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ABSTRACT: Nanoparticle size impacts properties vital to applica-
tions ranging from drug delivery to diagnostics and catalysis. As such,
evaluating nanoparticle size dispersity is of fundamental importance.
Conventional approaches, such as standard deviation, usually require
the nanoparticle population to follow a known distribution and are ill-
equipped to deal with highly poly- or heterodisperse populations.
Herein, we propose the use of information entropy as an alternative
and assumption-free method for describing nanoparticle size
distributions. This measure works equally well for mono-, poly-, and
heterodisperse populations and represents an unbiased route to
evaluation and optimization of nanoparticle synthesis. We provide an
intuitive tool for analysis with a user-friendly macro and provide
guidelines for interpretation with respect to known standards.

Many characteristics of nanoparticles, including their
biodistribution as well as catalytic, optical, and electric

properties, depend on their spatial dimensions.1−5 Yet,
accurate reporting on the size distribution remains a
challenge,6,7 largely due to the absence of a reliable, widely
applicable method of representing the dispersity of the
population. While a histogram contains a full description of
the particle size distribution,8 working with a scalar measure of
dispersity is advantageous to determine correlations with
synthetic conditions or particle performance.9 The need for a
reliable descriptor of dispersity is particularly profound when
optimizing syntheses to produce monodisperse particles.10

Several recent studies have focused on using statistical
methods to optimize the synthesis of a variety of monodisperse
nanoparticles; however, limited success was achieved in
identifying the experimental variables that determine disper-
sity.11−15

Researchers have largely relied upon standard deviation for
evaluating dispersity, but this measurement is only valid when
applied to a normal distribution and may provide an
insufficient representation of the sample.6,8,16−19 Standard
deviation is often referenced against the mean size to produce
the unit-less coefficient of variance (COV), which reflects the
relative spread of the given distribution. Less commonly used
metrics in nanoparticle science reporting include the percentile
values, corresponding to the particle sizes that encompass 10,
50, and 90% of the total population (D10, D50, and D90
respectively).9,18,20−22 Using these percentile values, a
representation of the dispersity can be calculated, (D90 −
D10)/D50, referred to as the span.18,20 This is a more widely
applicable measurement; it does not rely on a known

distribution and can be employed even with polydisperse
samples. Like the COV, the span is a relative measure, which
relates the spread of the population to the mean or median
value. These metrics focus on describing the broadness of the
distribution. Dispersity represents the inhomogeneity of
particle sizes observed in a population; while this typically
correlates with the spread, it is not equivalent. For example, a
population of nanoparticles with two distinct sizes will
demonstrate a span and standard deviation dependent on the
difference between the two sizes; the heterogeneity of sizes
remains constant.
We propose the use of a modified version of the information

entropy equation to accurately evaluate dispersity. Information
entropy (H) was first proposed by Claude Shannon in 1948 to
quantify the amount of information produced by a given
process.23 It is calculated by

∑= −H p pln( )
n

i i
1 (1)

The probability of outcome i is denoted pi; there are n possible
outcomes. The entropy is often described as being analogous
to the amount of information conveyed when the outcome of
an event is observed.24 For example, if the result of a process is
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absolutely certain, i.e., there is only one possible outcome (n =
1, p1 = 1), no information is gained by observing the outcome
as it is always the same and the entropy is found to be 0. As the
uncertainty of the outcome increases, so does the entropy, and
more information is revealed by the result.
This measure of entropy was soon adopted by a wide variety

of areas of study outside of information theory including the
study of species diversity, population genetics, molecular
analysis, and finance.25−28 The pertinence of information
entropy to such diverse fields lies in its ability to encapsulate
not only the number of subcategories but also the relative
quantities observed. It is not restricted to known distributions
and can be applied to any data set. These properties make
information entropy an ideal candidate to measure dispersity in
nanoparticle populations.

■ METHODS
Figure 1 illustrates an example of the entropy calculation. Here,
35 particles of 7 different possible sizes are sorted into
appropriate bins (or intervals) of a histogram. The number of
particles in each bin is divided by the total to determine the
probability distribution.

In order to implement information entropy as a reliable
measure of nanoparticle dispersity, three properties are
required: (1) A linear relationship between entropy and
population dispersity would facilitate interpretation and aid
implementation into statistical optimization methods. (2) The
entropy needs to be independent of the mean particle size. (3)
The data needs to be discretized. Hence, we propose the
following modification to the entropy calculation to produce
the nanoparticle entropy, E:

= ·E e Bin WidthH (2)

The response of the information entropy, H, to increasing
but equally probably outcomes (i.e., pi = pj≠i) displays a
logarithmic trend (Figure S1). Therefore, the exponential, a
monotonic function, was added in eq 2. The resulting
nanoparticle entropy, E, increases linearly with dispersity.
The nanoparticle entropy is independent of the mean particle
size, another important characteristic. The same distribution
will produce the same entropy regardless of the mean. Further
information is found in the SI (Figures S1−S3). Please note
that monodispersity criteria are based on the relative deviation

from the mean particle size.29 To this end, a normalized
entropy (En) can be obtained via dividing E by the mean. Since
the nanoparticle entropy, E, has the same units as the bin
width, the normalized nanoparticle entropy, En, follows as
being dimensionless.
It is important to note that these entropy calculations

require discrete data. While the size of nanoparticles is a
continuous variable, both the imaging system and analysis
method will impose a limit to the exactness of each
measurement. This resolution becomes the bin width of a
histogram, which effectively presents the nanoparticle dis-
tribution as a discrete data set. For an unbiased representation
of the nanoparticle dispersity, the bin width must be included
in the entropy calculation. The reasoning is as follows: a large
bin width will result in fewer bins and therefore a lower
entropy; a smaller bin width for the same population will have
a larger number of bins and a proportionally larger entropy. By
including the bin width in the calculation of the entropy, this
variability is avoided (see also Figures S4 and S5). Note that eq
2 assumes the use of a constant bin width.
Entropy depends on the sample size and asymptotically

approaches the true value with increasing population. While
several methods have been proposed to deal with this issue, we
implement here the quadratic extrapolation by Strong et al. for
its simplicity and low computational cost.30 This process relies
on calculating E for the total population of M measurements
and two subpopulations comprised of M/2 and M/4
measurements randomly selected from the main. This data is
then fitted to eq 3, where x represents the sample size.

= + +E E
b
x

a
xM true 2 (3)

This method is powerful but requires sufficient data to
adequately fit the quadratic. Figure 2 shows the results of the
sample size correction for two different populations. For a
given sample size, distributions with the characteristics of those
shown in Figure 2a,c were randomly generated, and the
nanoparticle entropy was calculated with and without sample
size correction. This was repeated 100 times. Figure 2b,d
shows the mean entropy with standard deviation as a function
of the sample size for the respective populations. Without the
sample size correction by quadratic extrapolation, at least 500
data points were required for population 1 and 900 for
population 2 to achieve an entropy within 15% of the true
value. With correction, these reduce to 100 and 150,
respectively. On this account, we have developed a reliability
index in the accompanying software (Matlab GUI and Excel
Macro) to evaluate whether the sample size is sufficiently large
for a reliable estimate of the entropy. We note that these
sample size requirements are in line with sampling guidelines
on conventional approaches.8 Further details about the sample
size correction and the reliability index can be found in the SI.
In order to relate the normalized entropy En to established

definitions of size uniformity, we have developed evaluation
criteria for monodispersity based on definitions for dispersions
provided by the National Institute of Standards and
Technology (NIST) and guidelines used in nanocluster
catalysis.7,29,31,32 The NIST requires that 90% of the particles
must lie within ±5% of the mean for a population to be
considered monodisperse.29 In nanocluster analysis, a pop-
ulation is monodisperse if the standard deviation is ≤5% of the
mean and near-monodisperse if it is ≤15% (i.e., COV = 0.05
and 0.15, respectively).31,32 It is important to note that the

Figure 1. Nanoparticle entropy. (a) Schematic of nanoparticle
population with 7 possible size outcomes. (b) Histogram with
appropriate bins and corresponding probability, pi.
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guidelines from nanocluster analysis assume the population is
normally distributed. A linear fit of the data in Figure S3
produces E = 4.12σ and = σ

μ
E 4.12n , which corresponds to

limits of 0.206 and 0.618 for monodispersity and near-
monodispersity, respectively (Table 1).
The NIST standard presupposes no particular distribution.

If we assume the distribution described in the NIST is

Gaussian, the following must be true: =COV 0.05
1.645

. Using the

linear relationship between E and σ, a limit of En follows with
0.125. However, as the NIST guidelines do not specify a
normal distribution, we evaluated the robustness of this limit
for non-normal populations. A distribution was designed to
maximize entropy in the limits of compliance with the NIST
requirements; a schematic describing this shape is shown in
Figure 3d. The range of 90% of the population (range90) is set
by the NIST requirement, but the total range (rangetotal)
remains variant. We have therefore defined a variable r as the
ratio of range90 and rangetotal; this is equal to the number of
bins that lie in range90 divided by the total number of bins. The

relationship between En and r is described in eq 4 and plotted
in Figure 3. A detailed derivation of this equation can be found
in the SI.

= −E
r

1
9

1
1n

0.9 0.1i
k
jjj

y
{
zzz i

k
jjj

y
{
zzz

(4)

Figure 3a shows a 3D surface map of eq 4. The majority of
the surface exhibits a shallow gradient; overall, 95.9% of all
combinations of n90 and n10 result in an En between 0.1 and 0.2
(r = 0.963 and 0.025, respectively). Deviating from a normal

Figure 2. Effect of sample size on nanoparticle entropy. (a) Histogram of population 1. (b) Nanoparticle entropy with and without sample size
correction for population 1; the dashed line refers to the true entropy. (c) Histogram of population 2. (d) Nanoparticle entropy for population 2.

Figure 3. Entropy limit for the NIST criteria. (a) 3D surface map of eq 4 for n10 and n90 in the range 10 to 105. (b) A 2D contour plot of eq 4; the
contour lines denote normalized nanoparticle entropy at 0.1 intervals. The dashed lines indicate the cases where r = 0.735 and r = 0.55. The dotted
line relates to the condition T = 8 × 104. (c) Plot of the normalized nanoparticle entropy, En, against r (T = 8 × 104). (d) Schematic demonstrating
the distribution that just meets the NIST criteria for monodispersity while producing the maximum entropy.

Table 1. Monodispersity Criteria: Normalized Nanoparticle
Entropy Values for Monodisperse and Near-Monodisperse
Populations

En

highly monodisperse (NIST) 0.125
monodisperse (nanocluster) 0.206
near-monodisperse (nanocluster) 0.618
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distribution resulted in little change in En. We therefore
recommend using the cutoff of En = 0.125, below which
populations can be reliably considered as highly monodisperse.

■ RESULTS AND DISCUSSION

In order to evaluate and benchmark this approach, six different
data sets of oleylamine-capped gold nanoparticles were
analyzed; see Figure 4. In each case, a representative
transmission electron micrograph is displayed alongside the
histogram obtained by image analysis. For each sample, the
number of counts (≈2000−5000) is provided together with
the mean size, standard deviation, and corresponding COV
obtained by conventional analysis of the data sets. The
absolute and normalized nanoparticle entropy for each
nanoparticle population was obtained with the user-friendly
macro (SI).
To check for normality, the apparent Gaussian distribution

based on the mean and standard deviation calculated from the
raw data was plotted alongside the histogram of the
experimental data in Figure 4. While statistical tests for
normality are abundant, these are often not suitable for large
data sets.33 Experimental data will never produce a perfectly
normal distribution at large sample sizes. Hence, the null
hypothesis that the data is normal would be rejected in almost
all cases. As an alternative, the Gaussian derived from the raw
mean and standard deviation was compared to the probability
distribution of each sample shown in Figure 4. Goodness of fit
statistics including the sum of squared errors (SSE), the
coefficient of determination (R2), and the root-mean-square
error (RMSE) are summarized in the Supporting Information
(Table S1).
Populations A and C demonstrate low SSE and RMSE as

well as R2 values close to 1. These values agree with a visual
confirmation that populations A and C are reasonably well
represented by the Gaussian and thus described by the mean μ
and standard deviation σ. Under these conditions, the standard

deviation is capable of representing the dispersity. It follows
then that, for a given change in standard deviation, the same
change should be observed in E; this is the case for populations
A and C. The standard deviation increases by 149% between
population A and population C, and a 145% increase was
measured for E. Furthermore, the obtained COV = 0.045 and
En of 0.18 for population A comply with the criteria of
monodispersity as defined by Moser and co-workers while the
population does not fully satisfy the NIST criteria.32

In contrast, the other populations, B, D, E, and F deviate
significantly from the apparent Gaussian distribution. This can
result in incorrect interpretation as the standard deviation no
longer directly correlates with dispersity. As noted previously,
dispersity is the measure of the inhomogeneity of the size
distribution rather than the breadth, which is correlated to the
standard deviation. For populations which adhere to the
Gaussian, standard deviation correlates directly with dispersity;
as the population diverges from normality, this relationship
breaks down and standard deviation becomes a less reliable
measure of dispersity. For example, populations with apparent
similar standard deviations, i.e., B and C, can display a
significantly divergent degree of dispersity. Population B
comprises a main population and a minor population; this
small secondary population contains so few particles that it has
little impact on the dispersity but does influence standard
deviation. A similar behavior is observed between populations
D and E. Populations F and E are comparable in dispersity but
show a much larger disparity in standard deviation. Dispersity
by definition is determined by the number of sizes observed
and the relative quantities; in contrast, standard deviation
depends on how these values are arranged around the mean.
As population E consists of one broad distribution it results in
a lower standard deviation than population F; the two peaks in
population F shift the population density away from the mean
producing a larger standard deviation for a similar range (see
also Figure S11 in the SI).

Figure 4. Statistical description of nanoparticle populations. (a−f) Histograms based on TEM analysis of oleylamine-capped gold nanoparticles;
representative images shown as insets. A bin width of 0.1 nm (based on TEM resolution) was used for calculating the nanoparticle entropy. For
comparison, the corresponding Gaussian distribution based on the calculated mean and standard deviation of the raw data is plotted alongside.
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Overall, discrepancies with the normal distribution (such as
asymmetry or multiple modes, both commonly observed in
nanoparticle populations) reduce the capacity of standard
deviation to describe dispersity. Nanoparticle entropy, in
contrast, remains a reliable metric irrespective of the type of
distribution and reflects the significant differences between
each population. This measure offers a clear pathway for
optimization toward uniformity, i.e., by minimizing E or En.
The populations presented in Figure 4 were taken from a

larger study investigating the effects of experimental conditions
on the dispersity of the resulting populations. Multiple studies
highlighted the role of the reaction time, which should appear
as a significant variable with effects such as size focusing.34 We
have further analyzed data of a related study carried out in our
lab. Therein, the measure of dispersity had a direct impact on
its statistical significance. When using COV as a measure of
dispersity, the reaction time was not identified as significant (p
= 0.2404). In contrast, En identified the role of the reaction
time on the homogeneity of the particle size (p = 0.0009). The
large difference between these two p-values is consistent with
the imprecision of COV and other like methods when
measuring dispersity of non-normal populations. By not
using an exact measure of dispersity, the cumulative error
obscures important synthetic variables, here the role of the
reaction time on the particle size distribution. This example
highlights the importance of using an appropriate metric.
Please note that the method can be used on any data set that

provides a histogram of the nanoparticle population, e.g.,
nanoparticle tracking analysis, disc centrifugation analysis,
analytical ultracentrifugation, small-angle X-ray scattering, or
dynamic light scattering. For the latter ensemble-based
techniques, the data can be presented in a suitable format by
approximating the number of measurements. Please note that,
as the number of measurements usually exceed 105 particles, an
order of magnitude estimation will be more than sufficient with
little to no impact on the final calculated nanoparticle entropy.

■ CONCLUSION

To conclude, we propose the use of nanoparticle entropy as a
reliable measure to evaluate dispersity in nanoparticle
populations. This approach allows any type of distribution to
be described, irrespective of being mono-, poly-, or
heterodisperse. We envision this approach to be particularly
useful for optimization protocols that are targeted toward
achieving size uniformity. In particular, nanoparticle entropy
represents a reliable descriptor in automated synthetic
procedures leveraging on advanced statistical tools, including
design of experiment and machine learning.
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