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Abstract 
Background: Pharmacoresistance is a major burden in epilepsy treatment. We aimed 
to identify genetic biomarkers for response to specific antiepileptic drugs (AEDs) in 
genetic generalized epilepsies (GGE).  
Methods: We conducted a genome-wide association study (GWAS) of 3.3 million 
autosomal SNPs in 893 European subjects with GGE - responsive or non-responsive 
to lamotrigine, levetiracetam, and valproic acid.  
Results: Our GWAS of AED response revealed suggestive evidence for association at 
29 genomic loci (P < 10-5) but no significant association reflecting its limited power. 
The suggestive associations highlight candidate genes that are implicated in 
epileptogenesis and neurodevelopment.  
Conclusions: This first GWAS of AED response in GGE provides a comprehensive 
reference of SNP associations for hypothesis-driven candidate gene analyses in 
upcoming pharmacogenetic studies. 
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Summary Points  

 Drug resistance to antiepileptic drugs is a common challenge in the 

clinical management of patients with epilepsy 

 There are no pharmacogenetic markers for drug response in epilepsy 

are so far  

 We conducted a GWAS of 893 European subjects with genetic 

generalized epilepsy for drug response to lamotrigine, levetiracetam, 

and valproic acid. 

 We identified 29 genomic loci (P < 10-5) with suggestive evidence for 

association with AED response but did not find significant genetic 

association (p < 5×10-8) of responder status with common variants 

 A gene set  and gene level analysis for genes involved in drug 

absorption, distribution, metabolization, and excretion (ADME) revealed 

no significant association. 

 The replication of a previously reported marker for lamotrigine response 

in ABCB1 was not significant. 

  



Introduction 
Genetic generalized epilepsies (GGE) are common, affecting about one third of all 
patients with epilepsy. Most GGE follow a complex mode of inheritance, supposedly 
involving a multitude of common and rare genetic variants 1. Unlike developmental and 
epileptic encephalopathies (DEE), monogenic forms of GGE account for only a small 
fraction of cases: culpable genes include GABRG2 2, GABRA1 3 or SLC2A1 4. 
Furthermore, a small percentage of GGE is associated with common copy number 
variations (CNVs) such as 15q13.3 5–8 as well as rare CNVs 9. Recent studies 
highlighted the complexity of GGE genetics by underpinning the role of common single 
nucleotide variants (SNPs) 1 as well as the enrichment of rare deleterious missense 
variants in known epilepsy genes and the group of GABAA receptor encoding genes 
10–12. 
 
Resistance to antiepileptic drugs (AEDs) is a widespread problem in the treatment of 
epilepsies. Drug resistance is defined by the International League against Epilepsy 
(ILAE) as ongoing seizures despite treatment with two correctly chosen AEDs in a 
sufficient dose 13. As a rule, response to the first AED is achieved in about 50% of 
patients 14. In the case of ongoing seizures, the addition of or exchange with another 
AED will result in seizure freedom in further 15% of patients. Patients refractory to two 
AEDs have a chance of less than 5% to reach seizure freedom - with a shrinking 
likelihood of success with an increasing number of drug trials 14. Despite the approval 
of various novel AEDs in recent years, the proportion of patients who are drug resistant 
has remained more or less unchanged 15.  
 
So far, the choice of an AED is guided by several factors such as age, gender, epilepsy 
type as well as by potential drug interactions or side effects, and personal experience. 
Recommendations for AED choice can be found in national and international 
guidelines 16. Substantial pharmacogenetic findings that resulted in the adaptation of 
treatment guidelines are sparse and exist only for cutaneous adverse drug reactions 
(ADR) of different severity associated with sodium channel blockers that share an 
aromatic ring structure 17–20. The overall usefulness of pharmacogenetic screenings in 
reducing the frequency of ADR remains, however, controversial 21. For AED responder 
status, pharmacogenetic findings in childhood absence epilepsy (CAE) showed an 
association of common variants in the ABCB1 drug transporter as well as in CACNA1H 
and CACNA1I, subunits of T-type calcium channels, with responder status for the 
drugs ethosuximide and lamotrigine (LTG) 22.  
 
Genes involved in drug absorption, distribution, metabolization and excretion (ADME) 
have been in the focus of pharmacogenetic research of AEDs for some time 23–25. 
Influence of variants in genes encoding drug transporters have been shown to 
influence pharmacokinetic parameters of LTG or valproic acid (VPA) 26–28. Therefore, 
ADME genes represent prospective locations of genome-wide association.  
 
This study aimed to test whether common genetic variants predict drug response to 
LTG, levetiracetam (LEV), VPA, the combination of VPA and LTG or overall drug 
response in a cohort of 893 people with GGE that were deeply phenotyped regarding 
clinical presentation and pharmacoresponse. 
 



Methods 

Ethics Statement 

All study participants provided written, informed consent for genetic analysis. Local 
institutional review boards reviewed and approved study protocols at each contributing 
site. 
 

Study Design 

The epilepsy cohort derived from the EpiPGx Consortium which was established in 
2012 to identify genetic biomarkers of epilepsy treatment response and adverse drug 
reactions. EpiPGx (https://www.epipgx.eu/) is a European-wide epilepsy research 
partnership under the European Commission Seventh Framework Protocol (FP7). This 
case-control study is based on the retrospective evaluation of patient data. Relevant 
patient data was extracted from patient charts by trained personnel and collected in a 
common electronic case report form (eCRF) used by all consortium sites. Our cohorts 
exclusively consisted of individuals of non-Finnish European ancestry with an 
established diagnosis of GGE according to current ILAE diagnostic criteria 29. 
Individuals included in the study were exposed to LTG, VPA and/or LEV. The 3 AEDs 
were chosen because they were the most frequent in our cohort and represent the 
highest use in GGE 30. We tested whether common genetic variants were significantly 
associated with drug response to one of these AEDs, to the combination therapy of 
lamotrigine and valproic acid, which can provide additive benefits 31, or with drug 
response to at least one of these AEDs  
 

Cohorts and Phenotype Definition 

The individuals in this study were selected according to our inclusion criteria from more 
than 12.000 individuals that were documented in the EpiPGx eCRF. Our cohort 
included 893 patients with GGE (587 females & 306 males) comprising 359 patients 
with juvenile myoclonic epilepsy (JME), 194 patients with CAE, 191 patients with GGE 
with bilateral tonic-clonic seizures only displaying generalized epileptic EEG 
discharges (EGTCS), and 149 patients with juvenile absence epilepsy (JAE). Median 
age of seizure onset was 12 years [± 5.6]. Altogether, 589 patients originated from 
Central Europe (Austria, Belgium, Denmark, Germany, Netherlands), 218 from the 
British Isles (UK, Ireland), and 86 from Southern Europe (Italy). Recruitment sites are 
listed in the supplement information.  
 
GGE patients were classified as responders or non-responder to the specific AEDs or 
groups of AEDs, controls were defined as non-responders. The following are our 
definitions in EpiPGx: Response was defined as seizure freedom under ongoing 
treatment for at least one year and prior to initiation of any other treatment. Non-
response was defined as recurring seizures at ≥ 50% of pretreatment seizure 
frequency given adequate dosage. Individuals with recurrent non-compliance for AED 
intake were excluded. The assignment to the response or non-response groups was 
based on the evaluation of one or more epilepsy specialists at the source center. For 
the overall response analysis of the entire GGE cohort, in the case of exposure to 
multiple AEDs, patients were defined as responders if they fulfilled the responder 
criteria for at least one AED. We also included patients in the overall response cohort 
that fulfilled the criteria based on their response profile for other AEDs. This included 
43 patients with ethosuximide (38 responders, 5 non-responders) and 7 patients with 
zonisamide (3 responders, 4 non-responders). 

https://www.epipgx.eu/


 

Imputation and Genotyping Quality Controls 

GWASs were conducted separately for each AED-response cohort using imputed 
best-guess genotypes. Genotyping and imputation methods have been described 
previously 20. We applied stringent per-individual and per-SNP quality controls (QC) 
using PLINK 1.9 32. Per-individual QC: We included unrelated individuals (pairwise 
IBD: PI_HAT < 0.06) with European (EUR) ancestry, and a SNP genotype missingness 
rates < 2%. Cohort consistency was controlled via principal component analysis (PCA) 
using the EIGENSOFT software 33. Outlier subjects in the 5 datasets (table 1) were 
identified and removed using a sigma of > 5 standard deviations from the first 10 
principal components. A European (EUR) ancestry of the remaining cohort of 893 
individuals was verified by a PCA comparison to 1000 Genomes data (figure S1). Per-
SNP QC: SNPs were included by the following QC criteria: 1) autosomal annotation, 
2) IMPUTE2 info-score > 0.9 34, 3) genotype missingness rate < 2%, and 4) minor 
allele frequency > 1%. After SNP QC-filtering, between 3,287,443 and 3,347,871 SNPs 
remained for GWAS analysis. 
 

Statistical Association Analyses 

Single marker association analyses were performed using the linear mixed model 
application FaST-LMM 35 to correct for confounding by population stratification or 
cryptic relatedness. The spectral decomposition matrix was calculated using a LD-
pruned SNP dataset (LD r2 < 0.2 and a window size of 100 SNPs) under exclusion of 
the major histocompatibility complex cluster on 6p22.3-p21.2. The covariates gender, 
age-of-onset and array-type (Illumina, Affymetrix) were included in a linear mixed 
model. P-values below 5 x 10-8 or 10-5 were considered significant or suggestive 
respectively. Given the exploratory approach of this pilot-GWAS, we did not correct for 
multiple testing of five AED response traits - accepting a slightly higher false positive 
rate in order to present a comprehensive list of candidate loci for each AED response 
trait for follow-up studies. Manhattan and quantile-quantile (QQ) plots were created 
using the R package qqman. Genomic inflation factors were calculated using the R 
package GenABEL. Regional plots were created using the LocusZoom webtool 
(http://locuszoom.org) based on the hg19/1000 Genomes Nov 2014 reference data.  
 

Gene-set Analysis and Gene Level Analysis for ADME Genes 

To test whether genes involved in pharmacokinetics, i.e. absorption, distribution, 
metabolization, and excretion (ADME), were associated as a group with 
pharmacoresponse, we created a gene-set of 307 genes (table S3). We applied 
MAGMA version 1.04 using the entire set of SNPs and GWAS P-values to run the 
gene-set and gene level analysis 36. 
 

Study Power Estimates 

We performed power analyses, using the power calculator for case-control genetic 
association analyses PGA2 version 2.0 37. For an alpha level of P ≤ 5 × 10-8 our 
analysis of the five AED response cohorts had 80% power to detect genome-wide 
significant SNPs of MAF = 5% with relative risks ≥ 1.48, ≥ 1.54, ≥ 2.51, ≥ 2.93, ≥ 4.65 
for overall, VPA, LTG, LEV and LTG & VPA respectively (figure S2). 
 

http://locuszoom.org/


Functional Annotation of SNPs, and gengene level analysis 

We applied the FUMA webtool 38 to our summary statistics to perform a genome wide 
gene-level analysis. Given about 14.000 genes interrogated in our GWASs, P-values 
< 3.6 x 10-6 were considered significant after Bonferroni correction. 

Results 
 

Cohort description 

After per-individual QC, 893 persons were included in the GWASs. There was a 
substantial overlap between the different analysis cohorts since various patients were 
treated with two or more AEDs. The breakdown of the different AED-response cohorts 
is shown in table 1. The overlap of the cohorts is shown in figure S3.  
 

Genome-wide Association Analysis 

To test the hypothesis that genetic markers predispose to pharmacoresponse, a linear 

mixed model analysis of the AED subgroups as well as of the overall cohort was 

performed. We observed no evidence for a substantial GWAS P-value inflation 

(lambda-range between 0.99 for LEV and 1.02 for LTG & VPA, figures 1 and S4). We 

did not detect any genome-wide markers for any of the AEDs or the overall cohort 

(figure 1) that exceeded the threshold of significance (P-value < 5 × 10-8). However, 

we identified 29 loci with lead SNPs that were suggestive for an association with AED 

response (P-value < 10-5). The strongest association was found in the LEV response 

group for rs17676256 (4q25), an intronic SNP in the ANK2 gene (P = 1.07 × 10-7) 

(figures 1, S8). Among the other loci several represented genes involved in in neuronal 

development or associated with neurodevelopmental disorders: CACNB2, and 

CNTNAP2 for the overall response, CELF2 for lamotrigine response, LRRTM4 and 

MAGI2 for the response to lamotrigine plus valproic acid. The top results for all GWASs 

are depicted in table 2 and table S1. Regional genomic plots are shown in figures S5-

S9. We also did not observe an enrichment of SNPs at the gene level (table S4 shows 

hits with P < 1 × 10-4, figure S10 presents the QQ plots).  

 

Gene-level and Gene-set Analysis of the ADME Gene Panel 

The gene-set analysis using MAGMA on a set of 307 ADME candidate genes revealed 

no significant result (the P-values ranged between 0.41 for lamotrigine and 0.99 for 

valproic acid) (table S2). The gene-level analysis for the 307 genes showed no 

significant results (table S3) with a P-value threshold of < 1.6 × 10-4 after Bonferroni 

correction.  

 

Replication Analysis of SNP Associations predicting Lamotrigine Response 

We aimed to test whether the SNPs described by Glauser et al. 22 (rs2032582 for 
ABCB1, rs2753325, and rs2753326 for CACNA1H) that were reportedly associated 
with lamotrigine response in CAE showed an association with lamotrigine responder 
status in our cohort. We tested our entire GGE LTG-cohort (table 1) as well as the 
fraction of CAE patients that were responders or non-responders to LTG (26 



responders, 41 non-responders; 20 males, 47 females; median age of seizure onset 6 
years [± 2.3]). rs2032582 revealed no significant association for the whole group (p = 
0.35, OR = 1.17) and the CAE group (p = 0.45, OR = 0.70) by Fisher’s exact test. The 
two synonymous SNPs, rs2753325 and rs2753326, were neither present in our 
imputed SNP set, nor did we find SNPs in LD.  
 

Discussion 
No pharmacogenetic marker for drug response to specific AEDs has been reproducibly 
identified to date. In this pilot study we aimed to explore common genetic variants 
associated with drug response in three common AEDs: LEV, LTG, and VPA. Our 
GWAS approach did not reveal evidence that strong genetic effects contribute to the 
genetic variance of therapy response of the most common AEDs used in the treatment 
of GGE. The lack of significant findings in this study rules out single variants with large 
effect size. This underlines that there is no simple answer to the question of the causes 
of pharmacoresistance 23. Drug resistance either constitutes a complex trait that is 
driven by many genetic factors or does not have a significant genetic contribution. The 
former assumes the presence of multiple genetic variants with small effect sizes – a 
hypothesis that cannot be dismissed by our study due to insufficient power. Our power 
to detect variants with small effect sizes was too low due to the limited sample size. 
Nonetheless, we identified several suggestive loci.  
Amongst them, we identified several loci associated with genes of interest: ANK2 
encodes a 440kDa polypeptide that is exclusively expressed in brain tissue 39 and has 
been identified as a high confidence autism spectrum disorder (ASD) gene 40. A recent 
study showed that ANK2 mutations lead to increased axon branching and ectopic 
connectivity 41. Deletions of MAGI2 that encodes a scaffold protein, which interact with 
several pre- and postsynaptic proteins in inhibitory and excitatory synapses 42, have 
been described in association with infantile spasms 43. CELF2, which is involved in 
alternative RNA splicing in the brain 44, has been recently implicated as modifier gene 
for individuals with KCNQ1 associated epilepsy 45. CACNB2 encodes a L-type calcium 
channel subunit, which has also been associated with ASD 46 as well as Brugada 
syndrome 47. CNTNAP2, also known as CASPR2, encodes a neuronal transmembrane 
protein that is involved in neuron-glia interaction and the clustering of potassium 
channels 48. It has been associated with ASD and epilepsy 49 and Cntnap2-/- mice show 
seizures and abnormal EEG patterns 50. LRRTM4 is implicated in synaptogenesis 51 
and in the organization of excitatory and inhibitory synapses 52.  
Interestingly, whereas several of the top SNPs belong to genes that are associated 
with neurological development and neurodevelopmental disorders, none was found in 
ADME genes. This was further corroborated by the lack of significant findings in the 
gene-set analyses. Furthermore, we could not corroborate the finding by Glauser et al. 
who reported an association of lamotrigine response with a variant in the gene ABCB1 
22. However, our analysis did not allow to further elucidate the role of the two CACNA1H 
variants 22.  
 
The major limitation of this study was its sample size which is reflected by the fact that 
of more than 12.000 individuals in our database only 893 fulfilled our inclusion criteria. 
There is an elemental trade-off between the need of a large sample size on the one 
side and accuracy and stringent phenotype definition on the other side. In our study, 
we decided to emphasize the latter. It could be argued that a looser definition of drug 
response, e.g. 50% or 75% seizure reduction compared to base level or 6 months of 



seizure freedom would have resulted in a larger sample size. However, we assume 
that a less rigorous definition would have blurred potential genetic association. Thus, 
even though large cohorts of genotyped 1 and exome-sequenced 10 patients have 
recently become available, detailed clinical data and the personnel to collect and 
analyze these data are the main constraint to perform larger studies of this kind.  
 
This is the first GWAS for individual AED response in GGE. While our study did not 
reveal significant association signals for drug response, we identified several 
suggestive loci that that warrant further scrutiny in subsequent pharmacogenetic 
studies. Future hypothesis-driven association studies should attempt to reproduce our 
top findings, freed from the threshold (P-value < 5 × 10-8) for genome-wide correction 
for multiple testing. Furthermore, this study, by design, focused on SNPs. Possibly, the 
inclusion of rare variants and CNVs, in analogy to recent case-control studies on 
epilepsy risk factors 10–12,53, will shed more light on drug response. More novel analysis 
techniques such as the polygenic risk score 54 or the polygenic transmission 
disequilibrium test 55 could also help to elucidate the role of common variants in future 
analyses.  
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TABLES 

Table 1: Cohorts for 5 GWAS.  
 

Cohort Responder Non-responder 

Overall 608 278 

VPA 410 155 
LTG 137 250 
LEV 82 127 
LTG & VPA 31 73 

Table 1: Number of responders and non-responders in each of the 5 GWAS cohorts. VPA = 
valproic acid, LTG = lamotrigine, LEV = levetiracetam. 
  



Table 2: Top GWAS results (p < 10-5) for therapy response studies of five antiepileptic 
treatments 
 

SNP Location (hg19) p Gene  

Overall Responder Status 

rs6871559 5:8047709 5.03 x 10-6 - 
rs13179734 5:29350681 8.82 x 10-6 - 
rs7457112 7:146876502 9.30 x 10-6 CNTNAP2  
rs1277731 10:18563985 9.41 x 10-6 CACNB2  
rs11681922 2:29442426 9.84 x 10-6 ALK 

Valproic acid 

rs78269837 5:76809481 5.03 x 10-6 WDR41 
rs4292046 2:238149704 5.29 x 10-6 - 
rs6046489 20:19945493 6.88 x 10-6 RIN2 
rs619889 18:62929316 9.65 x 10-6  

Lamotrigine  

rs17650998 3:178313693 8.66 x 10-7 KCNMB2  
rs10206521 2:21420828 3.23 x 10-6 - 
rs1291861 10:11111799 5.93 x 10-6 CELF2 
rs11794033 9:25100016 7.97 x 10-6 - 

Levetiracetam 

rs17676256 4:114061536 1.07 x 10-7 ANK2 
rs12320526 12:77952683 1.59 x 10-6 RP1-34H18.1 
rs12734159 1:66185458 2.76 x 10-6 - 
rs7956831 12:9889157 3.36 x 10-6 - 
rs1014085 8:57643998 3.65 x 10-6 - 
rs3756744 5:128428722 3.70 x 10-6 - 
rs7515154 1:85704435 4.08 x 10-6 - 
rs72765466 1:236218004 5.69 x 10-6 NID1 
rs17124115 12:50305590 7.36 x 10-6 RP11-70F11.11 

Lamotrigine and Valproic acid 

rs1922809 2:77687101 7.77 x 10-7 LRRTM4 
rs4751538 10:129635908 8.00 x 10-7 - 
rs78723182 7:78521292 1.51 x 10-6 MAGI2 
rs4416719 6:6164208 2.24 x 10-6 F13A1 
rs1479876 3:140044009 4.23 x 10-6 CLSTN2 
rs7705566 5:31259129 4.28 x 10-6 CDH6 
rs8003775 14:39335815 5.54 x 10-6 LINC00639 

Table 2: GWAS lead SNPs (p < 10-5), including SNP position (hg19 assembly) and gene for 
genic markers. For SNPs in linkage disequilibrium, only the SNP with the lowest P-value are 
depicted.  

 

  



Figure Legends  

 

Figure 1: Manhattan plots and genomic inflation factors () for the 5 GWASs.  
 
Dashed line represents the P-value threshold for suggestive association (linear 
mixed model P-value = 10-5). 
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