
Constraint Handling in Genotype to Phenotype Mapping and
Genetic Operators for Project Staffing

Soo Ling Lim
Department of Computer Science

University College London
United Kingdom

s.lim@cs.ucl.ac.uk

Yi Kuo
Department of Computer Science

University College London
United Kingdom

ucabyku@ucl.ac.uk

Peter J. Bentley
Department of Computer Science

University College London
United Kingdom

p.bentley@cs.ucl.ac.uk

ABSTRACT
Project staffing in many organisations involves the assignment of
people to multiple projects while satisfying multiple constraints.
The use of a genetic algorithm with constraint handling performed
during a genotype to phenotype mapping process provides a new
approach. Experiments show promise for this technique.

CCS CONCEPTS
• Computing methodologies → Genetic algorithms; •
Information systems → Enterprise resource planning; • Social
and professional topics → Project staffing

KEYWORDS
Genetic algorithms, constraint handling, human resource allocation

ACM Reference format:
S. L. Lim, Y. Kuo, and P. Bentley. 2020. Constraint Handling in Genotype
to Phenotype Mapping and Genetic Operators for Project Staffing. In
Proceedings of ACM GECCO conference, Cancun, Mexico, July 2020
(GECCO’20 Companion), 2 pages.
DOI: 10.1145/3377929.3398165

1 INTRODUCTION
The need to assign people to projects is a common problem [1, 2].
For example, a consulting company may have 5 upcoming projects
and 40 available consultants, with each project requiring a specific
number of consultants. During such assignment, many constraints
must be satisfied, such as the consultant’s availability, expertise fit
for the project, skills to improve and develop, preferences (e.g.,
travel, interests), while considering their past performance,
compatibility and the project difficulty. Our work tackles the
problem of optimisation of human resource allocation within an
organisation (project staffing), taking such constraints into account.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
GECCO ‘20 Companion, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-7127-8/20/07.
https://doi.org/10.1145/3377929.3398165

We define the general problem as follows: k sets each of ni

people where i denotes set number and 0 < i <= k, are picked from
a central pool of m people and added to k existing teams each of ti
people, where ni >= 1, ti >= 0, m >= ∑ 𝑛#$

#%& , simultaneously
optimising for criteria such as availability, experience, skills, and
predicted team performance based on individual personality [3],
where the person staffing the project could choose which criteria
are more important, have clear scores for each criteria for any team
and satisfying multiple constraints.

For this work, we focus on the following constraints. Each
project must have the correct number of people assigned to it, this
number may be different per project. A person cannot be assigned
to more than one project. A person must provide a different
preference per project. People should be assigned to projects with
a bias towards their performance – if two or more people prefer the
same project, the person with better performance has priority.

Traditionally constraint satisfaction within genetic algorithms
may be performed by using smart genetic operators (for hard
constraints) and fitness penalties (for soft constraints) [4]. Here we
explore the use of constraint handling during the genotype to
phenotype mapping process, supported by smart operators. We aim
to constrain the search less (and potentially enhance search through
the creation of neutral networks [5]), and ensure that all genotypes
are mapped to valid phenotypes that satisfy the constraints.

2 METHOD

2.1 System
A standard canonical genetic algorithm is used to optimise the
teams by picking an optimal combination of people for each team.
In order to enable constraint handling, a novel data representation
was designed to represent candidate the project preferences for
candidate team members, with modified genetic operators.

In our work we model a consultancy (or a technology company
running a large number of agile teams) where each ni may range
from 5 to 7 people, m may range from 40 to 100 people, each ti is 0
and k=5 projects were used. The teams were optimised using
metrics for each person and for each project: availability, industry
fit, legal requirements, travel, project type fit, skill development,
language, is difficulty appropriate, for each person. A dataset with
plausible scores within the ranges provided above was created. The
following sections describe the details of the algorithm.

2.2 Representation
The genotype representation is shown in Table 1. Random
initialisation is used, with constraint handling, i.e., for every person
to be assigned, every project is given a unique, non-repeated,
random preference score.

Table 1: Chromosome representation for each individual
comprising the preference for each project number.

Person Preference per project
 1 2 3 4 5
0 3 1 2 5 4
1 2 5 3 3 1
2 1 3 5 2 4
… … … … … …
m 5 4 1 3 2

2.3 Mapping with Constraint Handling
In order to evaluate the quality of each solution, genotypes must be
mapped to phenotypes. This is performed as follows.

People are assigned to each project by their preference. For each
project, for each preference value, add every person n who listed
the project as their preference pf (where lower pf indicates higher
preference), sorted by decreasing performance, e.g.,

Project1 = {n2[pf=1], n1[pf=2], n0[pf=3], …}
Project2 = {n0[pf=1], n2[pf=3], n1[pf=5], …}
…
Project5 = {n1[pf=1], n0[pf=4], n2[pf=4], …}
For each project, if |Project| = required size S then that project

is successfully allocated. However, if |Project| >= required size S
then only the first S people are allocated. Any projects containing
fewer than S people are then filled using unallocated people
according to their pf values and performance.

2.4 Evaluation and Selection
The phenotypes are evaluated by summing scores for 8 metrics
since all phenotypes with higher values are better. They are: (1)
availability [0–1]: calculated based on the individual’s available
date and the project start date, (2) industry fit [0–1]: calculated
based on the number of past projects that the individual has done
that is in the same industry as the current projects, (3) legal
requirements [0 or 1]: whether the project’s legal requirements
match the individual, (4) travel [0 or 1]: if the project requires
travelling and the individual does not want to travel, 0 else 1, (5)
project type fit [0–1]: calculated based on the number of past
projects that the individual has done that is in the same type as the
current projects, (6) skill development [0 or 1]: whether the project
improves the skills that the individual would need developed, (7)
language [0 or 1]: if the individual is fluent in the language required
by the project, 1 else 0, and (8) is difficulty appropriate [0 or 1]:
calculated based on individual’s position, difficulty of recent
projects, and difficulty of current project.

Once fitness values have been assigned to each phenotype, the
population is sorted in the order of fitness and the fittest 𝑁()*+,-.
parents are chosen. Random pairs are chosen, with one offspring
created at a time using crossover and mutation operators, until a
new population of solutions has been generated.

2.5 Genetic Operators (Mutation and Crossover)
Given two parents A and B, in order to make child C using
crossover, for every person in the chromosome, pick a random
project choice for child C, make it equal to either the project choice
from A or B with a probability of 0.5. If this choice has already
been taken in any other project choice of C, then the other parent’s
project choice is used. If this choice has also already been taken by
C, then we take a random choice not already taken. Repeat until all
project choices for C has been taken for that person, and repeat for
all people in the chromosome.

For mutation, a child solution is chosen with probability of 0.8.
Within the genotype, a random person is chosen, two random
project choices are chosen, and swapped.

3 DISCUSSION
The system was run on random data and on the hand-designed data
described in Section 2.1. Optimisation achieved excellent results,
with better results evident for the non-random data (as random data
is more likely to have conflicting constraints), see Figure 1.

Figure 1: Representative runs showing fitness per generation
for the two datasets.

This work is ongoing. Future work will add more constraints to
the team assignment problem, for example, pairs of people must be
kept together (or kept apart), people may work part time on multiple
projects, people with specific roles must be included.

REFERENCES
[1] C. Heimerl and R. Kolisch, 2010. Scheduling and staffing multiple projects

with a multi-skilled workforce. OR Spectrum, 32(2), pp. 343-368.
[2] A. Barreto, M. O. Barros, and C. M. L. Werner, 2008. Staffing a software

project: a constraint satisfaction and optimization-based approach. Computers
& Operations Research, 35(10), pp. 3073-3089.

[3] S. L. Lim and P. J. Bentley, 2018. Coping with uncertainty: modelling
personality when collaborating on noisy problems. In Proceedings of the 2018
Conference on Artificial Life (ALIFE), Tokyo, Japan, pp. 566-573.

[4] T. Yu and P. J. Bentley, 1998. Methods to evolve legal phenotypes. In
Proceedings of the 5th International Conference on Parallel Problem Solving
from Nature (PPSN), Amsterdam, pp. 280-282.

[5] M. Ebner, M. Shackleton and R. Shipman, 2001. How neutral networks
influence evolvability. Complexity, 7(2), pp. 19-33.

0.65

0.7

0.75

0.8

0.85

0.9

1 6 11 16 21 26 31

Fi
tn
es
s

Generation

random plausible

