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Missing data due to loss to follow-up or intercurrent events are unintended, but
unfortunately inevitable in clinical trials. Since the true values of missing data
are never known, it is necessary to assess the impact of untestable and unavoid-
able assumptions about any unobserved data in sensitivity analysis. This tutorial
provides an overview of controlled multiple imputation (MI) techniques and a
practical guide to their use for sensitivity analysis of trials with missing con-
tinuous outcome data. These include 𝛿- and reference-based MI procedures.
In 𝛿-based imputation, an offset term, 𝛿, is typically added to the expected
value of the missing data to assess the impact of unobserved participants hav-
ing a worse or better response than those observed. Reference-based imputation
draws imputed values with some reference to observed data in other groups of
the trial, typically in other treatment arms. We illustrate the accessibility of these
methods using data from a pediatric eczema trial and a chronic headache trial
and provide Stata code to facilitate adoption. We discuss issues surrounding the
choice of 𝛿 in 𝛿-based sensitivity analysis. We also review the debate on variance
estimation within reference-based analysis and justify the use of Rubin's vari-
ance estimator in this setting, since as we further elaborate on within, it provides
information anchored inference.
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1 INTRODUCTION

In late-phase clinical trials, loss to follow-up and intercurrent events—such as treatment withdrawal or partial
compliance—are almost inevitable. Consequently, we often cannot measure what we intended to for all individuals.
Planned outcomes may be unobtainable due to the type of the deviation (eg, missed patient visit) and, depending on the
nature of the estimand and analysis, even values that were recorded post deviation may be best regarded as missing (eg,
data post treatment withdrawal when an on-treatment estimand is of interest). When missing data occurs complexity
arises, since any statistical analysis necessarily makes an untestable assumption about the distribution of the unobserved
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data. If the wrong assumption is made, the obtained treatment effect and its standard error will be biased, resulting in
misleading inferences. To understand how far key inferences depend on the missing data assumption, analysis of incom-
plete data should therefore consist not only of a primary analysis, under the most plausible missing data assumption,
but include sensitivity analyses, which make a range of different credible assumptions for the unobserved data. Sensitiv-
ity analysis addresses the same clinical question as the primary analysis, but under contrasting assumptions in order to
assess how robust or sensitive results are Reference 1.

Regulatory guidelines from the European Medicines Agency (EMA, 2010)2 and a Food and Drug Administration
(FDA) mandated panel report from the US National Research Council (2010)3 emphasize the importance of conducting
sensitivity analysis in this context. And various methods exist for conducting such sensitivity analyses in the clinical
trial arena.4-6 However, despite these guidelines and methodological developments, recent reviews have highlighted that
only around a third of trials with missing data are reporting sensitivity analyses.7,8 This indicates a large gap between
methodological developments and practical application. The more recent publication of the ICH E9 (R1) addendum on
estimands and sensitivity analysis in clinical trials (2019)9 elaborates further on the importance and provides a framework
for how such sensitivity analysis should be approached. Together, these reports highlight the need for accessible and
relevant methods of sensitivity analysis, where the changes in assumptions are directly applicable to the primary analysis
and can be understood by key stakeholders.

One approach that enables contextually relevant accessible sensitivity analysis of clinical trials with missing data is
controlled multiple imputation (MI). Controlled MI procedures combine pattern-mixture modeling with MI to provide a
practical platform for sensitivity analysis. Controlled MI procedures include 𝛿-based methods, which enable one to explore
the impact of a worse or better outcome than that predicted based on the individuals observed data, and the outcomes
of similar patients with observed outcome data. An alternative example of controlled MI is reference-based MI, which
enables one to explore the impact of individuals with missing data behaving like a specified reference group.

Such controlled MI procedures enable accessible assumptions to be explored to evaluate the impact of missing data.
Furthermore, complex lengthy coding can be avoided via MI since standard statistical software packages with inbuilt MI
programs can be utilized for analysis. For example, mi impute within Stata, proc mi within SAS, and the R package
mice. The recent increase in the discussion of controlled MI methods in the literature10-16 has drawn attention to their use
for contextually relevant accessible sensitivity analysis of longitudinal trials. For examples of their use, see the analyses
in References 17-20.

The purpose of this tutorial is to provide an overview of controlled MI procedures for missing data sensitivity analysis
and a practical guide to their use for a continuous outcome, with worked examples and Stata code. We demonstrate the
applicability and accessibility of the methods for estimating both treatment policy and hypothetical estimands. First, in
Section 2, we introduce our two motivating trial case studies, which we will use to demonstrate sensitivity analysis via
controlled MI. In Section 3, we discuss estimands and the problem of handling missing data within the analysis of clinical
trials in more depth, followed by an outline of our general approach to primary and sensitivity analysis. This includes the
necessary background on the MI procedure. We subsequently focus on the two aforementioned controlled MI approaches.
The first, 𝛿-based MI, is described and illustrated in Section 4. Issues around the choice of 𝛿 are discussed. The second
controlled MI approach, reference-based MI, is described and illustrated in Section 5. We demonstrate how different
assumptions for unobserved data can be readily made for different groups of individuals in the same trial analysis. In
Section 6, we review the debate on variance estimation within reference-based MI analysis and justify the use of Rubin's
variance estimator in this setting since, as we later further elaborate on, it provides information anchored inference. We
end by discussing both methods and their use within clinical trials in Section 7.

2 MOTIVATING EXAMPLES

2.1 The ADAPT trial

The Atopic Dermatitis Anti-IgE Paediatric Trial (ADAPT) was a single center, double-blind, randomized controlled trial
conducted to determine whether the anti-IgE treatment, omalizumab, improves eczema severity compared to placebo
in children. A total of 62 eligible children with severe eczema were randomized to treatment with omalizumab (n=30)
or placebo (n=32) for 24 weeks. The trial protocol, statistical analysis plan, and main results have been previously
reported.21-23 In summary, significant and clinically important treatment effects at 24 weeks were reported for eczema
severity and measures of quality of life, including the (Children's) Dermatology Life Quality Index Questionnaire or
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F I G U R E 1 Observed mean profiles in the ADAPT trial [Color figure can be viewed at wileyonlinelibrary.com]

(C)DLQI. The (C)DLQI results in a numerical score ranging between 0 and 30 (higher scores indicating worse quality
of life). Data completion rates were high with only 2 participants missing week 24 follow-up for (C)DLQI in the placebo
arm, who had previously withdrawn from treatment. However, 11 individuals (7 placebo 4 omalizumab) received rescue
medication (alternative systemic therapy or oral steroids) sometime post week 8, up to week 24. An additional placebo
patient withdrew from treatment just after week 8. Of note, two of the placebo patients who received rescue medication
also withdrew from treatment thus deviated twice from the protocol.

We are interested in the treatment effect on the (C)DLQI in the absence of rescue medication/treatment withdrawal,
that is, under on-treatment (hypothetical) conditions. For the purpose of our analysis, data collected post the use of rescue
medication/treatment withdrawal will thus be considered missing; it is not relevant to the treatment effect or estimand
of interest. Figure 1 shows the missing data patterns by treatment arm and mean (C)DLQI by missing data pattern. There
are notably more deviators in the placebo arm than in the active arm.

Under on-treatment conditions, it is most plausible that the unobserved data would have been similar to the data
for those with similar characteristics and (C)DLQI profile (up to time of deviation) still in the trial under on-treatment
conditions. Or in other words, as we will define formally in Section 3, that the unobserved data can be considered
to be missing-at-random. But we will never be certain that this assumption is true and that the results of this anal-
ysis are therefore valid. It is conceivable that participants' week-24 responses could have been worse than for those
observed with similar characteristics in the absence of rescue mediation. Furthermore, for those who withdrew from
treatment, since they decided not to progress, it is also likely that they could have had a worse response than for
those observed. In Section 4, we show how 𝛿-based MI can be used to conduct a sensitivity analysis which makes
such assumptions.

2.2 Acupuncture for chronic headaches

Our second example is a multicenter randomized controlled trial conducted by Vickers et al24,25 of acupuncture for chronic
headaches. A total of 401 patients with chronic headache were randomized to standard care or acupuncture and standard
care for 12 months. One of the main trial outcomes was a headache score measured at baseline, 3 months and 12 months.
However, not all of the randomized patients completed the 12-month follow-up. A total of 44 acupuncture participants
and 56 standard care participants withdrew from the trial at or prior to 12 months. The main reasons given for withdrawal
included withdrawal of consent, lost to follow-up, or intercurrent illness (see Table 4). Figure 2 shows the missing data
patterns within the data. In total, 25% (100/401) of the participants were missing month 12 data.

http://wileyonlinelibrary.com
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Here, we are interested in the effect of being allocated to acupuncture, that is, a treatment policy estimand, but the
analysis is complicated by the unobserved data. Data are not available post trial withdrawal. As in adapt, it is most
plausible that the unobserved data post trial withdrawal is missing-at-random. But it is also plausible that, following trial
withdrawal, patients in the acupuncture arm experienced outcomes similar to those in the standard care arm. Figure 2
shows how on average, headache scores were slightly worse in the standard care arm at all time points. Alternatively,
patients who withdrew in the control arm might subsequently have taken up acupuncture. We will explore the impact
of patients behaving like those in different arms of the trial on the results in Section 5, using reference based MI. This
controlled MI method is appealing since it avoids having to specify any numerical sensitivity analysis parameters; only
qualitative assumptions are required.

3 ANALYSIS WITH MISSING DATA

3.1 Estimands

In any trial, such as adapt or the acupuncture trial, we can only begin to think about missing data once we know the
precise treatment effect we are aiming to estimate. Generically, the term estimand refers to what is being estimated.
Within the clinical trial context, as described in the ICH E9 addendum, an estimand refers to the precise definition of
the treatment effect to be estimated to address the scientific question of interest posed by the trial's primary objective.
It should capture exactly for whom, what, and when the trials intervention effect to be estimated applies, to meet the
clinical goals of the trial and analysis. ICH E9 recognizes five key attributes that, when fully specified together, form a
description of an estimand. These are:

(A) The population; the patients targeted by the scientific question,
(B) The treatment condition of interest and the alternative treatment condition(s), for example, control or placebo,
(C) The variables (or endpoint) to be obtained for each patient required to address the scientific question,
(D) The specification of how to account for intercurrent events to reflect the scientific question of interest,
(E) The population level summary for the variable, which provides a basis for a comparison between treatment

conditions.

Specification of attribute (D) is critical. For example, do we want to estimate the effect of an intervention regardless
of the occurrence of intercurrent events such as treatment withdrawal or receipt of rescue medication. Such an analysis

http://wileyonlinelibrary.com
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strategy has been termed “treatment policy.” This type of estimand is of interest for the acupuncture trial. Or do we alter-
natively want to estimate the effect of an intervention under hypothetical conditions, such as under ideal on-treatment
conditions only. This latter hypothetical estimand is of interest in our analysis of the ADAPT trial.

The design of a trial and data collection should be aligned with the choice of estimand. For example, if we are interested
in a treatment-policy estimand, we will want to ensure data collection following the occurrence of intercurrent events,
such as after treatment withdrawal or use of rescue medication. If we are interested only in estimating the treatment effect
under on-treatment conditions, the time and cost of data collection should be weighed against the benefit of collecting
such data. If an estimand of the latter type is of interest, even if data post treatment withdrawal is collected (as in the
ADAPT trial), this may be best set to missing for the purpose of analysis. Data under on-treatment conditions do not exist
for the patients who withdrew from treatment or received rescue therapy following their time of withdrawal/additional
treatment receipt.

The key point to re-emphasize is that we can only begin to think about missing data in any trial setting once we have
fully specified the precise treatment effect we wish to estimate. The estimand should inform what data is missing for
the analysis and how missing data should be handled in the analysis. Failure to collect data relevant to the estimand of
interest results in a more serious missing data problem with respect to estimating the value of the estimand.

3.2 Missing data assumptions

In clinical trials, the presence of missing data creates complexity since any analysis requires us to make an assumption
about the distribution of the unobserved data. Critically, this assumption is untestable. There are three broad classes of
missing data assumptions originally introduced by Rubin in 1976:26 Missing Completely At Random (MCAR), Missing
At Random (MAR), and Missing Not At Random (MNAR). A missingness mechanism is said to be MCAR where the
probability of a datum being missing does not depend on the unobserved value of the datum, or the observed values of
other recorded variables. For example, (C)DLQI data in the ADAPT trial would be MCAR if everyone in the trial had an
equal probability of having their 24-week outcome recorded. Under MCAR, the marginal distribution of the unobserved
data, which expresses the probability distribution of the unobserved data without reference to the values of any other
variables, will be the same as the marginal distribution of the observed data. Broadly, missingness is unrelated to the
inference we wish to draw.

In the more general case of MAR, the probability of a datum being missing does not depend on the unobserved value
of the datum, given observed information. The missingness depends on observed data values marginally, but given the
observed data is conditionally independent of the missing data values. In the ADAPT trial, if younger patients with less
severe eczema at baseline were more likely to have their (C)DLQI recorded at 24 weeks, but everyone of a given age and
baseline severity were equally likely to have their outcome recorded, the (C)DLQI data would be MAR. Under MAR, the
marginal distribution of the unobserved data will, therefore, not be the same as the marginal distribution of the observed
data, but the conditional distribution of the unobserved data given the observed data will be the same, regardless of
whether the data was observed or not. Alternatively, the missingness process is termed MNAR where the probability of
a datum being missing does depend on the unobserved value of the datum, even given the observed data. For example,
in ADAPT, (C)DLQI would be MNAR if participants with worse (C)DLQI outcome at 24 weeks were more likely to have
their 24-week (C)DLQI missing. Here, the marginal and conditional distributions of unobserved values will differ to that
of the observed data.

Although MCAR can be distinguished from MAR by a comparison of covariate distributions for observed versus
missing outcome values, for example, via a logistic regression, the data at hand cannot confirm which mechanism is oper-
ating. Since we can never know what the missing values would have been, we cannot distinguish between MNAR and
both MAR and MCAR. Sensitivity analysis thus plays a critical role to reveal the extent to which the results depend on
the assumptions. In collaboration with the trial team (including those on-the-ground collecting data and clinical inves-
tigators) and/or regulators, we must pick the most plausible assumption for the missing data at hand, which targets the
estimand of interest, and conduct primary analysis under that assumption. Sensitivity analyses under alternative plau-
sible missing data assumptions, which also target the same estimand, should subsequently be undertaken to assess the
sensitivity of inferences to the underlying assumptions, including those made for missing data. Ideally, inferences would
not change across sensitivity analysis, providing reassurance that the missing data did not seriously affect the interpreta-
tion of results.27 If this is not the case, such analysis allows individuals to assess under what conditions results change,
and how plausible these conditions are.
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3.3 Approach to primary analysis

The primary analysis of a clinical trial is typically conducted under the assumption of MAR; analysis under MNAR almost
always requires external information to be combined with the observed data, which is undesirable for a primary anal-
ysis. MAR is a natural starting assumption for the unobserved data because it essentially states that the distribution of
a patient's data at the end of the study, given their earlier observed data, does not depend on whether the data at the
end of the study were observed. A version of this assumption provides a rationale for inferring that the results of a clin-
ical trial will apply to individuals with similar characteristics from the population of interest not included in the trial.
The strong MCAR assumption is often unlikely to be valid in the clinical trial context where drop out may be effected
by treatment and observed responses. This is particularly likely in longitudinal settings when data are missing due to
uncontrollable events such as receipt of rescue medication, since these events are often associated with the study vari-
ables. For example, in ADAPT, it is unrealistic that (C)DLQI is missing just by chance at 24 weeks. It is more plausible
that, conditional on baseline, treatment and earlier responses (which may have led to treatment withdrawal or initia-
tion of rescue medication hence the missingness) data are MAR. Although not verifiable, MAR does not require the
modeling of the dropout procedure. Under MAR, valid inference can be obtained from the likelihood of the observed
data only.28 MAR will be the primary assumption made for the unobserved data in our analysis of the ADAPT and
acupuncture trial.

In practice, when data are missing, we have two accessible alternatives that provide valid inference under MAR:28,29

1. Perform a longitudinal likelihood based data analysis, which makes use of all the observed pre-deviation data from
each patient, for example, a mixed model for repeated measures (MMRM);

2. Use MI and impute missing data under the primary MAR analysis assumption, fit the primary analysis model (the
model of interest which would have been used in the absence of any missing data) on each imputed dataset and use
Rubin's rules to combine results for inference.

The two approaches will be approximately equivalent, provided the variables used in the imputation model are the
same as those included in the analysis model and conditionals are accommodated by a single joint model.30 In such set-
tings, MI essentially provides an approximation to the observed likelihood analysis. If an infinite number of imputations
could be performed, then the two approaches would be equivalent. In practice, the level of equivalence will depend on
the number of imputations due to the Monte Carlo (simulation) sampling variability of the imputation process (described
in more detail below), thus will be stronger for a larger number of imputations.31

The MI procedure can, however, be a simpler, more practical option when one wishes to include additional “auxil-
iary” information, which is predictive of missingness, within the analysis. Auxiliary variables can readily be incorporated
within the imputation model but need not be conditioned on in the analysis model. This is useful when one does not
want to estimate the treatment effect conditional on the values of said auxiliary variables, but requires the auxiliary infor-
mation to justify or strengthen the MAR assumption. For example, in ADAPT, we can incorporate interim follow-up
measurements recorded over weeks 4 to 20 in the imputation model and not in the analysis model. If additional data on
intercurrent illness post-randomization were recorded and this was thought to be predictive of missingness, this could
also be included in the imputation model and not in the analysis model. Option 1 requires careful model specification
to ensure the appropriate variables are included in the analysis but not conditioned on. We now expand upon the core
principles of the standard MI procedure to provide the necessary background to the sensitivity analysis context and to
demonstrate primary analysis under MAR using MI for the ADAPT trial.

3.4 Multiple imputation

MI was originally introduced by Rubin in 1978.29,32 MI uses frequentist inference, based on large sample Bayesian
arguments for justification. The method and its applications to clinical trials have since been studied extensively by
many.5,30,33-35 The standard MI procedure is conducted under the assumption of MAR and can be broken down into three
core stages summarized in Figure 3. In stage 1, missing data are imputed following the Bayesian paradigm by drawing
from the posterior predictive distribution of the observed data under the assumption of ignorability (ie, MAR). This is
done independently k = 1,… ,K times to create K completed datasets. Stage 2 proceeds by analyzing each imputed dataset
using the substantive analysis model of interest, which would have been used in the absence of missing data. This results
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F I G U R E 3 Summary of the three core stages of the generic MI procedure for a scalar treatment effect and how to implement the
imputation task; within stage 1 we distinguish the conceptual task followed by how this is operationalized [Color figure can be viewed at
wileyonlinelibrary.com]

in K estimated treatment effects, each accompanied by an estimate of variance. In Stage 3, results across imputed datasets
are combined using Rubin's rules29 to give a single MI estimate for inference. The MI treatment estimator, computed
using Rubin's rules, is the average of the treatment estimates across imputed datasets. The MI variance estimator consists
of the average estimated variance of the treatment effect over the K imputed datasets plus the variance of the treatment
effects, �̂�k, across the K imputations (multiplied by (1 + 1∕K) to adjust for finite imputations29).

It is important that the imputation model used in stage 1 includes all the variables in the analysis model used in stage 2.
This is because imputation-analysis model compatibility is required for unbiased estimation within the analysis stage.30,36

For clinical trials, the imputation model should, therefore, include the outcome and the treatment allocation in addition
to any covariates and interactions that are included in the analysis model. The treatment arm can be incorporated either
by conducting imputation separately for each arm (which implicitly fully allows for interactions between all included
covariates and randomized group) or by including randomized arm as a covariate in a single imputation model (slightly
stronger assumptions since covariate-treatment interactions are fixed to zero). Auxiliary variables that are thought to be
predictive of missingness but are not required in the analysis model can also be included in the imputation model.30,36

Within the analysis of the ADAPT trial, we will incorporate the interim (C)DLQI follow-up measures in the imputation
model to render the MAR assumption more plausible.

When conducting MI, a choice must be made about the number of imputations to perform. This will depend on the
precision required in estimation. A simple rule of thumb is to use one imputation per percent of missing data.37 For more
critical inferences, more imputations may be required to ensure efficient point estimates and standard errors that would
not change if the imputation were to be repeated again.5 While few imputations can be sufficient to justify the long-run
properties like test size, more imputations can increase the power non-trivially. Post imputation, we recommend exami-
nation of the Monte Carlo error, which quantifies the sampling variability across imputations, to assess that the number
of imputations performed provides an adequate level of precision. White et al37 recommend (i) the Monte Carlo error of
a coefficient should be less than or equal to 10% of its SE, (ii) the Monte Carlo error of the test statistic, coefficient/std.

http://wileyonlinelibrary.com


8 CRO et al.

error coefficient ≈ 0.1, and (iii) the Monte Carlo error of the P-value be ≈ 0.01 when the P-value is 0.05 and 0.02 when
the P-value is 0.1. More recently, von Hippel38 proposed a two-stage procedure to establish the number of imputations
required for adequate precision that is more accurate with larger amounts of missing data (>50%). This involves imputing
the data with a small number of imputations, then utilizing a quadratic rule38 to get the required number of imputations
for the desired level of precision.

So how do we draw imputations from the Bayesian paradigm in stage 1? As we summarize in Figure 3, under MAR,
this will depend on whether there is univariate or multivariate missing data and the types of variables to be imputed.
With missingness on a single outcome variable, under MAR, imputations from the Bayesian paradigm can be obtained
using a regression model and uninformative priors. For example, suppose for now we ignore the interim follow-up peri-
ods in ADAPT and the trial consisted of just baseline and a single follow-up (C)DLQI measure at week 24, which we
denote by Yi1 and Yi2 for patient i. Let Xi denote the covariate vector containing patient i's treatment allocation and ran-
domization stratification factors (age and IgE) and suppose Yi2 is MAR dependent on Yi1 and Xi. We can construct an
imputation model as a regression model of the week 24 outcome (Yi2) on baseline outcome (Yi1), treatment, and ran-
domization stratification factors (Xi) fitted to the observed data. Imputed datasets are created by repeatedly drawing the
regression parameters from their posterior distribution (using an uninformative prior), followed by the missing data from
the posterior predictive distribution using the current parameter draw (unique to each imputation step) as follows,

1. Regress Yi2 on Yi1 and Xi using the complete records: Yi2 = 𝛽0 + 𝛽1Yi1 + 𝜷2Xi + ei, ei ∼ N(0, 𝜎2.1), to obtain 𝛽0, 𝛽1, �̂�2
and �̂�2.1,

2. For imputation k, using uninformative priors, draw 𝛽k
0 , 𝛽

k
1 , �̂�

k
2 and �̂�k

2.1 from the Bayesian posterior of 𝛽0, 𝛽1, �̂�2 and �̂�2.1,
3. Draw missing data from: Yi2,k = 𝛽k

0 + 𝛽k
1 Yi1 + �̂�

k
2Xi + ei, ei ∼ N(0, �̂�k

2.1),
4. Repeat steps 2 and 3 K times.

With missingness on a single noncontinuous variable, a logistic, multinomial, or ordinal regression model may be
used. With multivariate data subject to nonresponse and a monotone missingness pattern, that is, when the measurements
can be ordered such that missingness on one variable implies missingness on others, imputation can also proceed using
regression modeling. We now do not ignore the interim follow-up time points in the ADAPT study. Figure 1 illustrates
how the observed missingness pattern is monotone in the ADAPT trial—where patients miss a (C)DLQI measurement,
they are missing (C)DLQI at all the subsequent time points. For monotone missing data, we can impute variables in
increasing order of missingness using, for each time point, a regression model that includes the completed variables only.
For imputation at each subsequent time point, previously imputed variables are included in the imputation model. For
example, in ADAPT, where interest lies in the imputation of the (C)DLQI outcome, we can impute missing (C)DLQI
values as follows.

Variable to impute: Covariates included in regression model:

Week-4 (C)DLQI Age, treatment, baseline (C)DLQI

Week-8 (C)DLQI Age, treatment, baseline (C)DLQI, week-4 (C)DLQI

Week-12 (C)DLQI Age, treatment, baseline (C)DLQI, week-4 (C)DLQI, week-8 (C)DLQI

This process can be readily implemented in Stata using the mi impute monotone command. The analysis model
of interest in ADAPT is a regression of the week 24 (C)DLQI measure on treatment group, baseline (C)DLQI, and
the randomization stratification factors of age and IgE. The variables in the imputation model will, therefore, be
the same as those in the analysis model along with the interim (C)DLQI measures taken over week 4 to week 20
to strengthen the MAR assumption. A total of 50 imputations will be performed, which we will confirm provides
adequate precision.

The ADAPT dataset is in wide format with one observation per individual, whereid is the unique individual identifier
and treat is the randomized treatment assignment, to placebo (treat = 0) or active (treat = 1). CDLQI_wj for
j = 4, 8, 12, 16, 20, 24 is the post-baseline (C)DLQI measurement at time j (weeks). CDLQI_1 is the baseline (C)DLQI
measurement andagestrat is baseline age andigestrat baseline IgE. To conduct MI within Stata, we first declare the
desired style of MI data to be produced (style flong produces imputed datasets stacked sequentially below the original
data) and register the variables to be imputed. We then perform MI under MAR using monotone regression imputation
using the mi impute monotone command as follows,
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⋅ mi set flong
⋅ mi register imputed CDLQI_w4 CDLQI_w8 CDLQI_w12 CDLQI_w16 CDLQI_w20 CDLQI_w24
⋅ mi impute monotone (regress) CDLQI_w4 CDLQI_w8 CDLQI_w12 CDLQI_w16 CDLQI_w20
CDLQI_w24 = i.agestrat CDLQI_1 i.treat i.IgEstrat, add(50) rseed(2301)

Analysis of the imputed datasets and the combination of results using Rubin's rules (including Monte Carlo error) is
then conducted using the mi estimate command as follows,

⋅ mi estimate, mcerror: regress CDLQI_w24 i.treat i.agestrat CDLQI_1 i.IgEstrat

The obtained MI (MAR) treatment effect estimate is −3.76, SE = 1.57, 95% CI −6.94,−0.58, p = 0.022. The inclusion
of the mcerror option in the estimation step outputs the Monte Carlo error of the treatment estimate to confirm that
we have an adequate number of imputations. The Monte Carlo error in the treatment effect is 0.11 (approx 3%); the
Monte Carlo error of the test statistic is 0.08 and of the P-value is 0.004, which implies that 50 imputations was adequate:
We have an appropriate level of precision. If greater precision was required, a greater number of imputations could be
produced.

Generally, under a non-monotone missingness pattern, forming an imputation model for multivariate data is more
complex. In such settings, two main routes have been established for imputation. The first, “Multivariate Imputation
by Chained Equations” (MICE), or “Fully Conditional Specification” (FCS), involves a series of univariate conditional
models, formed as a regression of each partially observed variable, given all other variables.39 Each univariate impu-
tation model is specified according to the characteristics of the variable being imputed. For example, binary variables
can be modeled using a logistic regression and continuous variables modeled using linear regression. A short-circuited
Gibbs-type sampling procedure is used to impute variables. We refer the reader to Van Buuren36,39 and White37 for more
technical details on the MICE or FCS approach to MI. Within Stata, the mi impute chained command can be used
to conduct MICE.

As an alternative to MICE, a joint multivariate normal (MVN) model can be assumed for all variables. Missing values
are then imputed using an iterative Markov Chain Monte Carlo (MCMC) method. This involves forming an initial estimate
of the multidimensional parameter of this MVN distribution; missing data are drawn from the appropriate conditional
distribution using the previously estimated parameter; a new value of the multidimensional parameter of the joint MVN
data distribution is then drawn from its complete-data posterior given the newly imputed data. The process is repeated
until appropriate convergence is satisfied. The number of iterations required to reach convergence is often referred to as
the burn in. Upon convergence, the current draw of missing data is retained to form the first imputed dataset (along with
the observed data). So that subsequent imputed datasets are independent, once convergence has been obtained, and the
first draw of missing data is retained, a number of iterations of the MCMC process are taken prior to retaining the next
draw of missing data to form the second imputed dataset. This number is often known as the burn between. The updating
of the chain, the burn-between, and collection of the imputed data, is repeated K times. We refer the reader to Schafer35

(pp. 306-309) for more technical details on the MCMC procedure. In practice, we can conduct imputation under MAR
using the MVN distribution using inbuilt MI commands in statical software. In Stata, the mi impute mvn command
can be used to perform MI via this route.

Using a joint MVN model for MI does necessitate strong assumptions of normality. Schafer, however, reports simu-
lations that show imputations drawn under the MVN model are robust to moderate skewness.35 Additionally, Schafer
reported the normal model to be a useful tool for imputing ordinal and binary data when no category has prevalence
below 10%.35 Nominal variables can be included in the model with a series of binary dummy variables. Thus, in practice,
the normal model is useful even when the data are not normal. As previously discussed, assumptions of normality can
be avoided with MICE, thus this option can be used if the MVN approach is not considered appropriate. In practice, for
analysis under MAR, only MI via monotone regression modeling, MICE, or MVN is required. In Section (3.5), we will see
that MI can also be used to explore departures from MAR, that is, for analysis under MNAR, avoiding the need to fit such
MNAR models directly.

3.5 Sensitivity analysis

Procedures for sensitivity analysis require the measurement process and missingness mechanism to be jointly
modeled. For example, for ADAPT, we need to model not only the (C)DLQI outcome, but also incorporate a model for the
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mechanism causing missingness in (C)DLQI within sensitivity analysis. There are two ways this can be done. First, we
can specify a model for the missing status for (C)DLQI, given the measurement data, with a marginal model for the data.
For example, a logistic regression model could be used to model the probability of (C)DLQI being missing at week 24,
with a parameter that governs how this depends on the unobserved outcome, fitted alongside a model for the (C)DLQI
data. Alternatively we can specify the conditional distributions of the (C)DLQI response data given the fully observed
data with a marginal model for the missingness process. For example, we can specify a MVN model for the unobserved
data, which has mean higher by a certain proportion than the observed data. The former factorization is referred to as
the selection model, while the latter is the pattern-mixture model.

For sensitivity analysis to be useful, methods and assumptions must be transparent and interpretable to all involved
in the trial, not just the experienced statistician. If the assumptions cannot be understood, then neither can the results.
We believe that assumptions for the unobserved data are more accessible when expressed in the pattern-mixture form.
This approach explicitly specifies how the unobserved data differs from the observed.

To see this formally, in the following, we group planned outcome measurements for patient i at times j = 1, .., J into
the vector Yi = (Yi1,… ,YiJ), and denote the vector of observed covariates, including treatment assignment, as Xi. The
distribution of the measurement data, for patient i, is defined as f(Yi|Xi,𝜽) where 𝜽 is the key vector-parameter of interest.
We define response indicators for each planned measurement, Rij, as Rij = 1 if Yij is observed or Rij = 0 if Yij is unobserved.
For each patient, the response indicators can be represented by the vector Ri = (Ri1,… ,RiJ). The missing data mechanism
is defined as the vector process generating Ri and is modeled as the conditional distribution, f(Ri|Yi,Xi,𝝓), where 𝝓 is the
vector-parameter for the missing data mechanism, which quantifies how the unobserved data depends on the observed
and unobserved data values.𝜽 and𝝓 are assumed to be separate/distinct. As shown by Little and Rubin,28 the two different
ways the joint distribution of the data and missingness mechanism can be factorized are,

f (Ri|Yi,Xi,𝝓) f (Yi|Xi,𝜽) = f (Yi,Ri|Xi,𝜽,𝝓) = f (Yi|Ri,Xi,𝜽) f (Ri|Xi,𝝓). (1)

Either, as expressed on the left, a model for the missing data mechanism, Ri given the measurement data, with a
marginal model for the data Yi can be specified—the selection model—or the conditional distributions of the response
data given the fully observed data on the right with a marginal model for the missingness process can be given—the
pattern-mixture model. The pattern mixture model requires specification of the joint distribution of the partially and fully
observed response variables Yi, for each pattern of missing data, which implies the conditional distribution of unobserved
response data (YiM) given the observed response data (YiO) within each pattern as follows,

f (Yi|Ri,Xi,𝜽) f (Ri|Xi,𝝓) = f (YiM|YiO,Ri,Xi,𝜽) f (YiO|Ri,Xi,𝜽) f (Ri|Xi,𝝓).

In the pattern mixture framework, the assumptions correspond directly to what is observed, that is, the unobserved
data of the deviating patients in the ADAPT trial having different distributions. Pattern mixture models are “underiden-
tified” by construction,40 meaning the observed data do not reveal the distribution of the unobserved data. Hence, to use
such models in practice, additional assumptions are introduced that allow unidentifiable parts of models to be identified
from other groups of subjects, that is, in ADAPT, we need to specify exactly how the unobserved (C)DLQI data for the
deviators differs to those observed.

In the selection modeling framework, the missing process is alternatively explicitly modeled alongside the observed
data. Selections models are intuitively nice since the factorization matches how we imagine data as being generated:
full data exist then missing data happen. But, in practice, when we have data, it is often easier to think about the dis-
tribution of the unobserved data and how this differs to that observed; the pattern-mixture modeling approach. In the
selection modeling framework, assumptions are typically framed around the anticipated odds of response, given baseline
covariates and the response measurement. We have found that expressing differences in the odds of response per unit
change in the response, conditional on other variables in the analysis model, is less understandable to clinical colleagues.
However, as expanded upon further below in Section 4.3, it is not necessarily always easier to interpret assumptions
in the pattern mixture framework. But, it is the modeling approach adopted here since it readily allows for accessible
analysis using MI.

In individual trials, there will be numerous ways in which a pattern mixture model (or selection model) can be fully
specified; however, many specifications will be practically implausible. A commonly advocated principled way to perform
sensitivity analysis in the clinical trial setting is to explore departures from the joint distribution implied by MAR.41,42

MAR provides an unambiguous starting point for MNAR exploration.
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As discussed by Daniels and Hogan,42 starting with specification of the conditional data distribution implied by MAR,
one can readily perform sensitivity analysis exploring departures from MAR by specifying a higher or lower mean out-
come value for the individuals with unobserved data. After specifying and fitting the separate response models for each
pattern, the models are weighted by their respective probabilities to obtain inference. Either a maximum likelihood (ML)
or full Bayesian approach can be used to fit pattern mixture models. A detailed example showing how to implement a full
Bayesian approach to pattern mixture modeling using winBUGS is presented by White et al.43 Alternatively, MI provides
an accessible solution.

The pattern-mixture model readily allows for missing outcomes to be imputed under a chosen scenario. As reviewed
in Section 3.4, the standard MI procedure imputes missing data using the conditional distributions of partially observed
response data given the observed response data under the assumption of MAR. Following a pattern mixture framework,
we modify the conditional distributions implied by MAR within each missing data pattern as appropriate. The modified
conditional distributions are then used within the MI algorithm, in place of the MAR distribution to impute under MNAR.
The imputed data are analyzed using the primary substantive analysis model, which would have been used in the absence
of any missing data. When MI is performed in such a manner, this has been termed “Controlled MI.”16 MI avoids the need
to fit the pattern-mixture models directly, which can often be quite complex and require sophisticated one-off programing.
MI can be a more practical and appealing approach for busy trialists.

In the next section, we outline and illustrate how to conduct controlled MI using a pattern-mixture approach where
the difference between the MAR and MNAR distribution is described using a specified numerical parameter, termed
“𝛿-based MI.”

4 SENSITIVITY ANALYSIS USING 𝚫-BASED MI

4.1 Sensitivity analysis of the ADAPT trial

As in the ADAPT trial, it is frequently of interest to explore the possibility of the unobserved having a poorer response
than those observed; in other cases it might be of interest to explore the impact of the unobserved having a better response
than those observed. 𝛿-based MI provides a useful accessible route for exploring such departures from MAR in clinical
trials. In the most simple case, we specify a single numerical parameter, 𝛿, which governs the mean difference between the
MAR and MNAR distribution for all individuals with missing data. For continuous data, we propose the unobserved data
has a distribution with mean either higher or lower than that implied by the observed data and MAR, and impute under
this distribution. For linear models, 𝛿-based MI can be implemented by imputing under MAR, then adding/subtracting
the constant 𝛿 directly onto the resulting imputed values to increase/lower the mean response below that predicted under
MAR. The imputed datasets can then each be analyzed; we have injected the desired MNAR mechanism in the imputation
step. In more complex scenarios, where one wishes to vary the unobserved data distribution by missingness pattern,
which may depend on time of drop out, reason for missingness or an alternative patient characteristic (eg, treatment arm),
𝜹 = (𝛿1,… , 𝛿m) may be a vector parameter quantifying the difference in the means of the MAR and MNAR distributions,
for missing data patterns 1,… ,m.

We assume throughout that 𝛿, or 𝜹, represents an offset term, or collection of offset terms, which describes the
difference in the mean outcome between the observed and unobserved cases. The offset term does not necessarily
have to be a mean shift in the intercept and additional offset terms, which represent a shift in slope for speci-
fied covariates can in theory be introduced. However, this creates additional complexities, which we do not discuss
further here.

We now demonstrate 𝛿-based MI for the ADAPT trial and explore the impact of a different mean response among
the unobserved at the week 24 follow-up visit. We first consider the most simple scenario where we specify a single
numerical parameter, 𝛿, to govern the difference between the MAR and MNAR distribution for imputation. It is likely that
participants week 24 responses had a worse (higher) (C)DLQI score than for those observed with similar characteristics
in the absence of rescue mediation. Furthermore, for those who withdrew from treatment, since they decided not to
progress, it is also likely they would have experienced a worse response than for those observed.

We define 𝛿 as the fixed difference in (C)DLQI outcome between observed and unobserved cases at week 24. For each
patient with missing data, we then modify the MAR imputed observations at week 24 by 𝛿. We will repeat the analysis
for a range of 𝛿 values corresponding to 25%, 50%, 75%, and 100% of the absolute change of the (C)DLQI observed over
24 weeks in all participants.
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T A B L E 1 Estimated 24 week treatment effect on C(D)LQI in primary and sensitivity analysis of the
ADAPT trial

Analysis Treatment Est. 95% conf. int. Std. Err. P-value

Primary (MI MAR) −3.76 −6.94 to −0.58 1.57 0.022

Sensitivity (MI 𝛿 = 1.875) −4.11 −7.35 to −0.87 1.60 0.014

Sensitivity (MI 𝛿 = 3.75) −4.46 −7.81 to −1.11 1.66 0.010

Sensitivity (MI 𝛿 = 5.625) −4.81 −8.31 to −1.31 1.73 0.008

Sensitivity (MI 𝛿 = 7.5) −5.16 −8.85 to −1.48 1.83 0.007

We have already performed imputation under MAR for ADAPT in Section 3.4 (results in Table 1). To perform the
sensitivity analysis, we start by using this MAR imputed dataset. Over the 24-week treatment period, the observed over-
all unadjusted mean change in (C)DLQI was −7.5. In the first sensitivity analysis, we will increase the MAR imputed
(C)DLQI values at week 24 by 1.875 (25% of the unadjusted mean change in (C)DLQI). The code required to complete
these steps is as follows.

⋅ use adapt_MAR, clear
⋅ mi passive: generate byte imputed=_mi_miss
⋅ replace imputed = 1 if imputed==.
⋅ generate float CDLQI_w24_Delta1 = CDLQI_w24
⋅ replace CDLQI_w24_Delta1=CDLQI_w24 +1.875 if imputed==1

The analysis model from the primary analysis is retained and fitted to the updated imputed data using the usual mi
estimate command in Stata as,

⋅ mi estimate, mcerror: regress CDLQI_w24_Delta1 i.treat i.agestrat CDLQI_1
i.IgEstrat

We repeat the above sensitivity analysis using increasingly larger values for delta of 3.75, 5.625, 7.5, corresponding
to 50%, 75%, and 100% of the overall observed unadjusted mean change in (C)DLQI. To do so small edits are required
to the above two extracts of code. For example, for the second sensitivity analysis, we create a new variables called
CDLQI_w24_Delta2 in place of CDLQI_w24_Delta1 and use the appropriate updated delta adjustment in place of
1.875. Results of all the sensitivity analyses conducted are shown in Table 1.

When we assume the individuals who received rescue medication or withdrew from treatment had a worse response
than that predicted under MAR (if they had remained in the trial on-treatment), we see the treatment effect marginally
increases. When we assume the unobserved week 24 response is higher by 7.5 points than that predicted under MAR,
the obtained treatment effect is −5.16, Std Err = 1.83, and p = 0.007. Thus, assuming a fixed worse difference in response
among those with missing data results in a larger treatment effect estimate. Since more patients in the placebo arm
deviated this is unsurprising. However, the increase is not dramatic and does not change the overall interpretation. The
sensitivity analysis confirms our conclusions from the primary analysis are robust to alternative plausible missing data
assumptions.

4.2 Incorporating the missing data pattern in a longitudinal trial setting

The above 𝛿-based analysis for ADAPT assumed a fixed difference in response between the observed and unobserved cases
at the final follow-up. Such an approach can be used in a trial with baseline and a single follow-up only or in longitudinal
settings where it is appropriate to assume a fixed difference in outcome regardless of time or reason for drop out. For
ADAPT, it was considered most plausible to assume a fixed difference in outcome regardless of the missing data pattern
or missingness reason. In other scenarios, it may be more appropriate to vary the parameter governing the difference
between the MAR and MNAR distribution, 𝛿, by missing data pattern, which may depend on time of drop out, treatment
group and/or reason for missingness.
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One can define for each missing data pattern m a different anticipated difference in the mean response from MAR. In
such settings, 𝛿-based MI will require the specification of many sensitivity analysis parameters as thus it will be required
to define 𝜹 = (𝛿1,… , 𝛿m) as a collection of sensitivity analysis parameters for each missing data pattern m. For example,
in the ADAPT trial, a different 𝛿 adjustment could have been made for (i) the individuals who received rescue medication
and (ii) the individuals who withdrew from treatment. We provide example code in Appendix A for implementing this.
Furthermore, the time of deviation (withdrawal or receipt of rescue therapy) could have been incorporated and different
adjustments at week 24 made for those who received rescue medication/withdrew at week 8, 12, 16, 20, and 24. Naturally,
if time of deviation is taken into account, this can entail the specification of many parameters which can be practically
challenging to form.

A fixed departure from MAR, regardless of time of drop out, may often not be credible. In such cases, it may be alterna-
tively appropriate to explore a change in slope post-deviation and so to define 𝛿 to be a scalar sensitivity analysis parameter
representing the change in rate of response post-deviation relative to MAR. This will reduce the number of parameters
to be specified. In such settings, one can add 𝛿 to the first post-deviation imputed value, 2𝛿 to the second, and so on. We
note here that if the analysis model only incorporates the last observed time point (like in ADAPT), then we may only
need to actually edit that response accordingly by the appropriate multiple of 𝛿. This approach is outlined by Carpenter
and Kenward.5,41 In such settings, one may wish to vary 𝛿 (defined as the change in slope post-deviation) by treatment
arm, reason for missing data or an alternative grouping. Such an approach that reduces the number of parameters will
inevitably be a simplification of reality. Additional example code on how to implement a difference in the rate of change
in (C)DLQI for the ADAPT trial, with and without additional variation by deviation reason (withdrawal/rescue therapy),
is given in Appendix A.

Since the analysis model for ADAPT only incorporated baseline and the week 24 outcome we did not alter imputed
values at earlier follow-up time points. But in different scenarios where the analysis model includes earlier follow-up data,
for example, an MMRM, an additional consideration is whether earlier missing values should also be edited to reflect a
departure from MAR. If required, a delta adjustment can also be made to earlier missing values. We have also not yet
discussed interim missing data, which is when individuals have missing data at some point in the follow-up but data are
observed later. Interim missing observations may often be reasonably imputed under MAR. But in some circumstances,
dependent on the clinical context, it may be appropriate to also alter interim missing values using a delta adjustment.

4.3 Specification of 𝜹

Formally using the same notation as introduced in Section 3.5, for MNAR imputation, for each deviating individual i with
missing data pattern mi, we specify the distribution of their missing outcomes, given their observed data as,

Yk
Mi ∼

[
YMi|YOi, 𝜼m

]
. (2)

Here, 𝜼m represents the vector of parameters of this distribution, whose values differ across missingness patterns m,
and whose values we first have to form for each imputation k, before we can impute missing data from Equation (2) using
the standard MI procedure. The parameters of the imputation model under MAR, 𝜼, are obtainable using the observed
data. For 𝛿-based approaches generally, for each missing data pattern m, the parameters 𝜼m are constructed using a draw
of the parameters 𝜼 of the MAR implied conditional distribution and a numerical sensitivity analysis parameter. This
numerical sensitivity analysis parameter governs the degree of departure from MAR and creates the shifted distribution
for imputation. Formally, the postulated numerical difference in the mean parameter for the observed data and miss-
ing data pattern m, that is, the sensitivity analysis parameter is denoted by 𝛿m. The current draw of 𝜂 for imputation
k is then edited accordingly (by adding/subtracting 𝛿m) to obtain 𝜼m for imputation. The MI algorithm then proceeds
using the shifted distributions. We note that 𝛿m = 𝛿 in the above example for ADAPT, as will be relevant in many other
settings.

In any trial setting, the extent to which the parameters of the distribution of missing data are likely to differ from the
observed for each missing data pattern requires carefully consideration. What value or values to use for the sensitivity
analysis parameters might not be immediately obvious. The first point to consider is whether it is most likely that deviators
had a poorer/better response than those observed? Then, in the direction(s) of interest, one needs to consider by how
much does the response likely vary for each missing data pattern. It is of utmost importance to carefully consider what
values of 𝛿 (or 𝛿m for missing data pattern m) represent a plausible degree of departure from MAR in the specific setting
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at hand. A discussion between clinicians, researchers on the ground interacting with the participants, and statisticians
should occur to ensure appropriate values are chosen. The scale of the outcome will of course feed into such discussions
around the degree of departure from MAR. Data from similar studies may also provide useful insights into realistic values
alongside experts' opinions.

A pragmatic approach is to use the observed data to inform realistic values of the sensitivity analysis parameters.
For example, in ADAPT, it was pre-specified for the primary outcome (objective SCORAD), which was collected lon-
gitudinally, that sensitivity analysis would explore the impact of a range of fixed mean differences in outcome for the
unobserved regardless of deviation pattern (𝛿) corresponding to 10%-50%, the observed rate of change over 24 week in all
participants.22 One might alternatively consider using the minimum clinically important different for the outcome under
study (often also used to derive the trials sample size) to guide a worse/best case scenario. A 𝛿-based adjustment employ-
ing the minimum clinically important different or a multiple of this might reveal whether in a more extreme setting
results vary.

An alternative approach to 𝛿-adjusted sensitivity analysis progressively increases 𝛿-based adjustments from 0 until the
conclusions from the primary analysis are overturned. Each 𝛿 represents an increased departure from MAR (𝛿 = 0). If the
value of 𝛿 that changes the conclusions is implausible, that is, realistically the missing data would not be that different
from the observed data, then greater confidence in the primary results can be inferred. This is referred to as a “tipping
point analysis” by Yan.44 Ideally a range of acceptable values of 𝛿 should be agreed within trial teams a-priori when taking
this approach. We caution against such tipping point approaches if careful thought has not been given to plausible values
of delta a-priori since the results of the analysis might knowingly or unknowingly influence the subsequent interpretation
of the sensitivity analysis.

To summarize, in any trial setting, careful thought must be given to what are appropriate values for the sensitivity
analysis parameters when utilizing 𝛿-based MI. For longitudinal trials with a number of different missing data patterns,
as with all pattern-mixture approaches and indeed selection modeling approaches, this can require the specification of
many parameters. Next we will see that explicit parameter specification is, however, not always required when using
controlled MI.

5 SENSITIVITY ANALYSIS USING REFERENCE-BASED MI

5.1 Sensitivity analysis of the headache trial

Statements about unobserved patient data can alternatively be made by reference to other groups of individuals in the trial
(typically individuals in different treatment arms). That is, the difference between the MAR and MNAR distribution can be
described entirely using within trial information by reference to other groups in the data. The parameters of the observed
data distribution, estimated assuming MAR, can be mixed around, across arms rather than within, to form contextually
relevant MNAR distributions for the unobserved data. Data can then be imputed from the conditional distributions pieced
together from the MAR parameters. This is referred to as “reference based MI.” Reference based approaches, which follow
the rule of using within trial information, avoid the need for explicit parameter specification, which can be difficult.
In-study data is used to make qualitative rather than quantitative missing data assumptions based on plausible clinical
scenarios. The imputed datasets are then analyzed as usual with MI and results combined using Rubin's rules. The primary
analysis model, based on a comparison of the randomized groups, is retained in the sensitivity analysis in keeping with the
Intention-to-treat (ITT) principle. This allows for the exclusive assessment of the impact of alternative sampling behavior
on the primary analysis as originally planned.

There are many ways in which distributions for the unobserved data can be constructed using internal trial parameters.
The appropriate choice will be context specific. Some possibilities (not-exhaustive) are:

• In a two arm trial of an active versus a reference treatment, we could impute missing data assuming patients jump
to behave like those in a specified reference arm following their last observed time point. This may be suitable when
any treatment effect would be expected to stop following drop out. This has been termed jump to reference imputation.
For example, in the acupuncture versus standard care headache trial, we could impute missing data assuming patients
jump to follow the behavior of the standard care arm following their last observed time point. This scenario, consid-
ered the most plausible sensitivity analysis for the headache trial, is illustrated schematically in the top right panel of
Figure 4.
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F I G U R E 4 Example reference based imputation models for the acupuncture trial. The squares at time 0 and 3 are observed values for a
participant in the acupuncture arm who withdrew after the 3 month visit. The black arrows represent the imputation distributions. The
squares at time 12 are the mean of the imputed values for that participant in the given reference based scenario. The crosses at time 12
represent the individual imputed values around that mean across 50 multiply imputed datasets for the withdrawing active participant. The
reference arm is the standard care arm. This is not an exhaustive display of the MNAR options possible within the reference-based
framework [Color figure can be viewed at wileyonlinelibrary.com]

• Alternatively, we could impute assuming patient outcomes follow the mean increments observed in a reference arm
following their last observed time point. This is referred to as copy increments in reference (CIR) imputation. Within
the acupuncture arm, we could impute assuming the differences in patients mean outcomes over time follow those
observed in the standard care arm (bottom row center panel of Figure 4).

• A third option is to impute assuming patients behaved as if they were in a specified reference arm for the full duration
of the trial, known as copy reference (CR) imputation. In the acupuncture trial, we could impute assuming patients
followed the standard care arm behavior for the full trial duration (bottom row left panel of Figure 4), a natural option
when we believe patients followed a different (reference) treatment from their randomized allocation throughout the
trial.

• Alternatively, last mean carried forward (LMCF) imputes assuming patient behavior stays at the mean level for their
randomized arm at their last observed time point, appropriate when we believe the effect of randomized treatment
is maintained on average over time. This is a more principled version of the classic LOCF analysis (bottom right row
panel, Figure 4).

Table 2 summarizes these five imputation options proposed by Carpenter et al11 for a continuous outcome. The options
in Table 2 are not an exhaustive listing of reference based options. Naturally under any reference based method discussed
above, for patients in the designated reference arm, their data will be imputed as under randomized arm MAR. Using
data from the acupuncture headache trial, we will demonstrate how reference based MI can be accessibly conducted in
Stata using the mimix command under these five assumptions.45 Further technical details on the underlying reference
based algorithm are provided in Appendix B.

We will first conduct primary analysis under the most plausible randomized-arm MAR assumption for the unobserved
data using the reference based MI algorithm of Carpenter et al.11 The mimix command can be downloaded within Stata

http://wileyonlinelibrary.com
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T A B L E 2 Examples of reference based multiple imputation options

Method Description

Randomized-arm MAR Impute assuming patients follow the behavior of their randomized arm. The joint
distribution of patients' pre- and post-deviation outcome data is MVN with mean
and covariance matrix from their randomized arm.

Jump to reference (J2R) Impute assuming patient behavior jumps to that of a specified reference arm. The joint
distribution is MVN with mean vector from the patients randomized arm up to their
last observation time, post-deviation the mean vector follows that observed for a
reference group (typically control). The covariance matches the randomized arm for
pre-deviation measurements and the reference arm for the conditional components
of post- given pre-deviation measurements.

Last mean carried forward (LMCF) Impute assuming patient behavior remains at the mean level for their randomized arm
at their last observed time point. The joint distribution is MVN with mean vector
from the patients randomized arm up to their last observation time, post-deviation
the means are set equal to the marginal mean for the patients randomized arm at
their last observed time. The covariance matrix remains as that for their randomized
treatment arm.

Copy increments in reference (CIR) Impute assuming patient behavior follows the mean increments observed in a specified
reference arm. The joint distribution is MVN with mean vector from the patients
randomized arm up to their last observed time, post-deviation the patients mean
increments follow those from a reference arm. The covariance is the same as in J2R.
Appropriate when we wish to assume that post-deviation the disease resumes the
course observed in the reference arm.

Copy reference (CR) Impute assuming patients follow the behavior of a specified reference arm for the
duration of the trial. The joint distribution of patients' pre- and post-deviation
outcome data is MVN with mean and covariance matrix from a reference arm
regardless of deviation time.

by typing ssc install mimix. A detailed specification of the commands options is available in Cro et al.45 A freely
available SAS macro by Roger46 called miwithd also implements the algorithm of Carpenter et al. The “five-macros”
SAS package, which is a more developed version of the miwithd macro, is also available for analysis within SAS.47 Both
SAS implementations are available for download at www.missingdata.org.uk.

Within the headache dataset, id is the unique individual identifier and treat is the randomized treatment assign-
ment to standard care (treat = 0) or acupuncture (treat = 1). Baseline covariates include the randomization
stratification factors of age, sex, migrane (diagnosis of migraine or tension-type), and chronicity (number of years
of headache disorder). head_base is the baseline headache score. head is the post-baseline headache score and time is
the time of the headache measurement in months (3 or 12 months). The dataset is in “long” format, with one observation
per individual per time point, as mimix requires.

We impute under MAR and create 50 imputations using an MCMC burn-in of 1000 and burn-between of 500 iterations
as recommended by Carpenter and Kenward (p. 84).5 We include the randomization stratification factors of age, sex,
migrane, and chronicity in the imputation model. The baseline headache measure (head_base) is also included
in the imputation model as a covariate, but if this fully observed variable were used as an outcome in the imputation
model, the imputation results would be stochastically identical. We include head_base as a covariate here so that it will
be treated as a covariate in the analysis step; we use the regress option to specify that the substantive analysis is a linear
regression of 12-month headache score (final time point) on randomized treatment and the included covaraites (age,
sex,migrane,chronicity, andhead_base). Theregress option fits a linear regression of the outcome at the final
time point on treatment arm and any covariates included in the imputation model post MI to each imputed dataset, then
combines results using Rubins' rules. If an alternative substantive model of interest were required, the regress option
is not required and the imputed datasets can instead be saved for use with a different analysis model. Although possible,
we caution against the use of an analysis model that has variables or structure (eg, interaction terms) not included in
the imputation process because this will create additional imputation-analysis model incompatibility. As discussed in
Section 3.4, when performing MI under MAR, it is important that the imputation model includes (at a minimum) all

www.missingdata.org.uk
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T A B L E 3 Sensitivity analysis results for the headache trial using reference based MI with K = 50 imputations

Analysis Treatment Est. (L) 95% CI SE P-value

Primary analysis

Randomized-arm MAR −4.97 −7.40 to −2.54 1.23 < 0.001

Sensitivity analysisa

Jump to standard care −3.32 −5.70 to −0.94 1.21 0.006

Copy increments in standard care −3.74 −6.07 to −1.41 1.18 0.002

Copy standard care −3.80 −6.12 to −1.49 1.18 0.001

Jump to acupuncture −3.00 −5.44 to −0.56 1.24 0.016

Copy increments in acupuncture −3.50 −5.91 to −1.10 1.22 0.004

Copy acupuncture −3.48 −5.87 to −1.09 1.21 0.005

Last mean carried forward −4.94 −7.38 to −2.50 1.24 < 0.001

aSensitivity analysis results are sorted in terms of what we considered the most plausible assumption (higher position vertically)
to least plausible assumption (lower position vertically).

the variables to be included in the analysis model to ensure unbiased estimation. Although the imputation and analysis
model will not in fact be fully compatible in reference based settings, the implications of which we expand further on in
Section 6, the imputation model should include all variables to be included in the analysis. The saving option specifies
that the imputed datasets will be saved in a Stata data file called head_mar. The commands required are as follows.

⋅ use acupuncture, clear
⋅ mimix head treat, id(id) time(time) covariates(age sex migraine chronicity
head_base) method(mar) m(50) regress clear seed(23) burnin(1000) burnbetween(500)
saving(head_mar)

For sensitivity analysis, to impute under the next mot plausible assumption J2R, where the reference group is the
standard care arm, we update the method specification to “j2r” and add that treatment=0 (standard care) is the reference
group, using the refgroup option, as follows:

⋅ mimix head treat, id(id) time(time) covariates(age sex migraine chronicity
head_base) method(j2r) refgroup(0) m(50) regress clear seed(23) burnin(1000)
burnbetween(500) saving(head_j2r0)

To impute under J2R where the reference arm is the acupuncture arm, we use the above code but alternatively indicate
that refgroup=1. To impute under CIR, CR, or LMCF, the above line of code is adapted to include cir, cr, or lmcf in
place of j2r, with the required reference group (or no reference group in the case of LMCF).

The primary MAR analysis (Table 3) suggests that acupuncture results in improved headache scores relative to stan-
dard care, with a treatment effect of −4.97. Sensitivity analysis results are sorted by plausibility (what we considered
most plausible, down to what we considered least plausible). After MAR, we considered it most plausible that patients
in the acupuncture arm discontinued treatment abruptly following their last observed outcome measurement and then
jumped to follow the behavior observed in the standard care arm; unobserved outcomes of individuals in the stan-
dard care arm assumed to be MAR. Under jump to standard care, the treatment effect is lower at −3.32. Assuming
that patients in the acupuncture arm more gradually tracked toward the standard care arm behavior following with-
drawal, copy increments in standard care, the treatment effect is similar at −3.74. Then, if it is assumed that patients
in the acupuncture arm with unobserved outcomes never undertook acupuncture and always behaved like the stan-
dard care patients, the treatment effect is slightly closer to MAR at −3.80. These three sensitivity analysis assumptions
lead to a smaller treatment effect in comparison to MAR as the acupuncture patients with unobserved outcomes are
assumed to have either copied the standard care profile for the entire trial duration or to have jumped to or copied the
mean increments in the standard care arm (retaining their pre-drop out treatment arm means), which is itself higher
(indicating poorer outcome).
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The smallest treatment effect is obtained next under jump to acupuncture imputation, −3.00. The treatment effects
are most extreme under the jump to reference assumptions since this assumes patients followed their own treatment arm
means prior to deviation then abruptly switched to the mean profile of the alternative arm. Under jump to acupuncture,
there are more patients abruptly switching behavior than under jump to standard care as more patients deviated in the
standard care arm which is why jump to acupuncture sees the greatest difference in the treatment estimate, relative to
the primary MAR analysis.

If the unobserved alternatively copied the acupuncture arm behavior throughout the trial, the treatment effect is
−3.48. The results under copy increments in acupuncture are similar to this, −3.50. In these two cases, the standard care
patients that dropped out are also assumed to behave like the acupuncture cases, either for the entire trial duration or to
follow their mean increments post-drop out (retaining their pre-drop out treatment arm means). The assumptions that
assume behavior of the acupuncture arm reduce the treatment difference by a larger amount relative to when standard
care was the reference as there were more drop-outs in the standard care arm (see Figure 2); a greater proportion of
patients are assumed to behave more similarly. Finally, under LMCF, which we considered the least plausible scenario, the
treatment estimate is only very marginally lower than under MAR at −4.94. This corresponds to assuming the underlying
mean response remains constant after drop out at the level of the patients randomized arm, that is, individuals in the
acupuncture arm maintained the benefit of acupuncture at unobserved time points. Overall, under all scenarios, the
treatment effect remains significant, indicating that we can be confident in the trials primary result that acupuncture is
an effective treatment.

Reference-based MI can also be a useful tool for the sensitivity analysis of a trial with a single follow-up measurement.
In Appendix C, we include a third case study to demonstrate the application of mimix for reference-based sensitivity
analysis of clinical trials with a single follow-up.

5.2 Incorporating different reasons for missingness

In the above sensitivity analyses, we have made the same assumption for the unobserved data for each patient with
missing data. When reasons for withdrawal are available, we might prefer to vary the assumption for the missing data
in the analysis according to the reason. In the acupuncture trial, additional data on the reason for withdraw were in fact
recorded and are displayed in Table 4. Given these reasons, we might want to assume MAR for patients who withdrew as
they experienced inter-current illness, died, or had an adverse effect and J2R (standard care as reference) for all others. The
Stata command mimix enables different assumptions to be made for each deviating individual. To conduct this analysis,
we first define a new variable which holds the required imputation method for each individual. Then we implement the
MI analysis using the methodvar option with this newly created variable, in place of the previously used method using
the following code.

⋅ generate str4 method = “mar”
⋅ replace method = “j2r” if withdrawal_reason == “treatment ineffective” | with-
drawal_reason == “treatment hassle” | withdrawal_reason==“lost to follow-up” |
withdrawal_reason== “withdrew consent”

⋅ mimix head treat, id(id) time(time) covariates(age sex migraine chronicity
head_base) methodvar(method) refgroup(0) m(50) regress clear seed(23) burnin(1000)
burnbetween(500) saving(head_mar_j2r)

After creating the updated imputations the analysis model of interest is fitted to each imputed data set and results
combined with Rubin’s rules, using the mi estimate command. The treatment effect estimated by this sensitivity anal-
ysis is −3.74, SE 1.23, 95% CI −6.17 to −1.31, p = 0.003. Naturally, this lies between the estimate obtained under the
assumption of MAR (TE = −4.97) and J2R for all unobserved data (TE = −3.32). But this may be considered a more
realistic appropriate analysis within the acupuncture setting, given withdrawal reasons.

5.3 Incorporating reference- and delta-based assumptions

In some situations, we might want to make a reference-based assumption for a specified group of patients (eg, J2R or CR)
and a 𝛿-based assumption for others. If a selection of patients require a 𝛿-based adjustment, mimix can be run with a
methodvar, which takes the value of MAR for these cases. The methodvar can take the value of the required reference



CRO et al. 19

T A B L E 4 Reasons for withdrawal in the
acupuncture trial

Withdrawal reason Standard care Acupuncture Total

Adverse effects 0 1 1

Died 1 0 1

Intercurrent illness 8 8 16

Lost to follow-up 7 8 15

Treatment hassle 0 5 5

Treatment ineffective 0 4 4

Withdrew consent 40 18 58

Total 56 44 100

based method(s) for other individuals as appropriate. Following execution of the MI, the 𝛿-based adjustment can then be
made as required to the MAR imputed data following the steps outlines in Section 4.

For example, suppose we wish to extend the above example and change the missing data assumption for the patients
who withdrew due to intercurrent illness from MAR to be MAR+10, representing a worse headache score. We retain
the assumption of MAR for the unobserved data of those who died or had an adverse effect and the assumption of
J2R for those who withdrew due to all other reasons. We start by using the dataset imputed above (head_mar_j2r).
We then implement the 𝛿 adjustment for the patients who withdrew due to intercurrent illness with the
following code.

⋅ use head_mar_j2r, clear
⋅ mi passive: gen imputed=_mi_miss
⋅ replace imputed=1 if imputed==.
⋅ gen head_Delta1=head
⋅ replace head_Delta1=head+10 if imputed==1 & withdrawal_reason==“intercurrent
illness”

This gives a treatment effect of −3.74, SE 1.25, 95% CI −6.19 to −1.28, p = 0.003. This does not considerably change
from the previous analysis. The point is mimix facilitates a wide variety of controlled MI analyses. We are not in fact
limited to combining a 𝛿 adjustment following MAR imputation; it can be invoked following any reference based method.
Countless possibilities exist!

6 WHAT IS THE APPROPRIATE VARIANCE ESTIMATOR?

There has been debate around the appropriate variance estimator in the reference based MI settings.48,49 This is because
borrowing information between trial arms for MI produces peculiar behavior in the empirical long-run sampling variance
of the reference based treatment effect. The strong assumption that deviators behave exactly like those observed in an
opposing reference arm reduces the long-run sampling variance of the reference based treatment estimate, below that
seen under MAR (typically the primary analysis assumption) and the variance that would be obtained, were the deviation
data observed in the given reference based scenario. Also within the sensitivity analysis, the assumptions made at the
imputation stage are not fully compatible with those of the primary analysis model, which is retained in the sensitivity
analysis.30

The usual MI variance estimator, Rubin's MI variance estimator, exhibits entirely different behavior.48,50,51 Rubin's
variance estimator is always larger than the variance we would obtain had the deviation data been observed under the
given scenario. Rubin's variance also increases as the proportion of missing data increases.49 We have shown elsewhere52

that Rubin's rules provide an appropriate estimate of variance for the treatment effect in reference based MI settings.
Our justification being that Rubin's variance estimate provides information anchored inference. That is, the proportion
of information lost due to missing data under MAR is approximately preserved in the sensitivity analysis. We regard
information anchored inference as desirable. It ensures there is no loss or gain of information due to missing data in
the sensitivity analysis relative to the primary analysis. Thus, regulators can be reassured the sensitivity analysis is not
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injecting information, while trialists can be reassured that the sensitivity analysis is not discarding any of the valuable
obtained data.

The results of the analyses presented here (Tables 3 and C2) demonstrate the information anchoring performance of
Rubin's variance estimate. For both the headache trial and the reviewer trial, we obtain information anchored inference.
We have also shown52 that when employing 𝛿-based MI with a fixed 𝛿 adjustment, information anchored inference will
be obtained. We thus recommend the use of Rubin's variance estimator within delta- and reference-based sensitivity
analyses.

6.1 Incorporating a prior distribution on 𝜹

Throughout Section 4, we assumed the parameter governing the difference between the MAR and MNAR distribution,
𝛿, or parameters 𝛿m for missing data pattern m, are fixed. This does not have to be the case. The sensitivity analysis
parameters may have their own distribution with specified mean and variance and thus vary over the imputation set
K. For example, in the analysis of the ADAPT trial, 𝛿 was a fixed value to represent a postulated fixed difference in
outcome between the observed and the unobserved, but we could have specified 𝛿k ∼ N(𝛿, 𝜎2

𝛿
) for imputation k. If 𝛿 has

a distribution, this adds an additional step to the MI procedure where for each imputation k, 𝛿k must be drawn and all
imputations for current imputation k edited by 𝛿k. This may be appropriate when there is uncertainty in the value of 𝛿,
when experts cannot come to a consensus on the likely difference in outcome between observed and unobserved cases.
White et al53 demonstrate successful elicitation of prior information on the difference between missing and observed
outcomes in a single follow-up trial setting using a number of experts and a pre-specified questionnaire. They asked a
number of experts what they thought 𝛿 would be using a standardized questionnaire then assessed the variability across
the experts to form the prior variance on 𝛿. Mason et al54 present a practical tool for eliciting pooled expert opinion and
demonstrate its use for randomized controlled trials with missing data.

What are the implications of incorporating an additional prior distribution on 𝛿? We have shown elsewhere52

that for a continuous normal outcome, where 𝛿 has an assumed normal prior, there will be a greater loss of infor-
mation in the sensitivity analysis in comparison to the primary MAR analysis. That is, the variance of the MI
treatment effect, estimated using Rubin's rules, will incorporate the additional variance on 𝛿 over k (because the
variation in 𝛿 increases the between-imputation variance). In comparison to the primary analysis conducted under
MAR, one will consequently obtain information negative inference, whereby there will be a greater loss of infor-
mation due to missing data in the sensitivity analysis relative to the primary analysis.52 By using a large enough
variance for 𝛿, we consequently have the ability to overturn the conclusions of any purportedly significant results
reported in the primary analysis. Thus, when specifying 𝛿, if incorporating a prior one must be confident they are
using an appropriate value for the variance for 𝛿. This should be determined in collaboration with experts in the
field and will be context specific. It may be useful to vary the variance parameter on 𝛿, as well as the specified
mean value when the value of 𝜎2

𝛿
is uncertain since this has implications for the variance of the treatment effect

of interest. In order to avoid the loss of information in sensitivity analysis when 𝛿 is uncertain, a preferable option
would be to conduct a number of fixed 𝛿 adjustments, with varying size for the fixed 𝛿 rather than employing
a distribution on 𝛿.

Another important to point to note is that, if the 𝛿 varies by missing data pattern m (or any alternative grouping) and
the 𝛿ms are given a prior distribution, then the covariance of the 𝛿ms must also be specified for each missing data pattern
m. It can be hard to elicit reliable information about this. Carpenter and Kenward41 show that larger standard errors are
obtained when the correlation is zero. This can, therefore, be a useful starting point. A subsequent complicating factor is
that the variance of the final treatment estimate also then depends on the specified covariance of the 𝛿ms.

7 DISCUSSION

In this tutorial paper, we have described and illustrated how sensitivity analysis can be conducted to explore departures
from an MAR assumption for unobserved continuous outcome data using controlled MI. Controlled MI combines a pat-
tern mixture modeling approach with MI. We have shown how we may adopt a controlled MI approach using numerical
parameters which govern the degree of difference between the MAR and MNAR distributions, termed 𝛿-based MI. We
have also shown how specific sensitivity analysis parameter specification is not always required. One may alternatively
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specify the difference between MAR and MNAR distributions qualitatively using entirely within trial information, by
reference to other groups of individuals in the trial using reference-based MI.

The attraction of the different controlled MI approaches depends on the problem at hand. It is of course important that
trialists employ only methods, which make plausible assumptions relevant to the clinical setting and estimand of interest.
In some circumstances, the assumptions made by the reference based MI procedures may not be suitable. We advise
trialists to consider carefully the assumptions behind the controlled MI analyses to ensure each analysis undertaken is
suitable to the context at hand. Indeed, the assumptions behind any method of statistical analysis should be relevant to
the clinical setting.

A different perspective and framing for the reference based MI options, jump to reference, CR, and CIR, is provided by
White et al.55 They show how these MI procedures are special cases of a causal model, which makes an explicit assumption
about the maintained causal effect of treatment after discontinuation in a potential outcomes framework; under CIR,
the treatment effect at the discontinuation visit is maintained, under CR, the treatment effect is assumed to be dimin-
ished, and under jump to reference, the treatment effect is assumed to be eliminated at the final visit. As such, additional
reference-based MI procedures can be conceived where the maintained causal effect of treatment after discontinuation
is varied in different ways.

We showed how 𝛿-based MI can be implemented using the inbuilt MI package in Stata. Of course, one is not confined
to using Stata and can use MI packages within other software to complete the analysis. We also showed how mimix
can be used to conduct reference-based MI using the options described in Table 2 also within Stata. We also provided
details of SAS programs that can be used if alternative software is preferred (at the time of writing, reference-based MI
is in development for R). In Section 5, we noted that the reference based MI options described in Table 2 were not an
exhaustive listing. Other controlled reference based MI procedures can be conceived. The mimix command implements
only the five reference based options in Table 2. The “five macros” SAS package includes additional options, including
“own last mean carried forward” (OLMCF), where the subject's own mean at withdrawal is carried forward. The “five
macros” SAS package also enables user defined methods.

In the presence of missing data, when we do sensitivity analysis, we need to be sure we are not inappropriately inject-
ing information or removing information within the analysis regardless of the specific method utilized. As discussed
within, it has been shown elsewhere that the “𝛿 method” of MI with a fixed 𝛿 adjustment and reference based MI both
preserve the information loss observed under MAR;52 information anchored inference is obtained. This provides relevant,
accessible, justified inference in the context of missing data sensitivity analysis. Trialists can be confident when utilizing
these approaches that they are not unnecessary loosing or gaining any information beyond that observed under MAR.
Care should, however, be exercised when using the “𝛿-method” with a prior distribution on 𝛿 to ensure an appropriate
variance is used for 𝛿 since the variance of the resulting treatment estimate will incorporate the variance on 𝛿.

We have focused throughout on the analysis of a continuous outcome. However implementations of delta- and
reference-based MI procedures do exist for other types of outcome variables. For binary outcomes, delta-based MI is avail-
able in Stata using the mi impute logit command with the offset option. To conduct reference based analysis,
Rehal et al56 propose modeling the binary data as if it was continuous and employing the methods illustrated in this
tutorial. Following imputation, missing observations imputed as continuous are back-transformed to binary observations
using an adaptive rounding algorithm.

For recurrent event data with discrete time points, Keene et al57 have applied the negative binomial distribution for
reference-based imputation. The event rate in a specified reference arm is used to impute missing data in other arms of a
trial. A SAS macro implementing their approach, written by James Roger, and an R packagedejaVu, is available at http://
www.missingdata.org.uk. Akache and Ogundimu58 extended the approach of Keene et al by modeling the recurrent event
data process in continuous time. Gao et al59 alternatively described how a piecewise exponential model can be used to
model a recurrent event outcome to implement reference based MI.

For a survival outcome, Jackson et al60 showed how one can allow for non-independent censoring in a Cox propor-
tional hazard model. Their method first fits a Cox model to the observed data under the usual (conditional on covariates)
noninformative censoring assumption. Multiple imputed datasets are then generated assuming that the hazard for fail-
ure following censoring changes by a user specified multiplier (a hazard ratio) compared with the hazard implied by the
non-informative censoring assumption. This can be implemented using the R package InformativeCensoring. For
survival data, Atkinson has proposed a collection of reference-based assumptions using a proportional hazards model.61,62

Lu et al63 compared a 𝛿 adjusted MI method and a reference based MI method for survival data. The 𝛿 adjusted method
evaluated specifies that the hazard of having the event of interest for subjects who discontinued before the time point of
interest is multiplicatively increased relative to that for those who continued in the trial beyond the time point of interest.

http://www.missingdata.org.uk
http://www.missingdata.org.uk
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The reference based method imputes assuming the hazard for a patient who discontinued lies between the hazard for
those who continued and the hazard for the reference group. Lipkovich64 also proposed a 𝛿-based approach for a survival
outcome using a variety of imputation models, including a semi-parametric Cox model, piecewise exponential baseline
hazard function, Kaplan-Meier method, and longitudinal logistic regression for event occurrence in discretized intervals
of time. Most recently, Tang65 proposed two approaches for implementing controlled imputation (including both reference
and delta based MI) for binary and ordinal data based respectively on the sequential logistic regression and multivariate
probit model.

We have assumed throughout the reference based analyses that baseline covariates are complete. When mimix is
used to conduct reference-based MI, any included covariates must be complete. These can be filled in using an appro-
priate method prior to implementing mimix if this is not the case. For example, in randomized trials missing baseline
covariates may be imputed using the mean value for all cases with non-missing data imputation. This is justifiable, since
randomization ensures that baseline variables are independent of treatment group.66 When 𝛿 based MI is used, a similar
approach may be utilized, or the baseline covariates may be included in the initial MAR imputation model for imputation.
Additionally, a potential limitation of the reference-based approach is that its implementation relies on the assumption
of an underlying multivariate-normal model. However, Shafer35 reported that imputations drawn under the MVN are
robust to skewness, as long as the estimators of interest are normally distributed. Under MAR MI may be implemented
via chained equations to avoid such assumptions (MICE).

Of course, many other methods, all characterizable as non-multiple-imputation, are available for conducting sensi-
tivity analysis of clinical trials with missing data.4-6 We advocate the outlined principled controlled MI route since, as we
have found in our practical trial experience and, as we hope to have demonstrated here, it is a pleasingly accessible option.
No direct estimation of an MNAR model is required, which can often require complex one-off coding. Both controlled
MI options enable open and interpretable sensitivity analysis, with assumptions that trial personnel can understand. We
have also shown how, in a single trial setting, both delta- and reference-based assumptions may be made to allow for
different types of missingness.

A wealth of sensitivity analyses are possible with the described and illustrated methods.
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APPENDIX A. 𝚫-BASED MI INCORPORATING REASONS FOR MISSINGNESS AND TIME OF
DROP- OUT

Using the ADAPT dataset, described in Section 3.4, we present code to conduct 𝛿-based MI, which incorporates (i) the
reasons for missing data and (ii) the time of drop out using 𝛿 as a change in rate of response. A third sensitivity analysis
is presented white incorporates (i) and (ii). To do so, here we make use of two additional variables in the ADAPT dataset,
reason and d_time. reason indicates the reason for missing data as reason=1 for patients who withdrew from
treatment and reason=2 for patients who received rescue medication. d_time provides the last observed time point
for each patient in weeks as 0, 4, 8, 12, 20, or 24.

1. 𝛿-based MI using a fixed delta adjustment at the last time point (week 24) which varies by reason for missing data.
𝛿=7.5 for individuals who withdrew from treatment. 𝛿=3.75 for individuals who received rescue therapy.
⋅ use adapt_MAR, clear
⋅ mi passive: gen imputed=_mi_miss
⋅ replace imputed=1 if imputed==.
⋅ gen CDLQI_w24_Delta_A1=CDLQI_w24
⋅ replace CDLQI_w24_Delta_A1=CDLQI_w24 + 7.5 if imputed==1 & reason==1
⋅ replace CDLQI_w24_Delta_A1=CDLQI_w24 + 3.75 if imputed==1 & reason==2
⋅ mi estimate : regress CDLQI_w24_Delta_A1 i.treat i.agestrat CDLQI_1 i.IgEstrat

2. 𝛿-based MI using 𝛿 as a fixed change in rate of 1.25 in (C)DLQI decline for every 4 weeks unobserved. 1.25 corresponds
to 100% of the absolute rate of change in (C)DLQI seen in the trial over 4 weeks assuming a constant linear rate of
change. Here 𝛿 does not vary by reason for missing data.
⋅ gen CDLQI_w24_Delta_A2=CDLQI_w24
⋅ replace CDLQI_w24_Delta_A2=CDLQI_w24 + 1.25(24-d_time)/4 if imputed==1
⋅ mi estimate : regress CDLQI_w24_Delta_A2 i.treat i.agestrat CDLQI_1 i.IgEstrat

3. 𝛿-based MI using 𝛿 as a fixed change in rate of (C)DLQI decline which varies by missing data pattern. 𝛿=1.25 for
every 4 weeks unobserved for individuals who withdrew from treatment. 𝛿=0.625 for every 4 weeks unobserved for
individuals who received rescue therapy.
⋅ gen CDLQI_w24_Delta_A3=CDLQI_w24
⋅ replace CDLQI_w24_Delta_A3=CDLQI_w24 + 1.25(24-d_time)/4 if imputed==1 & rea-
son==1

⋅ replace CDLQI_w24_Delta_A3=CDLQI_w24 + 0.625(24-d_time)/4 if imputed==1 &
reason==2

⋅ mi estimate : regress CDLQI_w24_Delta_A3 i.treat i.agestrat CDLQI_1 i.IgEstrat

APPENDIX B. TECHNICAL DETAILS OF REFERENCE-BASED MI

Reference-based MI was originally introduced by Little and Yau in 1996,34 who imputed unobserved data for patients
under the dose of treatment actually received rather than as assigned using monotone regression. More recently in 2013,
Carpenter et al11 formalized the approach and presented a novel collection of five MI procedures for reference based
sensitivity analysis which we focus on here. The generic reference based MI algorithm of Carpenter et al,11 for longitudinal
trials with a continuous outcome, is now presented (with minor modifications):

https://doi.org/10.1136/bmj.38023.700775.AE
https://doi.org/10.1002/sim.8569
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1. Separately for each treatment arm take all the observed data, and assuming MAR, fit a MVN distribution with an
unstructured mean (ie, a separate mean for each of the baseline and post-randomization observation times) and
variance-covariance matrix using a Bayesian approach with an improper prior for the mean and an uninformative
Jeffrey's prior for the covariance matrix.

2. Draw a mean vector and covariance matrix from the posterior distribution for each treatment arm. Specifically we use
the MCMC method to draw from the appropriate Bayesian posterior, with a sufficient burn-in and update the chain
sufficiently in-between to ensure subsequent draws are independent, given the observed data. The sampler can be
initiated using the EM algorithm.

3. Use the draws in step 2 to form the joint distribution of each deviating individual's observed and missing outcome data
as required. This can be done under a range of assumptions, in order to explore the robustness of inference about the
treatment effects. The options presented by Carpenter et al11 that each translate to a relevant assumption are described
in Table 2.

4. Construct the conditional distribution of missing given observed outcome data for each deviating individual, using
their joint distribution formed in step 3. Sample missing data from the conditional distributions to create a completed
dataset.

5. Repeat steps 2 to 4 K times, resulting in K imputed datasets.

Here we describe how the algorithm proceeds for the headache trial, to demonstrate what is going on behind the scenes
whenmimix is used. Initially a MVN distribution with an unformative prior is fitted to the observed data, assuming MAR,
with an unstructured mean and variance-covariance matrix separately by treatment arm. A draw of the MAR mean vector
and variance-covariance matrix by treatment arm is obtained via the MCMC method from the fitted Bayesian posterior
(following sufficient burn in). We denote the current draw of the acupuncture group means and variance-covariance
by 𝝁k

a =
[
𝜇k

a0, 𝜇
k
a3, 𝜇

k
a12

]
and 𝚺k

a. The current draw of the standard care group means and variance-covariance from the
posterior is denoted by 𝝁k

c =
[
𝜇k

c0, 𝜇
k
c3, 𝜇

k
c12

]
and 𝚺k

c . Figure 4A is a schematic illustration of a current draw of the MAR
means. The two solid triangles in Figure 4 represent observations from a randomly selected acupuncture patient who was
lost to follow-up some time following month 3 and has unobserved data at month 12.

Under the primary MAR assumption, the joint distribution of a patient is observed and missing data are formed as
MVN with mean and variance-covariance matrix from their randomized arm. For the randomly selected active patient
who was lost to follow-up in our example, their joint data distribution for imputation k is formed as MVN with mean 𝝁k

a
and covariance matrix 𝚺k

a, as shown by the dotted line in Figure 4B.
In sensitivity analysis, under J2R where the standard care arm is the reference, the joint distribution of a patient's

observed and missing data under J2R for imputation k is formed as MVN with mean 𝝁k
i =

[
𝜇k

a0, 𝜇
k
a3, 𝜇

k
c12

]
as illustrated in

Figure 4C. The proposed variance-covariance matrix for patient i for imputation k,

𝚺k
i,J2R =

[
𝚺k

11 𝚺k
12

𝚺k
21 𝚺k

22

]
,

is constructed by first partitioning the current posterior draws of the acupuncture and standard care variance-covariance
matrices by patient i's observed and missing measurements. Below𝚺k

a and𝚺k
c have been accordingly partitioned; 1 indexes

observed measurements (baseline and month 3) and 2 indexes missing measurements (month 12).

𝚺k
a =

[
ak

11 ak
12

ak
21 ak

22

]
,

𝚺k
c =

[
ck

11 ck
12

ck
21 ck

22

]
.

Then as shown by Carpenter et al,11 𝚺k
11 = ak

11, 𝚺k
12 = 𝚺k

21 = pk
21
(
pk

11
)−1a11 and 𝚺22 = p22 −

p21
(
pk

11
)−1 (p11 − a11)

(
pk

11
)−1p12.

Under CIR, 𝝁k
i =

[
𝜇k

a0, 𝜇
k
a3, 𝜇

k
a3 + (𝜇k

c12 − 𝜇k
c3)

]
, as depicted in Figure 4D. The variance-covariance matches the ran-

domized arm for observed measurements and the standard care arm for the conditional components of missing given
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T A B L E C1 Peer review study:
quality of peer review at baseline for
those who did and did not complete the
second review

No training Self-taught

n mean SD n mean SD

Returned paper 2 162 2.65 0.81 120 2.80 0.62

Did not return paper 2 11 3.02 0.50 46 2.55 0.75

observed measurements. That is, for imputation k, 𝚺k
i,CIR = 𝚺k

i,J2R. For any individuals already in the reference group this
means, like J2R, their missing data will be imputed under MAR.

Under the CR, as shown in Figure 4D,𝝁k
i =

[
𝜇k

c0, 𝜇
k
c3, 𝜇

k
c12

]
. The variance-covariance matrix is𝚺k

i,CR = 𝚺k
p. Finally, under

LMCF, 𝝁k
i =

[
𝜇k

a0, 𝜇
k
a3, 𝜇

k
a3
]

as illustrated in Figure 4E. The variance-covariance matrix matches the randomized arm, that
is, 𝚺k

i,LMCF = 𝚺k
a.

Under all the alternative reference based assumptions, after forming the required joint distributions for each patient
with missing data, we construct the appropriate conditional distributions and the pieced together joint distributions imply
for the missing data, given the observed data. A random sample is drawn from the formed conditional distributions to
complete the patients' unobserved measurements for imputation k. Subsequently a new draw of the MAR mean vectors
and variance-covariance matrices by treatment arm, via the MCMC method from the fitted Bayesian posterior, is retained
(after sufficient burn between) and the formation of the required distributions and drawing of missing data is repeated,
for the number of imputations required.

APPENDIX C. ANALYSIS OF A TRIAL WITH ONLY ONE FOLLOW-UP

C.1 Peer review trial
In this section, we introduce a case study to demonstrate the practical application of reference based MI for sensitivity
analysis of clinical trials with a single follow-up. The data come from a randomized controlled trial, evaluating the impact
of training on the quality of peer review conducted by Schroter et al.66 In the original trial, 609 participants were ran-
domized to receive either no-training, face-to-face training, or a self-taught package. Each participant was sent a baseline
paper to review (paper 1) and the review quality was measured by two blinded researchers using the Review Quality Index
(RQI) which results in a score ranging from 1 (worst) to 5 (best). Two to three months later, participants who had com-
pleted their first review were sent a further article to review (paper 2) and the RQI was measured; if this was returned, a
third paper was sent three months later (paper 3) and again the RQI was measured. Unfortunately not all of the review-
ers returned the required reviews. The original trial analysis was conducted under the MAR assumption, using a linear
regression of the RQI on treatment group adjusted for baseline RQI. The analysis showed that the review quality of paper
2 was significantly higher for the self-taught group in comparison to the no-training group. Table C1 shows the quality
of the review at baseline for (i) those who went on to complete the second review and (ii) those who did not, for each of
these two interventions. The results suggest that a disproportionate number of poor reviewers in the self-taught group
failed to review paper 2. We focus here on examining the robustness of this purportedly significant result. We will use ref-
erence based MI to establish what the results would look like if we assume that the reviewers who did not return paper 2
behaved like those in the no-training group (essentially assuming that the unobserved had not undertaken the self-taught
training).

C.2 Analysis
Within the reviewer dataset, id is the unique reviewer identification number, inter indicates the randomly assigned
intervention package of no training (inter = 0) or self-taught package (inter = 1), base is the baseline mean review
quality, and resp is the mean review quality response for paper 2. The original primary analysis (complete case MAR)
followed by an MAR MI analysis and CR MI analysis, where the reference arm is the no training arm, will be conducted.
For each of the sensitivity analyses, 50 imputations will be produced with a burn in of 1000 and burn between of 500.
The analysis model is a linear regression of review quality of paper 2 on treatment group, adjusted for baseline RQI
as in the original primary analysis. The original complete case primary analysis of the trial followed by a standard MI
analysis under MAR using mimix is first conducted using the below code. mimix requires the data to include a time
indicator, which in this simple setting is not relevant so we first create a dummy variable to represent time, prior to calling
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Analysis Treatment Est. 95%CI Std. Err. P-value

Complete case (MAR) 0.237 0.099 to 0.376 0.070 0.001

MI, “on-treatment MAR” 0.248 0.112 to 0.384 0.069 <0.001

MI, copy no training 0.177 0.043 to 0.311 0.068 0.010

T A B L E C2 Sensitivity
analysis results for the reviewer
study

reference based MI under CR, where the reference group is the no training treatment group. The commands required are
as follows.

⋅ use reviewer, clear
⋅ regress resp inter base
⋅ generate byte time = 2
⋅ mimix resp inter, id(id) time(time) covariates(base) method(mar) m(50) regress
burnin(1000) burnbetween(500) clear seed(23)

We now use mimix to establish the treatment effect if the reviewers who did not return paper 2 copied the no training
arm behavior (inter= 0). The commands required are as follows.

⋅ use reviewer, clear
⋅ gen time = 2
⋅ mimix resp inter, id(id) time(time) covariates(base) method(cr) refgroup(0) m(50)
regress burnin(1000) burnbetween(500) clear seed(23)

Results from the analyses of the peer review study are summarized in Table C2. We see the intervention effect under
copy no training behavior is slightly reduced at 0.177, compared with 0.237 from complete case analysis and 0.248 from
standard MI analysis (both under MAR), but it remains statistically significant.


