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Abstract—Statistical PET image reconstruction methods are
often accelerated by the use of a subset of available projections
at each iteration. It is known that many subset algorithms, such
as ordered subset expectation maximisation, will not converge
to a single solution but to a limit cycle. Reconstruction methods
exist to relax the update step sizes of subset algorithms to obtain
convergence, however, this introduces additional parameters that
may result in extended reconstruction times. Another approach is
to gradually decrease the number of subsets to reduce the effect
of the limit cycle at later iterations, but the optimal iteration
numbers for these reductions may be data dependent. We propose
an automatic method to increase subset sizes so a reconstruction
can take advantage of the acceleration provided by small subset
sizes during early iterations, while at later iterations reducing the
effects of the limit cycle behaviour providing estimates closer to
the maximum a posteriori solution. At each iteration, two image
updates are computed from a common estimate using two disjoint
subsets. The divergence of the two update vectors is measured
and, if too great, subset sizes are increased in future iterations.
We show results for both sinogram and list mode data using
various subset selection methodologies.

I. INTRODUCTION

TRADITIONAL statistical PET reconstruction algorithms,
such as maximum likelihood expectation maximisation

(MLEM), converge very slowly [1]. A common acceleration
methodology is to compute iterative updates using only a
subset of the full measured data, thereby reducing the compu-
tational cost per update, boasting acceleration factors that are
almost linearly proportional to the number of subsets during
early iterations [2]. However, many subset algorithms converge
to a limit cycle rather than a single solution when the number
of subsets remains greater than one [1].

One solution is to use relaxation, decreasing the step-size
of the update algorithm [3], [4]. While this allows the subset
algorithms to converge, the rate of convergence may be slow
if the relaxation parameter is poorly selected. Other methods
combine the update from the current subset with those from
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previous subsets, leading to convergent algorithms, but at the
expense of a reduced convergence rate [5]. Many authors
choose to reduce the number of subsets gradually during
reconstruction but often without any indication of the optimal
update numbers at which to do so.

A novel algorithm that detects when the number of subsets
should be decreased for future iterations was proposed by
Thielemans et al. [6]. The algorithm computes two updates
from the same image estimate using different subsets. Subset
size is increased when a measure of the similarity between
the two updates falls below a threshold. The intuition of
this methodology is that, at initialisation, an ordered subset
(OS) reconstruction algorithm is greatly accelerated when
using smaller subsets because, during these early iterations,
two different subsets’ updates will be approximately equal
resulting in approximately the same image estimate. However,
at later iterations, significant differences between updates from
two subsets may occur.

Here we propose extensions to the aforementioned algo-
rithm by using stochastic and golden angle sampling [7] in the
selection of two disjoint subsets at each iteration. Moreover,
the proposed method, AutoSubsets (AS), is extended to suit
list mode data using temporal subsets.

II. METHODOLOGY

The AS algorithm is a modification of standard subset
iterative reconstruction algorithms and is demonstrated in this
work using Block Sequential Regularised Expectation Max-
imisation (BSREM) [3] with the relative difference penalty [8].
At each update k of AS, two equally sized disjoint subsets
Bj (j = 1, 2) are selected and used to compute two image
estimates xk+1

j respectively. During early iterations, the size
of the subsets is minimal to provide higher acceleration. The
divergence of the two update directions is quantified with the
cosine similarity:
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(xk+1

1 − xk) · (xk+1
2 − xk)
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and if this value falls below a threshold value tmin, the size
of the subsets is increased for future iterations. To conserve
computational cost, the two subset estimates are combined into
a single estimate xk+1:
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where the subset sensitivity images Sj act as weighting factors.
At each update of AS, the subsets Bj are constructed from

m samples of the full data set using various sampling method-
ologies. The AS subsets used at each update are constrained
to be disjoint to not introduce a positive bias in the cosine
similarity measure.

The list mode subsets are constructed by selecting events
from sequential time frames of length m from the list mode
file.

Two sinogram AS sampling implementations are investi-
gated: stochastic sampling and golden angle sampling. The
stochastic sampling method constructs two subsets by ran-
domly selecting m projection angles without replacement.

Golden angle subset selection is performed by iteratively
selecting projection angles φ that are approximately a rotation
of the golden angle γg ≈ 111.24◦ from the previously selected
projection angle:

φi ≈ φi−1 + γg mod 180◦ (3)

As the scanner projection angles are fixed, φi is rounded to the
nearest scanner projection angle, subject to the disjoint subset
constraint.

III. EXPERIMENTS

The PET scan of a large cylindrical phantom, containing
four cylindrical inserts of various activities and non-uniform
attenuation (Fig. 1), was simulated using GATE as a back-to-
back gamma voxellised source (total activity of 101 MBq) [9].
The 120 second scan was simulated using the PET/CT GE
Discovery 690 geometry and the data recorded in a list
mode ROOT file. Radioactive decay was not simulated in the
acquisition and reconstructions were performed without the
inclusion of time-of-flight information. The open-source image
reconstruction software STIR was used to read the list mode
data and to implement all reconstructions [10].

Fig. 1: The central slice of the simulated phantom activity and attenuation
maps. The activity image is measured in arbitrary units.

List mode events were arranged in detection order and
subsets corresponded to various time frames. For sinogram
reconstruction, the data were binned into geometric projections
of the scanner. A threshold tmin = 0 was chosen and subset
sizes were increased by 20% when the cosine similarity fell
below this threshold. These values were chosen heuristically to
correspond to a 90◦ divergence angle between the two updates
and to allow only small increases in subset sizes.

The two sinogram based sampling methods for AS are
compared to BSREM using fixed (OS) reconstructions, with

various fixed subset sizes. Sinogram reconstructions initially
contained 1 of the 288 projection angles per subset, and the
list mode reconstruction was initialised with 1/8640th of the
full data set in each subset to use minimal computation during
the early updates.

Fig. 2: Top: The cosine values of the AutoSubsets golden angle reconstruction
plotted against update number. Bottom: The number of projection computa-
tions per update plotted against update number. Epoch markers are included
to visualise the computational cost associated with the reconstruction.

IV. RESULTS

The cosine similarity measures and adaptive subset sizes
of the golden angle AS reconstruction are shown in Fig.
2. Algorithm performance is evaluated as objective function
value with respect to computational cost, quantified as the
number of gradient computation operations performed. The
computational cost has been rescaled as epochs, where a single
epoch is equivalent to one full pass through the data set.
Objective function performance for sinogram and list mode
reconstructions are plotted in Fig. 3 and Fig. 4.

V. DISCUSSION

The proposed algorithm’s cosine similarity measurements
slowly decay over the initial updates (Fig. 2) and the values are
measured below tmin after approximately 20 updates, which
allows the algorithm to increase the size of the subsets. Due
to the initial small subset sizes, approximately 50 updates
are performed before a single epoch of the data has been
processed, indicating an accelerated reconstruction. We ob-
serve a long period of approximately 100 updates with no
increase in subset size, followed immediately by a sequence
where nearly every update triggers an increase in subset size
until the subsets contain all 288 projection angles between
them. Similar behaviour was observed in all AS sinogram
data reconstructions (not shown) and, while there are many
potential factors that could lead to this behaviour, one possible
factor is that the cosine similarity may not be the best metric
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Fig. 3: Sinogram reconstructions - the logarithm of the objective function
values of sequential image estimates are plotted against computational cost.
AutoSubsets’ performances, using the two sinogram sampling methods, are
compared with four different fixed subset size BSREM reconstructions.

Fig. 4: List mode reconstructions - the logarithm of the objective function
values of sequential image estimates are plotted against computational cost.
AutoSubsets’ performance is compared with five different fixed subset size
BSREM reconstructions, where the list mode data were temporally binned
and subsets correspond to a fixed time frames.

to determine when to increase subset sizes, especially at later
updates.

The initial small subset sizes of the sinogram implementa-
tions of the AS algorithm allow for a fast increase in objective
function values for the early updates (Fig. 3). The golden
angle sampling algorithm achieves higher objective function
values for smaller computational cost than stochastic sampling.
This behaviour may be explained by the stochastic method’s
tendency to use larger subset sizes at earlier updates.

The AS algorithm does not outperform the OS methods for
long, the ‘36 Ordered Subsets’ objective function values do
overtake the AS methods after a few epochs. Furthermore,
the other OS methods also achieve greater objective function
values after further computation. This indicates that the AS
algorithm does not optimally determine the sizes of the subsets
for each update throughout the reconstructions. It appears that
the AS sinogram reconstructions are increasing subset sizes
too early, consequently leading to higher computational cost
and slowing the rate of convergence.

Similarly to the sinogram results, the initial small subset size
of the list mode AS reconstruction allows for a rapid increase
in objective function values (Fig. 4). However, the ‘480
Subsets’ reconstruction overtakes the AS objective function
values after less than half a computational epoch.

VI. CONCLUSION

The proposed AutoSubsets algorithm successfully increases
subset sizes automatically by measuring the divergence be-
tween two update vectors at each update. Similar results were
observed for both sinogram and list mode reconstructions.
A notable acceleration to image reconstruction was observed
during early updates, however, the algorithms objective func-
tion values were superseded by those of the fixed subset size
reconstructions after the initial updates. In this study, algorithm
performance is only evaluated using objective function values,
which may not be the most suitable metric by which the
performance of these algorithms should be measured. Future
work will further explore quantitative analysis, investigate the
cause of the rapid increase in subset sizes, and optimise the
algorithm’s hyper-parameters.
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