Bidirectional relation between affective symptoms and cognitive function from middle to late adulthood: a population-based birth cohort study

Amber John, Jennifer Rusted, Marcus Richards, Darya Gaysina
Amber John, EDGE Lab, School of Psychology, University of Sussex, Brighton
Jennifer Rusted, School of Psychology, University of Sussex, Brighton
Marcus Richards, MRC Unit for Lifelong Health and Ageing at UCL, London
Darya Gaysina, EDGE Lab, School of Psychology, University of Sussex, Brighton **Correspondence to:** Amber John; Euston House 8th Floor, UCL, London; 02031085868;
a.john@ucl.ac.uk; @Amberjohn715.

Disclosures: None.

Data availability statement: Data can be accessed upon application to MRC Unit for Lifelong Health and Ageing at UCL.

Acknowledgements: We would like to thank the Economic and Social Research Council (ESRC) for supporting this project (Grant number: ES/J500173/1). We also acknowledge the MRC Unit for Lifelong Health and Ageing at UCL for making NCDS data available. Finally, we would like to thank the NSHD cohort members who have dedicated their time to make this research possible.

Abstract Word Count: 250

Word Count: 3209

1 Abstract

Objectives: There is a longitudinal association between affective symptoms and cognition.
However, the nature and direction of this association remains unclear. The aim of this study
was to test for bidirectional relationships between affective symptoms and cognitive function
from middle to late adulthood.

Method: Data were available from the MRC National Survey of Health and Development 6 7 (NSHD), a prospective birth cohort of 5362 people born in 1946. Affective symptoms and 8 cognition were measured at ages 53, 60-64, and 69. Latent scores of affective symptoms were 9 derived at each time point and cross-lagged models were fitted for affective symptoms with verbal memory and processing speed. Models were adjusted for sex, childhood 10 11 socioeconomic position, education, and National Adult Reading Test. 12 **Results:** Results revealed an inverse cross-sectional association between affective symptoms and both verbal memory (β =-0.18, SE=0.04, *p*<.001) and processing speed (β =-0.13, 13 SE=0.06, p=.05) at age 53, but not at ages 60-64 or 69. Higher affective symptoms at age 53 14 15 predicted lower verbal memory at age 60-64 (β =-0.58, SE=0.27, p=.03), and affective symptoms at age 60-64 was associated with lower verbal memory (β =-0.64, SE=0.29, p=.03) 16 and processing speed (β =-1.27, SE=0.41, p=.002) at age 69. Verbal memory and processing 17 18 speed function did not predict subsequent level of affective symptoms. Conclusion: Affective symptoms predict poorer verbal memory and processing speed over a 19 20 period of 16 years, but the association does not operate in the opposite direction.

21 Understanding longitudinal associations between affective symptoms and cognitive function

22 can offer insights into maintaining better cognitive health for longer.

1 Key words

2 Longitudinal research; Affective symptoms; Ageing

1 Introduction

Affective disorders are common in midlife, with 19% of women and 14.9% of men between the age 55-64 reporting symptoms of depression (Stansfeld et al., 2014). Research shows that affective symptoms in older age are highly comorbid with cognitive impairment. It is estimated that around 32% of people with dementia present with high depressive symptoms, compared with only 7% of people in the general population (Lyketsos et al., 2002).

8 Previous research has shown that a longitudinal association may exist between 9 affective symptoms and cognitive function over time, although the precise temporal order remains unclear. There has been some evidence that affective symptoms precede subsequent 10 11 development of dementia (Da Silva, Gonçalves-Pereira, Xavier, & Mukaetova-Ladinska, 12 2013; Gulpers et al., 2016; Jorm, 2001; Ownby, Crocco, Acevedo, John, & Loewenstein, 2006), cognitive decline (John, Patel, Rusted, Richards, & Gaysina, 2018), and poorer 13 14 cognitive level (John et al., 2019). However, other research has suggested that cognitive function can predict subsequent level of affective symptoms (Jajodia & Borders, 2011). A 15 bidirectional association between affective symptoms and cognitive function is therefore 16 possible, but evidence is inconsistent. Jajodia and Borders, (2011) reported that in 14000 17 adults over the age of 50, verbal memory performance predicted increases in depressive 18 19 symptoms over an 8 year period, but not vice versa. Vinkers et al., (2004) studied 500 people aged 85 over a 4 year follow up. Similarly, it was concluded that poorer attention and verbal 20 memory function at baseline were related to faster increases in depressive symptoms. No 21 associations were observed between baseline depression and change in cognitive function. 22 Gale, Allerhand, & Deary (2012) reported that in a sample of 8611 people over the age of 50, 23 higher levels of depression were associated with faster cognitive decline over a follow up 24 period of 7 years, but only in people aged 60-80 years old. However, cognitive function was 25

not associated with change in depressive symptoms over time. In these studies, samples were
based on people over the age of 50 at baseline, and the analyses was unable to account for
earlier life influences which may be pertinent within this association. Additionally, follow-up
periods were relatively short (<10 years), so it is unclear how affective symptoms and
cognitive function may interact with each other over a longer period of time.

The aim of the present study is to clarify and extend previous research by testing bidirectional relationships between affective symptoms and cognition function (verbal memory and information processing speed) over a period of 16 years: from middle age, through late middle age to older age.

1 Methods

2 **Participants**

In this study, data from the MRC National Study of Health and Development (NSHD) were 3 used. The sample originally comprised 5362 males and females born in mainland UK in 4 1946. Data has been collected from participants at 24 time points, most recently when 5 6 participants were aged 69. Information about data collection and participation rates in NSHD 7 are available elsewhere (Kuh et al., 2011, 2016). The authors assert that all procedures 8 contributing to this work comply with the ethical standards of the relevant national and 9 institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was provided by all participants and 10 ethical approval for the current study has been received from the University of Sussex 11 (ER/AJ316/1). 12

13 Measures

14 *Cognitive function*

15 The current study focuses on measures of short-term verbal memory and information processing speed measured three times, at ages 53, 60-64, and 69. Verbal memory was 16 assessed using a word recall test with 3 administrations. At each administration participants 17 18 recalled words from the list, with possible scores ranging from 0-45. A letter cancellation task was used to capture information processing speed, in which participants crossed out target 19 letters P and W from a letter grid within a 1 minute time limit, with possible scores ranging 20 from 0-600. These measures have been described in detail elsewhere (Davis et al., 2017; 21 Richards, Shipley, Fuhrer, & Wadsworth, 2004). 22

23 Affective symptoms

Affective symptoms were measured at multiple time points across the life course (ages 13, 24 15, 36, 43, 53, 60-64, and 69). For the current study, measures of affective symptoms 25 assessed at ages 53, 60-64, and 69 were included in main analyses. At all three of these time 26 points, the 28 item General Health Questionnaire (GHQ-28) was used. Research has shown 27 that the GHO is a consistent and reliable measure in detecting psychiatric symptoms in a 28 general population across multiple time points with long intervals between testing (Pevalin, 29 2000). Due to high comorbidity and overlap between symptoms of depression and anxiety, 30 this study focussed on overall affective symptomatology, encompassing depression, anxiety, 31 32 somatic and social dysfunction symptoms.

33 *Covariables*

The covariables selected for the analysis were sex, childhood socioeconomic position 34 (Kaplan et al., 2001), education (Hatch, Feinstein, Link, Wadsworth, & Richards, 2007), and 35 score on the National Adult Reading Test (NART) at age 53 (James et al., 2018). Score on 36 the NART was included to isolate associations between affective symptoms and fluid 37 cognitive abilities (James et al., 2018). Fathers' occupation was used as a measure of 38 childhood socioeconomic position. This was coded into 6 categories based on social classes I-39 V in the Classification of Occupations: professional; intermediate; skilled non-manual; 40 skilled manual; partly skilled; unskilled. The highest qualification achieved by the participant 41 42 at age 26 was used as a measure of education. This was coded based on the UK Burnham Scale into 9 categories: None attempted; Vocational; Sub GCE or sub Burnham C; GCE O-43 Level or Burnham C; GCE A-Level or Burnham B; Burnham A2; 1st degree; higher degree 44 (Masters); higher degree (doctorate). 45

46 Statistical Analyses

The GHQ-28 comprises four sub-scales measuring depression, anxiety, social dysfunction,and somatic symptoms. To take account of the four factor structure within the GHQ at each

time point, second order confirmatory factor analysis (CFA) was conducted to derive latent
scores of affective symptoms at each time point. Model fit was assessed and measurement
invariance was tested to check that the same latent construct was captured over time.

To test bidirectional relationships between affective symptoms and cognitive function across 52 middle to late adulthood, cross-lagged models were fitted for verbal memory and processing 53 speed separately. This method allows directional relationships between two variables to be 54 55 estimated across multiple time points. Benefits of cross-lagged methods are that lagged associations between variables can be estimated, while simultaneously allowing for cross-56 sectional associations and auto-correlations across repeated measures over time (Kearney, 57 2017). Models included affective symptoms and cognitive function at ages 53, 60-64 and 69. 58 Two main models were fitted, including: Model 1: Unadjusted; Model 2: Adjusted for all 59 covariables. Model fit did not significantly improve when the analysis was stratified by sex 60 (Supplementary Table 1), suggesting that patterns of association did not differ significantly 61 between men and women. For this reason, sex was used as a covariable in all subsequent 62 analyses, rather than as a stratifying variable. 63

64 As a sensitivity analysis, main models were re-run on the sample of people still alive by age 65 69. Main models were also re-run excluding participants using anxiolytic and antidepressant medications at ages 36, 43, 53, 60-64, and 69. Finally to maximise sample size available for 66 67 the analyses, a final sensitivity analysis was run using multiple imputation with MICE in R (Buuren & Groothuis-Oudshoorn, 2011) to impute covariate data for the adjusted models. For 68 the current analysis, eighteen imputations were conducted over 12 sweeps in NSHD data. 69 Further information about the multiple imputation process is presented in Supplementary 70 Materials 1. 71

- 72 Mplus version 8 (Muthén & Muthén, 2017) was used for analyses, and missing data were
- 73 dealt with using full information maximum likelihood (FIML) methods for cognitive and
- 74 GHQ data, and using multiple imputation for covariables.

1 **Results**

2 Available sample and missing data

14

15 The sample with at least one measure of affective symptoms or cognition available at any time point (Verbal memory: N=3125; Processing speed: N=3127) was compared on key 16 17 childhood and adulthood variables with the sample with missing data on all assessments of cognition and affective symptoms (Verbal memory: N=2237; Processing speed: N=2235). 18 The sample with key data available did not differ from the sample with missing data on 19 20 anxiolytic medication use (p=.08). However, the sample with missing data had significantly more males and fewer females than the sample with complete data available (p < .001). The 21 sample with missing data also had significantly lower socioeconomic position at age 15 22 23 (p=.02), lower cognitive scores at age 15 (p<.001), lower educational level (p<.001), higher affective symptom scores at age 36 (p=.01), higher affective symptom scores at age 43 24

25	(p=.03), and lower antidepressant usage in adulthood $(p<.001)$. Due to differences between
26	the sample with complete covariate data and the sample with missing data, a sensitivity
27	analysis was conducted using a multiple imputation approach to impute all covariate data.
28	Further information about the multiple imputation process is available in Supplementary
29	Materials 1. Table 1 shows demographic information for the samples included in the analysis.
30	
31	Table 1 here
32	
33	

34 Longitudinal measurement model for affective symptoms

A second order confirmatory factor analysis of the GHQ measurements over time was fitted 35 36 to ensure this was an appropriate fit to the data for subsequent analysis. The second order 37 CFA fit the data well ($\chi^2(3387)=17138.88$, *p*<.001; CFI=.915; TLI=.912; RMSEA=.036). Indicators all loaded significantly onto the factors (p < .001). Measurement invariance of the 38 first order factors was assessed by constraining factor loadings to be equal across time over 39 40 the first order. There was not a significant deterioration in model fit after constraining according to a chi square difference test (Supplementary Table 2). Next, factor loadings were 41 42 constrained to be equal over the first and second order factors. Again, model fit did not 43 significantly deteriorate (Supplementary Table 2). Therefore, it was concluded that the GHQ 44 captured the same latent construct over the three waves for both the first and second order 45 factors.

46 Cross-lagged models

47 Verbal memory

48	The cross-lagged verbal memory model showed excellent fit to the data ($\chi^2(2)=5.39$, $p=.07$;
49	CFI=1.00, TLI=1.00; RMSEA=0.02). The unadjusted model showed that all autoregressive
50	pathways were significant, demonstrating stability in constructs over time for both verbal
51	memory and affective symptoms. There were significant cross-sectional associations between
52	verbal memory and affective symptoms at all ages (Age 43: β =-0.09, SE=0.05, <i>p</i> =.05; Age
53	60-64: β=-0.04, SE=0.02, <i>p</i> =.03; Age 69: β=-0.03, SE=0.01, <i>p</i> =.04). Poorer verbal memory
54	function at age 53 significantly predicted higher affective symptoms at age 60-64 (β =-0.002,
55	SE=0.001, p =.004). Additionally, higher affective symptoms at age 60-64 was significantly
56	associated with poorer verbal memory function at age 69 (β =-0.60, SE=0.25, <i>p</i> =.02).
57	The fully adjusted model also fit the data very well ($\chi 2(2)=7.03$, $p=.03$; CFI=1.00, TLI=0.99;
58	RMSEA=0.03). The fully adjusted model showed that all autoregressive pathways were
59	significant. Results also revealed that there was a significant association between verbal
60	memory and affective symptoms at age 53 (β =-0.18, SE=0.04, <i>p</i> < .001), but this cross-
61	sectional effect no longer persisted over time at ages 60-64 (β =-0.03, SE=0.02, p=.20) and
62	age 69 (β =-0.03, SE=0.02, <i>p</i> =.06). Additionally, higher affective symptoms at age 53
63	significantly predicted lower verbal memory performance at age 60-64 (β =-0.58, SE=0.27,
64	p=.03), and higher affective symptoms at age 60-64 were significantly associated with poorer
65	verbal memory at age 69 (β =-0.64, SE=0.29, <i>p</i> =.03). There were no significant longitudinal
66	associations between verbal memory scores and subsequent level of affective symptoms
67	(Figure 2).
68	
69	
70	Figure 2 here

73 Processing Speed

74 The cross-lagged processing speed model was also an excellent fit to the data ($\chi 2(2)=0.81$, p=67; CFI=1.00, TLI=1.00; RMSEA=0.00). The unadjusted model revealed that as with the 75 verbal memory model, all autoregressive pathways were statistically significant, showing 76 stability in constructs over time. In this unadjusted model, there were no cross-sectional or 77 longitudinal associations between affective symptoms and processing speed. 78 79 The fully adjusted model was also a good fit to the data ($\chi^2(2)=1.76$, p=.41; CFI=1.00, TLI=1.00; RMSEA=0.00). In the fully adjusted model, all of the autoregressive pathways 80 remained significant. There was a significant association between affective symptoms and 81 processing speed present at age 53 (β =-0.13, SE=0.06, p=.05), but not at ages 60-64 (β =-82 83 0.02, SE=0.03, p=.52) or 69 (β =-0.02, SE=0.02, p=.31). Additionally, results from the fully adjusted model showed that higher level of affective symptoms at age 60-64 significantly 84 predicted worse processing speed performance at age 69 (β =-1.27, SE=0.41, p=.002). No 85 other cross-lagged pathways were statistically significant (Figure 3). 86 87 88 Figure 3 here 89

90

91

92 Sensitivity analysis

As a sensitivity analysis, the main models were re-run after excluding participants who died

by age 69 from the analysis, to ensure results were not influenced by mortality. These models

95	fit the data well (Verbal memory: $\chi^2(2)=6.86$, $p=.03$; CFI=1.00; TLI=0.99; RMSEA=0.04.
96	Processing speed: χ2(2)=1.76, <i>p</i> =.42; CFI=1.00; TLI=1.00; RMSEA=0.00). Results from
97	verbal memory models including the sample alive by age 69 remained consistent. The fully
98	adjusted model showed a significant cross-sectional association between affective symptoms
99	and verbal memory at age 53 (β =-0.16, SE=0.05, p=.001), and significant lagged pathways
100	between affective symptoms at age 53 and verbal memory at age 60-64 (β =-0.65, SE=0.28,
101	p=.02) and between affective symptoms at age 60-64 and verbal memory at age 69 (β =-0.64,
102	SE=0.29, p=.03). No other pathways reached statistical significance. Results from processing
103	speed models excluding people who died by age 69 were also similar to those from the main
104	models. Specifically, affective symptoms at age 60-64 significantly predicted poorer
105	processing speed at age 69 (β =-1.27, SE=0.41, p=.002). Again, no other pathways were
106	statistically significant.

107 Main models were re-run excluding people taking anxiolytic or antidepressant medication.

108 Results from this analysis were similar to main models. The models fit the data well (Verbal

109 memory: χ2(2)=4.82, *p*=.09; CFI=1.00; TLI=0.99; RMSEA=0.03. Processing speed:

110 $\chi^2(2)=1.22, p=.54$; CFI=1.00; TLI=1.00; RMSEA=0.00). Results from verbal memory

111 models showed that there was a cross-sectional association between affective symptoms and

verbal memory function at age 53 (β =-0.14, SE=0.05, p=.002), and a longitudinal association

between affective symptoms at age 53 and verbal memory function at age 60-64 (β =-0.63,

114 SE=0.31, p=.04). No other cross-sectional or lagged pathways reached statistical significance.

115 Results from processing speed models showed no significant cross-sectional associations

116 between affective symptoms and processing speed function. However, affective symptoms at

age 60-64 significantly predicted lower processing speed scores at age 69 (β =-1.38, SE=0.46,

118 p=.003). No other longitudinal pathways were significant.

119 Finally, a sensitivity analysis was run, using multiple imputation to impute missing covariate data. Again models fit the data very well (Verbal memory: $\chi^2(2)=2.88$, p=.24; CFI=1.00; 120 TLI=1.00; RMSEA=0.01. Processing speed: $\chi^2(2)=1.29$, p=.53; CFI=1.00; TLI=1.00; 121 122 RMSEA=0.00) and results were consistent with main models. The fully adjusted verbal memory model showed significant cross sectional associations between affective symptoms 123 and verbal memory function at age 53 (β =-0.15, SE=0.04, *p* < .001) and age 60-64 (β =-0.04, 124 SE=0.02, p=.03), but not at age 69 ($\beta=-0.02$, SE=0.01, p=.10). Affective symptoms at age 60-125 64 also significantly predicted poorer verbal memory at age 69 (β =-0.73, SE=0.25, p=.004). 126 No other longitudinal pathways were significant. The fully adjusted processing speed model 127 revealed a significant cross-sectional association between affective symptoms and processing 128 speed at age 53 (β =-0.16, SE=0.05, p=.003) but not at ages 60-64 (β =-0.01, SE=0.02, p=.68) 129 130 or age 69 (β =-0.03, SE=0.02, p=.12). Affective symptoms at age 60-64 significantly predicted poorer processing speed at age 69 (β =-0.73, SE=0.36, p=.04), but no other 131 pathways reached statistical significance. 132

1 Discussion

2 There was a cross-sectional inverse association between affective symptoms and both verbal memory and processing speed at age 53, but not at ages 60-64 or 69. Higher affective 3 4 symptoms at age 53 significantly predicted lower verbal memory 5 scores at age 60-64, and affective symptoms at age 60-64 also predicted lower verbal 6 memory at age 69. However, verbal memory function did not predict subsequent affective symptoms at any time-point. Results for processing speed models were similar; higher 7 8 affective symptoms at age 60-64 significantly predicted poorer processing speed at age 69. Processing speed did not predict later affective symptoms at any time-point assessed. Overall, 9 these results are consistent with previous research showing that affective symptoms can 10 predict subsequent cognitive function (James et al., 2018; John et al., 2019, 2018). These 11 findings extend previous evidence by demonstrating that this relationship does not operate in 12 the opposite direction over the period of 16 years. 13 There are four primary hypotheses that can explain associations between affective symptoms 14 and cognitive function over time. First, affective symptoms may be a risk factor for poorer 15 cognitive outcomes (Bennett & Thomas, 2014; Butters et al., 2008). Second, affective 16 symptoms may be a prodromal symptom of cognitive impairment (Bennett & Thomas, 2014; 17 Butters et al., 2008; Byers & Yaffe, 2011). Third, there may be some common cause factor 18 19 which increases risk for both affective disorders and poorer cognitive function (Bennett &

20 Thomas, 2014; Djernes, 2006). Finally, affective symptoms may emerge as a response to

awareness of verbal memory impairment (Vinkers et al., 2004). The temporal sequencing

22 over an extended time frame which emerges in this study does not support the fourth

23 possibility that affective symptoms reflect a subjective response to cognitive impairments.

24 Instead, these results indicate that affective symptoms may precede cognitive impairments by

25 several years and that increased affective symptoms predict later cognitive function.

26 The finding that affective symptoms predicted subsequent processing speed at the later time-27 point only suggests that the effects of affective symptoms on processing speed, may not be observed until later in the life course. This is consistent with previous research showing that 28 adult affective symptoms can predict poorer mid-life verbal memory function at age 50, but 29 no effects were observed on information processing speed at this age (John et al., 2019). This 30 finding is inconsistent with work that suggests processing speed may be an important 31 component in verbal memory processing (Salthouse, 1996). This can potentially be explained 32 by the digit checking task containing a motor component, compared to the verbal component 33 34 within the verbal memory task.

Future research should focus on identifying biological and socio-behavioural mechanisms of
the longitudinal association between affective disorders and cognitive function. Future
research should also investigate whether effective treatment of affective symptoms can
reduce risk of poorer cognitive outcomes later in life.

39 Strengths and limitations

The key strength of the study is a large, nationally representative, and prospective sample, with 16 years follow up. An additional strength of the study is the use of consistent measures of affective symptoms and cognitive function. However, sample attrition is a problem in all long-running cohort studies. In the present study, missing data was addressed using FIML methods and an additional supplementary analysis was conducted using multiple imputation. Another limitation of the study is that single cognitive tests were used to measure verbal memory and processing speed, rather than more comprehensive cognitive batteries.

47 Results from the present study show that affective symptoms can predict poorer cognitive
48 outcomes over a 16-year period. Understanding longitudinal associations between affective
49 symptoms and cognitive function offer insights into maintaining better cognitive health for
50 longer.

References

- Bennett, S., & Thomas, A. J. (2014). Depression and dementia: Cause, consequence or coincidence? *Maturitas*, 79(2), 184–190. https://doi.org/10.1016/j.maturitas.2014.05.009
- Butters, M. A., Young, J. B., Lopez, O., Aizenstein, H. J., Mulsant, B. H., Reynolds, C. F., ...
 Becker, J. T. (2008). Pathways linking late-life depression to persistent cognitive impairment and dementia. *Dialogues in Clinical Neuroscience*, *10*(3), 345–357.
 https://doi.org/10.1016/j.bbi.2008.05.010
- Buuren, S. van, & Groothuis-Oudshoorn, K. (2011). mice : Multivariate Imputation by Chained Equations in R. *Journal of Statistical Software*, 45(3), 1–68. https://doi.org/10.18637/jss.v045.i03
- Byers, A. A. L., & Yaffe, K. (2011). Depression and risk of developing dementia. *Nature Reviews Neurology*, 7(6), 323–331. https://doi.org/10.1038/nrneurol.2011.60.Depression
- Da Silva, J., Gonçalves-Pereira, M., Xavier, M., & Mukaetova-Ladinska, E. B. (2013).
 Affective disorders and risk of developing dementia: Systematic review. *British Journal* of *Psychiatry*, 202(3), 177–186. https://doi.org/10.1192/bjp.bp.111.101931
- Davis, D., Bendayan, R., Muniz Terrera, G., Hardy, R., Richards, M., & Kuh, D. (2017).
 Decline in Search Speed and Verbal memory over 26 Years of Midlife in a British Birth Cohort. *Neuroepidemiology*, 49(3–4), 121–128. https://doi.org/10.1159/000481136
- Djernes, J. K. (2006). Prevalence and predictors of depression in populations of elderly: A review. Acta Psychiatrica Scandinavica, 113(5), 372–387. https://doi.org/10.1111/j.1600-0447.2006.00770.x
- Gale, C. R., Allerhand, M., & Deary, I. J. (2012). Is there a bidirectional relationship between depressive symptoms and cognitive ability in older people? A prospective study using the English Longitudinal Study of Ageing. *Psychological Medicine*, 42(10), 2057–2069.

https://doi.org/10.1017/S0033291712000402

- Gulpers, B., Ramakers, I., Hamel, R., Köhler, S., Oude Voshaar, R., & Verhey, F. (2016).
 Anxiety as a Predictor for Cognitive Decline and Dementia: A Systematic Review and Meta-Analysis. *The American Journal of Geriatric Psychiatry*, 24(10), 823–842.
 https://doi.org/10.1016/j.jagp.2016.05.015
- Hatch, S., Feinstein, L., Link, B. G., Wadsworth, M., & Richards, M. (2007). The Continuing Benefits of Education : Adult Education and Midlife Cognitive Ability in the British
 1946 Birth Cohort. *Journal of Gerontology*, 62(6), 404–414.
- Jajodia, A., & Borders, A. (2011). Verbal memory predicts change in Depression in Older Adults: A bidirectional Longitudinal Study. *The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences*, 66(510), 571–581. https://doi.org/10.1093/geronb/gbr035
- James, S. N., Davis, D., O'Hare, C., Sharma, N., John, A., Gaysina, D., ... Richards, M. (2018). Lifetime affective problems and later-life cognitive state: over 50 years of follow-up in a British Birth Cohort Study. *Journal of Affective Disorders*, 241, 348–355. https://doi.org/10.1016/j.jad.2018.07.078
- John, A., James, S.-N., Patel, U., Rusted, J., Richards, M., & Gaysina, D. (2019).Longitudinal associations of affective symptoms with midlife cognitive function:evidence from a British birth cohort. *British Journal of Psychiatry, In press.*
- John, A., Patel, U., Rusted, J., Richards, M., & Gaysina, D. (2018). Affective problems and decline in cognitive state in older adults: a systematic review and meta-analysis. *Psychological Medicine*, 49(3), 353–365. https://doi.org/https:// doi.org/10.1017/S0033291718001137

Jorm, A. F. (2001). History of depression as a risk factor for dementia: an updated review.

Australian & New Zealand Journal of Psychiatry, 36(6), 776–781.

Kaplan, G. A., Turrell, G., Lynch, J. W., Everson, S. A., Helkala, E.-L., & Salonen, J. T. (2001). Childhood socioeconomic position and cognitive function in adulthood. *International Journal of Epidemiology*, *30*(2), 256–263. https://doi.org/10.1093/ije/30.2.256

- Kearney, M. W. (2017). Cross-Lagged Panel Analysis. In *The SAGE Encyclopedia of Communication Research Methods* (pp. 1–6).
- Kuh, D., Pierce, M., Adams, J., Deanfield, J., Ekelund, U., Friberg, P., ... Hardy, R. (2011).
 Cohort Profile: Updating the cohort profile for the MRC National Survey of Health and
 Development: A new clinic-based data collection for ageing research. *International Journal of Epidemiology*, 40(1). https://doi.org/10.1093/ije/dyq231
- Kuh, D., Wong, A., Shah, I., Moore, A., Popham, M., Curran, P., ... Cooper, R. (2016). The MRC National Survey of Health and Development reaches age 70: maintaining participation at older ages in a birth cohort study. *European Journal of Epidemiology*, *31*(11), 1135–1147. https://doi.org/10.1007/s10654-016-0217-8
- Lyketsos, C. G., Lopez, O., Jones, B., Fitzpatrick, A. L., Breitner, J., & Dekosky, S. (2002). Prevalence of Neuropsychiatric Symptoms: Results From the Cardiovascular Health Study. *Journal of the American Medical Association*, 288(12), 1475–1483.
- Muthén, L., & Muthén, B. (2017). Mplus user's guide (eight edition)[Computer software manual]. *Los Angeles, CA*.
- Ownby, R., Crocco, E., Acevedo, A., John, V., & Loewenstein, D. (2006). Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. *Archives of General Psychiatry*, 63(5), 530–538. https://doi.org/10.1001/archpsyc.63.5.530

- Pevalin, D. J. (2000). Multiple applications of the GHQ-12 in a general population sample: an investigation of long-term retest effects. *Social Psychiatry and Psychiatric Epidemiology*, 35(11), 508–512.
- Richards, M., Shipley, B., Fuhrer, R., & Wadsworth, M. E. J. (2004). Cognitive ability in childhood and cognitive decline in mid-life: longitudinal birth cohort study. *BMJ*, *328*(7439), 552–0. https://doi.org/10.1136/bmj.37972.513819.EE
- Salthouse, T. A. (1996). The Processing-Speed Theory of Adult Age Differences in Cognition. *Psychological Review*, *103*(3), 403–428.
- Stansfeld, S., Clark, C., Bebbington, P., King, M., Jenkins, R., & Hinchliffe, S. (2014). Common mental disorders. Adult Psychiatric Morbidity Survey: Survey of Mental Health and Wellbeing, England, 2.
- Vinkers, D. J., Gussekloo, J., Stek, M. L., Westendorp, R. G. J., & van der Mast, R. C. (2004). Temporal relation between depression and cognitive impairment in old age: prospective population based study. *BMJ*, *329*(7471), 881–885. https://doi.org/10.1136/bmj.38216.604664.DE

Tables and Figures

Figure 1: Flow chart showing available sample size.

Table 1: Demographic information for analysed sample.

Figure 2: Cross lagged model of affective symptoms and verbal memory from age 53 to 69. Fully adjusted model.

Figure 3: Cross lagged model of affective symptoms and processing speed from age 53 to 69. Fully adjusted model.

Table 1: Demographic information for analysed sample.

Demographic Information		Verbal memory (N=3125)	Processing Speed (N=3127)
Sex	Male	1557 (49.8)	1559 (49.9)
N (%)	Female	1568 (50.2)	1568 (50.1)
	Professional	209 (6.7)	209 (6.7)
	Intermediate	725 (23.2)	725 (23.2)
Childhood socioeconomic position	Skilled non-manual	468 (15.0)	468 (15.0)
N (%)	Skilled manual	962 (30.8)	963 (30.8)
	Partly skilled	570 (18.2)	570 (18.2)
	Unskilled	191 (6.1)	192 (6.1)
	None attempted	1149 (36.8)	1151 (36.8)
Educational attainment	A-Level or below	1670 (53.4)	1670 (53.4)
1 (%)	Degree or above	306 (9.8)	306 (9.8)
National Adult Reading Test score Mean (SD)	NART Score	17.2 (9.8)	17.2 (9.8)
Antidepressant medication use	Yes	2833 (90.7)	2834 (90.6)
N (%)	No	292 (9.3)	293 (9.4)
Anxiolytic medication use	Yes	2968 (95.0)	2970 (95.0)
N (%)	No	157 (5.0)	157 (5.0)
	Age 53	23.93 (6.30)	281.07 (76.09)
Cognitive score	Age 60-64	24.26 (6.11)	266.71 (71.74)
	Age 69	22.20 (6.02)	262.30 (74.15)