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A b stra c t

It is proved that if the probability P  is normalised Lebesgue measure on one 

of the balls in R ” , then for any sequence ti, 2̂ » • • •, of positive numbers, 

the coordinate slabs {|xi| <  U} are subindependent, namely,

P ( n ? { |x i |< i j ) < n p ( { |x i |< t i } )
1

A consequence of this result is that the proportion of the volume of the 

unit Ç  ball which is inside the cube [— is less than or equal to f n i f )  =

( l - ( l - i ) " ) "

This estimate is remarkably accurate over most of the range of values of 

t. A reverse inequality, demonstrating this, is the second major result of this 

work. A similar phenomenon occurs for all ^  balls,

A consequence of the subindependence of the coordinate slabs of the 

balls, is a sort of Central Limit Theorem which is examined in the last chapter. 

This states that as n oo, the average (n — l)-dimensional volume of the 

sections of the normalised Ç  ball at distance t from the origin, tends to a 

Gaussian. In other words, if ge is the density of the marginal of the ^^-ball, in 

direction 6, then

J
for each t, uniformly in p.
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Introduction

Background

One of the principal problems we discuss in this piece of work, is to estimate 

the volume of the intersection of an Euclidean ball with a cube, in R ” .

Even in two dimensions, the expression for the volume is rather compli

cated. In higher dimensions, the picture of the intersection gets quite confus

ing and it looks difficult to get accurate estimates just using geometric ideas. 

However, although probabilistic methods look more hopeful, we shall see that 

geometric ones do work better.

The results of our geometric approach are very surprising. Although the 

method is technically simple, we obtain sharp approximations over the entire 

range of sizes of the cube (see Theorems 2.1 and 2.2).

The original motivation for this study, was the hope that we could prove 

that the proportion of the volume of the unit Euclidean ball which is outside 

the cube [—t, t]^ is of order at most exp Such an estimate would imply



very good lower bounds for the volume of the intersection of any sequence of 

central cubes. By a central cube we mean any orthogonal transformation of 

the cube [—t, t]”. Estimates of this kind have recently been found by Gluskin.

The order of exp ( ~ ^ )  should be set in context. A very simple geometric 

argument gives an order of n • exp (—̂ ) ,  as we shall explain: the gap looks 

small, but the advantage that would be conferred by the better bound would 

be considerable. The simple argument just mentioned is as follows. Let Bg 

be the Euclidean unit ball. The volume of the ball which is outside the cube 

where t < 1 , is clearly at most n  times the volume of the ball which 

is outside of each coordinate slab {|æ*| < t}. Thus, the proportion is at most

n
f o \ l - u ^ ) ^ d u

Now, we can use standard arguments to prove the following Theorem.

T h e o rem  1

^  ( 1  — u^) 2 du < • exp when nt^ > 1 (1)

f \ l - u ^ ) ^ d u  > ^  (2 )
Jo y/n

The question of course remains. Can we do better than that? Is it possible 

to have an estimate of order exp as we would wish? It can be seen that

the question is really asking whether the overlaps between the parts of the ball 

outside the different slabs are large enough that the above estimate is bad. It



turns out that the answer is no, to both of these questions. The factor n  is 

absolutely necessary.

The answer is given by Theorem 2.1 below. There, it is proved that the 

proportion of the volume of the ball which is inside the cube [—t, is less 

than, or equal to the n-th  power of the proportion of its volume that is inside 

one coordinate slab of width t. That is.

< Voln{B^ n {\xi\ < t} )

or equivalently.

<
V o U B ? )

This gives a lower bound for the proportion of the volume of the ball which is 

outside the cube:

>  1 -
;„‘(i -  u ^ ) ^ d u
£ ( 1  -  u ^ ) ^ d uV o l „ ( B ? )

It is not hard to check that when nt^ % 2 log n, the above lower bound, is

roughly a constant. So, for this value of t, it is of order nexp (—̂ )  • To see it,

we can use the upper bound 1  —1 ( 1  — for du/ du

which is discussed in Lemma A.I. When % 2^^^ this implies that

S l { l - u ^ ) ^ d u  1
/o " ( l - u 2 ) ^ d n  “  4n

and thus.

> 1  -  e-:/^

8



The main Theorems

Although our original hope of better estimates for Euclidean balls turned out 

to be false, our research in this direction, led us to obtain information about 

the proportion of a general ball, inside a cube, which was far more accurate 

than we could possibly have expected. This information in turn, very quickly 

provides a “Central Limit Theorem” described below.

Recall that the unit ball which is denoted by is the set {x  =  

(cci,. . . ,  ccn) G R " : IZiLi <  1}. Several works have appeared in the 

past, estimating the volumes of intersections of tp balls. The most noteworthy, 

is that of Schechtman and Zinn, [3]. There, they deal with the more general 

problem of estimating the proportion of the volume left in the ^  ball after 

removing a t-multiple of the ball, when p < q. They prove that this pro

portion is of order exp(—cnt^). Taking limits as q — > oo, they also mention 

some results about the proportion of the volume of the ball which is outside 

the cube [— Thei r  results in this particular case, which is the one that 

interests us, are summed up in the following two statements. (Their first result 

in this particular range is rather weak, as it is a particular case of the easy 

geometric argument mentioned before, but in the more general setting they 

consider, there is no such obvious approach.)

If t >  T , then P({||æl|oo >  t}) <  e x p (-7 n t^ p )

and if t j  , then P({||xl|oo >  t}) >  exp (-T nt^ /p)



where 7 , F and r  are universal constants.

In the case q = 00 considered here, our results are much stronger.

Our first main Theorem is the subindependence of coordinate slabs, stated 

below as Theorem 2 .1 .

T h eo rem  2 . 1  (S ub in d ep en d en ce  of co o rd in a te  slabs) I f  the prohability 

P is normalised Lebesgue measure on one of the balls in R", then for any 

sequence t i , . . .  of positive numbers,

1

Taking =  . . .  =  t we get an upper bound for the proportion of the 

volume of the unit ball which is inside the cube [—t, t]^. Our second main 

Theorem, Theorem 3.1, shows that this bound is a very good approximation to 

this proportion. For simplicity, we shall illustrate this only in the case p = 1. 

In this case, the upper bound is given in the Corollary bellow:

C oro lla ry  2 . 1 . 1  I f  Fn{t) is the proportion of the volume o f the ball inside 

the cube [—t,t]^ then

Fnit) < /„ ( i)  =  ( 1  -  ( 1  -  i)")"

This upper bound is extremely precise as long as Fn{t) is not too small. 

The easiest way to state this is to write it as an estimate for the volume outside 

the cube, namely for 1  — Fn{t),

10



T h e o rem  2 . 2  (A n e s tim a te  in  th e  reverse  d irec tion ) With Fn{t) as 

above,

1  =  1  +  0  f  ÛESü)!)
l - / n ( i )  I  »  ;

as n ^  oo uniformly in t.

Theorem 2.2 enables us to describe the threshold behaviour of Fn{t) much 

more precisely than Schechtman and Zinn. For example, if t then

the information we get from Theorem 2.2 is that Fn{t) should be something 

like /n(t), which in turn is something like

( 1  — exp(—logn +  loge))” =  ^ ~  exp(—c).

In the last Chapter, we prove the third main Theorem of this work. The

orem 6.1. This is a sort of Central Limit Theorem, which is almost entirely 

an application of the subindependence of coordinate slabs. This states that 

as n —> oo, the average (n — 1 )-dimensional volume of the sections of the 

normalised ball at distance t from the origin, tends to a Gaussian:

T h eo rem  6 . 1  I f  ge is the density of the marginal in direction 6, of the i^-hall, 

then

1  f  t ^ \ as n  OO

11



Organisation of the thesis

In Chapter 1 , we start with some “easy” estimates for the proportion of the 

volume of the ball inside a cube. These already answer (in the negative) 

the question discussed in the first part of this introduction.

W ith “F ” as above, the result proved there, describes the asymptotic be

haviour of Fn ^1 — . As n oo,

"■■(‘-(I)’) — ■■

It is easy to see that when 1  — the above relation implies that

logn
% e"^

n

which rules out the possibility of removing the “n factor” .

In Chapter 2  we give the proofs of the first two main Theorems mentioned 

above, for the most simple case p =  1 . In the next Chapter are given the proofs 

of their general cases. Where the generalisation is quite similar, we just give a 

brief sketch of the proof. This simplifying strategy, is the reason we illustrate 

the most easy case p =  1  separately.

In Chapter 4 we also prove a result similar to Theorem 2 .1 , the subinde

pendence of the complements of coordinate slabs:

P ( n ? { |x i |> i i } ) < n p ( { |x i |> t i } ) .
1

A counterexample is given in Chapter 5 showing that the subindependence 

of coordinate slabs is a property depending heavily upon the balls and not

12



applicable for highly symmetric convex bodies in general. This check was 

prompted by the realisation that the Theorem of Whitney-Loomis in the case 

of the Ç  balls, is a limiting case of the subindependence of coordinate slabs.

Finally, in Chapter 6  we prove Theorem 6.1, which as we mentioned above, 

is a sort of Central Limit Theorem.

13



Chapter 1

An easy estimate

Theorem 2 . 1  states that Fn{t) is dominated by the function (1 — (1 — t)” )” , or 

if we put X = n ( l — t)” , ( 0  < x < n),

In Theorem 2.2 it is proved that this is a very precise inequality.

Here, we are going to prove, by rather easy means, that the two functions 

are asymptotically the same; namely that as n  — > oo.

Our argument uses the exact formula for Fn ^1 — proved in The

orem 1.2. The idea is to notice that each term of this series, converges to 

the corresponding term of the series of e“®. Then we apply the Dominated 

Convergence Theorem, to get the limit for the series.

14



1.1 The asym ptotic behaviour

Theorem 1 .2 , proved below shows that the proportion of the ball inside the 

cube [— is

where as usual

X when æ > 0
x+ = I

0  when æ < 0 .

If we put Q  =  0 when n < j ,  this can be written

n
^n{t) -  j  ( 1  -  i^)+

We then want to prove the following;

T h e o rem  1 . 1  For all positive numbers x

Proof: We shall prove that for x and j  fixed we have:

+

and

1 \  \  n

as n  — > oo

~  (1.2)

Once (1.1) and (1.2) are proved, we need only apply The Dominated Con

vergence Theorem.

15



We shall first prove (1.1). Since Q  < ÿ-, it is enough to prove that:

whenever j  is less than or equal to the integer part of ^ 1  — . Using

the fact that

1  — js  <  ( 1  — s y  when 0 < s < l ,  j  > 1  

for s =  1  — ” 5 we get:

 ̂ O'
or equivalently

which is what we want.

For the proof of (1.2), we again notice that since 1 it is enough to

prove that

71̂  ^1 — J ^1 — ^ as n — > oo (1.4)

Equation ( 1 .1 ) already gives us an upper bound. To get the lower bound 

we notice first that since logt < t — 1 , we have

^ 1  -  j  ^ 1  -  ^ 1  -  ^(log n -  logx)^

j lo g x  j l o g n \ ”
=  n-̂  1 +

n n

n \ \ n

16



which converges to as n  — > oo.

1.2 A formula for Fn(t)

In this section we prove that the proportion of the volume of the unit ^  ball 

inside the cube [— which we denote, F n{t\  equals

+

The proof uses probabilistic arguments, but as will become clear later, geo

metric ones could just as well be used.

We first prove a Lemma which simply states that we can write down a for

mula for the n-fold convolution g n = g * g * ' " * g o i  the uniform distribution
n times

function in [0 ,1 ],

L em m a 1 . 1  I f  gi{s) =  l[o,i](s) and gn{s) — ff_^gn-\{u)du, then, f o r n  > 2 

and s > 0,

Proof: We prove this by induction:

Observe that for any j  >  0

^  (w — du =  —{t — j)+ .

Assuming the formula for gn and using the fact that

g n + i { s ) =  f  g n { u ) d u -  f  g n { u ) d u  
Jo Jo

17



we get

We next prove the formula for Fn'. 

T h eo rem  1 . 2

n
^nW  =  E ( - l ) M  . f o r a l l t> { )

3=0 V  /

Proof: Recall that by Fn{t)j we denote the proportion of the volume of the 

unit i l  ball which is inside the cube [— For convenience, write F*{s) for 

the proportion of the volume of the i^  ball of radius s which is inside the cube 

[— Obviously Fn and F* are related. Indeed

F„(i) =  F„*(i/t)

Thus, our aim is to prove that

This being trivial for n = 1 , we shall prove it for n >2.

Write Q+ for the part of the cube which is in the positive orthant, that is, 

Q t = [0, !]"• Clearly

18



Now let X i , . . .  ,Xn be independent, identically distributed random variables, 

each uniformly distributed on [0,1]. Then the vector ( X i , . . . , X „ )  induces 

Lebesgue measure on

It is easy to see that if is the unit vector ( l / \ / n , . . . ,  and H  the

hyperplane > then,

Voln-\ (Qn n (üT +  =  density of ^  at point s

= y/n ^ density of ^  Xi at point

So, for the volume V o l n ( B i { s )  fl Q+) we have:

V o l„ (B ^ (s )n Q i)  =  J ‘ V o l„ . ^ [ Q in ( H  + u t ) ) d u

r s / y / n  /    \
= J  y/n ^ density of ^ 2  point y /n u j du

= J  ^ density of at point du (1.7)

Thus, all we need to do, is to calculate the density of By indepen

dence the density of the sum is the convolution of the densities of the X /s ,

g * g * ' ’ ■ * g. If we write gn for g * g * ■ • - * g, we obtain 

n times n times

9n{s) = /  g n - i { u ) d u  
J  S—1

and of course, gi = l[o,i]' By Lemma 1 .1 , we have that for u >  0,

( IS )

So, by integrating ( 1 .8 ), we get from (1.7) that:

V o i n { B i ^ { s )  nq+) = -  E (-iy  L- (" -  in
j=0

19



Hence, dividing by the volume of the whole corner,

R em ark s

1. We notice that

F:{3) =  n s -"  r  u''-^F:_,{u)du  (1.9)
J  5 —  1

Indeed, by (1.6) and (1.7),

thus.

=  ( ; £ ï j !  ■ -  ^ - L l ) !  •

or
,71—1 /*, 1 NtI—1

(n -  1 )! ■  ̂(n -  1 )! '

and so,

^n*(^) =
Vol„{B^{s) n  Q+) 
yoi„(B?(^) n  R ? )

^  jo

^  /o ( ( ^ = 1 )! ■ -  %  - 1 )! ■

^  [ J \ - ^ F : _ , { u ) d u -  £ ~ \ ’>-^F:_,{u)du)

ma-" rV d —1

20
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Now, if we put t = 1 / 5  in (1.9) we get:

•i/t
F n { i )  =  f  ^ F n - \ { l l u ) d u

J\/ t—1

If we substitute u =  ^  v = 1 — tu  the above relation becomes:

F„(i) =  n jf‘(l -  ( 3 ^ )  dv. (1.10)

This relation will reappear later as (2.1).

2. We could use (1.9), as a recurrence relation for F*^ to find its precise for

mula, in a rather more direct way than first finding Qn. Since (1.10) was 

proved in a geometric way and since it is equivalent to (1.9), this means 

that one could use a geometric rather than a probabilistic argument to 

find the formula for Fn.

3. The formula for Fn can be also obtained by just integrating the differen

tial equation (2.2) (see Chapter 2).

21



Chapter 2

Coordinate slabs of the i i  ball

In this Chapter we give a detailed proof for the simplest case of Theorem 2.1 

(the subindependence of coordinate slabs) and Theorem 3.1 (an estimate in 

the reverse direction); namely the case p =  1 .

T h eo rem  2 . 1  (S u b in d ep en d en ce  of co o rd in a te  slabs) I f  the 'probability 

P is normalised Lebesgue measure on one of the balls in R ”, then for any 

sequence t i , . . .  , tn of positive numbers,

1

The particular case p =  1, ti = . . .  = tn oi Theorem 2.1 gives an upper 

bound for the proportion of the volume of the ^  ball which is inside the cube 

[— . Since the proportion of the volume of the ball which is inside a 

coordinate slab of width 2 t is 1  — ( 1  — t)^ when t <  1 , the result in this case 

is given by the following Corollary.

22



C oro lla ry  2.1.1 I f  Fn{t) is the proportion of the volume of the ball inside 

the cube [—t,t]^ then

i ^ n W < / n W  =  ( l - ( l - O T

Although Fn{t) is the function j t ) ” , (see Chapter 1 ), which

is a spline with many knots, we prove in Theorem 2.2 (the particular case of 

Theorem 3.1) that the polynomial f n { i )  =  (1 — (1 — t)” )” is an astonishingly 

good approximation to Fn{t), at least when Fn{t) is not too small. The easiest 

way to state this is to write it as an estimate for the volume outside the cube, 

namely for 1  — ^ ( t ) .

T h e o rem  2.2 (A n e s tim a te  in th e  reverse  d irec tio n ) With Fn{t) as 

above,

n y \_  /  (logT

as n —> OO, uniformly in t.

2.1 M ethod

In this section we will briefly explain the crucial points of the proofs of these 

two Theorems for the simplest case when p =  1 and ti = • - ■ = tn = t.

The proof of Theorem 2.1, (the upper bound for Fn) depends on a very 

convenient interaction between two different equations expressing Fn and its

23



derivative in terms of -P„_i. Each of these equations is proved using a sim

ple geometric argument: they can readily be combined to give a differential 

inequality for Fn which integrates up to the stated result.

These equations are:

= ( j ^ )

The proof of Theorem 2.2, (a lower bound for Fn) is technically more

complicated although it is much less delicate. The crucial point is to show 

that at its maximum, the function is dominated by the value of a related 

function, which in turn can be shown to be small by means of the (rather 

precise) upper bound, already proved.

In fact, this related function, say G n { t ) ,  is not as small as we would like 

it to be in the whole interval (0 ,1 ), but it behaves nicely in a smaller interval 

[tn,l/2], for some value of tn which is roughly like It is in this

range that actually attains its maximum. However, for technical reasons, 

it is simpler to show directly that is small outside this interval.

2.2 The upper bound.

In this section we shall give a detailed proof of Theorem 2.1 in the case p = 1.

24



• Proof of Theorem 2.1 for the case p = 1, ti = . . .  = tn = t :

Except in the trivial case t > 1 the problem is to show that the proportion 

of the volume of the unit ball which is inside the cube Qn{i) = t]^

is bounded from above by the function fn{t) =  (1 — (1 — t)")” . This

proportion will be denoted by Fn{t)’

The proof uses the following two equations:

F„(y) = (2.1)

(2.2)

Assuming these, we proceed as follows. Since jPn-i is an increasing func

tion, Fn-i ( î ^ )  is increasing in u. So from (2 .1 ) we get:

F„{t) < j  jT V  -  u)"-*d«

For convenience, we shall abbreviate the integral jg ( 1— by Yn{y). 

Then (2.2) and the inequality can be written,

F„{y) < n f n . i  y„(y) (2.3)

± F M  .  (2,4)

If we eliminate the factor nF„_i we get:

w  ^  ”  w

and, by integrating from t to 1  we get the desired result: 

F „ ( t ) < ( ^ ) ” =  ( l - ( l - t ) T  

25



It remains to prove the relations (2.1) and (2.2). 

For the first one,

VoUQr^iy) n B^)
Fn{y)  =

du

V o U B ^)

=  ^ 2 ^  V'o/„_i(Ç„(y) n B" n  { i i  =

=  é "  r  n  ^ r ' ( i  -

— 7, \ n - i n  B" *(i — tt))
Jo'^  ̂ V o l„ .^ ( B r H l- u ) )

For the second one, put f f n ( y )  = V o l n ( Q n ( y )  H B"). Since F n ( y )  =  

= ^ ^ n ( y ) ,  to find ^F h(y) it suffices to find which is;Vol

‘ h m  .
dy h-*o h

=  2 n V o ln - i { Q n - i { y )  n  B ” " ^ ( l  -  y) )

and thus.

d  , _ 2 V o l n - l ( Q n - l M  n  B r ^ i  -  y ) )
” ------------F o z „ _ ,(B r ') --------------

2/1 \ n - l  ^^^n-l(Q n-l(y) n  ( 1 — 7/) )

=   y o L _ : ( B r ( l - y ) ) ----

• Proof of Theorem 2.1 for the case p =  1 :

For convenience, let jPn(ti,. . .  ,tn) denote the proportion of the volume 

of the unit ^  ball which is inside the cuboid Ç n (tij . . . ,  tn) =  [—ti, ti] x

26



. . .  X  [—tn^tn]. The Theorem states that

F  (t t ) < ^nitn)

where Yn{t) is the integral — u)‘̂ ~^du

Of course, if one of the t / s  is zero, then . . . ,  =  0  and the

inequality is trivial. It is also trivial when all the t / s  are greater than 1.

If neither of these trivial cases applies, we prove that as long as for some 

i the ti is less than 1 , the value of the function Fn at point ( t i , . . . ,  

is dominated by an appropriate multiple of the value of Fn, at the point 

with the ith  coordinate replaced by 1  and the rest remaining the same.

I.e.

F n { t i , . . . , t n )  <  y ^ F n i h  . . . . . . , t n )  (2.6)

So, if we suppose, without loss of generality, that 0 < ti < 1 for i =  

1 . . .  k, {1 < k < n) and ti > 1  for i =  k 1 , . . .  ,n , then we will have in 

turn the following inequalities:

. Ynjil) Yn{t2) „ (1 1  ̂ f \

^  Ynjti) Ynjtk) p  H , , X

—  Y  ' ' '  Y  1̂ ) ’ ’ ' ’ ’ ’ ^K+l) • ’ ’ J '"n-J

27



Since F n ( l , . • ., 1, ifc+i • • •, ^n) =  1 the proof is complete.

Thus, the crucial point is to prove (2.6). Without loss of generality, we 

will prove this for i =  1 , namely the relation;

F„{k, . . .  ,t„) (2.7)

when 0  < ti  < 1 .

To do this, we again combine two equations. The first one relates Fn 

and Fn-i, and the second one relates Fn-i and the partial derivative of 

Fn with respect to the first coordinate. These are:

Fn{y J 2̂ ) ' , in) —

=  • • ■, ( 2 . 8 )

=  ( i T ^ ’ ■ ■ ■ ’ i T ^ )  ^ ( ^ )

^du

and

_d
dy

t2, . . . , t n )  = n ( l -  2/)” ^Fn-l (  . . . ,
\ i  - y  i -  yy

(2.9)

Eliminating Fn-i • • ., , we get

dy^ri{y,t2,. . .,tn )  ^  dy'^njy)
F n {y ,h ,^ --,tn ) Yniy) 

which integrates to (2.7).

28



The proofs of (2.8) and (2.9) are similar to the proofs of (2.1) and (2.2). 

Rem arks

1. (2-5) and (2.10) actually state that the functions and ,

are increasing in y.

A consequence of this, is that the function increasing in

each coordinate.

2. If 0 < ti < 1  for z =  1 . . .  (1 < A; <  n) and ti > 1 for z =  A; +  1 , . . . ,  n,

then Theorem 2.1 states that

Fn(ti, . . . , tn) < ( 1  — ( 1  — ti)” ) . . .  ( 1  — ( 1  — tfc)” )

2.3 The lower bound

Using the notation introduced in the previous section, we shall prove that the 

function /n(t) is not only an upper bound (see Theorem 2 .1 ), but it is also 

a very good approximation to j^ (t) , within the interesting range of t. More 

precisely, we prove that the function converges to 1  uniformly in i, as

stated in the next Theorem;

Theorem  2.1 (An estim ate in the reverse direction)

0 '^

uniformly in t.
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We focus our attention on the point tmax, where attains its majcimum

value. In the first Lemma below, we find a function Gn{t) which dominates 

'̂ rnax’ This related function, is proved to be small in a particular 

range, where tmax actually occurs. Outside this range is small for very

simple reasons. To avoid technical difficulties, we don’t actually prove that 

tmax is in this particular range.

L em m a 2 . 1  At its maximum point, the function dominated hy the

value of the function Gn{t) =

n - l

l-(l-t)"

[1 -  (1 -  , 1/2 <  ( <  1 

Proof of Lemma 2.1: Before embarking upon the proof it is perhaps worth 

mentioning that it depends critically upon Theorem 2.1 (the upper bound for 

Fn) already proved.

It is easy to check that ► 1  as t > 0 or t 1 . So attains its

maximum in (0 ,1 ).

So

= 0
d t  \  1 — f n { t )

I.e.

1  — Fn{tmax) _  ^ - P " n ( ^ m a x )

f  f n i t m a x )  " ^ f n i t m a x )

But jiFn{t) has already been calculated in (2.2). Substituting this in the 

above relation, as well as ^fn{tmax) we get that

1  ~  F n j t m a x )  _  - ^ n - 1

1 — fnitmax) (1 — (I — ^max)” )”"^
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Of course, F n - l  = 1 if 1/2 < t m a x  < 1-

To prove the required inequality for 0 < tmax < 1/2, it is sufficient to apply 

Theorem 2.1 in order to dominate Fn-i Thus we get:

1 —  F n { t m a x )  ^
1 -  M t m a x )  -

n-11 71—1

— Cjn(̂ Tnax)
1  — ( 1  — tmaxY

Proof o f Theorem 2.2: As we have already mentioned, for technical rea

sons, we shall divide the interval (0 ,1 ) into three parts, and we will examine 

separately the possibilities that tmax occurs in each of these parts.

More precisely, choose such that (1 — and consider the

intervals (0 ,tn ) 5 ^n, |  a n d ( | , l ) .

tn is something like and is certainly less than

Numerical evidence indicates that tmax is about but we eliminate the 

other intervals directly.

• We shall prove that for t € ( | j  l)  j function is decreasing and 

therefore, tmax does not occur in this open interval.

It is quite easy to calculate that Fn{t) =  1 — n (l — t)" when t E l)  

by integrating (2 .2 ) where Fn-i ( ï ^ )  =  1 -

So, becomes:' l-Jn
n (l -  t f

If we put s =  1  — ( 1  — t)", we get,

1  — j^n _  « ( 1  —
l - / n  "  1 - a "
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Which is a decreasing function of s, and therefore a decreasing function 

of t .

We shall prove that for all t  in (0,tn) not only is the function 

close to 1 , but so is the function ( 1  —

Since fn  is increasing,

fn (t) = ( 1  -  ( 1  -  t r r  

<  ( i - a - t n H

l o g n \ ”
1 -

n

Hence,

<  e x p (-lo g n ) =  -  
n

1 - / .

Finally we study Fn{t) for t G tn, |

By Lemma 2.1,

1 — F n { t m a x )  ^  r *  ( 4. \
1 f  (4. \ —  ' ^ n \ J ' m a x )
■L Jn \ j 'max)

We shall prove that Gn{t) is as small as required in the range t G tn, |  

namely that
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By the first part of Lemma 2.1, Gn in this range is:

Gn{t) =
1  -  ( 1  -  t)-

n-n 71— 1

Thus, it is enough to prove that

( 1  -  0 " -  ( i  -  A ) " ~ '
i - ( i - i ) " <0

(logn)'
71̂

Since the factor 1 — ( 1  — t)” is like a constant in this interval, it suffices to 

show that ( 1 —t)” — ^ 1  — is dominated by the decreasing function

n (l — (decreasing for t  > 2 /n ) which at tn is as small as required.

Indeed,

r l—t
=  /  n u ^ ~ ^ d u

< ■n{ l - t ) TI—1

1  -  t 

=  n ( l  -

<  71(1

< 2 n ( l - t „ ) " i 2  

log 71 (log n Y
< 271-

=  O

n 71“
\ \o g n Y ^

'n? j

which completes the proof.
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Chapter 3

Coordinate slabs of the balls

In this Chapter we give a sketch of the proof of Theorem 2 . 1  for the general 

case p > 1 .

As in the previous chapter, the subindependence property gives an upper 

bound for the proportion of the volume of the ^  ball which is inside the cube

[—

Theorem 3.1, an estimate in the reverse direction which generalizes Theo

rem 2 .2 , states that this upper bound is again a very good approximation in 

the extreme cases when ^ is either like zero or infinity.

A remark upon Theorem 3.1, shows that this may not be the case when ^ 

is held fixed.

For the sake of readability, we are not going to introduce new notation 

with “p” subscripts, so we again use Fh(ti, . . . ,<„) for the proportion of the 

volume of the ball which is inside the box [—ti, ti] x • • • x [— n̂] (or Fn(i)
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when ti = "  ’ = tn = t), Yn{t) for Jq(1 -  and fn (t) for ,

the upper bound of resulting from Theorem 2.1. By Vn,p we denote the

volume of the ball.

3.1 The subindependence property

Sketch of the proof of Theorem 2.1 for the case p > I,

Since the proof of this case does not differ too much from the one given for 

the case p =  1 , we shall only write the two basic equations that are used in 

place of (2.8) and (2.9).

The relations are as follows;

2̂ ) • • •j ^n) =

-  ^ r < ‘ ( ( î ^ ) ' .........

^  ........

^■^71(2/3 2̂j • • • 3 in) =

(3-2)

'n,p 1 — yP J — yP J I dy
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3.2 An estim ate in the reverse direction

In this section we prove a result analogous to Theorem 2 .2 , but for the ^  ball: 

namely a lower bound for the proportion of its volume which is inside the cube 

[— (Theorem 3.1).

The method we follow, is more or less the same as the one we used in 

Theorem 2 .2 . But the process is carried out in full, because we want our 

results not only to generalise Theorem 2.2, but also to describe the way the 

proportion changes, when n  and p change independently.

The Theorem we prove is:

T h e o re m  3.1 For any n and p, the following estimates hold:

I. I f  (j> is such that 0 < ÿ <  e“  ̂ and tn such that (1 — then,

1  -  ( l -  ^ )  ] for t e  (0,tn)

 ̂ for

1 -  F n { t )  ^

1  — /n ( 0  

where c is an absolute constant.

II.

1  -  Fn{t) ^  2 = ^
1 -  f n { t )

A first obvious consequence of the second part of the Theorem 3.1 is the 

following Corollary.

C o ro lla ry  3.1.1

1 —  T P  ■£ 1 • j .   ; \  — >• 1  a s  > oo umjormly in t.
l - / n ( t )  n
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The result of Corollary 3.1.1, justifies our feeling that as p grows and the 

ip ball approaches more and more to the cube, Fn looks more like fn- In other 

words, slabs behave more and more as if they are independent.

Because our initial aim was to generalize Theorem 2.2, we must also prove 

a result in which n tends to infinity. This is done in the following Corollary.

C oro llary  3.1.2 For each n  and p, we define ÿ =  ^  - log +  l)  • Then 

for tn such that {1 — t^)r  = (/>,

1  -  Fnjt)
1 -  fn{i)

<
1 +  Cl • ^ for t  E ( 0 ,  t n )

1  +  C2 • ^ log  ̂ for t  e  [ t n ,  1 )

where C\ and C2 are universal constants.

As a consequence, we have that as ^ — > oo,

1 -  F „ { t )  ^  ^ ^  Q / (log(n/p  +
1  — /n(t) n Ip

uniformly in t .

Proof of Corollary 3.1.2: We first prove that ÿ <  e so that we may 

invoke Theorem 3.1. Indeed,

. - 2

Then, according to Theorem 3.1, in the interval (0,tn)

I ~  Fnjt)
1  -  f n i f )

<
- 1
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Tin —1

<

n

2p

- 1

=  1  +  2 e'  -
n

Obviously, (j> < 2 l2 S(nZE±D.

Also when ^ is large enough, — logÿ <  log(n/p +  1), which explains the 

consequence.

By Corollary 3.1,1 and Corollary 3.1.2 we conclude that as ^ tends to zero 

or infinity, tends to 1, uniformly in t .  The natural thing to ask then, 

is what happens when ^ tends to a positive number. Is it true that even so, 

tends to 1? The answer is no. A counterexample is given in the second 

Remark upon Theorem 3.1, appearing later on.

Our task now is to prove Theorem 3.1. As was mentioned above, the idea 

of the proof remains the same as in Theorem 2.2. We again focus our attention 

on the point tmax, where its maximum value. In the first Lemma

below, we find a function Gn(t) which dominates This related

function, is proved to be bounded as required in a particular range. Outside 

this range small for very simple reasons.

The following Lemma, which gives this related function G n ( t ) ,  is the ana

logue of Lemma 2.1.
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L em m a 3.1 A t its maximum point, the junction is dominated by the

n-l

value o f the function G„(t) =  <

<‘L .

, 0  <  ( '  <  1 / 2

, 1 / 2  <  tP <  1

Proof of Lemma 3.1: The proof is very similar to the proof of Lemma 2.1, 

so it is omitted.

Before giving the proof of Theorem 3.1, we prove two Lemmata that will 

be used there. In the case of p =  1 , these Lemmata become trivial, which is 

the reason they are not isolated in the argument for Theorem 2.2. In Lemma 

3.2, we prove that

%.-:(() .  %.(«) 
r„_a(i) -  F„(l)

and in Lemma 3.3 we give a lower and an upper bound for the point 

defined in Theorem 3.1, which again determines the partition of (0,1) into 

three intervals, needed to study ^ more effective way. These intervals

are ( 0 , i n ) ,  and (2 "^/^, 1 ).

In the proof of Theorem 3.1 we use an approximate formula for which 

is proved in the Appendix in Lemma A.I. We do not discuss this in the main 

part of this section, because its proof is quite technical.

L em m a 3.2 F ort > 0, let Sn{t) be the slab {|cci| <  t} . Then,

V o i n { S n { t )  n b ; )  ^
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Proof:

R

n-l
slice

Slab

Figure 1

It is easy to see that at a level “xn =  u ”(see Figure 1) the proportion of 

the volume of the (n — 1 )-dimensional bah which is inside the 7i-dimensional 

slab Sn(t) at this level, is greater than the proportion of the volume of the unit 

ball which is inside the same slab. This tells us that,

Foi„.i(5„(0 n B? n {x„ = u})  ̂ n B?-’)>

Therefore,

Voln{Sn{t) n  Bp) = 2Vn-l ,pJ
1 V o l n - l { S n { t )  r\ B p n  {S n  =  u } )

> 2 Un_i.p / ' ( l - U ^ )
Jo

y o L _ i(B p -:)

y o L _ i(g n _ iW n B ;- :)
y o L _ i(B -^ )

40
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In the next Lemma we give lower and upper bounds for tn. It is clear from 

the proof why we need some condition like (j) < e“ ,̂ although we could replace 

it by the weaker one, ^ .

L em m a 3.3 I f  <j> is such that 0 < ÿ < e , then for tn such that ( 1— =  </>,

P + l < (P < P(-log'^)
n +  p +  1 -  " -  n

Proof:

The first inequality is equivalent to

+ p + 1

but the last inequality is obviously true since

0 + 4 ^ )

For the second one, if p(~ > 1 , we have nothing to prove. Otherwise,

it is easy to see that

which implies what we want.

Proof of part I  o f Theorem 3.1: As we have already mentioned, for technical 

reasons, we shall divide the interval (0 ,1 ) into three parts, and we will examine
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separately the possibilities that tmax occurs in each of these parts. These are 

( 0 , t n ) ,  [<n, ( I ) ' ]  and

• We shall prove that for G (l)  j the function is decreasing, so

tmax is not in this open interval. Indeed, it is quite easy to calculate that 

in this interval, 1  — Fn{t) =  n • So, becomes

‘ -  ( # '

or if we put s —

n (l — s)
1 - 5 ”

=  n ( l + 5  +  52 +  - - - + 5 ”-^)-^

which is a decreasing function in 5, so it is a decreasing function in t  as 

well.

We shall prove that for all t  in ( 0 , t n )  not only is the function 

bounded by the appropriate expression, but so is ( 1  — /„ ( t) )“ .̂

Since is increasing.

f n { t )  — <

Using Lemma A.l to bound , we get:

1
f n { t )  <  \ l - - { l - t l ) ^

^  ('“I)
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Finally we study F„(t) for t G ( | )

By Lemma 3.1 ,

1 — F n i t m a x )  ^  u  \
1 £ f4 \ — '^nV'maxJ
J- Jn \ j 'm ax)

We shall prove that Gn{t) is as small as required in this range. Since

Y n i t m i )

n— 1

Gn{t) = 

it sufSces to prove that

But in this interval, the denominator is like a constant since by 

Lemma A .l

So it is enough to show that

0 ( 1 .

But, by Lemma 3.2 we get:

( W ' )  Y„{t)  ̂ r„(t)
y . - l ( l )  %.(!) -  i^n(l) r „ ( l )

1

<
Yr

Ÿr

è )/  
((rS)'-')
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The last inequality is true because

1 - t P  1 - P >

>-

Now we notice that in this interval, the function —t^)p is decreas

ing. (It is decreasing for which is a wider range according to

Lemma 3.3). Also, ( 1  — < 2 .

So we have:

F„_i(i) y„(i) -  py„(i)

Pl'n(l)

To complete the proof, we only need apply Lemma 3.3, in order to bound 

by , and to notice that 1^(1) is like ( 1 /n)^/^. Thus,

^ - 1  ( W ' )  y„(t) ^  4

- i c i m  m  -  " p  "  ^

=  c • — • log
71

Where c is an absolute constant.

Proof of part I I  of Theorem 3.1: Again we focus our attention at tmax  ̂ the 

point where attains its maximum. We shall prove that

1  ^nitmax) ^  2 ^̂ ?̂
1 -  /n ( t ru a x )  “
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Since — ^n{imax) ( Lemma 3.1) and tmax does not belong in

(2 -i/p^ 1 ), as was observed in the proof of the first part of Theorem 3.1, it 

suffices to prove that for all t in (0 , 2 “^/^],

Gn{t) < 2 ^

Using Lemma 3.1 and Lemma 3.2, for t G (0,2“^/^],

Gn{t) ^

/ tp y/p
Substituting x =  (1 — in Jq ~*̂  (1 — u ^ ) ~ du we get:

=  ( 1  - 1”)"?  f  ( 1  -  æ»’ -  dx
Jo

<  ( 1  -  i”) - ?  f  [ ( 1  -  x»)(l -
Jo

= ( i - f p ) - p  A i - x P ) " ^
Jo

dx

dx

(3.3)

Substituting this in (3.3), we get that

< 2 ^
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Rem arks

1 . In the proof of the first part of Theorem 3.1, we have actually proved 

that for t  G [ t n ,  1 ),

1  -  Fnjt) ^

1 -  f n { t )
1  +  c • i  log

2 . As was mentioned in the begining of this section, by the Corollaries 3.1.1 

and 3.1.2, we can conclude that — > 1 as -  — > 0 or oo. Thel~/n P

natural thing to ask then, is whether we can have a similar statement 

even when ^ converges to a positive number. The answer is negative, 

and we give a counterexample:

Take the case where p = n — 1. In this case we can easily calculate that

%.(() ^  " +  1  A _  t"  \  .
y„(l) n  \  n  + lJ

Therefore for t  = and n  large enough we have:

( # '  '  ' ■ '■■' ’ ■5 ^  ;

Thus,

Î Ü Î ) - v s j

But for t G [2~^/P, 1) we know the precise formula for which is a

decreasing function of as was observed in the proof of Theorem 3.1. 

So, for t =  2 ~ /̂P and n large enough (and therefore p large enough), we

46



have:

i - i
’7 \

8 n I 1 - G )
> 1.01

The last inequality is true, simply because for n  large, 

/  i . o n ’̂  /  1.01\ 7
j > 8
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Chapter 4

Complements of coordinate

slabs

The subindependence of coordinate slabs discussed in the previous chapters, 

made use of an accurate method for studying volumes. Here, using exactly 

the same ideas, we prove a complementary result, the subindependence of the 

complements of coordinate slabs, stated in the Theorem below.

It is actually this statement that will be used in the last Chapter where we 

prove a sort of Central Limit Theorem.

The proof, though similar to the one of Theorem 2 .1 , is given in full, but 

not in great detail, as we assume the reader has become familiar with the 

method.
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Theorem  4.1 (Subindependence of com plem ents o f coordinate slabs)

I f  the probability P is normalised Lebesgue measure on one of the balls in 

then for any sequence t i , . . .  ,tn  of positive numbers,

1

Proof : For a fixed p > 1 , let . . .  ,tn) denote the proportion of the

volume of the unit Ç  ball which is outside of all slabs {|îCi| < t{}, and Yn{t) 

the integral — u ^ ) ~ du. Then, Theorem 4.1 states that

The case that at least one of the f /s  is greater than or equal to 1 is trivial. 

Suppose then that this is not the case. We shall prove that the value of 

the function Fn at point ( t i , . . .  ,tn) is dominated by an appropriate multiple 

of the value of Fn, at the point with the ith  coordinate replaced by 0  and the 

rest remaining the same, i.e.

<  ^^è ^F n { ti . . . ,ti .i ,0 ,ti+ i . . . ,tn) (4.1)

So, we shall have in turn the following inequalities:

-  ?„( 0 ) ■■■ ?„( 0 ) ^
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Since ^ ( 0 , .  . . , 0)  =  1, the proof is complete.

Thus, the crucial point is to prove (4.1). Without loss of generality, we 

shall prove this for z =  n, namely the relation:

Fn(ti, , t„ - i, 0) (4.2)

To do this, we combine two equations. The first one relates and 

and the second one relates jPn-i and the partial derivative of with respect 

to the n-th coordinate.

These are:

■̂ n(̂ l j • ' • ) ^n—1 } —

2'^n—l,p fi I
•1

^  ^ " ' - 1, ( 1 ^ .........
_ 2 t;n-ij» a  /  h  t„-i \  -

and

• • • j ^n-l> —

"  ( ( l-a = '')V p ' ■ ■ ■ ’ ( 1  -  xp)Vp)

_ 2v„-i^p -  /' ^n-l \  O f_\

where is the volume of the unit £p ball and æ is a non-negative number, 

less than 1 .

By eliminating the factor we get:

. . • , tn - l ,x )  ^  ^V n(x)  ^
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and, by integrating from 0 to we get (4.2). 

It remains to prove (4.3) and (4.4).

For the first one we have:

-Fn(tl) • • • ) tn—1 } 2 j) —

2  /•!
=  ----  /  Fo/„_i({|a;i| >  =  1 , . . .  , n  — 1 } n  n {aJn =  w})du

‘̂ n.p •'a:

=  ^  =  1 , . . .  , n -  1 } n  B ; - '  ( ( 1  -  « ")'/")) du

= / \ l  -
Vn,p Jx

Volr^--i ({|xi| > =  1 , . .  . ,n  -  1 } n ( ( 1  - v P y f A )
----------   7------------------------------------------ — du

■   ( T ^ ) ' ^

To prove the second one, let

Hn{x)  =  Volr,{{\xi\ >  =  1 , . . .  ,71 -  1, |æ„| >  cc} n Bp)

Then,

ax Vr'n,p

But

£B „(æ ) =  -  limk_o =

=  —2 y o i n _ i ( { | X i |  > t i , i  =  1, . . .  ,71 — 1} n Bp n { X n  =  c c } )

=  - 2 V o L - i  ({|%| >  i i . i  =  1 , . . .  , n - 1 } n  b ; - '  ( ( 1  -  X»)'/*’) )

So,
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• • • ) in—lj —

n̂,p

X

2Vn—l,p

F o L -i ( B ^ - ^ ( 1 -x»>)‘/p))

^n—1

n,p ( 1  -  xpy/p' ■ ‘ ’ ( 1  -  æP)i/p)
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Chapter 5

A counterexample

W hitney and Loomis, proved an inequality which gives an upper bound for 

the volume of a convex body, in terms of the (n — 1)-Lebesgue measures of 

its orthogonal projections onto the 1 -codimensional subspaces perpendicular 

to an orthonormal basis. The Theorem they prove is:

T h e o re m  5.1 (W hitney -L oom is) For any convex body K , i f  Pi is the or

thogonal projection to , then,

[ v o U K ) r ^  < n  (Pi{K))
1 = 1

There is a relation between this Theorem and Theorem 2.1, when K  is one 

of the unit balls. In fact, we notice that if we rewrite Theorem 2.1 as 

\V-il Hi=i Voln{K n {|xi| < t})

and then take limits for t —> 0, we get the Whitney-Loomis inequality for these 

particular
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Of course, in the above limit we don’t actually take the orthogonal pro

jections but instead we take the intersections of the body and the coordinate 

hyperplanes, which is the same since the body is coordinate symmetric.

Thus, in the case of the balls, the Whitney-Loomis Theorem is the limit 

case of Theorem 2.1. Since there is such a relation between the two Theorems, 

and since Whitney-Loomis Theorem is true for all convex bodies, it is natural 

to ask whether Theorem 2.1 is true of all coordinate symmetric convex bodies, 

not just the ^  balls. It can be proved, by rather easy means, that this is true 

for n  = 2 . However, the answer is no, for n >  3.

We give a counterexample in the 3-dim Euclidean space. The coordinate 

symmetric convex body we consider, is an Zi ball, which has been stretched 

and rotated by 45° about the z-axis. The body is the convex hull of the points 

(0 ,0 ,± 1 ) and the square in the x^y plane with corners (± 1 ,± 1 ,0 ). This is:

K  = c o { ( l , l ,0 ) ,( l ,—1 ,0 ),(—1 , - 1 ,0 ),(—1 ,1 ,0 ) ,(0 ,0 ,1 ),(0 ,0 ,-1 )}

Now, it is a simple calculation, to see that Theorem 2.1 fails in this case.

Indeed, let 5i be the central slab perpendicular to the cc-axis of width 1, i.e. 

5i =  ||a ;i| < i j ,  S2 be the central slab perpendicular to the y-axis of width 

1, i.e. S 2 = {I3 3 2 I <  1 }, and S 3  be the central slab perpendicular to the z-axis 

of width 2 (which includes the body), i.e. S3 =  {jzsl <  1}.

Then, V o l{ S ir \K )  = Vol{S2 n K )  = 11/6, V ol{S3 n K )  = Vol{K)  =  

8/3 and Vol [K  H 5i fl ^ 2  fl ^ 3 ) =  4/3. So,
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V oi(K n(n f^^S i)) 1  

Vol(K) ~  2

and

V ol(KnSi) V o l{K  n S2) Voi {K  n S3 ) 121 1
Vol{K) ' Vol{K) ' Vol{K) “  256 2'
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Chapter 6

A Central Limit Theorem

This section is almost entirely an application of the subindependence of coordi

nate slabs proved in the previous section. Our aim is to prove a sort of Central 

Limit Theorem for the tp balls. On the probability space of the normalized Ç  

ball, say ÜT, with probability measure the Lebesgue measure in ÜT, we define 

the random variables x t—> (x, ^), for each 6 € 5 ”“ .̂ We prove that the average 

of their densities is very close to a Gaussian.

More precisely, if we denote by these densities, we prove that as n 

tends to infinity,

for all t G R.

Here, cr is the rotation invariant probability measure on the sphere 5 ”“  ̂ =  

{x  E R ” : Y^xl =  1 }, and p is a number to be specified.
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The proof is composed of two main steps. Firstly, we prove that

1  n  \
2  \ x p j

where the symbol is used here in the usual way:

f n ^ 9n <=> lim — =  1 .
9 n

Then, using the subindependence of the coordinate slabs and standard prob

abilistic arguments, we prove that “most” of the mass of K  is inside a shell 

where ^  is approximately Applying this to the integral on the right hand 

side of the above relation, we get what is required.

6.1 Prelim inaries

Before stating our Theorem we make a few remarks about these R.V.s and 

calculate their densities ge and their variances.

• First of all we notice that for each fixed n and p, they all have the same 

variance =  I k

Indeed, write 6 =  ^lei +  . . .  +  n̂Cn, where E R  s.th. 6} =  1.

Since K  is coordinate symmetric, (cc,ei) (a;,ej) =  0 when i ^  j ,  and 

/^ (x ,e i)^  does not depend on i. Therefore, if we put g^ =  (cc,ei)^,

we have:

/ ^ 2 Y ^ e i 6 j { x , e i ) { x , e M
\i=i i^j J
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i=l

2= g

• The sequence {gn}%=i converges to a number say g. (This is the number 

that appears in the statement of the Central Limit Theorem above). 

Indeed, if we put A for the radius of ÜT, we get:

= J ^ x l  =  2 J  u^Voln-i{K  n  {xi =

=  2 r -  vFprVol„_i{B^-^)du  

=  2 u„_i,p r  -  v ^ f f^ X d v
Jo

= 2 A"+^i;„_i,p J ' ’ - v ^ ) " ^ d v

Using the fact that Un,p =  ^̂ r(i+n/pj  ̂ , and Stirling’s formula, we get 

that ^̂ "vf+2 /n converges to a constant Cp, which depends only on p.

Actually, this Cp is bounded in “p”, a piece of information which will be 

of use later.

But

lim TIP J  v^(l — v ^ ) ~ d v  = jim  J  ^ dy

=  ^ “ ÿ ^ e x p ( - Ç ) d ï
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• The densities are the functions: ge{t) = Voln-i (^K fl ^^^^e

J  ge{u)du = P {{x ,6) < t) = J  Voln-i (^K D (̂ {6) '^-]r du

6.2 The basic approximation

We start by proving the critical approximation mentioned before, for the inte

gral / 5 T1 - 1  ge{t)do-{9) that interests us. So, we want to prove that:

We shall prove this for t > 0 . A similar argument can be applied for t <  0. 

We first recall that if u is a unit vector in R ’̂ , then.

So we have:

f  ge{t)da{9) =  f  \ i m \ v oln{K D {t < (x,9) < t 6})da{9)
JS”-~̂  JS'^~̂  6 —*■0 o

=  6 Jk

= lim ^  /  O ' <
6 - ^ 0  6 Jk  V \x\ \  he /

We need only notice now that

n —3

1 f{t+s)/\x\ 1 A  \   ̂ 1 (  P  n  '

 ̂ =  R  ~  R " " P  i “ 2 R F,
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and that

2 j ^ ( i - u r - ^ d u ~ ^

to complete the proof of (6 .1 ).

6.3 The main Theorem

The above integral over K  is an average of Gaussian densities of different 

variances. The key idea is that most of these Gaussians have about the same 

variance because ^  is typically very close to Qni i.e. that the set where ^  

is “far” from Qn, has small probability. More precisely, it is proved in Lemma 

6 .3 , that for all positive numbers r,

35X 12

n -  9n -

Both Lemma 6.1, and the Corollary following Lemma 6.2 below, are used 

in the proof of Lemma 6.3. Our aim in these two statements, is to bound from 

above, expressions of the form . . .  ccf”'* by an appropriate expression

involving just the familiar Jiçx\ where Xi denotes (æ,ei).

This is done in two steps:

Firstly, in Lemma 6.1 we prove a subindependence property for the coor

dinate R.V.s Xi. i.e. that:
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Then in the Corollary to Lemma 6 .2 , we prove that each term  of the form 

Sk  can be bounded from above by a multiple of the m -th power of xf. 

i.e. that:

As was mentioned above, Lemma 6.1 uses the subindependence of the com

plements of the coordinate slabs of the ^ -ba ll, while Lemma 6 . 2  uses standard 

results concerning log-concave functions.

L em m a 6 . 1  With K  a normalized ip-ball as above,

Where the mi are positive integers and 1 < I < n.

Proof: We shall give the proof only for 1 = 2. The general case is similar 

(and in fact we only need the special case). In this case, we have to prove the 

inequality:

f  <  /  x l ^ ^  f
J k  J k  J k

Notice that:

/ xl̂ x̂T̂  =
Jh

^ 2mi ^ 2m2 _
/Cn{xi>0 ,X2 >0 }

=  /  ( 2m i ( 2m .2 r v ^ ”'^- '^dv)
J K n { x i > 0 , X 2 > 0 }  \  J o  J  \  J o  J

=  477117712 /  (f _1^ 2m 2- 1  ^
VKn{xi>0,X2>0} ^

4771x7712 / ,  ( /  l̂{xi>u,X2>v} ]
J k \  \ J K n { x i > 0 ,X2 > 0 }  -  -  y

= 477117712 y* 2 ^P{xi >U, X2 > v)dudv
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Now, by the subindependence of complements of coordinate slabs, 

P{x\ >u ^ X2 > v ) <  P{xi > u)P[x2 > v)

and therefore,

4mim2 J   ̂ P{xi > u , X 2 > v)dudv <

< 4 7 7 1 1 7 7 1 2  /   ̂ 1̂ 27712 > u)P {x2 > v)dudv
JB.\

=  {^j P{xi >  u)dv}j {^j 2m 2V^^^~^P{x2 > v)dv

Using Fubini again, /q°° 2 m i7i^”‘̂ “^P(a;i > u)du =  j^n{%i>o} and

277i2n^”̂ “̂^F(a;2 >  n)du =  JKn{x2>o} so the following inequality holds:

/  a;2mi^2m2 <  f  ^ 2m, f  ^ 2m2

./fCn{xi>o,x2>o} v/K’n{ii>o} ./jK’n{x2>o}

This clearly suffices for the proof.

The following Lemma, is based on standard results for log-concave func

tions, whose origins date back to the works of Schur and Ostrowski.

L em m a 6 . 2  I f  f  is a decreasing log-concave function, then for any positive 

integer m  the following relation holds:

f{x)dx'^ x^^ f {x)dx  < ^ --3^  ̂ x^f{x)dx^

Proof: We shall use the two following inequalities which are true for all 

decreasing log-concave functions, and k positive integer:

(6.2)
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and

Uo  ̂ ^f{x)dx  (6.3)

We firstly prove the following inductive relation:

£  x^f {x)dx  < Jo (6.4)

Indeed,

J  x^f {x)dx  =  J  f {x)  kt^ ^dt^ dx

= (j^°° / ( l ) d x )  dt

and in case that A; >  2 we can apply (6.4) A: — 2 successive times, to get: 

j (  x'‘f{x )dx  < k { k - l ) - - - 3  x^f {x)dx

kl ( I o ° ° f (x ) d x

2 1 m  . / X f { x ) d s  
Jo

So, for k = 2m

Uoo \ m—1 f oo
f {x)dx]  /  x^^ f {x)dx  <

Now using (6.3) for A: =  3 and taking the (m — l)-th  power, we get:

Uoo \  3m—3 / roo \  m—1
f ( x ) d x j  < ( / ( 0 )) 3 " - ' ( j [  x^f {x)dx j  (6 .6 )

which combined with (6.5), gives the desired result.
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C oro lla ry  6 .2 . 1  For all positive integers m,

L ’■ - ‘ ( /« ■ O ' (6.7)

Proof: It is easy to check that for all positive integers m,

jo ( l  -  y ^ ) ^ d u  

and then the relation we want to prove becomes:

(6 .8)

n —1 \  m

X
/o ' ( l  -  u » ) ' ^ d «  2 / o ' ( l - « ! > ) ^ d u  ]

<=> f / \ l  -  u '’) ' ^ d u )  f  u " " ( l  -  v F )"^d u  <

< { ^ j \ \ l - v F p ^ d v f "

Which is true by Lemma 6.2, since the function f {u)  =  (1— is decreasing 

and log-concave.

L em m a 6.3 For all positive numbers r,

P
n -  Qr > ’■) < rz ? e n

Proof: We first prove that |a;|  ̂ is close to namely that,

(> + !) .: (6.9)

The first inequality is obvious by Cauchy-Schwartz. 

For the second one, we have:

64



Using the Corollary of Lemma 6.2, x | < 36 x |)  =  36p^. Thus,

/  |x|^ < 36np^ +  n(n -

From this we can conclude that the integral  is small, and

therefore that ^  is close to Indeed,

-  ? Aw-!': A1-1'+':

=  k jJk
k r - g i

The last inequality is true by (6.9).

Finally by Chebychev’s inequality we have:

\x\
n -  Qr > r \  T =  P

\x\ 2 \ 2

n - Q n  > r ^ \ r

Lemma 6.3 deals comfortably with the possibility that |cc| might be too 

large, but for technical reasons we need a stronger estimate from below. For-
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tunately, this can be deduced from Lemma 6.3 using the logarithmic concavity 

of the function

s Voln{K  n  B{sy/n)) 

where B{s^yn) is the Euclidean ball of radius

L em m a 6.4 Forr >

-  ©
Proof: Let Qn, be such that P  =  1/2. It is easy to see by Lemma

6.3 that |̂ >n — ^n| ^  2^ ^ '  Combining this with Lemma 6.3 again, we get that 

when n  is large enough,

 ̂ + i )  -  Ï
So, we have a point at which the log-concave function f [s)  =  P  < 5 )

takes the value 1/2, and a point just a bit further on, where it takes a value 

close to 1. So, using the log-concavity of the function, we have an estimate for 

its value at points before Qn. Indeed, take 5  <  ^ ,  and A =  • Then,

=  A (^n  +  +  (1 -

and thus by log-concavity

f i ê n )  >  f  ( ê „  +  • f ~ \ s )

But since /(pn) =  1/2 and /  (̂ Qn +  >  3/4 the above relation implies that

■ 2N i/(i-A)
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and hence that

Now we need only notice that for s < g^ — <  Qn,

^  V v ^  -  -  ( 3 )  -  ( 3 )

and then put r = Qn — s io get the required result.

T h eo rem  6 . 1  I f  ge is the density of the marginal in direction 9, of the ip-hall, 

then

for each t, uniformly in p.

as n  00

Proof: By (6.1), it is sufficient to prove that 

/. 1  ^yn (  P n \  1  /
2 ' w j  ^

for each t, uniformly in p. For this, we shall divide the set K  into two 

subsets and use appropriate techniques in each one. These are: Ki = K  C\

{ |;|^  ~  ^̂ 1 ^  K 2 = K  n  { | ^  -  Qn\ > ^ } .

We shall show that the mass of K  is concentrated in the first set, where 

the integrated function is pretty smooth. By applying a Lipschitz estimate, 

we shall see that the limit of the integral there, is the required Gaussian. 

Although the integrand is not particularly well-behaved on K 2, the measure 

of K 2 is small, so the integral will tend to zero.
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Our aim is to prove the following two statements:

1 y/n 
y/2̂  \x\ 

1  y/n
kl

lim

lim

/.
/.

exp

exp

t n
T  j ï j 2

n
T b P

Qy/ÔÆ
exp

=  0

(6 .11)

(6 .12)

For the first one, as was already mentioned, we shall use the fact that 

the integrand is smooth in this set.

Let F{y)  =  exp (—̂ ) -  The derivative of F , is bounded by

Therefore, if t is large, say t > this gives an upper bound for the 

derivative of order When t is small, the function F  can have large 

derivative, but only where y is small. More precisely, for y > 2t, the 

derivative is decreasing, so, one can check that in case that t <  ^ ,  the 

derivative in a range near Qn, has again a bound of order Thus, for 

y > gn — we have a Lipschitz property:

l^(y) -  < c \ y -  gn\

where c is of order g~^. This applied in the integrals, gives:

r
JKi \ y / ^

< - L  

<- L

1  y/n f  F n
d  - 2  1̂

exp <

1  y/n
y / ^ cc

<

y / ^
log 72,

exp

-  Qi

t  n
T lx P Q n \ /^

exp

—  ̂0

y /n
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Since Qn —  ̂ Q and Vol {Ki) —  ̂ 1 (by Lemma 6.3), we have that

which completes the proof of (6.11).

To prove (6.12), we notice that it is enough to prove:

lim f  —j- =  0 (6.13)ti-*ooJk  ̂ |œ|

We divide K 2 into three subsets. The first one has a small radius. This is 

-K’2 , 1 =  where I is chosen such that Vnl^\/n = 1 , where Vn

is the volume of the unit Euclidean ball. So, I is like a constant times •\/n. 

The other two subsets of K 2 are: J^2 , 2  =  - K ' h | ^ <  ^  ^  Qn — and

For the first one we have:

lim /  ^  <  lim /  ^

=  lim Vnn^/ri f / — vT'~^du da(6) 
n-^oo Jo u

= lim Vnl^~^ y /n  r
n—foo n  — 1

=  0

For the second one, we shall use Lemma 6.4. We have:

lim /  ^  <  Urn ^ V o I „ ( K 2,2)
n-*ooJK2 2 p |  I
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* ( I ) -
=  0

Finally, for the last one, we shall use Lemma 6.3:

/  v _  1

1  35pl< lim
gn +  log n/n^/® n^/3 log'  ̂n 

=  0

(The choice of log n  in the above argument is not crucial: we need a function 

of n  which tends to infinity, to handle the case of K 2,2, but more slowly than 

to handle the case of Ki. )

R em ark

1. In the statem ent of Theorem 6.1 we write that the convergence is uni

formly in “p” . As the proof stands, this would be clear, if all the p„’s 

where uniformly bounded.

But this is not difficult to see: From the discussion in the beginning of 

this Chapter, we mentioned that there is a constant Cp depending only 

on p, such that as n — > co.

As it can be observed by Stirling’s formula, these Cp’s are bounded in p. 

And since the integral is also bounded in p, we have what we want.
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Appendix

Using the notation introduced in Chapter 3, we prove in the Lemma below, 

tha t the function 1  — is very much like the function ( 1  — , a property

used in the proof of Theorem 3.1.

Its proof uses standard inequalities for log-concave functions.

L em m a A .l  For p >  1 and 0 < t < 1,

Proof:
*1 —1

We shall use the form: 1 —
l o ^ n —

For the first inequality, we have:

yP - t P \ ^
du

Now substituting we get:

j \ l - v F f f ^ d u  = ( 1  -
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dx

dx

< ( 1  -  «")V + i  -  x*>)V-,

<  (1 -
Jo

Which completes the proof of the first inequality.

For the second one, we shall use the following inequality which holds for a 

decreasing log-concave function / ,  and for p >  1 :

x^~'^f{x)dx < T{p +  1) f {x)dx^  (A.l)

n —1
Applying this for f {x)  =  ( 1  — x^) p , we get that:

T{p +  l ) ( j \ l - v F ) ' ^ d v j  > £  p u ^ - \ l - u ”)'^ d u

>  (1 -  f \ l  -  x f f^dx
JtP

=  ( 1  -  tp) — I — ( 1  _
 ̂  ̂ 7 1 - 1 + P

=  ( 1  -  fP)” ^
71 — 1 4- p 

But then,

i/p
i-i/p£ { l - y P f i ^ d u  >  (l-fP)"/^f J  (r(p + i))-

On the other hand,

1 / 1  n - l/ ’\ l - u ”)V -du =  i . B ( l , l  +  —
Jo P \P P

_  r(i  + i ) r ( i  + ^ )
r
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Applying Lemma A.2 with z =  ^ and a  =   ̂ we get

r ( i  + f)  \ p J

Thus, by (A.3)
- i /p

This, combined with (A.2 ), gives:

/o(l-ui>)V<iu [ p j  [ n - l - h p j  p

=  (1 -
1 /P

n — 1 -j- p

which is what we want.

In the next Lemma we give a property for Euler’s Gamma function F, used 

to prove an accurate upper bound for the integral /q̂ ( 1  — u ^ ) ~ d u

L em m a A . 2  For all x > 0 and 0 < a  < 1, E u l e r G a m m a  function F, 

satisfies:

F(1 X  — a )  

F(l +  æ)
< x'

Proof : We shall use Gauss’ formula for the Gamma function:

F(cc) =  lim
n! •

x(x  +  1 ) • ' • (a; +  n)

Then,

F (l +  æ - a )
-Aprr:----------- =  limF(1 +  x) "-»oo

n“ f l — ^ y . . f i ------— )
\  X  -\-lJ \  x  + n j .

- 1
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But since

lim [n“ . . A -
L V z + 1 /  V x - \ - n J .

- 1

=  lim \{x + n r
n - f o o  [  \  X  + 1/  \  X  - \ - n J .

it is enough to show that

A — f l  — — ) > f - ^ — Y
V x +  l j  \  x - \ - n J  \ x - \ - n J

- 1

(A.4)

Indeed, using the fact that 1  — as > ( 1  — s)“ for all 0 < s <  1 and 0 <  a  <  1, 

we get;

1 -

a
X  -{-n

>
A  æ  +  1 /  V X + n J .

X +  n — 1X

X +  1  

X

X + a
= \x  +  nJ
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