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Abstract—In this paper, based on Alternating Direction 

Multiplier Method (ADMM) and Compressed Sensing (CS), we 
develop three types of novel convex optimization algorithms for 
the quantum state estimation and filtering. Considering sparse 
state disturbance and measurement noise simultaneously, we 
propose a quantum state filtering algorithm. At the same time, 
the quantum state estimation algorithms for either sparse state 
disturbance or measurement noise are proposed, respectively. 
Contrast with other algorithms in literature, simulation 
experiments verify that all three algorithms have low 
computational complexity, fast convergence speed and high 
estimation accuracy at lower measurement rates.  

Keywords—quantum state estimation and filtering, Alternating 
Direction Multiplier Method, convex optimization algorithm 

I. INTRODUCTION  
Quantum state estimation is the foundation of quantum 

information research [1]. Quantum state tomography (QST) is 
a method used commonly for quantum state estimation, which 
was first proposed by Stokes. Cahill and Glauber proposed to 
restore quantum state information by reconstructing the density 
matrix of quantum states in 1969, which laid the basis of 
quantum tomography [2]. An n-qubit quantum system can be 
fully described by a density matrix d dr ´Î £ ( 2nd = ) with 2d  
parameters, which is a positive semi-definite and unit-trace 
Hermitian. For fully reconstructing the density matrix, people 
usually require 2O( )d  measurements [3]. Quantum 
measurements increase exponentially with the number of 
qubits. Obviously, the cost of experiment complexity is 
tremendous. Fortunately, we are usually interested in pure or 
nearly pure quantum states, which means ρ is low rank and 
sparse. ( ( )r rank= ρ d=  and most singular values of ρ are 0). 
Because of this characteristic, we can use the Compressed 
Sensing (CS) to greatly reduce the number of measurements 
required. The CS theory is a novel method of data compression 
and recovery [4]. If the high-dimensional signal or after some 

transformation is sparse, it can be compressed to a low-
dimensional space without the loss by a measurement matrix. 
Research results show that as long as the measurement matrix 
satisfies the Restricted Isometry Property (RIP)[5], the original 
signal can be accurately recovered by solving an optimization 
problem. In practice, people generally use the Pauli matrix to 
construct the measurement matrix in QST. Furthermore, CS 
indicates that the minimum number of measurements which 
can accurately reconstruct the density matrix is 

2
2=O( log )m rd d d= , and we define the measurement rate as 

2/m dη = .The interference is inevitable in the actual quantum 
measurements. Interference can be divided into the disturbance 
in the quantum state and the noise in the measurement process. 
The disturbance of the state itself introduces sparse outliers in 
elements of certain locations in the density matrix. When 
considering disturbance and measurement noise simultaneous, 
it is a problem of quantum state filter. When only one of the 
interferences is considered, it is a quantum state estimation 
problem. What we stand in need of is how to fast and efficient 
reconstruct quantum state density matrix with high accuracy. 

Alternating Direction Multiplier Method (ADMM), firstly 
proposed in 1970s by Gabay and Mercier, is a promising and 
effective optimization framework to deal with separable 
objective functions. In recent years, ADMM has been paid 
much attentions due to its success in a wide variety of 
applications such as data-distributed machine learning, 
compressed sensing, semi-definite programming and statistics 
etc. [6], and some scholars have applied ADMM to quantum 
state estimation. However, they are only aimed at sparse state 
disturbance. In 2014, Li et al. first used ADMM to solve the 
problem of ignoring quantum state constraints [7], and 
projected the obtained solution onto the quantum state 
constrained feasible set and the computational complexity is 

6( )dΟ . In 2016, Zheng et al. solved the special problem where 
the rank of ρ  equals one and proposed an ADMM algorithm 
based on fixed point equation (FP-ADMM) to reduce the 
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computational complexity to 4( )mdΟ [8]. In 2017, Zhang et al. 
proposed an ADMM algorithm combined with iterative 
threshold shrinkage method (IST-ADMM) [9]. In contrast with 
previous works, we remark that our algorithms consider more 
comprehensively and generally. 

In this paper, the research is mainly divided into three parts. 
Firstly, the problem of quantum state filtering for both 
interferences is studied. We use Prox-Jacobian ADMM method 
(PJ-ADMM) [10][11] to deal with the issue of the quantum 
state filtering, and propose a Quantum State Filtering ADMM 
(QSF-ADMM) algorithm. Secondly, we propose an Inexact 
ADMM (I-ADMM) algorithm for only having sparse 
disturbance. Thirdly, we develop an Improved-ADMM 
algorithm for estimating the quantum state with only 
measurement noise. 

This paper is organized as follows. Three algorithms are 
proposed in detail in Sec.II. Experiments are carried out in 
Sec.III. Finally, Sec.IV is the conclusion. 

II. QUANTUM STATE FILTERING AND ESTIMATION 
ALGORITHMS 

A. Quantum State Filtering Algorithm  
Sparse disturbance and measurement noise exist 

simultaneously. Assume the measurement noise is Gaussian 
noise. Enlightened by the filter in the control theory, we design 
a quantum state filtering algorithm to estimate quantum states, 
state disturbances and measurement noise simultaneously and  
reconstruct the density matrix accurately. When the objective 
variables are not less than 3, ADMM is difficult to guarantee 
the convergence. PJ-ADMM, which guarantees convergence 
by adding proximal term to each sub-problem, provides a new 
thought to solve convex optimization problems with 3 
objective variables. It is noteworthy that both ADMM and PJ-
ADMM are computational frameworks, which decompose the 
global problem into smaller and easier sub-problems, and 
obtain the global solution by coordinating the solutions of sub-
problems. How to effectively solve each sub- problem is 
needed to determine the specific form of the problem. 

The quantum state filtering problem can be described as 
reconstructing a low rank density matrix d dr ´Î £  from linear 
measurements mb Î ¡  with Gaussian noise me Î ¡  and the 
density matrix with sparse disturbance d dS ´Î ¡ . Let the 
measurement operator as A : d d m´ ®＃ , then the measurement 
formula is ( )b S e= + +ρA . We learn that the low rank density 
matrix, sparse disturbance and Gaussian noise are all coupled 
in the measurement results. Meanwhile, only m  linear 
measurements are obtained, the information is not complete. In 
addition, the constraints of density matrix that is 0ρ f , 
tr( ) 1ρ = , H =ρ ρ  should be guaranteed.. The quantum state 
filtering problem can be formulated as:  

   2
* 1 2min  ( 2)   s.t.   ( + )+ = , C,S e S e bρ γ θ ρ ρ+ + ∈A           (1) 

in which the *  g  is the nuclear norm, * = isρ ∑ , is are the 
singular values of ρ , 1  g  is the 1l  norm, 2  g  is the 2l  
norm and Cρ ∈  indicates that the quantum state constraint 

: { | 0,tr( ) 1, }d d HC r r r r r´= ? =  is satisfied. By means of 
minimizing *ρ  and 1S , we force the density matrix to be 
low-rank while the state disturbance with sparseness, 
minimizing 2

2e  as a common method of filtering Gaussian 
noise. 

The partial augmented Lagrangian of (1)  is: 
2 2

* 1 2 2: = ( 2) , ( + )+ +( 2) ( + )+ , L S e y S e b S e bρ γ θ ρ α ρ+ + − 〈 − 〉 −A A
where 0>α  is the penalty parameter and my Î ¡  is the 
Lagrange multiplier. The penalty term can relax condition of 
convergence. Thus, the constrained problem (1) can be 
transformed into an convex optimization problem : 

2 2
* 1 2 2min  ( 2) +( 2) ( + )+ , C.S e S e b yρ γ θ α ρ α ρ+ + − − ∈A   (2) 

By substituting (2) into the PJ-ADMM frame [10], we can 
get the quantum state filtering iterates as (3).  
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where 0>κ  is the parameter for adjusting the Lagrange 
multiplier y  update step size; 

1

2(1/ 2) k
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P
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and 
2

3
(1 / 2) k

P
e e−  are the proximal terms, which added after 

each sub-problem to correct the error in time. 2
iPg  (i=1,2,3) is 

defined as 2
i Pi

x = T
i i ix P x , where 0iP f  is the parameter of the 

proximal terms and can be some symmetric and positive semi-
definite matrix. 

In the ( 1)+k th iteration in (3), for a specific original 
variable, by fixing other original variables, we minimize the 
sum of the partial Lagrangian function and the proximal term, 
and update original variables ρ ,  S  and e respectively.Finally, 
the Lagrange multiplier y  is updated immediately. 

When we choose appropriate proximal term parameters, the 
solving of the sub-problems can be simplified. For the sub-
problems of ρ  and S , non-differentiable norms and A  
involved in the quadratic penalty term make the direct solution 
complicated. However, through selecting H

i iP Iτ α= − A A  
(i=1,2), we can linearize the quadratic term of augmented 
Lagrangian, which can cancel the term ( / 2) H Hα ρ ρA A  and 
add ( / 2) H

iτ ρ ρ ; Because the sub-problem of e  has explicit 
solution, we have 3 3P Iτ= ; 1 0τ > , 2 0τ > , 3 0τ >  are proximal 
step size. Therefore, we can solve the smooth terms of each 



sub-problem approximately using prox-linear approach and 
defining intermediate variables kρ% , kS%  and ke%as: 

 1: ( ) ( ( + ) b ),k k H k k k kS e yρ ρ α τ ρ α= − + − −% A A  (4) 

 2: ( ) ( ( + ) b ),k k H k k k kS S S e yα τ ρ α= − + − −% A A  (5) 

 3 3: ( ( ( + ) b )) ( ).k k k k ke e S yτ α ρ α θ α τ= − − − + +% A  (6) 

Consequently, we rewrite the algorithm (3) as follows: 
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in which   Fg is the Frobenius norm. 

Next we discuss the solution of three sub-problems ρ , S  
and e  respectively. 

1) For solving the sub-problem of density matrix 
For the constraints of quantum state 0,ρ f  tr( ) 1,ρ =  

Hρ ρ= , we know that * tr( ) 1ρ ρ= = . Thus, the sub-problem 
of 1kρ +  can be simplified to solve the following semi-definite 
programming (SDP) problem 

 
2

min  ( ( ) ) 2 ,    s.t. 0, tr( )=1.k k H
F

ρ ρ ρ ρ ρ− +% % f  (8)  

Notably, (8) has an analytic solution. Solve the singular 
values ( 1 )ia i d= L  of ( ( ) ) / 2k k Hρ ρ+% %  and decompose it into 

 { } H
iV diag a V , in which d dV ´Î £  is a unitary matrix, and the 

singular values ia are arranged in descending order as 
1 2 da a a≥ ≥ ≥L . The optimal solution of  (8) is 

 1  { } ,k H
iV diag x Vρ + =  (9) 

where { , 1, , }ix i d= L  are the singular values of 1kρ +  and 
calculated from 2

1min  (1/ 2) ( )d
i ii x - a=∑ , 1s.t. 1, 0,d

i ii x x i= = > ∀∑ . 
The Lagrangian as ({ }, ) :iL x =β 2

1(1 2) ( )d
i ii x - a=∑  

1( 1)d
ii x=+ −∑ , 0ix ≥ , i∀ , where b Î ¡  is the Lagrange 

multiplier. Base on the convex optimization theory, if β  is the 
optimal Lagrange multiplier, we can minimize ({ }, )iL x β  over 
{ }ix  by 2

1min  (1/ 2) ( )d
i ii x a= − +∑ β , s.t. 0ix ≥ , i∀ , and get the 

optimal primal solution as max{ ,0}i ix a β= − , i∀ .  

Due to restriction of 1 1, 0,d
i ii x x i= = > ∀∑ , the equivalent 

expression is 1max{ ,0} 1.d
ii a= − =∑ β Thus, we let iaβ = , 

1, ,i d= L  determine the interval in which the optimal β  
belongs. Assuming that β  is in [ ]1,t ta a+ , the optimal β  can be 
calculated by 1( ) 1t

ii a β= − =∑  as: 

 1( 1) .t
ii a t== −∑β  (10) 

Finally we can obtain { }ix  as: 

 
,  ,

0,          1.
i i

i

x a i t
x i t

β= − ∀ ≤
 = ∀ ≥ +

 (11) 

2) For the solution of the sparse matrix sub-problem 
Because the regularization of S  is 1l  norm, the correspo-

nding proximal operation is the well-known soft-threshold 
operation. Thus, the sub-problem exists closed-form solution: 
 

2
1 ( ),k k kS shrink S S+ = − %

γ τ  (12) 

in which 
2

shrinkγ τ  is a soft threshold contraction operator .  
For any scalar s  there is 

 
2 2 2( ) : max{ ,0} ( ).shrink s s sign sγ τ γ τ γ τ= − −   

3) For the solution of  Gaussian noise sub-problem 
The first-order optimality condition of e  is given by: 

 1 .k ke e+ = %  (13) 

To ensure the convergence of the quantum state filtering 
algorithm, the gradient step size parameters in (7) must satisfy  

 1 2 33 / (2 ), 3 / (2 ), (3 / (2 ) 1).τ α κ τ α κ τ α κ> − > − > − −  (14) 

In short, the QSF-ADMM algorithm is as follows: 

1) Obtain the output signal b  of the experimental system and 
construct the measurement matrix A ; 

2) Initialize variables to 0 =0ρ , 0 =0S , 0 =0e , 0 =0y ; Set 
algorithm parameters 0>κ , 0γ > , 0>α , 0>θ  and 

1τ , 2τ , 3τ  satisfying (14); 
3) For  1,2,k N= L   
4) Calculate k%ρ , kS% , ke%  according to (4), (5), (6) respectively; 
5) Calculate singular values of ( ( ) ) / 2k k H+% %ρ ρ ; 
6) Calculate singular values { , 1, , }ix i d= L  of 1k+ρ  according 

to (10) and (11); 
7) Update 1k+ρ  according to (9); 
8) Update 1kS +  according to  (12); 
9) Update 1ke +  according to (13); 
10) Update 1ky + according to (7); 
11) End For 

B. Quantum State Estimation Algorithms 
If we only consider one of the interferences, the problem is 

reduced to a two-objective convex optimization problem. In 
either case, we propose the I-ADMM algorithm for the sparse 
disturbance and the Improved-ADMM algorithm for the 
Gaussian noise, respectively, which can realize quantum state 
estimation fast and efficiently. 

1) I-ADMM algorithm for sparse disturbance 
Quantum state measurements with only disturbance can be 

expressed as ( )b S= +ρA , where d dS ´Î ¡  is the sparse 
disturbance matrix. The aim of the quantum state estimation is 
to reconstruct the density matrix with sparse disturbance. The 
original problem is decomposed as minimizing the nuclear 
norm of density matrix with quantum state constraints and the 



1l  norm of sparse disturbance. Thus, the problem can be 
transformed a convex optimization problem as: 

 1min ( ),   s.t.   ( )= ,CS I S bρ γ ρ ρ+ + +* A  (15) 

where 0γ >  is the weight factor, ( )CI ρ  is the indicator 
function on a convex set C  to make ρ  in constraints, 

 0   if  0,tr( ) 1, ,
( )=

   otherwise.

H

CI
ρ ρ ρ ρ

ρ
 = =

∞

f  (16) 

Via the augmented Lagrangian function, we can transform 
(15) to an unconstrained problem:  

 2
1 2

min  ( ) + + ( 2 ) ( ) ,CI S S b yρ ρ γ α ρ α+ + − −* A  

where 0>α  is the penalty parameter and my Î ¡  is the 
Lagrange multiplier. 

For the (15) with two-objective variables, the classical 
ADMM framework  decomposes the original problem into two 
small sub-problems[6], and optimizes the two sub-problems 
alternatively. After one sweep of updating ρ  and S , the 
multiplier y  is updated by the gradient ascent method 
immediately. In brief, the ADMM algorithm is 
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where 0κ >  is the parameter for adjusting the Lagrange 
multiplier step size. Normally 1κ =  and studies have shown 
that κ  can speed up the convergence when it is adjusted in 
(0,( 5+1)/2) .  

Because nuclear norm, indicator function and 1l  norm are 
non-differentiable, the solutions of 1kρ +  and 1kS +  in (17) are 
tricky and no closed-form solution. Therefore, we solve the 
two sub-problems inexactly to reduce the computational 
complexity by proximal gradient method. By gradient descent 
of least square terms in sub-problems 1kρ +  and 1kS +  
respectively, we get kρ%  and kS%  as: 

 1: ( ( +S ) ),k k H k k kb yρ ρ τ ρ α= − − −% A A  (18) 

 1
2: ( ( +S ) ),k k H k k kS S b yτ ρ α+= − − −% A A  (19) 

where 1 0>τ  and 2 0>τ  are the proximal step size.  

For sub-problem of 1kρ + , the *ρ  is a constant when the 
quantum state constraints satisfied. Therefore, we can obtain 
the solution { } H

iVdiag x V  through solving the problem 
2

min k
FCρ

ρ ρ
∈

− % whose solution process is the same as in (7). The 
sub-problem of 1kS +  has soft threshold solution.  

In summary, we propose the I-ADMM algorithm as: 
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In the simulation experiment, the weight γ  is set to 1 d  
and slightly larger κ  can accelerate convergence. In order to 
ensure the convergence of the algorithm, it is proved that 1τ  
and 2τ  should satisfy: 

 1 max 1<τ λ , 2 max 2,+ <τ λ κ  (21) 

where maxλ  is the maximum eigenvalue of HA A . Because A  
is generate by Pauli matrices, the maxλ  of HA A  equals 1. 

2) Improved-ADMM algorithm for Gaussian noise 
This sub-section focuses on the quantum state estimation 

problem with only the noise in measurement process. We 
introduce auxiliary variables me Î £ , and the measurement 
result is ( )b e= +ρA . We decompose the original problem into 
two sub-problems, which are minimizing the nuclear norm of 
density matrix with quantum state constraints and minimizing 
the 2l  norm of Gaussian noise. The problem can be written as: 

 2
* 2min  ( ) (1 2 ) ,   s.t.    ( ) .CI e e b+ + + =ρ ρ γ ρA  (22) 

in which 0γ >  is the weight factor, ( )CI ρ  is the indicator 
function as same as (16). 

With the help of the augmented Lagrangian, the 
constrained problem (22) can be rewritten as: 

 2 2
* 2 2min  ( ) (1 2 ) +( 2 ) ( ) ,CI e e b yρ ρ γ α ρ α+ + + − −A  

where 0>α is the penalty parameter and my Î ¡  is the 
Lagrange multiplier. Using ADMM iterative framework [6], 
we have 
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where 0κ >  is the parameter for adjusting the Lagrange 
multiplier update step size.  For calculating proximal step of 
the least square term of 1kρ +  in (23), we get kρ%  as: 

 1: ( ( ( ) b )).k k H k ke yρ ρ τ ρ α+= − + − −% A A  (24) 

where 0τ >  is step size. 

For sub-problem of 1kρ + , the *ρ  is a constant when the 
quantum state constraints satisfied. we can obtain the solution 

{ } H
iVdiag x V  through solving the problem 2

min k
FCρ

ρ ρ
∈

− % . The 
later solution process is the same as in (7). For the solution of 



sub-problem 1ke + , we can solve it by making the first 
derivative equal to 0. 

Therefore, we propose the Improved-ADMM algorithm as: 
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In order to ensure the convergence of the algorithm, it is 
proved that the parameter τ  must meet:  

 max 2,+ <τλ κ  (26) 

where maxλ =1 is the maximum eigenvalue of HA A . 

We remark that the core of three algorithms in this section 
is to decompose the problem without closed-form solution into 
a multi-step method with less computational complexity in 
each step, which greatly reduces the complexity of the 
algorithm. Compared with previous algorithms, the maximal 
computation of each algorithm in this paper is the 
multiplication between an 2m d×  matrix and a 2d  vector, 
whose computation complexity is 2O( )md . We give the 
convergence conditions of the three algorithms explicitly. 
However, Li’s ADMM algorithm cannot guarantee 
convergence because it considers the objective function and 
constraints separately. FP-ADMM and IST-ADMM algorithms 
can only deal with ( ) 1rank =ρ . (All three algorithms in this 
paper are also valid for ( ) 1rank >ρ .) Moreover, QSF-ADMM 
algorithm can be considered as the Jacobi type method while I-
ADMM and Improved-ADMM algorithms as Gauss-Seidel 
type method. The difference is that the Gauss-Seidel type 
method utilizes the latest information of 1k +  iteration step, 
such as the sub-problem of 1kS + in (17) and the sub-problem of 

1k+ρ  in (23). Thus, I-ADMM and Improved-ADMM 
algorithms are believed to converge more faster than QSF-
ADMM algorithm method because the latest information is 
always used. 

III. NUMERICAL EXPERIMENTS 
In the experiments, we firstly describe the parameters’ 

settings and the algorithm performance index. Then, the 
simulation experiments consists of two parts: (1) comparison 
of the three algorithms in this paper with ADMM and IST-
ADMM algorithms; (2) the reconstruction performance of the 
three algorithms with different measurement rates. 

In the simulation experiments, the measured value vector is 
constructed by ( )b S eρ= + +&&&& &&A , where ρ&& is the actual density 
matrix to be restored, S&& is the sparse interference matrix, and 
e&& is the measurement noise. To insure that ρ&& is in an arbitrary 
pure/superposition state, we set ( ) 1rank ρ =&& . The true density 
matrix ρ&&  is generated by ( ) /H

r rρ ψ ψ=&& ( )H
r rtr ψ ψ . rψ  is a 

Wishart matrix of complex domain d r´£ , and its elements 
obey a random Gaussian distribution. d dS ´Î&& ¡  contains 2 / 10d  
non-zero elements, and the position is random, and the 
amplitude satisfies the Gaussian distribution (0, 100)FN ρ . 

The signal-to-noise ratio (SNR) of Gaussian noise is 70dB. The 
simulation experiments are conducted in MATLAB R2018a, 
Inter Core i5-8400M CPU, clocked at 2.8GHz, memory 8GB. 

We use 2 2
F FError ρ ρ ρ= − && &&  to measure the 

reconstruction accuracy of estimated density matrix ρ .  

A. Experimental Simulation 
1) Performance comparison with existing algorithms 

Fixed η = 50% and 1000 iterations for 5-qubit system, we 
compare the convergence performance of the three proposed 
algorithms with ADMM [7] algorithm, IST-ADMM [9] 
algorithm. In the simulation experiment, the parameters of the 
five algorithms are adjusted to the optimum. Fig. 1 depicts the 
variation of estimation errors with the number of iterations. 

 
Fig. 1 Comparison of estimation errors of five algorithms with 
measurement rate of 50% for 5-qubit system. 

 We can see from the Fig. 1 that: 

 1) Under suitable parameters, the five algorithms can 
converge. For the number of iterations, I-ADMM algorithm 
achieves the estimation error of less than 0.001 with the least 
iterations. Compared with QSF-ADMM, I-ADMM and 
Improved-ADMM algorithm have faster convergence speed, 
which is consistent with the theoretical analysis. 

2) ADMM, IST-ADMM, QSF-ADMM, I-ADMM and 
Improved-ADMM algorithm iterate 1000 times. The estimated 
error and time are 0.0819 (136.84s), 0.0058 (2.64s), 0.0007 
(2.64s), 0.00017 (3.38s) and 0.0010 (2.80s), respectively. The 
time required by the three algorithms is not much different 
from IST-ADMM algorithm, and much lower than ADMM 
algorithm. Moreover, the three algorithms have lower 
estimation error bounds, which are obviously better than that of 
ADMM and IST-ADMM algorithm. 

Therefore, we learn that the three algorithms in this paper 
have better estimation accuracy and convergence performance. 

2) Performance analysis of three algorithms  
For 3-qubit systems, we analyze the recovery accuracy and 

convergence performance of QSF-ADMM, I-ADMM and 
Improved-ADMM algorithms for quantum state density matrix 
at different measurement rates. And measurement rates η  are 



set as 37.5%, 75%, 100%, respectively. (the minimum of η  is 
37.5% via compressed sensing theory.) 

The adjustable parameters involved in all three algorithms 
include: 1) gradient descent step size iτ ; 2) Lagrange 
multiplier update step size κ ; 3) balance low rank and error 
term weight γ , θ ; 4) penalty parameter α . According to the 
algorithm convergence requirements in Section II, the 
parameter used in the experiment are set as follows: 

0.0001γ = , 1α = ; when η = 37.5%, 75% and 100%, κ =1.451, 
1.465 and 1.665 respectively; for QSF-ADMM algorithm 2τ = 
0.28, 0.24 and 0.20 respectively, and 1τ = 0.6, 3τ = 0.6, θ=1; 
for I-ADMM algorithm 2τ = 0.28, 0.24 and 0.20 respectively, 
and 1τ = 0.6; for Improved-ADMM algorithm τ = 0.6. The 
experimental results are shown in Fig. 2. 

 
Fig. 2 Errors with different number of iterations for 3-qubit system. 
Dotted line, solid line and dashed dot line represent differences in 
measurement rates of 37.5%, 75%, 100%, respectively. Circle, 
diamond, and square represent different algorithms at the same 
measurement rate. The blue dashed line is the error of 0.05. 

 We can see from Fig. 2 that:   

1) All three algorithms have fast convergence speed and 
can achieve high quantum state reconstruction accuracy. As the 
number of iterations increases, the estimation error decreases 
continuously. Under the minimum measurement rate of 37.5% 
for 3-qubit, the QSF-ADMM, Improved-ADMM, and I-
ADMM algorithms achieve the estimation accuracy of over 
95%, requiring 6, 7, 9 iterations, respectively and consuming 
0.0067, 0.0436, 0.0548 seconds, respectively.  

2) The same algorithm reduces the number of iterations as 
the measurement rate increases. For example, for the 
Improved-ADMM algorithm with sampling rates of 37.5%, 
75%, and 100%, it achieves an estimation accuracy of more 
than 99% for 11, 3, and 2 iterations, respectively and 
consuming 0.0454, 0.0311, 0.0304 seconds, respectively. 

3) The fixed measurement rate is 37.5% and the number of 
algorithm iterations is 15 times. The estimated errors of QSF-
ADMM, Improved-ADMM, and I-ADMM algorithms are 

98.83%, 99.05%, 99.02%, respectively and consuming 0.0123, 
0.0461, 0.0606 seconds, respectively. We conclude that all 
three algorithms can quickly achieve a high estimation 
accuracy and QSF-ADMM is the shortest time-consuming 
algorithm. Furthermore, the proposed algorithm can restore the 
density matrix at a lower sampling rate and adopt the method 
of sparse storage to greatly reduce storage space. For example, 
when the number of quantum bits is 11 and the measurement 
operator A  is constructed with η =0.6%, 1.19G storage space 
is required, but full storage need 1573G. 

IV. CONCLUSION 
We developed three fast and effective optimization 

algorithms to simultaneously filter the disturbance and/or 
Gaussian noise of quantum state in this paper. Simulation 
results showed that all three algorithms proposed can have fast 
convergence speed and high estimation accuracy at lower 
measurement rate, which embodies the superiorities of the 
algorithms in quantum state density matrix reconstruction . 
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