , l ) | 7 , n  =  E[Pr(X, =  ( l , l ) |7 ,R )

=  E[Pr(%, =  ( l , l ) | G , 7 , n  

=  E[/{(/)G |̂7,y)

=  +  =  ^  +  f  (40)
1=1

By comparison of equations (39) and (40), we see that 6 = a measure of

subpopulation differentiation at the level above Nei’s parameter F.

5.3 How are the measures of subpopulation differentia­

tion related?

Firstly it is interesting to compare directly the definitions of Nei’s parameter F, 

and Weir and Cockerham’s 6.

6 =
7 (1 - 7 ) ’

Presented in this way, one can see the justification behind the earlier statement 

that the comparison is similar to that between a sample variance and a pop­

ulation variance. The differences in definition between g = i^{l)Gi and 

7  =  ElGil'y] should also be noted.

It is also helpful to consider the expectation of the ‘sample variance’

(= — p)^), given 7  and the prior variance V  and 7 .

E[a^|y,7] =  E [ '£ < l ) { G , - g Y \ V , j ]
I

= e E k ( ; ) g ? - s ^ |v ,7 ]
I
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=  E  «(OEfG^lF,7 ] -  Vax(s|F,7 ) -  E [g |y ,7 ]̂
l

=  V ar(g|y,7 ) +  E[g\V, 7 ]' -  V a r (^  i^{l)G,\V, 7 ) -  Ÿ
l

= V  + - Y ^ K { i f v
l

I
E[(7^|y,7] =  y E 4 0 ( i - 4 0 )

I

In the special case where k,{1) =   ̂ for / =  1 , . . . ,  77, this simplifies to

9|TT -1 ^ “  1

meaning that

E [ F s ( l - 5 ) 10, 7 ] =  ^ 0 7 (1 - 7 ), (41)

Equation (41) clarifies the role of the subpopulation differentiation parameters, 

9 combining with 7  to define the process generating G, and consequently F.
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6 Markov chain M onte Carlo m ethods

6.1 Introduction

Generally the integration required to calculate match probabilities (equations 

(24) and (25)) is impossible analytically. For this reason numerical methods 

are required to obtain estimates of match probabilities. This chapter introduces 

these methods generally before describing some specific techniques used in later 

chapters.

Often when applying Bayesian methods we can obtain the posterior distri­

bution only up to a constant of proportionality. Using an illustrative parameter

The integral in the denominator of this expression is often impossible to eval­

uate analytically. The evaluation of posterior expectations and other moments 

of interest is similarly difficult. Possible approaches include numerical approxi­

mation, analytic approximation, and Monte Carlo integration, including Markov 

chain Monte Carlo (MCMC).

Monte Carlo integration [Cilks, Richardson and Spiegelhalter, 1996] approx­

imates the expectation of a function f { X) ,  where X  has a density 7t(.), by

= (43)

the mean of a sample {Xt\ i =  1, . . . ,  n) drawn from 7t(.).

Ideally, we would draw an independent sample from 7t(.). However, in many 

cases this is not feasible, and not absolutely necessary as long as we have some 

process which, “loosely speaking, draws samples throughout the support of 7 t ( . )  

in the correct proportions” [Cilks, Richardson and Spiegelhalter, 1996a]. One 

way of drawing such samples is through construction of a Markov chain with 

stationary distribution 7r(.). Substitution of such a sample into equation (43) 

represents one form of conducting a Markov chain Monte Carlo calculation.
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6.2 Markov chains

We consider a sequence of variables X o , X i , X 2, —  This is a Markov chain if 

the distribution of Xf  given all previous values (Xq, . . .  ,Xt~i)  depends only on 

the most recent X t- \ .  This means that

f  (X( G A|%o, ...,%() =  f  (%( G v4|X(_i) (44)

for any set A, where P(.l.) denotes a conditional probability. To avoid excessive 

technical detail in the following descriptions, in this section we restrict attention 

to Markov chains of discrete state-space. Thus, transition probabilities take 

the form Pij{t) = P{Xt  =  j \Xo = i). Extending the theory to more general 

state-spaces does not require any major new concepts.

If the following three properties are satisfied, the distribution of Xt  can be 

shown [Meyn and Tweedie, 1993] to converge to a stationary distribution with 

distribution </>(.), as t —>■ oo. We define th as the time of first return to state i, 

{tu = min{^ > 0 : =  i\Xo = i}). The chain must be

(i) irreducible, i.e. for all i , j ,  there exists a t > 0 such that Pij{t) > 0;

(ii) aperiodic, i.e.

greatest common divider {t > 0 : Pu{t) > 0 } =  1;

(iii) positive recurrent An irreducible chain X  is recurrent if P{th < oo) =  1 

for some (and hence for all) i. The chain X  is positive recurrent if it is 

recurrent and E[tu] < oo for some (and hence for all) i.

Under the above conditions,

Pij{t) —> (f){j) as  ̂ oo for all i ,j .

The Ergodic theorem states that “if X  is positive recurrent and aperiodic, 

then

if E41/(X )|] < 0 0 , then Pr (/„  -> E*[/(%)]) =  1,
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where E^[/(X)] =  f(y)4>{y)dy, the expectation of f { X)  with respect to

One application of MCMC would first conduct a ‘burn-in’ of m  iterations, 

long enough for the chain (of stationary distribution 7 f ( . ) )  to ‘forget’ its starting 

point, and then use the following n — m  points. We would thus use

t=m+l

to estimate E[/(X )].

The Ergodic theorem ensures that this is a consistent estimator. This is fine 

in theory, but in practice there are a number of issues which must be considered.

(i) How long should the burn-in m be? It should be long enough for the chain

to ‘forget’ its starting position.

- The most common method of burn-in determination is simply visual in­

spection of trace plots of the chain. There are also a number of more 

formal tools [Cowles and Carlin, 1994], all of which require a more techni­

cal analysis of the output.

(ii) Are Xt  and Xt^i  highly correlated?

- To reduce the correlation between consecutive values of the 

chain used for estimation, the original chain can be thinned 

[Cilks, Richardson and Spiegelhalter, 1996]. This involves using every 

iteration.

(iii) For how many iterations should the chain be run? It should be long enough 

to provide estimators of an acceptable precision, but, on a practical note, 

it is not desirable to run the MCMC scheme for a far longer time than is 

necessary.

- An informal way to tackle this problem is to run a number of par­

allel chains from different starting points, and compare the estimates 

that they give. The run length should be increased until the estimates 

agree adequately. More formal methods of run length determination
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have been described by Roberts [Roberts, 1992] and Raftery and Lewis 

[Raftery and Lewis, 1995].

- One method, proposed by Gelman and Rubin [Gelman and Rubin, 1992], 

is based upon the analysis of variance of a series of parallel runs. The 

basic assumption is that before the chains have converged, the variability 

across all sequences combined will be much greater than that within each 

individual sequence. Assuming that we are interested in a scalar quantity 

and we have m  chains {6ij’, i = 1 , . . . ,  m, j  =  1 , . . . ,  n) of length n, the 

method proceeds by calculating the between-sequence variance B  and the 

within-sequence variance W  :

n

” i=i

where k  =  i  E L i  ê. =  i  E ”  i k ;

1 m

" - S ' -
where sf = : ^  ~  Ôif .

These quantities are used to construct two estimates of the variance of

0 in the target distibution, vari(0) =  and var2 (0 ) =  W.

As n  tends to oo, these estimates should tend to var(0) from opposite 

directions. Convergence is monitored by considering the ratio R  where 

~  Ŷ vSaW ' chain converges, R  declines towards 1 , Gelman

and Rubin consider that chains should be run until the values of R  for the

quantities of interest are less than 1 .2 .

6.3 M etropolis-Hastings algorithm

We now revert to the continuous state-space case. A Markov chain whose sta­

tionary distribution possesses the target density 7 t ( . )  may be constructed using 

the Metropolis-Hastings algorithm [Hastings, 1970].

Hastings demonstrates how to design a Markov chain (Xq, X i , . . . ) satisfying
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the detailed balance equation,

TT{xt)f{xt+i\xt) = 7r{xt+i)f{xt\xt+i). (45)

This ensures that the Markov chain has a stationary distribution with the target 

density 7r(.). Integrating both sides with respect to Xt,

J  7r(xt)f{xt+i\xt)dxt = TT{Xt+l).

This shows that if Xt  has been sampled from 7t(.), Xt+i will also have density 

7r(.). Thus, if we reach an iteration t at which a value is sampled from the 

stationary distribution, all subsequent values in the chain will be sampled from 

this distribution also.

Hastings shows that such a chain can be constructed by employing the fol­

lowing algorithm. At iteration t -I-1,

(i) sample a value y from a proposal density q[y\xt)\

(ii) calculate the acceptance probability

(iii) generate a Uniform(0,1) random variable U ;

if U < aacc, accept y; set Xt+i = y;

if [/ > Œacc, reject y: set xt+i = Xt.

The proposal distribution must be such that the conditions of Section 6 .2  are 

satisfied. Ideally we would like the proposal density to be as close as possible 

to the target density. If the variance of proposed values is too great, a large 

proportion of the proposed moves will be to points of small target density and 

will be rejected. Conversely, if the variability in the proposal is too small there

will be a high acceptance rate, but the chain will take a long time to move about

the full support of the density.

It is often convenient to update components of a multivariate variable x 

individually. Assuming that x can be split into components of varying dimension
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{xi ,X2^.. ■ ^Xr), iteration t of the sampler would involve r steps, updating each 

of the r components in turn. Denoting the value of Xi  at the end of iteration t 

by Xt,i, we define

• • • 5 1) • • • 5 ^t.T'

At iteration t +  1, step i would proceed in the following way:

Generate a candidate value yi from the proposal distribution 

This value is accepted as Xt^\,i with probability

. A Ayi\^t.-i)-qi{xt.i\vuXt.-i) \ai = mm 1 , —---- :------ r— — ---------- r .
\  7r(xt.i\xt.-i).qi{yi\xu,xt.-i) J

Hierarchical models are natural candidates for single component Metropolis 

updating as the complete vector of parameters can be split into components by 

the levels of the model.

6.3.1 Random  walk M etropolis algorithm

The random walk Metropolis algorithm is a special case in which the proposal 

distribution is a function of the distance from the previous iteration, i.e. q{x\y) =

Q{\^-y \)-
Application of this method often involves the use of a Normal proposal dis­

tribution with mean given by the value of the previous iteration.

6.4 Gibbs sampling

Many practical applications of MCMC involve Cibbs 

sampling [Ceman and Ceman, 1984]. At each iteration, each component of a 

vector of variables is updated in turn, conditional on the current values of the 

other components. It is assumed that we can sample from the full conditional 

distributions. This is a special case of single-component Metropolis-Hastings 

in which the proposal distribution for each component is its full conditional. 

Substitution of q{y\x) = 7r{y) into (46) shows that the acceptance probability is 

always 1 .
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6.5 Hybrid M CM C schemes

In some cases, a hybrid MCMC scheme is employed. This involves the combi­

nation of more than one MCMC technique into a single MCMC scheme. An 

example of this is employed by Foreman et al This involves a Gibbs sampling 

set up in which the full conditional of one of the parameters (9 j )  cannot be sam­

pled from. For this variable, a Metropolis-Hastings step is introduced. W ithin 

one iteration of each Gibbs sampler, a number of these Metropolis-Hastings it­

erations is carried out. This should ensure that there is an acceptable rate of 

Gibbs sampler iterations in which

6.6 Techniques to improve mixing

Metropolis-Hastings, and in particular Gibbs sampling, is the most commonly 

used MCMC technique. In some cases however, straightforward application of a 

Gibbs sampling scheme does not provide a chain which can be used as a sample 

from the target distribution.

While the chain of a correctly designed MCMC scheme theoretically con­

verges to the target distribution, in practice a multimodal target distribution 

will often cause problems. This is because in many cases the chain will remain 

in a single mode for an extended period of time rather than mixing across the 

full support of the target density. In such instances, methods are required which 

ensure movement between the modes. Examples of these methods include im­

portance sampling and simulated tempering, both of which are described here.

6.7 Sim ulated tem pering

Simulated tempering [Geyer and Thompon, 1993], and the closely related 

Metropolis-coupled MCMG [Geyer, 1994], are two of the strategies commonly 

used if an MCMC scheme is not mixing across a multimodal target distribution.

The chain generated in a simulated tempering scheme randomly moves across 

(f +  1 ) MCMC samplers, each with a different stationary distribution specified
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Figure 6: Normalized densities at various temperatures. This demonstrates the effect 

of “heating” the target density according to the formula of equation 47

by the unnorrnalized density hi { . ) , i  =  0 , . . .  ,u. We will generally define /lo(-) as 

the density of the target distribution of interest and, at the end of the simulated 

tempering run, only those iterations generated at level 0 will be retained to 

create the final chain from which estimates are calculated.

The different samplers used can be thought of as corresponding to different 

“temperatures” , heating up the target distribution 7To(.) to improve mixing. This 

heating is often of the form

hi{x) = h{x)^i , B,  >  0 for all z. (47)

Figure 6 shows the effect of such heating.

In our example the ‘valley’ between the two modes of the target density 

(Figure 6) is relatively deep, so that the original MCMC scheme rarely moves 

into it, making transitions between the two modes very unlikely. The heating 

works to flatten the overall distribution, as seen in figure 6. This increases the 

probability of movement into the ‘valley’, and thus between the modes.
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The state of the chain at time t is represented by the pair where It

is the sampler used at iteration t. At each iteration t, in addition to the usual 

MCMC sampling, a move from the current sampler i to an alternative sampler 

j  is proposed. This move is accepted with probability

—

where (ĉ ; z =  0 , . . . ,  u) are conveniently chosen constants,

is the probability that sampler j  is proposed given that sampler i 

is currently being used.

The constants {ci,i = 0 , . . . ,  f  ) are chosen so that the chain spends an ap­

proximately equal amount of time in each sampler. Various techniques to achieve 

this have been suggested [Geyer and Thompon, 1993].

For the method to work properly, it is important that the chain move about 

the various samplers. It has been suggested that an appropriate acceptance rate 

for moves between samplers is between 20% and 40%. This can be achieved by 

appropriate adjustment of the temperature changes between the levels.

When deciding upon the number of levels, one must make v large enough to 

improve mixing. However, it must be remembered that only about of the 

iterations will be kept for analysis. Thus, too many levels will necessitate the 

running of the scheme for a long time to provide a sample large enough to make 

estimates of acceptable accuracy.

6.8 Im portance sampling

Importance sampling [Hammersley and Handscomb, 1964, Geweke, 1989] is an­

other technique aimed at improving the mixing of a Markov chain with station­

ary density 7t(.). If the quantity of interest is E[h{6)\y] and we cannot sample 

directly from the posterior density 7r{6\y), but can sample from an alternative 

distribution defined by the density 7 t * ( . ) ,

h{e)7T{e\y) .

7T*{e) 
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This can be estimated by the weighted sum ^ Y>t=i where w{9^^^) =

■ The approximating density should be chosen such that the ratio ^  is 

roughly constant.

If it is not possible to calculate 7r{9\y), but an unnormalised density q(9\y) 

can be calculated, the desired posterior expectation can be estimated by

i  Er=i

where
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7 Application of Markov chain M onte Carlo

7.1 Introduction

The hierarchical model described in Chapter 3 involves the following levels:

(i) inheritance of a particular profile Xi by each individual i within a subpop­

ulation [Vi, / =  1, . . .  , 7/),

Fr{Xijb =  k\G) =  Gij{k),

independently across I, band (6  =  1 , 2 ) and locus {j = the

collection of observable alleles at a particular locus being denoted by k =

1 , . . . ,  r  J .

(ii) Generation of the allele probabilities G  in each subpopulation,

Gij ~  Dirichlet(ûj(l), flj(2 ) , . . . ,  aj{rj)), independently for all l,j,  

where aj =

(iii) The generation of the ancestral population parameters, 7  and 9, from a 

‘hyperprior’ distribution,

~  Dirichlet(a^(l),. . . ,  a^(rj)); (49)

9j ~  Beta(ug, 6o). (50)

It is described in Chapter 4 how two alternative statistical models featuring 

either G  = {Gij) or a  =  (oj) as the “parameter” can be defined.

The subpopulation match probability mi for an arbitrary individual i (out­

side the database a) in subpopulation Vi is defined as

— Pr(.X î — y\i  G 7̂ (, Xa — 6 a)?

where Xa represents the collection of profiles in the database a. As shown in 

Chapter 4 it can be expressed as the posterior expectation of a function of the 

“parameters” (and possibly the data) dictated by the chosen model,
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m /=  E[mJ^ V a  =  Ça] (51)

where =  cUf=iGij{yji)Gij{yj2), or

mi = E [m pV a =  Ça] (52)

where where c =  and

6j indicates if yji = yj2.

To find an answer analytically would require the calculation of the posterior 

density of a, or of G , complete with normalizing constant, and then integrating 

to find the expectation of the function in equation (52), or in equation (51).

This is not a feasible calculation in this instance, not an unusual situation in

Bayesian applications in which the required integration is often impracticable. 

Thus we resort to MCMC methods, as discussed in Chapter 6 .

Initially considered is the simplest situation, that in which the subpopulation 

membership {Ii) of each individual i is assumed known. We then go on to 

consider the adjustments required in the absence of such knowledge.

7.2 Subpopulation labels known

When subpopulation labels for the database individuals are known, the match 

probability can be easily estimated by taking a product across the suspect profile 

of empirical allele frequencies

where nij(k) is the number of alleles of type k observed at locus j  in database 

individuals of subpopulation Vi. This gives the match probability estimate

M
= Gij{yji)Gij{Vj2) . (53)

Such an estimate takes no account of any prior information available (stage

(iii) of the hierarchical model). This omission could be of particular significance 

if there is a large amount of information in the prior or if data in one or more 

subpopulations is not extensive.
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First, the prior provides knowledge about each subpopulation’s distribution 

to be updated by the data. The prior parameters assumed known are [a^j) 

defining the density of the ancestral population allele probabilities (7 )̂ at each 

locus j ,  and (ng, 6g), the parameters of the beta prior placed upon the subpop­

ulation differentiation parameter {6j). Thus the prior provides an underlying 

mean about which the subpopulation allele probabilities are distributed, and 

also information upon the degree of variation demonstrated by these probabili­

ties across subpopulation.

Second, the prior provides information upon the likely variance of the sub­

population distributions. This will be updated by the data and, for example, if 

the variance is small, we can say that distributions in subpopulations with little 

data are likely to be close to those with extensive data, meaning that we can, 

in some sense, use the data of other subpopulations to update the estimated 

allele probabilities of a particular subpopulation. This effect cannot be utilised 

if the empirical estimators are employed, as they only provide a direct estimate 

of each set of subpopulation allele probabilities.

MCMC methods provide a chain of values which can be treated as a sample 

from the posterior distribution, thus making use of both prior and empirical 

information. The posterior distribution of interest in the case of complete sub­

population information is

7r(fl, G\Xol — â)-

Assuming that we have generated an appropriate chain of length r with burn-in 

m, one then has a choice between the two ergodic averages,
1 r M

  E  (54)m] =
 ̂ ^  t= m + l  j = l

under model 1 , and

(2) ^ 1 Y' c n  + %(%2) +  Sj)
 ̂~ (=m+l 3=1 + Wlj(+))(£l3*̂ (+) + ÎIij(+) + 1)

under model 2, where t labels the iteration of the Markov chain.

If the database is reasonably large, and the profile in question relatively 

common, the allele frequencies nij{yjb) should be much larger than the prior
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parameters aj{yjb) meaning that and will be close to the empirical 

estimate. In this case, the huge savings in computer time would advocate the 

use of the empirical estimator ahead of an MCMC estimator.

However, it is still important to consider which of the two models it is prefer­

able to use when an MCMC estimator is required, not only for the complete 

information case in which the empirical estimator may not be acceptable, but 

also for future use in the cases in which an empirical estimator is not available.

The scheme follows a Gibbs sampling format, updating aj  for each locus j ,  

and then updating Gij for each subpopulation Vi  and locus j .  Gibbs sampling 

requires the ability to sample directly from the full conditional (i.e. conditional 

upon all other quantities) distributions /(.|...) of each of the parameters under 

consideration. In this case, sampling from the full conditional distribution of G  

is straightforward as

/ ( G | . . . )  =  f {G\a,Xa =  â)

oc Pr(xa =  & |G , a).7r(6?|a)
77 M Tj« n II n

Z=1j=lk=l

=> Gij ~  Dirichlet(aj(l) +  ni j{l ) , . . . ,  aj{rj) 4- riij(rj)),

independent across all I and j.  Sampling from the Dirichlet distribution is 

carried out using the algorithm of Devroye [Devroye, 1986].

In previous studies, much attention has been paid to the distribution 

of the various parameters of subpopulation differentiation. The approaches 

of Foreman et al [Foreman, Evett and Smith, 1997] and Dawid and Pueschel 

[Dawid and Pueschel, 1999] use an empirical estimate of 7 . Although it has 

been suggested that, in practice, using this empirical estimate of 7  rather than 

including it as a variable in the MCMC scheme makes little difference to the 

results, it would seem desirable to develop a scheme which does not require the 

use of this empirical estimate.

As the quantities of real interest to us are the match probabilities, it would
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seem reasonable to update aj  ^ ^ 7 j) rather than the two parameters (0j, 7 j) 

separately. This should provide a more efficient sampler.

The allele frequencies (7 )̂ of the ancestral population are assumed inde­

pendent of the subpopulation differentiation parameters [0j) at all loci {j — 

1 , . . . ,  M). This is an assumption which could stimulate some debate, but un­

der this model in which 0  is a set of parameters determining the variance of 

the process generating G, it would currently seem an unnecessary complication 

to build in dependence at this level. It is important that criticism of this as­

sumption should arise from consideration of the role of these parameters in a 

population genetics context, and not confusion over their role within the hier­

archy. In Chapter 5 we defined parameters F  and g for the binary allele, single 

locus case,

9 =
1=1

F  =
5 (1 - 9 ) ’

where = Ya=\ ~  qY ’ These parameters can also be considered as

a subpopulation differentiation parameter (F) and mean allele probability (g), 

but at a lower level of the hierarchy. They are dependent given a, but it should 

be clear that these parameters are utterly distinct from 0 and 7 .

The prior independence of 7  and 6 is used in the derivation of the full 

conditional distribution of a  (Appendix B);

/ ( a | . . . )  =  f(^a\{a^j,a0j,bffj,G)

TT f n 1 a^(+)
“ M U.'(+); j Û (+)+ 1 )  W +)+V

-fc=l

Unlike the case for G, it is not straightforward to sample from the full con­

ditional distribution of a. There are a number of methods designed to sample
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from a density known only up to the constant of proportionality. These include 

rejection sampling [Ripley, 1987], the ratio-of-uniforms method [Ripley, 1987] 

and adaptive rejection sampling [Gliks, 1992, Cilks and Wild, 1992].

In this case, the Gibbs sampling set-up is adjusted to a hybrid MGMC strat­

egy. As a  cannot be sampled directly, within each iteration of the scheme a 

number h of Metropolis-Hastings steps is used. At each of these steps, a value 

is sampled from a proposal distribution, and accepted or rejected according to 

an acceptance probability aacc- This probability is dependent only upon the 

ratio of the conditional densities of the proposed and current values of a , and 

therefore does not require knowledge of constants of proportionality.

The number h should be chosen to give a high proportion of Gibbs sampler 

iterations in which there is at least one acceptance between the first Metropolis- 

Hastings step and the last. The closer the proposal distribution is to the target 

distribution, i.e. the full conditional of a, the more efficient the scheme. This 

translates to fewer Metropolis-Hastings steps being required within each itera­

tion of the overall scheme.

A simple proposal distribution for a  would generate {9j) and (7 ^) indepen­

dently,

9j ~  Beta(A:0i,/C02),

7 j- ~  Dirichlet(/c.yji,. . . ,  k^jrj),

and use the equation, aj = to calculate aj.

Such a proposal distribution is acceptable for 0, but the relatively high di­

mension of the parameter space of 7  makes it very difficult to select to give 

a reasonable acceptance rate. Indeed choosing a suitable proposal distribution 

subject to the constraint, Yfk=i7j{k) =  1, is not straightforward. To allow a 

wider choice of potential distributions, it was decided to work with log(aj), the 

elements of which can have values in the range (—0 0 , 0 0 ).

One option now available is the multivariate normal distribution, i.e.

Y  j ^  Normal(/Xj-, S j)
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where Y  j =  log(aj).

Considering the prior distributions placed upon {6j) and (7 )̂ (equations (49) 

and (50)), a reasonable choice of the proposal mean would be

Hi = log h .
1 ____
 o-ej +b9j

Qg.7 .7T1 3

aoj +hj

where and is the prior expectation of 6j. Such a proposal

distribution would make use of available prior information, with a constant 

allowing tuning of the variance to give the desired acceptance rate.

In general, however, the MCMC scheme will be more efficient if it makes 

use of the information provided as the chain increases in length. A random 

walk sampler [Roberts, 1995] does this by shifting the mean of the proposal 

distribution to the value of the previous iteration.

In this case the suggested distribution of the value aY^ proposed for 

given is defined by

log(a^^ l̂aj )̂ ^  Normal(log(a5*^),Ej).

The variance-covariance matrix can be user defined to achieve a desirable 

acceptance rate, generally around 40%.

The full density for the proposed value given is then given by

e x p ( - j  {log(°j'*) -  lo g (o f ))'S~Hlog(aj”’) ~  k g (4 '') ) }  

[n fcliafW l(27r)Ÿ |S ^li 

where =  log(aj) and J {x , y )  denotes the Jacobian of x  with respect to y.

The acceptance probability for the vector proposed at locus j  for the (f4-l)^^ 

iteration is then given by

Œacc = min 1 ,
7r{af^\ . . . ) .q{aY\af )

Using this proposal distribution within the hybrid MCMC structure allows 

the MCMC scheme for the case of complete subpopulation information to pro­

ceed as described in Figure 7.
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YES

NO

YES

NO

YES

NO

r = 0

r  —>■ r +  1 

Is r < 10?

Is j  < M?

Generate U ~  Uniform(0,1)

Is t/  <C

generate ~  Dirichlet(Oj^^^)

Generate log(a^^^) ~  Normal(log(aj*^), Ej) 

=> Calculate aacc-

Figure 7: Flow diagram representing MCMC scheme: individual subpopulation labels 

known. The prior distributions are used to generate values at iteration t = 0. The 

label r  tracks the Metropolis-Hastings steps used to generate within the Gibbs 

sampling format.
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Whichever statistical model is used, the same scheme is applied. The MCMC 

scheme employed follows a Gibbs sampling format, our target distribution being 

the joint posterior

7r{a,G\xa =  &).

of all variables.

The Markov chain will contain, at each iteration t, values for each of the 

parameters in the above distribution,

(ai(l)<*\ .

G „ ( l ) « , ..

Assuming the Ergodic Theorem (see Section 6.2) to hold, the chain of values 

for each parameter can be treated as a sample from its marginal posterior dis­

tribution, and thus a ‘sample’ mean, (54) or (55), of an appropriate 

function of these parameters used to estimate the match probabilities.

The simpler of the two estimators is the ergodic average of a product of 

the subpopulation frequencies across the alleles of the profile y.  The calculation 

of this function at each iteration of the chain should afford a small saving in 

computer time over the more complicated estimator mp^. However it is assumed 

that the chain length required is not great enough to cause such a small saving 

per iteration to be significant overall. One must therefore decide which, if either, 

of the two estimators is more accurate.

The variances of the two estimators are compared, working under the sim­

plifying assumption that the chain of values represents a random sample from 

the joint posterior distribution.

Var(mp^|w) =  Var(E[mp^|a,cu]|w) -I- E[Var(mp^|o, w)|w]

=  Var(mp^|cj) -f- E[Var(mp^|a, w|w].

where üü = {i e Vi, Xa = &).

This reveals that mp^ is a Rao-Blackwell estimator of the match probability 

nil, and has a posterior variance which can be no larger than that of m p \ i.e.

Var(mp^|z G Vi,Xa =  W  <  Var(mp^|z G Vi,Xa = &).
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For this reason, it is suggested that when an MCMC estimator is required, 

that derived under model II is used.

7.3 Subpopulation labels unknown

When subpopulation labels are not available, the vector I  containing these labels 

for the database individuals must be introduced to the MCMC scheme.

W ith no consistent empirical estimator available, the MCMC estimator 

is used. This expression does not involve explicitly, but the subpopulation 

identifiers are required at each iteration to evaluate Similarly, the full

conditional distributions of G  and a  now involve I  indirectly.

The full conditional density of I  is given by

f { I \ a , G , X a  = Ca) oc FT{Xa = (a\G,a, I) .7T{I\a,G)
' M  

\j=l
a n

iÇn

To this point, the subpopulation proportions k  have been assumed known. 

Again, this is not necessarily so, a consideration discussed in more detail in 

Chapter 8 .

If K is unknown it must also be introduced as a random variable together 

with a prior distribution. Following the suggestion of Foreman et al,  we use the 

Dirichlet distribution,

K ~  Dirichlet(7TK(l),. . . ,  7r {̂rj))

This completes the DAG for incomplete information shown in Figure 8 .

The full conditional distribution of k  is also Dirichlet, making it straightfor­

ward to add to the Gibbs sampling structure of the MCMC scheme.

7t(k |...) oc Pt{I\k,).7t{h,)
Tla

■ noc n
-i=l
■n

oc
1=1

=> K ~  Dirichlet(na +  7Tk),
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Figure 8: DAG for the case of incomplete information.

where {na{l)'J = represents the number of database individuals in

subpopulation Vi.

When we actually apply the MCMC scheme, we encounter problems, in 

particularly a lack of mixing across a multimodal posterior. Such practical 

difficulties and proposed solutions are considered in more detail in Chapter 8 .
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8 The definition of a subpopulation, and its ef­

fects

8.1 Introduction

In this chapter, we consider the effect on the analysis of the way in which the 

subpopulations are defined. This definition has an effect on both the amount of 

knowledge we can assume about the subpopulation membership {Ii) of individ­

uals (z), the subpopulation proportions (/{(/); I = 1, . . .  ,r]) and the level of prior 

knowledge we have regarding the relationship between suspect and offender.

The definition of “subpopulation” can be considered in two ways:

(i) the subpopulations are tools of the model, used to reflect to some extent 

the relationships between individuals within the population. In reality, 

the closeness of the relationship between two distinct individuals can vary 

from that of siblings, to more distant family, to members of the same racial 

group and beyond. To build a model involving the possibility of two ran­

domly selected individuals being brothers, cousins, second cousins and so 

on towards “unrelated” is impractical. The randomly mating subpopula­

tions are incorporated into the model to represent to some extent the fact 

that some individuals are more closely related than others while ensuring 

that the model can be employed in practice.

In this instance the subpopulation membership of each individual is gen­

erally unknown and further, a priori one should consider the subpopula­

tions to fall into equal proportions. One could consider the subpopulations 

themselves to be subdivided. Indeed the stratification could continue un­

til, in the extreme case, we have subpopulations each consisting of a single 

individual. However there appears to be little profit in subdividing to this 

extent.

We consider a single level of stratification with the number of subpopula­

tions within this level assumed known. Relaxation of this assumption is
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considered in Chapter 1 0 .

(ii) The subpopulations are clearly defined in terms of ancestries which can be 

traced. We could for example split the Caucasian population into sub­

populations defined by European country of origin. The model is still a 

clear simplification, as mating between descendents of European countries 

is known to occur whilst our model would not permit this.

Under this definition, observation of an individual is likely to provide in­

formation on his subpopulation membership. It is in this case that we are 

likely to have information available upon the subpopulation proportions 

{cKf : I = 1, . . .  ,rj}. In the extreme case, the subpopulation membership 

of each database individual is known absolutely. While this is unlikely to 

occur in practice, the study of such a situation has allowed the develop­

ment of of much of the theory extended in this thesis. Dawid and Pueschel 

[Dawid and Pueschel, 1999] employ this assumption when displaying the 

necessity of conditioning upon the database throughout match probability 

calculation. In this thesis it is shown how this conditioning is still required 

when the assumption of known subpopulation membership is relaxed.

The way in which the subpopulations are defined affects what we can rea­

sonably assume about

(i) individual subpopulation labels;

(ii) subpopulation proportions.

In this chapter, we consider the range of information and knowledge which 

may be at our disposal in the above areas in the context of the possible subpop­

ulation definitions.

The following section introduces the data and analyses used to compare the 

results of match probability calculations under the various degrees of assumed 

knowledge.

In Section 8.3 we consider the simplest case in which subpopulation labels 

(Ii) and proportions are assumed known. Comparisons are made between
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empirical and MCMC match probability estimates. In Section 8.4 we consider 

adjustments to the analysis required when subpopulation labels are no longer 

known, corresponding to the more realistic situation (i) in which the subpopula­

tions are tools of the model. In this instance, it is likely that we must also relax 

the assumption that the subpopulation proportions (k(0) «tre known, meaning 

that these must also be estimated from the data.

We recall (Chapter 2) that match probabilities {mi) for each subpopulation 

{Vu / =  1 , . . . ,  77) are required, where

=  ylXa — ^q)

for an individual i (outside the database a) in subpopulation Vu  The collection 

of individual profiles Xa includes the suspect’s profile X s  which is known to be

y-
When calculating this probability we employ the hierarchical model defined 

by the following levels;

(i) inheritance of a particular profile by each individual i within a subpop­

ulation {J^u / =  1 , . . . ,  77),

Fr{Xijb = k\G) = Gij{k),

independently across z. I, band (6 =  1,2) and locus {j = 1 , . . . , M ) ,  the 

collection of observable alleles at a particular locus being denoted by A: =

1 , . . . , 7"J .

(ii) Generation of the allele probabilities G  in each subpopulation,

Gij ~  Dirichlet(oj(l), Gj(2),. . . ,  G^(r^)), independently for all (56) 

where aj = ^ ^ I j -

(iii) The generation of the ancestral population parameters {'yj,Oj) from a 

‘hyperprior’ distribution,

7 j- ~  Dirichlet(a-y(l),. . . ,  a-y(rj));

6j ~  Beta(ug, 6g).
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In this thesis we assume that we have no prior knowledge informing us that some 

alleles have a greater relative frequency than others, and so we take aj{k) = 1 

for all k at each locus. The hyperprior parameters for the generation of 6j are 

chosen to be {ag = 1.5,6^ =  50). These values are similar to those used by 

Foreman et al and, as it is thought that values of 9j are generally considerably 

less than the resultant prior mean of 0.291, this prior distribution is considered 

conservative. This is because a large value of 6j implies a greater degree of 

population heterogeneity which will usually decrease the weight of evidence of 

the profile match.

8.2 Analysis

Estimated match probabilities quoted in this chapter result from analyses carried 

out using a database consisting of short tandem repeat (Appendix A) profiles 

typed at up to four loci in 1401 Caucasian individuals, and 558 Afro-Caribbeans. 

Profiles that had data missing (two of the Caucasian profiles, and 26 Afro- 

Caribbean profiles) were retained, as the limited information provided is still of 

use.

It is important to note that the methods of this thesis are only valid when it 

is legitimate to consider the database as a ‘random’ sample from the appropri­

ate population. If subpopulation proportions are assumed known, our analysis 

assumes that these give the prior subopulation membership probabilities of each 

database individual. In the more general case we use the database to provide 

information about the subpopulation proportions. It is clearly important that 

in doing this we are making inference upon the population of interest.

In the following sections, match probabilities are estimated for three differ­

ent suspect profiles. These profiles are labelled Cuc, Car, and ACc and are 

presented in Table 3. MCMC chains were run under the various degrees of as­

sumed knowledge described, and the appropriate estimators calculated. When 

subpopulation labels are assumed known, these estimators are compared to the 

empirical estimators.
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vwa thol flSal fes

C  Gc 16,18 7,7 5,7 10,11

Cür 14,20 5,8 3,4 13,13

A Q 15,15 7,8 3,5 8,9

Table 3: Suspect profiles used for analysis.

In later sections, it is assumed that it is no longer known which individuals 

are Afro-Caribbean, and which Caucasian. While there is greater heterogeneity 

in this collection of two racial groups than would be expected within a single 

racial group, analysis of these two ‘subpopulations’ allows us to witness the ex­

tent to which the resultant clusters match the ‘true’ clusters. Match probability 

estimates were calculated, having initiated the Markov chain with a series of dif­

ferent random seeds. The grouping observed in these estimates when subpopula­

tion labels are unknown reveals a multimodality in the posterior distribution of 

the parameters. Estimation problems caused by this multimodality are tackled 

using the methods of simulated tempering and importance sampling described 

in Chapter 6. The resultant match probability estimates are then compared to 

those made when assuming subpopulation information known.

Cac and Car are the profiles used in the analysis of Foreman et al. These 

profiles can be seen (Appendix C) to be relatively common and rare respec­

tively within the Caucasian population, while ACc is a common Afro-Caribbean 

profile. Whether using the empirical estimators, or conditioning upon the data 

when running MCMC schemes and calculating ergodic averages, the appropriate 

profile is added to the database. When there are very few alleles of a suspect 

profile observed in the original database, it is particularly important that it is 

included in the database as its addition can have a significant effect upon the 

empirical relative frequencies of its alleles. As a general principle, it is impor­

tant to add the suspect’s profile to the database anyway to ensure the correct 

conditioning is executed throughout.
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The programs executing all MCMC schemes described were written in the C 

programming language.

8.2.1 A ssum ptions regarding subpopulation m em bership of culprit 

C and suspect s

The overall match probability X]?=i requires knowledge of the probabilities 

A; =  Pr(C  e Pi\C ^  a, s)  as well as the match probability mi for each subpop­

ulation Pi. Here a  refers to the database including the suspect s and e denotes 

other, ‘non-DNA’, evidence.

When quoting overall match probabilities for the case of known subpopu­

lation proportions k  it is assumed that A/ =  k{1) for all I. This might not be 

appropriate if the subpopulations are defined by known physical characteris­

tics. It is possible that the non-DNA evidence contains eye-witness information 

which increases the probability of the culprit being in a particular subpopulation, 

meaning that Xi is not necessarily equal to k{1) for all 1.

Throughout the analyses in this thesis, the suspect is treated similarly to the 

other members of the database a,  in that it is assumed that his subpopulation, 

when unknown, has a prior distribution defined by the vector of proportions «. 

If relevant eye-witness evidence is available, it would seem reasonable to think 

that the search resulting in the arrest of the suspect concentrated on members 

of the population displaying certain characteristics. While this makes it likely 

that the suspect and culprit originate from the same subpopulation, dependence 

between the respective subpopulation identifiers A and Ic  is not required in the 

model. Any dependence is only apparent before the search for the suspect. Once 

the suspect is identified, a prior can be placed upon his subpopulation, condi­

tional upon his physical characteristics. Under this conditioning, the suspect’s 

subpopulation is independent of the culprit’s. This prior probability upon the 

suspect’s subpopulation should be built into the MCMC scheme, but does not 

affect (A/).

The above adjustments do not significantly complicate the analysis or affect
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the general principles employed throughout this thesis.

We later (Section 8.4.2) relax the assumption that the subpopulation pro­

portions (k(/)) are known. If there is no physical interpretation to be placed 

upon the subpopulations, there can be no eye witness evidence regarding the 

subpopulation of the culprit, and we must therefore assume that A/ =  k,{1) for 

all I.

8.3 Individual subpopulation labels known

If the subpopulations are defined in such a way as to allow the membership of 

individuals to be easily recognized, it is possible that the database includes this 

information upon the observed individuals, as well as their profiles. This is the 

situation considered by Dawid and Pueschel [Dawid and Pueschel, 1999].

In this case empirical estimates of the subpopulation allele probabilities (G/) 

are available. These are given by

where riij(k) is the number of alleles of type k at locus j ,  observed in individ­

uals of subpopulation P/, within the database a. W ith an extensive database, 

these subpopulation frequency estimates will be consistent and can be multiplied 

across the alleles of the suspect profile x  to give a match probability estimate

M
=  H  CjGij{yji)Gij{yj2), (57)

j=i

where Cj = h(r, s) indicating if r and s are unequal.

If there is a large amount of prior information available regarding the ances­

tral population parameters (7 ,̂ 6j) or the data is not extensive, these empirical 

estimates may not be satisfactory (as discussed in Section 7.2). In this instance, 

the MCMC estimators described in Chapter 7 can be used. The Markov chain 

generated is designed to have a stationary distribution which matches the target 

posterior distribution 7 r ( a ,  G |xa =  ^a)- Each estimator is an ergodic average 

along this chain of a function of the parameters defined by the statistical model
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empirical model I model II

Tnca 2 .9 4  X I Q -s 2 .9 7  X I Q -s 2 .9 7  X 1 0 - s

rriAc 1 .8 7  X 1 0 - 4 1 .8 7  X 1 0 - 4 1 .8 7  X 1 0 - 4

m 7 .4 3  X I Q -s 7 .4 4  X I Q -s 7 .4 4  X 1 0 - s

Table 4: Posterior match probabilities for profile Cac 

(see Chapter 4) used,

=
1 M

E w(<),
r — m

( 5 8 )
t=m+l j= l

under model I, where c = Oj Cj and t labels the iteration of the Markov chain. 

Under model II,

1(2) _m; = ^  TT (4^^ k l )  +  ivj^) +  iVj )̂ +  4 )  / rn \
2 ^  ,  r o ,  \  y s \ /  r O /  \  y s . X

= 1 +  M(;(+))(4^^(+) +  +  1)-J \ ' J ' ' “(jv '

where Sj indicates if y î and yj2 are equal.

To this point, the subpopulation proportions («(/)) have been assumed 

known and taken as the empirical proportions in the database, excluding the 

suspect. In this case, %(1) =  ^959 =  0.715, «(2) =  0.285, where the labels 1 and 

2 refer to the Caucasian and Afro-Caribbean ‘subpopulations’ respectively.

Tables 4, 5 and 6  show empirical and MCMC estimates of subpopulation 

match probabilities (mi, m2) and the overall match probability (m =  /t(l)m i -I- 

K(2 )m 2), for the profiles C üc, Car and ACc respectively.

The MCMC scheme described in Section 7.2 was employed and an analysis of 

the resultant chains using CODA [BUGS] suggests that the run lengths of 1 0 0 0 0  

iterations with a burn-in of 3000 are satisfactory. Each estimator is a mean of 

seven ergodic averages along chains initiated with different random seeds.

A comparison of the results under profiles Cac and Car demonstrates the 

effect of having a small amount of data for the alleles of a particular profile. 

The empirical and MCMC estimates are similar for the relatively common profile 

Cuc, meaning that mf is satisfactory in this instance. For the rarer profile
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empirical model I model II

m

1.47 X 10-11 

3.45 X IQ-io 

1.10 X 10-10

1.69 X 10-11 

3.85 X 10-10 

1.22 X 10-10

1.69 X 10-11 

3.86 X 10-10 

1.22 X 10-10

Table 5: Posterior match probabilities for profile Car-

empirical model I model II

mca

rriAc

m

3.95 X 10-10 

8.01 X lO-o 

2.29 X lO-o

5.27 X 10-10

6.99 X lO-o

1.99 X lO-o

5.27 X 10-10

7.00 X lO-o

2.00 X lO-o

Table 6 ; Posterior match probabilities for profile A C c-

however, an argument for the use of the MCMC estimate is supported by the 

much greater difference in the estimates.

A similar comparison for ACc demonstrates that even in the case of a rela­

tively common overall profile, it may be necessary to use an MCMC estimator. 

In this case, the profile consists of three common pairs, and a relatively rare 

pair at locus fes. It is the discrepancy between empirical and MCMC match 

probability estimates at this locus that is mainly responsible for the difference 

in overall profile estimates. These individual locus match probabilities can be 

seen in Table 7.

A comparison of the match probability estimates under models I and II 

reveals that they are similar. This suggests that, although the estimator under 

model II is theoretically more accurate, the choice of estimator does not have a 

significant effect on the results in practice.
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Ca: empirical Ca: model II AC: empirical AC: model II

vwa 8.49 X 10-3 8.85 X 10-3 4.82 X 10-2 4.58 X 10-2

thol 4,12 X 10-2 4.17 X 10-2 1.71 X 10-1 1.68 X 10-1

f l S a l 2.40 X 10-2 2.41 X 10-2 8.03 X 10-2 7.90 X 10-2

f es 4.73 X 10-3 5.92 X 10-3 1.21 X 10-2 1.12 X 10-2

Table 7: Individual locus posterior match probabilities for profile A C c-

8.4 Labels unknown

This is clearly a somewhat more difficult case to handle than that of known 

subpopulation labels. The clusters are no longer pre-determined, meaning that 

our population substructure model must be used to cluster individuals according 

to their profile.

If G  is known, then the subpopulation of the individual must also be known 

to retain independence across loci. If the subpopulation membership of a par­

ticular individual is unknown, an allele observed at a particular locus suggests 

membership of a subpopulation for which the corresponding frequency is rela­

tively high. This gives additional information about the possible allele frequen­

cies at other loci meaning that the alleles at different loci are dependent.

Such dependencies arise from the substructure present within the population. 

When the assumption of known subpopulation membership of all individuals is 

relaxed, it is these dependencies which allow us still to cluster the individuals and 

use the methods of inference described in Chapter 4 for the complete information 

case.

The subpopulation labels (7̂ ; z =  1 , . . . ,  n) must now be included as an un­

known in the MCMC scheme, and be updated at each iteration for each indi­

vidual. This involves the generation, for each database individual, of a uniform 

random variable and its comparison to the full conditional probability of that 

individual’s subpopulation label.
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Pr(/j|Cr, Xa — Sa5 —
E?=i[n"i Gy(2:.,l)Gy(x«2)]«(0 ’ 

independently across individuals, where Xi represents the profile of the indi­

vidual.

The integration required to calculate the match probabilities is not possible 

using analytical methods. As the empirical estimators (mf) are no longer avail­

able, the only choice of estimator is between MCMC estimators taking ergodic 

averages of functions of G  and (a, n ) respectively. It is shown in Chapter 7 that 

the theoretically more accurate of these is

. (2) _  1 %  (« f  (» l)  +  "U +  "U (%2) +  ^i)
i i i  (a f{ + )+ n < ‘> (+ ) ) (a f (+ )+ n |‘>(+) +  l)

where (a j ( l ) , . . . ,  aj{rj)) is the function • • •, Jji'f'j))) of the relative

allele frequencies 7  ̂ and subpopulation differentiation parameter at locus j  in 

the ‘ancestral’ population. This is the estimator used for the remainder of this 

chapter. The number njj^k) of alleles of type k at locus j  within individuals 

of subpopulation Pi in the database at iteration t is evaluated by counting the 

alleles within the profiles of individuals whose subpopulation label = I.

If the crime profile x  is relatively common, and the database reasonably ex­

tensive, the allele frequencies nij{yjb) will generally be much larger than aj{yjb), 

highlighting the need for accurate clustering of individuals if there is a clear 

substructure within the overall population.

If the subpopulations do correspond to a split of the population with a phys­

ical representation, some information on the subpopulation proportions could 

be available as a result of previous studies. If such a previous study is ex­

tensive enough, it may be adequate to consider k  ‘known’ to be the resultant 

estimates. If this is not a reasonable assumption, k  must be introduced as a 

random variable, and an appropriate prior placed upon it. If there is no physi­

cal interpretation to be placed upon the subpopulations, it is assumed that such 

information upon h, would not be available. In this instance, a vague symmetric 

prior is used.
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Analyses assuming both known and unknown k, are presented in the following 

sections.

8.4.1 Subpopulation proportions assum ed known

It is assumed that k  agrees with the proportions observed in the Caucasian and 

Afro-Caribbean populations respectively, i.e. k(1) =  =  0.715, k{2) = 0.285.

The MCMC scheme with stationary distribution 7r(a, G,  / |x a  =  &) was re­

peated 7 times for 10000 iterations (including a burn-in of 3000). Initiated using 

different random seeds, the chains produced the match probability estimates of 

Table 8  for the profile ACc-

random seed mca mAC m

12 6.13 X 10-'" 6.35 X 10-® 1.81 X 10-®

12 0 0 0 5.93 X 10-“ 6.43 X 10-® 1.83 X 10-®

1 0 -G 5.79 X 10-“ 6.43 X 10-® 1.83 X 10-®

Average; 5.95 X 1 0 '“ 6.40 X 10-® 1.82 X 10-®

1 3.15 X 10-7 6.20 X 10-“ 2.26 X 10-7

125 000 3.23 X 10-7 1.51 X 1 0 -" 2.31 X 10-7

560 000 3.21 X 10-7 6.80 X 10-“ 2.30 X 10-7

36 X 10** 3.15 X 10-7 9.26 X 10-“ 2.25 X 10-7

Average: 3.19 X 10-7 5.94 X 10-“ 2.28 X 10-7

Table 8 : Posterior match probability estimates when k. is known. The table is split 

to highlight the grouping of results.

As can be seen, the estimated match probabilities are dependent upon the 

random number seed used in the program. The grouping of the results suggests 

that the Markov chain is not mixing properly across a multimodal posterior 

density.

Figure 9 shows the first 500 points of a trace of one particular allele frequency 

C i3 (6 ) for the seven random seeds used. This shows how the chain quickly settles

82



0.37

0.32

a
S  0.27 

ü

0.22

0.17

100
1 r

200 300
iteration

400 500

Figure 9: Trace of Gi3(6 ) initialised by 7 different random seeds.

into one of the two modes. The evidence of our MCMC results is that there is 

little, if any, movement between the modes.

Development of an MCMC scheme to cope with such multimodality is aided 

by a clearer understanding of the reasons behind it. Figures 10 and 11 show the 

allocation of individuals into subpopulations when the chain remains in each of 

the two modes.

Figure 10 shows the majority of Caucasians with a very low posterior prob­

ability of being in subpopulation 2, and most Afro-Caribbeans having a high 

probability of being in subpopulation 2, suggesting that this mode corresponds 

to the ‘correct’ situation, i.e. recognition of Caucasian and Afro-Caribbean 

populations. In Figure 11 it appears that the individuals of the minority Afro- 

Caribbean population are still, in the main, grouped together, but allocated 

to the larger subpopulation. The diagram of Figure 12 represents a simplified 

version of the allocation.

A comparison of the average log likelihood of the data across a run of the
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C a u c a s ia n  Ind iv idua ls

600

400

200

O 0.10.20.30.40.50.60.70.80.9 1

A fro -C a r ib b e a n  in d iv id ua ls

P('i=2lx„=̂ „) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
P(I,=2IX„=4„)

Figure 10: Allocation of individuals: k known, random seed = 1 2 . For each individ­

ual, the posterior probability of him being in a particular subpopulation is estimated 

by taking the proportion of iterations in which he occupies the particular state. It 

can be seen that over 850 of the 1401 Caucasian (subpopulation ‘1’) individuals in the 

database were allocated to the correct subpopulation at least 90% of the time in this 

instance.

C a u c a s ia n  indiv iduals A fro -C arib b ean  ind iv iduals

O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P('i=2lx„=̂cx)

600

400 -

200

O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pdi=2lx„=̂ „)

Figure 11: Allocation of individuals: k, known, random seed = 1.
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Figure 12: Allocation within the two posterior modes.

MCMC scheme (Figure 13) suggests that the mode corresponding to the incor­

rect allocation is significantly smaller than that of the ‘correct’ allocation, as one 

would generally expect if there is a large difference in the proportions (k(/)).

It is certainly reasonable to consider that such a set-up would result in two 

such modes. All possible vectors I  of individual subpopulation allocation have 

some posterior probability. Those allocations which group together individuals 

with relatively large numbers of alleles in common will show a larger probability. 

This means that it is reasonable to think that, in this case in which individuals 

of two distinct subpopulations are combined to form a single database, those 

allocations which group together the individuals into the respective subpopu­

lations have the largest posterior probabilities. An allocation in which most 

Afro-Caribbeans are grouped together in the larger subpopulation will show a 

smaller posterior probability, but still larger than most arbitrary allocations, 

thus defining the separate smaller mode.

It could be argued that our interpretation of the results is influenced by 

the fact that in reality we know there to be two subpopulations present. In 

an effort to present a balanced judgement, we consider other factors that could 

conceivably lead to the observation of this apparent multimodality.

It should be noted that a run of 10000 is rather short, particularly considering
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Figure 13: Comparison of log likelihood (Pr(Xa =  for random seeds 1

and 12.

the apparently multimodal nature of the posterior, and it could be argued that 

the multimodality is a convergence problem. With the current program, much 

longer runs take a prohibitive length of time, but a single run of length 1 million 

was conducted, initiated by a random seed of 1. The results were very close 

to those of Table 8 under the same seed, suggesting that the chain remains 

in this mode throughout the longer run. This result does not prove that the 

multimodality is not a convergence problem, but does suggest that the chain 

would have to be run for a very long time to before any other result might be 

observed. This is not practical, confirming that mixing should be encouraged 

via the methods of Chapter 6 .

There is also the possibility that multimodality is a result of there being 

more than 77 subpopulations present.

The nature of these modes is elucidated in Section 8.4.2 in which the sub­

population proportions (k(1)) are assumed unknown. This allows us to witness
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the effect on the posterior of varying the amount of prior information available 

upon these proportions.

In the general case of 77 observed subpopulations (and the number of sub­

populations being defined as 77), there are 77! modes, each corresponding to a 

particular allocation of the clusters in the database to the ‘true’ subpopulations. 

Only if the subpopulation proportions («:(/)) are equal for all I will the database 

clusters be similar across all modes.

Should the number of subpopulations present be greater than 77 some indi­

viduals will be forced to be grouped with individuals of another subpopulation. 

This could result in a greater number of broad groupings as there is a potentially 

larger number of ways in which the subpopulations could combine.

Thus we would maintain that the multimodality itself is a result of there 

being a number of subpopulations, and that this multimodality could increase 

if the number of subpopulations is incorrectly specified. Such reasoning could 

conceivably be incorprated in a method to establish the ideal number of subpop­

ulations to specify. We consider in Chapter 10 the potential for further study 

that arises from the restriction we have imposed by assuming the number of 

subpopulations known. However it should be stressed that the study assuming 

77 known is still of great value, even if it is incorrectly specified. This is because 

groupings of individuals who are most genetically similar will still have the great­

est likelihoods under a given specification of 77, and we will still be accounting 

for a great deal of the substructure present.

Ideally, one would like to design an MCMC scheme which spends an amount 

of time in each mode proportional to the size of the mode. When one mode 

is far greater than the others, as in the observed case, the chain should spend 

the majority of time in this mode. The initial scheme used gives satisfactory 

estimates if it initially moves to the ‘correct’ allocation, but has a very low 

probability of moving to this mode if the chain’s starting point leads towards 

the ‘incorrect’ allocation. This problem is highlighted by the results of the run 

of length 1 million along which there was still no ‘move’ from the smaller mode.
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Considering the allocation diagram of Figure 12, movement from one mode to 

another would be facilitated by the reallocation of a large number of individuals 

from one subpopulation to another.

Thus an initial attem pt to improve the mixing was made involving the in­

troduction of an extra parameter. We now distinguish between the arbitrary 

subpopulations of the MCMC scheme and the true ‘real world’ subpopulations, 

and introduce S  as a. parameter mapping one onto the other. The entry 

of this vector is an integer representing the true subpopulation corresponding 

to arbitrary subpopulation r. A symmetric prior tts is defined such that all r! 

possible permutations are considered equally likely. In the two subpopulation 

case that we are currently considering, the subpopulations are coded

Caucasian; 1

Afro-Caribbean: 2

and thus, in the prior.

S  = <
(1 , 2 ) with probability F

(2 , 1 ) with probability 

At any iteration, a change in S  would immediately reallocate all individuals to a 

different true subpopulation, corresponding to a change in mode. The updated 

DAG for this scheme is shown in Figure 14.

The full conditional probability distribution of S  is

P r ( 5 | . . . )  =  Pt{S\I,7Ts , k )

oc Pr(I\S,K,).7Cs{S) 

oc f[K(S{Ii)).7rs{S)
i=l

oc n / c ( S ( 0 ) " “ < '> .7 r s(S ) ,
1 = 1

where ria{l) is the number of individuals allocated to subpopulation Vi.

Once the chain has settled into one mode with a particular allocation, the 

conditional probability of the current S  will be much larger than for other pos­

sible permutations, unless the subpopulation proportions are close in size. This 

means that a change of S,  and therefore a change of mode, is unlikely.



Figure 14; DAG for the case of incomplete information, including ‘mixing’ variable 

S.

89



However, mixing is improved by the introduction of a simulated tempering 

phase (see Section 6.7) in addition to the ‘allocation parameter’ S.  This involves 

proposing a ‘temperature’ change at each iteration of the chain. ‘Heating’ the 

posterior ‘flattens’ the density to make a move from one mode to another more 

likely. The lowest temperature corresponds to the true posterior, and it is only 

samples made at this level that are retained for estimation purposes.

In the case considered here, ‘temperature’ changes are represented by changes 

in the subpopulation proportions. The ‘coldest’ level 0 corresponds to the 

true subpopulation proportions. A move from one mode to another is repre­

sented by a change in S.  As this is unlikely to happen unless the proportions 

(/{(I),. . . ,  are reasonably similar, at the hottest level v the subpopulation 

proportions are set equal to A Setting up the scheme becomes more complicated 

with a greater number of subpopulations. It has thus far been used successfully 

in the two subpopulation case described. In this case, the change in ‘temper­

ature’ between adjacent levels is represented by a change in k(1) of d, k {2) 

changing by a similar magnitude in the opposite direction.

Iteration t of the MCMC scheme now involves the sampling of 

(and consequently the numbers of alleles of each type at each locus j  

within each subpopulation Vi), and In addition we must propose a change 

in the temperature level. If the process is at level r, we propose a move to level 

w with probability where

Qo,i =  1

Qv,v-i — 1

Qr,r—l — Qr,r+1 ~  2 i f O < r < h

qr,w = 0 otherwise.

As the temperature level is characterized by the subpopulation proportions, 

the acceptance probability Œacc involves only terms of the posterior dependent 

upon K.

For a proposed move from level r  to level w, the acceptance probability is
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given by

Oinrr. — mm
 ̂ Cu;7r(tt, G", I , S\Kuj\(^ ^a^Qw,r 1

Cj-Trî Oi, Gj IJ jŜ I/tr, Xa â̂ Qr,w j

. f . c ^ m u ^ u s i r ^ ^ ^ n Q w A  
"  r ^ [ n 7 = i /^ r ( ^ z M % r , .  r

where (c^) is a series of constants chosen to ensure a reasonable acceptance 

rate and Kr represents the subpopulation proportions characterizing temperature 

level (r =  0, . . . ,  v).

With n +  1 temperature levels overall, the difference between the subpopu­

lation proportions in the two subpopulation case at level r  is 2{v — r)0, i.e. it 

becomes smaller as the temperature increases, and thus a change in S  becomes 

more likely, facilitating a switch from one mode to the other.

The MCMC scheme was set up with 11 levels, and run for 10000 iterations 

with a burn-in of 3000. The greater the number of levels, the longer the chain 

must be, as only the iterations at level 0 are used to calculate the final estimator.

Figure 15 shows a section of the sampler initiated by a random seed of 

1, which originally led to the chain being unable to move from the smaller 

mode, together with a trace of This is the allele frequency of the

larger subpopulation directly comparable to that traced in Figure 9. This shows 

movement from the smaller mode to the larger facilitated by ‘heating’ of the 

simulated tempering scheme.

Match probability estimates for the profile ACc under this scheme can be 

seen in Table 9. The Markov chains used for these results are initiated using the 

same random seeds as previously.

The lack of variation across random seed suggests that the simulated tem­

pering aids mixing of the process. The similarity of these results to those under 

the original scheme corresponding to seeds 12, 12000 and 10“® is to be expected 

if the chain mixes properly according to the relative size of the modes.
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Figure 15: Traces of simulated tempering level and an allele frequency.

random seed mca 'rriAC m

1 5.84 X 1 0 -'“ 6.39 X 10-® 1.82 X 10-®

12 5.90 X 1 0 -'“ 6.41 X 10-® 1.83 X 10-®

12 000 5.80 X 1 0 -'“ 6.46 X 10-® 1.84 X 10-®

125 000 6.10 X 1 0 -'“ 6.20 X 10-® 1.77 X 10-®

560 000 5.36 X 1 0 -'“ 6.47 X 10-® 1.84 X 10-®

10-® 5.74 X 1 0 -'“ 6.45 X 10-® 1.84 X 10-®

36 X 10® 5.96 X 10-'“ 6.46 X 10-® 2.25 X 10-®

Average: 5.81 X 1 0 -'“ 6.41 X 10-'^ 1.83 X 10-'

Table 9: Posterior match probabilities when « is known, employing simulated tem­

pering.
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8.4.2 Subpopulation proportions assumed unknown

The level of information provided by the subpopulation proportions in the ab­

sence of individual subpopulation identifiers should not be underestimated.

If subpopulation identifiers are unavailable, one is looking to allocate the 

individuals of the database according to the most likely genetic clusters. If the 

size of these clusters can be accurately estimated, a large number of potential 

allocations will be eliminated. This can be seen mathematically by considering 

the conditional distributions of I  given G  in the presence and absence of known 

subpopulation proportions.

If the subpopulation proportions are considered known,

Pr(f|K , Xa =  (a, G) OC Pr(%a =  G ).Pr(J|K ), (60)

meaning that the likelihood for each possible allocation is weighted by a prior 

probability based upon k . If the proportions are unknown, these weights are no 

longer available, and integration across k, is required,

Pr(^IXa =  &, G )  =  E[Pr(7|xa =  G, f()|G , %a =  &]

oc Pr(Xa =  î a \ I ,  G).Fl{I\K).7T{K)dK,  

oc Fr{Xa =  ^ a \ I , G )  J^FT{I\K) .7r{K)dK.

This means that the weighting for each allocation’s likelihood is an average across 

all possible K. If the prior placed upon k, is highly concentrated, these weights 

should be close to those of (60). If, however, the prior is vague, the weightings 

are likely to be more uniform meaning that one is relying to a greater extent 

upon the data to form clusters via the likelihood.

A Dirichlet prior with parameters {^^(1), • - • is placed upon k .

To include k  in the MCMC scheme requires sampling from its full conditional 

(now assuming the original model, excluding S),
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7t(k| . . .) =  7t{k \ I )

OC / ( I l / c ) . 7 r ( / c )

oc n  
1 = 1

=> k | . . .  ~  Dirichlet(na(l) +  7Tk(1 ), . . . ,  na{r]) +  TT̂ {r])).

As well as providing information relevant to the clustering process, k  has 

also been used to this point when calculating the weighted sum of the match 

probabilities Ya=i where A/ =  Pr(C  G Pi\C 0  a,e),  a  being the database 

of individuals including the suspect. If it is assumed that there is no additional 

information upon the culprit’s subpopulation available within the non-DNA ev­

idence e, we may assume that A/ =  ki for all / =  1 , . . .  , 77. This suggests that 

Xi can be estimated by an ergodic average over {t) of («(/)^*^), and the required 

weighted sum by an ergodic average of (Z)/Li The overall match

probabilities quoted in this section refer to these ergodic averages.

The match probabilities in Tables 10 - 13 for the suspect profile ACc result 

from a series of priors placed upon k , from vague (Dirichlet (1,1)) to highly 

concentrated (Dirichlet(700,300)). These prior densities are plotted in Figure 

16.

As the amount of prior information upon k  is increased, the distribution 

tends to a point mass at known proportions. Bearing in mind the results under 

known k , it is reasonable to expect a multimodal posterior once again, and this 

is reflected in the results of Tables 10 to 13.

Comparison of individual allocations under this series of priors elucidates the 

effect causing the multimodality described in the previous section.

Figures (17 - 24) show allocations within the two modes as the amount of 

prior information upon k, increases.

The allocations under the Dirichlet (1,1) prior are symmetric in the two 

modes, individuals being clustered accurately. As there is no information speci­

fying which of the two subpopulations (Caucasian or Afro-Caribbean) is larger, 

it is to be expected that the larger subpopulation is labelled Caucasian in half 

the runs.
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random seed k (1 ) rtica rriAC m

12 0.715 10.0 X 10-“ 9.07 X 10-® 2.24 X 10-®

12 000 0.783 10.5 X 10-“ 8.56 X 10-® 2.13 X 10-®

10“® 0.759 9.46 X 10-“ 8.67 X 10-® 2.15 X 10-®

36 X 10® 0.729 10.7 X 10-“ 8.83 X 10-® 2.18 X 10-®

Average: 0.747 10.2 X 10-“ 8.78 X 10-® 2.17 X 10-®

1 0.282 8.63 X 10-® 9.56 X 10-“ 2.14 X 10-®

125 000 0.244 8.50 X 10-® 9.86 X 10-“ 2.11 X 10-®

560 000 0.279 8.43 X 10-® 10.1 X 10-“ 2.09 X 10-®

Average: 0.268 8.52 X 10-® 9.84 X 10-“ 2.11 X 10-®

Table 10; Posterior match probabilities when k ~  Dirichlet(1,1).

r a n d o m  s e e d k (1 ) mca rriAc m

12 0.742 10.9 X 10-“ 8.44 X 10-® 2.08 X 10-®

12 0 0 0 0.756 9.54 X 10-“ 7.99 X 10-® 2.01 X 10-®

125 000 0.794 9.55 X 10-“ 8.26 X 10-® 2.07 X 10-®

10-® 0.725 9.46 X 10-“ 8.67 X 10-® 2.15 X 10-®

36 X 10® 0.755 10.4 X 10-“ 8.25 X 10-® 2.05 X 10-®

A v e r a g e : 0.754 9.97 X 10-“ 8.32 X  10-® 2.07 X 10-®

1 0.308 7.68 X  10-® 8.05 X 10-“ 2.01 X 10-®

560 000 0.268 7.32 X 10-® 8.52 X 10-“ 1.94 X 10-®

A v e r a g e : 0.288 7.50 X 10-® 8.29 X 10-“ 1.98 X  10-®

Table 11: Posterior match probabilities when k> ~  Dirichlet(7,3).
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random seed «(1) mca m

12 0.725 8.19 X 10-“ 7.32 X 10-® 1.94 X 10-®

12 000 0.715 8.37 X 10-“ 7.57 X 10-® 1.96 X 10-®

10~® 0.742 8.85 X 10-“ 7.79 X 10-® 2.03 X 10-®

36 X 10® 0.768 8.19 X 10-“ 7.65 X 10-® 2.01 X 10-®

Average: 0.738 8.40 X 10-“ 7.58 X 10-® 1.99 X 10-®

1 0.349 3.18 X 10-® 1.78 X 10-“ 1.18 X 10-®

125 000 0.369 3.26 X 10-® 1.41 X 10-“ 1.21 X 10-®

560 000 0.382 3.19 X 10-® 1.74 X 10-“ 1.19 X 10-®

Average: 0.367 3.21 X 10-® 1.64 X 10-“ 1.19 X 10-®

Table 12: Posterior match probabilities when k ~  Dirichlet(70,30).

random seed M:(l) mca m

12 0.719 5.64 X 10-1® 6.31 X 10-® 1.82 X 10-®

12 000 0.707 5.58 X 10-1® 6.27 X 10-® 1.81 X 10-®

10-® 0.713 5.08 X 10-1® 6.23 X 10-® 1.80 X 10-®

Average: 0.713 5.43 X 10-1® 6.27 X 10-® 1.81 X 10-®

1 0.661 5.27 X 10-"̂ 9.53 X 10-“ 3.36 X 10-'

125 000 0.652 4.93 X 10-1̂ 1.73 X 10-“ 3.15 X 10-'

560 000 0.642 5.12 X 10-"^ 1.84 X 10-“ 3.28 X 10-'

36 X 10® 0.660 5.29 X 10-^ 1.33 X 10-“ 3.38 X 10-'

Average: 0.654 5.19 X lO-i' 1.46 X 10-“ 3.29 X 10-'

Table 13: Posterior match probabilities when k ~  Dirichlet(700,300).
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C a u ca sian  Individuals A fro-C aribbean Individuals

O 0.1 0 .2  0 .3  0 .4 0 .5  0 .6  0 .7  0 .8  0 .9  1
P(l,-2lx„-^„)

Figure 17: Individual allocation: k ~  Dirichlet(1,1), random seed = 12.

Caucasian individuals Afro-Caribbean Individuals

O 0.1 0 .2  0 .3  0 ,4  0 .5  0 .6  O.T 0 .8  O.© 1 O 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9  1
P(I,-2Ix„-4„) P(I,-2Ix„-^„)

Figure 18: Individual allocation: k, ~  Dirichlet (1,1), random seed = 1.

Particular attention should be paid to results under the symmetric prior in 

which 7Tk(/) =  1 for all I. It is equivalent to placing one unknown individual in 

each subpopulation before the analysis is begun.

Such a prior results in a problem of identifiability. In the case of two sub­

populations, A  and B  say, it is not possible to differentiate between the case 

in which the individuals truly in subpopulation A  are generally allocated to 

arbitrary subpopulation 1, and that in which they are allocated to arbitrary 

subpopulation 2.

The general problem can be made identifiable by ordering the subpopulation 

proportions, «(1) > k,{2) > . . .  > «(r/) for example, restricting the chain to a 

particular mode. In our application however, such a lack of identifiability is 

unimportant, as the overall match probability m = Ximi is itself symmet-
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C au casian  Individuals A fro-C aribbean individuals

O 0.1 0 .2 0 .3 0 . .4 0 .5 0 .6 0 .7 0 .8 0 .9  1 O 0.1 0 .2  0 .3  0 .4  0 .5  0 .6  0 .7  0 .3  0 .9  1

Figure 19: Individual allocation: k, ~  Dirichlet(7,3), random seed =  12.

C a u c a s ia n  in d iv id u a ls A fro -C a r ib b e a n  in d iv id u a ls

O 0 .1 0 .2  0 .3  0 .4  0 .5  0 .6  0 .7  0 .8  0 .9  1 O 0 .1 0 .2  0 .3  0 .4  0 .5  0 .6  0 .7  0 .8  0 .9  1

Figure 20: Individual allocation: k ~  Dirichlet(7,3), random seed = 1.

C a u c a s ia n  in d iv id u a ls A fro -C a r ib b e a n  in d iv id u a ls

O 0.1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9  1 O 0.1 0 .2  0.3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9  1

Figure 21: Individual allocation: k, ~  Dirichlet(7G,3G), random seed = 12.
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C au casian  individuals Afro-CarllDt>ean Individuals

O 0.1 0 ,2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9  1 O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1P(l,-2l5c„-̂ „) Pdl-SIXc-Ç»)
Figure 22: Individual allocation: k, ~  Dirichlet(70,30), random seed =  1.

Caucasian individuals Afro-Carlbbean Individuals

O 0.1 0 .2  0 .3  0.4 0 .5  0 .6  0 .7  O.B 0 .9  1 O 0.1 0 .2  0 .3  0 .4  O.S 0 .6  0 .7  O.S 0 .9  1P(l|-2lx„-̂ „)
Figure 23: Individual allocation: k, ~  Dirichlet(700,300), random seed = 12.

Caucasian Individuals Afro-Carlbbean Individuals

O 0.10.20.30.40.50.60.70.80.9 1 O 0.1 0.20.3 0.40.5 0.60.70.80.9 1P(l,-2lx„-̂ „)
Figure 24: Individual allocation: k, ~  Dirichlet(700,300), random seed = 1.
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rical if it is assumed that A/ =  k,{1) where Â =  Pr(C  e Vi\C ^  a).

This means that the resultant match probability should be the same how­

ever the subpopulations are allocated, a fact substantiated by the overall match 

probabilities displayed in Table 10.

As the total of the parameters in the Dirichlet distribution increases, the 

allocations tend to that of known k  (Figures 10, 11). The trend of these graphs 

makes clear how each mode attributes one of the clusters of the data to the 

Caucasian subpopulation, and one to the Afro-Caribbean. W ith a small amount 

of prior information, the relative size of these clusters dictates the posterior 

estimates of the subpopulation proportions k,.

The Dirichlet (700, 300) distribution effectively represents the addition of 

1000 individuals of unknown profile to the database in the ratio 70:30 of Cau­

casians to Afro-Caribbeans. With a database of 1960 individuals (including the 

suspect), this is highly influential in the posterior distribution of «, and when 

the process attempts to allocate the cluster truly corresponding to the Afro- 

Caribbean subpopulation to the Caucasian subpopulation, the appropriate split 

in terms of individual numbers is not possible. Thus, at each iteration, a number 

of true Caucasian individuals are grouped with this cluster to form the larger 

subpopulation.

If there is some information available facilitating the specification of an asym­

metric prior upon ft, it is important that the chain mixes properly, occupying 

the modes for the appropriate amount of time. As k, is now a variable, it seems 

possible that its movement could induce switching in the modes without the 

simulated tempering if the parameter S  were again introduced to the scheme. 

However, if the prior upon k  displays a small variance, it is unlikely that k  will 

be allowed to move sufficiently for the desired switching to take place.

In this case, the simulated tempering scheme would be more difficult to 

employ. This is due to the temperature levels being defined by the subpopulation 

proportions («(/)). As this is now a random variable, it can no longer be used to 

define the coldest temperature level. The ‘known’ constants are now the prior
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parameters placed upon this variable, and it is not clear that adjusting these 

will encourage the chain to change mode in the same way that adjusting k  does 

when the proportions are known. For this reason we opt to use an importance 

sampling scheme (as described in Chapter 6) in this case. To use this technique 

one must have a density 7r*{a,G, I ,  K,\xa = &) which can be easily sampled 

from and which mixes well. Although the chain with a stationary distribution 

of the posterior with a Dirichlet(1,1) prior upon k  does not mix well, it would 

seem reasonable to induce mixing by manually changing the parameter S  at 

set points. It is only allowable to do this with symmetric priors, because it is 

known that the point in the other mode with the parameters at the same values, 

but individuals allocated to different subpopulations, will have equal posterior 

density.

Thus we define

7T (fl, ( t, / ,  / c | X q  — — '^(tt, G , / , f c | 7 T K  =  ( l , . . . , l ) ,  Xa ~  ^ a )  j

and parameter values from the resultant chain are weighted at each iteration (t) 

to give match probability estimates,

^  ^ r f M  (4* (̂ 2 / j i ) ) ( Q f ^ ( y j 2 ) + n ' l f  { y j 2 ) + S j ) 

(a<‘ ) ( + ) + n [ ‘ > ( + ) ) ( a f ( + ) + n { ‘ ) ( + ) + l )  
mi = ---------------------  ̂  ̂ -- ^—

where

Wt =

Pr(xa =  7^*^)7r*(a(*))7r*(G^* |̂a(*))7r*(/^* |̂K(*))7r*(/«( )̂)
7r(/{(̂ ))

7T

r(7r„{+))
W - i ) n L r K ( 0 ) i U

Match probability estimates using this importance sampling method under the 

priors for k  used earlier are given in Tables 14 to 16.

It is interesting to note how the subpopulation match probabilities change 

with the prior subpopulation proportion parameters. Under the symmetric prior,
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we always observe similar clusters, but with the larger cluster allocated to sub­

population 1 (Co) or 2 (AC) at random. In the case of the Dirichlet(700, 300) we 

have a great deal of prior knowledge regarding the subpopulation proportions. 

Under this prior we are almost certain that the larger cluster corresponds to 

subpopulation 1, and therefore the importance sampling weightings are almost 

negligible when the chain is in the mode in which the subpopulation 2 cluster 

is larger. However, when the Dirichlet(7,3) prior is assumed, there is a greatly 

increased probability that ‘2’ is the larger subpopulation. This means that the 

larger match probability generally attributed to the Afro-Caribbean subpopula­

tion has a contribution to the Caucasian match probability which is no longer 

negligible.

An important question arises in the case in which there is no apparent phys­

ical interpretation of the subpopulations. How many subpopulations are there?

If the subpopulations are purely a tool of the model, it seems unrealistic to 

consider the answer to this question known before the analysis is started. This 

is a problem which is considered in Chapter 10.

random seed mca m

1 1.15 X 10-’' 8.53 X 10-® 2.15 X 10-®

12 1.17 X 10-’ 9.16 X 10-® 2.26 X 10-®

12  0 0 0 1.06 X 10-’ 8.62 X 10-® 2.17 X 10-®

125 000 1.24 X 10-’ 8.36 X 10-® 2.07 X 10-®

560 000 1.20 X 10-’ 8.05 X 10-® 2.03 X 10-®

10-® 1.17 X 10-’ 8.69 X 10-® 2.18 X 10-®

36 X 10® 1.18 X 1 0 - ’ 8.84 X 10-® 2.19 X 10-®

Average: 1.17 X 10-’ 8.61 X 10-® 2.15 X 10-®

Table 14: Posterior match probabilities when k ~  Dirichlet(7,3).

Bearing in mind the lack of information generally available regarding the sub­

populations present, it is likely that we would generally assume unknown sub-

103



random seed mca m

1 8.35 X 10-“ 7.79 X 10-® 2.03 X 10-®

12 9.09 X 10-“ 8.31 X 10-® 2.13 X 10-®

12 000 8.05 X 10-“ 7.91 X 10-® 2.07 X 10-®

125 000 8.86 X 10-“ 7.53 X 10-® 1.94 X 10-®

560 000 8.93 X 10-“ 7.22 X 10-® 1.89 X 10-®

10-® 8.20 X 10-“ 8.10 X 10-® 2.09 X 10-®

36 X 10® 9.54 X 10-“ 8.10 X 10-® 2.08 X 10-®

Average: 8.72 X 10-“ 7.85 X 10-® 2.03 X 10-®

Table 15: Posterior match probabilities when k ~  Dirichlet(70,30).

random seed mca TTIaC m

1 5.99 X 10-“ 6.24 X 10-® 1.80 X 10-®

12 5.33 X 10-“ 6.41 X 10-® 1.84 X 10-®

12 000 5.74 X 10-“ 6.40 X 10-® 1.83 X 10-®

125 000 6.16 X 10-“ 5.66 X 10-® 1.63 X 10-®

560 000 6.49 X 10-“ 5.69 X 10-® 1.65 X 10-®

10-® 5.11 X 10-“ 6.59 X 10-® 1.90 X 10-®

36 X 10® 6.65 X 10-“ 6.46 X 10-® 1.85 X 10-®

Average: 5.92 X 10-“ 6.21 X 10-® 1.79 X 10-®

Table 16: Posterior match probabilities when k ~  Dirichlet(700,300).
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2 .5% 1 .3 7  X 10-®

5% 1 .4 7  X 10-®

25% 1 .8 2  X 10-®

Median 2 .1 0  X 10-®

75% 2 .4 2  X 10-®

95% 2 . 9 7  X 10-®

9 7 .5 % 3 . 1 7  X 10-®

Table 17: Quant îles of the posterior distribution of the overall match probability.

population labels and proportions with a Dirichlet (1, . . . ,  1) prior placed upon 

K. The convergence factor of Gelman and Rubin (see Chapter 6) was estimated 

via CODA [BUCS] to be 1.01, with a 97.5% quantile of 1.03, for this series of 

seven runs. This suggests that the sequences have converged, and should be 

reliable for posterior inference.

The overall mean match probability was estimated to be 2.15 x 10“  ̂ with 

an estimated standard error of 7.16 x 10~^. Table 17 shows a summary of the 

posterior distribution of this overall match probability. In particular, the 95% 

posterior credible interval for the overall match probability is (1.37 x 10“®, 2.42 x 

10“®). It is interesting to compare this to the model II estimate, assuming 

subpopulation labels known, of 2.00 x 10“®.

Having calculated the posterior credible interval, it is necessary to consider 

how the presence of a credible interval of this magnitude affects the conclusions 

drawn from our results. Table 18 shows a comparison of posterior probabilities 

of guilt under a range of prior probabilities. It can be seen that the uncertainty 

in the match probability does lead to a degree of uncertainty in the posterior 

probability of guilt. However, in the cases shown, even the discrepancy between 

values at the extremes of the distribution is unlikely to affect the final decision 

with regard to the guilt of the suspect.
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Prior probability of guilt

Match probability 

1 .3 7  X 10-® 2 .1 0  X 10-®  3 . 1 7  x  10-®

IQ-3 1 .0 0 1 .0 0 1 .0 0

1 0 - 4 0 .9 9 0 . 9 8 0 . 9 7

1 0 - ^ 0 .8 8 0 . 8 3 0 . 7 6

4  X 10-® 0 .7 4 0 . 6 6 0 . 5 6

2 X 10-® 0 .5 9 0 . 4 9 0 . 3 9

10-® 0 .4 2 0 .3 2 0 . 2 4

10-"^ 0 .0 7 0 .0 5 0 . 0 3

10-® 0 .0 1 0 . 0 0 0 . 0 0

Table 18: Posterior probabilities of guilt for an individual with profile ACc  under a 

range of prior probabilities of guilt. This shows how the result of interest varies across 

the posterior distribution of the match probability.

106



9 Alternative m ethods

9.1 Introduction

This work is motivated by previously published research in the area. In this 

chapter we consider two papers which have sought to advance the methods used 

to present a DNA profile match as evidence within the courtroom.

This chapter describes the methods of papers by Roeder, Escobar, Kadane 

and Balazs [Roeder, Escobar, Kadane and Balazs, 1998], and Foreman, Smith 

and Evett [Foreman, Evett and Smith, 1997]. Areas in which it is felt omissions 

have been made are highlighted and contrasted with the approaches described 

in this thesis.

Section 9.4 presents comparisons of results under the methods of Foreman 

et al  and of this thesis. While showing that the method of Foreman et ai is 

generally conservative, these comparisons suggest that there are significant gains 

in accuracy to be made by using the methods of this thesis. It is demonstrated 

that the two methods could result in different decisions being reached regarding 

the guilt of the suspect given the profile match.

9.2 Roeder, Escobar, Kadane and Balazs

This analysis [Roeder, Escobar, Kadane and Balazs, 1998] is based upon a 

model similar to that described in Chapter 3. This means that we have lev­

els describing:

(i) inheritance of a particular profile Xi by each individual i within a subpop­

ulation {Vi, / =  1 , . . . ,  77),

=  k \ G ) =  Gij{k),

independently across i, /, band ( 6 = 1 , 2 )  and locus {j =  1 , . . . ,  M ), the 

collection of observable alleles at a particular locus being denoted by k =

1 , . . . , To.
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(ii) Generation of the allele probabilities G  in each subpopulation,

Gij ~  Dirichlet(aj(l), aj (2) , . . . ,  aj{rj)), independently for all l , j ,  (61) 

where a , =

(iii) The generation of the ancestral population parameters (7 , 6) from a ‘hy­

perprior’ distribution,

7 j ~  Dirichlet(a^(l) , . . .  ,aj{rj));

6j ~  Beta(u0 , 6g).

Two extra levels are included by Roeder et al. to account for measurement 

error and coalescence, an effect causing a heterozygote (i.e. a pair in which 

the alleles are not the same) to appear as a homozygote due to the similarity 

between the allele lengths of the pair. Advances in technology mean that these 

levels are no longer necessary.

Roeder et al. estimate 7  empirically, and particular emphasis is placed upon 

inference about the subpopulation differentiation parameter 9. They employ 

what has been termed model II in Chapter 4, i.e. the likelihood is defined as

^(^, 7) =  Pr(Xa =  7 ), (62)

where Xq is the available data, the collection of profiles from the ‘complete 

database’ a  comprising the original database ô and the suspect s. It is as­

sumed throughout that the subpopulation membership Ii of each individual i is 

unknown.

Given 7  and 0, the profiles of individuals are independent if they are in 

different subpopulations. However, given only 7  and 0, individuals within a 

subpopulation are exchangeable, but not independent. This means that terms 

in which there are at least two individuals allocated to the same subpopulation 

are more complicated.

Roeder et al. consider the case in which the number of subpopulations is 

much greater than the number of individuals in the database, i.e. r) »  n^. In

108



this case, the probability that two individuals belong to the same subpopulation 

becomes small, and thus the likelihood (62) is dominated by terms involving the 

product across conditionally independent individuals. In fact Roeder et al. use 

an approximation in which only these terms contribute to the likelihood:

L{0,y)  «  n P r (^ il® .7 ,n -P r ( / |0 ,7 )
i£a

M

=  n i l P r { ^ « l » .T .n - P r ( I |0 , 7 ) ,
zGa j=l

where

P r (X « |0 ,7 ,I )  =  E[Pv{Xij\0, 'y,I,G)\0, j ,J]

— j  G î j {xij 1 )Gi ĵ {xij2) )

2(1 -  Oj)^j{xiji)'yj{xij2) if Xiji ^  Xij2

Ojjjixiji) +  (1 -  Oj)j]{xiji) if Xiji = Xij2,

where h{r, s) indicates inequality between r and s.

As stated by Roeder et al. there are a number of advantages to using this 

likelihood. It is quite simply computed and requires no knowledge of individ­

ual subpopulation membership. Furthermore, specification of the number of 

subpopulations is not required.

The MCMC scheme [Roeder, Escobar, Kadane and Balazs, 1998a] employed 

by Roeder et al. utilises the definition of 6j as the probability of identity by de­

scent of a pair of alleles [Wright, 1951], augmenting the data set with additional 

variables indicating this property.

Roeder et al. consider match probability calculations under what are termed 

the ‘Affinal’ and ‘Hardy-Weinberg’ models.

The Affinal model refers to the case in which the defendant and perpetrator 

are assumed to be from the same subpopulation. It is assumed that the culprit 

is not a member of the database a. The match probability for an individual 

i outside the database a  is then given by the product over loci of single locus 

match probabilities conditional upon the suspect’s profile,
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M
Fr{Xi = y\Xs = y, 7 , 0) = JJ Fr{Xij = yj\Xsj = ŷ , 7 , 0),

j=i
where

Fr{Xij  =  y A X s j  = 2/?, 7 , 0) =
2 ( ^ j ) 7 j  +(l-^j)7j (%2 )) -r . -é 7/0 •
 ̂ (l+0j)(l+ 2 0j) ^

(2gj +(l-gj)7j (î/ii))(3gj +(l-gj)7j(ÿj 1 )) :f . _  .
{i+6j){i+2ej) yji — yj2-

(63)

The Hardy-Weinberg model assumes that the suspect and perpetrator come 

from distinct subpopulations, given that the suspect and perpetrator are not the 

same person, and gives the single locus match probability of equation (63).

Using the assumption of independence across loci, match probabilities are 

calculated using a mixed Caucasian/Afro-Caribbean database with population 

membership assumed unknown. Two methods of match probability calculation 

are considered, integration of the appropriate match probability across the pos­

terior of 0, and estimation of this posterior expectation by substitution of the 

posterior median of 6 into the match probability.

If it is truly appropriate to model the current population as split into such 

a large number of subpopulations, the above approach is correct. However, to 

use it as an approximation if there is actually a small number of subpopulations 

can lead to serious error. In this instance, we would expect a number of the 

members of the database to belong to the same subpopulation as the culprit. 

By assuming a large number of subpopulations we are nof fully utilising the 

information provided by the database.

For this reason it is essential that a method is developed which adequately 

deals with the case of a finite number of subpopulations.

9.3 Foreman, Evett and Smith

Unlike Roeder et ai,  Foreman et ai [Foreman, Evett and Smith, 1997] concen­

trate mainly on the case involving a finite number r] of subpopulations. It is 

important to do this, although omissions in the analysis mean that the data is 

not used to its full potential. The hierarchical model of Foreman et al. also 

displays an alternative structure to that employed in this thesis.
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When comparing the work of Foreman et al. with that described in this 

thesis, it is important to be aware of differences in the definitions of some of the 

parameters used.

Throughout population genetics literature there are examples of similarly 

labelled parameters representing different quantities. Confusion is naturally 

caused when such parameters are treated as identical. The hierarchical model 

used in this thesis provides a basis for comparing such parameters, and high­

lighting their different roles in the model describing the generation of individual 

DNA profiles. Such comparisons are discussed further in Chapter 5.

Foreman et al. define 6ij as a measure of ‘genetic distance’ at locus j  between 

subpopulation Vi and the observed population as a whole. They define 7  ̂

as K,{l)Gij, the average of the actual subpopulation allele probabilities, 

weighted by the probabilities of belonging to each subpopulation, i.e. the vector 

of allele frequencies at locus j  in the present population.

Defined as functions of the subpopulation allele probabilities G ,  7  and 0  

describe different quantities to the similarly labelled parameters of this thesis. 

In our model, {6j )  and (7 )̂ are parameters of the process which generates ( G i j ) .

Similarly to the approach of this thesis. Foreman et al. model the subpop­

ulation allele frequency vectors (Gij) as being generated independently with 

distribution.

It is acknowledged by Foreman et al. that this independence assumption is 

false for finite ry, and that further experimentation is required before the effects 

of the approximation can be dismissed as negligible. This lack of independence 

is a result of the alternative definition of 0 and 7  as parameters at the observed 

subpopulation level rather than at the ancestral population level. It is clearly 

demonstrated by considering the case in which there are two observable subpop­

ulations, jjm = K>{l)Oij{k) H- K,{2)G2j{k). Knowledge of Gij{k) in addition to 

7 j t  leads to knowledge of G2j{k) with absolute certainty, given that a( l )  and
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a v (2) are known. Clearly,

^2j{k)\^jk /  G2j{k)\Gij{k),'yjk,

meaning that the definition of conditional independence is contravened.

The MCMC scheme of Chapter 6 of this thesis is based upon that of Foreman 

et ai. Using the test combined database of Caucasians and Afro-Caribbeans, 

despite the differences in the model, the MCMC scheme manages to identify 

the two ‘subpopulations’ well. Such a result with a very small number of sub­

populations supports the argument that there is not a great effect caused by 

acceptance of the false independence assumption.

However, an omission that can certainly be seen to be significant is observed 

in the calculation of match probabilities. Two cases are considered:

(i) accused and offender belong to different subpopulations (either different sub­

populations within the same racial group, or from distinct racial groups), 

i.e. G ^  Vs]

(ii) accused and offender belong to the same subpopulation, i.e. C E Vs-

These cases are initially considered in isolation before a weighted average across 

all possible realisations of the offender’s subpopulation is carried out to find the 

overall match probability.

Foreman et al. approach the two cases as follows, in each looking to find the 

match probability

Pr(Xc = y \ Xs  =  y , xs  = 6, G ^  s),

where G labels the culprit, s labels the suspect, and represents the collection 

of database profiles, excluding that of the suspect. The basic calculation car­

ried out in both cases involves the following integration across the parameters, 

adjustments being made according to differing assumptions in cases (i) and (ii).

P r(X c  =  y \ X s  = y,Xs = ^ 5 ,M ,G  7  ̂ s)

^  JyO  =  y h ,  0, Xa = M , G  ^  s).p{'y, 0\xa =  VW)d"yd^(64)
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where Xa represents the collection of database profiles, in c lud ing  the suspect’s 

profile, Dependent on whether case (i) or (ii) is being considered, A4 represents 

C ^  Vs OT C Çi Vs- Given (7 , 0), X c  is not independent of xs and the database 

profiles should therefore be conditioned upon in the first term of the above 

integral. In both cases, the database is omitted from the first term within the 

integral, meaning that equation (64) becomes

P r(X c  =  y \ X s  = y , x s  = G ^  s)

=  f  FT{Xc = y \ 'y ,0 ,X s  = y ,A 4 ,C j^ s ) .p { ‘y,O\Ça,A4)d'yd0, (65) 
J'y"

i.e. the data is used to provide information upon the overall allele frequencies, 

and the degree of variation observed across subpopulations, but not upon the 

culprit’s match probability.

The effect of this omission is examined within the following sections consid­

ering cases (i) and (ii) in turn.

9.3.1 C ^ V s

As Foreman et al. note, “when the accused and offender are taken to belong to 

different subpopulations, it may be assumed that they are genetically unrelated 

so that their profiles are independent of each other.” It is further assumed that 

individuals mate at random within the offender’s subpopulation Vc-  This means 

that the first term in equation (65) can be further simplified to

M

p{Xc = y|7, -Ad) = c n  ij{yjihj{yj2),
j=i

a product of population allele frequencies, where c =  I l j l i

It is suggested that this can be calculated in two ways: via plug-in estimates, 

and by a full Bayesian analysis.

The plug-in estimates 7  are provided by the observed allele frequencies within 

the database of the racial group of the offender.

In the full analysis, it is assumed that 7  has a prior distribution given by

7 j ~  Dirichlet(cjji, ujj2, . . . ,  w^^).
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The need to augment the database with the suspect s to form a  is recognized, 

giving a posterior distribution,

7 j \ X a  = Dirichlet(wji +  r i j { l ) , u j j 2 +  7i;(2),. . .  +  r i j { r j ) ) ,

where nj{m)  is the number of alleles of type m  observed at locus j  in the 

database. The integration of equation (65) gives a match probability,

P r(X c  =  y\Xa = M , C  s)

^  „ f f  +  ^i)
3=1 W l(+) +  ” j(+ ))( ‘̂ j(+) +  " j(+ )  +  1)

where ôj indicates if yji = yj2-

It should be noted that this approach takes no account of subpopulation 

structure within the racial group being considered. This approach is at odds 

with that advocated in this thesis. In the general case in which one does not 

know the subpopulation of the suspect, we consider the suspect as a member of 

the database with no greater weight than any other individual whose profile is 

known. Conditioning upon the suspect being from a different subpopulation to 

the culprit provides no justification for excluding the rest of the database from 

the conditioning of the match probability. If the number of subpopulations rj is 

small, it is very likely that some of the other database individuals belong to the 

same subpopulation as the suspect.

9.3.2 C e V s

In the case that the culprit and suspect belong to the same subpopulation, it 

is noted that ideally data from this subpopulation would be available to make 

inference. Empirical estimators of the subpopulation allele frequencies could 

then be multiplied across loci to give a match probability estimate similar to mf  

described in Chapter 4.

As such information is not generally available. Foreman et al. em­

ploy a formula derived by Balding and Nichols [Balding and Nichols, 1994, 

Balding and Nichols, 1995] to correct for the fact that 7  represents the allele
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frequency of the racial group rather than the subpopulation. The match prob­

ability is then given by
M

P t { X c  = y \ X s  = y , C  e Ps^j.O) = c^l  = y , C  e Ps,'y,9),
j=i

where

Pr{Xcj  =  yAXs =  y , C  e Ps , i ,0)
{2gp.s j + ( l-g p .,, ) '1 j (yjl)}{3gp., j-|-(l-gp .,, )7y (1/7 2 )} :r _

( l + 0 P . i K l + 2 0 p . j )  "  fey-i
2{gp., 7 -K1 - gp, 7 )7j (yj 1 )}{^Ps j + ( 1 - P̂.S.7 )7.7 (y.7 2 )} : f  /

(l+9p.i)(l+29p„) “ ^
This is a similar match probability equation to that employed by Roeder et 

al. in the Affinal case. In the case of Roeder et al. it is the result of modelling 

the population as consisting of a large number of subpopulations meaning tha t 

no two database individuals belong to the same subpopulation. Foreman et al. 

arrive at this equation by not conditioning on the full database, only the suspect.

While the equation is correct under the assumptions of Roeder et al.  ̂ when 

there is a finite number of subpopulations there is a significant probability that 

other members of the database are in the same subpopulation as the culprit. 

This means that the match probability expression employed by Foreman et al. 

is theoretically incorrect.

9.4 Discussion

The reduction in complexity introduced by assuming a large number of sub­

populations, as suggested by Roeder et al. is clearly helpful. However, such 

an assumption would not appear generally applicable, meaning that a method 

should be devised for the case of a finite number 77 of subpopulations. Even if 

this number cannot initially be specified, there are a number of methods sug­

gested (Chapter 10) for introducing 77 as a variable, each of which relies upon 

a clearly defined method for dealing with the case of a known finite number of 

subpopulations. For this reason we concentrate in this section upon a compari­

son between the methods of Foreman et al. and this thesis, both of which look 

to tackle this problem.
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As well as presenting a model with a clearer hierachical structure in which 

conditional independence of subpopulations given overall allele frequencies and 

subpopulation differentiation parameters is implicit rather than assumed, the 

methods of this thesis use the information provided by clustering within the 

database to provide correct posterior match probabilities.

The following results demonstrate the value of calculating a match prob­

ability conditional upon the whole database in the case of the combined 

Caucasian/Afro-Caribbean database. It is true that this database represents 

an extreme case, with a greater degree of heterogeneity than would generally be 

observed within a single racial group. However, the effect upon match probabili­

ties is great enough to suggest that there are cases in which a lack of conditioning 

upon the database profiles in the match probability could have a significant effect 

upon the court’s decision.

The plots of Figures 25 to 34 are presented to allow comparison of the accu­

racy of match probability estimates under the various methods discussed. For 

each individual in the group

The plots of Figures 25 and 26 are presented to allow comparison of the 

accuracy of match probability estimates under the methods of Foreman et ai 

and this thesis. They show log likelihood ratios, where the likelihood ratio is 

mi being the match probability for the subpopulation under consideration. 

This match probability is calculated for each database individual in three ways,

(i) assuming that the culprit belongs to the same subpopulation as the suspect 

and that this subpopulation Vs is known. Foreman et al. propose the 

estimator

.  _  1 -pr + 1  +  ^j){0'^p{yj2) + 1  +  25j)
r - m  "" /ii ( a f  (+) +  2){af{+) + 3)

where ôj indicates if yji = yj2, and {t) labels the iteration of the Markov 

chain.
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Figure 25: Comparison of log likelihood ratios for Caucasian individuals. These 

plot log likelihood ratios under method (iii) described in the text against those of 

methods (i) and (ii) respectively. The calculations are repeated for each profile within 

the Caucasian database, each point corresponding to one of these profiles. Ideally, 

the points would lie along the line “x  = y” indicating that the match probability 

estimates in the absence of snbpopnlation information are equal to the accurate match 

probability estimates when snbpopnlation information is available. It can be seen that 

the estimates using the methods of this thesis are far more accurate than those of 

Foreman et al
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Figure 26: Comparison of log likelihood ratios for Afro-Caribbean individuals.
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(ii) In this thesis we suggest the use of the estimator,

- ^  1 A  A  ( a f  (fei) +  "u  (% i))(4''(% 2) +  (%;) +  ^j)
M  (4 \ + )  +  n j f ( + ) ) ( a f ( + )  +  n j f ( + )  +  l )

(iii) If subpopulation membership of all database individuals can be identified, 

we advocate the use of a product of empirical subpopulation frequencies,
M

mf =  c n G i j { y j i ) G i j ( y j 2 ), (68)
3 = 1

to calculate the match probability for each subpopulation. Using our 

mixed database, results using this method can be considered a standard 

against which those of methods (i) and (ii) can be measured.

When calculating the match probabilities under the method of Foreman et 

ai, we have used the values of {9j) from our running of the MCMC scheme. 

Ideally we would use subpopulation-specific values (Oij) to make the compari­

son. However the graphs calculated using method (i) are very similar to those 

displayed by Foreman et al. in their response to the discussion of their paper 

[Foreman, Evett and Smith, 1997].

The comparison of Figures 25 and 26 indicates the greatly increased accuracy 

in match probability estimates provided by the methods of this thesis. However, 

to fully appreciate the practical effect of the different methods in the absence 

of subpopulation information we need to compare the resultant posterior prob­

abilities of guilt.

The posterior probability of guilt of a suspect is calculated by combining the 

overall match probability m  with the prior probability of guilt of the suspect tt ,̂

P r(C  =  5| =  2/ , X c  =  y ,  Xa — ^a, ^) — \ •TTg -k (1 — 7Ts)m

Maintaining the labels (i) - (iii), the overall match probability m  is calculated 

as follows:

(i) Foreman et al. specify two match probability formulae, one for the case in 

which suspect and culprit belong to the same subpopulation, and one for 

that in which they belong to different subpopulations.
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Assuming that we cannot identify the subpopulation to which either the 

culprit or suspect belong, the overall match probability can be broken 

down into the following sum across combinations of culprit and suspect 

subpopulations,

m = Ÿ i { X c  = y \ X s  = y , 0 , ^ )

= 'Y^Y*i { X c = y \C e  P u S  e P r ,X s  = y , 0 , ^ )

xPr(C  e Pi ,S  e  Pr\Xg = y, 0 , 7 ).

If / =  r, P r(X c  =  y\C  e  Pi, S  G Pr,Xg = y , 0 , ^ )  is given by the 

expression of equation (67). Otherwise, it is given by the product of allele 

frequencies given in equation (66). For the purpose of this comparison, we 

assume that the subpopulations to which culprit and suspect belong are 

independent, meaning that Pr(C  G P /,5  G Pr\Xs = y , 0 , j )  =  ^c(/)/c(r), 

where k{1) is the prior probability of a randomly chosen individual being 

a member of subpopulation P/. As has been shown, the subpopulation 

differentiation parameters {6j) calculated under our model are not the same 

as those {9ij) of Foreman et al. In this instance, we present results under 

the above calculation substituting three different values of (9 j ) .  These 

range from the prior mean, 0.0291, to 9ij =  0, which is equivalent to 

ignoring any population substructure.

(ii, iii) In both instances, the overall match probability is calculated by taking 

the weighted average,
V

m  = ' ^  K,{l)mi.
1=1

In both cases, the subpopulation match probabilities are calculated as for 

the previous comparison (of log likelihoods), conditional upon the entire 

database.

Figures 27 - 34 show comparisons of posterior probabilities of guilt under the 

methods (i) - (iii). These have been calculated separately assuming two possible 

prior probabilities of guilt of the suspect, tt̂  =  10“ "̂ and tt̂  =  10~®.
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m e th o d  (i)

Figure 27: Comparison of posterior probabilities of guilt, = 10“ ,̂ 9j = 0.0291. 

This compares the posterior probability of guilt under the method of Foreman et al., 

substituting the prior mean of (6j )  into the appropriate match probability equation, to 

the posterior probability assuming subpopulation information available. A calculation 

is made assuming a match for each mixed database profile in turn resulting in a point 

for each database individual. The points displaying posterior probabilities of guilt 

close to 0 correspond to partial profiles. A match at a smaller number of loci will 

generally carry a small weight against the suspect.

m e th o d  (i)

Figure 28: Comparison of posterior probabilities of guilt, tts = 10 9j  = 0.01.
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m e th o d  (I)

Figure 29: Comparison of posterior probabilities of guilt, = 10“ '̂ , 6j = 0.0. This 

compares the posterior probability of guilt assuming the entire population to be in 

Hardy-Weinberg equilibrium (i.e. under the product rule, as described in Chapter 2) to 

that assuming subpopulation information. One can see that there are a large number 

of points under the “a; = y” line in contrast to Figures 27 and 28. This indicates 

that the product rule is often anti-conservative, prejudicing against the suspect by 

providing a posterior probability of guilt which is too high.

m e th o d  (ii)

Figure 30: Comparison of posterior probabilities of guilt, tTs =  10“ .̂ This compares 

the method of this thesis assuming unknown subpopulation information to the accu­

rate estimates assuming known subpopulation information. It can be seen that the 

points lie very close to the line "z = y”, indicating that the posterior probabilities of 

guilt under this method are more accurate than those under the method of Foreman 

et al.
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m e th o d  (i)

Figure 31: Comparison of posterior probabilities of guilt, tTs =  10“ ,̂ 6j = 0.0291. 

This shows a similar comparison to Figure 27, but with a smaller prior probability of 

guilt of the suspect. This prior probability of 1 in 1 million is still a realistic figure 

should we be considering, for example, a case in which the crime has been committed 

in a city and we have very little information to narrow down our possible culprit 

population. It can be seen that under our “gold standard” method (iii), a number of 

individuals still have posterior probabilities of guilt close to 1, but that in many cases 

these are seriously underestimated by method (i).

m e th o d  (i)

Figure 32: Comparison of posterior probabilities of guilt, tt̂  = 10 Oj = 0.01.
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m e th o d  (i)

Figure 33: Comparison of posterior probabilities of guilt, ttj = 10 6j = 0.0.

EO.4

m e th o d  (ii)

Figure 34: Comparison of posterior probabilities of guilt, tts =  10 Again we see 

that the method of this thesis provides a more accurate posterior probability of guilt.
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As indicated by Foreman et al. [Foreman, Evett and Smith, 1997], match 

probabilities under their method (i) are generally conservative, giving a poste­

rior probability of guilt less than that in which substructure is ignored (6ij = 0 ). 

However, even if we were to integrate over the posterior densities of (6ij) pre­

sented by Foreman et al, the resultant posterior probabilities cannot be as close 

to the true probabilities as those of our method (ii).

Although it is very important to avoid prejudicing against the defendant, 

a large conservative error, possibly resulting in the acquittal of a guilty party, 

would also seem undesirable. For this reason, we suggest that conditioning 

upon the full database in the match probability is very important, and that its 

omission is of practical, and not just theoretical, concern.

124



10 Future work

In this thesis we have considered how to calculate a posterior probability Pguut of 

guilt for a suspect whose DNA profile X s  (observed to be y) matches that of the 

culprit C. This requires the calculation of match probabilities for individuals i 

(outside the database a) in each subpopulation {Vi\ I =  1 , . . . ,  77):

— P r ( ^ ï  =  y \ X a  — ^a)'

These must then be combined with the prior probability tt  ̂of the suspect having 

committed the crime and (A; = 'Pi{C ^ V i\C  ^  a))\

^ ^ ______________

where /3 is the set of individuals in the database a  whose profile matches that 

of the suspect.

Calculation of these match probabilities is based upon the hierarchical model 

described in Chapter 3. The parameters of this model have been clearly defined, 

justifying the conditional independence properties assumed at each level. As 

the match probability calculations are found to be impossible analytically, we 

use MCMC methods to obtain estimates. In this thesis we have extended the 

work of Dawid and Pueschel [Dawid and Pueschel, 1999], in particular showing 

tha t it is important to condition upon available data even in the absence of 

information concerning individual subpopulation membership.

However, there is still scope for future work, particularly in the following 

areas:

(i) as the subpopulations are not clearly defined, it is not generally reason­

able to assume the number 77 of subpopulations known. This means that 

we should consider 77 as a random variable. Two ways of approaching 

this problem are considered in Section 10.1. Thus far, neither has been 

found to be satisfactory, meaning that future research is required, either 

to appropriately adjust these methods, or to find an original method.
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(ii) There is much debate as to whether or not Bayesian methods are appropri­

ate for the presentation of DNA profile match evidence in the courtroom. 

It is our opinion that Bayesian methods represent the best way to combine 

the scientific evidence of the profile match with other evidence to reach a 

decision with regard to the conviction/ acquittal of the suspect. We discuss 

this further in Section 10.3.

(iii) While employment of the hierarchical model used in this thesis represents 

a great advance from the assumption of random mating throughout entire 

populations, it is still a relatively rough approximation to the true situa­

tion. In Section 10.6 we consider the need for adjustments to the current 

model.

10.1 Variable number of subpopulations

Reversible jump MCMC is a technique first proposed by Green [Green, 1995]. 

It is designed to tackle problems in which the number v of variables is itself a 

variable. An application of reversible jump MCMC involves the generation of a 

Markov chain, as in conventional MCMC, but with an additional step. This step 

proposes, at each iteration, a change in v that is accepted with some probability 

dependent upon the current and proposed values.

In this instance, a possible MCMC scheme would proceed in a simi­

lar manner to that proposed by Green in his response to Foreman et al 

[Foreman, Evett and Smith, 1997].

At each iteration we consider either a split of an existing subpopulation into 

two, or the combination of two existing subpopulations into one. Thus, at each 

iteration, the number r] of subpopulations will increase or decrease by one if the 

proposal is accepted, or remain the same if the proposed move is rejected. A 

possible method for generating proposed values for the variables corresponding 

to the newly generated subpopulations is:

(i) split:
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Select the subpopulation to be split randomly, and label this subpopulation 

by s. The new subpopulations are labelled s_ and s+.

Generate U ^  Uniform(0,1): «(s_) = u x  «(s), «(s+) = {1 — u) x k{s).

Generate Gij ~  Dirichlet(C(oj -\-nsj)), where I = s_ ,s+  and risj{k) is the 

number of alleles of type k at locus (j =  1 , . . . ,  M) in individuals allocated 

to subpopulation s.

Allocate individuals originally in subpopulation s to s_ and randomly 

using the full conditional probability distribution of the subpopulation 

labels {Ii).

(ii) Gombine:

Randomly select two subpopulations, s_ and s+, to be combined to form 

a single subpopulation s:

k {s) = %(&_) +  K,{s+).

All individuals originally allocated to the two proposed subpopulations 

will be allocated to the new subpopulation s.

Generate Gsj ~  Dirichlet(C'(aj +  risj)).

The constant C  is introduced as a means of adjusting the scheme to achieve 

a reasonable acceptance rate. In practice it is very difficult to do this due to the 

high dimension of the parameter space.

10.2 Pritchard et al approximation

Pritchard et al are faced with a similar clustering problem to that of this thesis.

The “ad hoc” approach they follow can be applied to the problem here to 

estimate

Pr(^IXa =  D  oc Pr(xa =  ^a\rj).7T(v)- (69)

There are a number of possible choices for the prior distribution of 77, for 

example uniform up to some maximum r]max̂  or a truncated Poisson distribution.
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Calculation of the likelihood Pr(xa =  is where the difficulty lies.

The Pritchard et al approach begins by considering the Bayesian deviance,

Drj{G, I)  = -21og Pr(xa =  & |G , J, rj).

Assuming that the conditional distribution of D  is Normal,

Pr(Xa =  ~  e x p ( - ^  -  — ),

where

H =  E[Drj{G,I)\Xa =  4a,

0-2 =  Var(D^(G, / ) |x a  =  4a, ^)-

The conditional mean /j, and variance of D  can be estimated, using the results 

of the MCMC scheme, by

1 M

A = ;^I]-21og Pr(xa = 4a|G(^\f(^\T/)
t=l

and
1 M

=  7̂  IZ(-21og Pr(Xa =  4a|G(^\ 7̂ ) -  A) .̂
 ̂ t=\

Using the estimates pL and cr̂ , Pr(xa =  4a W) can be estimated leading, by 

substitution into (69), to an estimate of Pr(?;|xa =  4a)-

Pritchard et al show that this method produces acceptable results when 

assuming a small number of potential subpopulations. If rjmax is large, we must 

generate a Markov chain for each possible number 77 of subpopulations. Thus 

far we have not managed to write a program that manages this in an acceptable 

time.

10.3 Application of Bayesian m ethods in the courtroom

There is much debate as to the role Bayesian methods should play in the court­

room. The argument in favour has not been helped by the frequent use of two 

major errors:
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(i) the prosecutor’s fallacy. This is an error of transposing the conditional, con­

fusing Vv(innocence\evidence) with 'Pi(evidence\innocence). This would 

lead to a match probability of 0.000001 being interpreted as a probability 

of guilt of 0.999999.

(ii) The defendant’s fallacy. This involves using the frequency in the population

to argue that the defendant is only one of a large number of possible 

suspects. The error involves assuming equal prior probabilities of guilt 

for all individuals. For example, ignoring for a moment the complications 

of population substructure, if a particular profile has a frequency of 1 in 

100,000, one would expect there to be 70 individuals with the profile in 

a city of 7 million. However, the correct method must use the profile 

frequency to update the suspect’s prior probability of guilt using Bayes’ 

theorem, as described in Chapter 1. If there is a great deal of non-DNA 

evidence against the suspect his prior probability of guilt will be much 

greater than 1 in 7 million, and therefore his posterior probability of guilt 

will be much larger than 1 in 70.

10.4 Presentation of the evidence

The use of methods to correctly utilise DNA evidence requires a greater accep­

tance of Bayesian methods in the courtroom. To date, in the UK in particular, 

there has been a marked reluctance to rely on anything other than the common 

sense of the jurors to evaluate the weight of such scientific evidence. By the 

mid-90s, some wariness of the use of DNA evidence had developed, a number of 

convictions having been overturned on appeal as a result of the application of 

the prosecutor’s fallacy (e.g. R. v. Deen, The Times, 10 January 1994).

A further blow was dealt to those advocating the use of such methods when 

the conviction of Dennis Adams was overturned in 1996 {R. v. D. Adams [1996] 

2 Cr App Rep 467). Adams’ DNA profile had been found to match tha t of a 

rape sample while most of the other evidence pointed towards Adams’ innocence. 

The defence, concerned that the jury would be overwhelmed by the apparent
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strength of the DNA match in suggesting Adams’ guilt, introduced a statistician 

(Peter Donnelly) to explain how all the evidence could be combined using the 

Bayesian arguments outlined in Chapter sec:intro.

Adams was nevertheless found guilty, but an appeal was successful. Re­

garding the presentation of Bayes’ Theorem as a means of combining different 

pieces of evidence, the Court of Appeal stated that it had “very grave doubts 

as to whether that evidence was properly admissible, because it trespasses on 

an area peculiarly and exclusively within the province of the jury, namely the 

way in which they evaluate the relationship between one piece of evidence and 

another.. .Jurors evaluate evidence and reach a conclusion not by means of a 

formula, mathematical or otherwise, but by the joint application of their indi­

vidual common sense and knowledge of the world to the evidence before them.” 

The Appeal Court concluded by stating that “If, as seems entirely possible, the 

jury abandoned the struggle to understand and apply Bayes, they were left by 

the summing-up with no other sufficient guidance as to how to evaluate the 

prosecution case (based as it was entirely on the DNA evidence), in the light of 

the other non-DNA evidence in the case. This means that their verdict cannot 

be considered as safe.”

A retrial took place in which a questionnaire was prepared for the jury to 

use. This asked a number of questions to assess the weight placed by the jury 

upon various aspects of the non-DNA evidence. This was then combined in 

the appropriate formula to produce a posterior odds ratio. Adams was again 

convicted and an appeal was dismissed. The Appeal Court ruled that “. . .  expert 

evidence should not be admitted to induce juries to attach mathematical values 

to probabilities arising from non-scientific evidence adduced at the trial.”

Statements such as those made by the Appeal Court highlight the barriers 

facing those arguing for the application of Bayesian philosophy in the courtroom.

W ith regard to the presentation of DNA evidence in court, we concur with the 

opinions expressed by Evett and Weir [Weir and Evett, 1998]. In order to fully 

utilise the power of technology such as DNA profiling, it is vital that courtroom
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practice also advances.

It is not satisfactory to simply present a match probability, explain its mean­

ing, and then allow the resultant weight of evidence to be used subjectively. 

Odds are a part of everyday language, and we are used to attaching subjective 

odds reflecting our feelings regarding the outcome of some event. For this rea­

son it seems reasonable to think that members of the jury would generally be 

comfortable with the concept of placing odds upon the guilt of a suspect given 

the evidence presented.

Assuming this to be so, the next step in a presentation to the jury would be a 

statement of the effect that the match probability in question would have upon 

these prior odds. With this information it is possible for jurors to update their 

‘prior’ beliefs using Bayesian methods. The Bayesian train of thought which 

suggests using additional data to update prior beliefs is a logical one confirming 

to natural intuition. If more concentration is focused upon explaining this logic 

to jurors rather than upon the underlying mathematics, it may become clearer 

that Bayesian methods are entirely consistent with intuition.

The actual presentation of the effect of a particular likelihood ratio could 

be achieved in a number of ways. To avoid the appearance of suggesting a 

particular prior, the posterior odds ratio resulting from a a range of priors could 

be demonstrated.

At the moment however, it seems that the greatest challenge is convincing 

courts steeped in traditional methods of the value in accepting what is to them 

a new philosophy for combining pieces of evidence.

10.5 A critical analysis

This thesis clearly provides scope for further research, even before considering 

the problem of an unknown number of subpopulations. A number of further 

questions can be raised and these are considered in this section.

(i) Should we use subpopulation specific heterogeneity parameters?
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- The model of Foreman et al [Foreman, Evett and Smith, 1997] orders 

the subpopulation specific differentiation parameters so that the smallest 

subpopulations are associated with the largest 9i values. This is consistent 

with the thinking of Weir and Cockerham [Weir and Cockerham, 1984] 

who define subpopulation diflFerentiation parameters at the same level as 

this thesis. In their paper they concentrate on a situation in which sub­

population sizes are assumed equal, but state that if subpopulation sizes 

are unequal these parameters will also vary. In retrospect this seems rea­

sonable as the allele probabilities (Gij) of a small isolated subpopulation 

are more likely to drift further away from the ancestral values than those 

of a large subpopulation.

Whilst acknowledging that a more accurate model in terms of reflecting 

the development of subpopulations from a single ancestral population may 

include subpopulation specific differentiation parameters (as outlined in 

Chapter 3), their adoption would lead to a more complicated model and 

a large increase in the running time of any MCMC scheme, particularly 

when assuming a large number of subpopulations. It is therefore important 

to establish the necessity of any complication of the model.

It is important to realise that any model is merely an approximation to 

the true situation. Indeed, it has been suggested [Donnelly, 1997] that the 

Dirichlet model itself “lacks a sound theoretical justification” , and further 

tests should be made to assess its appropriateness for approximating the 

population genetics present.

It should be noted that the philosophy of this thesis is applicable however 

the model is specified. We have carefully defined levels of our model cor­

responding to those of the population structure. In doing this we present 

a framework upon which we can derive conditional densities whichever 

distributions are considered most suitable.

One of the main messages of this thesis is the necessity to condition upon 

the data at all stages of match probability calculation, even when subpop-
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Illation membership is unknown. In doing this, particularly if the database 

is sizeable, the effect of any inaccuracy in the estimation of 9 is greatly 

reduced when compared to previously published methods. This is particu­

larly relevant when considering the posterior distribution of subpopulation 

allele probabilities,

1 —  6i

and also in the evaluation of the match probability,
M

G i j \ c a ,  9 j ,  7 j- ^  Dirichlet ( — ^7j  +  I (70)

mi = E rr Mvn)  + b̂(̂ ji))(%(yj2) + nij[yj2) + 8j)
(a j(+ ) +  ’̂ zj(+))(aj(-F) 4- nij[+) 4- 1)

1̂ ^ 7̂ /5 Xq — Ca]-

It should also be noted that even with 9 constant across subpopulations, 

the posterior distribution 70 displays a greater variance for smaller subpop­

ulations due to the influence of the database numbers. This corresponds 

to the thinking of Weir and Cockerham.

It should be stressed that it is not our aim to analyse the accuracy of exist­

ing models with regard to population genetics, rather to show the way in 

which we believe existing models, and indeed any newly developed mod­

els, should be used when making forensic inference. We have presented a 

clear framework into which extensions/adjustments to the model can be 

incorporated. However, it is our opinion that introducing subpopulation 

specific differentiation parameters will not significantly affect match prob­

ability estimates due to the increased influence of the data in the posterior 

distributions and estimates involved.

(ii) Can we ensure that this method is conservative?

- The more accurate an answer is, the less important is the need to adjust 

to ensure conservativeness. While it would seem somewhat inefficient, it 

may be possible to conduct the analysis under the assumption of a number 

of different values for the number 77 of subpopulations, selecting the largest 

(and most conservative) total match probability for use in court.

133



Another way of ensuring that the calculated match probability is conser­

vative is by building prior dependence between the culprit subpopulation 

Ic  and the suspect subpopulation fg, or even assigning a prior probability 

of 1 to the event that culprit and suspect come from the same subpopula­

tion. We introduce a joint distribution between the subpopulations of the 

culprit and suspect

Q  =  {qim] / =  1 , . . . ,  7?; m =  1 , . . . ,  77)where qim = P r(C  e V i , s  e  Vm)-

To build in the desired positive dependence, Dawid [Dawid, 1996a] sug­

gests the use of a joint distribution of the form

Qlm — (1 A. )̂/c(/)s(t?7.) -|- XiSim

where (s(m)) is an arbitrary probability distribution placed upon the sus­

pect’s subpopulation, and 6im indicates if / =  m. The parameters (A/) can 

be adjusted according to the level of dependence required. To ensure that 

the culprit and suspect come from the same subpopulation, for example, 

we set (A; =  KfJ = 1, . . .  , 77). Under this form of the joint distribution, 

the conditional distribution of the culprit’s subpopulation Ic given that 

{Is = m ,Ic  ^  m) is the same as that if it is assumed that the subpopula­

tions of culprit and suspect are independent.

If we decide to build in this dependence, it is important to remember that 

the strict definition of the match probability is given by

mi =  P r { X c  =  y\C e  Vi, Xa =  e)

We now include in the non-DNA evidence e the parameters (A;) and prob­

abilities {s{l)). This means that, if we include the suspect profile in the 

database when running the (adjusted) MCMC scheme, we should run it 

7] times, as the information upon the suspect’s subpopulation will change 

each time.
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10.6 Adjusting the model

In this thesis we describe a model based upon those currently in use, clearly 

defining parameters at all levels. In doing this, we aim to clear confusion caused 

by the vague definition of parameters in other papers. Before seeking to advance 

the model, it was felt essential to establish the correct way to make inference 

using this model.

The hierarchical model used in this thesis is a clear simplification of the true 

situation, involving as it does discrete subpopulations between which individuals 

cannot mate, and within which mating is random. However, the major aim when 

designing any mathematical model is not necessarily to make it as realistic as 

possible. Rather, we wish to design a model which allows us to easily estimate 

quantities of interest with acceptable accuracy. This means that a model which 

reflects the true state of nature more accurately but does not provide any greater 

accuracy in estimates is not, for our purposes, an improvement if it makes the 

calculation of these estimates more difficult.

However, it is desirable to gauge the effect of advancing the model. An initial 

step could involve the introduction of admixture. This is incorporated into the 

model of Pritchard et al [Pritchard, Stephens and Donnelly, 2000] and allows an 

individual’s profile to be ‘shared’ between more than one subpopulation.

10.7 Summary

It is hoped that this thesis contains a number of points of value to those seeking 

to advance the use of DNA profiling in the courtroom. This thesis builds upon 

the work of Dawid and Pueschel [Dawid and Pueschel, 1999] which presents 

what we consider to be the correct basis for using DNA profiling data when 

estimating a match probability in the presence of subpopuation identifiers. By 

extending this work to the case in which subpopulation labels are absent, we 

show how this theory can be applied to a more realistic situation.

It is also felt that there are some points of more general value. Parameters
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of subpopulation differentiation have often been confused. The analysis of some 

of these parameters in the context of the hierarchical model should lend some 

lucidity.

We have also encountered a number of interesting MCMC mixing problems. 

It is satisfying to see techniques such as simulated tempering and importance 

sampling applied, and it is to be hoped that the ways in which they have been 

used here are also of interest.

It will be interesting to see how the use of DNA profiling data proceeds over 

the coming years. It is likely that in the future the number of loci over which 

profiles are defined will increase, increasing the weight of evidence of a profile 

match to the extent that it will be conclusive proof of guilt. This should not 

however detract from the value of this work. Bayesian hierarchical models have 

a wide variety of applications and it is hoped that this example can be of use to 

those seeking to use similar methods in other areas.
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A Biological background

Each cell in the human body should contain the same 23 pairs of chromosomes. 

The deoxyribonucleic acid (DNA) is contained within these chromosomes in the 

form of a double strand twisted to form a helix. Each of these strands consists 

of a string of bases held together by a sugar-phosphate backbone. There are 

four bases, A (adenine), T (thymine), G (guanine), and C (cytosine). In the 

double helix, the bases line up in pairs, an A always opposed by a T and a G 

always opposite a C. The unit of a base plus a link to the next base is known as 

a nucleotide. A gene is a stretch of DNA, ranging from a few thousand to tens 

of thousands of base pairs, that produces a specific product, usually a protein. 

The position that a gene occupies along the thread is its locus. At each locus 

there are two genes (one maternal and one paternal), and each of these takes 

one of a number of alternative forms (alleles). The DNA profile refers to the 

combination of alleles observed at a group of analyzed loci.

There are two main ‘fingerprinting’ techniques currently employed, restric­

tion fragment length polymorphisms (RFLP) and polymerase chain reaction 

(PGR).

RFLP was developed first and uses regions of DNA known as variable number 

tandem repeats (VNTRs). These VNTRs are not genes as they have no known 

product or function, and are referred to as markers. A VNTR consists of a 

core sequence of bases repeated a number of times. The number of repeats at a 

particular marker locus varies from person to person, and alleles are defined by 

this number, usually between 500 and 1 0 0 0 0 . As a result of the differing number 

of repeats, the alleles can be identified by their lengths, and this is the basis of 

the RFLP technique. DNA fragments are placed on a gel in an electric field and 

migrate at a rate dependent upon their lengths. Thus, alleles can be recognized 

by the distances travelled in the gel. One disadvantage of this method is that 

tracks whose lengths differ by small amounts can coalesce. This means that an 

individual who is heterozygous (has two different alleles) at a particular locus 

cannot always be separated from a homozygous individual.
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PCR works on very small regions of DNA and so cannot, at present, be 

used for most VNTRs. The technique replicates the DNA sample a number 

of times and then proceeds in a similar manner to RFLP, identifying alleles 

by their lengths. Short tandem repeat (STR) regions, which are much smaller 

than VNTRs can be used for this method. Alleles can be resolved to the scale of 

single bases, eliminating the problem of coalescence. Due to the smaller range of 

numbers of base pairs, there is a smaller number of possible alleles at each STR 

locus, but the number of potentially usable loci is very large. Other advantages 

of this method are that it is quicker and that it can be used on very small DNA 

samples such as those found in single hairs or saliva traces on cigarette butts.
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B Derivation of the full conditional density of 

a

The parameter aj is defined at each locus j  to be

O-j —
1 —  9j
~ ë ~

where 0  <  < 1 and Efc=i 7 j(^) =  1 -

At this point we drop the locus label j ,  considering a parameter a  at a single 

locus.

In deriving the prior density of a, we assume the following independent prior 

distributions upon 7  and 0:

7  ~  Dirichlet(a.y( 1 ) , a.y(r));

0 ~  B e t a { a e , b e ) .

The prior of a  is then given by

where
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det{M) = — 6>2e

« (+ )’
(a(+) +  1)'

g(+) +  i y - ^  (g(+)  +  l)  ̂
a(+) / (a(+) +  l) r - i

a(+) - ( r - l ) r - 3

a(+) +  1 a(+) +  l

Assuming 7  is independent of 6,

/ ( 7 , ^ [0 ^ , 0 0 , 6 0 ) oc J  -<9“" - -1

and hence

/ ( a | a ^ , a 0 , 6 0 ) oc J J
a{k) 1 a(+ )

^^=iV“(+ ) /  /  V“ (+) + 1

The full conditional density of a  is given by

a(+) +  1

/ ( a | a ^ ,  ae, be, G) oc f(a\aj ,  ae, be).f(G\a).

Conditional upon a ,  the subpopulation allele probabilities {Gi; I = 1 , . . . ,  77) 

follow the following Dirichlet distribution, independently across I:

Gi ~  Dirichlet(ai,. . . ,  a^).

The full conditional density of a is therefore given by

ae+r—4

X
a(+)

ci(+) +  1

X fr f _
-k=l
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c  Empirical distribution of alleles w ithin  

databases
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Figure 35: Caucasian database.
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Figure 36: Afro-Caribbean database.
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Figure 37: Combined Caucasian/Afro-Caribbean database.
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