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100-word synopsis 
This work introduces the “Select and retrieve via direct up-sampling” network (SARDU-Net), 
a new method for model-free, data-driven quantitative MRI (qMRI) experiment design. 
SARDU-Net identifies informative measurements within lengthy acquisitions and reconstructs 
fully-sampled signals from a sub-protocol, without prior information on the MRI contrast. It 
combines two deep networks: a selector, which selects a signal sub-sample, and a predictor, 
which retrieves input signals. SARDU-Net can be run with standard computational resources 
and can increase the clinical appeal of qMRI.  Here we demonstrate its potential on qMRI of 
prostate and spinal cord, two areas where fast acquisitions are key. 
 

Main findings (250 characters) 
We present the “Select and retrieve via direct up-sampling” network (SARDU-Net), a new tool 
for quantitative MRI experiment design that detects informative sub-protocols within lengthy 
acquisitions. Here we demonstrate it for fast imaging in prostate and spinal cord applications. 
 
 
Introduction 
The latest quantitative MRI (qMRI) acquisitions have increased dramatically the number of 
images1 and contrasts2 that can be acquired per unit time. However, the increased acquisition 
complexity makes the design of clinically viable protocols challenging.  Clinical acquisitions 
need to capture salient characteristics of vast sampling spaces within acceptable times, 
trading off between scan duration and protocol richness3.  
 
Here we tackle the issue of designing compact samplings in vast acquisition spaces by 
introducing the “Select and Retrieve via Direct Up-sampling” network (SARDU-Net), which 
identifies informative measurements within lengthy qMRI acquisitions. Unlike state-of-the-
art statistical methods as those based on Fisher information4, SARDU-Net does not rely on 
any explicit signal model/representation5,6. We demonstrate its potential on data from 
prostate and spinal cord, two areas difficult to image due to physiological noise7,8, for which 
rapid acquisitions are imperative.  



Methods 
Algorithm 
We implemented SARDU-Net in PyTorch using two fully-connected deep neural networks 
(DNNs) (Figure 1). The first DNN is a selector, taking as input a measured voxel signal 𝐬 and 
selecting a sub-set 𝐰	⨂	𝐬, where weights 𝐰 nullify non-relevant measurements. The second 
DNN is a predictor, outputting 𝐮, an estimate of 𝐬 obtained from 𝐰	⨂	𝐬. The two DNNs are 
optimised jointly end-to-end9 by minimising 𝐿 = 	‖	𝐬 − 𝐮	‖**, so that the selected subset is 
the one enabling the best reconstruction of the input signals.  
 
Acquisition 
Prostate We studied scans from 7 men referred for prostate MRI following suspicion of cancer 
within the INNOVATE trial10.  We focussed on diffusion-weighting imaging (DWI) (VERDICT11 
protocol: b={0, 90, 500, 1500, 2000, 3000} s/mm2; resolution: 1.25´1.25´5 mm3) and multi-
echo luminal water imaging12 (LWI) (32 echoes; TEmin/echo spacing: 31.25/31.25 ms/ms; 
resolution: 0.94´0.94´4.4 mm3), acquired on a 3T Philips Achieva. 
 
Spinal cord We studied spinal cord ZOOM-EPI13 scans acquired on 4 healthy volunteers (2 
males, scan-rescan) with a 3T Philips Achieva (resolution: 1´1´5 mm3), consisting of 98 
measurements: 68 DWIs14 (b={0, 300, 1000, 2000, 2800} s/mm2); 10 inversion recovery 
images15 (inversion times in [100; 2300] ms); 11 magnetisation transfer images15 (11 off-
resonance saturations); 7 multiple-TE images (mTE, TE={25, 40, 55, 70, 85, 100, 200} ms). 
 
Post-processing 
Prostate DWI was co-registered non-linearly to LWI using NiftyReg16, where a prostate mask 
was segmented manually. Concatenating 10 DWIs-32 LWIs provided 42 measurements. 
 
Spinal cord We corrected data for motion and segmented the cord with SCT17. 
 
Training 
For both data sets we used SARDU-Net to select informative sub-protocols. As a test case we 
searched sub-protocols that are 50% (half) and 33% (a third) of the original length, although 
end users could search for any length.  
 
We trained SARDU-Net for 1000 epochs using 80%-20% of prostate/cord voxels as training-
validation sets (4 hidden layers for selector/predictor; learning rates:  0.001/0.0001 for 
50%/33% task). We adopted a leave-one-out strategy, training in turn a SARDU-Net on all 
subjects but one, left out for testing. 
 
Analysis 
We tested whether SARDU-Net selects sub-protocols that capture salient characteristics of 
input signals.  Firstly, we evaluated popular metrics from SARDU-Net signal reconstructions, 
namely: apparent diffusion coefficient (ADC), kurtosis (K), luminal water fraction (LWF) 
(prostate); fractional anisotropy (FA), T1, T2, magnetisation transfer ratio (MTR) (spinal cord). 
Afterwards, we compared those metrics to their counterparts obtained from the original data 
by bootstrapping median errors across subjects (i.e. median(mSARDU – mTRUE), with m 
representing a metric; 1000 bootstraps). 
 



 
Results 
Prostate imaging 
Figure 2 shows sub-protocol selections in two leave-one-out folds. SARDU-Net selects 
low/intermediate b-values (DWI) and TE up to about 500 ms (LWI). Results are consistent 
across folds. Training takes ~1sec per epoch on a 8-core, 2.7 GHz Intel Core i7 processor. 
 
Figure 3 shows SARDU-Net image reconstructions and quantitative metrics.  Reconstructed 
images resemble the acquired data on visual inspection and support accurate model fitting. 
We do not detect significant biases in reconstructed ADC, K, LWF (error confidence intervals 
contain error=0). 
 
Spinal cord imaging 
Figure 4 shows sub-protocol selections in two leave-one-out folds. SARDU-Net sub-samples 
heavily DWI, the longest scan, and selects measurements from all of MT, IR, mTE. 
Computational time per epoch is comparable to the prostate data.  
 
Figure 5 shows SARDU-Net reconstructions and quantitative metrics. There is good 
correspondence between predicted and acquired data. We do not detect significant biases in 
FA, T1, T2, MTR (error confidence intervals contain error=0), although fine-scale anatomical 
details are blurred as sub-sampling gets stronger. 
 
Discussion 
In this work we introduce SARDU-Net, a deep learning tool for model-free, data-driven qMRI 
experiment design. SARDU-net detects informative measurements within vast acquisition 
spaces where brute-force searches are intractable. It does not rely on any prior MRI signal 
model, and can be run on commonly available resources.  
 
SARDU-Net can be trained on both simulated and in vivo data, and is ideally placed to guide 
the design of large clinical studies from a small number of test scans. Here we demonstrate it 
by selecting informative sub-protocols within lengthy prostate and spinal cord qMRI, 
shortening scan time with minimal information losses. 
 
Conclusion 
SARDU-Net gives new opportunity to identify economical but informative data sets for clinical 
applications under high time pressure. Using a small number of rich acquisitions from a pilot 
study with long acquisition times, it identifies the most informative sub-protocol given a 
specific time constraint.  
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Figures 
 

 
Figure 1: architecture of SARDU-Net, made of two fully-connected deep neural networks 
(DNNs, cascades of linear, ReLU and dropout layers). The first DNN is a selector, which takes 
as input an MRI signal and outputs a set of weights that nullify non-salient measurements. It 
contains a soft-min layer and a thresholding stage that zeroes the least-firing output neurons. 
The second DNN is a predictor, which retrieves the fully-sampled signal from the sub-set 
received from the selector.  
 



 
Figure 2: examples of SARDU-Net sub-protocol selection during training epochs in two distinct 
leave-one-out folds of the prostate data set. Measurements are reported along the horizontal 
axis; training epochs along the vertical axis; white/black flag measurements that were/were 
not selected. Sub-protocols that are 50% of the original length (i.e. 21 out of 42 
measurements) were searched, with SARDU-Net free to select any DWI and a maximum echo 
time in LWI (up to and including all shorter TEs). 
 
 



 
Figure 3: SARDU-Net reconstructions on prostate MRI. The top row shows examples of 
DWI/LWI images and apparent diffusion coefficient (ADC), kurtosis (K), luminal water fraction 
(LWF). The mid/bottom rows show images reconstructed by SARDU-net when 50% (mid row) 
or 33% (bottom row) of the input data were kept, and ADC, K, LWF obtained from signal 
reconstructions. A lesion is highlighted by a red arrow. SARDU-Net predictions are shown only 
within the prostate. 
 



 
Figure 4: examples of SARDU-Net sub-protocol selection during training epochs in two distinct 
leave-one-out folds of the spinal cord data set. Measurements are reported along the 
horizontal axis; training epochs along the vertical axis; white/black flag measurements that 
were/were not selected. Sub-protocols that are 50% of the original length (i.e. 49 out of 98 
measurements) were searched, with SARDU-Net free to select any image across various 
contrasts.  
 
 
 



 
Figure 5: SARDU-Net reconstructions on spinal cord MRI. The top row shows examples of 
ZOOM-EPI images and fractional anisotropy (FA), T1, T2 and magnetisation transfer ration 
(MTR). The mid and bottom rows show examples of images reconstructed by SARDU-net 
when 50% (mid row) or 33% (bottom row) of the input data were kept, and FA, T1, T2, MTR 
obtained from the SARDU-Net signal reconstructions. SARDU-Net predictions are shown only 
within the cord. 
 

 
 


