A graph theory approach for scenario aggregation for stochastic optimisation

Sergio Medina-González, Ioannis G
kioulekas, Vivek Dua and Lazaros G. Papageorgiou *

Centre for Process Systems Engineering, Department of Chemical Engineering, UCL (University College London), Torrington Place, London WC1E 7JE, UK

 $[\]label{eq:corresponding} \ensuremath{^*\text{Corresponding author.E-mail addresse: l.papageorgiou@ucl.ac.uk} (L.G. Papageorgiou)$

1 Supplementary Material

Summary of the mathematical models

The following mathematical formulations were taken directly from the literature. For continuity purposes in all the presented mathematical models, scenario/node (n) and time period (t) have been used here regardless of their definition in the original paper. The rest of the indexes, variables and parameters definitions were maintained.

	Indexes		
act	Activities		
tec	Technologies		
s	Material state		
f	Locations		
e	Biomass supplier		
p	Energy generation		
m	Market site		
t	Time period		
n	Scenarios		
	Sets		
T_s and \hat{T}_s	Task that produce material s		
E_{rm}	Suppliers e that provide raw materials		
\hat{E}_{prod}	Suppliers e that provide production services		
\hat{E}_{tr}	Suppliers e that provide transportation services		
FP	Materials s that are final products		
$A\hat{C}T$	Task act with variable input		
ACT_{tec}	Task act that can be performed in technology tec		
RM	Materials s that are raw materials		
	Parameters		
$As_{s,f,t}$	Biomass availability		
$Dem_{s,f,t}$	Energy demand		
$Distance_{f,f'}$	Distance between locations		
$FCFJ_{tec,f,t}$	Fixed cost per unit tec		
$FE_{tec,f,k}^{limit}$	Increment of capacity		
rate	Discount rate		
$invest^{MV}$	Investment required for medium voltage		
М	Big positive number		
$NormF_g$	Normalizing factor of damage category g		
$Price_{s,f,t}$	Price of products s at market f in period t		
$Price_{tec,f,k}^{limit}$	investment required of an increment of capacity		
$Water_{s,n}$	Moisture for material s and scenario n		
$Water_{tec,act}^{max}$	Maximum moisture for task act performed in technology tec		
$\alpha_{s,act,tec}$	Mass fraction for production of material s		
$\hat{\alpha}_{s,act,tec}$	Mass fraction for production of material s		
$\beta_{tec,f}$	Minimum utilisation rate of technology		
$\theta_{act,tec,f,f'}$	Capacity utilization rate of technology tec by task act whose origin		
	location f and destination location f'		

1.1 Bio-based energy production supply chain by Medina-González et al. (2017)

$ ho_{e,f,f',t}^{tr}$	Unitary transportation costs from location f to location f' during peri-
	\mathbf{t}
$ au_{s,f,e,t}^{ut1}$	Unitary cost associated with task i performed in equipment j from loc
	tion f and payable to external supplier e during period t
$ au_{s,f,e,t}^{ut2}$	Unitary cost associated with handling the inventory of materials in lo
	tion f and payable to external supplier e during period t
$\chi_{e,s.t}$	Unitary cost of raw materials offered by external supplier e in period
$prob_n$	Probability of scenario n
	Variables
$EPurch_{e,t,n}$	Economic value of sales executed in period t during scenario n
$ESales_{t,n}$	Economic value of sales executed in period t and scenario n
$FAsset_{t,n}$	Investment on fixed assets in period t and scenario n
$FCost_{f,t,n}$	Fixed cost in facility f for period t and scenario n
$F_{tec,f,t,n}$	Total capacity technology tec during period t at location f and scena
<i>vcc</i> , <i>j</i> , <i>v</i> , <i>n</i>	n
$FE_{tec,f,t,n}$	Capacity increment of technology tec at location f during period t a
	scenario n
$HV_{s,n}$	Lower heating value for materials during scenario n
NPV_n	Economic metric for a deterministic case (just one scenario n)
$P_{act,tec,f,f',t,n}$	Specific activity of task act, by using technology tec during period
;; ; ; ; ;;;;-;	whose origin is location f and destination is location f' and scenario r
$Profit_{f,t,n}$	Profit achieved in period for each facility f at time period t and scena
	i
$Pv_{s,act,tec,f,t,n}$	Input/output material of material s for activity of task act with varial
- ,, , ,, ,, ,, , , , , , , , , , , , , ,	input/output, by using technology tec during period t in location f a scenario n
$Purch_{e,t}^{pr}$	Amount of money payable to supplier e in period t associated with p
i ur che,t	duction activities
$Purch_{e,t}^{rm}$	Amount of money payable to supplier e in period t associated with co
i ur ch'e,t	sumption of raw materials
$Purch_{e,t}^{tr}$	Amount of money payable to supplier e in period t associated with co
i ur cre,t	sumption of transport services
$Sales_{s,f,f',t,n}$	Amount of product s sold from location f in market f' in period t a
D wrees, J, J', t, n	scenario n
$S_{s,f,t,n}$	Amount of stock material s at location f in period t and scenario n
SoC_n	Surrogate social metric at each scenario i
ENPV	Expected net present value
ESoC	Expected social performance
	Binary Variables
	Technology installed at location f in period t
V.	reemongy instance at location i in period t
$V_{tec,f,t}$	Facilities f and f' interconnected by a medium veltage line
$V_{tec,f,t}$ $Z_{f,f'}$ $\xi_{tec,f,k,t}$	Facilities f and f' interconnected by a medium voltage line Variable to model the economies of scale technology tec in facility f

$$S_{s,f,t,n} - S_{s,f,t-1,n} = \sum_{f'} \sum_{act \in T_s} \sum_{tec \in (TEC_{act} \cap TEC_{f'})} \alpha_{s,act,tec} P_{act,tec,f',f,t,n}$$

$$- \sum_{f'} \sum_{act \in \hat{T}_s} \sum_{tec \in (TEC_{act} \cap TEC_{f'})} \alpha_{s,act,tec} P_{act,tec,f',f,t,n}$$

$$+ \sum_{act \in (T_s \cap ACT)} \sum_{tec \in (TEC_{act} \cap TEC_{f'})} Pv_{s,act,tec,f,t,n} \quad \forall s, f, t, n$$

$$- \sum_{act \in (\hat{T}_s \cap ACT)} \sum_{tec \in (TEC_{act} \cap TEC_{f'})} Pv_{s,act,tec,f,t,n} \quad \forall s, f, t, n$$

$$(1.1.1)$$

$$\sum_{s \in T_s} HV_{s,n} Pv_{s,act,tec,f,t,n} = \sum_{s \in \hat{T}_s} HV_{s,n} Pv_{s,act,tec,f,t,n} \qquad \forall \ act \in ACT, \ f, \ t, \ n \quad (1.1.2)$$

$$\sum_{s \in S_{act}} Water_{s,i} Pv_{s,act,tec,f,t,n} \le Water_{act,tec}^m ax \sum_{s \in S_act} PV_{s,act,tec,f,t,n}$$
(1.1.3)

 $\forall \ n, \in \hat{N}, \ tec, \ f, \ t, \ n$

$$\sum_{k} \xi_{tec,f,k,t,n} F E_{tec,f,k}^{limit} = F E_{tec,f,t,n} \quad \forall \ tec, \in T E C_f, \ f, \ t, \ n$$
(1.1.4)

$$\sum_{k} \xi_{tec,f,k,t,n} = V_{tec,f,t,n} \qquad \forall \ tec, \in TEC_f, \ f, \ t, \ n$$
(1.1.5)

$$F_{tec,f,t,n} = F_{tec,f,t-1,n} + FE_{tec,f,t,n} \quad \forall \ tec, \in TEC_f, \ f, \ t, \ n \tag{1.1.6}$$
$$\beta_{tec,f}F_{tec,f,t1,n} \leq \sum_{f'} \sum_{act \in ACT_{tec}} \theta_{act,tec,f,f'}P_{act,tec,f,f',t,n} \quad \forall \ tec, \in TEC_f, \ f, \ t, \ n$$

$$\vec{f'} \quad act \in ACT_{tec} \tag{1.1.7}$$

$$\sum_{f'} \sum_{act \in ACT_{tec}} \theta_{act, tec, f, f'} P_{act, tec, f, f', t, n} \leq F_{tec, f, t-1, n} \qquad \forall \ tec, \in TEC_f, \ f, \ t, \ n \quad (1.1.8)$$

$$\sum_{f'} \sum_{act \in \hat{T}_s} \sum_{tec \in te\hat{x}_{act}} P_{act, tec, f, f', t, n} \le A_{s, f, t, n} \qquad \forall \ s \in RM, \ f \in E \ t, \ n$$
(1.1.9)

$$P_{act,tec,f,f',t,n} \le M * Z_{f',f,n} \qquad \forall \ s \in FP, \ f \in M, \ f' \notin M \ t, \ n$$
(1.1.10)

$$\sum_{f'} \sum_{act \in T_s} \sum_{tec \in TEC_{act}} P_{act,tec,f,f',t,n} \le Dem_{s,f,t,n} \qquad \forall \ s \in FP, \ f \in M, \ t, \ n$$
(1.1.11)

$$ESales_{f,t,n} = \sum_{s \in FP} \sum_{f' \in M} Sales_{s,f,f',t,n} Price_{s,f',t} \qquad \forall \ f \notin (M \cup E), \ t, \ n$$
(1.1.12)

$$FCost_{f,t,n} = \sum_{tec \in TEC_f} FCFJ_{j,f,t}F_{j,f,t,n} \quad \forall f \notin (M \cup E), t, n$$
(1.1.13)

$$EPurch_{e,t,n} = Purch_{e,t}^{rm} + Purch_{e,t}^{tr} + Purch_{e,t}^{pr} \quad \forall e, t, n$$

$$(1.1.14)$$

$$Purch_{e,t,n}^{rm} = \sum_{s \in RM} \sum_{f} \sum_{act \in \hat{T}_s} \sum_{tec \in I_{act}} P_{act,tec,f,f',t,n} X_{e,s,t} \qquad \forall \ f \in E_{rm}, \ t, \ n$$
(1.1.15)

$$Purch_{e,t,n}^{tr} = \sum_{s \in TR} \sum_{tec} \sum_{f} \sum_{f'} P_{act,tec,f,f',t,n} \rho_{e,f,f',t}^{tr} \quad \forall \ e \in \hat{E}_{rm}, \ t, \ n$$
(1.1.16)

$$Purch_{e,t,n}^{pr} = \sum_{f} \sum_{act \notin Tr} \sum_{act \in \hat{T}_s} \sum_{tec} P_{act,tec,f,f',t,n} \tau_{act,tec,f,e,t}^{ut1} + \sum_{s} \sum_{f \notin S \cup M} S_{s,f,t,n} \tau_{act,tec,f,e,t}^{ut2} \quad \forall \ e \in \hat{E}_{prod}, \ t, \ n$$

$$(1.1.17)$$

$$FAsset_{t,n} = \sum_{j} \sum_{f} \sum_{k} Price_{tec,f,t}^{limit} * \xi_{tec,f,k,t,n} + \sum_{f} \sum_{f'} Invest^{MV} Distance_{f,f'} Z_{f,f',n} \quad \forall t = 0, n$$

$$(1.1.18)$$

$$FAsset_{t,n} = \sum_{j} \sum_{f} \sum_{k} Price_{tec,f,t}^{limit} * \xi_{tec,f,k,t,n} \qquad \forall t \ge 1, n$$
(1.1.19)

$$Profit_{f,t,n} = ESales_{f,t,n} - (FCost_{f,t,n} + \sum_{e} EPurch_{e,f,t,n})X_{e,s,t} \qquad \forall f, t, n$$

$$NPV_n = \sum_f \sum_t ((Profit_{f,t,n} - FAsset_{f,t,n})/(1 + rate)^t) \quad \forall n$$
(1.1.21)

$$ENPV_n = \sum_n NPV_i * Prob_n$$
(1.1.22)
max ENPV (1.1.23)

$$\max ENPV$$

	Indexes
g,g'	Square regions that divide UK territory
i	Resource
m	Transport mode
p	Plant size intervals
n	Scenario
	Sets
BI	Set of biomass types $(BI = FI \cup CI \cup SI)$
CI	Set of first generation biomass co-products (straw)
FI	Set of first generation biomass types (wheat)
PI	Set of product types (biofuel)
SI	Set of second generation energy crops (miscanthus, SRC)
$Total_{i,g,g',l}$	Set of total transportation links allowed for each resource i via mode
-1 6161-	between region g and g'
	Parameters
$ADD_{g,g',m}$	Actual delivery distance between regions g and g' via model l
ALD_g	Average local biomass delivery distance
A_q^s	Set-aside area available in region g
α	Operating period in a year
β	Fraction of straw recovered per unit of wheat cultivated
$BA_{i,q}^{min/max}$	Minimum/maximum availability of first generation biomass $i(i \in FI)$ ir
.,9	region g
CCF	Capital charge factor
$\gamma_{i',i}$	Biomass to biofuel conversion factor for biomass type i' $(i' \in BI)$ to
	biofuel type i $(i \in PI)$
PCC_p	Investment cost of a plant of size p
$IMPC_{i,g*}$	Unit impost cost for importing resource i from foreign supplier g [*]
$PCap_p^{min/max}$	Minimum/maximum biofuel production capacity of a plant of size p
$Q_{i,l}^{min/max}$	Minimum/maximum flow rate of resource i via model
SusF	Maximum fraction of domestic first generation biomass allowed for bio
	fuel production
$UCC_{i,g}$	Unit biomass cultivation cost of biomass type i in region g
$UPC_{i,p}$	Unit biofuel production cost from biomass type i at a plant of scale p
$UTC_{i,c}$	Unit transport cost of product i via mode l
UTC^*	Unit transportation cost for local biomass transfer
$Y_{i,g}$	Yield of second generation energy crop i $(i \in SI)$ in region g
$DFFCC_t$	Discount rate
$DFPC_t$	Adjustment interest per time period
target	Minimum aceptable profit

1.2 Hybrid Biofuel Supply Chain by Akgul et al. (2011)

Binary Variables		
$E_{p,g,t}$	1 if a biofuel production plant of size p is to be established in region g	
$AVA_{p,g,t}$	1 if a product is send to region g at time t	
	Continuous variables	
$A_{i,g}$	Land occupied by second generation crop $i(i \in SI)$ in region g	
$D_{i,g}$	Demand for resource i in region g	
$Df_{i,p,g,t,n}$	Demand for biomass i at a plant of scale p located in region g	
$Pf_{p,g,t,n}$	Biofuel production rate of biofuel i $(i \in PI)$ at a plant of size p locate	
	in region g	
$PT_{i,g,t,n}$	Production rate of resource i via mode l from refion g to g'	
$Q_{i,g,g',l}$	Flow rate of resource i via mode l from region g to g'	
TDC	Total daily cost of a biofuel supply chain network	
TIC_t	Total investment cost of biofuel production facilities	
$PC_{t,n}$	Production cost	
$TPOC_{t,n}$	Total product outsourcing cost	
$TC_{t,n}$	Transportation cost	
$TP_{i,t,n}$	total production of product i	
$TotRev_{t,n}$	Profit at time period t ans scenario s	
ENPV	Expected net present value	
NPV_n	Net present value at scenario s	
FCC_t	facilties capital costs	
$TOC_{t,n}$	Total operating cost at time t and scenario s	

$$\max ENPV \tag{1.2.1}$$

$$TotRev_{t,n} = \alpha * ((MPE(n) + 80) * \sum_{g} D(i, g, t, n) \quad \forall t, n$$
(1.2.2)

$$NPV_{n} = \sum_{t} TotRev_{t,n} * DFPC_{t} - FCC_{t} - DFFCC_{t}$$

- ((TOC_{t,n} + TPOC_{t,n}) * DFPC_{t})) $\forall n$ (1.2.3)

$$ENPV = \sum_{n} NPV_n / |N|$$
(1.2.4)

$$TOC_{t,n} = (TC_{t,n} + PC_{t,n}) \qquad \forall t, n$$
(1.2.5)

$$FCC_t = \sum_{g,p} Y_{p,g,t} * PCC_p * 10^6 \quad \forall t$$
 (1.2.6)

$$PC_{t,n} = \alpha * \sum_{i,g} UPC_{i,t} * PT_{i,g,t,n} + \sum_{i,p,g} UPC_{i,p,t} * Df_{i,p,g,t,n} * \gamma_i \qquad \forall t, n$$

$$(1.2.7)$$

$$TPOC_{t,n} = \alpha * (IMPC * Q_{i,g,m,r,t,n} * IMPCR_t + IMPCE_n * Q_{i,g,m,r,t,n})$$

$$\forall t, n$$
(1.2.8)

$$TC_{t,n} = \alpha * \sum_{i,g,r,m} UTC_{i,m} * Q_{i,g,m,r,t,n} * ADD_{g,m,r} + UTCL * \sum_{i,g} PT_{i,g,t,n} * LD_{g,g'} \quad \forall t, n$$

$$(1.2.9)$$

$$\sum_{i} Df_{i,p,g,t,n} * \gamma_i = Pf_{p,g,t,n} \qquad \forall \ p, \ g, \ t, \ n$$
(1.2.10)

$$\sum_{p} Df_{i,p,g,t,n} = D_{i,g,t,n} \quad \forall i, g, t, n$$

$$(1.2.11)$$

$$TP_{i,t,n} = \sum_{g} PT_{i,g,t,n} \qquad \forall \ i, \ t, \ n \tag{1.2.12}$$

$$PT_{i,g,t,n} + \sum_{m,r} Q_{i,r,m,g,t,n} = D_{i,g,t,n} + \sum_{m,r} Q_{i,r,m,g,t,n} \quad \forall i, g, t, n$$
(1.2.13)

$$PT_{i,g,t,n} = \sum_{p} Pf_{p,g,t,n} \quad \forall g, t, n$$
(1.2.14)

$$AVA_{p,g,t} * PCAP_{p}^{MIN}/365,000 \le Pf_{p,g,t,n} \quad \forall \ p, \ g, \ t, \ n$$

$$PF_{p,g,t,n} \le AVA_{p,g,t} * PCAP_{p}^{MAX}/365,000 \quad \forall \ n$$
(1.2.16)

$$PT_{p,g,t,n} \leq 0.65 * PT_{p,g,t,n} \quad \forall p, g, t, n$$

$$\sum Y_{p,g,t} \leq 1 \qquad \forall q \qquad (1.2.17)$$

$$\sum_{p,t} I_{p,g,t} \ge 1 \qquad \forall \ \mathcal{G} \tag{1.2.18}$$

$$AVA_{p,g,t} = AVA_{p,g,t-1} + Y_{p,g,t} \quad \forall p, g, t$$
 (1.2.19)

$$del_n \ge target - NPV(n) \quad \forall n$$
 (1.2.20)

$$RF = \sum_{n} del_n / |N| \qquad \forall t, n \tag{1.2.21}$$

(1.2.22)

	Indexes
b	Number of industrial storage tanks
h	Agricultural sinks
j	Domestic sinks
k	Number of natural sources of water
l	Location for the storage tanks
m	Tributaries
g	Location of artificial ponds
t	Set of time periods
u	Set of industrial tanks
w	Location of industrial artificial ponds
n	Scenarios
	Parameters
A_q^a	Collection area in location g for artificial ponds a
A_q^{max}	Maximum capacity of artificial ponds a in location g
A_l^s	Collection area in location l for storage tanks s
A_k^{ROW}	Area of collection for runoff water for natural source k
A_k^{DPW}	Area of collection for direct precipitation for natural source k
AI_w^{max}	Maximum capacity of industrial artificial ponds AI in location w
ACS	Cost of water for agricultural use
ATN_q	Depth of artificial ponds in location g
ATS_l	Height of storage in location l
CTAA	Treatment cost for rainwater for agricultural use
CTAI	Treatment cost for rainwater for industrial use
CTFP	Treatment cost for water purchased with domestic use
CTND	Treatment cost for natural sources with domestic use
CTNA	Treatment cost for natural sources with agricultural use
CTNI	Treatment cost for natural sources with industrial use
CTAD	Treatment cost for rainwater for domestic use
CTPA	Treatment cost for regeneration of wastewater for agricultural use
CTPE	Treatment cost for regeneration of wastewater for final disposal
CTRP	Treatment cost for water purchased with agricultural use
CTQP	Treatment cost for eater purchased with industrial use
$D^{as}_{h,t,n}$	Agricultural users h demands in time t and scenario n
$D_{h,t,n}^{h,t,n}$ $D_{u,t,n}^{di}$	Industrial users u demands in time t and scenario n
	Domestic users j demands in time t and scenario n
$D_{j,t,n}^{ds}$ $DPWV_{k,t}$	Water collected from direct precipitation in natural sources k in time t
$DFWV_{k,t}$ DSC	Water sale cost for domestic use
DSC ISC	Cost of water for industrial use
$KF_{l,t}$	Factor to take into account the annualized investment for storage tank in location l in time t

1.3 Water distribution network by Medina-González et al. (2018)

$KF_{n,t}$	Factor to take into account the annualized investment for artificial ponds
10,0	in location n in time t
M	Large number
P_t	Precipitation over time period t
$P^{t}otal$	Annual precipitation
PCSTD	Unit cost of transport from storage tank l to domestic sink j
PCASD	Unit cost of pumping from artificial pond n to domestic sink j
PCSTA	Unit cost of pipeline and pumping from storage tank in location l to agricultural sink h
PCASA	Unit cost of transport water from artificial pond in location n to agricul- tural sink h
PCSTI	Unit cost of transport water from industrial storage tank in location b to industrial sink h
PCASI	Unit cost of transport water from industrial artificial ponds in location
	w to industrial sink u
PCND	Unit costs for transport from natural sources k to domestic main
PCNA	Unit costs for transportation of water from natural sources k to agricul- tural main
PCNI	Unit cost of water transportation from natural sources k to industrial main
PCTW	Unit water transportation cost from treatment plant to agricultural sink
	h
PCTI	Unit water transportation cost from industrial treatment plant to agricultural sink h
PFP	Unit water transportation cost from external water vendor to domestic users j
PQP	Unit water transportation cost from external water vendor to industrial users u
PRP	Unit water transportation cost from external water vendor to agricultural users h
PSC	Water sale cost for water purchased sent to users
$p_{k,t}^g$	Water collected from direct precipitation and runoff water in sources k at time t
$r_{m,k,t}$	Segregated flow rate from the tributaries m to natural sources k over time period t
$ROWV_{k,t}$	Runoff water collection in natural sources k over time period t
S_l^{max}	Maximum capacity of storage tanks s in location l
SI_{b}^{max}	Maximum capacity of industrial storage tanks si in location b
$VP_{l,t}$	Factor to consider the value of investment for storage tank in location l
-) -	and time t
$VP_{g,t}$	Factor to consider the value of investment for artificial ponds in location
	g and time t
А	Fixed cost for storage tank
В	Variable cost for storage tank
С	Fixed cost for artificial ponds
D	Variable cost for artificial ponds

	Variables
$G_{k,t,n}$	Existing water in natural sources k in time t and scenario n
$g^d_{k,t,n}$	Segregated flow rate from the natural source k to main domestic d in
	time t an scenario n
$g^a_{k,t,n}$	Segregated flow rate from the natural sources k to main agricultural a in
	time t and scenario n
$g^i_{k,t,n}$	Segregated flow rate from the natural source k to main industrial i in
	time t and scenario n
$v^g_{k,t}$	Water losses in natural sources k in time t
$Drop^{g}_{,k,t,n}$	Water that exceeds the maximum capacity of natural sources k in time
,,.,.	t and scenario n
$s_{l,t,n}^{in}$	Water obtained from rainfall sent to storage tanks s in location l in time
0,0,10	t and scenario n
$si^{in}_{b,t,n}$	Water obtained from rainfall sent to industrial storage tanks si in location
0,0,11	b and time t and scenario n
$S_{l,t,n}$	Existing water in storage tanks s in location l in time t and scenario n
$SI_{b,t,n}$	Existing water in industrial storage tanks SI in location b in time t and
- ,- ,	scenario n
$s_{l,h,t,n}^{out,a}$	Segregated flow rate from storage tanks s in location l sent to agricultural
ι,π,τ,π	users h in time t and scenario n
$s_{l,j,t,n}^{out,d}$	Segregated flow rate from storage tanks s in location l sent to domestic
ι,j,ι,n	users j in time t and scenario n
$si^{out,i}_{b,u,t,n}$	Segregated flow rate from industrial storage tanks si in location b sent
0, u, v, n	to industrial users u in time t and scenario n
$A_{g,t,n}$	Existing water in artificial ponds a in location g at time t and scenario n
$a_{g,t,n}^{in}$	Water obtained from rainfall sent to artificial ponds a in location g and
g,ι,n	time t and scenario n
$ai_{w,t,n}^{in}$	Water obtained from rainfall sent to artificial industrial ponds ai in lo-
w,ι,n	cation w and time t and scenario n
$AI_{w,t,n}$	Existing water in industrial artificial ponds at in location w and time t
\$\$,0,10	and scenario n
$a_{g,h,t,n}^{out,a}$	Segregated flow rate from artificial ponds a in location g to agricultural
g,n,t,n	users h in time t and scenario n
$a_{g,j,t,n}^{out,d}$	Segregated flow rate from artificial ponds a in location g sent to domestic
$^{\sim}g,j,t,n$	users j in time t and scenario n
$ai_{g,u,t,n}^{out,i}$	Segregated flow rate from industrial artificial ponds ai in location g sent
g,u,ι,n	to industrial users u in time t and scenario n
$f_{j,t,n}$	Segregated flow rate sent from the domestic main to the domestic users
J J,t,tt	j in time t and scenario n
r_{L+1}	Segregated flow rate sent from the agricultural main to the agricultural
$r_{h,t,n}$	users h in time t and scenario n
and a	Segregated flow rate sent from the industrial main to the industrial users
$q_{u,t,n}$	u in time t and scenario n
Fnch.	Segregated flow rate of water purchased sent to domestic users j in time
$Fpch_{j,t,n}$	t and scenario n
caud	
$cw^d_{j,t,n}$	Water consumed and losses in domestic sinks j in time t and scenario n

$int^{in}_{j,t,n}$	Wastewater sent from site j to treatment plant in time t and scenario r
$int_{t,n}^{out}$	Wastewater sent to treatment plant in time t and scenario n
$cw_{t,n}^{tp}$	Water reclaimed in domestic treatment plant and sent to final disposation time t and scenario p
\cdot , out, a, q	in time t and scenario n
$int_{h,t,n}^{out,a,g}$	Water reclaimed in industrial treatment plant and sent to agricultura sinks h in time t and scenario n
$rpch_{h,t,n}$	Segregated flow rate of water purchased sent to agricultural users h in time t and scenario n
$inti_{h,t,n}^{out,i}$	Water reclaimed in industrial treatment plant and sent to agricultura
h,t,n	sink h in time t and scenario n
$qpch_{u,t,n}$	Segregated flow rate of water purchased sent to industrial users u in time t and scenario n
$cw^{di}_{u,t,n}$	Water consumed and losses in industrial sink u in time t and scenario r
$inti^{in}_{u,t,n}$	Wastewater sent from site u to treatment plant in time t and scenario i
$inti_{t,n}^{out}$	Wastewater sent to treatment plant in time t and scenario n
$cwi_{t,n}^{tp}$	Water reclaimed in industrial plant and sent to final disposal in time
0,10	and scenario n
$ZagS_{l,t,n}$	Variable for installing storage tanks in location l in time t and scenario
	n
$ZagA_{g,t,n}$	Variable for installing artificial ponds in location g at time t and scenario n
$CostS_{l,n}$	Cost of storage tank in location l at scenario n
$CostA_{l,n}$	Cost of artificial ponds in location n at scenario n
$ARS_{l,n}$	Area occupied by the storage tank in location l at scenario n
$ARL_{g,n}$	Area occupied by the artificial ponds in location g at scenario n
$APA_{g,n}$	Total area occupied by artificial ponds in industrial location g at scenario
	n
WaterSales	Total profit from water sales
TreatCost	Total cost associated to treatment processes
StorCost	Total cost for water storage tasks
PipingCost	Total cost associated to piping of water
	Binary Variables
$ZS_{l,t}$	1 if a storage tank has been installed at location l and time t; 0 otherwise
$ZA_{g,t}$	1 if a artificial pond has been installed at location g and time t; 0 other wise
$ZAI_{w,t}$	1 if a artificial industrial pond has been installed at location w and time t; 0 otherwise

$$G_{k,t,s} - G_{k,t-1,n} = \sum_{m} + p_{k,t}^g - g_{k,t,n}^d - g_{k,t,n}^a - g_{k,t,n}^i - v_{k,t}^g - Drop_{k,t,n}^g$$

$$\forall k, t, n$$
(1.3.1)

$$p_{k,t}^g = ROWV_{k,t} + DPWV_{k,t} \quad \forall k, t$$
(1.3.2)

$$ROWV_{k,t} = P_t * A_k^{ROW} * 0.14 \quad \forall k, t$$
 (1.3.3)

$$DPWV_{k,t} = P_t * A_k^{DPW} * 0.14 \quad \forall k, t$$
 (1.3.4)

$$S_{l,t,n} - S_{l,t-1,n} = s_{l,t,n}^{in} - \sum_{j} s_{l,j,t,n}^{out,d} - \sum_{h} s_{l,h,t,n}^{out,a} \quad \forall l, t, n$$
(1.3.5)

$$SI_{b,t,n} - SI_{b,t-1,n} = si_{b,t,n}^{in} - \sum_{u} si_{b,u,t,n}^{out,i} \quad \forall \ b, \ t, \ n$$
(1.3.6)

$$A_{g,t,n} - A_{g,t-1,n} = a_{g,t,n}^{in} - \sum_{j} a_{g,j,t,n}^{out,d} - \sum_{h} a_{g,h,t,n}^{out,a} \quad \forall \ g, \ t, \ n$$
(1.3.7)

$$AI_{w,t,n} - AI_{w,t-1,n} = ai_{w,t,n}^{in} - \sum_{j} a_{w,u,t,n}^{out,i} \quad \forall w, t, n$$
(1.3.8)

$$\sum_{k} g_{k,t,n}^{d} = \sum_{j} f_{j,t,n} \quad \forall t, n$$
(1.3.9)

$$\sum_{k} g_{k,t,n}^{a} = \sum_{h} r_{h,t,n} \qquad \forall t, n$$
(1.3.10)

$$\sum_{k} g_{k,t,n}^{i} = \sum_{u} q_{u,t,n} \qquad \forall t, n$$

$$(1.3.11)$$

$$D_{j,t,n}^{ds} = f_{j,t,n} + \sum_{l} s_{l,j,t,n}^{out,d} + \sum_{g} a_{g,j,t,n}^{out,d}$$
(1.3.12)

$$+ Fpch_{j,t,n} \quad \forall j, t, n$$

$$D_{j,t,n}^{ds} = cw_{j,t,n}^{d} + int_{j,t,n}^{in} \quad \forall j, t, n$$

$$\sum_{int^{in}} = int^{out} + cw^{tp} \quad \forall t, n$$
(1.3.13)

$$\sum_{j} int_{j,t,n} = int_{t,n} + cw_{t,n} \quad \forall t, n$$

$$(1.3.14)$$

$$int_{t,n}^{out} = \sum_{h} int_{h,t,n}^{out,ag} \qquad \forall t, n$$
(1.3.15)

$$D_{h,t,n}^{as} = r_{h,t,n} + \sum_{l} s_{l,h,t,n}^{out,a} + \sum_{g} a_{g,j,t,n}^{out,a} + rpch_{j,t,n}$$

$$+ int^{out,ag} + inti^{out,i} \qquad \forall h = t \quad n$$

$$(1.3.16)$$

$$D_{u,t,n}^{di} = q_{u,t,n} + \sum_{b} si_{b,u,t,n}^{out,i} + \sum_{w} ai_{w,u,t,n}^{out,i} + qpch_{u,t,n} \quad \forall u, t, n$$
(1.3.17)

$$D_{u,t,n}^{di} = cw_{u,t,n}^{di} + inti_{u,t,n}^{in} \quad \forall u, t, n$$

$$\sum_{inti} in = inti^{out} + cw_{i}^{tp} \quad \forall t n$$
(1.3.18)
(1.3.19)

$$\sum_{u} inti^{m}_{u,t,n} = inti^{m}_{t,n} + cw^{p}_{t,n} \quad \forall t, n$$
(1.3.19)

$$inti_{t,n}^{out,i} = \sum_{h} inti_{h,t,n}^{out,i} \quad \forall t, n$$

$$S_{t}^{max} \ge S_{t+m} \quad \forall l, t, n$$

$$(1.3.20)$$

$$S_l^{max} \ge S_{l,t,n} \qquad \forall \ l, \ t, \ n \tag{1.3.21}$$

$$\begin{aligned} A_g^{max} &\geq A_{g,t,n} & \forall \ g, \ t, \ n \end{aligned} \tag{1.3.22} \\ S_l^{max} &\geq s_{l,t,n}^{in} & \forall \ l, \ t, \ n \end{aligned} \tag{1.3.23}$$

$$S_l \geq S_{l,t,n} \quad \forall t, t, n$$

$$A_g^{max} \geq a_{g,t,n}^{in} \quad \forall g, t, n$$

$$(1.3.24)$$

$$SI_{b}^{max} \ge SI_{b,t,n} \qquad \forall \ b, \ t, \ n$$

$$(1.3.25)$$

$$AI_w^{max} \ge AI_{w,t,n} \qquad \forall \ w, \ t, \ n \tag{1.3.26}$$

$$AI_{w}^{max} \ge AI_{w,t,n} \qquad \forall w, t, n$$

$$SI_{b}^{max} \ge si_{b,t,n}^{in} \qquad \forall b, t, n$$

$$(1.3.26)$$

$$(1.3.27)$$

$$AI_w^{max} \ge ai_{w,t,n}^{in} \qquad \forall \ w, \ t, \ n \tag{1.3.28}$$

(1.3.29)

$$\sum_{t} ZS_{l,t} \le 1 \qquad \forall l \tag{1.3.30}$$

$$\sum_{t} ZA_{g,t} \le 1 \qquad \forall \ g \tag{1.3.31}$$

$$\sum_{t} ZSI_{b,t} \le 1 \qquad \forall \ b \tag{1.3.32}$$

$$\sum_{t} ZAI_{w,t} \le 1 \qquad \forall \ w \tag{1.3.33}$$

$$CostS_{l,n} = \left(\sum_{t} KF_{l,t} * VP_{l,t} * ZS_{l,t}\right) * A + \left(\sum_{t} KF_{l,t} * VP_{l,t} * ZagS_{l,t,n}\right) * B \quad \forall l, n$$

$$(1.3.34)$$

$$CostA_{g,n} = \left(\sum_{t} KF_{g,t} * VP_{g,t} * ZA_{g,t}\right) * C + \left(\sum_{t} KF_{g,t} * VP_{g,t} * ZagA_{g,t,n}\right) * D \quad \forall g, n$$

$$(1.3.35)$$

$$ZagS_{l,t,n} \le S_l^{max} + M * (1 - ZS_{l,t}) \quad \forall l, t, n$$
 (1.3.36)

$$ZagS_{l,t,n} \ge S_l^{max} - M * (1 - ZS_{l,t}) \quad \forall l, t, n$$
 (1.3.37)

$$ZagS_{l,t,n} \le M * (ZS_{l,t}) \qquad \forall l, t, n$$
(1.3.38)

$$ZagA_{g,t,n} \le A_g^{max} + M * (1 - ZA_{g,t}) \quad \forall g, t, n$$
 (1.3.39)

$$ZagA_{g,t,n} \ge A_g^{max} - M * (1 - ZA_{g,t}) \quad \forall g, t, n$$
 (1.3.40)

$$ZagA_{g,t,n} \le M * (ZA_{g,t}) \qquad \forall \ g, \ t, \ n \tag{1.3.41}$$

$$S_l^{max} = ARS_{l,n} * ATS_l \qquad \forall \ l, \ n \tag{1.3.42}$$

$$A_g^{max} = ARL_{g,n} * ATN_g \quad \forall g, n \tag{1.3.43}$$

$$ARA = \sum ZA + A^a \quad \forall g \tag{1.3.44}$$

$$APA_g = \sum_t ZA_{g,t} * A_g^a \qquad \forall \ g \tag{1.3.44}$$

$$WaterSales = (\sum_{n} Prob_{n} * ((\sum_{k,t} g_{k,t}^{d,n} + \sum_{l,j,t} s_{l,j,t,n}^{out,d} + \sum_{g,j,t} a_{g,j,t,n}^{out,d}) * DSC + (\sum_{k,t} g_{k,t,n}^{a} + \sum_{l,h,t} s_{l,h,t,n}^{out,a} + \sum_{g,h,t} a_{g,h,t,n}^{out,a} + \sum_{h,t} int_{h,t,s}^{out,a}) * ASC + (\sum_{k,t} g_{k,t,n}^{i} + \sum_{b,u,t} s_{b,u,t,n}^{out,i} + \sum_{q,y,t} a_{w,u,t,n}^{out,i} + \sum_{h,t} int_{h,t,s}^{out,i}) * ISC + (\sum_{j,t} fpch_{j,t,n} + \sum_{h,t} rpch_{h,t,n} + \sum_{u,t} qpch_{u,t,n}) * PSC))$$

$$StorCost = (\sum_{n} Prob_{n} * (\sum_{l} CostS_{l,n} + \sum_{g} CostA_{g,n} + \sum_{b,l} CostSI_{b,n} + \sum_{w} CostAI_{w,n}))$$

$$(1.3.46)$$

$$TreatCost = \left(\sum_{n} Prob_{n} * \left(\sum_{k,t} g_{k,t,n}^{d} CTND + \sum_{k,t} g_{k,t,n}^{a} CTNA + \sum_{k,t} g_{k,t,n}^{i} CTNI + \left(\sum_{k,t} s_{l,j,t}^{out,d} + \sum_{g,j,t} a_{g,j,t,n}^{out,d}\right) * CTAD + \left(\sum_{l,j,t} s_{l,h,t,n}^{out,a} + \sum_{g,j,t} a_{g,j,t,n}^{out,a}\right) * CTAA + \left(\sum_{l,h,t} s_{l,h,t,n}^{out,i} + \sum_{g,h,t} a_{g,h,t,n}^{out,i}\right) * CTAI + \left(\sum_{b,u,t} s_{b,u,t,n}^{out,i} + \sum_{w,u,t} a_{w,u,t,n}^{out,i}\right) * CTAI + \left(\sum_{h,t} int_{h,t,n}^{out,a} + \sum_{h,t} int_{h,t,n}^{out,i}\right) * CTPA + \left(\sum_{h,t} fpch_{j,t,n}CTFP + \sum_{h,t} rpch_{h,t,n}CTRP + \sum_{u,t} qpch_{h,t,n}CTQP\right) + \left(\sum_{t} cw_{t,n}^{tp} + \sum_{t} cw_{t,n}^{tpi}\right) * CTPE)\right)$$

$$(1.3.47)$$

$$\begin{aligned} PipingCost &= \left(\sum_{n} Prob_{n} * \left(\sum_{l,j,t} s_{l,j,t,n}^{out,d} PCSTD + \sum_{g,j,t} a_{g,j,t,n}^{out,d} PCASD + \sum_{l,h,t,n} s_{l,h,t,n}^{out,a} PCSTA + \sum_{g,h,t} a_{g,h,t,n}^{out,a} PCASA + \sum_{l,h,t} s_{l,h,t,n}^{out,i} PCSTI + \sum_{g,h,t} a_{ig,u,t}^{out,i} PCASI + \sum_{b,u,t} g_{k,t,n}^{d} PCND + \sum_{g,h,t} g_{k,t,n}^{a} PCNA + \sum_{k,t} g_{k,t,n}^{i} PCNI + \sum_{h,t} int_{h,t,n}^{out,ag} PCTW + \sum_{j,t} fpch_{j,t,n} PFP + \sum_{h,t} rpch_{h,t,n} PRP + \sum_{u,t} qpch_{u,t} PQP + \sum_{h,t} int_{h,t}^{out,i} PCTI) \end{aligned}$$
(1.3.48)

References

Akgul, O., Zamboni, A., Bezzo, F., Shah, N., and Papageorgiou, L. G. (2011). Optimization-based approaches for bioethanol supply chains. *Industrial & Engineering Chemistry Research*, 50:4927–4938.

Medina-González, S., Graells, M., Guillén-Gosálbez, G., Espuña, A., and Puigjaner, L. (2017). Systematic approach for the design of sustainable supply chains under quality uncertainty. *Energy Conversion and Management*, 149:722–737.

Medina-González, S., Rojas-Torres, M., Ponce-Ortega, J., Espuña, A., and Guillén-Gosálbez, G. (2018). Use of nonlinear membership functions and the water stress index for the environmentally conscious management of urban water systems: Application to the city of morelia. ACS Sustainable Chemistry & Engineering, 6:7752–7760.