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Abstract 

Purpose We have previously demonstrated associations between the urinary 

proteome profile and coronary artery disease (CAD) in cross‐sectional studies. 

Here, we evaluate the potential of a urinary proteomic panel as a predictor of 

CAD in the hypertensive atherosclerotic cardiovascular disease (HACVD) 

substudy population of the Anglo‐Scandinavian Cardiac Outcomes Trial study. 

Experimental design Thirty‐seven cases with primary CAD endpoint were 

matched for sex and age to controls who had not reached a CAD endpoint 

during the study. Spot urine samples were analyzed using CE coupled to Micro‐

TOF MS. A previously developed 238‐marker CE‐MS model for diagnosis of CAD 

(CAD238) was assessed for its predictive potential. 

Results Sixty urine samples (32 cases; 28 controls; 88% male, mean age 64 ± 5 

years) were analyzed. There was a trend toward healthier values in controls for 

the CAD model classifier (–0.432 ± 0.326 versus –0.587 ± 0.297, p = 0.170), and 

the CAD model showed statistical significance on Kaplan–Meier survival 

analysis p = 0.021. We found 190 individual markers out of 1501 urinary 

peptides that separated cases and controls (AUC >0.6). Of these, 25 peptides 

were also components of CAD238. 

Conclusion and clinical relevance A urinary proteome panel originally 

developed in a cross‐sectional study predicts CAD endpoints independent of age 

and sex in a well‐controlled prospective study. 

Abbreviations 

ACE  angiotensin‐converting enzyme 

ASCOT  Anglo‐Scandinavian Cardiac Outcomes Trial 

CAD  coronary artery disease 

CKD  chronic kidney disease 

HACVD  hypertensive atherosclerotic cardiovascular disease 



1 Introduction 

Cardiovascular disease is the leading cause of morbidity and mortality in the 

United Kingdom and worldwide 1, 2. Cardiovascular risk assessment and risk 

prediction are performed daily in primary and secondary care with traditional 

scoring methods combining classical risk factors such as age, sex, smoking, 

blood pressure, and cholesterol. These methods calculate average percentage 

likelihood of a patient suffering a cardiovascular event (acute coronary 

syndrome, stroke, or transient ischaemic attack) 3-5 and assist the clinician in 

guiding initiation and intensity of therapies 4. However, such individual risk 

assessments are not always precise. The main challenge of cardiovascular risk 

stratification currently lies with patients who are classified as being at 

intermediate risk by conventional methods 6. More refined methods of risk 

assessment, especially for those at intermediate risk, are therefore required. 

Clinical Relevance 

Individualized cardiovascular risk prediction remains an unmet clinical need in 

patients with hypertension and other risk factors. Studying multiple biomarkers 

at a time, proteomics has the potential to detect subclinical disease and thereby 

improve risk stratification and targeted treatment. In the present study, we have 

taken our clinical proteomic studies into coronary artery disease one step 

further, from a cross‐sectional study to prediction, by evaluating the potential of 

a panel of urinary polypeptides to predict future coronary events. 

Established cardiovascular disease is preceded by an asymptomatic phase 7 and 

the identification of precursors of cardiovascular disease may allow the 

detection of damage at an early and potentially reversible stage 8. Biomarkers 

are an example of one such tool to better identify high‐risk individuals, to 

diagnose disease conditions promptly and accurately, and to provide a 

prognosis and treat patients effectively 2. 

Most available biomarkers have been developed as an extension of targeted 

physiological studies, investigating known pathways. By contrast, emerging 

technologies are beginning to allow the systematic, unbiased characterization of 

variation in proteins associated with disease conditions 9. Urine is a promising 

medium for proteomic‐based research as it is easily accessible and stable when 

frozen without requiring special preparation 10, 11. We have previously reported 

and validated the use of urinary proteomics in the diagnosis of coronary artery 

disease (CAD) 12. Urinary proteomic biomarkers have also been studied in other 

conditions such as preeclampsia 10, diabetes 13, diabetic nephropathy 14, 



stroke 15, and heart failure 16. We hypothesized that a CAD‐specific urinary 

polypeptide panel not only predicts the presence or absence of disease, but 

also, critically, future cardiovascular events, an observation that would extend 

current cross‐sectional studies. In order to address this question we used urine 

samples available from the Anglo‐Scandinavian Cardiac Outcomes Trial (ASCOT), 

an investigator‐led, multicenter, randomized trial to compare treatment 

strategies for the prevention of CAD in patients with hypertension who had 

multiple risk factors (see below for inclusion and exclusion criteria) 17. 

2 Materials and methods 

2.1 Patients 

The aim of ASCOT was to determine the answers to several questions regarding 

the management of hypertension, particularly whether combination therapy 

with a dihydropyridine calcium channel blocker and angiotensin‐converting 

enzyme (ACE) inhibitor produced greater benefits in terms of reducing coronary 

heart disease events than the standard beta‐blocker and diuretic 

combination 17. It also sought to determine whether lipid lowering with a statin 

provided additional benefit in those hypertensive patients with average or below 

average levels of serum total cholesterol. Recruitment ran from February 1998 

to May 2000 by which time 19 342 hypertensive patients had been randomized 

to the two antihypertensive treatment regimes. Methods and study design of 

ASCOT have been described in detail elsewhere 18. 

Randomization was to either a standard antihypertensive regimen (β‐blocker + 

diuretic) or to a more contemporary regimen (calcium antagonist + angiotensin 

converting enzyme inhibitor). Patients were ineligible if they had any of the 

following: previous myocardial infarction, currently treated angina, a 

cerebrovascular event within the previous 3 months, congestive heart failure, 

uncontrolled arrhythmias, or any major noncardiovascular disease. In addition, 

the benefits of cholesterol lowering in the primary prevention of coronary heart 

disease in hypertensive patients were assessed in a lipid‐lowering arm of this 

trial (ASCOT‐LLA). A total of 10 350 patients with a nonfasting cholesterol level of 

≤ 6.5 mmol/L were recruited into ASCOT‐LLA, and randomized to either 

atorvastatin 10 mg or placebo 19. 

The population examined in this study was the hypertension associated 

cardiovascular disease (HACVD) cohort; an intensively phenotyped substudy of 

(ASCOT) 20. The HACVD substudy involved intensive phenotyping of 1395 



subjects, along with DNA collection, with the intention of identifying 

unrecognized genetic influences on the development of hypertension‐associated 

cardiovascular disease 20. Baseline demographic data (age, gender, and 

ethnicity), levels of cardiovascular risk factors (cigarette smoking, diabetes, 

dyslipidaemia, blood pressure, and body mass index), evidence of target end‐

organ damage (echocardiography and electrocardiographic criteria of left 

ventricular hypertrophy, carotid intima‐media thickness and proteinuria) and 

previous history of cerebrovascular events or peripheral vascular disease were 

recorded for all patients. 

Repeat office blood pressure levels, repeat lipid levels, medication usage, 

antihypertensive treatment, statin therapy, and aspirin use were recorded 

throughout the trial, as were outcome measures of the composite endpoint that 

included all cardiovascular events and procedures plus development of renal 

impairment. Urine samples, collected in the morning after an overnight fast (10–

12 h), were tested for blood, sugar, and protein, then divided into aliquots and 

stored at –20°C until analyzed. 

The study was approved by the ethics committee at St. Mary's Hospital, London 

and Beaumont Hospital, Dublin (REC# 99/21), and adheres to the principles of 

the Declaration of Helsinki. All patients gave written informed consent. 

In this proteomics study, we adopted a nested case‐control design within the 

HACVD substudy of the ASCOT trial. The primary endpoint in this study was CAD, 

the definition of which included the following endpoints: fatal CAD, symptomatic 

nonfatal myocardial infarction and coronary revascularization. Controls for cases 

were individuals who had not experienced a cardiovascular disease endpoint 

during the study period (median observation time 5 years). All cases and 

controls were defined by presence of a urine sample from 1 to 1.5 years 

postrandomization, stored for biomarker assay. Eighty‐seven percent of patients 

were white‐European and to exclude any effects of ethnicity, selection of cases, 

and controls was restricted to this group. Subjects with established 

cardiovascular disease at baseline (including previous history of stroke, transient 

ischaemic attack, peripheral vascular disease) were excluded from this 

prospective study. 

All remaining eligible cases (N = 37) from the HACVD cohort were included in this 

study, and matched (1:1) for age (± 2 years), sex, smoking, diabetes, and the 

same treatment arm of the ASCOT study, as described in Fig. 1. 



 
 

Figure 1 Hypertension associated cardiovascular disease (HACVD) urinary 

proteomic study population. *QC ‐ quality control. 

2.2 Urinary proteomics 

2.2.1 Sample handling 

Samples were prepared as described previously 12. A 0.7 mL aliquot of urine 

was diluted with 0.7 mL of 2 mmol/L urea and 10 mmol/L NH4OH containing 

0.02% SDS. Proteins with a molecular mass >20 kDa were removed by filtering of 

samples using Centrisart ultracentrifugation filter devices (Sartorius, Gottingen, 

Germany) at 3000 × g until 1.1 mL filtrate was obtained. The filtrate was applied 

onto a PD‐10 desalting column (Amersham Bioscience) equilibrated with 0.01% 

NH4OH to remove urea, electrolytes and salts, and to enrich the polypeptides 

present. Before analysis all samples were lyophilized, stored at 4°C, and 

resuspended in HPLC‐grade H2O. 

2.2.2 CE‐MS studies 

https://onlinelibrary.wiley.com/cms/asset/52e440c7-f206-457e-b1b2-145ba446e373/prca1665-fig-0001-m.jpg


CE coupled to MS enables reproducible, robust, high resolution analysis of 

several thousand low molecular weight urinary proteins/peptides 21. CE‐MS was 

performed as described previously 12 using a P/ACE MDQ CE system (Beckman 

Coulter) online coupled to a TOF mass spectrometer (microTOF; Bruker 

Daltonic). Data acquisition and MS acquisition were automatically controlled by 

the CE via contact close relays. Spectra were accumulated every 3 s over a range 

of mass‐to‐charge ratios from 350 to 3000. 

2.2.3 Data processing 

Data were analyzed using Mosaiques‐Visu software; CE‐MS peaks were detected 

using a S/N of at least four. The charge of each peak was calculated based on 

isotopic distributions and conjugated masses. Data were deconvoluted and 

mass spectral ion peaks from the same molecule at different charge states were 

combined and recorded as a single mass. MS data were normalized as described 

previously 22 to correct for technical variation such as signal suppression as well 

as biological variation such as differing urine concentrations due to hydration 

status of the patient at time of collection. In particular, reference signals of 

>1700 urinary peptides were used for CE time calibration and MS signal 

intensities (ion counts) were normalized relative to 29 “housekeeping” peptides 

with small RSD. For TOF MS mass calibration, 80 reference masses exactly 

determined by Fourier transform ion cyclotron resonance MS were used. The 

resulting peak list characterizes each peptide by its molecular mass (Da) and CE 

migration time, normalized signal intensities are used as measure for relative 

abundance. Data were entered into a Microsoft SQL database for comparison 

with other samples and for further analysis. MS peaks from different samples 

were presumed identical if mass deviation was ≤50 ppm for small or ≤75 ppm 

for larger peptides, and the migration time deviation was 2 min. 

2.2.4 Data analysis 

Our groups have previously developed a 238‐peptide panel (CAD238) using CE‐MS 

that is associated with CAD in a cross‐sectional study 12. This panel was 

assessed for its predictive value in this study. A numerical value, known as a 

“classification factor,” was generated using Mosaiques Visu software for more 

straightforward statistical analysis of the resulting polypeptide picture for each 

individual subject; lower classification factor values considered to be “healthier.” 

Cases and controls were compared using paired t‐test and linear regression 

analyses. We then performed survival analysis to determine whether 

classification factors from the urinary proteomic panel could be predictive of 



cardiovascular events using the CAD238 model. Classification factors were split 

into values greater than the mean, and less than the mean for each model. We 

also performed survival analysis, in the same way, for classification factors from 

other previously derived models for CKD (CKD273 23), heart failure 16, and 

stroke 15 as negative controls. We were not expecting these panels to be of use 

in discriminating between cases and controls for coronary artery disease. 

2.2.5 Statistical analysis 

Analysis of clinical parameters and the classification factors derived from urinary 

proteome analysis were performed using SPSS software, (IBM SPSS Statistics for 

Windows, Version 19.0. Armonk, NY: IBM Corp). Parametric and nonparametric 

tests for comparison between groups were applied as appropriate. Data are 

given as mean ± SD, median (interquartile range) or percentage as appropriate. 

Comparisons were made using paired t‐test, McNemar's test and linear 

regression as appropriate. Kaplan–Meier survival analysis was performed to 

compare classification factors and likelihood of experiencing a cardiovascular 

event. The nonparametric Mantel Cox log rank test was used to compare 

survival distributions between groups according to CAD238 classifier (</>mean, as 

described below). Cox proportional hazards analysis was used to analyze the 

effect of CAD classifier along with other covariates on survival. p‐values <0.05 

were considered significant and AUC cut off >0.6 was used. 

3 Results 

Of the 37 cases and 37 matched controls included in this study, sixty urine 

samples passed quality control for proteomic analysis (Table 1, Fig. 1). These 60 

samples comprised 32 cases who experienced CAD events and 28 controls, with 

88% male and a mean age 64 ± 5 years (Table 1). There were no significant 

differences in mean age, gender, blood pressure, cholesterol, smoking history, 

or drug treatment arms between cases and controls. 

  



Table 1. Baseline characteristics of cases and controls passing quality control 

 

Controls n = 28 95%CI Cases n = 32 95% CI p‐value 

Mean age (yrs) 64 ± 5 (62, 66) 63 ± 6 (61, 65) 0.623 

Sex male 24 (86%) 

 

29 (91%) 

 

0.625 

Time in study (months) 67 ± 7 (64, 70) 34 ± 16 (28, 40) 0.000 

SBPa (mmHg) 161 ± 20 (154 169) 162 ± 17 (156, 168) 0.874 

DBPb (mmHg) 92 ± 9 (89, 95) 93 ± 11 (89, 97) 0.588 

Total Cholesterol (mmol/L) 5.7 ± 0.9 (5.3, 6.0) 5.6 ± 1.0 (5.3, 6.0) 0.958 

HDLc (mmol/L) 1.3 ± 0.4 (1.1, 1.4) 1.3 ± 0.4 (1.1, 1.4) 0.977 

Creatinine (μmol/L) 95 ± 13 (90, 100) 104 ± 20 (97, 111) 0.066 

Smoker 7 (25%) 

 

6 (19%) 

 

0.508 

Amlodipine 17 (61%) 

 

16 (50%) 

 

0.607 

Atorvastatin 11 (39%) 

 

11 (34%) 

 

0.581 

a SBP, systolic blood pressure. b DBP, diastolic blood pressure. c HDL, high‐

density lipoprotein. 

The CAD238 classifier appeared to be different between cases with CAD events 

and controls at baseline (–0.432 ± 0.326 versus –0.587 ± 0.297) although the 

difference was not statistically significant (p = 0.170). 

We then performed survival analysis to assess the model in its ability to detect 

cases from controls at a given classifier level cut‐off. We used mean classifier 

value to divide subjects into two groups; those with a classifier value of greater 



than the mean were compared with those with classifier values below the mean. 

The Mantel Cox test revealed a significant difference between the hazard 

functions of the two groups (test statistic 5.35, p‐value 0.021) for the 

CAD238 model (Fig. 2). Cox proportional hazards model with age and gender as 

covariates revealed that the hazard for CAD score >mean was 2.38 times that of 

those <mean, p‐value 0.017. As expected, on further survival analysis of matched 

(age, gender, treatment arm, diabetes, smoking status) and unmatched (blood 

pressure, cholesterol level) variables, no other variable showed significant 

differences between groups with versus without CAD events (data not shown). 

 
 

Figure 2 Kaplan–Meier curve for the CAD238 model. Subjects were classified as < 

or > the mean value of the CAD238 classification factor. Log rank (Mantel Cox) test 

statistic 5.35, p = 0.021. 

 

In order to confirm the predictive value of the CAD238 panel for the specific 

outcomes in this study we also tested proteomic panels related to other 

conditions. As expected, the panels that predict CKD, heart failure, and stroke 

were neither different at baseline (cases versus controls: –0.069 ± 0.388 versus –

0.095 ± 0.236, p = 0.927; 0.282 ± 0.663 versus 0.114 ± 0.569, p = 0.333; and –

0.114 ± 0.679 versus –0.140 ± 0.528, p = 0.873, respectively) (Supporting 

Information Fig. 1) nor on survival analysis (log rank Mantel‐Cox p = 0.690, p = 

https://onlinelibrary.wiley.com/cms/asset/27c01cb6-f978-4970-80bf-1f411f19131a/prca1665-fig-0002-m.jpg


0.386, and p = 0.874, respectively), for the outcome “CAD event” (Supporting 

Information Fig. 2). 

We subsequently unblinded the cohort and studied all urinary polypeptides 

identified on CE‐MS analysis individually. We found 190 individual peptides out 

of 1501 urinary peptides that were different between cases and controls at 

baseline at the AUC >0.6 cut‐off (Supporting Information Table 1). Many of these 

peptides have previously been associated with cardiovascular disease, most 

notably fragments of collagens. 

Twenty‐five of these 190 peptides were also components of the 238 peptides 

comprising the CAD238 panel (Table 2), including fragments of membrane 

associated progesterone receptor component 1 (PGRC1), prostaglandin‐H2 D‐

isomerase (PTGDS), collagen alpha‐1(I) chain (CO1A1), collagen alpha‐1(III) chain 

(CO3A1), collagen alpha‐1 (XVI) chain (COGA1), plexin domain‐containing protein 

2 (PXDC2), beta 1,3‐galactosyltransferase 6 (B3GT6), and retinol‐binding protein 

4 (RBP4). 

Table 2. The 25 urinary polypeptide markers showing significant differences 

between cases and controls in this study, which were part of the previously 

derived CAD238 panel 

Protein name SwissProt/ TrEMBLE name 

Extracellular matrix 

Collagen alpha‐1(I) chain CO1A1_HUMAN 

Collagen alpha‐1(II) chain CO2A1_HUMAN 

Collagen alpha‐1(III) chain CO3A1_HUMAN 

Collagen alpha‐1(V) chain CO5A1_HUMAN 

Collagen alpha‐1 (XVII) chain COHA1_HUMAN 

Collagen alpha‐1 (XVI) chain COGA1_HUMAN 



Protein name SwissProt/ TrEMBLE name 

Collagen alpha‐2(I) chain CO1A2_HUMAN 

Haemostasis and erythropoiesis 

Fibrinogen beta chain FIBB_HUMAN 

Hemoglobin subunit beta HBB_HUMAN 

Hemoglobin subunit delta HBD_HUMAN 

Inflammation and immune response 

Beta‐2‐microglobulin B2MG_HUMAN 

Ig kappa chain C region IGKC_HUMAN 

Ig gamma‐1 chain C region IGHG1_HUMAN 

Ig lambda‐2 chain C regions LAC2_HUMAN 

Signaling 

Membrane associated progesterone receptor component 1 PGRC1_HUMAN 

Prostaglandin‐H2 D‐isomerase PTGDS_HUMAN 

Zinc finger protein 653 ZN653_HUMAN 

Other 

Beta 1,3‐galactosyltransferase 6 B3GT6_HUMAN 

Neurosecretory protein VGF VGF_HUMAN 



Protein name SwissProt/ TrEMBLE name 

Plexin domain‐containing protein 2 PXDC2_HUMAN 

Polymeric‐immunoglobulin receptor PIGR_HUMAN 

Retinol‐binding protein 4 RET4_HUMAN 

Sodium/potassium‐transporting ATPase subunit gamma ATNG_HUMAN 

Uromodulin UROM_HUMAN 

Zinc‐alpha‐2‐glycoprotein ZA2G_HUMAN 

4 Discussion 

We have already used CE‐MS‐based urinary proteomics in our clinical studies in 

a wide range of conditions 15, 16, 23, 24. The relatively high throughput with this 

technique, the stability of the urinary proteome and the noninvasiveness of 

urine sampling are some of the key advantages of this approach. Given the large 

number of biomarkers that can be assessed with proteomics it is not 

unreasonable to propose that they provide information on different 

pathophysiological aspects of the conditions including earlier and later steps in 

disease development. We have therefore proposed that proteomic biomarkers 

can be used both to detect early stages in the disease process and to predict 

development of more advanced stages including clinically overt disease in 

asymptomatic patients. 

The most robust data to support this hypothesis derives from our work in 

chronic kidney disease where a panel of 273 urinary biomarkers (CKD273) has 

been found to differentiate between patients with normal and impaired renal 

function 25. The same panel has been found to predict the development of 

chronic kidney disease. In particular Roscioni et al. 26 have shown that it 

predicts the development of diabetic nephropathy in patients with type 2 

diabetes earlier and with greater sensitivity and specificity than currently used 

predictors, including microalbuminuria. Similarly, we have recently shown that a 

proteomic signature that was developed in patients with diastolic dysfunction 



but without symptoms of heart failure also differentiates between patients with 

overt heart failure and healthy controls 16, demonstrating that 

pathophysiological processes that provide a link between early and advanced 

disease processes can be represented in the urinary proteomic signatures. We 

have excluded people with a history of stroke and have therefore not looked at 

stroke events. The stroke panel itself was originally derived to differentiate acute 

stroke from stroke‐like conditions. We used it here as a negative control. We also 

used the heart failure and CKD panels used in this manner as we were similarly 

not expecting positive findings for these panels in our study. Reassuringly these 

panels were negative in predicting between cases and controls for coronary 

artery disease. 

In the present study, we have taken our clinical proteomic studies into CAD one 

step further, from a cross‐sectional study to prediction by evaluating the 

potential of a panel of urinary polypeptides to predict future coronary events. 

This panel (CAD238) was developed and extensively validated in cross‐sectional 

studies of patients with CAD versus healthy controls. In order to provide the best 

balance between sensitivity and specificity the model was built on data from 

patients with a wide range of disease severity 12, covering therefore early and 

more advanced disease processes. The main result of the present study is that 

in patients who do not have overt cardiovascular disease at baseline but are at 

risk to develop such disease and associated events due to their risk profile, the 

CAD238 panel differentiates between patients who had CAD events within the 

study period and those who did not. The nested case‐control design of our study 

allowed for rigorous matching for cardiovascular risk factors and treatment arm 

and thereby considerably reduced confounding. We used the ASCOT study 

specifically because one might reasonably have predicted cardiovascular events 

to occur in this cohort with higher‐than‐average prevalence of CAD risk 

factors 18. 

We have also demonstrated that not all of the 238 markers in the original 

CAD238 panel are significantly associated with CAD events. Looking at all urinary 

polypeptides, 25 of the 190 markers that were differentially expressed between 

cases and controls were also part of the CAD238 panel. We are not surprised 

about this seemingly small overlap. The CAD238 panel was developed to 

represent different stages of CAD severity including triple vessel CAD requiring 

CABG surgery that was not the case in the patients selected for the present 

study. It appears therefore plausible that only some of the markers in the 

CAD238 panel were found to be different between cases and controls in our 



present study, and it can be hypothesized that these markers reflect earlier 

stages of CAD that had the potential to progress to clinically overt disease during 

the course of the follow‐up period. 

It is also important to highlight the fact that these proteins are derived not only 

from the kidney, but potentially from all organs. In this way the urine can depict 

systemic processes such as turnover in the extracellular matrix and the pattern 

may change over time and depending on the disease 14. The urinary biomarkers 

identified relate to key molecular components of CAD. Indeed collagen types 1 

and 3 have previously been found in urinary proteomic studies relating to 

cardiovascular disease 12. This study found decreased urinary excretion of 

certain collagen type 1 and 3 alpha chain fragments but increased excretion of 

specific collagen type 1 and 3 alpha chain fragments with a C‐terminal GxPGP 

motif. Another example is retinol‐binding protein 4 (RBP4) which has been 

associated with metabolic syndrome in both sexes, prior cerebrovascular 

disease in men, and it is also thought that circulating RBP4 could be a marker of 

metabolic complications, atherosclerosis and cardiovascular disease 27, 28. 

RBP4 is an adipokine, and there is emerging evidence that adipokines are 

involved in the development of cardiovascular disease and provide a link 

between insulin resistance, obesity, and inflammation 29. The adipokine zinc‐

alpha‐2‐glycoprotein (ZA2G) was also identified among the 25 urinary 

polypeptide markers showing significant difference between cases and controls. 

We also found differences in expression of Fibrinogen beta chain in keeping with 

beta‐chain synthesis being a key step in the production of mature fibrinogen 30. 

Fibrinogen is known to play an important role in inflammation, atherogenesis, 

and thrombogenesis. Several polymorphisms have been identified in the genes 

encoding the different fibrinogen chains that determine plasma levels of 

fibrinogen, however, plasma fibrinogen level, and cardiovascular risk may be 

more dependent on interactions with environment and genetics (e.g. moderate 

alcohol intake may lower plasma fibrinogen concentration) 30. 

Even in light of the pathophysiological significance of individual protein 

fragments we would like to reinforce the message that for immediate clinical 

diagnostic and prognostic purposes the global view on a panel of proteomic 

markers may be of greater importance than individual markers, although their 

pathophysiological relevance is reassuring. Another stream of information may 

derive from the proteases that are responsible for the generation of specific 

urinary peptides from their source proteins. Protease activity prediction has 

been proposed previously and appropriate tools have been developed 31. It 



would be beyond the scope of this study to predict and validate protease activity 

but we would like to reinforce the message that the urinary proteome provides 

information beyond individual peptides, peptide patterns, and source proteins. 

The principal limitation of the study is that of a relatively small sample in a 

nested case‐control design. Clearly a larger study will need to be performed to 

get a better impression of the potential predictive value in a clinical setting. We 

also acknowledge that our data have not been replicated in an independent 

cohort. On the other hand, we have applied extremely strict criteria for the 

selection and matching of cases and controls and performed the CE‐MS analysis 

in a blinded fashion. We used samples from a well‐controlled clinical trial with 

validated endpoints adding further strength to the design. 

In summary, individualized cardiovascular risk prediction remains an unmet 

clinical need in patients with hypertension and other risk factors. In a substudy 

of the ASCOT study we have shown that a panel of urinary polypeptides that was 

originally developed to differentiate between patients with and without CAD can 

also be predictive of coronary events in asymptomatic subjects with 

hypertension. Studying multiple biomarkers at a time, proteomics has the 

potential to detect subclinical disease and thereby improve risk stratification and 

targeted treatment. 

A number of questions remain to be answered to clarify the clinical utility of this 

proteomic panel. These include how best to identify patients who would benefit 

from proteomic testing, the positive and negative predictive values of the test, 

and the comparison of proteomics with other emerging biomarkers of 

cardiovascular risk. 
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