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ABSTRACT 
Project staffing in many organisations involves the assignment of 
people to multiple projects while satisfying multiple constraints. 
The use of a genetic algorithm with constraint handling performed 
during a genotype to phenotype mapping process provides a new 
approach. Experiments show promise for this technique. 

CCS CONCEPTS 
• Computing methodologies → Genetic algorithms; • 
Information systems → Enterprise resource planning; • Social 
and professional topics → Project staffing 
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1 INTRODUCTION 
The need to assign people to projects is a common problem [1, 2]. 
For example, a consulting company may have 5 upcoming projects 
and 40 available consultants, with each project requiring a specific 
number of consultants. During such assignment, many constraints 
must be satisfied, such as the consultant’s availability, expertise fit 
for the project, skills to improve and develop, preferences (e.g., 
travel, interests), while considering their past performance, 
compatibility and the project difficulty. Our work tackles the 
problem of optimisation of human resource allocation within an 
organisation (project staffing), taking such constraints into account. 
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We define the general problem as follows: k sets each of ni 

people where i denotes set number and 0 < i <= k, are picked from 
a central pool of m people and added to k existing teams each of ti 
people, where ni >= 1, ti >= 0, m >= ∑ 𝑛#$

#%& , simultaneously 
optimising for criteria such as availability, experience, skills, and 
predicted team performance based on individual personality [3], 
where the person staffing the project could choose which criteria 
are more important, have clear scores for each criteria for any team 
and satisfying multiple constraints. 

For this work, we focus on the following constraints. Each 
project must have the correct number of people assigned to it, this 
number may be different per project. A person cannot be assigned 
to more than one project. A person must provide a different 
preference per project. People should be assigned to projects with 
a bias towards their performance – if two or more people prefer the 
same project, the person with better performance has priority. 

Traditionally constraint satisfaction within genetic algorithms 
may be performed by using smart genetic operators (for hard 
constraints) and fitness penalties (for soft constraints) [4]. Here we 
explore the use of constraint handling during the genotype to 
phenotype mapping process, supported by smart operators. We aim 
to constrain the search less (and potentially enhance search through 
the creation of neutral networks [5]), and ensure that all genotypes 
are mapped to valid phenotypes that satisfy the constraints. 

2 METHOD 

2.1 System 
A standard canonical genetic algorithm is used to optimise the 
teams by picking an optimal combination of people for each team. 
In order to enable constraint handling, a novel data representation 
was designed to represent candidate the project preferences for 
candidate team members, with modified genetic operators. 

In our work we model a consultancy (or a technology company 
running a large number of agile teams) where each ni may range 
from 5 to 7 people, m may range from 40 to 100 people, each ti is 0 
and k=5 projects were used. The teams were optimised using 
metrics for each person and for each project: availability, industry 
fit, legal requirements, travel, project type fit, skill development, 
language, is difficulty appropriate, for each person. A dataset with 
plausible scores within the ranges provided above was created. The 
following sections describe the details of the algorithm. 



  
 

 
 

2.2 Representation 
The genotype representation is shown in Table 1. Random 
initialisation is used, with constraint handling, i.e., for every person 
to be assigned, every project is given a unique, non-repeated, 
random preference score. 

Table 1: Chromosome representation for each individual 
comprising the preference for each project number. 

Person Preference per project 
 1 2 3 4 5 
0 3 1 2 5 4 
1 2 5 3 3 1 
2 1 3 5 2 4 
… … … … … … 
m 5 4 1 3 2 

 

2.3 Mapping with Constraint Handling 
In order to evaluate the quality of each solution, genotypes must be 
mapped to phenotypes. This is performed as follows. 

People are assigned to each project by their preference. For each 
project, for each preference value, add every person n who listed 
the project as their preference pf (where lower pf indicates higher 
preference), sorted by decreasing performance, e.g., 

Project1 = {n2[pf=1], n1[pf=2], n0[pf=3], …} 
Project2 = {n0[pf=1], n2[pf=3], n1[pf=5], …} 
… 
Project5 = {n1[pf=1], n0[pf=4], n2[pf=4], …} 
For each project, if |Project| = required size S then that project 

is successfully allocated. However, if |Project| >= required size S 
then only the first S people are allocated. Any projects containing 
fewer than S people are then filled using unallocated people 
according to their pf values and performance. 

2.4 Evaluation and Selection 
The phenotypes are evaluated by summing scores for 8 metrics 
since all phenotypes with higher values are better. They are:  (1) 
availability [0–1]: calculated based on the individual’s available 
date and the project start date, (2) industry fit [0–1]: calculated 
based on the number of past projects that the individual has done 
that is in the same industry as the current projects, (3) legal 
requirements [0 or 1]: whether the project’s legal requirements 
match the individual, (4) travel [0 or 1]: if the project requires 
travelling and the individual does not want to travel, 0 else 1, (5) 
project type fit [0–1]: calculated based on the number of past 
projects that the individual has done that is in the same type as the 
current projects, (6) skill development [0 or 1]: whether the project 
improves the skills that the individual would need developed, (7) 
language [0 or 1]: if the individual is fluent in the language required 
by the project, 1 else 0, and (8) is difficulty appropriate [0 or 1]: 
calculated based on individual’s position, difficulty of recent 
projects, and difficulty of current project. 

Once fitness values have been assigned to each phenotype, the 
population is sorted in the order of fitness and the fittest 𝑁()*+,-. 
parents are chosen. Random pairs are chosen, with one offspring 
created at a time using crossover and mutation operators, until a 
new population of solutions has been generated. 

2.5 Genetic Operators (Mutation and Crossover) 
Given two parents A and B, in order to make child C using 
crossover, for every person in the chromosome, pick a random 
project choice for child C, make it equal to either the project choice 
from A or B with a probability of 0.5. If this choice has already 
been taken in any other project choice of C, then the other parent’s 
project choice is used. If this choice has also already been taken by 
C, then we take a random choice not already taken. Repeat until all 
project choices for C has been taken for that person, and repeat for 
all people in the chromosome.  

For mutation, a child solution is chosen with probability of 0.8. 
Within the genotype, a random person is chosen, two random 
project choices are chosen, and swapped. 

3  DISCUSSION 
The system was run on random data and on the hand-designed data 
described in Section 2.1. Optimisation achieved excellent results, 
with better results evident for the non-random data (as random data 
is more likely to have conflicting constraints), see Figure 1. 
 

 

Figure 1: Representative runs showing fitness per generation 
for the two datasets. 

This work is ongoing. Future work will add more constraints to 
the team assignment problem, for example, pairs of people must be 
kept together (or kept apart), people may work part time on multiple 
projects, people with specific roles must be included. 
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