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Sample selection, calibration and validation of
models developed from a large dataset of near
infrared spectra of tree leaves
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Abstract
Near infrared spectroscopy is widely used to rapidly and cost-effectively collect chemical information fromplant samples. Large

datasets with hundreds to thousands of spectra and reference values are increasingly becoming more common as researchers

accumulate data over many years or across research groups. These datasets potentially contain great spectral and chemical

variation and could produce a broadly-applicable calibration model. In this study, partial least squares regression was used to

model relationships between near infrared spectra and the foliar concentration of two ecologically-important chemical traits,

available nitrogen and total formylated phloroglucinol compounds in Eucalyptus leaves. The nested spatial structure within the

extensive dataset of spectra and reference values from 80 species of Eucalyptus was taken into account during calibration

development and model validation. Geographic variation amongst samples influenced how well available nitrogen could be

predicted. Predictive error of the model was greatest when tested against samples from different Australian states and local

government areas to the calibration set. In addition, the results showed that simply relying on spectral variation (assessed by

Mahalanobis distance) may mislead researchers into how many reference values are needed. The prediction accuracy of the

model of available nitrogen differed little whether 300 or up to 987 calibration samples were included, which indicated that an

excessive number of reference values were obtained. Lastly, a suitable multi-species calibration for formylated phloroglucinol

compounds was produced and the difficulties associated with predicting complex chemical traits were discussed. Directing

effort towards broadly applicable models will encourage sharing of calibration models across projects and research groups

and facilitate the integration of near infrared spectroscopy in many research fields.
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Introduction

Near infrared (NIR) spectroscopy is a non-
destructive, fast and accurate technology, which is
used to answer research questions in many fields. As
this technology has become more readily available,
large datasets are increasingly becoming more
common. Accumulating spectra and reference values
over many years or across projects and research
groups can lead to large datasets with thousands of
samples.1–3 Large datasets (>1000 samples) that are
used to predict chemical traits from near infrared
spectra present particular challenges in chemometrics.
As a project accumulates ever more samples with
more diversity, the dataset intrinsically contains
greater chemical and spectral variation that must be
represented in a robust calibration model. If captured
successfully, however, researchers can develop
a broadly applicable “global” calibration model that

encapsulates chemical diversity.4 Reducing time and
cost for NIR calibration development would benefit
many fields such as forestry, agriculture, pharmaceu-
tics and ecology where large datasets are becoming
more common. In saying that, it is still unclear how
best to explore, capture and utilise the variation
inherent within a large dataset.
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Investing in a global calibration involves substan-
tial initial costs, and so approaches to reduce the time
and costs of model development are valuable. To
tackle a large and diverse dataset, one must explore
the sources of compositional variation and how it can
assist in the selection of samples for calibration and
validation of models. Variation originates from dif-
ferences across measurement days,5 plant parts,6

plant species7 and laboratories.1 Ecological studies
present unique challenges because they can extend
over a variety of environments, climates and plant
taxonomic groups and the data are inherently more
variable than those of an agricultural commodity or a
pharmaceutical product.8 Models developed in eco-
logical studies are usually restricted to site-specific
analyses and have questionable utility for applica-
tions outside the collection sites of the calibration
set.9–15 However, there have been some successes in
creating global calibration models across wide areas,
which open the door to further improvements in
model performance.16

Over many years, sharing of samples and NIR
spectra in agricultural research groups has facilitated
the compilation of very large datasets.1,17 For exam-
ple, studies have collated over 25,000 forage samples
(e.g. legumes and grasses) from seven countries and
compared calibration methods for moisture, crude
protein and neutral detergent fibre.1 The authors
found differences in the predictive performance of
the calibration equations on independent datasets
and that performance could be improved with differ-
ent statistical techniques and standardisation of
instruments and procedures. In addition to these sug-
gestions, taking account of nested spatial structure in
large datasets would also improve the performance of
global calibrations.

In this study, calibration methods for quantitative
NIR spectroscopy were explored using a diverse data-
set of Eucalyptus leaves. The samples were collected
as part of a larger landscape study of variations in
forage quality for the koala (Phascolarctos cinereus).
A robust global calibration of the nutritional quality
of tree leaves is important for investigations into
plant-animal interactions and patterns of animal dis-
tribution and abundance,18–20 aiding wildlife manage-
ment and conservation. The choice of a large
ecological dataset with samples from many origins
allowed for the exploration of the influence of
nested structure (structures within the data where
samples can be grouped based on similar properties)
and broadened the understanding of different
approaches for global calibration development.

An ecological study – Eucalypt forage quality

The nutritional quality of eucalypt leaves for verte-
brate herbivores has been widely studied and
researchers have identified several chemical traits
that contribute to foraging behaviour, habitat

selection, and reproductive success in populations of
wild folivores.21 The chemical traits that have been
most useful for determining eucalypt forage quality
are the foliar concentrations of available protein12

and formylated phloroglucinol compounds (FPCs).22

Available protein or available nitrogen (NA, with
nitrogen being a proxy for protein) is an integrative
measure that accounts for the effect of tannins on the
amount of total nitrogen (NT) available for digestion.
Tannins are a class of secondary compounds com-
monly found in many plants, which can make plant
proteins unavailable to the animal. The variability of
NA in eucalypt leaves across a landscape has been
shown to explain the reproductive success of the
common brushtail possums (Trichosurus vulpecula)
and the growth rate of their offspring,12 as well as
food tree choice by wild greater gliders (Petauroides
volans)10 and koalas.13 In addition, NA is an influen-
tial factor in forage quality for a number of herbivo-
rous species outside of Australia, such as moose in
Alaska23 and spider monkeys in Bolivia.24

FPCs are a diverse group of terpene adducts found
largely in the eucalypt subgenus Symphyomyrtus.
FPCs have unknown physiological effects in animals
but their intake is strongly regulated because they
cause nausea and aversions to feeding.25 There are
approximately 30 known FPC compounds found in
different eucalypts, many as very minor components.
Previous studies have focussed on quantifying
approximately 17 of the most common of these26

and so quantifying the total FPC concentration in
eucalypt leaves is much more difficult using NIR
spectra than it is for NA. Previously, FPC calibration
models have only been developed for one to three
eucalypt species at a time9–11 and fewer than 10 spe-
cies have been studied.26 Developing calibration
models for complex chemical traits, like FPCs,
across a large number of species with significant
spectral and chemical diversity is not simple but is
essential to facilitate landscape–scale studies of
plant-animal interactions.

Calibration development and model validation

Often, cost and laboratory restrictions dictate com-
promises during calibration development and users
must understand the consequences of these decisions.
Some important considerations are how to select cal-
ibration samples, how many reference samples are
required for calibration, how to validate the model,
what is a realistic predictive error for independent
samples, how to identify suitable/unsuitable spectra
for calibration and what standardised chemical
trait(s) can be used to compare taxonomically-
diverse samples. In addition, there are a suite of
chemometric options for developing calibration
models and the suitability of these options vary
depending on the application and the properties of
the dataset.27,28
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Partial least squares (PLS) regression is widely
used for modelling NIR data. It is a powerful multi-
variate technique that finds latent factors in the data
to maximise the covariance between spectra and the
chemical trait. To ensure that the underlying relation-
ship is captured in a PLS model, researchers typically
perform cross-validation on the calibration set. The
newly developed calibration model is then tested
using spectra from independent samples, the valida-
tion set, to ensure that the model is neither over-fitted
nor under-fitted.27,28 In this instance, the predicted
values from the model and reference values of the
independent dataset are compared. When an indepen-
dent test is not available, researchers typically subdi-
vide their reference value data into a calibration and
validation set.

While it is better to have more genuinely indepen-
dent samples, the nested structure within large data-
sets may indicate how best to split the reference value
data.29 Using a variety of subdivision techniques
during cross-validation may provide a fairer assess-
ment of the predictive capability of the model for
future samples. Three common types of cross-
validation techniques were investigated in this study:

A. Leave One Out (LOOCV): one sample is put aside
at each iteration.

B. Leave Group Out (LGOCV): calibration samples
are split into groups with similar characteristics
such as geographic location.

C. Random subset (RSCV): K-fold or Monte Carlo
groupings: samples are randomly allocated into
groups of a set size.

Using nested structure when selecting validation
samples (cross-validation technique ii) is likely to pro-
vide a tougher, and therefore more convincing, test of
the calibration. Introducing tougher challenges
during model development should lead to a more
robust global calibration which can then be applied
with confidence to new samples. Further, it is widely
accepted that LOOCV (cross-validation technique
i) should be used for small datasets only as it tends
to select models that are over-complex. The problem
is that leaving out a single observation is in general
too small a perturbation to be an adequate test of the
robustness of a model.

Aims

Available nitrogen: Using the nested structure

The first aim of this study was to produce a calibra-
tion model for NA that could accommodate the var-
iation in a multi-tree species, multi-site database and
its performance was estimated on three independent
datasets. The spectra of samples may be similar
within groups (e.g. samples collected from a similar
geographic area or across the same or closely-related

species).1,5,6 Thus, this study tested whether using

nested structure during cross-validation and valida-

tion could provide a more realistic assessment of the

sensitivity of the model for new samples.

Available nitrogen: How many calibration samples

do you really need?

The second aim explored how the number of samples

included in calibration development affected the mod-

elled relationship between NIR spectra and NA.

Selecting samples for laboratory analysis is typically

based on the variability of spectra (as indicated

by metrics such as the Mahalanobis distance).

However, the variation in the chemical trait of inter-

est may not explain all of the variation in spectra.5

Satisfactory calibrations for NA has been previously

established,11,14,20 and it is possible that selecting

samples based on spectral variation alone may lead

to an excessive number of reference value samples.

This study investigated how the number of calibration

samples can influence the predictive accuracy of a

model by splitting the reference value data.

FPC calibration: Do you need every compound?

The third aim was to develop a single FPC calibration

model using a multi-species dataset. The study inves-

tigated whether the 17 FPC compounds that have

served as a relative measure of total foliar FPCs in

past studies10,30 were necessary for robust calibrations

of total FPCs or whether the same accuracy could be

achieved with a smaller subset of compounds. It was

expected that a subset of prominent compounds could

be predicted with higher accuracy, facilitating model

calibration and increased prediction accuracy for

total FPCs.

Methods and materials

Sample collection

All data were collected as part of a large landscape

project that covered eastern and southern Australia

(Figure 1). Samples sites included a variety of ecosys-

tems such as coastal, subalpine and semi-arid

Australia. Mature, fully expanded eucalypt leaf sam-

ples were collected over two field seasons; September

2012–April 2013 (field season one, 2096 samples) and

September 2013–April 2014 (field season two, 1566

samples). Leaf samples were collected using a

throw-line launcher.31 Samples were frozen immedi-

ately in dry ice and upon return to the laboratory

were stored in a freezer at –20�C until they could be

further processed (no longer than twomonths from

collection).
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Sample preparation and spectral collection

Each sample was freeze-dried and ground to pass a
0.5mm screen using a FOSS Cyclotec 1093 cyclone
mill (FOSS, Hilleroed, Denmark). Ground samples
were stored in sealed polyethylene containers at
22�C and away from light. For each sample, two sub-
samples of ground leaf powder were presented to the
instrument. Spectra were collected at 2 nm intervals
from 400 to 2498 nm using a scanning near infrared
spectrophotometer (FOSS-NIRSystems 6500; www.
foss.com) with a spinning cup attachment. If the
root mean squared error of the difference between
the two spectra [expressed as log (1/R)/106] was less
than 150, the replicates were averaged. If the root
mean squared error was greater than 150, the spectra
were re-collected from the sample. This work was
conducted in a laboratory at 18–22�C. The large euca-
lypt dataset was split differently to develop NA and
FPC calibration models (described in the following
sections and summarised in Table 1).

Available nitrogen

Calibration data description and selection. The NA cali-
bration models were developed using field season one
data only (N¼ 2096 samples). A subset of samples
that represented the spectral variation of the dataset
was identified using the CENTER and SELECT func-
tions in the software WinISI III version 1.50E
(Infrasoft International, Port Matilda, PA, USA).
The CENTER algorithm ranked each spectrum
based on its Mahalanobis distance (H distance) to
the average spectra and the SELECT algorithm iden-
tifies a suitable calibration set for reference chemistry

analyses. Using a H distance of 0.6, 987 out of 2096

samples were selected for NA analysis and calibration

development. Principal component analysis (PCA)

was performed on all spectral data (N¼ 2096), while

inspecting whether spectra clustered based on any

known variables such as geographic location or spe-

cies. Because sample selection based on Mahalanobis

distance is highly sensitive to the presence of outliers,

gross outliers were checked using plots of PC scores

and of Q-residuals versus Hotelling T2 (Q vs. T2 plot)

within-model distances. Numbers of PCs that cap-

tured approximately 90% of the spectral variance

were chosen.

Spectral pretreatments. An established in vitro digestion

method was used to determine NA of each sample32

and a summary can be found in Supplementary mate-

rial 1. Calibration models were developed in

MATLAB R2016b. Spectra were cropped to 1102–

2498 nm, Savitzy-Golay derivatives33 were taken to

eliminate an additive baseline that arose from non-

relevant physical differences such as particle size

and standard normal variate or multiplicative scatter

correction was applied to each spectrum. Based on

prior experience with these low-noise instruments,

several combinations of spectral pre-treatments were

tested and a summary of these are found in

Supplementary material 2. The best pre-treatment

for both nutritional traits (based on the most parsi-

monious model with the simplest math treatment) for

spectra was first-derivative with a gap window of 7,

second order polynomial and standard normal variate

(Supplementary material 3).

Figure 1. Map of study sites across four Australian states; Queensland, New South Wales, Victoria and South Australia. Land cover is
represented by the shading of the map. Local government areas are marked by different shapes to represent calibration or validation
samples.
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Calibration development and internal validation: Using the

nested structure. The samples used for chemical anal-

ysis (referred hereafter as reference value data,

N¼ 987) were split in four ways and whether there

was an ideal technique to subdivide reference value

data into a calibration and a split-off validation set

was investigated. The reference value data were split

randomly, by sample site, by local government area

(for example, Brisbane) and by Australian state (for

example, New South Wales). Simultaneously, eight

different cross-validation techniques against the vari-

ous splits of the reference value data were compared.

A. Leave One Out (LOOCV): partition one sample.
B. Leave Group Out (LGOCV): partition samples

based on nested geographic structure in the dataset.
• SiteCodeCV: partition data by sample site

(59 sample sites)
• LocalAreaCV: partition data by local govern-

ment area (17 local areas)
• StateCV: partition data by Australian state

(4 states)

C. Random subset (RSCV): randomly partition refer-

ence value data into groups with a set number of

samples.
• RS98: partition reference value data into 98

groups of 10 samples
• RS59: partition reference value data into 59

groups of 17 samples (SiteCode)
• RS17: partition reference value data into 17

groups of 61 samples (LocalArea)
• RS4: partition reference value data into 4

groups of 154 samples (State)

The robustness of the calibration models was

assessed by testing the calibration model on the vali-

dation samples. The root mean squared error of

cross-validation (RMSECV) of the models and root

mean squared error of prediction (RMSEP) on the

split-off validation samples were compared.

External validation. All reference value samples were

combined into a single NA calibration set (N¼ 987)

to explore potential challenges for developing a

robust calibration model. All eight cross-validation

techniques discussed previously were performed on

this combined dataset. The RMSECV curves of the

calibration models and selected models with the

fewest PLS factors and lowest RMSECV were com-

pared. This informal trading-off of model complexity

versus fit might be criticized as subjective, but in a

situation where the validation sets are likely to be

very challenging, the aim was to be more conservative

in selecting numbers of factors than most formal rules

would have been. These newly developed PLS models

were then tested on three independent validation sets

with samples from three separate projects. ThreeTa
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different users collected the spectra; however, all sam-
ples were scanned on the same spectrometer.

• Validation1: Eucalypt leaf samples from field
season two. Samples were collected in sample
sites different to those in field season one.

• Validation2: Eucalypt leaf samples from four sites
in Tantawangalo (NSW).

• Validation3: Eucalypt leaf samples collected from
three sites in NSW and Victoria (Vic) for an unre-
lated study.

The predictive performance of the eucalypt model
was tested by altering the number of PLS factors.
Using all reference value samples, 30 PLS models
were developed with from 1 to 30 PLS factors and
the models were tested against Validation1,
Validation2 and Validation3 datasets. The three
resulting plots of RMSEP values were compared
with the eight RMSECV curves. Samples from these
validation sets were not used during calibration
development.

Calibration development and validation: How many samples

do you really need? To reveal if all samples were
required to best explain the relationship between
NIR spectra and NA, a series of calibration models
were developed and the number of samples included
during calibration were varied. Using the reference
value data, 886 samples were randomly allocated
to a model development set and 101 samples to a
“set–aside” validation set. A series of PLS models
were developed and both the number of PLS factors
and number of calibration samples were varied. Using
the model development set, 50 samples were selected
using the SELECT function (as described earlier) and
30 models with 1–30 PLS factors were developed.
These models were then tested against the split-off
836 samples and the set-aside validation set
(N¼ 101). This step was repeated but the number of
calibration samples selected were increased in incre-
ments of 50. For example, second round¼ selected
100 calibration samples and 786 split-off validation
samples, third round¼ 150 calibration samples and
736 split-off validation samples. A total of 510 PLS
models (17 increments, 30 PLS factors) were tested
against both the split-off validation sets and the set-
aside validation set (N¼ 101). The previous steps
were then repeated; however, instead of using the
WINISI SELECT function to select the various cali-
bration sets, the calibration samples were randomly
selected from the model development set.

Formylated phloroglucinol compounds

Calibration data description and selection. Samples col-
lected across the large eucalypt dataset (N¼ 3662)
were used to develop a multi-species, multi-site FPC
calibration model. Only samples from the eucalypt

subgenera Symphyomyrtus contain FPCs so the data
was reduced from 3662 to 1605 samples after remov-
ing the other subgenera. To select a representative
subset of samples, the CENTER and SELECT
(with a H distance of 0.6) functions in WINISI III
were again used and the selection of samples was con-
strained to a total of 400 samples for FPC analysis. Of
these samples, 80 were excluded as they showed no
evidence of FPCs upon analysis. Samples with zero
analyte are of course informative, but the distribution
of the analyte is already heavily concentrated on low
values and it was desirable not to skew the calibration
any further. A better solution might have been to
include all the zeros and use a calibration approach
that was able to cope with such analyte distribu-
tions,34 but this was not tried. It was ensured that
each transect (FPC dataset) and Symphyomyrtus spe-
cies were represented in the reference set and samples
were added when necessary. In total, 329 out of 1605
samples were analysed for FPCs. Further, gross out-
liers were checked using plots of PC scores and the
inlyingness of samples using a Q vs. T2 plot was
assessed.

Calibration development and validation: Do you need every

FPC compound? The concentration of FPCs was deter-
mined using high performance liquid chromatogra-
phy26 and a summary of these methods can be
found in Supplementary material 1. The concentra-
tions of 17 common FPC compounds26 were summed
to get a single index of FPCs for each sample,
“TotalFPCs17”. In all, 200 samples were randomly
chosen for calibration development and the remain-
ing 129 samples were set aside for the validation set.
LOOCV was performed on the calibration set and the
most parsimonious model for testing the validation
set was selected.

PLS2 regression, whereby all 17 FPC values were
regressed simultaneously, as opposed to singly,
against the pretreated spectra was performed to inves-
tigate variations and covariance between compounds
and spectra. The FPC data were not standardised
prior to PLS2 as there can be naturally-occurring var-
iance between compounds of the same class. This var-
iance may contain important information that should
be reflected in the calibration. For example, some
FPC compounds naturally occur in larger concentra-
tions and can be more prominent across species.26

Consequently, these compounds can be more readily
isolated to use as standards for HPLC, allowing for
more accurate analysis in future studies.9

Results

Available nitrogen

Spectra. In a PCA of eucalypt dataset, the first two
principal components explained 71% of the variation
in NIR spectra (PC-1¼ 54% and PC-2¼ 16%). The
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SELECT function identified 987 samples for NA anal-

ysis that distributed approximately uniformly across

the spectral space of field season one (Figure 2). There

were no gross outliers found in the plots of PC

(Figure 2(a)) nor in the Q residuals vs. Hotelling T2

statistic (Q vs. T2, Figure 2(b)). For the Q vs. T2 plot,

seven PC factors that captured 90% of spectral vari-

ance were chosen. With so many samples it is to be

expected that there will be a good deal of scatter in

both the scores plot and the Q vs. T2 plot. There were

no points that separated from the rest of the data in

either case, and so it was preferred to not exclude any

data on the basis of these plots.
Samples from the states of Queensland (Qld),

Victoria (Vic) and New South Wales (NSW) separated

across PC-1 and PC-2 whereas samples from South

Australia (SA) appeared to form compact clusters

(Supplementary material 4a). While samples from

the same local government area (e.g. Kangaroo

Island) appeared to cluster (Supplementary material

4b), there were no other obvious clusters with

subgenera (Supplementary material 4c), tree species

(Supplementary material 4d), sample site

(Supplementary material 4e), tree height

(Supplementary material 4f) or DBH (Supplementary

material 4g). Spectra acquired for samples in the three

validation sets do not stand out as different from the

training samples in either of the plots (Figure 2). Some

samples from Validation1 separated along PC-2, and

from the rest of reference value data (south east

region of Figure 3(a)).

Calibration model development: Using the nested structure.

Given that spectra clustered with local government

area, the reference value data were split based on geo-

graphic nested structure and Table 2 summarises the

calibration and validation results. The RMSECV of

the calibration sets and the RMSEP of the split-off

validation sets ranged from 0.12–0.18% NA (Table 2).

Predicting NA in samples from a different Australian

state provided the weakest predictions (highest error)

during calibration development. This was demon-

strated in both the StateCV (Table 2, RMSECV¼
0.15–0.17% NA) and when predicting NA in an

Australian state different to those in the calibration

(Table 2, RMSEP¼ 0.15–0.18% NA).
All 987 reference value samples were then recom-

bined to develop a global PLS model. The previously

described eight cross-validation techniques were first

tested on the large eucalypt dataset (Table 2). LOOCV

had the lowest RMSECV vs PLS factors curve, while

StateCV had the highest curve, with a difference

of about 0.03% NA between curves (Figure 3(a)

and (b)). RScv (Random Subset cross-validation) of

the data, regardless of the size of the subsets, did not

influence the cross-validation error of the model. The

shape of the RMSECV curves differed between the

cross-validation techniques. In the case of LOOcv and

LGOcv, a “bend” in the curve indicated that five

latent factors were suitable for building the model

(Figure 3). However, in RScv six latent factors were

chosen and it was found that the RMSECV curve of

RScv continued to decrease until 22 latent factors. The

RMSECV of all eight cross-validation techniques

ranged from 0.12 to 0.17 (Figure 3).
The performance of two calibration models were

compared, one with five and one with six PLS factors

and the models were tested against the three

(a) (b)

Figure 2. (a) Distribution of scores of the available nitrogen spectral dataset along the first two principal components. (b) Q-residuals
versus Hotelling T2 within-model distances. Principal component analysis (PCA) was performed on the landscape eucalypt dataset
(N¼ 2096, samples marked by “.”) and 987 samples were selected for calibration development (marked by “�”). Spectral data from three
independent validation sets were projected onto the PCA space of the landscape eucalypt data (marked by “ ”, “ ” and “ ”). For the
plot of Q vs. T2, seven PC factors that captured 90% of spectral variance were chosen.
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independent validation sets (Figure 4). All indepen-

dent validation samples were collected from sites in

different local government areas to the calibration set.

There was clear prediction bias for Validation1

(Figure 4(a) and (b)), while the model performed

well for most samples in Validation2 (Figure 4(c)

and (d)) and Validation3 (Figure 4(e) and (f)). The

RMSEP across all three independent validation sets

ranged from 0.21 to 0.31% NA, approximately 50%

greater error than the RMSECV curves (Figure 3(a)).

No correlation was observed between the predictive

error of the models and Mahalanobis distance from

the mean spectra. A large Mahalanobis distance was

not necessarily indicative of a large predictive error.

No consistent relationship was also found between

position in the Q vs T2 plot and whether or not a

Figure 3. Comparing cross-validation techniques on the landscape eucalypt study and testing the calibration set against three inde-
pendent validation sets. (a) Eight cross-validation techniques were tested for calibration model development and the key area is enlarged
in (b). The techniques used were Leave-one-out (green line), Leave-group-out (black lines, splitting data by SiteCode, LocalArea and
Australian State), Random subset division (blue lines, RS10 [98 groups], SiteCode [59 groups], LocalArea [17 groups], State [4 groups]. The
predictive capability of the calibration set was tested against three validation sets using the RMSEP of the validation sets (red lines with
markers). “�” indicates the selection of the number of PLS factors selected for the calibration models.
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sample predicted well (contribution to RMSEP). For
example, outliers from Validation1 in the Q vs T2 plot
(Figure 2(b)) were predicted well with the calibration
model (Figure 4(a) and (d)). Contrastingly, the model
poorly predicted five samples (Figure 5(c) and (f)) and
these samples were in fact inliers in Q vs T2 plot
(Figure 2(b)). These samples had relatively small
Mahalanobis distances from the mean spectra and
were located near many reference value samples. It
is unknown why these samples were unique or

different from the rest of the samples in this dataset.
They were neither unique in collection site, tree spe-
cies, Australian state nor chemistry.

Given that different cross-validation techniques
indicated different numbers of “optimal” PLS factors,
the effect of the number of PLS factors on the pre-
diction capability of the reference value data was
investigated (Figure 3(a)). In all, 30 models were gen-
erated, with 1 to 30 PLS factors, and were tested
against all three validation sets. For Validation1

Table 2. Performance of calibration models with different splits of the reference chemistry set.

PLS

factors

Calibration Validation

Type of split CV type N RMSECV N RMSEP

Random Leave One Out 5 618 0.13 369 0.13

SiteCode 5 0.14 0.13

LocalArea 6 0.14 0.13

State 5 0.15 0.13

RS98 6 0.13 0.13

RS59 6 0.13 0.13

RS17 6 0.13 0.13

RS4 6 0.13 0.13

Site code Leave One Out 5 618 0.12 369 0.14

SiteCode 5 0.14 0.14

LocalArea 5 0.15 0.14

State 5 0.16 0.14

RS98 6 0.13 0.13

RS59 6 0.13 0.13

RS17 6 0.13 0.13

RS4 6 0.13 0.13

Leave NSW outa Leave One Out 5 622 0.12 365 0.17

SiteCode 5 0.13 0.17

LocalArea 5 0.15 0.17

State 5 0.16 0.17

RS98 6 0.12 0.17

RS59 6 0.12 0.17

RS17 6 0.12 0.17

RS4 6 0.12 0.17

Leave Qld outb Leave One Out 6 490 0.13 497 0.18

SiteCode 5 0.15 0.15

LocalArea 5 0.17 0.15

State 5 0.15 0.15

RS98 7 0.13 0.17

RS59 7 0.13 0.17

RS17 7 0.13 0.17

RS4 7 0.13 0.17

All samples Leave One Out 5 987 0.13 NA

SiteCode 5 0.14

LocalArea 5 0.15

State 5 0.16

RS98 6 0.13

RS59 6 0.13

RS17 6 0.13

RS4 6 0.13

Samples were split into a calibration and validation set based on known substructure in the dataset. Models are compared using

root mean squared error of cross-validation and root mean squared error of prediction on the validation set.
aCalibration set: North Stradbroke Island, Springsure, Kangaroo Island, Otways, Brisbane, Gold Coast. Validation set: NSW South

Coast, Campbelltown.
bCalibration set: NSW South Coast, Kangaroo Island, Otways, Cooma, Campbelltown. Validation set: North Stradbroke Island,

Springsure, Brisbane, Gold Coast.
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(a) (d)

(b) (e)

(c) (f)

Figure 4. The relationship between reference and predicted available nitrogen (NA) (%) across three independent validation sets.
Samples were collected from New South Wales (NSW), Queensland (Qld), Victoria (Vic) and South Australia (SA). For each validation set,
two separate calibration models were used, (a) to (c) models fitted with five PLS factors and (d) to (f) models fitted with six PLS factors.
Data were fitted against a 45� line. Data points are marked by different sample sites within the validation set.
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and Validation3, the lowest predictive error was

achieved using a model with five PLS factors. It was

found that the RMSECV curve for StateCV was most

useful as it best resembled the predictive error in these

two RMSEP curves (Figure 3(a)). For Validation2,

selecting an appropriate number of factors to build

the model was difficult because the RMSEP curve

continued to decrease until 20 factors were included.

LOOCV was found to be the least useful RMSECV

curve as the RMSECV values were lower than any

other RMSECV curve (Figure 3), and suggested

cross-validation errors that were overly-optimistic

when compared with the RMSEP of the three valida-

tion sets (Table 2, Figure 4).

Calibration model development: How many samples do we

really need? Throughout the study, a strong relation-

ship was found between available nitrogen and NIR

spectra when using a large number of reference value

samples in the model (from 490 to 987 samples, Table

2). Similar results were found whether samples were

selected randomly or based on Mahalanobis distance

(Figure 5(a) to (d)). Changes to the number of

calibration samples and PLS factors in the model
influenced the prediction performance of the model
(Figure 6(a) to (d)). From 200 samples on, the
models appeared to become stable. Generally, includ-
ing up to seven PLS factors showed smaller prediction
errors on both the split-off validation set (the remain-
ing samples in the model development set, Figure 5
(a)) and the set aside validation set (Figure 5(b),
N¼ 101 samples). The prediction error of the split-
off validation set became smaller as the number of
calibration samples increased and as the number of
split-off validation samples decreased (Figure 5(a)
and (c)). Contrastingly, including more samples
during calibration did not necessarily improve the
prediction performance of the model on the set-
aside validation set. The prediction error on the set-
aside validation set plateaued when including 300 or
more calibration samples (Figure 5(b) and (d)).

Formylated phloroglucinol compounds

Diversity of FPC chemical profiles. The eucalypt dataset
included 38 species, never before analysed for FPCs.
These samples were collected across four different

(a) (b)

(c) (d)

Figure 5. The change in the error prediction (RMSEP) of a model with an increasing number of calibration samples during model
development. Using the reference chemistry samples from the landscape eucalypt study (N¼ 987), 886 samples with reference chemistry
were allocated to a model development set (MDS) and 101 samples for a separate validation set. Calibration models were developed with
an increasing number of samples (in increments of 50 samples) and increasing number of PLS factors. Models using the “SELECT”
function in WINISI to select calibration samples from the MDS were (a) tested against the remaining samples in MDS and (b) against the
set-aside validation set. Models which randomly selected calibration samples from the MDS were (c) tested against the remaining
samples in the MDS and (d) against the set-aside validation set.
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Australian states, Qld, NSW, Vic and SA. The refer-
ence library included a diverse range of FPC chemical
profiles. Evidence of three common chemical pro-
files26 were found, as well as unique chemical profiles
whose eluting peaks remain unidentified.

Spectra. In a PCA of Symphyomyrtus samples from
the FPC Dataset, 80% of the spectral variation in
NIR spectra was explained by the first two principal
components (Figure 6(a)). The reference value sam-
ples separated across PC-1 and PC-2 and there were
no stand-out differences between the calibration and
validation sets (Figure 6). There were no gross out-
liers found in the plots of PC (Figure 6(a)) nor in the

Q vs. T2 (Figure 6(b)) and so no data were excluded.

For the Q vs. T2 plot, seven PC factors that captured

93% of spectral variance were chosen.

Calibration model development: Do you need every

compound? A calibration was developed with the

sum of the 17 FPCs, TotalFPCs17. The LOOCV

cross-validation results indicated a PLS model with

14 factors was adequate to explain the variance

between TotalFPCs17 and NIR spectra. The

RMSECV on the calibration set was 4.4mg.kg�1

and RMSEP on the independent validation set was

4.7mg.kg�1 (Figure 7(a)).

(a) (b)

Figure 6. (a) Distribution of scores of the formylated phloroglucinol compounds (FPCs) spectral dataset along the first two principal
components. (b) Q-residuals versus Hotelling T2 within-model distances. Principal component analysis (PCA) was performed on the
Symphyomyrtus dataset (N¼ 1605, samples marked by “.”) and 329 samples were selected for FPC analysis. Of these samples, 200
samples were randomly allocated for the calibration set (marked by “x”) and 129 samples for the validation set (marked by “*”. For the
plot of Q vs. T2, seven PC factors that captured 93% of spectral variance were chosen.

(a) (b)

Figure 7. The relationship between reference and predicted formylated phloroglucinol compounds (FPCs, mg.g�1). Separate calibration
models were developed to predict two indexes of FPCs, (a) TotalFPCs17 which includes 17 FPC compounds and (b) TotalFPCs8 which
includes eight FPC compounds identified to have a high covariance with near infrared spectra. Data were fitted against a 45� line.
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PLS2 with 17 known FPCs was carried out to

investigate which FPCs co-varied with the NIR spec-

tra. For the first four PLS factors, eight compounds

had a high covariance (Y loadings) with the NIR

spectra (Figure 8): eucalyptone, macrocarpal 34,

grandinal 44, sideroxylonal A, sideroxylonal C, gran-

dinal 54, macrocarpal A and macrocarpal G. These

eight compounds were summed for a new index of

FPCs, TotalFPCs8. There was an improvement on

the predictive power of the calibration model with

14 PLS factors. The RMSECV on the calibration

set was reduced to 3.7mg.kg�1 and RMSEP on the

independent validation set was reduced to

3.6mg.kg�1 (Figure 7(b)). The coefficient of variation

of the RMSEP between the two FPC indexes was

around 30%, indicating that the prediction error

across both indexes of FPCs were similar.

Discussion

This study examined a variety of model development

and validation techniques, illustrating different

approaches one can use when building broad-based

calibrations with large datasets. Furthermore, the

work highlights the power of NIR spectroscopy and

multivariate analysis to guide analytical work for

complex ecologically-relevant traits.

Available nitrogen: Using the nested structure

The collection sites spanned thousands of kilometres,

across eastern and southern Australia (Figure 1), and

contained leaf samples from areas and eucalypt

species that have never been assessed for nutritional
quality. This study explored what types of nested
structure could exist in large datasets. The large NA

dataset included 80 eucalypt species from eastern and
southern Australia and was highly valuable for build-
ing a broad-based NA calibration. The PCA analysis
of the NA dataset revealed that samples from the
same local government area and Australian state clus-
tered to varying degrees in spectral space
(Supplementary material 4a, b) and suggested that
samples from similar geographic areas may share sim-
ilar spectral properties. This spatial structure was
used during cross-validation and validation. Within
the study, the typical pattern found was that regard-
less of how the eucalypt reference value data was split,
the RMSECV and RMSEP values matched well
across each test (Table 2). When local government
area or Australian state was taken into account, the
largest differences between RMSECV and RMSEP
were found, with the predictive errors being about
0.02–0.03% NA (about 20%) greater. It is not unusu-
al to find geographically-similar spectra clumping
together during PCA.14 Thus, there are probably
spectral properties within different geographic areas
that make samples unique and this could be very
useful during model development.

Geographic location is an easy marker that can act
as a surrogate for more fundamental, and typically
confounding, variables such as plant species, climate
zone and soil. Thus, a simple classification of geogra-
phy will allow researchers to account for different
types of variability that are typically difficult to sep-
arate. Secondly, access to soil, plant species or climate

Figure 8. PLS2 on TotalFPCs17 with near infrared spectra. The covariance (Y loadings) of each formylated phloroglucinol compound (FPC)
with spectral data across the first four partial least square (PLS) factors.
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data is not always possible to collect. However,
researchers will know the sample collection location
and can use this structure during calibration develop-
ment. Finally, cross-validating a model based on geo-
graphic variation is more in line with the future aims
of the calibration. The aim of this study is to predict
samples in a new project, and this is typically associ-
ated with geographic location.

A broad-based calibration model is more robust if
it includes samples from a variety of locations and
plant species to capture as much spectral variation
as possible. To develop a robust NA calibration
model that covered the range of the large Eucalypt
Database, all reference value data (N¼ 987, Table 2)
were combined. During the exploratory process, most
validation samples overlapped with the reference
value data and a few samples from Validation1 sepa-
rated out in the south-east region (Figure 2(a)). Given
that most independent validation samples were within
the spectral space of the reference value data, it was
expected that the calibration model would perform
well for these samples.27 Despite finding strong rela-
tionships with NA and NIR spectra within the refer-
ence value dataset and knowing that this relationship
exists in many other previous studies, a reduction in
prediction accuracy against independent samples was
still experienced. The prediction errors of independent
samples were up to 50% greater than that found
during calibration development, indicating that the
model was somewhat limited when predicting these
samples (Figure 4). It is also useful to highlight that
the RMSECV results from LOOCV were the least
useful for assessing the model’s ability to predict the
validation samples, and this is likely due to pseudo-
replicates within geographic location. Thus, the use of
LOOCV is discouraged in large datasets as it is likely
to lead to low RMSECV values that do not reflect the
predictive error of the model.

Large datasets are invaluable as the heterogeneity
of the samples can represent the large natural vari-
ability of the study system. However, as new geo-
graphic variables or species are introduced to a
calibration model, it is likely that unique spectral
properties will be encountered which could affect
the modelled relationship found between spectra
and the chemical trait (non-linear effects).
Moreover, it may not be clear which samples are
needed to broaden the model. For example, the cali-
bration models in this study performed well for most
samples, but it is unknown why the models performed
poorly for five independent samples in Validation3
(Figure 4(e) and (f)). These poorly-predicted samples
were largely within the spectral space of the large
eucalypt database and were not unique in terms of
chemistry, tree species or broad geographic location.
Whether exploratory plots (Figure 2) could help us
identify areas where the model performed poorly was
investigated. However, an inconsistent relationship
was found between a sample’s position on a Q

vs. T2 plot and how well a sample could be predicted.
This suggests that a spectral outlier does not neces-
sarily indicate that it will be predicted poorly. Thus, it
is difficult to assess how well a model has captured the
variability of the study system and how it can perform
for new samples.

Typically, a drop in prediction accuracy is seen
when the model is applied to independent samples,
indicating that not all the natural variability in the
study system is accounted for in the model. This has
been found when building global calibration models
for the freshness of albumen,5 the cellulose content of
eucalypts,3 and properties of pine wood2 and forage
quality1 and digestibility.35 A general approach is to
include some of the independent validation samples
to extend the scope of the model, and this study cau-
tions the use of this method. While this approach
(known as a model extension or augmentation)
makes the current prediction statistics better, this
would require a new independent validation set to
test if the predictive performance of the model is
indeed better. A drop in prediction accuracy could
also reflect variation in data collection. There can
be considerable differences between laboratory instru-
ments and users which could lead to prediction bias in
new samples.1–3 It is possible that the prediction bias
found in Validation1 could be related to differences
between technicians when performing the NA assay.
In this study, the same technician performed NA

analysis on the calibration set, Validation2 and
Validation3, while a different technician collected
the NA data for Validation1.

Robust or accurate?

Accurate NIR models that predict complex traits are
essential for ecological, silviculture agricultural and
botanical studies, yet deciding if and when a model
is accurate enough is difficult without knowing exact-
ly what purpose the data will serve. There is limited
information on the predictive error of calibration
models in ecological studies. Models are typically
described by their cross-validation error which is
then extrapolated to predictive error for the remain-
ing samples.9,11,12,15 From RMSECV results only, an
error between 0.12 and 0.17% NA can be expected
from this study. The upper range of the RMSECV
(0.12–0.17% NA) is considerably higher than the
RMSECV previously reported in other NIR calibra-
tion statistics for these chemical constituents (ranging
from 0.07 to 0.13% NA).

9,10,12,14,15 When testing the
models on three independent validation sets, the
RMSEP ranged from 0.21 to 0.31% NA, considerably
higher than the RMSECV values. Thus, these results
suggest that the current NA models can predict euca-
lypt samples from independent datasets with a predic-
tion error range of 0.12–0.31% NA. These predictive
errors are considered acceptable as the eucalypt
dataset had a mean of 1% NA with a range of
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0.2–2.7% – considerably wider than that of previous
studies (the average NA in other ecological studies
ranges from 0.2 to 0.72%).

The accuracy tolerance of the calibration model is
application dependent. Many important ecological
effects depend on relatively small differences between
samples, sites or seasons. For example, subtle differ-
ences of 0.1–0.2% NA in the average concentration of
NA across the home ranges of female brushtail pos-
sums have a substantial impact on their reproductive
success.12 The prediction error of the eucalypt model
was 0.13–0.31% NA, and it is possible that it may not
be accurate enough to detect small mean differences
of the home ranges of animals in DeGabriel’s study.12

In the case of a landscape scale project where the
comparisons are between sites that vary over a
much larger scale, the accuracy tolerance of an NIR
calibration model might not be as strict. To the
authors’ knowledge, this is yet to be investigated in
ecology due to the difficulties associated with collect-
ing chemical data across landscapes. The large
Eucalypt Dataset will provide an opportunity to
explore the accuracy thresholds required to explain
differences in animal abundance and distribution. It
is recognised that the most valid calibration method is
dependent on what the user intends to achieve with
the calibration model; predicting a single dataset
accurately or predicting a broad range of datasets
adequately.

Available nitrogen: How many samples do you
really need?

Accounting for spectral variation is essential for a
robust model. However, constructing the initial cali-
bration set for this study based on spectral variation
(using the SELECT algorithm) as the major criterion
resulted in an excessive number of calibration samples
for NA. This is a common technique for selecting
samples and this study suggested that it may not be
very efficient. The results that compared split-off and
set-aside validation sets suggested that a set-aside val-
idation set is important for determining how many
samples are required to efficiently build a calibration
model (Figure 5). When testing the split-off validation
set, the prediction error continued to decrease as
more samples were included in the calibration.
During the split-off validation test, more and more
spectrally variable samples were selected for the cali-
bration set. Consequently, those samples left-behind
to validate the model were less variable, hence, the
decrease in prediction error. While predicting these
“left-behind” samples is likely to leave users with
great calibration statistics, it is also likely to tempt
users to chase a prediction accuracy that may be
overly optimistic. With the set-aside validation set,
however, prediction error dropped off around 0.1%
NA and little improvement in prediction accuracy was
found from including 300 to 850 calibration samples.

This indicated that equivalent calibrations could be

achieved with only 30% of the reference value data.

This is a concern as the general aim was to use NIR

spectroscopy to efficiently get NA values for the data-

set and analysing hundreds more samples than

required contrasts with that aim.
Simply relying on Mahalanobis distance to select

samples may lead to an excess of reference value sam-

ples as the variation in NA may not necessarily equal

the variation in the spectral space of the dataset.36 To

the authors’ knowledge, this test has been rarely

investigated in this field and so it is unknown how

frequently this may happen in other studies. For

future calibrations with chemical traits known to pre-

dict well with NIR spectra (such as NA), this study

suggests that users should start conservatively. Select

a small number of samples for calibration develop-

ment and then test the cross-validation performance

of the model. If required, add additional reference

value samples unique spectral and/or geographic

properties to reduce the cross-validation error of the

model.

Towards a global calibration

The complexity of a nutritional trait is likely to influ-

ence the feasibility of developing a broad-based cali-

bration model for the trait. NA is relatively simple to

measure and can be compared across all eucalypt

samples. In fact, NA has distinguished some subge-

nera of Eucalyptus and has highlighted the range of

inter- and intraspecific variation amongst eucalypt

species.37 Given that NA is a common currency that

can be used to compare across studies and sites, it is

appropriate to use this dataset to investigate the

potential challenges of a broad-based calibration

model. However, there are many complex nutritional

traits that are equally important for ecological studies

and have their own NIR challenges. Here, some guid-

ance is also provided on how to work with more com-

plex traits using the FPC dataset.

Formylated phloroglucinol compounds: Do you

need every compound?

FPCs are a highly diverse group of compounds that

include different chemical classes and significant

structural diversity both within and across spe-

cies.26,38 The variability of FPC profiles makes it an

intrinsically more complex measurement. Due to this

variability, researchers have focussed on developing

separate FPC calibration models per eucalypt species.

Using these single-species FPC models, researchers

have detected many ecologically relevant pat-

terns30,38,39 and some studies have been validated

with concurrent studies using isolated FPC com-

pounds.40 This study suggests that an FPC reference

library that includes many different eucalypt species
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may enable the development of a broad-based FPC
calibration model.

Using the reference method from Moore et al.26 to
quantify 17 FPC compounds, many studies have
described how FPCs influence feeding behaviour
and tree use in marsupial folivores.9–11 A comprehen-
sive calibration model was developed to predict
TotalFPC17 in 38 different Symphyomyrtus
species collected over a wide geographic range.
The predictive error of this TotalFPC17 model
(RMSECV¼ 4.4–4.7mg.g�1) resembled those found
in site-specific ecological studies with only one to
three eucalypt species (with SECV ranging from 2.4
to 5.8mg.g�1).9,11 Thus, this TotalFPC17 model is
likely to be valuable for future ecological studies
and this study demonstrates that it is possible to
build a robust and reliable multi-species and multi-
site FPC calibration.

Although the Total FPC17 calibration model is
suitable for a broad landscape study, it will most
likely require ongoing expansion and maintenance.
Some eucalypt species were investigated here for the
first time and unique chemical profiles that are yet to
be recorded in the literature were found. This suggests
that the current reference method may be limited and
that there may be a need to invest significant resour-
ces in isolating and purifying additional standards. In
particular, the widely-distributed E tereticornis
showed several late eluting peaks that may be
unknown FPCs and these prominent unknown
peaks appeared to be characteristic of this species.
Indeed, recent research has reported several new
FPCs from this species.41 Given that it is likely that
researchers will need to include additional individual
compounds to the FPC index, it would be valuable
to identify potential sources of error during FPC
calibration development.

Complex chemical traits, such as FPCs, are
difficult to measure because obtaining standards for
individual compounds for HPLC analysis can be a
time-consuming and expensive process. The use of
PLS2 highlighted potential sources of error associated
with the 17 individual FPC compounds during
calibration development. The covariance between
FPC compounds and NIR spectra differed between
compounds. Eight compounds had a high covariance
with NIR spectra, whereas nine other compounds
showed little covariance (Figure 8). The eight
compounds with high covariance tended to occur in
larger concentrations and most (but not all) have suit-
able standards for HPLC analysis.26 Contrastingly,
the remaining nine compounds occurred at lower con-
centrations or were sparsely distributed and so have
proven difficult to isolate for use as standards.26

While it is clear that the ability to predict chemical
traits relies on accurate reference samples to train the
model, this study suggests the use of PLS2 to help
identify potential sources of error within
complex traits.

This study describes methods that would allow
researchers to focus on a select number of FPC com-
pounds and consequently reduce the costs associated
with complex chemical trait analysis. It is likely that
the reduced index of prominent FPCs, TotalFPCs8 is
valuable, however future studies are required to inves-
tigate if TotalFPCs8 is as ecologically-important as
TotalFPCs17. Nonetheless, this study provides the
first stepping stone towards a broad-based FPC cali-
bration. Given that the concentration of FPCs and
other defensive compounds can restrict how much
an herbivore can eat22,25 and explain animal distribu-
tion patterns,42 discovering strategies to better and
more efficiently assess these compounds is likely to
help support the management and conservation of
animals.

Conclusions

Identifying the underlying causes of variation in large
datasets can help build broad-based calibration
models, facilitating the integration of NIR spectros-
copy into many fields. This study proposes the use of
different cross-validation techniques for model fitting
and selection. Knowing how to better split reference
value data and testing calibration models against dif-
ferent independent validation sets can lead to more
realistic estimates of model predictive performance.
Furthermore, this study suggests that assessing
model performance while collecting reference value
data may help researchers avoid analysing an exces-
sive number of reference value samples for calibration
development. Lastly, the study shows that it is possi-
ble to use PLS to highlight potential sources of error
when building calibration models for complex chem-
ical traits such as FPCs.

The application of the model is important when
deciding how best to develop calibration models
and assess model predictive performance. Those
who wish to build a global model that covers large
geographic variation and plant diversity are likely to
make compromises on the predictive ability of their
model. Nonetheless, the Eucalyptus database could
provide a base for a global NA calibration model.
Given the importance of digestible protein in non-
Australian study systems,23,24 the NA calibration
model could be extended to nutritional ecology stud-
ies worldwide. Combining leaf samples from multiple
projects in a single database would lead to an NIR
library that encapsulates the variation of leaf samples
for folivores across different countries. The authors’
acknowledge that this is an ambitious goal and chal-
lenges ahead would include standardization of refer-
ence methods and spectra collection across users and
instruments. If this variation can be captured in a
single, global calibration model, the number of sam-
ples required for chemical analyses in new projects
could be significantly reduced and, thus, facilitate
the integration of forage quality into ecological
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studies. To do this, future studies will need to inves-

tigate how this complexity may affect the develop-

ment and accuracy of calibration models. This study

has highlighted some potential cross-validation and

validation techniques to tackle this.
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