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2 WEBER ET AL.

Abstract

How can we best learn the history of a protein’s evolution? Ideally, a model of sequence

evolution should capture both the process that generates genetic variation and the

functional constraints determining which changes are fixed. However, in practical terms the

most suitable approach may simply be the one that combines the convenience of easily

available input data with the ability to return useful parameter estimates. For example, we

might be interested in a measure of the strength of selection (typically obtained using a

codon model) or an ancestral structure (obtained using structural modelling based on

inferred amino acid sequence and side chain configuration).

But what if data in the relevant state-space are not readily available? We show that

it is possible to obtain accurate estimates of the outputs of interest using an established

method for handling missing data. Encoding observed characters in an alignment as

ambiguous representations of characters in a larger state-space allows the application of

models with the desired features to data that lack the resolution that is normally required.

This strategy is viable because the evolutionary path taken through the observed space

contains information about states that were likely visited in the “unseen” state-space. To

illustrate this, we consider two examples with amino acid sequences as input.

We show that ω, a parameter describing the relative strength of selection on

non-synonymous and synonymous changes, can be estimated in an unbiased manner using

an adapted version of a standard 61-state codon model. Using simulated and empirical

data, we find that ancestral amino acid side chain configuration can be inferred by

applying a 55-state empirical model to 20-state amino acid data. Where feasible,

combining inputs from both ambiguity-coded and fully resolved data improves accuracy.

Adding structural information to as few as 12.5% of the sequences in an amino acid

alignment results in remarkable ancestral reconstruction performance compared to a
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benchmark that considers the full rotamer state information. These examples show that

our methods permit the recovery of evolutionary information from sequences where it has

previously been inaccessible.

Key words : substitution models — state-spaces — natural selection — protein structure —

ancestral reconstruction

The evolution of protein sequences is driven by a combination of forces that

influence both what types of mutation occur and which of them are allowed to fix by

natural selection. The former process operates at the level of the nucleotide sequence, and

manifests at the amino acid level through the structure of the genetic code. Functional and

structural constraints then determine the probability of survival of the mutants. A wide

variety of computational tools to make inferences about different layers of this process are

available, considering observations from nucleotide, codon or amino acid sequences, and

(occasionally) protein structure. Models that take data from one of these state-spaces as

input typically use transition probabilities between these same character states to compute

outputs, such as phylogenies, selective constraints, or ancestral states. Being able to obtain

certain types of information about evolution is therefore usually contingent on having

access to observations in the relevant state-space.

Given the abundance of available genome sequences, access to interesting data is

ordinarily not a problem. Codon sequences, for example, are commonly used to quantify

the strength of natural selection, measured by ω, the relative rate of non-synonymous to

synonymous substitutions. Variants of the standard codon model estimate constraints on

specific sites, branches, or different types of amino acid substitutions (Yang et al., 1998;

Yang, 2014; Weber and Whelan, 2019). Empirical amino acid models, which work with

amino acid sequences and are often used to estimate phylogenies, consider how

“exchangeable” different residues are (Whelan and Goldman, 2001; Le and Gascuel, 2008).
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4 WEBER ET AL.

This allows them to capture some functional constraints and therefore reconstruct

plausible amino acid trajectories and ancestral sequences.

A subset of models go beyond sequence alone and incorporate elements of structure.

This can either take the form of mixture-models describing site- or partition-specific amino

acid propensities (Koshi and Goldstein, 1995; Le et al., 2008a,b; Le and Gascuel, 2010), or

explicitly modelling observed changes in the protein’s three-dimensional organization.

Recently, an extended version of the empirical amino acid model was introduced that

additionally accounts for rates of exchange between amino acid side chain configurations

(Perron et al., 2019). How suited a given amino acid is to a particular sequence and

structural context is not only influenced by the biochemical properties of its side chain, but

also by its spatial orientation. This includes the rotation of the Cα-Cβ bond, or the χ1

rotational isomer (‘rotamer’) configuration, which can be discretized into up to three states

per residue, resulting in a state-space with 55 characters (see Methods and Perron et al.

(2019) for details). The empirical rotamer-aware model therefore allows reconstruction of

ancestral amino acid sequences that include side chain configurations (Perron et al., 2019)

— provided structural information is available for the extant descendants of the protein of

interest. Reconstructed side chain configurations are of practical interest as they can

provide a plausible prior for structure prediction for a variety of applications. For example,

structural models are widely used for in silico functional annotation of genes and variants,

prediction of protein-protein interactions and docking (Zhang et al., 2012; Vakser, 2014;

Waterhouse et al., 2018).

Given the variety of options, the choice of model for a study might be guided by the

research question and which aspects of the evolutionary process are most interesting. In

some cases, data availability may limit the range of suitable models. For example, given a

set of amino acid sequences, models operating in codon- or rotamer space cannot be

straightforwardly applied. Scenarios where one might encounter this mismatch include

selection analyses incorporating protein sequences from ancient specimens or databases
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5

where corresponding nucleotide sequences are not retrievable, or studies where access to

complete high-quality protein structures is limited. Attempts to bridge the gap between

available input and desired model output have, thus far, been limited — at least as far as

conventional observable character states are concerned. For example, Yang et al. (1998)

formulated an amino acid model that merges synonymous codons into a single amino acid

state, with substitution rates computed as an average of the codon rates. This model can

estimate transition-transversion bias from amino acids. However, it is unable to provide a

measure of the strength of selection.

Nevertheless, there are well-established methods that allow the handling of data for

which only part of the state-space information is available. This is achieved by encoding

observed states as ambiguous representations of characters in a larger state-space. This

application of standard statistical theory for missing data has been used previously in

phylogenetics (e.g. Yang (2014), p. 110–112). A notable example are covariotide models,

conceptualised by Fitch and Markowitz (1970), where each nucleotide may be in an “on”

or “off” state that cannot be directly observed (Huelsenbeck, 2002; Tuffley and Steel, 1998;

Galtier, 2001). Can the principles employed by these methods be applied more broadly to

allow substitution models to take “partial” observations as input?

In this paper, we present a proof of principle, demonstrating that it is possible to

infer information about evolutionary processes that occurred in an expanded state-space

using only the aggregated data, taking advantage of an established method for handling

ambiguity in sequence alignments. The ability to model sequences in a state-space with a

larger set of characters allows us to obtain outputs that would otherwise be unavailable.

For example, we can capture relative selective constraints on non-synonymous versus

synonymous substitutions from amino acid sequences. The path through amino acid space

hence helps reveal the path evolution takes through codon space. The same method can be

applied to reconstructing ancestral amino acid rotamer configurations using only amino

acid sequences. Using input data consisting of a mixture of rotamer and amino acid
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6 WEBER ET AL.

sequences further allows us to refine these reconstructions and obtain a useful starting

point for homology modelling.

Materials and Methods

Inferring model parameters from data in an aggregated state-space using ambiguity.

Our framework is maximum likelihood (ML) inference on phylogenetic trees, based

on alignments of observable characters that evolve independently according to a Markov

process. We consider cases where the characters at the tips of a phylogenetic tree are only

available in an ‘aggregated’ state-space A with m states. Each state ai in A = {a1, ..., am}

corresponds to one or more ‘separate’ states sj in a larger state-space S = {s1, ..., sn}

(where n > m). Meanwhile, each state in S maps to a single state in A. For example,

where S describes the set of 61 sense codons, A might describe the 20 amino acid states:

each codon codes for one specific amino acid, while a given amino acid can be represented

by multiple codons. Similarly, each amino acid (A) can represent multiple rotamer

configurations (S; see Perron et al. (2019), Table 1). If we only have access to amino acid

sequences rather than codon or rotamer sequences, but modelling the data in S would be

more informative, we can take advantage of these mappings.

In order to estimate phylogenetic models under ML when the data do not match

the model state-space, we modify an established method for handling alignment gaps and

ambiguity characters. The conditional probability vector Lk(j) is a crucial part of

phylogenetic likelihood calculations. It records the probability of the observed data

descended from node k conditional on the presence of state j at node k. There is one such

vector for each combination of alignment position (not indicated in this notation, for

simplicity) and node k, with one element for every permitted state j. The iterative

calculation of the likelihood is initialised at the tips of the tree: if k is a tip with state x

recorded in the alignment, the element Lk(x) is set to 1 and Lk(j) = 0 for all other j 6= x
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7

(Felsenstein, 2004) — the data are recorded as having been correctly observed with

certainty. When data are missing, or when there is a gap at a site in the alignment, the

corresponding Lk(j) are set to 1 for all j, representing total absence of knowledge of the

true character states and effectively removing node k from the likelihood calculation for

the site.

In the case where the observed data are in the aggregated state-space A, and we are

interested in modelling in the separate state-space S, we can proceed in a similar manner.

Consider a simple four-state (S) model with the aggregated (A) states a = {a1, a2} and

b = {b1, b2}. If we observe state a in A, which could represent either a1 or a2 in S, the

corresponding conditional probability vector Lk = (La1 , Lb1 , La2 , Lb2) is set to (1, 0, 1, 0).

Hence, our observation is ambiguous with respect to the character in S. We use the term

‘ambiguous’ to refer to instances where incomplete information about the state at a given

site is available, but the character is not missing. Where data are completely absent

(missing) for an alignment position, the same vector is encoded by Lk(xj) = (1, 1, 1, 1).

Once Lk has been set at all tips according to this modification, the calculation of the

likelihood proceeds as normal following Felsenstein’s pruning algorithm (Felsenstein, 1981).

Treating data observed in A as ambiguous states in S is similar to the “covariotide”

model of Huelsenbeck (2002), which assigns each nucleotide an ambiguous “on” or “off”

state. Ambiguity has also been used to encode population allele frequencies using small

samples as input (De Maio et al., 2015), and to handle sequence error and uncertainty

(Kozlov, 2018). Our approach differs from that presented in (Yang et al., 1998), where all

synonymous codons for an amino acid are combined into one state and substitution rates

between amino acids represent averages over codons.

Description of the codon model.

The codon model considered here follows the standard M0 model as implemented in

PAML (Yang (2007); see also Goldman and Yang (1994); Yang et al. (2000)), with
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8 WEBER ET AL.

parameters ω = dN/dS, κ representing the ratio of transition mutations to transversions,

and π representing the codon equilibrium frequencies. The instantaneous rate matrix is

given by:

Qij =



0 i and j differ by more
than a single nucleotide

πj i and j differ by a single
synonymous transversion

κπj i and j differ by a single
synonymous transition

ωπj i and j differ by a single
non-synonymous transversion

ωκπj i and j differ by a single
non-synonymous transition

(0.1)

We implemented the model (now available in PAML as M5) and likelihood

calculations in a standard ML framework, encoding the conditional probability vector Lk

in codon space (S) using observed amino acids (A), as outlined above. We make the

simplifying assumption that the vector of equilibrium frequencies is fixed at πj = 1/61 for

all codons j. The codon frequencies cannot be directly observed, and examining their

identifiability is beyond the scope of this work.

Codon sequence simulations and inference.

We used evolver (Yang, 2007) to generate a single random unrooted tree with 20 tip

nodes using a birth-death process (Yang and Rannala, 1997) with a tree height of 0.5 (see

Fig. S1A). We next simulated sequences under M0 over a range of parameters generating

100 replicates with 3000 codons for each combination of configurations (unless stated

otherwise). We then analysed the simulated sequences using codeml from the PAML

package, fitting M5 to the translated amino acid sequences and fitting M0 to the original

codon sequences, both assuming equal codon frequencies (Yang, 2007). We also recorded

the standard errors for the parameters (option getSE = 1).
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9

Description of the rotamer model.

The empirical rotamer-aware model (RAM55) follows the structure of a standard

empirical amino acid model and is fit to alignment data in the same manner. The

instantaneous rate matrix, Qij, is defined by the exchangeabilities between states derived

from a database of sequences of proteins with known 3D structure and their equilibrium

frequencies. Rather than the usual 20 amino acid states, the rotamer model considers 55

discrete states determined by the χ1 dihedral angle between the side chain’s first two

covalently linked carbons, the rotamer configuration. Each amino acid can be categorised

into up to three distinct states based on an observed protein structure; for example, state

L3 denotes a leucine residue in conformational state 3. The exchange rates likely capture

the effect of local steric constraints on side chain orientation. RAM55 is described in detail

by Perron et al. (2019), along with RUM20, a conventional 20-state empirical amino acid

model computed from the same dataset.

Rotamer sequence simulation and ancestral side chain configuration reconstruction.

To generate sequences in rotamer space with known phylogenies and ancestral

states, we used a set-up similar to the one described by Perron et al. (2019). Briefly, we

randomly generated a 32-tip tree using a Yule process and scaled the branches by 0.1–1

(Fig. S2). We then performed a continuous-time Markov chain simulation along the

branches for 1000 replicates of 200 sites each using the RAM55 exchangeabilities and

equilibrium frequencies. Simulated alignments use a custom encoding format which

expresses both amino acid states and rotamer states (that is, a mixed alignment) using a

common alphabet of single-character symbols (see

https://bitbucket.org/uperron/ambiguity_coding).

To emulate cases where structural information in not available for some of the

terminal nodes, we generated mixed alignments by ‘masking’ a proportion of the terminal

rotamer sequences, leaving only amino acids. Amino acid states are then treated as

http://mc.manuscriptcentral.com/systbiol
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10 WEBER ET AL.

ambiguous rotamer state assignments in the inference step (see below). Further, sequences

can be removed from the simulated alignment to illustrate the loss of information caused

by discarding sequences entirely when no structure is available. This is done by replacing a

specific proportion of the alignment’s sequences with gap characters. Both the masking

and discarding operations are performed over a set of sequences selected independently for

each replicate according to a uniform distribution.

To reconstruct ancestral states we modified the approach described by Perron et al.

(2019), encoding each amino acid (state-space A) observed in the alignment as ambiguous

in rotamer space (state-space S) in the conditional probability vector. This procedure

allows us to use the RAM55 model to infer rotamer sequences at internal nodes using

amino acid or rotamer sequences and the tree that was used for simulation as input. To

compute posterior probabilities for reconstructions (Yang et al., 1995), we applied the

marginal reconstruction algorithm of Koshi and Goldstein (1996). A joint reconstruction

algorithm (Pupko et al., 2000) gives qualitatively similar results. To assess the accuracy of

the reconstructions, we examined the proportion of sites with matching characters in

rotamer space. That is, we require both the amino acid and its rotamer configuration to be

identical.

The same reconstruction approach can be modified to predict side chain

configurations for extant homologous proteins in a given family (i.e. tip nodes of the tree).

Specifically, each terminal rotamer sequence is, in turn, masked and its side chain

configurations are reconstructed conditioned on the observed amino acid states by treating

the terminal node as if it were an internal node. This permits us to infer rotamer

configurations for extant proteins with known sequences but unknown structures, based on

the known sequences and structures of their homologs. To illustrate this we considered two

manually curated empirical datasets, consisting of 16 ADK structures and 30 RuBisCO

structures from PDBe (wwPDB consortium, 2018), respectively. For each dataset, a

multiple amino acid sequence alignment was generated using MAFFT (Katoh et al., 2002).
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11

Rotamer configuration was then assigned to each amino acid in the alignment, generating

a rotamer sequence alignment (see Perron et al. (2019) Methods for details). The tree for

the reconstruction was estimated from the rotamer sequence alignment using RAxML-NG

under the RAM55 model (Kozlov et al., 2019; Perron et al., 2019). We then masked, in

turn, each terminal rotamer sequence in the alignment and predict each amino acid’s χ1

configuration using RAM55 and the marginal reconstruction algorithm as described above.

Here, the extant amino acid sequence is known and the rotamer state prediction is thus

constrained to the observed amino acid. Prediction accuracy can be computed against the

original rotamer sequence; in order to benchmark our method’s accuracy we first

established a baseline accuracy by assigning the χ1 configuration either according to a

uniform probability distribution (we denote this by ‘Unif’) or using the relative

equilibrium frequencies of each possible configuration according to RAM55 (‘RelFreq’).

A widely used strategy to predict side chain configurations in unresolved structures

consists of assigning to each amino acid the same configuration found at the corresponding

site in the nearest homologous neighbour’s structure (Sutcliffe et al., 1987; Waterhouse

et al., 2018); we refer to this approach as ‘Nearest Neighbour Configuration’ (NNC). NNC

is only applicable to sites where the amino acid is conserved in the template, and so our

implementation of NNC falls back to a RelFreq strategy for non-conserved sites. We also

evaluated a scenario where no structural information is available for the nearest sequence

(‘Masked Nearest Neighbour’, MNN). Here, RAM55 can make use of mixed data (both

amino acid-only and rotamer sequences) using the ambiguity coding described above.
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12 WEBER ET AL.

Results

Substitutions in the aggregated state-space contain information about the path taken

through the larger state-space.

We first consider how it might be feasible to extract information about a process

operating in a separate state-space S from data in A. This will naturally depend on the

relationships between the structures of the state-spaces. Where some states in the

aggregated space are only accessible via multiple steps in the separate space, it is possible

to gather information about which states might have been visited. To illustrate this

concept, we examine an example where sequences evolve in codon space and are observed

in amino acid space. For simplicity, we disregard transition-transversion bias (i.e., we

assume κ = 1). Given an alignment and phylogeny that strongly suggest an evolutionary

trajectory W → L → H, the most direct path through codon space in single nucleotide

steps requires at least two synonymous substitutions (Fig. 1). Hence, knowledge of amino

acid sequence evolution can reveal information about codon changes. In practice, many

different routes through codon space may be compatible with the observed data; each is

assessed by standard likelihood calculations and the embedded information about codon

changes weighted appropriately.

Where the separate state-space model disallows many transitions (as with the

codon model in equation 0.1), it is easy to see how inferred moves through the aggregated

space can give information about the separate states. However, even when the model of

interest in S is described by a Q-matrix that does not contain zeros, similar principles

apply. Here, none of the routes through the unobserved space are prohibited by the

exchangeabilities, but each is more or less probable. We can therefore distinguish between

different routes without directly observing them. For example, given an alignment that

implies the amino acid trajectory L → F → Y, the RAM55 model has several available

routes through rotamer space. However, considering the relative empirical exchangeabilities

between states, we observe marked differences in how probable each path is (Fig. 2). This,
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* : TGA

W: TGG

R: CGT

R: CGC

R: CGA

R: CGG

L: TTA

L: TTG

L: CTT

L: CTC

L: CTA

L: CTG

* : TAA

* : TAG

H: CAT

H: CAC

Q: CAA

Q: CAG

Fig. 1. The path of a sequence through amino acid space contains information about which codons may have been
visited. We illustrate a W (tryptophan) → L (leucine) → H (histidine) trajectory that requires multiple
synonymous substitutions. Amino acid states representing the trajectory are shown in dark font. Compatible
corresponding (unobserved) codons are shown in lighter font. Greyed out boxes represent neighbouring states in the
genetic code. Solid arrows indicate changes required for the trajectory with the minimum number of steps, while
dashed arrows indicate substitutions associated with multiple compatible paths. Black arrows denote
non-synonymous substitutions, and lighter arrows indicate synonymous substitutions.

L: L1 F: F1 Y: Y1

L: L2 F: F2 Y: Y2

L: L3 F: F3 Y: Y3

Fig. 2. Illustration of paths through amino acid and rotamer space, given an implied trajectory L (leucine) → F
(phenylalanine) → Y (tryptophan). Dark font indicates observed amino acid states. Light font indicates unobserved
rotamer configurations. Arrows show observed path through amino acid space. Lines connecting rotamer states
indicate transition probabilities between states, with darker shading indicating more probable substitutions
according to the RAM55 matrix. L3 → F3 → Y3 is the most likely trajectory.

in turn, should allow us to infer, for example, the most probable rotamer sequence at an

ancestral node, using the ambiguity approach. Note that, in some cases, the aggregated

state-space will not retain sufficient information about paths through the separate space to

estimate parameters. One example would be a nucleotide model with κ applied to a (fully)

RY-coded alignment, where all transitions become unobservable and transversions provide

direct routes between both aggregated states.
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14 WEBER ET AL.

Selection can be inferred from amino acid data alone.
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Fig. 3. Estimation of codon model parameters from amino acid data. A) Simulation (ω∗) and estimated (ω̂) values
of ω show a strong linear relationship (κ∗ = 2 for all simulations shown). Squares represent the median ω̂M5 for each
ω∗; points show estimates from individual alignments. Dashed line indicates y = x; solid line shows the line fit for
the medians, with high values of ω∗ slightly prone to overestimation (slope = 1.07, intercept = 0.0083, r2 = 0.92,
p ≈ 0). B) Estimates of κ∗ show a similar pattern (ω∗ = 0.3; slope = 1.00, intercept = -0.0009, r2 = 1.00, p ≈ 0).

Next, the question arises whether ambiguity coding extracts enough signal to allow

meaningful inferences to be made. We therefore asked whether the ambiguity approach

permits inference about codon evolution from amino acid data, considering the M5 variant

of the standard M0 codon model (see Methods). To determine if M5 is capable of detecting

the relative strength of selection under which a sequence evolved, we require data for

which this parameter is known. The most straightforward way of obtaining this is to

simulate sequences under a model identical to the one used in the estimation step.

We therefore considered translated sequences that were evolved on a randomly

generated 20-taxon tree under the codon model M0. As an initial benchmark, we generated

100 alignments with 3000 codons with the simulation parameters ω∗ = 0.3 and κ∗ = 2, and

obtain accurate and unbiased estimates of both (median ω̂ = 0.304; median κ̂ = 1.99).

Analysing the original codon sequences using M0 with identical settings gives similar

results (median ω̂ = 0.299; median κ̂ = 2.00). We note that M5 tends to be noisier,

presumably due to its inability to directly observe synonymous changes. This observation

holds across a range of ω∗ and κ∗ values, with high ω∗ values being somewhat prone to
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overestimation, although a strong linear relationship between true and estimated

parameters is maintained (Fig. 3). There is little interaction between ω and κ (Fig. S3). In

the following, we therefore consider only the combination ω∗ = 0.3 and κ∗ = 2, unless

otherwise noted.

The parameter κ̂ shows a relatively modest increase in variance under M5 compared

to M0 (standard deviation sκ = 0.0541 under M5; sκ = 0.0364 under M0), presumably due

to its direct, and thus inferable, impact on non-synonymous substitution patterns. The

results obtained for κ̂ under M5 are similar to those for M6 (κ̂M6 = 2.00 with sκ = 0.0561),

which estimates the parameter from amino acid sequences by averaging over synonymous

codons rather than gathering information from ambiguity coding while traversing the tree

(Yang et al., 1998). This suggests that κ̂ can be robustly estimated from amino acid

sequences, even using coarse-grained approaches.

However, as expected, discarding codon information does lead to a loss of signal

primarily affecting ω̂, which displays a markedly higher variance under M5 than under M0

(sκ = 0.0456 vs. 0.0056, respectively). Why might this be? A comparison of the estimates

for dS tree length versus dN tree length suggests that M5 has more difficulty estimating

the former, with variation in dS tree length accounting for almost all of the variation in

overall tree length (see Fig. S4). This is consistent with the fact that synonymous changes

are not directly represented in amino acid sequences, whereas non-synonymous changes are

(as long as sufficiently short timescales are considered). We therefore next consider how

much information about ω is retained by M5, compared to M0.

How much information loss does discarding codons cause?

The ability of M5 to capture information that is directly ‘seen’ by M0 can be

measured by comparing the variances in parameter estimates on alignments with varying

amounts of evolutionary signal. The most straightforward way to add information to a

phylogeny given a codon model is to increase the number of codons in the alignment. Since
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Fig. 4. Increasing the number of columns allows us to quantify how much information is retained in amino acid
sequences (M5) relative to codon sequences (M0). The median standard errors of A) ω̂ and B) κ̂ decrease for both
models as codons are added. The dashed horizontal line in A) indicates the observed median standard error of ω̂ for
100 codons under M0, and illustrates that M5 requires a substantially longer alignment to reach a comparable
standard error. Fitting functions of the form c/

√
n to the median standard errors, with n equalling the number of

alignment columns, allows us to quantify the difference in information content. Equating cM0/
√
fn with cM5/

√
n

indicates equivalent information content for fn codons in M0 and n codons in M5: hence M5 recovers a fraction
f = (cM0/cM5)2 of the information available to M0. Alternatively, M5 has lost 100(1 −f)% of the information
available to M0.

both M0 and M5 give rise to unbiased estimates of ω̂ and κ̂ (Fig. 3), we compared the

variance in the parameter estimates for alignments of varying lengths. Given ω∗ = 0.3 and

κ∗ = 2 across 1000 replicates, we find that the median standard error of ω̂M0, as estimated

by codeml, is consistently lower than that of ω̂M5. Across the range, the standard error is

approximately 10 times higher for M5 (Fig. 4), indicating an information loss of 98.7% (see

Fig. 4A for details). By comparison, the equivalent loss for κ̂ is only 38.8% (Fig. 4B).

Nevertheless, the estimates of ω̂ are reasonably accurate given a sufficiently long alignment

(Fig. 3).

It is perhaps counter-intuitive that acceptable estimates of ω̂ can still be obtained

with M5 in these circumstances. However, the relative magnitude of the error may remain

relatively small. For example, given ω∗ = 0.3, κ∗ = 2 and n = 3000, the interquartile range

for ω̂ is 0.296 - 0.304 under M0 and 0.270 - 0.344 under M5. Note that the information loss

seems to vary with ω∗. We observe a larger ratio of standard errors when ω∗ = 0.1

(approximately 12–20 times), with an information loss of about 99.2% (results not shown).
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Fig. 5. Tree length influences variance in estimates ω̂ for both M5 and M0, with intermediate values producing the
lowest standard errors. Points show the median value across replicates. Note the difference in scale on the y-axis
between M5 and M0.

Tree depth and taxon number impact M5 information loss.

Our results show estimates of ω̂M5 to be noise-prone for short alignments. Because

increasing alignment length is not a viable solution to reduce variance for real amino acid

sequence data, we also considered how other features of the alignment impact M5’s ability

to accurately infer ω̂. For example, it may be possible to select sequences with higher

divergence or include additional taxa in the phylogeny, hence adding more information.

Scaling-up the branch lengths of the tree in the simulations gives an initial improvement in

the standard error of ω̂. The greatest reduction is observed for a tree length of

approximately 4 times the length of the original tree (around 20), followed by a decline for

longer trees (see Fig. 5). This is a consequence of the increased number of substitution

events from which the model can infer parameters, which is advantageous until the

sequences become too divergent, the true number of substitutions is underestimated, and

the data become too noisy.

The trajectory of the change in variance observed across different tree lengths is

broadly comparable for M0 and M5, with the variance for M5 remaining consistently
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18 WEBER ET AL.

higher for all lengths. In the case of M0, this is due to saturation at synonymous sites

(Yang, 2014). For M5, it is easy to see that multiple substitutions at a site along a single

branch make it more difficult to infer the path through codon space (see Fig. 1). This

confirms that the model is behaving as expected.

Adding additional taxa has a similar effect on the variance. When we examine a

tree of comparable height (0.5) with twice as many tips (n = 40, see Fig. S1B), the

standard error of ω̂ decreases compared to the smaller tree (median = 0.0223 vs. 0.0396 for

1000 replicates of 5000 codons and ω∗ = 0.3; equivalent values for M0 are 0.0030 vs.

0.0043). As above, this behaviour is expected as the additional tips add information,

provided the branches are not exceedingly long.

Given these observations, we conclude that estimating the strength of selection

from amino acids is a feasible strategy where nucleotide sequences may be difficult or

impossible to obtain (e.g. where amino acid sequences from databases or publications

cannot be reliably mapped back to the underlying codons). Although there is an

appreciable loss of signal, M5 is statistically consistent and approaches the correct

parameter estimates given enough amino acid sequence data.

Accurate reconstruction of ancestral side chain configuration from amino acids.

We next ask whether the strategy of treating characters that are not directly

observable as ambiguous is also informative when the instantaneous rate matrix underlying

the substitution model is not sparse (that is, does not contain transitions with probabilities

equal to 0). To examine how ambiguity coding performs given an empirical rotamer-aware

model, we simulated data with 55 states under the RAM55 model on a 32-taxon tree

(Fig. S2, see Methods), and subsequently reconstructed the ancestral sequences under the

same model. We opted to benchmark the model using reconstruction accuracy, as ancestral

side chain configurations represent an output that would be otherwise unobtainable from

amino acid data alone. Varying the proportion of masked sequences in the alignment (see
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Fig. 6. The accuracy of ancestral rotamer sequence reconstruction from mixed data under RAM55 increases and
shows lower variance when more rotamer configuration information is available. The x-axis shows the fraction of
rotamer configuration information removed (i.e. masked). The vertical bars show the standard deviation of the
reconstruction accuracies, centered around the median. The black dash-dot lines represent the maximum accuracy
reached on full (unmasked) alignments; black dashed lines show the accuracy achieved by reconstructing the amino
acids under RUM20 and randomly assigning (‘guessing’) the rotamer configuration. A) Results when all branches
of the tree (Fig. S2) are multiplied by 0.1, showing greater overall accuracy in this case. B) Results for the
standard simulation tree (see Methods).

Methods) allows us to compare scenarios where structures are available for some of the

sequences of interest, or none at all, similar to what would be observed for real empirical

data. The reconstruction accuracy for the data where rotamer information is available for

all of the tips provides a benchmark for the performance of ambiguity coding.

There is a relatively modest reduction in overall rotamer state reconstruction

accuracy between simulations where rotamer configurations are known for all taxa, and

simulations where this information is not available for any of the taxa (∼ 15% difference

for the unscaled tree, Figure 6, scaling factor = 1.0). Reconstruction under RAM55 using

only amino acid sequences is markedly more accurate than the only alternative approaches

of using a conventional empirical amino acid model to reconstruct the protein sequence

and randomly assigning (‘guessing’) rotamer states (Fig. 6, dashed line), or assigning them

based on the equilibrium frequencies of the RAM55 model (Fig. S5). Hence, it is

advantageous to reconstruct under the rotamer-aware model, even when the input data are

only available in the aggregated state-space.
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20 WEBER ET AL.

As expected, the overall accuracy depends on how difficult the ancestral sequence

reconstruction problem is, with a shallower tree showing higher sequence identity between

simulated and reconstructed characters (Fig. 6A). Interestingly, the greatest increase in

performance appears between alignments with no rotamer configuration information

present and 12.5% of sequences containing that information (Fig. 6). This suggests that

little structural information is required in order to achieve ancestral reconstruction of

rotamer states with acceptable accuracy. Intuitively, the fraction of correctly inferred

states declines with increasing distance from the tips of the tree (Spearman’s rank

correlation coefficient -0.537, p < 0.001; details not shown). We also considered how the

certainty with which the model assigns the correct ancestral state responds to rotamer

information being masked at the tips of the tree. Unsurprisingly, the marginal posterior

probability for the correct state declines as information is removed (see Fig. S6). We

observe a drop in the certainty of the reconstruction preceding the drop in accuracy.

To examine the robustness of our approach, we also assessed ancestral sequence

reconstruction accuracy under a simple model violation scenario, simulating data under

RAM55 with gamma-distributed rates (Yang, 1994) and reconstructing under RAM55

without rate heterogeneity. When rotamer configuration is masked, we observe a larger

decline in accuracy compared to a scenario with no violation, which is expected given that

the amino acid sequence contains less signal (Fig. S7).

Gains associated with using amino acid sequences to infer rotamer configuration in absence

of structure.

As with the codon model example, we would like to quantify the loss of information

associated with using aggregated state-space data for inference in the separate state-space.

Given that the output of the empirical model we are studying is not a parameter estimate

(as opposed to our mechanistic codon model/selection example) but the percentage of

correctly reconstructed residues, extending the alignment is not informative. Instead, we
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Fig. 7. The accuracy of ancestral rotamer sequence reconstruction from mixed data under RAM55 increases when
masked sequences, which lack rotamer states, are not discarded. The x-axis shows the fraction of information
available under two scenarios. The dark circles reflect the the amount of rotamer information that has been masked
(i.e. replaced with amino acids), and the light crosses represent the amount of rotamer sequences that has been
replaced with gaps (discarded). Masking half of the rotamer configurations produces accuracies comparable with
those obtained by replacing 1/8–1/4 of sequences in the alignments with gaps (see black dashed lines).
Reconstructions with ambiguity always outperform discarding an equivalent fraction of amino acid sequences. As
before, the shallower tree, A), shows higher overall accuracy.

compared the accuracy of reconstructions under two scenarios: (a) all state information

(amino acid and rotamer configuration) is discarded from a proportion of sequences, and

(b) masking is used so that amino acid, but not rotamer, sequences are available for a

proportion of the alignment. This provides a measure of the advantage gained by

considering additional amino acid sequences where no structural information is available.

For the un-scaled tree, masking 50% of the rotamer configurations produces

ancestral reconstructions that are comparable in accuracy to trees where 12.5% of taxa

have gaps (Fig. 7A), indicating a noticeable advantage for including amino acid sequences

where full rotamer state information is unavailable. In other words, augmenting half of the

amino acid sequences with rotamer configuration information is approximately as

informative as having 87.5% of the full rotamer information. Further, removing all rotamer

information and reconstructing with ambiguity is equivalent to retaining 50% of the

original information. These results suggest that it can be very valuable to consider amino

acid sequences that lack structures.
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Improved prediction of side chain configurations in homologous structures.

Considering its robust performance, how might ambiguity coding be put to

practical use in the context of reconstructing side chain configurations? Prediction of side

chain conformations is an important part of protein structure modelling and interaction

modelling. For a given protein sequence of unknown structure, it is possible to construct a

model of the target protein from its amino acid sequence and experimentally determined

structures of related homologous proteins. This homology modelling strategy aims to

predict both the main chain geometry and side chain configurations. In conserved regions,

side chains can be modelled starting from configurations observed at corresponding sites in

the nearest homologous structure (NNC: see Methods). Further steps are then required,

particularly to model non-conserved side chain configurations (Waterhouse et al., 2018).

Side chain configurations could be predicted for an extant amino acid sequence using

RAM55 and a modified ancestral reconstruction algorithm by constraining the χ1

configuration prediction to the set of configurations that are possible given the observed

amino acid at any given site. Another realistic homology modelling scenario might involve

our target’s nearest homolog also lacking a resolved structure and only being available as

an amino acid sequence (MNN: see Methods). In this context RAM55 can use a mixed

alignment (amino acid sequences and rotamer sequences) to inform its predictions rather

than relying exclusively on available structures, which ought to improve reconstruction

accuracy as seen above (Fig. 7).

To evaluate our approach to side chain configuration prediction, we considered two

empirical protein family datasets (RuBisCO and ADK, see Methods) composed of amino

acid sequences from a range of species and their corresponding rotamer configuration

information. We investigated two scenarios: (1) a rotamer sequence is available for the

nearest neighbour of each terminal node or (2) only a masked amino acid sequence is

available for the nearest neighbour. Predicting χ1 side chain configurations using RAM55

is more accurate (∼ 11% median improvement for both datasets) than NNC (see Methods)
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when the nearest neighbour’s structure is available (Supplementary Figures S8, S9).

Further, RAM55 can make use of all the available rotamer sequence information, as well as

the nearest neighbour’s amino acid information, when the nearest neighbour’s structure is

not available. Meanwhile, the traditional approach would instead rely on the second-nearest

structure (MNN: see Methods). This results in improved reconstruction accuracy for

RAM55 (∼ 9% and ∼ 12% median improvement, respectively) over MNN (Supplementary

Figures S8, S9). For both NNC and MNN analyses, the improvements with RAM55 are

driven by strongly increased accuracy at non-conserved sites (results not shown).

Our method provides plausible predictions of χ1 configurations using a strategy

that, as opposed to NNC or MNN, explicitly models the evolutionary process along the

branches of the phylogeny and can make use of amino acid information when structures

are not available. RAM55-based predictions could speed up the side chain homology

modelling process by creating an informed prior to constrain the search space, particularly

where close homologs with unresolved structures might otherwise be discarded by

traditional strategies.

Discussion

We have demonstrated that treating characters in an aggregated state-space A as

ambiguous versions of characters in a larger state-space S allows us to obtain information

that would otherwise not be accessible from data in A. Our examples show that this is

true for estimating the strength of natural selection under a codon model, and for

reconstructing ancestral side chain configurations under an empirical model, both from

amino acid sequences alone.

Naturally, where data are available in a larger state-space matching the internal

structure of the preferred model it is advantageous to make use of them. The codon model

example provides a particularly clear illustration: completely discarding codon information

leads, for obvious reasons, to increased variance in estimates of ω̂. We nevertheless find it
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remarkable that selection parameter estimates ordinarily derived from comparisons of

synonymous and non-synonymous substitutions can be obtained given sufficient amino

acid data.

It has previously been argued that modelling coding sequence evolution at the

codon level rather than the amino acid level is generally preferable because it offers a more

detailed description of the process that generated the data (Ren et al., 2005; Seo and

Kishino, 2008; Kosiol and Goldman, 2011; Whelan et al., 2015; Weber and Whelan, 2019).

On the other hand, the ambiguity approach may be useful to obtain an approximate

estimate of the strength of natural selection in cases where amino acid sequences are more

readily obtainable. For example, the supplementary materials accompanying phylogenetic

studies often only provide amino acid alignments, and as many as 17% of nucleotide

sequences corresponding to proteins in Pfam (El-Gebali et al., 2018) have been previously

reported unrecoverable (Whelan et al., 2003). The ability to perform a preliminary screen

to determine whether a sequence of interest is under weak or strong evolutionary

constraint might therefore be convenient. However, we caution against over-interpreting

the results returned by M5, particularly when individual sequences are being considered or

codon usage may be biased (violating model assumptions).

The absence of high-quality structures for many extant proteins provides more

practical applications for ambiguity coding. In the case of the RAM55 empirical rotamer

model, we have shown the utility of using amino acid sequences alone, and ‘mixed’ inputs

where even a limited amount of structural information leads to considerable improvements

in the accuracy of χ1 configuration prediction. Being able to use information from amino

acid sequences improves prediction accuracy over modelling side chains based on the

nearest available structure alone. This approach could benefit homology modelling

strategies, specifically the steps involving modelling both conserved side chains based on a

known template structure, and non-conserved side chain modelling achieved by searching a

rotamer library and minimizing an energy function (Xu, 2005; Krivov et al., 2009;
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Shapovalov and Dunbrack Jr, 2011). In this context, RAM55’s predictions constrain the

rotamer configuration sampling space. This could result in a reduction of the number of

energy refinement cycles required.

In addition, using RAM55 and the marginal ancestral reconstruction algorithm

makes it possible to obtain posterior probabilities for each of the possible configurations at

a given site. This distribution might provide a more-robust prior for further refinement,

compared to using the single most-likely reconstructed configuration or the nearest

homolog’s configuration at that site. Further work would be required to quantify

improvements in speed and accuracy.

Given the advantage of including mixed input data demonstrated in our rotamer

sequence reconstruction analyses, we expect combining amino acid and DNA sequences to

be promising, as well as straightforward to implement. This would address some of the

current limitations of M5 with respect to analysing phylogenetic datasets with some

missing codon sequences. For example, accurate estimates of codon frequencies would be

more readily obtainable. A more speculative and potentially intriguing application would

be estimating selection or structural information from ancient protein sequences. Proteins

can persist for longer in the environment than DNA under certain conditions (Schweitzer

et al., 2007; Wadsworth and Buckley, 2014; Cappellini et al., 2019), enabling phylogenetic

inferences to be made based on substantially older specimens such as dinosaurs and other

extinct organisms (Schroeter et al., 2017; Schweitzer et al., 2019; Welker et al., 2019). Our

methods permit the use of a mixture of all available DNA and protein sequences to

maximise signal, extending analyses that are normally only possible with DNA sequences

to incorporate additional data sources. In the absence of any compelling available ancient

protein datasets, we do not attempt to provide a benchmark here.

The proof of principle described here using two relatively simple models should not

be taken as a substitute for carefully stress-testing the ambiguity coding approach for

specific applications. As is the case with all models, with or without ambiguous inputs,
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making overly simple assumptions about the data can lead to misspecification and

therefore inaccurate results. We recommend performing appropriate benchmarks and

specifying models accordingly. As illustrated by our rate heterogeneity model violation

scenario, we expect model misspecifications to have similar effects with ambiguity coding

as they would in general: Estimates will become more noisy. Due to the information loss

inherent to relying on the aggregated state-space, a somewhat greater decline is naturally

to be expected. However, we note that our empirical analysis, which demonstrates that

rotamer states can be reconstructed using real sequences as input, suggests that more

complex scenarios can be captured. One could conceive of a variety of extensions to our

implementations, including gamma-distributed rate variation or mixture models of codon

evolution. Assessing them all thoroughly is beyond the scope of this manuscript.

In this work, we have shown that ambiguity coding allows evolutionary inference

from partially ‘hidden’ data under phylogenetic models with both sparse (e.g. mechanistic)

and non-sparse (e.g. empirical) exchangeability matrices. Thus, the principles underlying

likelihood analysis of missing data (Felsenstein, 2004; Yang, 2014) and covariotide models

(Huelsenbeck, 2002) can be applied more broadly, allowing us to estimate selection and

reconstruct aspects of protein structure given input data that are not fully resolved.

Finally, ambiguity coding could conceivably be applied to other state-spaces beyond amino

acids, codons, and rotamer states, provided there is reason to believe that movement

through the aggregated space contains info about the separate space.
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Model Availability

The M5 codon model is available as model 5 in codeml (PAML version 4.9h) (Yang,

2007) and is run with the sequence type set to amino acids (seqtype = 2). The program

overrides the codon frequency setting specified in the control file and resets the CodonFreq

variable to 0 (1/61). Rotamer sequence simulation and ancestral sequence reconstruction

code is available at https://bitbucket.org/uperron/ambiguity_coding.
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