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Abstract
Dendritic cells (DCs) are a heterogeneous population of antigen-presenting cells that act to bridge innate and adaptive 
immunity. DCs are critical in mounting effective immune responses to tissue damage, pathogens and cancer. Immature DCs 
continuously sample tissues and engulf antigens via endocytic pathways such as phagocytosis or macropinocytosis, which 
result in DC activation. Activated DCs undergo a maturation process by downregulating endocytosis and upregulating sur-
face proteins controlling migration to lymphoid tissues where DC-mediated antigen presentation initiates adaptive immune 
responses. To traffic to lymphoid tissues, DCs must adapt their motility mechanisms to migrate within a wide variety of 
tissue types and cross barriers to enter lymphatics. All steps of DC migration involve cell–cell or cell–substrate interactions. 
This review discusses DC migration mechanisms in immunity and cancer with a focus on the role of cytoskeletal processes 
and cell surface proteins, including integrins, lectins and tetraspanins. Understanding the adapting molecular mechanisms 
controlling DC migration in immunity provides the basis for therapeutic interventions to dampen immune activation in 
autoimmunity, or to improve anti-tumour immune responses.
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Introduction

Dendritic cells (DCs) are professional antigen-presenting 
cells central to the induction of adaptive immune responses 
and to the promotion of self-tolerance. In 1973, Steinman 
and Cohn were the first to isolate these cells from murine 
peripheral lymphoid organs and named them after their 
constantly extending and retracting fine dendritic cell pro-
cesses [1]. Steinman was later awarded a Nobel Prize for 
this discovery and his subsequent work in determining the 
role of DCs in adaptive immunity [2]. DCs are a highly 
heterogeneous population of cells, which have historically 
been categorised according to their phenotype, function or 

location. However, DCs have more recently been defined as 
a haematopoietic lineage in their own right [3]. DCs origi-
nate from precursor cells, such as monocytes and pre-DCs, 
in the bone marrow. Upon leaving the bone marrow, these 
precursors migrate to peripheral tissues and secondary lym-
phoid organs via blood vessels. There are five classic subsets 
of DCs defined in humans—conventional DCs type 1 and 
2 (cDC1 and cDC2), plasmacytoid DCs (pDC), monocyte-
derived DCs (moDC), and Langerhans cells [4]—and there 
are equivalent DC subsets in mice [5] (Table 1). Recently, 
this classification has been revisited, and additional DC 
subsets are defined [6, 7]. Each subset resides in a differ-
ent niche throughout the body and has a specific role in the 
immune response [8, 9] (Table 1).

Dendritic cells are challenged with trafficking enormous 
distances throughout their life cycle, exiting the bone mar-
row, and entering and seeding all organs and tissues, then 
upon activation migrating to lymphoid tissues to initiate 
adaptive immunity. Within the tissues, immature DCs act 
as sentinels, and alert to signs of tissue damage or infection 
[10–12]. Importantly, DCs play a key role in initiating an 
anti-cancer immune response [13, 14] as they can also detect 
tumour antigens produced by cancer cells, such as mutated 
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or aberrantly expressed proteins [15]. Uptake of foreign anti-
gen induces DC maturation which enables them to migrate 
to the lymph nodes via lymphatic vessels [16, 17]. Once 
activated, DCs migrate to enter lymphatic vessels to traffic 
to lymphoid tissues where they must identify and activate 
their cognate T cells to initiate adaptive immunity [18, 19].

En route through the body, DCs traverse a wide range 
of diverse tissue environments and are required to cross 
barriers between different tissues and vessels to carry out 
their function. Immature DCs first scan peripheral tis-
sues, before migrating through the lymphatics and, finally, 
within secondary lymphoid tissues such as lymph nodes. 
This wide range of microenvironments requires DCs to 
deploy different migration mechanisms, controlled by a 
diverse range of soluble and membrane-bound proteins. 
In this review, we discuss the molecular mechanisms 

involved in DC migration through these diverse environ-
ments focussing on the roles of the actin cytoskeleton and 
membrane proteins, including adhesion molecules and tet-
raspanins. Tetraspanins, a family of transmembrane pro-
teins, interact with membrane and intracellular proteins to 
organise the plasma membrane into tetraspanin-enriched 
microdomains, which facilitate cell–cell interactions and 
effective downstream signalling [20–22]. Tetraspanins 
are expressed on DCs [23], and several tetraspanins have 
been implicated in controlling DC migration through inter-
actions with C-type lectin receptors, integrins or small 
GTPases [24–27]. Finally, we explore DC migration in 
cancer. Understanding which migratory mechanisms may 
be impaired can aid in the development of anti-cancer ther-
apies aiming to restore DC function and enhance presenta-
tion of tumour antigens.

Table 1   Overview of classic definition of human, and equivalent mouse, dendritic cell subsets

Each human DC subset has a distinct development and function, and is identified by the expression of different surface markers, and tetraspanin 
expression pattern [4, 5, 89, 90, 165, 166]

Human DC subset Mouse DC subset Development and function Surface markers Tetraspanin surface 
expression

Classical DC type 1 (cDC1) CD8α+ DC Bone marrow-derived, 
myeloid origin

Able to cross-present antigens 
to CD8+ T cells via MHC 
class I

Promote Th1 and natural 
killer cell responses

Involved in immunity against 
intracellular pathogens, 
viruses, and cancer

CD13
CD103
CD141
CLEC9A
XCR1

CD9
CD37
CD53
CD81hi

CD82
CD151
Tspan31

Classical DC type 2 (cDC2) CD4+ DC Bone marrow-derived, 
myeloid origin

Able to activate Th1, Th2, 
Th17, and CD8+ T cells

Involved in immunity against 
bacteria and fungi

CD1c
CD11b
CD11c
SIRPα

CD9
CD37
CD53
CD81hi

CD82
CD151
Tspan31

Plasmacytoid DC (pDC) Plasmacytoid DC (pDC) Bone marrow-derived, lym-
phoid origin

Secrete large amounts of 
IFN type 1 in response to 
TLR7/9 activation

Mainly involved in anti-viral 
immunity

CD123
CD303/CLEC-4C
CD304/NRP1

CD9lo or CD9hi

CD37
CD53hi

CD81lo or CD81hi

CD82lo

CD151lo

Tspan31
Langerhans cell Langerhans cell Derived from erythromyeloid 

progenitors found in the 
foetal liver

Reside within epithelial layers
Capable to self-renew

CD1a
CD207/Langerin
E-Cadherin

Not studied to date

Monocyte-derived DC 
(moDC)

Bone marrow-derived DC 
(BMDC)

Bone marrow-derived, 
myeloid origin

Present in tissues during 
steady state, but also expand 
populations of tissue-res-
ident DCs during inflam-
mation

CD1a
CD1c
CD11c
CCR2

Not studied to date
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Seeding of peripheral tissues

It is believed that the final differentiation into immature 
DCs happens upon leaving the blood and entering the tis-
sues [28–31]. Similar to other leukocytes, extravasation 
of DC precursors is thought to occur in three main steps 
and involves coordinated signalling through cytokines, 
selectins and integrins [32–34], potentially mediated by 
tetraspanin proteins [26, 27]. First, tethering occurs which 
causes the cells to slow down and roll along the endothe-
lium. L-selectin expressed on circulating (pre-)DCs, 
and E- and P-selectin on activated endothelial cells are 
required for this process [35]. L-selectin or P-selectin defi-
cient mice showed impaired leukocyte rolling and homing 
of lymphoid and peripheral tissues [36, 37]. P-selectin-
dependent rolling is decreased in the absence of tetras-
panin CD63 [38]. This is explained by decreased surface 
expression and clustering of P-selectin in CD63-deficient 
endothelial cells, indicating tetraspanin CD63 as an impor-
tant partner protein for P-selectin [38].

Secondly, DC precursor cells undergo adhesion result-
ing in arrest of movement. This is initiated by binding 
of chemoattractants expressed by blood endothelium to 
CX3CR1 on pre-DCs [29, 39]. This causes a conforma-
tional change and activation of α4β1 and β2 integrins on 
the DC precursor cells, which will subsequently bind their 
ligands such as ICAM-1/2, VCAM-1, and MAdCAM-1 
expressed on blood endothelial cells [32]. This causes 
firm adhesion and arrest of the cells, and finally, exit from 
the blood vessels via diapedesis [32]. Five tetraspanin 
family members, CD9, CD37, CD53, CD81, CD82, and 
CD151, are involved in the regulation of α4β1 and/or β2 
integrins on several leukocyte types [40–49], but their role 
on rolling and transmigration of DC precursor cells into 
peripheral tissues is not explored. Cd37 and Cd81 knock-
out mice have a normal immune system development [50, 
51], and it is therefore not expected that these tetraspanins 
are required for homing of DC precursor cells to peripheral 
tissues. However, as some tetraspanin proteins are geneti-
cally similar [52], compensation mechanisms by other tet-
raspanins in this process cannot be excluded.

Activation of dendritic cells by pathogens 
and danger signals

Immature DCs are activated upon recognising patho-
gen-associated or damage-associated molecular patterns 
(PAMPs or DAMPs) via pattern recognition receptors 
(PRRs) [53, 54]. PAMPs are mostly derived from path-
ogens and include molecular motifs, such as bacterial 

lipopolysaccharide (LPS) or nucleic acids [55]. In con-
trast, DAMPs are danger signals, many of which are aber-
rantly expressed self-molecules, produced upon stress or 
injury, for example dying cells, necrosis or cancer [53, 56]. 
PRRs are found both on and within many immune cells 
allowing detection of both extracellular and intracellular 
danger signals, respectively [55]. One important subgroup 
of PRRs is the Toll-like receptors (TLRs), a protein fam-
ily composed of twelve different receptors expressed on 
leukocytes and stromal cells, which are able to detect both 
DAMPs and PAMPs [53, 57]. TLR stimulation initiates a 
signalling cascade resulting in activation of transcription 
factors, including NF-κB [58]. NF-κB is known to pro-
mote the expression of pro-inflammatory cytokines, which 
further stimulates an immune response [59]. In some cell 
lines, NF-κB has been shown to upregulate expression of 
the chemokine receptor CCR7, a critical signalling mol-
ecule for the homing of DCs to the lymphoid tissues [58, 
60]. Additionally, others have suggested that inflammatory 
cytokines produced in response to TLR stimulation, such 
as tumour necrosis factor alpha (TNFα), may activate DCs 
in certain tissues [61, 62]. However, in vivo experimental 
evidence has shown that these mediators in isolation are 
not sufficient to induce full activation of DCs within sec-
ondary lymphoid tissues [63].

One common DAMP molecule, released upon cellular 
damage, is adenosine triphosphate (ATP), which is normally 
only present at very low levels within tissues. DCs sense 
high levels of extracellular ATP through P2X7 purinergic 
receptors, which triggers fast migration of DCs [64]. ATP-
dependent activation of P2X7 instigates the opening of pan-
nexin 1 (Panx1) membrane channels in the plasma mem-
brane. This permits the release of intracellular ATP, which 
is able to act in an autocrine fashion to perpetuate fast migra-
tion. As well as stimulating Panx1 channels, P2X7 activation 
also allows entry of extracellular calcium into the DC [64], 
which may directly or indirectly stimulate reorganisation of 
the actin cytoskeleton. This happens particularly at the cell 
rear where it causes the formation of a large pool of F-actin 
critical for fast DC migration [64].

Migration of dendritic cells within peripheral 
tissues

A population of immature DCs resides in every tissue of 
the body. They constantly patrol and sample for antigens, 
which are engulfed by receptor-mediated phagocytosis or 
non-specific macropinocytosis [65, 66]. Immature DCs pri-
oritise these endocytic processes to facilitate their immune 
sentinel function. Conversely, immature DCs have a limited 
migratory capacity and there is low expression of molecules 
required for antigen presentation [67]. Immature Langerhans 
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cells reside within epithelial layers and constitute one of 
the first lines of immunological defence against pathogens 
[68]. Lack of migratory activity allows them to form a 
dense network across the interfaces between tissues and the 
external environment. In this sessile state, Langerhans cells 
repeatedly extend and retract protrusions into intercellular 
spaces and also between epidermal cells. This behaviour 
enables sampling of a large area of the epidermis whilst 
remaining stationary [69, 70]. Other immature DC subsets 
do not tend to remain sessile, although their movement is 
still limited until they undergo maturation. Once DCs rec-
ognise a potential threat, they switch their behaviour away 
from endocytosis and towards migration. To move through 
tissues, DCs form actin-rich protrusions at the leading edge 
of the cell, which is accompanied by passive movement at 
the trailing edge, allowing the so-called “flowing” of the cell 
[71]. Conversely, “squeezing” of the cell, allowing forward 
movement of the nucleus, is facilitated by the motor protein 
myosin II, resulting in contraction at the cell rear. DCs have 
been described to rapidly move in an amoeboid-like fashion, 
using high actomyosin contractility through the cell cortex to 
constantly alter their shape [72–75]. This mode of motility is 
independent of integrins as ablation of integrin function by 
deletion of all integrin heterodimers and Talin, responsible 
for integrin activation, did not affect DC migration in three-
dimensional (3D) environments or in vivo [71].

The discovery that DC migration within tissues is integ-
rin-independent brought into question the previous assump-
tions regarding the role of mechanical forces in migration. 
Adhesive cells are known to exert large forces upon the 
surfaces on which they migrate, decreasing their sensitiv-
ity to small forces [76–78]. Conversely, it has been shown 
that cells migrating independently of adhesion molecules 
exert significantly smaller forces on the substratum [78, 79], 
suggesting that migrating DCs may indeed be sensitive to 
small forces. Hydraulic resistance, created by displacement 
of fluid as cells move through tissue, coupled with geometric 
confinement is the main factors which restrict DC movement 
within tissues. However, immature DCs have decreased sen-
sitivity to hydraulic resistance as a consequence of their con-
stitutive ability to engulf extracellular fluid non-specifically 
by macropinocytosis [65, 78]. Inhibition of macropinocyto-
sis was shown to restore barotaxis (i.e. following paths of 
least resistance) in immature DCs [78]. Although the main 
function of macropinocytosis is antigen uptake, its ability to 
attenuate hydraulic resistance and thus overcome barotaxis 
is very useful. This permits immature DCs to patrol tissues 
more thoroughly, particularly through (parts of) tissues with 
high hydraulic resistance which may otherwise be inacces-
sible. Potentially, DCs may be able to increase macropino-
cytosis in response to external stimuli, like increased volume 
of extracellular fluid, facilitating effective sentinel activity 
during inflammation [78].

Whilst patrolling tissues, immature DCs tend to move 
at fluctuating speeds [80]. This can be explained by the 
antagonistic effects of myosin IIA in fast cell migration ver-
sus macropinocytosis. During phases of slow movement, 
high levels of myosin IIA are observed at the front of DCs 
[81]. Further analysis using a microfluidic device capable 
of separately altering myosin IIA activity at the front and 
back of the cell revealed that the slow movement was caused 
by myosin IIA activity at the cell front. This suggests that 
anterior accumulation of myosin IIA slows down DC move-
ment by disrupting the normal front-to-back myosin gradi-
ent within the cell. Enrichment of myosin IIA at the DC 
front is controlled by the MHC class II-associated protein 
invariant chain (CD74) [81]. The localisation of myosin at 
the DC front is, furthermore, important for macropinocy-
tosis, as both myosin II-deficient and CD74-deficient DCs 
showed less efficient formation and rearward intracellular 
transport of macropinosomes [81]. Another putative reason 
for the variable speeds observed within immature DCs is 
the regulation of filamentous actin (F-actin) within the cell. 
During slow movement, F-actin is accumulated at the cell 
front of immature DCs [82]. Conversely, during phases of 
faster movement, nucleation of a small pool of F-actin at the 
cell rear promotes cell migration. It was suggested that the 
protein complex Arp2/3, known to nucleate branched actin 
[83], may be responsible for the accumulation of F-actin at 
the cell front. In agreement with this hypothesis, inhibition 
of Arp2/3 in immature DCs resulted in a reduction of F-actin 
at the front of the cell. Furthermore, the Arp2/3 complex, 
activated by the small GTPase Cdc42, was shown to be spe-
cifically localised around macropinosomes at the front of 
the cell. Knock-out of the Arp2/3 complex protein ARPC2 
further showed the importance of the Arp2/3 complex in 
effective formation of macropinosomes [82]. Thus, fluctuat-
ing speeds of immature DCs facilitate effective endocytosis 
during space exploration by immature DCs. Both myosin 
IIA and the Arp2/3 complex play important roles in macro-
pinosome formation required for efficient antigen uptake by 
immature DCs.

Directional migration of dendritic cells 
towards lymphatics

Activation of DCs by PRR stimulation causes DC matura-
tion [54]. During the maturation process, DCs downregulate 
processes linked to their sentinel function. Macropinocytosis 
is decreased by downregulation of Cdc42 and a reduction of 
Arp2/3 levels within the cell [82]. In response to decreased 
macropinocytosis, DC sensitivity to hydraulic resistance is 
increased, and thus, they begin to undergo barotaxis. Neutro-
phils have also been shown to exhibit barotaxis in confine-
ment, favouring the path of least resistance [84]. Barotactic 
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movement enables the activated DCs to take the most direct 
route to the nearest lymph vessel, as they avoid long routes 
and dead ends which have a higher resistance [78]. Further-
more, upon maturation, DCs increase the expression of cell 
surface molecules related to antigen presentation and direc-
tional migration (Table 2) [85–88]. Differential expression 
of tetraspanins CD9 and CD81 on human pDCs (Table 1) 
defines subsets with different localisation and function [89, 
90]. However, it is currently unknown if DC activation and 
maturation changes tetraspanin expression, and as such con-
trols DC migration.

Expression of the G-protein coupled chemokine receptor 
CCR7 is required for DC migration through the lymphatic 
system [91]. The chemokines CCL19 and CCL21 are both 
ligands of CCR7, but CCL21 is thought to be the chemokine 
critical for DC migration [92, 93], whereas CCL19 plays a 
less significant role [94]. Lymphatic endothelial cells (LECs) 
are constitutively expressing CCL21 allowing chemotaxis 
of DCs during steady state [92, 95]. Upon inflammation, 
CCL21 expression is upregulated on LECs following the 
detection of pro-inflammatory cytokines, like TNFα, which 
facilitates increased haptotaxis of DCs towards the nearest 
lymphatic vessel [95]. Haptotaxis is a form of directed cell 
movement along immobilized gradients of adhesion cues or 
chemokines [92, 96]. The highly positively charged C-termi-
nus of CCL21 can bind to heparin sulphates present on cell 
surfaces and within the extracellular matrix, thus forming a 

long-lasting local gradient of CCL21 on LECs [92]. The gra-
dient starts approximately 90 μm from the lymphatic vessel, 
which coincides with the distance at which DCs shift from 
random to highly directional movement [92]. Oligomerisa-
tion of CCR7 on the cell surface of DCs, induced by the 
inflammatory mediator prostaglandin E2 (PGE2), has been 
postulated to play a role in efficient migration of some DC 
subsets towards CCL21 [97]. CCR7 oligomerisation allows 
binding and activation of Src family kinases, initiating Src 
signalling pathways in addition to G-protein coupled recep-
tor signalling from CCR7. Phosphorylation of oligomeric 
CCR7 by Src at a tyrosine residue creates a binding site 
for further signalling molecules containing SH2-domains, 
which is important for efficient cell migration towards 
CCL21 [97]. The gap junction protein connexin43 (Cx43) 
expressed in cDCs has also been identified as a potential 
player in DC migration towards CCL21 [98]. In vitro stud-
ies using bone marrow-derived DCs (BMDCs) from mice 
with reduced Cx43 expression revealed defective migra-
tion towards CCL21. Moreover, reduced cDC migration to 
the lymph node in vivo was observed in mice expressing a 
truncated form of Cx43 [98]. Although there was no direct 
connection defined between Cx43 and the directional move-
ment of DCs, it has previously been noted that connexin 
interacts with c-Src kinase involved in CCL21-directed 
movement [97–99]. Human monocyte-derived mature DCs 
highly express the GPI-anchored protein semaphorin 7A 

Table 2   Key cell surface proteins and associated tetraspanins in dendritic cell immune function [85–88, 91, 100, 126, 167–169]

a Tetraspanin interaction with these molecules has not all been reported on DCs
b CD63 is localised intracellularly
c CD151 on DCs controls co-stimulation of T cells during antigen presentation via MHC-II, but the exact mechanism is unknown

Maturation markers Function Tetraspanin interactiona

Adhesion Semaphorin 7A (Sema7A) Stimulate moDC migration by reducing 
adhesion and promoting protrusion 
formation

Unknown

Lymphocyte function-associated antigen 
1 (LFA1)

Integrin able to regulate the duration of 
contact between DCs and naïve T cells 
during antigen presentation

CD9 [41], CD53 [49, 170, 
171], CD81 [172], CD82 
[48]

Antigen cross-presentation Major histocompatibility complex I 
(MHC-I)

Allow presentation of intracellular 
protein-derived peptides to CD8+ T 
cells

CD53 [49, 173], CD82 [174]

Major histocompatibility complex II 
(MHC-II)

Allow presentation of extracellular 
protein-derived peptides to CD4+ T 
cells

CD9, CD37, CD53, CD63b, 
CD81, CD82 [49, 173, 
175–178]

Co-stimulation CD40 Receptor involved in further DC activa-
tion

Unknown

CD80, CD83, CD86 Co-stimulatory surface proteins needed 
for T-cell activation

CD151 [179]c

Migration Chemokine receptor 7 (CCR7) Chemokine receptor required for DC 
migration to the LN

Unknown

C-type lectin-like receptor 2 (CLEC-2) Interaction with podoplanin, a glycopro-
tein expressed on the surface of LECs 
and FRCs

CD37 [127]
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(SEMA7A) which has been shown to promote chemokine-
driven DC migration [100]. Ex  vivo assays with LPS-
stimulated BMDCs from Sema7A knock-out mice showed 
a reduced capacity to migrate towards CCL21, despite 
expressing similar surface levels of CCR7. However, when 
replicated in vivo, these results were not demonstrated to 
be significant, and it was suggested that this was due to 
the complicated multi-step migration that occurs in vivo. 
Interestingly, when using a collagen matrix to simulate the 
complex tissue environment, migration of mature DCs with 
reduced SEMA7A expression (SEMA7A-KD) was more 
significantly decreased. These SEMA7A-KD DCs also 
lacked the ability to efficiently form actin-rich protrusions 
causing a slower migration through the 3D environment and 
were more adhesive. This suggests that, SEMA7A at least 
partially, controls migration by reducing cell adhesion and 
promoting protrusion formation [100].

DC maturation induces cytoskeletal changes, which opti-
mise DC motility to permit fast migration [82]. In contrast 
to immature DCs, the main location of F-actin in mature 
DCs is within the cell cortex at the rear of the cell [82]. 
The Formin protein family member mDia1, activated by the 
small GTPase RhoA, was shown to be critical in maintain-
ing F-actin at the cell rear, thereby ensuring fast migration. 
Moreover, experiments involving mDia1 knock-out DCs, 
suggested its involvement in facilitating chemotaxis of 
mature DCs towards CCL21 [82].

Entry into lymphatics

To reach the lymph nodes, DCs must enter the afferent lym-
phatic vessels by a process known as intravasation. DCs tend 
to enter the lymphatics at the blind-ended initial lymphat-
ics, called lymphatic capillaries [101, 102]. The first step in 
intravasation involves crossing the extracellular matrix bar-
rier of the basement membrane surrounding the lymphatic 
vessel. This basement membrane has a discontinuous struc-
ture, and intravasating DCs scan for gaps to traverse into 
the lymphatics [102]. DCs extend a cell protrusion into the 
opening, before contracting the cell rear to squeeze through 
the extracellular matrix barrier [102]. Next, they must cross 
the monolayer of LECs. Between oak-leaf shaped LECs 
that align the lymphatic capillaries, there are specialised 
junctions, containing a button-like distribution of adhesion 
molecules [101]. Similar to other endothelial cell junctions, 
the adhesion molecules expressed include tight junction pro-
teins and VE-cadherin. However, these specialised junctions 
also specifically express high levels of the lymphatic vessel 
endothelial protein (LYVE-1), which acts as receptor for 
hyaluronic acid (HA) [103]. HA is found to be expressed on 
the surface of DCs, and HA binding is increased upon DC 
maturation [104, 105]. DCs attach to LECs via interactions 

between HA and LYVE-1+ transmigratory cups, which 
extend from the LECs and engulf the DC, facilitating entry 
into the lymphatic capillary [105]. Disruption of the interac-
tion between LYVE-1 and HA using monoclonal antibodies 
resulted in reduced entry of DCs in the lymphatic vessels 
[105], suggesting that this molecular interaction is critical 
for transmigration.

As discussed above, DC migration through a 3D envi-
ronment (i.e. the tissue) occurs independently of integrins 
[71]. However, upon inflammation, lymphatic endothelium 
upregulates expression of integrin ligands (e.g. ICAM1 and 
VCAM1), promoting adhesion-mediated DC transmigra-
tion [95, 106, 107]. In the presence of the pro-inflammatory 
cytokine TNFα, blocking of β2 integrin using monoclonal 
antibodies resulted in a reduction in DC transmigration 
[95]. The adhesion molecule L1 (also known as L1CAM or 
CD171) is involved in neuronal cell migration and cell–cell 
adhesion by intercellular binding to L1 or integrins [108]. L1 
is also expressed on the surface of some DC subsets, includ-
ing Langerhans cells [109, 110]. L1-negative DCs show 
reduced adhesion to the endothelium and impaired transmi-
gratory capacity across the lymphatic endothelium [110], 
indicating L1 as an important player in DC intravasation.

CCL21 is also thought to play a role in DC intravasation 
as it stimulates DC migration across the endothelium in vitro 
[95]. CCL21 has been observed within intracellular vesicles 
and the trans-Golgi network within LECs [111]. Molecular 
interactions between DCs and LECs, and mechanical forces 
exerted by DCs onto the LECs, increase intracellular cal-
cium concentrations, which acts as a signal for secretion 
of intracellular CCL21 [111], and may stimulate the DC to 
pass through the LEC monolayer. In addition, the molecu-
lar and physical signals acting on the LEC may combine to 
propagate entry into the lymphatics [111]. Semaphorin 3A, 
expressed on LECs, may also be involved in the guidance 
of DCs into the lymphatics [112]. Semaphorin 3A is able to 
promote actomyosin contraction of the cell rear via its recep-
tor components Plexin-A1 and Neuropilin-1 (NRP1), found 
at the trailing edge of the cell. This contraction facilitates 
squeezing of the DC through the lymphatic endothelium, 
and mice with deletion of the Plexin-A1 gene Plxna1 were 
shown to have reduced migration to the lymph nodes [112].

Migration through lymphatics and entry 
into the lymph nodes

Once DCs have entered lymphatics, they require 24–72 h 
to reach the draining lymph nodes. Within the lymphatics, 
DCs move slowly along the vessel wall. Passive movement 
along with flowing lymph may play a role, but the hydro-
dynamic forces within the slow-moving lymph of the cap-
illaries are suspected to be insufficient [113]. Within the 
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lymphatics, similar to interstitial movement, DCs crawl by 
active extension of protrusions at the cell front [114]. Rho-
associated protein kinase (ROCK)-driven contractility has 
been suggested to play a role in intralymphatic DC migration 
[115–117]. Inhibition of ROCK in steady state was shown 
to slightly decrease intralymphatic migration, but dur-
ing inflammation, the contribution of ROCK activity was 
much more significant [117]. Furthermore, intralymphatic 
migration of DCs towards the lymph nodes is thought to 
be reliant on interactions between CCL21 and CCR7 [91, 
113]. CCL21 is present both within the lymph and on the 
luminal surface of LECs, and forms a functional gradient 
within the lymphatic capillaries [113]. Although blockade 
of either CCR7 or CCL21 did not affect the movement of 
DCs within the lymphatics, it did severely impact migration 
towards the lymph node [113], suggesting that the CCL21 
gradient is required for directional DC migration towards the 
lymph node. After leaving the lymphatic capillaries, DCs 
enter the large collecting lymph vessels. Lymph is able to 
flow faster in these vessels due to the presence of contracting 
lymphatic muscle cells surrounding the vessels, and intra-
luminal valves which prevent backflow of the lymph [118]. 
This higher speed allows DCs to passively move with the 
lymph up to speeds of around 1200 µm/min [114].

Upon entry into the lymph node, DCs migrate through 
the floor of the subcapsular sinus towards the paracortex, 
which is composed of T lymphocytes and fibroblastic reticu-
lar cells (FRCs) [119]. FRCs are specialised fibroblasts that 
produce and enwrap reticular fibres, made of collagen fibrils 
and other extracellular matrix components, which together 
form the conduit network allowing lymph to flow through 
the lymph node. FRCs form a 3D network within the lymph 
node, which serves as a scaffold for immune cell migra-
tion [120–122]. FRCs also express both CCL19 and CCL21, 
thereby contributing to the chemokine gradient guiding DCs 
towards the lymph node paracortex to activate T cells [123]. 
In addition to CCR7/CCL21 interaction, FRCs and LECs 
express the glycoprotein podoplanin [124], the ligand for 
C-type lectin-like receptor 2 (CLEC-2) upregulated on DCs 
during maturation [125, 126]. Interactions between podo-
planin and CLEC-2 play a role in DC migration through the 
lymphatics and within the lymph node [126, 127]. Deletion 
of CLEC-2 from DCs or podoplanin from FRCs impairs DC 
migration along these stromal cell scaffolds [126]. Interac-
tion of podoplanin with CLEC-2+ DCs induces the forma-
tion of highly branched protrusions with an accumulation 
of F-actin at the tips, whereas CLEC-2-deleted DCs were 
unable to form protrusions [126]. Interestingly, podoplanin 
and CCL21 interact with each other on LECs [128], but a 
role of this interaction in DC migration has not been directly 
addressed. Loss of tetraspanin CD9, a partner protein of 
podoplanin [129], or tetraspanin CD82 causes a decrease in 
podoplanin surface expression [130, 131]. Although DCs 

could still bind to and interact with CD9-deficient FRCs 
[130], the role of tetraspanins in CLEC-2/podoplanin-
dependent DC migration has not been studied.

CLEC-2 activation initiates a signalling cascade via 
spleen tyrosine kinase (Syk) [132]. Podoplanin binding to 
CLEC-2 results in Syk-dependent activation of Vav, which, 
in turn, activates the RhoGTPase Rac1 driving formation of 
actin-rich protrusions. Indeed, increased Rac1 activity was 
observed upon CLEC-2 activation by recombinant podo-
planin [126]. Simultaneously, RhoA activity was decreased, 
which reduced the level of phosphorylated myosin light 
chain (pMLC) within the cell, resulting in decreased acto-
myosin contractility enabling DCs to spread along the FRC 
surface [126]. Tetraspanin CD37 directly interacts with 
CLEC-2, and expression of CD37 is required for cluster-
ing of CLEC-2 upon podoplanin binding [127]. DCs from 
Cd37 knock-out mice, similar to CLEC-2-deficient DCs, 
show impaired protrusion formation upon stimulation with 
recombinant podoplanin, and reduced migratory capacity 
[127, 133]. This indicates that CD37-enriched microdomains 
facilitate localisation of CLEC-2 and downstream signalling 
activation.

Tetraspanin CD81 can directly interact with Rac1 GTPase 
[134], and is required for Rac1 and integrin localisation at 
the leading edge of DCs [135]. CD81 knock-down DCs 
were unable to form lamellipodia protrusions, which signifi-
cantly reduced their migratory capacity in the presence of a 
CCL19 gradient in a 2D environment. Loss of CD81 expres-
sion did not affect integrin-independent DC migration in a 
3D environment [135], indicating that CD81 only controls 
adhesion-mediated cell migration by coupling integrin func-
tion to the actin cytoskeleton. Conversely, tetraspanin CD82 
is upregulated in activated DCs, and decreases DC migra-
tion by reducing activation of RhoA [136]. This results in 
cytoskeletal rearrangements allowing DC spreading, which 
facilitates the formation of stable interactions between DCs 
and T cells to present antigens and effectively induce an 
immune response [136].

Dendritic cell migration in cancer

Tumour cells have often lost the ability to undergo pro-
grammed cell death [137], so activation of the immune 
system is a powerful therapeutic strategy to both eradicate 
tumour cells and prevent further growth at metastatic sites 
[13, 14]. The cellular composition of the tumour microen-
vironment is critical to tumour growth and in determin-
ing response to therapy [138]. Besides tumour cells, the 
tumour microenvironment consists of innate and adaptive 
immune cells, and other stromal cells such as fibroblasts 
[139]. Immune cell types within the tumour microenviron-
ment can promote or inhibit cancer progression, but pDCs 
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play a dual role [140]. On one hand, pDCs suppress anti-
tumour immunity by activating regulatory T cells within 
the tumour microenvironment [141, 142]. As such, recruit-
ment and presence of pDCs in tumours are often correlated 
with poor prognosis [141, 142]. On the other hand, pDCs 
activated with tumour antigens, either ex vivo [143, 144] or 
via in vivo targeting [145], drive a potent cytotoxic CD8+ 
T cell response against the tumour. This double pDC func-
tion in cancer can potentially be explained by functional 
differences in pDC subsets, which are characterized by 
differential expression of tetraspanin CD9 and CD81 [89, 
90]. CD9−CD81+ pDCs induce regulatory T cells and are 
immunosuppressive, whereas CD9+CD81− pDCs secrete 
type I interferon (IFNα) and drive anti-tumour immunity 
via activation of cytotoxic CD8+ T cells [89, 90]. Expression 
of these two tetraspanins can be used to characterize pDC 
subsets in the tumour microenvironment, and to enrich for 
pDCs with immune promoting capacity in therapeutic DC 
vaccinations [146].

cDCs, and in particular cDC1s, have been associated with 
immune destruction of cancers [147, 148]. The anti-cancer 
functions of cDC1s are associated with their ability to take 
up and cross-present tumour antigens via MHC class I mol-
ecules to naïve CD8+ T cells in the tumour-draining lymph 
node [149]. Upon activation, cytotoxic CD8+ T cells are 
able to migrate to the tumour and kill cancer cells. cDC1 
cells are further able to assist CD8+ T cells by producing 
large amounts of interleukin-12 (IL-12), a cytokine which 
is known to support the cytotoxic effector function of CD8+ 
T cells [150]. Although cDC1s are seldom found in the 
tumour microenvironment, their presence in melanoma is 
linked to increased T cell infiltration [151]. Therefore, it 
was suggested that if levels of cDC1 in the tumour microen-
vironment could be increased, it may increase the efficacy 
of immunotherapy.

One recent line of research suggests that the inflamma-
tory environment of tumours can be targeted therapeuti-
cally to alter DC infiltration and enhance anti-tumour T cell 
responses [147]. Prostaglandin E2 (PGE2) is an eicosanoid 
secreted by many cells throughout the body, particularly dur-
ing cell death [152]. PGE2 has been linked to the promo-
tion of cancer by causing immunosuppression, as well as 
supporting processes such as growth and survival in cancer 
cells [153]. Deletion of the Ptgs1 and Ptgs2 genes coding 
for cyclooxygenase (COX) enzymes prevents the produc-
tion of PGE2 and facilitates accumulation of cDC1s within 
the tumour [154]. In COX-deficient tumours, cDC1s form 
clusters at a distance from the tumour edge and blood vessels 
within the tumour, demonstrating more effective infiltration 
[155]. These PGE2-deficient tumours also had increased lev-
els of natural killer (NK) cells, which localised in the same 
areas as cDC1s. NK cells recruit cDC1s to the tumour by 
highly expressing chemokines CCL5 and XCL1 [155]. Gene 

expression data sets and The Cancer Genome Atlas con-
firmed a similar relationship between NK cells and cDC1s 
in patients, and furthermore, higher intratumoral expression 
of NK cells and cDC1s positively correlates with survival 
in some cancers, including melanoma [155]. Since COX 
activity can be effectively blocked by existing drugs includ-
ing aspirin, this mechanism of improving DC infiltration to 
tumours continues to be of huge interest for enhancing the 
effectiveness of immunotherapy.

In addition to suppressing immune responses by pre-
venting immune cell recruitment, tumours are also able 
to control DC migration to tumour-draining lymph nodes. 
Cancer-associated vasculature has increased expression of 
the adhesion protein L1 [110]. Although its biological rele-
vance in the tumour is not well understood, it was speculated 
that this may promote migration of non-antigen activated, 
immature DCs to the lymph node, where they can drive a 
tolerogenic response which supports tumour immune escape 
[110]. Alternatively, the tumour can inhibit DC migration to 
the tumour-draining lymph node by overexpressing trans-
forming growth factor beta (TGF-β) [156–158], a cytokine 
found to be produced by many different cancers, and has 
been associated with poor outcome [159, 160]. TGF-β has 
previously been shown to inhibit the expression of CCR7 on 
BMDCs [161], suggesting that a lack of chemokine guid-
ance may explain the decreased capacity of DCs to reach the 
tumour-draining lymph node. There have also been reports 
that TGF-β produced by the tumour may be able to travel to 
the tumour-draining lymph node and cause apoptosis of DCs 
[162]. A decreased number of DCs within the tumour-drain-
ing lymph node creates an immunosuppressive environment 
which may facilitate metastasis to these lymph nodes [157].

Concluding remarks

As sentinels of the immune system and bridge between the 
innate and adaptive immune system, DCs migrate through 
different tissues and across many barriers. DCs are equipped 
with a molecular toolbox to adapt to these different environ-
ments (Fig. 1). Environmental cues and cell–cell interac-
tions result in integrin activation, increased expression of 
chemokine and C-type lectin receptors, and changes to the 
actin cytoskeleton. One mechanism crucial for the migration 
of activated DCs is the interaction between the chemokine 
CCL21 and its receptor CCR7 located on the surface of DCs 
[88, 91]. Although other molecular processes contribute 
to DC migration, none of them result in DC arrival at the 
lymph node without chemokine guidance. Except CCR7 [88, 
91], deletion of other proteins did not completely inhibit DC 
migration, suggesting that proteins work synergistically to 
enable efficient and fast migration, but that on their own, 
they are not essential for DC migration to the lymph nodes.



523Medical Microbiology and Immunology (2020) 209:515–529	

1 3

Cancer cells often have immune escape mechanisms, 
which prevents the development of a successful anti-
tumour immune response. The capability of DCs to pre-
sent antigen to and activate T cells makes them essential 
for T cell-mediated tumour rejection [13, 14]. As such, 
modulation of DC function is of emerging interest to 
improve anti-cancer immunotherapy [147]. Most research 
has been focused on improving activation of DCs using 
tumour antigens or TLR ligands, and administration of 
ex vivo activated DCs, the so-called DC vaccines [147]. 
However, these strategies do not take into account the 
migratory capacity of DCs. Inhibition or reduction of 
TFG-β1 in tumours could potentially be used to increase 
migration of DCs to the tumour-draining lymph node to 
present tumour antigens [157, 158]. Furthermore, dampen-
ing PGE2 in the tumour microenvironment may be a novel 
strategy to increase the recruitment of DCs to the tumour 
[155]. This has particular relevance to a recently published 
study which indicated that intratumoral DCs may play a 
role in the efficacy of anti-tumour responses in anti-PD-1 
therapy, which is already used in practice [163].

Tetraspanins control several aspects of anti-tumour 
immunity [164], but their role in DC migration from the 
tumour to the lymph nodes and vice versa has not been 
extensively addressed. One study reported increased 
tumour growth in Cd37 knock-out mice [133]. This was 
caused by an impaired T cell-driven anti-tumour immune 
response due to migration failure of CD37-deficient DCs. 
Further research on the role of tetraspanins in control-
ling protein expression and DC signalling may enable the 
discovery of therapeutic strategies targeting tetraspanins 
to promote DC migration [164]. In conclusion, studies 
modulating DC migration in cancer are necessary to 
determine if this strategy, potentially in combination with 
current therapies, will improve anti-cancer immunity.
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Fig. 1   Surface proteins and 
cytoskeletal processes involved 
in dendritic cell migration. 
Left panel shows molecular 
mechanisms of precursor cells 
and immature DCs. Right panel 
shows molecular mechanisms 
driving directional migration of 
mature DCs. Tetraspanins are 
depicted as black four-trans-
membrane proteins. For detailed 
explanation, see the body of the 
text. CCL21 chemokine ligand 
21, CCR7 chemokine receptor 
7, CLEC-2 C-type lectin-like 
receptor 2, DC dendritic cell, 
HA hyaluronic acid, SEMA 
semaphorin. Image created with 
BioRender.com
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