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Abstract

Poisson data arise in many important inverse problems, e.g., medical imaging. The stochastic nature

of noisy observation processes and imprecise prior information implies that there exists an ensemble

of solutions consistent with the given Poisson data to various extents. Existing approaches, e.g.,

maximum likelihood and penalised maximum likelihood, incorporate the statistical information for

point estimates, but fail to provide the important uncertainty information of various possible solu-

tions. While full Bayesian approaches can solve this problem, the posterior distributions are often

intractable due to their complicated form and the curse of dimensionality. In this thesis, we in-

vestigate approximate Bayesian inference techniques, i.e., variational inference (VI), expectation

propagation (EP) and Bayesian deep learning (BDL), for scalable posterior exploration.

The scalability relies on leveraging 1) mathematical structures emerging in the problems, i.e.,

the low rank structure of forward operators and the rank 1 projection form of factors in the posterior

distribution, and 2) efficient feed forward processes of neural networks and further reduced training

time by flexibility of dimensions with incorporating forward and adjoint operators.

Apart from the scalability, we also address theoretical analysis, algorithmic design and prac-

tical implementation. For VI, we derive explicit functional form and analyse the convergence of

algorithms, which are long-standing problems in the literature. For EP, we discuss how to incor-

porate nonnegative constraints and how to design stable moment evaluation schemes, which are

vital and nontrivial practical concerns. For BDL, specifically conditional variational auto-encoders

(CVAEs), we investigate how to apply them for uncertainty quantification of inverse problems and

develop flexible and novel frameworks for general Bayesian Inversion.

Finally, we justify these contributions with numerical experiments and show the competitive-

ness of our proposed methods by comparing with state-of-the-art benchmarks.





Impact Statement

In this thesis, we studied Bayesian inference for inverse problems with Poisson data. By investigating

how to design scalable algorithms with specific characteristics emerging in real world applications,

we enabled uncertainty quantification for related large scale real world problems. Apart from scala-

bility, we also pushed forward the frontier by deepening theoretical understandings, discussing how

to incorporate practical constraints and building general and flexible frameworks.

Inside academia, we make the uncertainty information available in an efficient way so that

downstream research in the application communities, e.g., the medical imaging community, on how

to leverage the uncertainty information is doable. Researchers in the machine learning community

with interest in theoretical analysis of related probabilistic frameworks could benefit from the ideas

and results we showed. Besides, the methodologies and frameworks developed in this project could

also be investigated for other research in inverse problems, e.g., Photo-Acoustic imaging, MR imag-

ing, etc.

Outside academia, the research results in this thesis have potential to be applied to related

applications, i.e., PET imaging clinics. Our frameworks could provide not only point estimates of

the patients’ inner body information but also the associated uncertainty for a certain measurement.

Such uncertainty information is not available with current methods in production and vital for highly

noisy observations, e.g., low-dose imaging. With our provided uncertainty information, clinicians

may be aware of more objective and comprehensive information to conduct diagnosis.
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Chapter 1

Introduction

1.1 Problem Statement

Poisson data widely arise in phenomena involving number counting, which include a large spectrum

of real world applications, including medical imaging, neural science and quantitative finance to

name a few. From the highest level of view, in these scenarios, 1) we can observe the counting

variable y, modelled by Poisson distributions and resulted from the variable of interest x, and 2) we

aim to reconstruct the unobservable x from the counting observation y. Specifically, each entry yi

in the observable variable y = [yi]i (a compact notation for a vector with index i and of an implied

length) follows a Poisson distribution

p(yi|x) =
λ

yi
i e−λi

yi!
,

where λi = gi(x) specifies the mean and variance of the Poisson distribution. The task of inverse

problems with Poisson data is to reconstruct the variable x which leads to the observation y through

above Poisson distributions.

While the Poisson distribution acts as the source of noise in the observation process, the func-

tions {gi(x)}i encode the domain knowledge explaining how the unobservable variable x is trans-

formed to some noise free λ = [λi]i in the observation space. In many applications, each gi(x) is a

composition function with two components like one layer in neural networks. It consists of a linear

transformation of x followed by an activation function, often referred to as inverse link function in

the statistics literature. In this section, we will review the probabilistic models of X-ray computa-

tional tomography (X-ray CT) and positron emission tomography (PET) where we have complicated

inverse link functions with exponential form and simple ones with linear form in {gi(x)}i, respec-

tively. X-ray CT and PET are respectively representative examples of transmission tomography

and emission tomography. By reviewing these two important medical imaging modalities and cur-

rent approaches to solve associated inverse problems, we not only stress the importance and wide

appearance of Poisson data, but also motivate the research in this thesis.
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bi

yi

Source

Detector

x(s)

Figure 1.1: The illustration of transmission tomography

In transmission tomography, e.g., X-ray CT, the source of the radiation is outside of the patient

and the intensity of the radiation will decay as it goes through the patient. The decay of the intensity

is determined by the attenuation coefficients, which form the variable of interest x, of the patient.

By observing the decayed intensity of the radiation, which is y, one can reconstruct the attenuation

coefficients with proper forward models.

The forward model describing radiation attenuation is based on the Beer-Lambert law. To

explain, consider a bounded two-dimensional area parameterised by s = (s1,s2), which defines the

domain of a patient’s inner body. The attenuation coefficients can be represented by a function of s,

denoted by x = x(s). Consider a beam of light Ii whose intensity at the source is bi and which goes

through the line Li(s). The Beer-Lambert law asserts, after attenuation in the domain, the intensity

would be yi = bi exp(−
∫

Li
x(s)ds). In a certain angle, there can be many beams of light and each

beam of light gives one projection yi. Due to the rotation of the imaging equipment, there can be

many angles. If we stack all yi’s from different angles and beams, we have the observation y.

However, this deterministic physical model is an idealised model overlooking many realistic

factors, e.g., the stochastic properties of the detectors, background events and so on. The proba-

bilistic forward model of transmission tomography regards the observation y = [yi]i as a sequence of

Poisson random variables with means {E[yi] = bi exp(−
∫

Li
x(s)ds)+ ri}i where r = [ri]i is the inten-

sity of background events. Note that although the background events {ri}i can also be interpreted as

additive noise, the real random noise modelled by Poisson distributions (not the background events)

happened at detectors is neither additive nor multiplicative. Since the problem of reconstructing x

cannot be directly solved numerically in the continuous setting, the bounded area is usually discre-

tised into grids. To enable the matrix-vector representation of Radon transform, we would flatten

discretised x into a column vector. Accordingly, the line integrals (Radon transform) can be repre-

sented by a matrix A. Further, the mean vector of the forward model is b� eAx + r, where � is the
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element-wise Hadamard product.

Source

Detector

xj

yi

Figure 1.2: The illustration of emission tomography

In emission tomography, e.g., PET and SPECT (single photon emission computed tomogra-

phy), the source of radiation is inside the patient. Here we would use the mechanism of PET as an

example for probabilistic model building. Radiopharmaceuticals, materials containing radioactive

isotopes, are introduced into a patient’s body which would emit positrons during radioactive decay.

When a positron is emitted at an inner point of the body, it will annihilate with a nearby electron and

creates a pair of gamma photons going off two opposite directions. Then a pair of detectors at the

ends of these two opposite directions will observe these two photons at the same time if we neglect

the attenuation and scattering. Denote the intensity of the γ-ray detected by the i-th detector pair by

yi. The variable of interest x is a function defined on the bounded area, which is parameterised by s,

recording the intensity of emissions at each point in the domain.

Since a pair of photons can go off any two opposite directions, deterministic physical models

are not sufficient to explain the phenomenon. Let x = [x j] j be the discretised intensity function

vector and Ai j be the probability of a photon pair from the position x j detected by the i-th detector

pair. Considering the background events with intensity r = [ri]i, we can model the expectation

of the γ-ray intensity detected by the detector pairs by E[y] = Ax+ r. Since each row of A is a

probability simplex, the sum of each row is one. In reality, the probabilities will be corrected by

taking attenuation and scattering into consideration, which means the rows of A are not necessarily

sum-one.

With the examples of X-ray CT and PET, we see how the Poisson distribution could be used to

model the stochastic forward process in real world problems. Due to the presence of random noise

in the forward process, a single unobservable ground truth could lead to a set of different possible

observations. And different sets of possible observations resulted by different ground truths may

have non-empty intersections. This means that for a single observation, there are various ground

truths being able to explain the observation with the probabilistic forward model. Specifically for
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medical imaging, there might be different conditions of the patient which could lead to the same

observation received by a medical scanner. When a clinician is conducting diagnosis of a patient

based on the information provided by the medical scanner, a single reconstructed image may lead to

biased decision makings.

In the literature of medical imaging, most works, either on transmission tomography [43], emis-

sion tomography [33, 45, 44, 89] or more general inverse problems [3], are based on maximum

likelihood estimate (MLE) or penalised maximum likelihood estimate (Penalised MLE). It is worth

noting that the penalisation term acts as a regulariser and the Penalised MLE objective functional

recovers Tikhonov regularisation in the classical inverse problems theory. Although these methods

take the statistical information of forward models into consideration, they only focus on point esti-

mates, which most probably lead to the Poisson observations. As a result, the important information

of uncertainty quantification is not available from these methods. In contrast, in this thesis, we would

explore full Bayesian methods which could capture the information of the whole posterior distribu-

tions. For more discussions on Poisson models in this avenue, we refer interested readers to recent

surveys [111, 17, 64].

The Bayesian framework provides a systematic framework to facilitate uncertainty quantifi-

cation for inverse problems [73, 128]. Besides treating y as a random variable and specifying a

probabilistic forward model p(y|x), the Bayesian framework would also treat x as a random variable

and incorporate a priori information of it into the prior distribution p(x). Then the Bayesian belief

of possible unobservables are encoded in the posterior distribution p(x|y), which, by Bayes’ rule, is

given by

p(x|y) = p(y|x)p(x)∫
p(y|x)p(x)dx

.

The Bayesian belief of possible unobservables values the probabilities of possible ground truths due

to the presence of noise and weighs them by the prior information. One can recover Penalised MLE

by considering maximum a posteriori (MAP) estimate with a suitable prior distribution. For exam-

ple, `2 penalised MLE is equivalent to MAP with a Gaussian prior. Similarly, one can recover MLE

with uniform prior belief. Although the Bayesian framework could provide more comprehensive in-

formation, the posterior distribution p(x|y) is often intractable. Even for the likelihood function and

prior distribution with explicit forms, the evaluations of p(y) =
∫

p(y|x)p(x)dx, a.k.a. the evidence,

and other summarising statistics, e.g., mean and variance, suffer from the curse of dimensional-

ity. Thus, sophisticated techniques, for exploring the posterior distributions up to a normaliser in a

scalable manner, are needed.

In the literature of computational statistics and machine learning, popular Bayesian inference

techniques are categorised into two folds, i.e., Monte Carlo sampling methods and approximate

inference methods. Monte Carlo sampling methods are developed to generate samples from a dis-

tribution to approximate integrals and not restricted to posterior distributions. To name a few, we



1.1. Problem Statement 23

have reject sampling, importance sampling, Metropolis-Hastings sampler, Gibbs sampling, Hamil-

ton Monte Carlo sampling, etc. Since many sampling methods do not require the complete form of

the target distribution, i.e., distributions up to a normalising constant are also applicable, they are

very suitable for posterior exploration where we have the intractable evidence. Furthermore, they

enjoy both practical and theoretical accuracy. Thus, sampling methods are most popular and well-

developed computational methods for Bayesian inference in the statistics community. To sketch the

ideas and results about sampling methods, we review a classical and representative MCMC algo-

rithm, i.e., Metropolis-Hastings sampler.

The key ingredient of the Metropolis-Hastings algorithm is the proposal step and ratio based

acceptance step. To construct a Markov chain {xt} for the target distribution p(x), in the t-th it-

eration, we first generate a candidate x from a proposal distribution q(x|xt−1), where xt−1 is the

sample accepted in the last iteration. After the proposal step, we calculate the acceptance ratio

ρ = min{ p(x)q(xt−1|x)
p(xt−1)q(x|xt−1)

,1}. Then we generate a uniform random number α and accept the candidate

x as xt if ρ ≤ α . For symmetric proposal distributions, i.e., q(x|xt−1) = q(xt−1|x), the acceptance

ratio is simplified to be ρ = min{ p(x)
p(xt−1)

,1}. Note that the computation of ρ may suffer from nu-

merical issues. Therefore, the evaluation is normally conducted in the logarithmic domain. Since

any multiplicative constant in the target distribution p(x) will be cancelled in ρ , we can apply the

algorithm to joint distribution directly.

Among all the sampling methods, Markov chain Monte Carlo (MCMC) methods represent an

important class of them. By definition, any methods constructing an ergodic Markov chain with

stationary distribution the same as the target distribution is a MCMC method [119]. It is shown that

Metropolis-Hasting is a MCMC method and thus has asymptotic convergent properties. However,

the diagnosis of the chain is not straightforward. In practice, one can record traces of the chain

or calculate the auto-correlations of the chain. If the traces have no obvious periodic shape or the

auto-correlations are very small, one can regard the chain as achieving convergence.

Following the generic Metropolis-Hastings algorithm, many advances in the regime of Monte

Carlo methods are developed to address related theoretical and practical concerns. Concurrently, the

research has been extended to models related to the scope of this thesis. For example, Durmus et al.

[38] leveraged the tools of convex analysis and discussed MCMC with Langevin dynamics for prob-

lems with non-smooth priors, which are common for imaging problems. Vargas et al. [132] further

improved this idea by using a Runge-Kutta-Chebyshev stochastic approximation rather than the con-

ventional Euler-Maruyama scheme. Besides, two very recent work [133, 145] investigated modern

MCMC algorithms specifically for Poisson data. In contrast, another branch of Bayesian inference,

i.e., approximate inference methods, is less explored. In this thesis, we investigate approximate in-

ference methods, predominantly variational inference, expectation propagation and Bayesian deep

learning, for inverse problems with Poisson data as alternative approaches to MCMC techniques.

For readers interested in advances of MCMC, we refer to two recent review papers [56, 106] and
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references therein. It is worth noting that apart from above two branches of full Bayesian methods,

recent works [105, 24, 115] investigate how to leverage convex optimisation to obtain the MAP esti-

mate together with a Highest Posteriori Density (HPD) interval. Although the posterior distributions

are not fully recovered by this line of work, they could provide uncertainty information to a cer-

tain level and thus can be used for uncertainty quantification of log-concave posterior distributions,

which covers several classical models in imaging problems.

To conclude the problem statement, we recall that the uncertainty of interest in this thesis is the

uncertainty of the unobservable variable conditioned on the observation due to the randomness in the

forward process and stochastic prior belief on the unobservable and we focus on the computational

perspective of uncertainty quantification.

In the literature of uncertainty quantification and machine learning, three kinds of uncertainty

are investigated, e.g., aleatoric uncertainty [77, 85], epistemic uncertainty [48, 77] and distributional

uncertainty [95]. Aleatoric uncertainty, a.k.a., data uncertainty, is the uncertainty intrinsic in the

data or in natural phenomenon, which can not be explained away with more data. A representative

and naive example of aleatoric uncertainty is die rolling, i.e., for an even die, no matter how many

times we roll it, the uncertainty of the next outcome will not change. Epistemic uncertainty, a.k.a.,

model uncertainty, is the uncertainty of the model to explain data, which is reducible and can be

explained away with more data. Continue with the example of the die rolling, if we do not know

the distribution of the die’s outcome and we would like to come up with a model. A natural way to

build a model is to use the empirical distribution from rolling test and the more times we roll the die,

the more certain we would be about the empirical model. Distributional uncertainty is often referred

to as unknown-unknown, which the uncertainty caused by the deviation of training and test data.

It could be regarded as a self-diagnosis of a model’s generalisation. When a sample not from the

training dataset is input into the model, the alert could be raised by high distributional uncertainty

indicating the model is not certain about the prediction since the input is out of the distribution

of training data. From this perspective, the uncertainty studied in this thesis can be classified into

aleatoric uncertainty or more specifically, conditional aleatoric uncertainty.

In addition to the computational perspective, many other perspectives and topics in the spec-

trum of uncertainty quantification for Bayesian inverse problems still remain challenging. Along the

Bayesian pipeline, the first open problem is how to analyse model misspecification, which includes

forward model misspecification and prior misspecification. Then it comes how to compute the un-

certainty information encoded in the posterior distribution, which is the main focus of this thesis.

Finally, how to fully leverage the uncertainty information uncovered with computational methods to

aid real applications still calls for further investigation. Although we conduct this research project

with the computational perspective, potential future works within the wider Bayesian context are

discussed in Chapter 5.
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1.2 Literature Review

In the last section, we reviewed two representative imaging modalities with Poisson data and current

approaches to associated inverse problems. While current approaches leverage the statistical infor-

mation in forward models, they only provide point estimates and neglect the important uncertainty

information. In this section, we will start the investigation on scalable Bayesian inference techniques

by reviewing another branch of posterior exploration schemes in the machine learning community,

i.e., approximate inference methods.

The general idea of approximate inference is to find a tractable distribution to approximate the

intractable posterior distribution. The approximation could be found by solving a direct variational

problem between the approximation and the true posterior distribution, e.g., variational inference

[26, 78, 103, 120], or iteratively updated by solving indirect variational problems between the ap-

proximation and some intermediary distributions, e.g., expectation propagation [99, 98]. More re-

cently, deep neural networks (DNNs) are introduced to the approximation procedure and form a

branch of Bayesian deep learning [48, 79, 80, 126]. We shall show the ideas of these approximate

inference techniques and discuss potential problems applying them to inverse problems with Poisson

data following this roadmap.

1.2.1 Variational Inference

1.2.1.1 General Framework

Variational inference (VI) methods formulate the approximation problem by some variational prob-

lem which selects the approximation by minimising some probabilistic metric, e.g. f -divergences

[31, 5], Bregman divergences [22], etc. Despite the existence of various probabilistic metrics, VI

with KL divergence [83] is most popular and well-developed due to the simple form and good in-

terpretability. Recent works [88, 61] in the machine learning community also extend the discussion

to α-divergence [6, 8, 114] which generalises KL divergence and belongs to both f -divergences and

Bregman divergences. In this subsection, we will use KL divergence as an example to review the

idea of variational inference.

The KL divergence KL(p||q) of two probabilistic densities p(x) and q(x) is defined by

KL(p||q) =
∫

p(x) log
p(x)
q(x)

dx. (1.1)

By Jensen’s inequality, we can see that KL(p||q)≥ 0. By the property of integral, it vanishes if and

only if p(x) = q(x) almost everywhere. Moreover, we do not have KL(p||q) = KL(q||p), for all p(x)

and q(x), and thus KL divergence is not a mathematical metric.

Variational inference with KL divergence finds the approximation q(x|y) to the true posterior



26 Chapter 1. Introduction

distribution p(x|y) through the variational problem

q(x|y) = arg min
q̃(x|y)∈Q

KL(q̃(x|y)||p(x|y)). (1.2)

Due to the asymmetry of KL divergence, KL optimisation problems of two different directions will

normally give different approximations [19]. Not rigorously, minq KL(p||q) tends to select q which

puts more density on the area where p is large and thus corresponds to a mode-seeking manner [19,

Section 10.1.2]. On the contrary, minq KL(q||p) tends to select q which has less density on the area

where p is small and thus corresponds to a zero-avoiding manner. In this sense, variational inference

with KL divergence would give an approximation concentrating in the neighbourhood of a mode of

the posterior distribution. Since MAP is sometimes a better point estimate than mean in a posterior

distribution, especially when the distribution is highly skewed, variational inference is especially

suitable for such scenarios or single mode problems.

In general, there are two factors defining a variational problem, i.e., the variational metric and

the variational family. Although we mainly focus on KL divergence, different variational families

would lead to different algorithms. Different variational families include but not limit to mean-field

Gaussian distributions [134], multivariate Gaussian distributions [26], Stein variational families [91],

etc. The choice of variational families is often a trade off between efficiency and expressibility. For

example, variational inference with mean field Gaussian family is more efficient to implement than

that with multivariate Gaussian family but will overlook the covariance information. While effi-

ciency is important in statistical computing, we cannot sacrifice the expressibility of the variational

family. When the posterior distribution is very complicated, often satisfactory approximations do not

belong to simple variational families. Thus, it is highly urgent to explore how to reduce the computa-

tional complexity for variational families with better expressibility, which is one of the contributions

of our first work.

Substituting the posterior distribution p(x|y) with the formula given by Bayes’ theorem, we

have

q(x|y) = arg min
q̃(x|y)∈Q

∫
q̃(x|y) log

q̃(x|y)
Z−1 p(y|x)p(x)

dx. (1.3)

Since the normaliser Z(y) =
∫

p(y|x)p(x)dx is unknown and does affect the solution to the problem,

this variational problem is still intractable. Observe that

logZ(y) =
∫

q̃(x|y) log
p(y|x)p(x)

q̃(x|y)
dx+

∫
q̃(x|y) log

q̃(x|y)
p(x|y)

dx, (1.4)

we can turn to maximise the functional

F(q̃(x|y), p(y|x), p(x)) =
∫

q̃(x|y) log
p(y|x)p(x)

q̃(x|y)
dx. (1.5)
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Since KL(q̃(x|y)||p(x|y)) ≥ 0, the functional F acts as a lower bound of the logarithm of the evi-

dence Z(y). Hence, F is often referred to as the evidence lower bound (ELBO). To summarise, the

variational problem is eventually reduced to

q(x|y) = arg max
q̃(x|y)∈Q

∫
q̃(x|y) log

p(y|x)p(x)
q̃(x|y)

dx. (1.6)

It is worth noting that the optimisation of ELBO admits a regularisation interpretation. Notice

that F can be equivalently written as

F(q̃(x|y), p(y|x), p(x)) =
∫

q̃(x|y) log p(y|x)dx+
∫

q̃(x|y) log
p(x)

q̃(x|y)
dx. (1.7)

If we only maximise the first term on the RHS, we tend to select q̃ who can explain the forward

model well. If we only maximise the second term on the RHS, we tend to match the approximation

with the prior distribution. In other words, the first term mimics the behaviour of the data fitting

functional in Tikhonov regularisation, which defines the unregularised solution only matching the

forward model. The second term mimics the behaviour of the regulariser, which reduces the ill-

posedness of the problem and encodes special properties, e.g. smoothness and sparsity, into the

solution. Thus the lower bound F can be regarded as a regularised functional.

1.2.1.2 Stochastic Variational Inference

Variational inference with KL divergence is finally transformed into the optimisation problem of

an ELBO. However, conventional optimisation methods are not well scalable in large data settings

for either mean field families or exponential families. Recent success of stochastic gradient descent

(SGD), which enjoys both efficiency and accuracy, motivates the usage of stochastic optimisation

methods for variational inference. Stochastic variational inference (SVI) [63] applies stochastic

methods [117] to the optimisation of ELBOs by using natural gradients [7]. The usage of stochastic

optimisation would only involve one example to evaluate the gradient of ELBO. Thus, the compu-

tational complexity is largely reduced. The usage of natural gradient is to find the direction along

which the value of ELBO can be most efficiently decreased by leveraging the geometrical character.

SVI is developed for a class of conditionally conjugate models. The likelihood function is given

by

p(y|x) =
n

∏
i=1

p(yi|x) (1.8)

with each factor being an exponential family member

p(yi|x) = h1(yi)exp[xtt(yi)−A1(x)]. (1.9)
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The prior distribution is required to be in the conjugate exponential family

p(x) = h2(x)exp[α t(x;−A1(x))−A2(α)], (1.10)

where α = (α1;α2) (a MATLAB style of column vector stacking) being the natural parameter of p(x).

The distributions in the variational family (the same family as prior distributions) are written as

q(x) = h(x)exp[λ t(x;−A1(x))−A(λ )], (1.11)

where λ = (λ1;λ2) being the natural parameter of q(x). Note that natural parameters are defined as

the coefficients of the sufficient statistics in some exponential family and we refer to Appendix B for

an example with Gaussian distributions.

Although SVI gives an efficient method for variational inference, it can not be applied to the

Poisson models we are interested in. First of all, Poisson models with linear inverse link function

do not belong to the exponential family of likelihood functions for SVI. Moreover, the restriction

that the approximate distribution should be in the same conjugate family shrinks the spectrum of

prior distributions we can choose from. For imaging tasks, we often adopt Gaussian type priors and

Laplace type priors. Since Gaussian distributions are more reasonable approximate family, we at

least cannot use Laplace type priors here. In fact, Gaussian type priors are not in the conjugate family

of Poisson likelihood with exponential inverse link functions. To conclude, scalable variational

inference for Poisson models is not straightforward and need further research.

1.2.1.3 Stein Variational Inference

Unlike stochastic variational inference, Stein variational inference [91] is a more general purpose

method. It does not assume explicit forms of the likelihood function nor prior distribution barring

the differentiability of the posterior distribution w.r.t. the unknown variable x. Apart from using

much broader variational families, the key character of Stein variational inference is the particle

update scheme rather than a conventional parameter optimisation. In this subsection, we will review

Stein variational inference from the construction of the variational family to the implementation of

the algorithm.

The first generalisation of Stein variational inference is the variational families with strong

expressibility. The variational family Q is defined by a tractable reference q0(x) and a set of smooth

one-to-one transforms T ’s. For a fixed T , the distribution of x′ = T (x) gives an element in Q. In

theory, such approximate family Q can give good approximation to almost arbitrary distributions

[91]. For a fixed q0(x), the set of T ’s determines the expressibility of Q. However, the choice of

such set should be a balance among accuracy, tractability and solvability. As a result, [91] considers

the set of T ’s with simple forms in some reproducing kernel Hilbert space (RKHS) H d . Specifically,

each T is constructed by a perturbation scheme T (x) = x+εφ(x), where φ(x) ∈H d determines the
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direction of perturbation and ε decides the step size. In stead of looking for an optimal T in one

step, Stein variational inference iteratively finds some T (x) = x+εφ(x) to reduce the KL divergence

KL(q(x)||p(x|y)), where q(x) is the approximation to the true posterior distribution p(x|y), and gives

the optimal approximation when the process converges. This avoids explicitly using parametric

forms of T nor calculating the Jacobian matrix of variable transformation [91]. It is shown in [91]

that at the t-th iteration, the optimal φ ∗t (x) admits an explicit form. This motivates the particle update

scheme idea that we can generate a set of samples {x0
i }n

i=1 from the reference distribution q0(x). At

the t-th iteration, we can update the samples {xt−1
i }n

i=1 by xt
i = xt−1

i +εtφ
∗
t (x

t−1
i ), where εt is the step

size at the t-th iteration. When the algorithm converges, we can regard the updated particle {xi}n
i=1

as samples from the optimal approximate distribution q(x).

In short, Stein variational inference updates the approximate posterior distribution by evolving

the particles of it. And the evolution of the particles is based on a gradient-like scheme. A typical

concern of gradient-like algorithms for inverse problems with Poisson data is the nonnegative con-

straint of the unobservable variable. For instance, in PET, the unobservable emission intensity is

always nonnegative. Neglecting this property in gradient-like algorithms could lead to divergence.

Although one can enforce the non-negativity by truncating the updated particle with lower bound

zero after each iteration, this operation would introduce an extra evolution of the approximate distri-

bution and invalidate the original interpretation of KL minimising. Moreover, typical priors adopted

for imaging, e.g., total variation priors, are often non-smooth, which is not consistent with the dif-

ferentiable assumption of Stein variational inference. One possible solution to solve this problem

is adding a small number to smooth the total variation prior. However, it will introduce an extra

hyperparameter which would increase the computational cost for hyperparameter tuning.

1.2.2 Expectation Propagation

Different from variational inference, expectation propagation (EP) is used for posterior distributions

which admit a factorisation form and defines an iterative procedure to propagate the expectation

information from each factor of the posterior distribution to the approximate distribution. Such

propagation is achieved by an exclusion-inclusion scheme in every iteration. Preceding to the for-

mal definition of the exclusion-inclusion scheme, we first define the factorisation of the posterior

distribution p(x|y).

Assume that the posterior distribution p(x|y) admits a factorisation

p(x|y) = ∏
i

ti(x). (1.12)

EP aims to find an approximation distribution q(x) that admits the same factorisation

q(x) = ∏
i

t̃i(x). (1.13)
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Here each t̃i(x) is regarded as the approximation to the corresponding site function ti(x).

In each iteration, we first select a site function ti(x) to approximate. Then we exclude the i-th

site approximation t̃i(x) from the approximation distribution q(x) and form a cavity distribution

q\i(x) ∝ ∏
j 6=i

t̃ j(x). (1.14)

Then we include the i-th site function ti(x) into the cavity distribution and form a tilted distribution

q̂(x) ∝ ti(x)q\i(x). (1.15)

Then we match the moments of q(x) to those of q̂(x). The i-th approximation site function t̃i(x) is

updated such that

q(x) = t̃i(x)∏
j 6=i

t̃ j(x). (1.16)

The moment matching step can be interpreted as minimising the KL divergence in an opposite di-

rection as variational inference, i.e.

q(x) = arg min
q̃(x)∈Q

KL(q̂(x)||q̃(x)). (1.17)

Due to the independent and identically distributed (i.i.d.) assumption of the data, the likelihood

functions admit natural factorisations. Since we normally use Gaussian approximations, Gaussian

prior can be directly updated without factorisation approximations. As for other prior distributions,

the usage of EP might not be so straightforward. For example, while anisotropic total variation priors

admit factorisation forms to which EP can be applied, isotropic total variation priors do not enjoy

such property.

Despite the widely successful applications, e.g. Gaussian processes [112, 23], electrical

impedance tomography [52], etc., theoretical understanding of EP is quite limited. We refer in-

terested readers to recent results [35, 34] upon this regard. Beside the lack of theoretical analysis,

sometimes EP can suffer from numerical instability. To alleviate the instability, there are mainly

two solutions, i.e. improving the accuracy of integral evaluations of expectations and use fractional

exclusion-inclusion schemes. While the first solution will be addressed in our second work, we will

sketch the idea of fractional update here. For the propagation of the i-th factor, instead of taking out

the whole factor ti(x), one can only take a fraction of it out, say ti(x)1/n, and include the same fraction

of approximation into the approximation, i.e. t̃i(x)1/n. Similar to the interpretation of minimising

KL divergence for whole exclusion-inclusion scheme, doing fractional update can be regarded as

minimising some α-divergence [97]. In the literature, the EP with fractional update is often referred

to as power EP [97] or fractional EP [53].

Note that the expectation evaluations of EP normally involves integrations in a very high di-
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mensional space. Although the projection form in many practical models can render this issue into

lower dimensional integrals, the high computational complexity still calls for further careful treat-

ment. Besides the computational efficiency, the memory efficiency is also a problem for big data

settings. Stochastic expectation propagation (SEP) [87] addresses this issue by only maintaining

global parameters and thus saves space for local approximation parameters.

1.2.3 Bayesian Deep Learning

In recent decade, the success of deep learning [86] evokes a revolution in the machine learning

community. Due to the strong approximation ability of deep neural networks, they perform much

better than conventional methods in many applications, e.g., computer vision (CV), natural language

processing (NLP), reinforcement learning (RL), etc. While Bayesian inference and deep learning

have been two parallel research areas, the combination of them can actually date back to the last

century [94].

Neural networks can be used to learn an inverse model f from data. However, what neural

networks give is only a point estimate x∗ = f (y∗) for an input y∗. Thus, the important information

of uncertainty quantification is not available. With the Bayesian framework, we can actually en-

able uncertainty quantifications of neural networks. [94] proposed a Bayesian framework for the

weights of the neural networks. The likelihood functions are constructed based on errors for the

data and prior distributions are constructed based on the regularisation need. Following this route,

[48] shows that doing dropout training can be interpreted as conducting variational inference in deep

Gaussian processes. Dropout is essentially one kind of perturbation on the parameters w of neural

networks, which introduces randomness into the variable w. With the approximate posterior distri-

bution of w, the uncertainty of the network output is propagated from the randomness of the network

parameter w for a fixed input-output pair. Instead of doing dropout training, [79] proposed a Gaus-

sian perturbation scheme to Adam optimiser and interpreted it as a natural gradient algorithm to

do fast Gaussian mean-field variational inference. The above mentioned methods conduct Bayesian

inference on neural networks parameters. In doing so, they focus on the epistemic uncertainty, a.k.a.

model uncertainty, which is about possible models fitting the data. However, in our problem settings,

we are interested in the uncertainty of the unobservable variable that could lead to the observation

with the forward process and prior information, which belongs to another kind of uncertainty, i.e.,

aleatoric uncertainty, and is the uncertainty of the data itself. Thus, the direction of studying neural

networks with Bayesian inference on weights deviates from the scope our research.

To enable the aleatoric uncertainty quantification with neural networks, one idea is to let

neural networks output the parameters of some distribution family of the unobservable variable

[102, 85, 58, 50]. The networks are trained to fit the approximate distributions to the true poste-

rior distribution, which is consistent with the interpretation of aleatoric uncertainty. For example,

for Gaussian distributions, such neural networks are expected to output the mean and variance [102].
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One can also use an ensemble of networks to output the parameters of a mixture of distributions [85].

Besides only outputting a distribution at the last layer, [50] actually extends this idea to every

layer of the network. Then the forward propagation of the probabilistic neural net is defined by the

assumed density filtering (ADF) algorithm which is a simplified version of expectation propagation

(EP). The extension from conventional neural nets to the probabilistic neural nets is a lightweight

way as argued in [50], i.e., without much extra burden on number of parameters and computations.

The improvement of this extension is that it enables the query of uncertainty on each layer of the

network, while it is not clear how it additionally benefits uncertainty quantification for the final

output of interest.

Although [85] allows for training a mixture of finite many distributions, which enlarges the dis-

tribution families a single network can parameterise, it might be still insufficient to model complex

distributions. Conditional variational auto-encoders (CVAEs) [126] introduced an intermediate vari-

able z and model the target distribution by p(x|y) =
∫

p(x|z,y)p(z|y)dz. z acts as a mixture variable

and extends the mixture of finite many distributions to the mixture of infinite many distributions.

As a conditional variant of variational auto-encoders (VAEs), CVAEs also model the target distribu-

tion by transforming samples from a simple distribution, i.e., mean field Gaussian distributions, into

samples from the target distribution. However, the objective function in CVAEs is not direct condi-

tional version of that of VAEs. In other words, one can not simply interpret the distribution given by

CVAEs as approximation distribution from variational inference with KL divergence. Hence, further

theoretical understanding is needed to justify the application of CVAEs to inverse problems.

Apart from the conditional variant of VAEs, recent advances also investigate conditional gen-

erative adversarial nets (Conditional GANs) for inverse problems [4]. The objective function of

Conditional GANs is equivalent to Wasserstein 1 distance under some technical assumption, i.e.,

Lipschitz condition, which is not straightforward to strictly enforce for neural networks. In the

literature, practitioners either softly incorporate the penalty on gradients [57] or clip the gradients

with some threshold [12]. It is worth noting that unconditional versions of the generative modelling

algorithms, i.e., VAEs and GANs, are unsupervised algorithms. In other words, one cannot incor-

porate ground truth data into these algorithms, despite that for highly ill-posed inverse problems,

information encoded in observations only may not be sufficient for data-driven modelling.

Before concluding the literature review, we shall compare the deep learning based full Bayesian

approaches with conventional full Bayesian approaches, e.g., variational inference, expectation prop-

agation, etc. Abstractly speaking, all full Bayesian approaches provide a distribution of the unob-

servable variable x for a given observation y, as an approximation to the true posterior distribution

p(x|y). The difference between learning based full Bayesian approaches and conventional ones is

that the whole procedure of conventional approaches needs to be rerun for every new observation.

For sampling methods, new chains of sampling shall be simulated. For variational inference, the

optimisation problems with respect to the parameter of the variational families need to be solved.
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For expectation propagation, the moment evaluation procedures need to be conducted for all site

functions. All of above repetitions would greatly increase the computational cost and undermine the

efficiency of the algorithm in production scenarios. In contrast, for deep learning based algorithms,

once the neural networks are trained, for each new observation y, the procedure deriving the ap-

proximation distribution is deduced to the feedforward process, which is composed of simple linear

transforms and simple non-linearities and thus very efficient on modern computational equipments,

e.g., GPUs and TPUs. Although the feedforward process of DNNs is very efficient, the offline train-

ing of them usually needs large amount of time. To further improve the efficiency and scalability

of deep learning based full Bayesian approaches, attention need to be paid on how to reduce the

training time, which will be addressed in our third work.

1.2.4 Conclusion

With discussions above, we can see that designing scalable approximate inference methods for in-

verse problems with Poisson data is not straightforward and need sophisticated investigations. In

the literature of statistical/machine learning, inverse problems with Poisson data are mostly equally

treated as other generalised linear models (GLMs). Thus, specific characteristics, e.g., structures or

constraints, which are important factors for scalable, accurate and flexible inversions, are not always

taken into consideration. In this part, we shall stress this point with three practical and important

characteristics for inverse problems with Poisson data.

The first characteristic is the low rank structure of forward operators. For instance, in X-ray

CT, the forward operator is the discretised Radon matrix A ∈Rn×m. While m is the number of pixels

of the image, n is the number of observations which is given by the product of number of beams per

angle and number of angles. Fix other parameters, the fewer the number of angles is or the fewer the

number of beams is, the fewer information we will get from the observation. As a result, the more

difficult the problem will be. This difficulty is reflected by the ill-conditionedness of the matrix A. A

key character of ill-conditioned matrices is the fast singular value decay. By Eckart Young Mirsky

theorem, a matrix with fast singular value decay, which is referred to as a matrix with low rank

structure, can be well-approximated by low rank matrices. This structure is also quite common for

other ill-posed inverse problems defined by first kind of Fredholm integrals and has been shown great

potential to accelerate algorithms solving inverse problems in the deterministic setting [137]. Thus,

it is very interesting to investigate how it can be leveraged to accelerate full Bayesian approaches,

which suffer from poor scalability of dimensions.

The second characteristic is the non-negativity of the unobservable variable. For example, in

PET, the variable of interest is the intensity of photon emissions, which is naturally equal to or

greater than zero. Neglecting such constraint would no doubt leads to unrealistic reconstructions.

Algorithms for point estimates, e.g., MLE, are usually formulated as optimisation problems with x

being the variable for optimisation. It is straightforward to incorporate the nonnegative constraint
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on x to these algorithms by casting the optimisation problems as constrained optimisation problems.

Although in some full Bayesian approaches, the algorithms would also admit some variational prob-

lem, e.g., variational inference, the variable for optimisation is the distribution of x, e.g., q(x) ∈Q,

which generally do not accept constraint incorporations. Hence, it is of great interest to investigate

how to incorporate the nonnegative constraint of unobservable x into the process of full Bayesian

approaches.

The third characteristic is the presence of forward operators in inverse problems and their im-

portance for deep learning based approaches. The forward operators are often given by fundamental

physical laws, e.g., Radon matrices from the Beer-Lambert law, and serve as a part of established

prior knowledge. The presence of forward operators is a unique feature in inverse problems and is

not common in the machine learning setting. Such knowledge is also encoded in the unobservable

and observable data pairs {xi,yi}i needed for supervised learning, but in an implicit way. Since neu-

ral networks extract features in a black box manner, one cannot make sure that the physical laws are

respected by neural networks, which otherwise may lead to overfitting the correspondence relations

in training data. Besides, the forward operators and their adjoints connect the space of unobserv-

able variable and the space of the observable variable, which are usually of different dimensions.

Disentangling the unobservable space and the observable space by the operators would be benefi-

cial to prevent overfitting special features only emerging in the observable space. To conclude, it is

very important to investigate how to incorporate the forward operators and their adjoints into deep

learning based full Bayesian approaches.

1.3 Overview and Contribution
After reviewing inverse problems with Poisson data and full Bayesian approaches for posterior ex-

plorations, we conclude that many theoretical and practical concerns should be addressed for scalable

and accurate deployment. In this thesis, we would address the discussed concerns and try to shed a

light on relevant issues. Before detailed discussions, we will highlight the roadmap and contributions

of our work in this section.

In Chapter 2, we analyse variational inference with multivariate Gaussian approximations to

the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by

seeking an optimal Gaussian distribution minimising the Kullback Leibler divergence from the pos-

terior distribution to the approximation, or equivalently maximising the lower bound for the model

evidence. We derive an explicit expression for the lower bound, and show the existence and unique-

ness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant

of classical Tikhonov regularisation that penalises also the covariance. Then we develop an efficient

alternating direction maximisation algorithm for solving the optimisation problem, and analyse its

convergence. We discuss strategies for reducing the computational complexity via low rank structure

of the forward operator and the sparsity of the covariance. Further, as an application of the lower
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bound, we discuss hierarchical Bayesian modelling for selecting the hyperparameter in the prior

distribution, and propose a monotonically convergent algorithm for determining the hyperparameter.

We present numerical experiments to illustrate the Gaussian approximation and the algorithms. Note

that this chapter is based on the published paper Variational Gaussian Approximation for Poisson

Data [14].

In Chapter 3, we develop an approximate Bayesian inference technique based on expectation

propagation for approximating the posterior distribution formed from the Poisson likelihood func-

tion and a Laplace type prior distribution, e.g. the anisotropic total variation prior. The approach

iteratively yields a Gaussian approximation, and at each iteration, it updates the Gaussian approx-

imation to one factor of the posterior distribution by moment matching. We derive explicit update

formulae in terms of one-dimensional integrals, and also discuss stable and efficient quadrature rules

for evaluating these integrals. The method is showcased on two-dimensional PET images. Note that

this chapter is based on the published paper Expectation Propagation for Poisson Data [140].

In Chapter 4, we develop a novel computational framework, termed as Probabilistic Iterative

Networks (PIN), to output a distribution of the unobservable variable(s) that approximates the pos-

terior distribution for each observation. The framework is very general and flexible: It can handle

implicit noise models and priors, can incorporate physically important forward maps and their ad-

joints, and is transferable between different datasets (e.g., input/output of different dimensions).

Once the network is trained, it provides an efficient sampler for an approximate posterior distribu-

tion via feedforward propagation, and the summarising statistics of the generated samples can be

used for both point estimation and uncertainty quantification. We illustrate the proposed framework

with numerical experiments on PET, and the numerical results show that the samples are of high

quality when compared with state-of-the-art benchmark methods. Note that this chapter is based on

the working paper Probabilistic Residual Learning for Aleatoric Uncertainty in Image Restoration

[141] and the working paper Probabilistic Iterative Networks for Inverse Problems.

In Chapter 5, we conclude the project and discuss future research regimes.





Chapter 2

Variational Gaussian Approximation for

Poisson Data

2.1 Introduction
In the previous chapter, we discuss the motivation of our research on approximate inference for

Poisson data and concluded that applications of approximate inference methods should take specific

characters of concrete problems into consideration. In this chapter, we shall focus on the case of a

Gaussian prior, which forms the basis of many other important priors, e.g., sparsity prior via scale

mixture representation. Then following the Bayesian procedure, we arrive at a posterior probability

distribution, which however is analytically intractable due to the nonstandard form of the likelihood

function for the Poisson model. We will explain this more precisely in Section 2.2. To explore

the posterior state space, instead of applying popular general-purposed sampling techniques, e.g.,

Markov chain Monte Carlo (MCMC), we employ a variational Gaussian approximation (VGA).

The VGA is one extremely popular approximate inference technique in machine learning [134, 26].

Specifically, we seek an optimal Gaussian approximation to the non-Gaussian posterior distribution

with respect to the Kullback-Leibler divergence. The approach leads to a large-scale optimisation

problem over the mean x̄ and covariance C (of the Gaussian approximation). In practice, it generally

delivers an accurate approximation in an efficient manner, and thus has received immense attention

in recent years in many different areas [62, 15, 26, 11]. By its very construction, it also gives a lower

bound to the model evidence, which facilitates its use in model selection. However, a systematic

theoretical understanding of the approach remains largely missing.

In this work, we shall study the analytical properties and develop an efficient algorithm for the

VGA in the context of Poisson data (with the exponential inverse link function). We shall provide a

detailed analysis of the resulting optimisation problem. The study sheds interesting new insights into

the approach from the perspective of regularisation. Our main contributions are as follows. First,

we derive explicit expressions for the objective functional and its gradient, and establish its strict

concavity and the well-posedness of the optimisation problem. Second, we develop an efficient
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numerical algorithm for finding the optimal Gaussian approximation, and discuss its convergence

properties. The algorithm is of alternating maximisation (coordinate ascent) nature, and it updates

the mean x̄ and covariance C alternatingly by a globally convergent Newton method and a fixed

point iteration, respectively. We also discuss strategies for its efficient implementation, by leveraging

realistic structure of inverse problems, e.g., low-rank nature of the forward map A and sparsity of the

covariance C, to reduce the computational complexity. Third, we illustrate the use of the evidence

lower bound for hyperparameter selection within an empirical Bayesian framework, leading to a

purely data-driven approach for determining the regularisation parameter, whose proper choice is

notoriously challenging. We shall develop a monotonically convergent algorithm for determining

the hyperparameter in the Gaussian prior. Last, we illustrate the approach and the algorithms with

numerical experiments for one- and two-dimensional examples.

Last, we discuss existing works on Poisson models. The majority of existing works aim at re-

covering point estimators, either iteratively or by a variational framework [64]. Recently, Bardsley

and Luttman [16] described a Metroplis-Hastings algorithm for exploring the posterior distribution

(with rectified linear inverse link function), where the proposal samples are drawn from the Laplace

approximation (cf. Remark 2.3.1). The Poisson model (2.2) belongs to generalised linear models

(GLMs), to which the VGA has been applied in statistics and machine learning [103, 78, 26, 120].

Ormerod and Wand [103] suggested a variational approximation strategy for fitting GLMs suitable

for grouped data. Challis and Barber [26] systematically studied VGA for GLMs and various exten-

sions. The focus of these interesting works [103, 78, 26, 120] is on the development of the general

VGA methodology and its applications to concrete problems, and do not study analytical properties

and computational techniques for the lower bound functional, which is the main goal of this work.

The rest of the chapter is organised as follows. In Section 2.2, we describe the Poisson model,

and formulate the posterior probability distribution. Then in Section 2.3, we develop the variational

Gaussian approximation, and analyse its basic analytical properties. In Section 2.4, we propose an

efficient numerical algorithm for finding the optimal Gaussian approximation, and in Section 2.5,

we apply the lower bound to hyperparameter selection within an empirical Bayesian framework.

In Section 2.6 we present numerical results for several examples. In Appendix A.1 and Appendix

A.2, we provide further discussions on the convergence of the fixed point iteration (2.12) and the

differentiability of the regularised solution.

2.2 Notation and Problem Setting

First we recall some standard notation in linear algebra. Throughout, (real-valued) vectors and ma-

trices are denoted by lower- and upper-case letters, respectively, and the vectors are always column

vectors. We will use the notation (·, ·) to denote the usual Euclidean inner product. We shall slightly

abuse the notation (·, ·) also for the inner product for matrices. That is, for two matrices X ,Y ∈Rn×m,
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we define

(X ,Y ) = tr(XY t) = tr(X tY ),

where tr(·) denotes taking the trace of a square matrix, and the superscript t denotes the transpose of

a vector or matrix. This inner product induces the usual Frobenius norm for matrices. We shall use

extensively the cyclic property of the trace operator tr(·): for three matrices X ,Y,Z of appropriate

size, there holds

tr(XY Z) = tr(Y ZX) = tr(ZXY ).

We shall also use the notation diag(·) for a vector and a square matrix, which gives a diagonal

matrix and a column vector from the diagonals of the matrix, respectively, in the same manner as

the diag function in MATLAB. The notation N = {0,1, . . .} denotes the set of natural numbers.

Further, the notation ◦ denotes the Hadamard product of two matrices or vectors. Last, we denote

by S +
m ⊂ Rm×m the set of symmetric positive definite matrices in Rm×m, Im the identity matrix in

Rm×m, and by | · | and ‖ · ‖ the determinant and the spectral norm, respectively, of a square matrix.

Throughout, we view exponential, logarithm and factorial of a vector as componentwise operation.

Next we recall the finite-dimensional Poisson data model. Let x ∈ Rm be the unknown signal,

ai ∈ Rm, i = 1, . . . ,n, and y ∈ Nn ⊂ Rn be the data vector. We stack the column vectors ai into a

matrix A by A = [at
i] ∈Rn×m. Given the matrix A and data y ∈Nn, the Poisson model takes the form:

yi ∼ Pois(e(ai,x)), i = 1,2, . . . ,n.

Thus, the likelihood function p(yi|x) for the data point yi is given by

p(yi|x) =
λ

yi
i e−λi

yi!
, λi = e(ai,x), i = 1, . . . ,n. (2.1)

It is worth noting that the exponential function enters into the Poisson parameter λ . This is com-

monly known as the log link function or log-linear model in the statistical literature [25]. There

are several other models for the (inverse) link functions, e.g., rectified-linear and softplus [109],

each having its own pros and cons for modelling count data. In this work, we shall focus on the

log link function. Also this model can be viewed as a simplified statistical model for transmission

tomography [139, 43].

The likelihood function p(yi|x) can be equivalently written as

p(yi|x) = eyi(ai,x)−e(ai,x)−ln(yi!).

Under the independent identically distributed (i.i.d.) assumption on the data points yi, the likelihood
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function p(y|x) of the data vector y is given by

p(y|x) =
n

∏
i=1

p(yi|x) = e(Ax,y)−(eAx,1n)−(ln(y!),1n), (2.2)

where 1n ∈ Rn is the vector with all entries equal to unity, i.e., 1n = [1, . . . ,1]t ∈ Rn.

Further, we assume that the unknown x follows a Gaussian prior p(x), i.e.,

p(x) = pN (x; µ0,C0) := (2π)−
m
2 |C0|−

1
2 e−

1
2 (x−µ0)

tC−1
0 (x−µ0),

where µ0 ∈Rm and C0 ∈S +
m denote the mean and covariance of the Gaussian prior, respectively, and

N denotes the normal distribution. In the framework of variational regularisation, the corresponding

penalty 1
2 (x−µ0)

tC−1
0 (x−µ0) often imposes certain smoothness constraint. The Gaussian prior p(x)

may depend on additional hyperparameters, cf. Section 2.5 for details. Then by Bayes’ formula, the

posterior probability distribution p(x|y) is given by

p(x|y) = Z−1(y)p(x,y), (2.3)

where the joint distribution p(x,y) is defined by

p(x,y) = (2π)−
m
2 |C0|−

1
2 e(Ax,y)−(eAx,1n)−(ln(y!),1n)− 1

2 (x−µ0)
tC−1

0 (x−µ0),

and the normalising constant Z(y), which depends only on the given data y, is given by

Z(y) = p(y) =
∫

p(x,y)dx.

That is, the normalising constant Z(y) is an integral living in a very high-dimensional space if the

parameter dimension m is large. Thus it is computationally intractable, and so is the posterior distri-

bution p(x|y), since it also involves the constant Z(y).

The posterior distribution p(x|y) given in (2.3) is the Bayesian solution to the Poisson model

(2.1) (under a Gaussian prior), and it contains all the information about the inverse problem. In this

work, we shall employ the VGA to obtain an optimal Gaussian approximation q(x) to the posterior

distribution p(x|y) in the Kullback-Leibler divergence DKL(q||p). Fitting a Gaussian to an intractable

distribution is a well-adopted choice for approximate Bayesian Inference, and it has demonstrated

success in many practical applications [62, 15, 26, 11]. The popularity can be largely attributed

to the fact that the Gaussian approximation is computationally attractive due to the good analytical

properties, and yet delivers reasonable accuracy for a wide range of problems. However, analytical

properties of Approximate Inference procedures are rarely studied. In the context of Poisson mixed

models, the asymptotic normality of the estimator and its convergence rate was analysed [60]. In a
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general setting, some theoretical issues were studied in [110, 92].

2.3 Gaussian Variational Approximation
In this section, we derive explicit expressions for the lower bound functional and its gradient, and

discuss basic analytic properties, e.g., concavity and existence.

Remark 2.3.1. In practice, the so-called Laplace approximation is quite popular [129]. Specifically,

let x̂ be the maximum a posteriori (MAP) estimator x̂, i.e., x̂ = argminx∈Rm g(x), where g(x) =

− ln p(x|y) is the negative log posterior distribution. Consider the Taylor expansion of g(x) at the

MAP estimator x̂:
g(x)≈ g(x̂)+(∇g(x̂),x− x̂)+ 1

2 (x− x̂)tH(x− x̂)

= g(x̂)+ 1
2 (x− x̂)tH(x− x̂),

since ∇g(x̂) vanishes. The Hessian H of g(x) is given by

H = Atdiag(eAx̂)A+C−1
0 .

Thus, x̂ might serve as an approximate posterior mean, and the inverse Hessian H−1 as an approx-

imate posterior covariance. However, unlike the VGA discussed below, it lacks the optimality as

evidence lower bound (within the Gaussian family), and thus may be suboptimal for model selection

etc.

2.3.1 Variational Gaussian Lower Bound

By substituting p(x) with the posterior distribution p(x|y) in Equation (1.1), we obtain

DKL(q(x|y)||p(x|y)) =
∫

q(x|y)ln q(x|y)
p(x|y)

dx.

Since the posterior distribution p(x|y) depends on the unknown normalising constant Z(y), the in-

tegral on the right hand side is not computable. Nonetheless, given y, Z(y) is fixed. In view of the

identity

lnZ(y) =
∫

q(x|y)ln p(x,y)
q(x|y)

dx+
∫

q(x|y)ln q(x|y)
p(x|y)

dx,

instead of minimising DKL(q(x|y)||p(x|y)), we may equivalently maximise the functional

F(q,y) =
∫

q(x|y)ln p(x,y)
q(x|y)

dx. (2.4)

F(q,y) provides a lower bound on the model evidence Z(y), for any choice of the distribution

q. For any fixed q, F(q,y) may be used as a substitute for the analytically intractable model evidence

Z(y), and hence it is called an evidence lower bound (ELBO). Since the data y is fixed, it will be

suppressed from F(q,y) below. In the VGA, we restrict our choice of q to Gaussian distributions.
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Meanwhile, a Gaussian distribution q(x) is fully characterised by its mean x̄ ∈ Rm and covariance

C ∈S +
m ⊂ Rm×m, i.e.,

q(x) = pN (x; x̄,C).

Thus, F(q) is actually a function of x̄ ∈ Rm and C ∈ S +
m , and will be written as F(x̄,C) below.

Then the approach seeks optimal variational parameters (x̄,C) to maximise ELBO. This step turns a

challenging sampling problem into a computationally more tractable optimisation problem.

The next result gives an explicit expression for the lower bound F(x̄,C).

Proposition 2.3.1. For any fixed y,µ0 and C0, the lower bound F(x̄,C) is given by

F(x̄,C) = (y,Ax̄)− (1n,eAx̄+ 1
2 diag(ACAt ))− 1

2 (x̄−µ0)
tC−1

0 (x̄−µ0)− 1
2 tr(C−1

0 C)

+ 1
2 ln |C|− 1

2 ln |C0|+ m
2 − (1n, ln(y!)).

(2.5)

Proof. By the definition of the functional F(x̄,C) and the joint distribution p(x,y), we have

F(x̄,C) =
∫

pN (x; x̄,C)
[
ln|C0|−

1
2 − ln|C|−

1
2 +(Ax,y)− (eAx,1n)− (ln(y!),1n)

− 1
2 (x−µ0)

tC−1
0 (x−µ0)+

1
2 (x− x̄)tC−1(x− x̄)

]
dx.

It suffices to evaluate the integrals termwise. Clearly, we have
∫

pN (x; x̄,C)(Ax,y)dx = (Ax̄,y).

Next, using moment generating function, we have

∫
pN (x; x̄,C)(eAx,1n)dx = ∑

i

∫
pN (x; x̄,C)e(ai,x)dx

= ∑
i

e(ai,x̄)+ 1
2 at

iCai = (1n,eAx̄+ 1
2 diag(ACAt )).

With the Cholesky decomposition C = LLt , for z ∼N (0, Im), x = µ +Lz ∼N (x; µ,C). This and

the bias-variance decomposition yield (Eq(x)[·] takes expectation with respect to the density q(x)):

for any symmetric X ∈ Rm×m

Eq(x)[x
tXx] = EN (z;0,Im)[(µ +Lz)tX(µ +Lz)] = µ

tXµ +EN (z;0,Im)[z
tLtXLz].

By the cyclic property of trace, we have EN (z;0,Im)[z
tLtXLz] = tr(LtXL) = tr(XLLt) = tr(XC). In

particular, this gives

Eq(x)[(x−µ0)
tC−1

0 (x−µ0)] = (x̄−µ0)
tC−1

0 (x̄−µ0)+ tr(C−1
0 C),

and

Eq(x)[(x− x̄)tC−1(x− x̄)] = m.
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Collecting preceding identities completes the proof of the proposition.

Remark 2.3.2. The terms in the functional F(x̄,C) in (2.5) admit interesting interpretation in the

lens of classical Tikhonov regularisation (see, e.g., [42, 67, 123]). To this end, we rewrite it as

F(x̄,C) =(y,Ax̄)− (1n,eAx̄+ 1
2 diag(ACAt ))− (1n, ln(y!))

− 1
2 (x̄−µ0)

tC−1
0 (x̄−µ0)

− 1
2 tr(C−1

0 C)+ 1
2 ln |C|− 1

2 ln |C0|+ m
2 .

The first line represents the fidelity or “pseudo-likelihood” function. It is worth noting that it actually

involves the covariance C. In the absence of the covariance C, it recovers the familiar log likelihood

for Poisson data, cf. Remark 2.3.1. The second line imposes a quadratic penalty on the mean x̄. This

term recovers the familiar penalty in Tikhonov regularisation (except that it is imposed on x̄). Recall

that the function − ln |C| is strictly convex in C ∈S +
m [49, Lemma 6.2.2]. Thus, one may define the

corresponding Bregman divergence d(C,C0). In view of the identities [39]

∂

∂C
tr(CC−1

0 ) =C−1
0 and

∂

∂C
ln |C|=C−1 (2.6)

simple computation gives the following expression for the divergence:

d(C,C0) = tr(C−1
0 C)− ln |C−1

0 C|−m≥ 0.

Statistically, it is the Kullback-Leibler divergence between two Gaussians of identical mean. The

divergence d(C,C0) provides a distance measure between the prior covariance C0 and the posterior

one C. Let {(λi,vi)}m
i=1 be the pairs of generalised eigenvalues and eigenfunctions of the pencil

(C,C0), i.e., Cvi = λiC0vi. Then it can be expressed as

d(C,C0) =
m

∑
i=1

(λi− lnλi−1).

This identity directly indicates that d(C,C0) ≤ c implies ‖C‖ ≤ c and ‖C−1‖ ≤ c, where here and

below c denotes a generic constant which may change at each occurrence.

Thus, the third line regularises the posterior covariance C by requesting nearness to the prior

one C0 in Bregman divergence. It is interesting to observe that the Gaussian prior implicitly induces

a penalty on C, although it is not directly enforced. In statistics, the Bregman divergence d(C,C0) is

also known as Stein’s loss [69].

2.3.2 Theoretical Properties of the Lower Bound

Now we study basic analytical properties, i.e., concavity, existence and uniqueness of maximiser,

and gradient of the functional F(x̄,C) defined in (2.5), from the perspective of optimisation.
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A first result shows the concavity of F(x̄,C). Let X and Y be two convex sets. Recall that a

functional f : X×Y → R is said to be jointly concave, if and only if

f (λx1 +(1−λ )x2,λy1 +(1−λ )y2)≥ λ f (x1,y1)+(1−λ ) f (x2,y2)

for all x1,x2 ∈X , y1,y2 ∈Y and λ ∈ [0,1]. Further, f is called strictly jointly concave if the inequality

is strict for any (x1,y1) 6= (x1,y1) and λ ∈ (0,1). It is easy to see that S +
m is a convex set.

Theorem 2.3.1. For any C0 ∈S +
m , the functional F(x̄,C) is strictly jointly concave with respect to

x̄ ∈ Rm and C ∈S +
m .

Proof. It suffices to consider the terms apart from the linear terms (y,Ax̄) and − 1
2 tr(C−1

0 C) and

the constant term − 1
2 ln|C0|+ m

2 − (1n, ln(y!)). Since Ax̄+ 1
2 diag(ACAt) is linear in x̄ and C, and

exponentiation preserves convexity, the term −(1n,eAx̄+ 1
2 diag(ACAt )) is also jointly concave. Next,

the term − 1
2 (x̄− µ0)

tC−1
0 (x̄− µ0) is strictly concave for any C0 ∈ S +

m . Last, the log-determinant

ln |C| is strictly concave over S +
m [49, Lemma 6.2.2]. The assertion follows since strict concavity is

preserved under summation.

Next, we show the well-posedness of the optimisation problem in VGA.

Theorem 2.3.2. There exists a unique pair of (x̄,C) solving the optimisation problem

max
x̄∈Rm,C∈S +

m

F(x̄,C) (2.7)

Proof. The proof follows by direct methods in calculus of variation, and we only briefly sketch it.

Clearly, there exists a maximising sequence, denoted by {(x̄k,Ck)}⊂Rm×S +
m , and we may assume

F(x̄k,Ck)≥ c =: F(µ0,C0). Thus, by (2.5) in Proposition 2.3.1 and the divergence d(C,C0), we have

(Ax̄k,y)− (x̄k−µ0)
tC−1

0 (x̄k−µ0)−d(Ck,C0)≥ c+(eAx̄k+ 1
2 diag(ACkAt ),1n)≥ c.

By the Cauchy-Schwarz inequality, we have (x̄k−µ0)
tC−1

0 (x̄k−µ0)+d(Ck,C0)≤ c. This immedi-

ately implies a uniform bound on {(x̄k,Ck)} and {(Ck)−1}. Thus, there exists a convergent subse-

quence, relabelled as {(x̄k,Ck)}, with a limit (x̄∗,C∗) ∈ Rm×S +
m . Then by the continuity of the

functional F in (x̄,C), we deduce that (x̄∗,C∗) is a maximiser to F(x̄,C),i.e., the existence of a max-

imiser. The uniqueness follows from the strict joint-concavity of F(x̄,C), cf. Theorem 2.3.1.

Since F is composed of smooth functions, clearly it is smooth. Next we give the gradient

formulae, which are useful for developing numerical algorithms below.

Theorem 2.3.3. The gradients of the functional F(x̄,C) with respect to x̄ and C are respectively
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given by

∂F
∂ x̄

= Aty−AteAx̄+ 1
2 diag(ACAt )−C−1

0 (x̄−µ0),

∂F
∂C

= 1
2 [−Atdiag(eAx̄+ 1

2 diag(ACAt ))A−C−1
0 +C−1].

Proof. Let d = Ax̄+ 1
2 diag(ACAt). Then by the chain rule

∂

∂ x̄i
(1n,ed) =

∂

∂ x̄i

n

∑
j=1

ed j =
n

∑
j=1

∂ed j

∂d j

∂d j

∂ x̄i
=

n

∑
j=1

ed j(A) ji.

That is, we have ∂

∂ x̄ (1n,ed) = Ated , showing the first formula. Next we derive the gradient with

respect to the covariance C. In view of (2.6), it remains to differentiate the term (1n,eAx̄+ 1
2 diag(ACAt ))

with respect to C. To this end, let H be a small perturbation to C. By Taylor expansion, and with the

diagonal matrix D = diag(eAx̄+ 1
2 diag(ACAt )), we deduce

(1n,eAx̄+ 1
2 diag(A(C+H)At ))− (1n,eAx̄+ 1

2 diag(ACAt )) = (D, 1
2 diag(AHAt))+O(‖H‖2).

Since the matrix D is diagonal, by the cyclic property of trace, we have

(D, 1
2 diag(AHAt)) = (D, 1

2 (AHAt)) = 1
2 tr(DAHtAt) = 1

2 tr(AtDAHt) = 1
2 (A

tDA,H).

Now the definition of the gradient completes the proof.

An immediate corollary is the following optimality system.

Corollary 2.3.1. The necessary and sufficient optimality system of problem (2.7) is given by

Aty−AteAx̄+ 1
2 diag(ACAt )−C−1

0 (x̄−µ0) = 0,

C−1−Atdiag(eAx̄+ 1
2 diag(ACAt ))A−C−1

0 = 0.

Remark 2.3.3. Challis and Barber [26] showed that for log-concave site posterior potentials, the

variational lower bound is jointly concave in x̄ and the Cholesky factor L of the covariance C. This

assertion holds also for the lower bound F(x̄,C) in (2.5), i.e., joint concavity with respect to (x̄,L).

Remark 2.3.4. Corollary 2.3.1 indicates that the covariance C∗ of the optimal Gaussian approxi-

mation q∗(x) is of the following form:

(C∗)−1 =C−1
0 +AtDA,

for some diagonal matrix D. Thus it is tempting that one may minimise with respect to D instead

of C in order to reduce the complexity of the algorithm, by reducing the number of unknowns from
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m2 to m. However, F is generally not concave with respect to D; see [78] for a one-dimensional

counterexample. The loss of concavity might complicate the analysis and computation.

Remark 2.3.5. In practice, the parameter x in the model (2.2) often admits physical constraint. Thus

it is natural to impose a box constraint on the mean x̄ in problem (2.7), e.g., cl ≤ x̄i ≤ cu, i = 1, . . . ,m,

for some cl < cu. This can be easily incorporated into the optimality system in Corollary 2.3.1,

and the algorithms below remain valid upon minor changes, e.g., including a pointwise projection

operator in the update of x̄.

2.4 Numerical Algorithm and Its Complexity Analysis
Now we develop an efficient numerical algorithm, which is of alternating direction maximisation

type, provide an analysis of its complexity, and discuss strategies for complexity reduction.

2.4.1 Numerical Algorithm

In view of the strict concavity of F(x̄,C), it suffices to solve the optimality system (cf. Corollary

2.3.1):

Aty−AteAx̄+ 1
2 diag(ACAt )−C−1

0 (x̄−µ0) = 0, (2.8)

C−1−Atdiag(eAx̄+ 1
2 diag(ACAt ))A−C−1

0 = 0. (2.9)

This consists of a coupled nonlinear system for (x̄,C). We shall solve the system by alternatingly

maximising F(x̄,C) with respect to x̄ and C, i.e., coordinate ascent. From the strict concavity in

Theorem 2.3.1, we deduce that for a fixed C, (2.8) has a unique solution x̄, and similarly, for a fixed

x̄, (2.9) has a unique solution C. Below, we discuss the efficient numerical solution of (2.8)–(2.9).

2.4.1.1 Newton Method for Updating x̄

To solve x̄ from (2.8), for a fixed C, we employ a Newton method. Let the nonlinear map G : Rm→

Rm be defined by

G(x̄) = AteAx̄+ 1
2 diag(ACAt )+C−1

0 (x̄−µ0)−Aty.

The Jacobian ∂G of the map G is given by

∂G(x̄) = Atdiag(eAx̄+ 1
2 diag(ACAt ))A+C−1

0 ≥C−1
0 ,

where the partial ordering ≥ is in the sense of symmetric positive definite matrix, i.e., X ≥ Y if and

only if X −Y is positive semidefinite. That is, the Jacobian ∂G(x̄) is uniformly invertible (since the

prior covariance C−1
0 is invertible). This concurs with the strict concavity of the functional F(x̄,C)

in x̄.

This motivates the use of the Newton method or its variants: for a nonlinear system with uni-

formly invertible Jacobians, the Newton method converges globally [76]. Specifically, given x̄0, we
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iterate

∂G(x̄k)δ x̄ =−G(x̄k), x̄k+1 = x̄k +δ x̄. (2.10)

The main cost of the Newton update (2.10) lies in solving the linear system involving ∂G(x̄k).

Clearly, the Jacobian ∂G(x̄k) is symmetric and positive definite, and thus the (preconditioned) con-

jugate gradient method is a natural choice for solving the linear system. One may use C−1
0 (or the

diagonal part of the Jacobian ∂G(x̄)) as a preconditioner. It is worth noting that inverting the Jaco-

bian ∂G(x̄) is identical with one fixed point update of the covariance C below. In the presence of a

priori structural information, this can be carried out efficiently even for very large-scale problems;

see Section 2.4.2 below for further details. By the fast local convergence of the Newton method, a

few iterations suffice the desired accuracy, which is fully confirmed by our numerical experiments.

2.4.1.2 Fixed-point Method for Updating C

Next we turn to the solution of (2.9) for updating C, with x̄ fixed. There are several different strate-

gies, and we shall describe two of them below. The first option is to employ a Newton method. Let

the nonlinear map S : Rm×m→ Rm×m be defined by

S(C) =C−1−C−1
0 −Atdiag(eAx̄+diag(ACAt ))A.

The Jacobian ∂S of the map S is given by

∂S(C)[H] =−C−1HC−1−Atdiag(eAx̄+diag(ACAt ))diag(AHAt)A. (2.11)

It can be verified that the map ∂S(C) is symmetric with a uniformly bounded inverse (see the proof

of Theorem A.2.1 in the appendix for details). However, its explicit form seems not available due to

the presence of the operator diag. Nonetheless, one can apply a (preconditioned) conjugate gradient

method for updating C. The Newton iteration is guaranteed to converge globally.

The second option is to use a fixed-point iteration. This choice is very attractive since it avoids

solving huge linear systems. Specifically, given an initial guess C0, we iterate by

Dk = diag(eAx̄+ 1
2 diag(ACkAt )), Ck+1 = (C−1

0 +AtDkA)−1. (2.12)

Conceptually, it has the flavour of a classical fixed point scheme for solving algebraic Riccati equa-

tions in Kalman filtering [9], and it has also been used in a slightly different context of variational

inference with Gaussian processes [78]. Numerically, each inner iteration of (2.12) involves com-

puting the vector diag(ACkAt) (which should be regarded as computing AiCkAt
i , i = 1, . . . ,m, instead

of forming the full matrix ACkAt ) and a matrix inversion.

Remark 2.4.1. From the iteration scheme (2.12), one can see that the variable Ck remains symmetric

positive definite during iterations. Note that the Equation (2.11) is of a function form, its tensor form
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is of size m2×m2 and thus leads to expensive inversion, which motivates the fixed point scheme for

C updating.

Next we briefly discuss the convergence of (2.12). Clearly, for all iterates Ck, we have Ck ≤C0.

We claim µmax(Ck) ≤ µmax(C0). To see this, let v ∈ Rm be a unit eigenvector corresponding to the

largest eigenvalue µmax(Ck), i.e., vtCkv = µmax(Ck). Then by the minmax principle

µmax(Ck) = vtCkv≤ vtC0v≤ sup
v∈Sm

vtC0v = µmax(C0).

Thus, the sequence {Ck}∞
k=1 generated by the iteration (2.12) is uniformly bounded in the spectral

norm (and thus any norm due to the norm equivalence in a finite-dimensional space). Hence, there

exists a convergent subsequence, also relabelled as {Ck}, such that Ck→C∗, for some C∗. In prac-

tice, the iterates converge fairly steadily to the unique solution to (2.9), which however remains to

be established. In Appendix A.1, we show a certain “monotone” type convergence of (2.12) for the

initial guess C0 =C0.

2.4.1.3 Variational Gaussian Approximation Algorithm

With the preceding two inner solvers, we are ready to state the complete procedure in Algorithm

1. One natural stopping criterion at Step 7 is to monitor ELBO. However, computing ELBO can be

expensive and cheap alternatives, e.g., relative change of the mean x̄, might be considered. Note that

Step 3 of Algorithm 1, i.e., randomised singular value decomposition (rSVD), has to be carried out

only once, and it constitutes a preprocessing step. Its crucial role will be discussed in Section 2.4.2

below.

With exact inner updates (x̄k,Ck), by the alternating maximising property, the sequence

{F(x̄k,Ck)} is guaranteed to be monotonically increasing, i.e.,

F(x̄0,C0)≤ F(x̄1,C0)≤ F(x̄1,C1)≤ ...≤ F(x̄k,Ck)≤ ...,

with the inequality being strict until convergence is reached. Further, F(x̄k,Ck) ≤ lnZ(y). Thus,

{F(x̄k,Ck)} converges. Further, by [18, Prop. 2.7.1], the coordinate ascent method converges if

the maximisation with respect to each coordinate is uniquely attained. Clearly, Algorithm 1 is a

coordinate ascent method for F(x̄,C), and F(x̄,C) satisfies the unique solvability condition. Thus

the sequence {(x̄k,Ck)} generated by Algorithm 1 converges to the unique maximiser of F(x̄,C).

2.4.2 Complexity Analysis and Reduction

Now we analyse the computational complexity of Algorithm 1, and describe strategies for complex-

ity reduction, in order to arrive at a scalable implementation. When evaluating the functional F(x̄,C)

and its gradient, the constant terms can be precomputed. Thus, it suffices to analyse the terms that

will be updated. Standard linear algebra [54] gives the following operational complexity.
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Algorithm 1 Variational Gaussian Approximation Algorithm

1: Input: (A,y), specify the prior (µ0,C0), and the maximum number K of iterations
2: Initialise x̄ = x̄1 and C =C1;
3: SVD: (U,Σ,V ) = rSVD(A);
4: for k = 1,2, . . . ,K do
5: Update the mean x̄k+1 by (2.10);
6: Update the covariance Ck+1 by (2.12);
7: Check the stopping criterion.
8: end for
9: Output: (x̄,C)

• The complexity of evaluating the objective functional F(x̄,C) is O(m2n+m3):

– the inner product −(1n,eAx̄+ 1
2 diag(ACAt ))∼O(m2n)

– the matrix determinant ln|C| ∼ O(m3)

• The complexity of evaluating the gradient ∂F
∂ x̄ is O(m2n):

– the matrix-vector product AteAx̄+ 1
2 diag(ACAt ) ∼ O(m2n)

• The complexity of evaluating the gradient ∂F
∂C is O(m2n+m3):

– the matrix product Atdiag(eAx̄+ 1
2 diag(ACAt ))A∼ O(m2n)

– the matrix inversion C−1 ∼ O(m3).

In summary, evaluating ELBO F(x̄,C) and its gradients each involves O(nm2 +m3) complex-

ity, which is infeasible for large-scale problems. The most expensive piece lies in matrix prod-

ucts/inversion, e.g., (1n,eAx̄+ 1
2 diag(ACAt )), AteAx̄+ 1

2 diag(ACAt ) and Atdiag(eAx̄+ 1
2 diag(ACAt ))A. The log-

determinant ln|C| can be approximated accurately with O(m2) operations by a stochastic algorithm

[144]. In many practical inverse problems, there do exist structures: (i) A is low rank, and (ii) C is

sparse, which can be leveraged to reduce the per-iteration cost.

First, for many inverse problems, the matrix A is ill-conditioned, and the singular values decay

to zero. Thus, A naturally has a low-rank structure. The effective rank r is determined by the decay

rate of the singular values. In this work, we assume a known rank r. The rSVD is a powerful

technique for obtaining low-rank approximations [59]. For a rank r matrix, the rSVD can yield an

accurate approximation with O(mn lnr+(m+n)r2) operations [59, pp. 225]. We denote the rSVD

approximation by A≈UΣV t , where the matrices U ∈ Rn×r and V ∈ Rm×r are column orthonormal,

and Σ ∈ Rr×r is diagonal with its entries ordered nonincreasingly.

Second, the covariance C is approximately sparse, and each row/column has at most s nonzero

entries. This reflects the fact that only (physically) neighbouring elements are highly correlated, and

there is no long range correlation. This choice will be implemented in the numerical experiments

for 2D image deblurring. Naturally, one can also consider a more flexible option by adaptively

selecting the sparsity pattern. This can be achieved by penalising of the off-diagonal entries of C
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by the `1-norm, which allows automatically detecting significant correlation [113]. Other structures,

e.g., low-rank plus sparsity, offer potential alternatives. Note that the choice of covariance structures

does depend on specific applications and our choice is more suitable for problems such as image

deblurring.

Under these structural assumptions, the complexity of computing the terms (1n,eAx̄+ 1
2 diag(ACAt )),

AteAx̄+ 1
2 diag(ACAt ) and Atdiag(eAx̄+ 1

2 diag(ACAt ))A can be reduced to O(smn). Thus, the complexity of

calculating F and ∂F
∂ x̄ is reduced to O(smn+m2). For the matrix inversion in (2.12), we exploit

the low-rank structure of A. Upon recalling the low-rank approximation of A and the Sherman-

Morrison-Woodbury formula [54, pp. 65], i.e.,

(Ã+ŨṼ )−1 = Ã−1− Ã−1Ũ(I +Ṽ Ã−1Ũ)−1Ṽ Ã−1,

we deduce (with D = diag(eAx̄+ 1
2 diag(ACAt )))

C =C0−C0V ΣU tDUΣ(I +V tC0V ΣU tDUΣ)−1V tC0. (2.13)

Note that the inversion step only involves a matrix in Rr×r, and can be carried out efficiently. The

sparsity structure on C can be enforced by computing only the respective entries. Then the update

formula (2.13) can be achieved in O(smn+ r2n+ r2m) operations. In comparison with the O(m3 +

nm2) complexity of the direct implementation, this represents a substantial complexity reduction.

2.5 Hyperparameter Choice with Empirical Bayes

When encoding prior knowledge about the unknown x into the prior p(x), it is often necessary to

tune its strength, a scalar parameter commonly known as hyperparameter. It plays the role of the

regularisation parameter in variational regularisation [67, Chapter 7], where its proper choice is

notoriously challenging. In the Gaussian prior p(x), C0 = α−1C̄0, where C̄0 describes the interaction

structure and the scalar α determines the strength of the interaction which has to be specified.

In the Bayesian paradigm, one principled approach to handle hyperparameters is Empirical

Bayes [118], by estimating the hyperparameter in the prior distribution from data. Another pop-

ular principled approach for hyperparameter selection in the Bayesian community is hierarchical

Bayesian model [118] which regards the hyperparameter as a random variable and stipulates a hy-

perprior distribution on the hyperparameter. While the connection between these two approaches

has been studied in the literature [107], in this work, we recover the empirical Bayes for our stud-

ied model from similar starting point as hierarchical model. Specifically, we write the Gaussian

prior p(x|α) = N (x|0,α−1C̄0), and employ a Gamma distribution p(α|a,b) = Gamma(α|a,b) on

α , where (a,b) are the parameters. The Gamma distribution is the conjugate prior for α , and it is

analytically and computationally convenient. In practice, one may take (a,b) close to (1,0) to mimic
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a noninformative prior. Then appealing to Bayes’ formula again, one obtains a posterior distribution

(jointly over (x,α)). Conceptually, with the VGA, this construction determines the optimal parame-

ter by maximising ELBO as a function of α , i.e., model selection within a parametric family. Thus

it can be viewed as a direct application of ELBO in model selection.

One may explore the resulting joint posterior distribution in several ways [67, Chapter 7]. In

this work, we employ an EM type method to maximise the following (joint) lower bound

F(x̄,C,α) =
∫

q(x)ln
p(x,y|α)p(α|a,b)

q(x)
dx

=
∫

q(x)ln
p(x,y|α)

q(x)
dx+

∫
q(x)lnp(α|a,b)dx

= Fα(x̄,C)+(a−1) lnα−αb+ ln
ba

Γ(a)
,

where the subscript α indicates the dependence of ELBO on α . Then, using (2.5) and substituting

C0 with α−1C̄0, we have

F(x̄,C,α) = (y,Ax̄)− (1n,e
Ax̄+ 1

2 diag(ACAt ))− α

2 (x̄−µ0)
tC̄−1

0 (x̄−µ0)− α

2 tr(C̄−1
0 C)

+ 1
2 ln |C|+ m

2 lnα− 1
2 ln |C̄0|+(a−1) lnα−αb+ m

2 − (1n, ln(y!))+ ln
ba

Γ(a)
.

(2.14)

This functional extends ELBO F(x̄,C) to estimate the hyperparameter α simultaneously with (x̄,C)

in a way analogous to augmented Tikhonov regularisation [71].

To maximize F(x̄,C,α), we employ an EM algorithm [19, Chapter 9.3]. In the E-step, we fix

α , and maximise F(x̄,C,α) for a new Gaussian approximation N (x|x̄,C) by Algorithm 1, with the

unique maximiser denoted by (x̄α ,Cα). Then in the M-step, we fix (x̄,C) and update α by

α =
m+2(a−1)

(x̄α −µ0)tC̄−1
0 (x̄α −µ0)+ tr(C̄−1

0 Cα)+2b
. (2.15)

This follows from the condition ∂F
∂α

= 0. These discussions lead to the procedure in Algorithm 2.

A natural stopping criterion at line 5 is the change of α . Below we analyse the convergence of

Algorithm 2.

Remark 2.5.1. The first two terms in the denominator of the iteration (2.15) is given by

α(x̄α −µ0)
tC̄−1

0 (x̄α −µ0)+αtr(C̄−1
0 Cα) = Eq(x)[‖x−µ0‖2

C−1
0
],

i.e., the expectation of the negative logarithm of the Gaussian prior p(x) with respect to the Gaus-

sian posterior approximation q(x). Formally, the fixed point iteration (2.15) can be viewed as an

extension of that for a balancing principle for Tikhonov regularisation in [71, 68] to a probabilistic

context.
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Algorithm 2 Variational Gaussian approximation with Empirical Bayes

1: Input (A,y), and initialise α1

2: for k = 1,2, . . . do
3: E-step: Update (x̄k,Ck) by Algorithm 1:

(x̄k,Ck) = arg max
(x̄,C)∈Rm×S +

m

F
αk(x̄,C);

4: M-step: Update α by (2.15).
5: Check the stopping criterion;
6: end for
7: Output: (x̄,C)

In order to analyse the convergence of Algorithm 2, we write the functional Fα(x̄,C) as

Fα(x̄,C) = φ(x̄,C)+αψ(x̄,C),

where

φ(x̄,C) = (y,Ax̄)− (1n,e
Ax̄+ 1

2 diag(ACAt ))+ 1
2 ln |C|− 1

2 ln |C̄0|+−(1n, ln(y!)),

ψ(x̄,C) =− 1
2 (x̄−µ0)

tC̄−1
0 (x̄−µ0)− 1

2 tr(C̄−1
0 C)≤ 0.

Thus the functional Fα(x̄,C) resembles classical Tikhonov regularisation. By Theorem 2.3.2, for

any α > 0, there exists a unique maximiser (x̄α ,Cα) to Fα , and the value function ψ(x̄α ,Cα) is

continuous in α , cf. Lemma 2.5.2 below. In Appendix A.2, we show that the maximiser (x̄α ,Cα) is

actually differentiable in α .

Lemma 2.5.1. For any α > 0, the maximiser (x̄α ,Cα) is bounded, with the bound depending only

on α .

Proof. Taking inner product between (2.8) and x̄α , we deduce

(C−1
0 x̄α , x̄α)+(eAx̄α+diag(ACAt ),Ax̄α) = (Aty, x̄α).

It can be verified directly that the function f (t) = tet is bounded from below by −e−1 for t ∈ R.

Meanwhile, by (2.9), C ≤C0, and thus

(eAx̄α+diag(ACAt ),Ax̄α)≥−e−1
∑

i
ediag(ACAt )i ≥−e−1

∑
i

ediag(AC0At )i =−ce−1.

This and the Cauchy-Schwarz inequality give ‖x̄α‖ ≤ cα−1, with c depending only on y. Next, by

(2.9), we have

0≤ e(Ax̄)i+diag(ACAt )i ≤ e(Ax̄)i+diag(AC0At )i ≤ c,
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and consequently appealing to (2.9) again yields (C−1
0 + cAtA)−1 ≤C ≤C0, completing the proof.

Lemma 2.5.2. The functional value ψ(x̄α ,Cα) is continuous at any α > 0.

Proof. Let {αk} ⊂ R+ be a sequence convergent to α . By Theorem 2.3.2, for each αk, there exists

a unique maximiser (x̄k,Ck) to F
αk(x̄,C). By Lemma 2.5.1, the sequence {(x̄k,Ck)} is uniformly

bounded, and there exists a convergent subsequence, relabelled as {(x̄k,Ck)}, with a limit (x̄∗,C∗).

By the continuity of the functionals φ(x̄,C) and ψ(x̄,C), we have for any (x̄,C) ∈ Rm×S +
m

Fα(x̄∗,C∗) = lim
k→∞

(φ(x̄k,Ck)+αkψ(x̄k,Ck))≥ lim
k→∞

(φ(x̄,C)+αkψ(x̄,C))

= φ(x̄,C)+αψ(x̄,C) = Fα(x̄,C).

That is, (x̄∗,C∗) is a maximiser of Fα(x̄,C). The uniqueness of the maximiser to Fα(x̄,C) and a

standard subsequence argument imply that the whole sequence converges. The desired continuity

now follows by the continuity of ψ(x̄,C) in (x̄,C).

Next we give an important monotonicity relation for ψ(x̄α ,Cα) in α , in a manner similar to

classical Tikhonov regularisation [68]. In Appendix A.2, we show that it is actually strictly mono-

tone.

Lemma 2.5.3. The functional ψ(x̄α ,Cα) is monotonically increasing in α .

Proof. This result follows by a standard comparison principle. For any α1,α2, by the maximising

property of (Cα1 , x̄α1) and (Cα2 , x̄α2), we have

Fα1(x̄α1 ,Cα1)≥ Fα1(x̄α2 ,Cα2) and Fα2(x̄α2 ,Cα2)≥ Fα2(x̄α1 ,Cα1).

Summing up these two inequalities and collecting terms yield

(α1−α2)[ψ(x̄α1 ,Cα1)−ψ(x̄α2 ,Cα2)]≥ 0.

Then the desired monotonicity relation follows.

Theorem 2.5.1. For any initial guess α1 > 0, the sequence {αk} generated by Algorithm 2 is mono-

tonically convergent to some α∗ ≥ 0, and if the limit α∗ > 0, then it satisfies the fixed point equation

(2.15).

Proof. By the fixed point iteration (2.15), we have (with c = m
2 +a−1)

α
k+1−α

k =
c

−ψ(x̄
αk ,Cαk)+b

− c
−ψ(x̄

αk−1 ,Cαk−1)+b
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=
c[ψ(x̄

αk ,Cαk)−ψ(x̄
αk−1 ,Cαk−1)]

(−ψ(x̄
αk ,Cαk)+b)(−ψ(x̄

αk−1 ,Cαk−1)+b)
.

Since ψ ≤ 0, the denominator is positive. By Lemma 2.5.3, αk+1−αk and αk −αk−1 have the

same sign, and thus {αk} is monotone. Further, for all αk, we have 0 ≤ αk ≤ m+2(a−1)
2b , i.e., {αk}

is uniformly bounded. Thus {αk} is convergent. By Lemma 2.5.2, ψ(x̄α ,Cα) is continuous in α for

α > 0, and α∗ satisfies (2.15).

Remark 2.5.2. The proof of Theorem 2.5.1 provides a constructive approach to the existence of a

solution to (2.15). The uniqueness of the solution α∗ to (2.15) is generally not ensured. However,

in practice, it seems to have only two fixed points: one is in the neighbourhood of +∞, which is

uninteresting, and the other is the desired one.

2.6 Numerical Experiments and Discussions
Now we present numerical results to examine algorithmic features (Sections 2.6.1–2.6.4, with the

example phillips) and to illustrate the VGA (Section 2.6.5). All one-dimensional examples are

taken from public domain MATLAB package Regutools1, and the discrete problems are of size

100× 100. We refer the prior with a zero mean µ0 = 0 and the covariance α−1Im and α−1L−1
1 L−t

1

(with L1 being the 1D first-order forward difference matrix) to as the L2- and H1-prior, respectively,

and let C̄0 = Im, and C̄1 = L−1
1 L−t

1 . Unless otherwise specified, the parameter α is determined in

a trial-and-error manner, and in Algorithm 1, the Newton update δ x̄ in (2.10) is computed by the

MATLAB built-in function pcg with a default tolerance, the prior covariance C−1
0 as the precondi-

tioner and a maximum 10 PCG iterations.

Remark 2.6.1. Note that since the difference operator L1 has non-zero null space, shifting any

point with any element in the null space will not change the density. As a result, the integration of

the prior on the whole space will diverge. In other words, the H1-seminorm prior is not a proper

prior. However, this problem will not occur in the joint distribution, since the log density of Poisson

likelihood with exponential inverse link function does not vanish this kernel. Further, the evidence

Z(y) will not diverge given the improperness of the prior. Since the ELBO functional only relies on

the well-definedness of the joint distribution, the VGA framework is applicable.

2.6.1 Convergence Behaviour of Inner and Outer Iterations of Algorithm 1

First, we examine the convergence behaviour of inner iterations for updating x̄ and C, i.e., (2.10)

and (2.12), for the example phillips with the L2-prior C0 = 1.0× 10−1C̄0 and H1-prior C0 =

2.5× 10−3C̄1. To study the convergence, we fix C at C1 = I for x̄ and present the `2-norm of the

update δ x̄ (initialised with x̄0 = 0), and similarly fix x̄ at the converged iterate x̄1 for C and present

the spectral norm of the change δC. For both (2.10) and (2.12), these initial guesses are quite far

1http://www.imm.dtu.dk/˜pcha/Regutools/, last accessed on April 15, 2017

http://www.imm.dtu.dk/~pcha/Regutools/
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away from the solutions, and thus the choice allows showing their global convergence behaviour.

The convergence is fairly rapid and steady for both inner iterations, cf. Fig. 2.1. For example,

for a tolerance 10−5, the Newton method (2.10) converges after about 10 iterations, and the fixed

point method (2.12) converges after 4 iterations, respectively. The global as well as local superlinear

convergence of the Newton method (2.10) are clearly observed, confirming the discussions in Section

2.4. The convergence behaviour of the inner iterations is similar for both priors. In practice, it is

unnecessary to solve the inner iterates to a very high accuracy, and it suffices to apply a few inner

updates within each outer iteration. Since the iteration (2.12) often converges faster than (2.8), we

take five Newton updates and one fixed point update per outer iteration for the numerical experiments

below.
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Figure 2.1: The convergence of the inner iterations of Algorithm 1 for phillips.
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Figure 2.2: The convergence of outer iterations of Algorithm 1 for phillips.

To examine the convergence of outer iterations, we show the errors of the mean x̄ and covariance

C and the lower bound F(x̄,C) in Figs. 2.2 and 2.3, respectively. Algorithm 1 is terminated when

the change of the lower bound falls below 10−10. For the L2-prior, Algorithm 1 converges after

5 iterations and the last increments δ x̄ and δC are of order 10−8 and 10−9, respectively. This

observation holds also for the H1-prior, cf. Figs. 2.2(b) and 2.3(b). Thus, both inner and outer
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Figure 2.3: The convergence of the lower bound F(x̄,C) for phillips.

iterations converge rapidly and steadily, and Algorithm 1 is very efficient.

2.6.2 Low-rank Approximation of A and Sparsity of C

The discussions in Section 2.4.2 show that the structure on A and C can be leveraged to reduce the

complexity of Algorithm 1. Now we evaluate their influence on the accuracy of the VGA.

First, we examine the influence of low-rank approximation to A. Since the kernel function of

the example phillips is smooth, the inverse problem is mildly ill-posed and the singular values

σk decay algebraically, cf. Fig. 2.4(a). A low-rank matrix Ar of rank r≈ 10 can already approximate

A well. To study its influence on the VGA, we denote by (x̄r,Cr) and (x̄∗,C∗) the VGA for Ar and A,

respectively. The errors ex̄ = ‖x̄r− x̄∗‖ and eC = ‖Cr−C∗‖ for different ranks r are shown in Figs.

2.4 (b) and (c) for the L2- and H1-prior, respectively. Too small a rank r of the approximation Ar can

lead to pronounced errors in both the mean x̄ and the covariance C, whereas for a rank of r = 10, the

errors already fall below one percent. Interestingly, the decay of the error ex̄ is much faster than that

of the singular values σk, and the error eC decays slower than ex̄. The fast decay of the errors ex̄ and

eC indicates the robustness of the VGA, which justifies using low-rank approximations in Algorithm

1.
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Figure 2.4: (a) singular values and (b)–(c): the errors of the mean and covariance for phillips.

Next we examine the influence of the sparsity assumption on the covariance C, which is used

to reduce the complexity of Algorithm 1. Due to the coupling between x̄ and C, cf. (2.8)–(2.9), the
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sparsity assumption on C affects the accuracy of both x̄ and C. To illustrate this, we take different

sparsity levels s on C in Algorithm 1, i.e., at most s nonzero entries around the diagonal of C.

Surprisingly, a diagonal C already gives an acceptable approximation measured by the errors ex̄ =

‖x̄s− x̄∗‖2 and eC = ‖Cs−C∗‖2, where (x̄s,Cs) is the VGA with a sparsity level s. The errors ex̄ and

eC decrease with the sparsity level s, cf. Table 2.1. Thus the sparsity assumption on C can reduce

significantly the complexity while retaining the accuracy.

Table 2.1: The errors ex̄ and eC v.s. the sparsity level s of C for phillips.

prior L2 prior H1 prior
s ex̄ eC ex̄ eC

1 6.38e-2 9.20e-2 1.92e-2 7.06e-2
3 5.62e-2 8.10e-2 1.27e-2 5.42e-2
5 4.88e-2 7.02e-2 1.00e-2 4.29e-2

2.6.3 Parameter Choice

Now we examine the convergence of Algorithm 2 for choosing the parameter α in the prior p(x).

By Theorem 2.5.1, the sequence {αk} generated by Algorithm 2 is monotone. We illustrate this by

two initial guesses, i.e., α1 = 0.1 and α1 = 10. Both sequences of iterates generated by Algorithm

2 converge monotonically to the limit α∗ = 0.7778, and the convergence of Algorithm 2 is fairly

steady, cf. Fig. 2.5(a). Further, Algorithm 2 indeed maximises the joint lower bound (2.14) with its

maximum attained at α∗ = 0.7778, cf. Fig. 2.5(b). Though not shown, the lower bound Fα(x̄,C|α)

is also increasing during the iteration. Thus, the empirical Bayesian approach is indeed performing

model selection by maximising ELBO.
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Figure 2.5: (a)The convergence of Algorithm 2 initialised with 0.1 and 10, both convergent to α∗ = 0.7778 (b)
the joint lower bound versus α , for phillips with L2-prior.

To illustrate the quality of the automatically chosen parameter α , we take six realisations of the

Poisson data y and compare the mean x̄ of the VGA with the optimal regularised solutions, where α

is tuned so that the error is smallest (and thus it is infeasible in practice). The means x̄ by Algorithm

2 are comparable with the optimal ones, cf. Fig. 2.6, and thus the empirical Bayesian approach can
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yield reasonable approximations. The parameter α by the empirical Bayesian approach is slightly

smaller than the optimal one, cf. Table 2.2, and hence the corresponding reconstruction tends to

be slightly more oscillatory than the optimal one. The value of the parameter α by the empirical

Bayesian approach is relatively independent of the realisation, whose precise mechanism is to be

ascertained.
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Figure 2.6: The mean x̄ of the Gaussian approximation by Algorithm 2 (Alg2) and the “optimal” solution (opt)
for 6 realisations of Poisson data for phillips with the L2-prior.

Table 2.2: The values of the hyperparameter α for the results in Fig. 2.6.

case 1 2 3 4 5 6
opt 2.64 3.35 2.59 1.35 9.31 4.04

Alg 2 0.78 0.76 0.76 0.77 0.73 0.74

2.6.4 VGA versus MCMC

Despite the widespread use of variational type techniques in practice, the accuracy of the approx-

imations is rarely theoretically studied. This has long been a challenging issue for approximate

Bayesian inference, including the VGA. In this part, we conduct an experiment to numerically val-

idate the VGA against the results by Markov chain Monte Carlo (MCMC). To this end, we employ

the standard Metropolis-Hastings algorithm, with the Gaussian approximation from the VGA as the

proposal distribution (i.e., independence sampler). In other words, we correct the samples drawn

from VGA by a Metropolis-Hastings step. The length of the MCMC chain is 2× 105, and the last

1×105 samples are used for computing the summarising statistics. From Fig. 2.7, one can observe

that the trace plots do not show periodic pattern and the autocorrelations decay very fast, from which

convergence of the chain can be concluded. The acceptance rate in the Metropolis-Hastings algo-

rithm is 96.06%. This might be attributed to the fact that the VGA approximates the posterior dis-

tribution fairly accurately, and thus nearly all the proposals are accepted. The numerical results are
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presented in Fig. 2.8, where the mean and the marginal 90% posterior credible intervals are shown,

with the credible interval computed componentwise. It is observed that the mean and marginal pos-

terior credible intervals by MCMC and VGA are very close to each other, cf. Figs. 2.8 and 2.9,

thereby validating the accuracy of the VGA. The `2 error between the mean by MCMC and VGA

is 9.80× 10−3, and the error between corresponding covariance in spectral norm is 6.40× 10−3.

Graphically the means and covariances are indistinguishable, cf. Fig. 2.9.
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Figure 2.8: The mean and marginal 90% posterior credible intervals by (a) MCMC and (b) VGA for
phillips with C0 = 1.00×10−1C̄0.
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Figure 2.9: (a) The mean by MCMC and VGA versus the exact solution, and the covariance by (b) MCMC and
(c) VGA for phillips with C0 = 1.00×10−1C̄0.

2.6.5 Numerical Reconstructions

Last, we present VGAs for one- and two-dimensional examples. The numerical results for the

following four 1D examples, i.e., phillips, foxgood, gravity and heat, for both L2- and

H1-priors, are presented in Figs. 2.10-2.13. For the example phillips with either prior, the mean

x̄ by Algorithm 1 agrees very well with the true solution x†. However, near the boundary, the mean

x̄ is less accurate. This might be attributed to the fact that in these regions, the Poisson count is

relatively small, and it may be insufficient for an accurate recovery. For the example phillips,

the posterior mean x̄ with H1-prior is more smooth than that with the L2-prior. This is due to the

fact that H1-prior penalises the gradient of the MAP estimate and VGA tends to fit around the mode.

This difference caused by various priors again stresses the problem of model misspecification that

careful choice of prior distribution is the first step towards a reasonable Bayesian exploration. For

the L2-prior, the optimal C is diagonal dominant, and decays rapidly away from the diagonal, cf. Fig.

2.10(b). For the H1-prior, C remains largely diagonally dominant, but the off-diagonal entries decay

a bit slower. Thus, it is valid to assume that C is dominated by local interactions as in Section 2.4.2.

These observations remain largely valid for the other 1D examples, despite that they are much more

ill-posed.
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Figure 2.10: The Gaussian approximation for phillips shown with mean and covariance of the approximate
distribution.

Last, we test Algorithm 1 on a 2D image of size 128× 128, which takes 6473.16s on a Mac-

Book Pro with 2.7 GHz Quad-Core Intel i7 CPU. In this example, the matrix A ∈ R16384×16384 is a

(discrete) Gaussian blurring kernel with a blurring width 99, variance 1.5 and a circular boundary
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Figure 2.11: The Gaussian approximation for foxgood shown with mean and covariance of the approximate
distribution.
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Figure 2.12: The Gaussian approximation for gravity shown with mean and covariance of the approximate
distribution.
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Figure 2.13: The Gaussian approximation for heat shown with mean and covariance of the approximate dis-
tribution.

condition. Since the blurring width is large, the matrix A is indeed low-rank, and we employ a rSVD

approximation of rank 2000, where the rank is determined by inspecting the singular value spectrum.

The true solution x† consists of two Gaussian blobs, cf. Fig. 2.14(a), and thus we employ a smooth

prior with C0 = 6.00×10−2L−1L−t , where L = I⊗L1 +L1⊗ I is the 2D first-order finite difference

matrix. Since the problem size is very large, we restrict C to be a sparse matrix such that every pixel

interacts only with at most four neighbouring pixels. This allows reducing the computational cost

greatly. The mean x̄ is nearly identical with the true solution x†, and the error is very small, cf. Fig.

2.14. We also compare the mean x̄ of the VGA solution with the MAP estimator x̂ in three different

measures, i.e., `2 error, structural similarity index and PSNR, which are 9.72, 0.812 and 18.64 for

x̄, respectively 9.74, 0.813, and 18.63 for x̂. These results indicate that the mean x̄ and the MAP

estimator x̂ represent equally good approximations. To indicate the uncertainty around the mean x̄,

we show in Fig. 2.14(f) the diagonal entries of C (i.e., the variance at each pixel). The variances are

relatively large at pixels where the mean x̄ is less accurate.

In summary, the VGA can provide a reliable point estimator together with useful covariance
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estimates.
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Figure 2.14: The Gaussian approximation for image deblurring.

2.7 Conclusion
In this work, we have presented a study of the variational Gaussian approximation to the Poisson

data (under the exponential inverse link function) with respect to the Kullback-Leibler divergence.

We derived explicit expressions for the lower bound functional and its gradient, and proved its strict

concavity and existence and uniqueness of an optimal Gaussian approximation. Then we developed

an efficient algorithm for maximising the functional, discussed its convergence properties, and de-

scribed practical strategies for reducing the complexity per iteration. Further, we analysed empirical

Bayesian approach for automatically determining the hyperparameter using the variational Gaussian

approximation, and proposed a monotonically convergent algorithm for the joint estimation. The

numerical experiments indicate that the algorithm converges rapidly, and the variational Gaussian

approximation can accurately capture the posterior distribution.

There are several avenues for further study. First, one of fundamental issues is the quality of

the Gaussian approximation relative to the true posterior distribution. In general this issue has been

long-standing, and it also remains to be analysed for the Poisson model. Second, the variational

Gaussian approximation can be viewed as a nonstandard regularisation scheme, by also penalising

the covariance. This naturally motivates the study on its regularising property from the perspective

of classical regularisation theory, e.g., consistency and convergence rates. Third, the approach gen-

erally gives a very reasonable approximation. This suggests itself as a preconditioner for sampling

techniques, e.g., variational approximation as the proposal distribution (i.e., independence sampler)

in the standard Metropolis-Hastings type algorithm or as the base distribution for importance sam-
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pler. It is expected to significantly speed up the convergence of these sampling procedures, which is

confirmed by the preliminary experiments.





Chapter 3

Expectation Propagation for Poisson Data

3.1 Introduction
In the last chapter, we investigated how to leverage mathematical properties of the concrete prob-

lems, i.e., low rank structure of the forward operator and sparsity structure of the covariance matrix,

to further improve variational inference. However, an important feature arising in many inverse

problems, i.e., nonnegativity of the unknown variable, is not straightforward to incorporate. In this

chapter, we investigate how to incorporate such constraints into approximate inference methods for

a model related to emission tomography.

The maximum likelihood (ML) and maximum a posteriori (MAP) are currently the two most

popular ways handling Poisson models in the literature [33, 44, 127, 89]. There are two major

challenges in the development of numerical methods for Poisson data in the context of inverse

problems and imaging, i.e., ill-posedness and nonnegativity constraints. To cope with the intrin-

sic ill-posed nature of the imaging problem, regularisation plays an important role: ML incorporates

regularisation implicitly via early stopping during the iterative reconstruction, e.g., EM algorithm or

Richardson-Lucy iterations, whereas MAP explicitly by imposing suitable penalties, e.g., Sobolev

penalty, sparsity and total variation. Since the Poisson parameter has to be nonnegative to ensure

the well-definedness of the Poisson likelihood, it naturally leads to nonnegativity constraints. Cur-

rently, there are two predominant ways dealing with the nonnegativity constraint. The first and most

classical one is to reformulate the problem as a constrained optimisation problem with nonnegativity

constraint on the signal vector, which can be then solved by algorithms like EM algorithm[125, 45]

or gradient-based algorithms [75]. The second one is to approximate the Poisson distribution, e.g.,

using approximate Gaussian distributions for low count points [130] or using weighted quadratic

surrogate. However, either ML or MAP estimate can only provide point estimates. Thus, the im-

portant issue of uncertainty quantification, which provides crucial reliability assessment on point

estimates, is not fully addressed by these approaches.

In practice, a full Bayesian treatment of the posterior distribution is highly desirable [73, 128].

However, in the context of imaging, it is very challenging due to the nonnegativity constraint and
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high-dimensionality of the imaging problem. In the machine learning literature, a number of ap-

proximate inference techniques have been proposed, e.g., variational inference [72, 20, 26, 14],

expectation propagation [98, 99] and more recently Bayesian (deep) neural network [48]. In all

these approaches, one aims at finding a best approximate yet tractable distribution within a family of

parametric/nonparametric probability distributions (e.g., Gaussian or mixture of Gaussians), by min-

imising the error in a certain probability metric, prominently the Kullback-Leibler divergence. Em-

pirically these methods can often produce reasonable estimate but at a much reduced computational

cost. However, in these approaches, there seem no systematic strategies for handling constraints. For

example, a straightforward truncation of the distribution due to the constraint often leads to elabo-

rated distributions, e.g., truncated normal distribution, which tends to make the computation tedious

or even intractable in variational Bayesian inference.

In this work, we develop an inference technique for Poisson data with constraints based on

expectation propagation [98, 99], with a focus on Laplace type priors, to obtain an approximate

Gaussian distribution. Laplace prior promotes the sparsity of the signal in a transformed domain,

which is a valid assumption on natural images. The main contributions of the work are as follows.

First, we present a unified treatment of two popular constraints in emission tomography within the

framework of expectation propagation, by exploiting a separable form of the constraints. Second, we

derive explicit update formulae in terms of one-dimensional integrals. It essentially exploits the rank-

one projection form of the factors to reduce the intractable high-dimensional integrals to tractable

one-dimensional ones. In this way, we arrive at two approximate inference algorithms, parameterised

by either the moment or natural parameters. Third, we derive stable and efficient quadrature rules

for evaluating the resulting one-dimensional integrals, i.e., a recursive scheme for Poisson sites with

large counts and an approximate expansion for Laplace sites, and discuss different schemes for the

recursion, dependent of the integral interval, in order to achieve good numerical stability. Last, we

illustrate the potential of the approach with comprehensive numerical experiments with the posterior

distribution formed by Poisson likelihood and an anisotropic total variation prior, including large-

scale image tests and comparative study with MCMC and MAP estimates.

Last, we put the work in the context of Bayesian analysis of Poisson data. The only relevant

work we are aware of is the recent work [82]. The work [82] discussed a full Bayesian exploration

with EP, by modifying the posterior distributions using a rectified linear function on the transformed

domain of the signal, which induces singular measures on the region violating the constraint. How-

ever, the work [82] does not consider the background. Note that expectation propagation has been

applied to nonlinear inverse problems like electrical impedance tomography [52]; see also [70, 47]

for related works on the variational Bayesian inference for inverse problems. However, none of these

works discusses the case of Poisson data, and an approximate inference algorithm for Poisson data

based on variational Bayes remains to be developed.

The rest of the chapter is organised as follows. In Section 3.2 we describe the posterior dis-
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tribution for the Poisson likelihood function and Laplace type prior distribution. Then we give the

explicit expressions of the integrals involved in expectation propagation and describe the algorithm

in Section 3.3. In Section 3.4 we present stable and efficient numerical methods for evaluating

one-dimensional integrals. Last, in Section 3.5 we present numerical results for one- and two-

dimensional inverse problems. In Appendix B.1, we describe two useful parameterisations of a

Gaussian distribution.

3.2 Problem Formulation
In this part, we give the Bayesian formulation for Poisson data, i.e., the likelihood function p(y|x)

and prior distribution p(x), and discuss the nonnegativity constraint.

Let x ∈ Rn be the (unknown) signal/image of interest, y ∈ Rm1
+ be the observed Poisson data,

and A = [ai j] = [at
i]

m1
i=1 ∈ Rm1×n

+ be the forward map, where the superscript t denotes matrix / vector

transpose. The entries of the matrix A are assumed to be nonnegative. For example, in emission

computed tomography, it can be a discrete analogue of Radon transform, or probabilistically, the

entry ai j of the matrix A denotes the probability that the ith sensor pair records the photon emitted at

the jth site.

The conditional probability density p(yi|x) of observing yi ∈ N given the signal x is given by

p(yi|x) =
(at

ix+ ri)
yie−(a

t
ix+ri)

yi!
,

where r = [ri]i ∈ Rm1
+ is the background. That is, the entry yi follows a Poisson distribution with a

parameter at
ix+ ri. The Poisson model of this form is popular in the statistical modelling of inverse

and imaging problems involving counts, e.g., positron emission tomography [131]. If the entries of

y are independent and identically distributed (i.i.d.), then the likelihood function p(y|x) is given by

p(y|x) =
m1

∏
i=1

p(yi|x). (3.1)

Note that the vanilla likelihood function p(y|x) is not well-defined for all x ∈ Rn, and suitable

constraints on x are needed in order to ensure the well-definedness of the factors p(yi|x)’s. In the

literature, there are three popular constraints:

C1: x ∈ C1 = {x|x > 0} := ∩i{x|xi > 0};

C2: x ∈ C2 = {x|Ax > 0} := ∩i{x|[Ax]i = at
ix > 0};

C3: x ∈ C3 = {x|Ax+ r > 0} := ∩i{x|[Ax+ r]i = at
ix+ ri > 0}.

Since the entries of A are nonnegative, there holds C1 ⊂ C2 ⊂ C3. In practice, the first assumption

is most consistent with the physics in that it reflects the physical constraint that emission counts are

non-negative. The last two assumptions were proposed to reduce positive bias in the cold region
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[89], i.e., the region that has zero count. In this work, we shall focus on the last two constraints.

Note that relaxed versions of C1 and C2, where > is relaxed to be ≥, could allow zero intensity in

the domain and thus are more suitable for problems like PET. And one can extend our discussion to

the settings with the equality included by modifying the Poisson likelihood functions.

The constraints C2 and C3 can be unified, which is useful for the discussions below.

Definition 3.2.1. For each likelihood factor p(yi|x) with the constraint C2, let

V+
i = {x|[Ax]i = at

ix > 0} and V−i = Rn\V+
i .

For each likelihood factor p(yi|x) with the constraint C3, let

V+
i = {x|[Ax+ r]i = at

ix+ ri > 0} and V−i = Rn\V+
i . (3.2)

Then the constraints C2 and C3 are both given by V+ = ∩iV+
i and V− = Rn\V+.

With the indicator function 1V+(x) of the set V+, we modify the likelihood function p(y|x) by

`(x) = p(y|x)1V+(x). (3.3)

This extends the domain of the likelihood function p(y|x) from V+ to Rn, and it facilitates a full

Bayesian treatment. Since the indicator function 1V+(x) admits a separable form, i.e., 1V+(x) =

∏
m1
i=1 1V+

i
(x), the modified likelihood function `(x) factorises into

`(x) =
m1

∏
i=1

`i(x) with `i(x) = p(yi|x)1V+
i
(x). (3.4)

To fully specify the Bayesian model, we have to stipulate the prior distribution p(x). In this

work, we focus on an anisotropic total variation prior, but describe the approach for a general Laplace

type prior. Let L ∈Rm2×n and Lt
i ∈Rn×1 be the ith row of L. Then a general Laplace type prior p(x)

is given by

p(x) =
m2

∏
i=1

pi(x) with pi(x) =
µ

2 e−µ|Lt
ix|. (3.5)

The parameter µ > 0 determines the strength of the prior, playing the crucial role of regularisation

parameter in variational regularisation [67]. The prior p(x) is commonly known as a sparsity prior

(in the transformed domain), which favours a candidate with many small elements and few large

elements in the vector Lx. The canonical (anisotropic) total variation prior is recovered when the

matrix L computes the discrete gradient. It is well known that the total variation penalty can preserve

well edges in the image/signals, and hence it has been very popular for various imaging tasks, e.g.,

denoising, deblurring and superresolution [121, 27]. Note that the total variation prior is also an

improper prior due to the same reason discussed in Remark 2.6.1. Thanks to the fact that the null
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space of forward operator A does not have non-zero adjoint with that of the difference operator L, the

joint distribution and tilted distributions are well-defined and the EP framework is thus applicable.

By Bayes’ formula, we obtain the Bayesian solution to the Poisson inverse problem:

p(x|y) = Z−1(y)
m1

∏
i=1

`i(x)
m2

∏
i=1

pi(x), (3.6)

where Z(y) is the normalising constant, defined by

Z(y) =
∫
Rn

m1

∏
i=1

`i(x)
m2

∏
i=1

pi(x)dx.

The computation of Z(y) is generally intractable for high-dimensional problems, and the posterior

distribution p(x|y) has to be approximated. Note that for a single reconstruction problem, the obser-

vation y is fixed. In the following, we would omit y in Z and other factors in the posterior distribution

for notation simplicity.

3.3 Approximate Inference by Expectation Propagation
In this section, we describe the basic concepts and algorithms of expectation propagation (EP),

for exploring the posterior distribution for the Poisson data with a Laplace type prior. EP due to

Minka [98, 99] is a popular variational type approximate inference method in the machine learning

literature. It is especially suitable for approximating a distribution formed by a product of functions,

with each factor being of projection form. Since its first appearance in 2001, EP has found many

successful applications in practice, and it is reported to be very accurate, e.g., for Gaussian processes

[112], and electrical impedance tomography with sparsity prior [52]. Despite numerous empirical

successes, the theoretical understanding of EP remains quite limited; see the works [34, 35] for

recent progress.

EP looks for an approximate Gaussian distribution q(x) to the target distribution p(x) by means

of an iterative algorithm. It exploits essentially the following factorization of the posterior distribu-

tion p(x|y) (with m = m1 +m2 being the total number of factors):

p(x|y) = Z−1
m

∏
i=1

ti(x), with ti(x) =

`i(x), i = 1, . . . ,m1,

pi−m1(x), i = m1 +1, . . . ,m.

(3.7)

Note that each factor ti(x) is a function defined on the whole space Rn. Likewise, we denote the

Gaussian approximation q(x) to the posterior distribution p(x|y) by

q(x) = Z̃−1
m

∏
i=1

t̃i(x),

with each factor t̃i(x) being a Gaussian distribution N (x|µi,Ci), and Z̃ is the corresponding nor-
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malizing constant. Below we use two different parameterisations of a Gaussian distribution, i.e.,

moment parameters (mean and covariance) (µ,C) and natural parameters (h,Λ); see Appendix B.1

for details.

3.3.1 Reduction to One-dimensional Integrals

There are two main steps of one EP iteration: (a) forming a tilted distribution q̂i(x), and (b) updating

the Gaussian approximation q(x) by matching its moments with that of q̂i(x). The moment matching

step can be interpreted as minimising Kullback-Leilber divergence KL(q̂i||q) [98, 99, 52].

The task at step (a) is to construct the ith tilted distribution q̂i(x). Let q\i(x) be the ith cavity

distribution, i.e., the product of all but the ith factor, and defined by

q\i(x) = Z−1
i ∏

j 6=i
t̃i(x) (3.8)

with the normalising constant Zi =
∫
Rn ∏ j 6=i t̃i(x)dx. The cavity distribution q\i(x) is Gaussian, i.e.,

q\i(x) = N (x|µ\i,C\i). Then the ith tilted distribution q̂i(x) of the approximation q(x) is given by

q̂i(x) = Ẑ−1
i ti(x)∏

j 6=i
t̃i(x), (3.9)

where Ẑi =
∫
Rn ti(x)∏ j 6=i t̃i(x)dx is the corresponding normalising constant. With the exclusion-

inclusion step, one replaces the ith factor t̃i(x) in the approximation q with the exact one ti(x).

The task at step (b) is to compute moments of the ith tilde distribution q̂i(x), which are then

used to update the approximation q(x). This requires integration over Rn, which is generally numer-

ically intractable, if q̂i(x) were arbitrary. Fortunately, each factor ti(x) in the factorisation (3.7) is

of projection form and depends only on the scalar utx, with u ∈ Rn. This is the key fact to render

relevant high-dimensional integrals numerically tractable. Below we write the factor ti(x) as t̄i(ut
ix)

and accordingly, the ith cavity function q̂i(x) as

q̂i(x) = Ẑ−1
i t̄i(ut

ix)N (x|µ\i,C\i), (3.10)

upon replacing ∏ j 6=i t̃i(x) with its normalised version N (x|µ\i,C\i), and changing the normalising

constant Ẑi accordingly.

Since a Gaussian distribution is fully determined by the mean and covariance, it suffices to

evaluate the first three (0th to 2nd) moments of q̂i(x). The projection form in the factor ti allows

reducing the moment evaluation of q̂i(x) to 1D integrals. Theorem 3.3.1 gives the explicit update

scheme for the Gaussian approximation q(x) from the cavity distribution q\i(x), whose moment and

natural parameters are denoted by (µ\i,C\i) and (h\i,Λ\i), respectively.
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Theorem 3.3.1. The normalising constant Ẑi :=
∫
Rn t̄i(ut

ix)N (x|µ\i,C\i)dx is given by

Ẑi =
∫
R

t̄i(s)N (s|ut
iµ\i,u

t
iC\iui)ds =: Zs

Then with the auxiliary variables s̄ ∈ R and Cs defined by

s̄ = Z−1
s

∫
R

t̄i(s)N (s|ut
iµ\i,u

t
iC\iui)sds and Cs = Z−1

s

∫
R

t̄i(s)N (s|ut
iµ\i,u

t
iC\iui)s2ds− s̄2,

(3.11)

the mean µ = Eq̂i [x] and covariance C = Vq̂i [x] are given respectively by

µ = µ\i +C\iui(ut
iC\iui)

−1(s̄−ut
iµ\i),

C =C\i +(ut
iC\iui)

−2(Cs−ut
iC\iui)C\iuiut

iC\i.

Similarly, the precision mean hq̂i and precision Λq̂i are given respectively by

hq̂i = h\i +λ1,iui with λ1,i =
s̄

Cs
−

ut
iµ\i

ut
iC\iui

,

Λq̂i = Λ\i +λ2,iuiut
i with λ2,i =

1
Cs
− 1

ut
iC\iui

.

Proof. The expressions for Ẑi, µ and C were given in [52, Section 3]. Thus it suffices to derive the

formulae for (h,Λ). Recall Sherman-Morrison-Woodbury formula [54, p. 65]: for any invertible

B ∈ Rn×n, u,v ∈ Rn, there holds

(B+uvt)−1 = B−1− B−1uvtB−1

1+ vtB−1u
. (3.12)

Let λ = (ut
iC\iui)

−2(Cs−ut
iC\iui). Then the precision matrix Λ is given by

Λ = (C\i +C\iuiλut
iC\i)

−1

=C−1
\i −ui(λ

−1 +ut
iC\iui)

−1ut
i

= Λ\i +
( 1

Cs
− 1

ut
iC\iui

)
uiut

i.

Similarly, the precision mean h := Λµ is given by

h =
[
Λ\i +

( 1
Cs
− 1

ut
iC\iui

)
uiut

i

]
[µ\i +C\iui(ut

iC\iui)
−1(s̄−ut

iµ\i)]

= Λ\iµ\i +ui

( s̄
Cs
−

ut
iµ\i

ut
iC\iui

)
= h\i +ui

( s̄
Cs
−

ut
iµ\i

ut
iC\iui

)
.

This completes the proof of the theorem.
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In both approaches, the 1D integrals (Zs, s̄,Cs) are needed, which depend on ut
iµ\i and ut

iC\iui.

A direct approach is first to downdate (the Cholesky factor of) Λ and then to solve a linear system.

In practice, this can be expensive and the cost can be mitigated. Indeed, they can be computed

without the downdating step; see Lemma 3.3.1 below. This fact was implicitly stated in [52]. Both

approaches have their pros and cons: the moment one does not require solving linear systems, and

the natural one allows singular Gaussians for t̃i(x). Below we use the super- or subscript n and o to

denote a variable updated at current iteration from that of the last iteration.

Lemma 3.3.1. Let c = ut
iΛ
−1
o ui = ut

iCoui, (h,Λ) be the natural parameter of q(x) and (λ1,i,λ2,i) be

defined in Theorem 3.3.1. Then the mean ut
iµ\i and variance ut

iC\iui of the Gaussian distribution

N (s|ut
iµ\i,u

t
iC\iui) are respectively given by

ut
iµ\i =

ut
iΛ
−1
o h− cλ o

1,i

1− cλ o
2,i

and ut
iC\iui =

c
1− cλ o

2,i
. (3.13)

Proof. We suppress the sub/superscript o. By the definition of ut
iC\iui and (3.12), we have

ut
iC\iui = ut

i(Λ−λ2,iuiut
i)
−1ui

= ut
i[Λ
−1−Λ

−1ui(−λ
−1
2,i + c)−1ut

iΛ
−1]ui

= c− c(−λ
−1
2,i + c)−1c =

c
1− cλ2,i

,

and similarly, we have

ut
iµ\i = ut

i(Λ−λ2,iuiut
i)
−1(h−λ1,iui)

= ut
i[Λ
−1−Λ

−1ui(−λ
−1
2,i + c)−1ut

iΛ
−1](h−λ1,iui) =

ut
iΛ
−1h− cλ1,i

1− cλ2,i
.

This completes the proof of the lemma.

Since the quantities for the 1D integrals can be calculated from variables updated in the last

iteration, it is unnecessary to form cavity distributions. Indeed, the cavity precision is formed by

Λ\i = Λo−λ o
2,iuiut

i, and the updated precision is given by Λn = Λ\i +λ n
2,iuiut

i; and similarly for h.

Thus, we can update Λ directly with (λ o
2,i,λ

n
2,i) and h with (λ o

1,i,λ
n
1,i); this is summarised in the next

remark.

Remark 3.3.1. The differences λ n
k,i− λ o

k,i, k = 1,2, can be used to update the natural parameter

(h,Λ):

λ
n
1,i−λ

o
1,i =

s̄
Cs
−

ut
iµo

ut
iCoui

and λ
n
2,i−λ

o
2,i =

1
Cs
− 1

ut
iCoui

. (3.14)

Moreover, the sign of λ n
2,i−λ o

2,i determines whether to update or downdate the Cholesky factor of Λ.

This will be adopted in the implementation of EP algorithms.
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3.3.2 Update Schemes and Algorithms

Now we can state the direct update scheme, i.e. without explicitly constructing the medium cavity

distribution q\i(x), for both natural and moment parameterisations.

Theorem 3.3.2. Let (h,Λ) and (µ,C) be the natural and moment parameters of the Gaussian ap-

proximation q(x), respectively. The following update schemes hold.

(i) The precision mean h and precision Λ can be updated by

hn = ho +
( s̄

Cs
−

ut
iΛ
−1
o ho

ut
iΛ
−1
o ui

)
ui and Λn = Λo +

( 1
Cs
− 1

ut
iΛ
−1
o ui

)
uiut

i. (3.15)

(ii) The mean µ and covariance C can be updated by

µn = µo +
s̄−ut

iµo

ut
iCoui

Coui and Cn =Co +
( Cs

(ut
iCoui)2 −

1
ut

iCoui

)
(Coui)(ut

iCo). (3.16)

Proof. The first assertion is direct from Theorem 3.3.1 and Remark 3.3.1, and it can be rewritten as

Λn = Λo +(λ n
2,i−λ

o
2,i)uiut

i and hn = ho +(λ n
1,i−λ

o
1,i)ui. (3.17)

By Sherman-Morrison-Woodbury formula (3.12), the covariance Cn = Λ−1
n is given by

Cn = (Λo +(λ n
2,i−λ

o
2,i)uiut

i)
−1

= Λ
−1
o −Λ

−1
o ui

( 1
λ n

2,i−λ o
2,i

+ut
iCoui

)−1
ut

iΛ
−1
o

=: Co +η2(Coui)(ut
iCo),

where the scalar η2 :=−( 1
λ n

2,i−λ o
2,i
+ut

iCoui)
−1 can be simplified to

η2 =−
λ n

2,i−λ o
2,i

1+(λ n
2,i−λ o

2,i)u
t
iCoui

=− 1
ut

iCoui
+

Cs

(ut
iCoui)2 ,

where the second identity line follows from Remark 3.3.1. Similarly, the mean µn :=Cnhn is given

by

µn = [Co +η2(Coui)(ut
iCo)][ho +(λ n

1,i−λ
o
1,i)ui]

= µo +(λ n
1,i−λ

o
1,i)Coui +η2ut

iµoCoui +η2(λ
n
1,i−λ

o
1,i)u

t
iCouiCoui =: µo +η1Coui,

where the scalar η1 = (λ n
1,i−λ o

1,i)+η2ut
iµo +η2(λ

n
1,i−λ o

1,i)u
t
iCoui can be simplified to

η1 =
(λ n

1,i−λ o
1,i)− (λ n

2,i−λ o
2,i)u

t
iµo

1+(λ n
2,i−λ o

2,i)u
t
iCoui

=
s̄−ut

iµo

ut
iCoui

,
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where the second identity is due to Remark 3.3.1.

All matrix operations in Theorem 3.3.2 are of rank one type, which can be implemented stably

and efficiently with the Cholesky factors and their update / downdate; see Section 3.3.3 for details.

Thus, in practice, we employ Cholesky factors of the precision Λ and covariance C (of q(x)), denoted

by Λchol and Cchol , respectively, instead of Λ and C directly. Further, we also use the auxiliary

variables (λ1,i,λ2,i), and stack {(λ1,i,λ2,i)}m1+m2
i=1 into two vectors

λ1 = [λ1,i]i, λ2 = [λ2,i]i ∈ Rm1+m2 ,

which are initialised to zeros. In summary, we obtain two approximate inference procedures for

Poisson data with a Laplace type prior; see Algorithms 3 and 4 for details. The important practical

task of computing the 1D integrals in Theorem 3.3.1 will be discussed in Section 3.4 below in detail.

The rigorous convergence analysis of EP is an outstanding issue. Nonetheless, empirically, it

often converges very fast, which is also observed in our numerical experiments in Section 3.5. In

practice, one can terminate the iteration by monitoring the relative change of the parameters or fixing

the maximum number K of iterations. The optimal choice of the hyperparameter µ in the prior p(x)

is notoriously challenging [67]. One may apply hierarchical Bayesian modelling in order to estimate

it from the data simultaneously with q(x) [136, 71, 14]. However, we shall not delve into the issue

further.

Algorithm 3 Expectation propagation for Poisson data (natural parametrisation)

1: Input: (A,y), hyper-parameter µ , and maximum number K of iterations
2: Initialise h, Λchol , λ1 and λ2;
3: for k = 1,2, . . . ,K do
4: Randomly choose an index i to update;
5: Compute the mean and variance for 1D Gaussian integral by Lemma 3.3.1;
6: Evaluate s̄ and Cs in (3.11);
7: Calculate and update λ1,i and λ2,i;
8: Update h and Λchol by Theorem 3.3.2;
9: Check the stopping criterion.

10: end for
11: Output: (h,Λchol)

3.3.3 Efficient Implementation and Complexity Estimate

The rank-one matrix update A±αuut , for A ∈Rn×n, u ∈Rn and α > 0, can be stably and efficiently

updated / downdated with the Cholesky factor of A with
√

αu. The update step of A can be viewed as

an iteration from Ak to Ak+1. Let the upper triangular matrices Rk and Rk+1 be the Cholesky factors

of Ak and Ak+1 respectively, i.e., Ak = Rt
kRk and Ak+1 = Rt

k+1Rk+1. There are two possible cases:

(i) If Ak+1 = Ak +αuut , Rk+1 is the Cholesky rank one update of Rk with
√

αu.

(ii) If Ak+1 = Ak−αuut , Rk+1 is the Cholesky rank one downdate of Rk with
√

αu.
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Algorithm 4 Expectation propagation for Poisson data (moment parametrisation)

1: Input: (A,y), hyper-parameter µ , and maximum number K of iterations
2: Initialise µ , Cchol , λ1 and λ2;
3: for k = 1,2, . . . ,K do
4: Randomly choose an index i to update;
5: Compute the mean and variance for 1D Gaussian integral by Lemma 3.3.1;
6: Evaluate s̄ and Cs in (3.11);
7: Calculate and update λ1,i and λ2,i;
8: Update µ and Cchol by Theorem 3.3.2;
9: Check the stopping criterion.

10: end for
11: Output: (µ,Cchol)

The update/downdate is available in several packages. For example, in MATLAB, the function

cholupdate implements the update/downdate of Cholesky factors, based on LAPACK subrou-

tines ZCHUD and ZCHDD.

Next, we analyse the computational complexity per inner iteration. The first step in each it-

eration picks up one index i, which is of constant complexity. For the second step, i.e., computing

the mean and variance for 1D integrals, the dominant part is linear solve involving upper triangular

matrices and matrix-vector product for natural and moment parameters. For either parameterisation,

it incurs O(n2) operations. The third step computes s̄ and Cs from the one dimensional integrals. For

Poisson site, the complexity is O(yi), and for Laplace site, it is O(1). Last, the fourth step is dom-

inated by Cholesky factor modifications, and its complexity is O(n2). Overall, the computational

complexity per inner iteration is O(n2 + yi). In a large data setting, yi� n, and thus the complexity

is about O(n2).

In passing, we note that in practice, the covariance / precision matrix may admit additional

structures, e.g., sparsity, which translate into structures on the corresponding Cholesky factors. For

the general sparsity assumption, it seems unclear how to effectively exploit it for Cholesky up-

date/downdate for enhanced efficiency, except the diagonal case, which can be incorporated into the

algorithm straightforwardly.

3.4 Stable Evaluation of 1d Integrals

In this section, we develop a stable implementation for the three 1D integrals: Zs, s̄ and Cs in The-

orem 3.3.1. These integrals form the basic components of Algorithms 3 and 4, and their stable,

accurate and efficient evaluation is crucial to the performance of the algorithms. By suppressing the

subscript i, we can write the integrals in a unified way:

J j =
∫
R

t̄(s)N (s|m,σ2)s jds, j = 0,1,2,
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where the factor t̄(s) is either the constrained Poisson likelihood or the Laplace prior. Then we can

express s̄ and Cs in terms of J j by

s̄ =
J1

J0
and Cs =

J2

J0
− s̄2. (3.18)

Note that the normalising constants in J j cancel out in s̄ and Cs, and thus they can be ignored when

evaluating the integrals. Below we derive the formulae for the constrained Poisson likelihood and

Laplace prior separately. In essence, the computation boils down to stable evaluation of moments of

a (truncated) Gaussian distribution. This task was studied in several works [32, 124]: [32] focuses on

Gaussian moments, and [124] discusses also evaluating the integrals involving Laplace distributions.

In this work, we discuss moments involving both Laplace and Poisson distributions.

3.4.1 Constrained Poisson Likelihood

Throughout, we suppress the subscript i, write V+ etc in place V+
i etc and introduce the scaler

variable s = atx. Then the constraint on x transfers to that on s: atx > 0 corresponds to s > 0

and atx+ r > 0 to s > −r, respectively. We shall slightly abuse the notation and use 1V+(s) as the

indicator for the constraint on s. Then the Poisson likelihood t(x) can be equivalently written in

either x or s as

t(x) =
(atx+ r)ye−(a

t x+r)

y!
1V+(x) and t̄(s) =

(s+ r)ye−(s+r)

y!
1V+(s). (3.19)

Note that the factorial y! cancels out when computing s̄ and Cs, so it is omitted in the derivation

below. For a fixed N (s|m,σ2), the integrals Jy, j depend on the observed count data y and moment

order j:

Jy, j =
∫
R
(s+ r)ye−(s+r)1V+(s)N (s|m,σ2)s jds

=
∫

∞

b
(s+ r)ys je−(s+r)N (s|m,σ2)ds.

(3.20)

where the lower integral bound b = 0 or b = −r, which is evident from the context. Note that the

terms e−(s+r) and N (s|m,σ2) in Jy, j together give an unnormalised Gaussian density. This allows

us to reduce the integrals Jy, j into (truncated) Gaussian moment evaluations of the type:

Iy =
∫

∞

b
(s+ r)yN (s|m−σ

2,σ2)ds, (3.21)

and accordingly s̄ and Cs. This is given in the next result.

Now we can express s̄ and Cs in terms of Iy.
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Theorem 3.4.1. s̄ and Cs can be computed by

s̄ =
Iy+1

Iy
− r and Cs =

Iy+2

Iy
−
( Iy+1

Iy

)2
. (3.22)

Proof. First, we claim that with α = e
σ2
2 −m−r, there hold the following identities

Jy,0 = αIy, Jy,1 = α(Iy+1− rIy), and Jy,2 = α(Iy+2−2rIy+1 + r2Iy). (3.23)

Let cσ = (2πσ2)−
1
2 . Then by completing the squares we obtain

e−(s+r)N (s|m,σ2) = cσ e−r−s− (s−m)2

2σ2 = cσ e
σ2
2 −m−re−

(s−(m−σ2))2

2σ2 . (3.24)

The claim follows directly from the trivial identities

(s+ r)ys = (s+ r)y+1− r(s+ r)y,

(s+ r)ys2 = (s+ r)y+2−2r(s+ r)y+1 + r2(s+ r)y.

The desired identities follow from the definitions and the recursions in (3.23) by

s̄ =
Jy,1

Jy,0
=

α(Iy+1− rIy)

αIy
=

Iy+1

Iy
− r,

Cs =
Jy,2

Jy,0
− s̄2 =

α(Iy+2−2rIy+1 + r2Iy)

αIy
−
( Iy+1

Iy
− r
)2

=
Iy+2

Iy
−
( Iy+1

Iy

)2
.

This completes the proof.

However, directly evaluating Iy can still be numerically unstable for large y. To avoid the

potential instability, we develop a stable recursive scheme in Lemma 3.4.1.

Lemma 3.4.1. For y≥ 2, the following recursion formula holds

Iy = (m−σ
2 + r)Iy−1 +σ

2(y−1)Iy−2 +
σ2(b+ r)y−1
√

2πσ2
e−

(b−m+σ2)2

2σ2 . (3.25)

Proof. Let c = m−σ2, d = σ2 and f (s) = 1√
2πσ2 e−

(s−c)2
2d . The definition of Iy implies

Iy =
∫

∞

b
(s+ r)y f (s)ds =

∫
∞

b
(s+ r)y−1(d

s− c
d

+ c+ r) f (s)ds

=−d
∫

∞

b
(s+ r)y−1(− s− c

d
) f (s)ds+(c+ r)

∫
∞

b
(s+ r)y−1 f (s)ds.

(3.26)

Next we employ the trivial identity d
ds f (s) = − s−c

d f (s) and apply integration by parts to the first
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term ∫
∞

b
(s+ r)y−1(− s− c

d
) f (s)ds

= (s+ r)y−1 f (s)|∞b −
∫

∞

b
(y−1)(s+ r)y−2 f (s)ds

=−(b+ r)y−1 f (b)− (y−1)Iy−2.

(3.27)

Collecting the terms shows the desired recursion on the integral Iy.

Remark 3.4.1. For b =−r, we have a simplified recursive formula for Iy:

Iy = (m−σ
2 + r)Iy−1 +σ

2(y−1)Iy−2.

Lemma 3.4.1 uses a two-term linear recurrence relation for Iy’s. The coefficients of Iy−1 and

Iy−2 are raised by power when expanding Iy in terms of I0 and I1, and thus the computation of Iy

is susceptible to the evaluation errors of I0 and I1 for large coefficients. This motivates a reciprocal

recursive scheme for r = 0 or b =−r by introducing a ratio sequence {Ly}y defined by

Ly =
yIy−1

Iy
. (3.28)

Note that Ly also admits a recursive scheme

Ly =
y

(m−σ2 + r)+σ2Ly−1
, (3.29)

and further Iy can be recovered from {Ly} by

ln Iy = lny!+ ln I0−
y

∑
i=1

Li. (3.30)

We can compute s̄ and Cs directly from Ly. The identities follow from straightforward compu-

tation.

Theorem 3.4.2. If r = 0 or b =−r, the ratios for calculating s̄ and Cs are given by

Iy+1

Iy
= (m−σ

2 + r)+σ
2Ly and

Iy+2

Iy
= eln(y+1)+ln(y+2)−lnLy+1−lnLy+2 . (3.31)

Last, we discuss stable methods for computing the first three integrals I0, I1 and I2, which are

needed for the recursion. We consider three different forms and use them separately according to the

integration range with respect to the auxiliary variable

η =
σ2−m+b√

2σ2
.
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The formulae are listed in Table 3.1, where erf and erfc denote the error function and complemen-

tary error function, respectively, and erfcx(η) = eη2
(1− erf(η)). Since the value of 1− erf(η) is

vanishingly small for large η value, we use Scheme 2 to avoid underflow. Scheme 3 is useful when

the η value is large, since both 1− erf(η) and erfc(η) suffer from numerical underflow. Note that

when η is small, Scheme 3 is not as accurate as Scheme 2, so we use Scheme 2 in the intermediate

range. In our experiments, we use Scheme 1 for η ∈ (−∞,5), Scheme 2 for η ∈ [5,26) and Scheme

3 for η ∈ (26,∞). To use Scheme 3, we construct Ĩi =
Ii
I0

, i = 0,1,2, and L̃y =
yĨy−1

Ĩy
, y ∈ N+. Then

similar identities for computing s̄ and Cs hold, i.e.,

s̄ =
Ĩy+1

Ĩy
− r and Cs =

Ĩy+2

Ĩy
−
( Ĩy+1

Ĩy

)2
, (3.32)

with Ĩy+1
Ĩy

= (m−σ2 + r)+σ2L̃y and Ĩy+2
Ĩy

= eln(y+1)+ln(y+2)−ln L̃y+1−ln L̃y+2 .

Table 3.1: Three schemes for evaluating I0, I1 and I2.

scheme formulae condition

1 I0 =
1
2
(1− erf(η)), I1 =

√
σ2

2π
e−η2

+
m−σ2 + r

2
(1− erf(η)) η < 5

I2 =

√
σ2

2π
(m−σ

2 +b+2r)e−η2
+

(m−σ2 + r)2 +σ2

2
(1− erf(η))

2 I0 =
1
2

erfc(η), I1 =

√
σ2

2π
e−η2

+
m−σ2 + r

2
erfc(η) 5≤ η ≤ 26

I2 =

√
σ2

2π
(m−σ

2 +b+2r)e−η2
+

(m−σ2 + r)2 +σ2

2
erfc(η)

3 Ĩ0 = 1, Ĩ1 =

√
2σ2

π

1
erfcx(η)

+m−σ
2 + r η > 26

Ĩ2 =

√
2σ2

π

m−σ2 +b+2r
erfcx(η)

+(m−σ
2 + r)2 +σ

2

3.4.2 Laplace Potential

Since Laplace distributions do not have the factor sy, the evaluation of related integrals does not entail

a recursive scheme. Below we employ the idea in [124, 52] and derive the formulae for evaluating

the 1D integrals for the Laplace potential t(x) = µ

2 e−µ|`t x|.

For any fixed ` ∈ Rn, we divide the whole space Rn into two disjoint half-spaces V+ and V−,

i.e.,

Rn =V+∪V−, with V+ = {x|`tx > 0} and V− = {x|`tx≤ 0}. (3.33)

Then we split the Laplace potential t(x) into

t(x) =
µ

2
e−µ`t x1V+(x)+

µ

2
eµ`t x1V−(x). (3.34)
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The integrals involving t(x)N (s|m,σ2) can be divided into two parts:

∫
R+

µ

2
sie−µsN (s|m,σ2)ds =

µ

2
e

µ2σ2
2 e−µm

∫
R+

siN (s|m−µσ
2,σ2)ds︸ ︷︷ ︸

:=I+i

,

∫
R−

µ

2
sieµsN (s|m,σ2)ds =

µ

2
e

µ2σ2
2 eµm

∫
R−

siN (s|m+µσ
2,σ2)ds︸ ︷︷ ︸

:=I−i

.

(3.35)

By the change of variable t = s−m±µσ2

σ
for I±i respectively, we have

I+i =
e−µm
√

2π

∫ +∞

−m
σ
+µσ

(σt +m−µσ
2)ie−

t2
2 dt, (3.36)

I−i =
(−1)ieµm
√

2π

∫ +∞

m
σ
+µσ

(σt−m−µσ
2)ie−

t2
2 dt. (3.37)

The integrals can be expressed using the cumulative distribution function Φ of the standard Gaussian

distribution. We shall view I±i as functions of m and let Ii = I+i (m)+(−1)iI+i (−m). Then we have

s̄ =
I1

I0
and Cs =

I2

I0
−
(

I1

I0

)2

. (3.38)

To avoid the potential underflow of direct evaluation of Φ, we use the following well known

(divergent) asymptotic expansion [2, item 7.1.23]

1−Φ(η) =
∫

∞

η

e−
t2
2 dt = e−

η2
2

(
η
−1 +

∞

∑
k=1

(−1)k(2k−1)!
2k(k−1)!

η
−(2k+1)

)

= N (η |0,1)η−1
∞

∑
n=0

(−1)n(2n−1)!!η−2n

︸ ︷︷ ︸
:=g(η)

.

This formula follows by integration by parts, and allows accurate evaluation for large positive η . It

was shown in [51] that the error of evaluating 1−Φ(η) with a truncation of the asymptotic expansion

is less than 10−11 for η > 5 with more than 8 terms in the summation of g(η). For η ≤ 5, 1−Φ(η)

can be accurately evaluated directly. Then we introduce a ratio

α =
I+0 (−|m|)
I+0 (|m|)

= e2µ|m| (µσ2−|m|)g(µσ + |m|
σ
)

(µσ2 + |m|)g(µσ − |m|
σ
)
.

With the ratio α , the two fractions I1
I0

and I2
I0

can be evaluated by

I1

I0
= m+µσ

2sgn(m)
(

1− 2
1+α

)
,

I2

I0
=−2µσ

3 1√
2π

e−
m2

2σ2 e−
µ2σ2

2 I−1
0 +(σ2 +µ

2
σ

4−m2)+2m
I1

I0
.
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To avoid potential numerical instability of the first term in I2
I0

, we use the identity

−2µσ3
√

2π
e−(

m2

2σ2 +
µ2σ2

2 )I−1
0 =

−2µσ2(−|m|+µσ2)

g(− |m|
σ
+µσ)(1+α)

.

To avoid potential numerical instability of the term σ2 +µ2σ4, we use the exp-log trick

σ
2 +µ

2
σ

4 = exp
(
−2log

1
µσ2 + log

(
1+

1
µ2σ2

))
,

where log(1+ 1
µ2σ2 ) is evaluated by the MATLAB builtin function log1p. Thus, s̄ and Cs can be

evaluated by

s̄ =
I1

I0
and Cs =−

2µσ2(−|m|+µσ2)

g(− |m|
σ
+µσ)(1+α)

+ exp[−2log
1

µσ2 + log(1+
1

µ2σ2 )]− (m− I1

I0
)2.

3.5 Numerical Experiments
Now we present numerical results to illustrate the features, i.e., convergence, accuracy and feasibility

for large-scale problems, of the EP algorithm for constrained Poisson distribution. For the first

two cases, we adopt the following classical one-dimensional example [108]: a Fredholm integral

equation of the first kind with the kernel K(s, t) = φ(s− t) with

φ(s) =

 10+10cos π

3 s, |s|< 3,

0, |s| ≥ 3,

and the integration interval is [−6,6]. The exact solution x(t) is given by φ(t). The problem is

discretised by a standard piecewise constant Galerkin method, and the resulting problem is size 100,

i.e., x ∈ R100 and A ∈ R100×100. It is mildly ill-posed, and has been used as a benchmark problem

in several studies. In the numerical implementation, we employ the parameterisation with natural

parameters, i.e., Algorithm 3, which appears to be numerically more robust. The experiments are

conducted on a desktop with Intel i7-7700K CPU 4.20GHz×8.

3.5.1 Convergence of EP Algorithm

First, we examine the convergence of EP algorithm. The convergence of EP algorithms is a long out-

standing theoretical issue, and remains largely elusive. Thus, we present an experimental evaluation

of the convergence behaviour. Recall that EP algorithm has two level of iterations, i.e., outer and

and inner, and in each outer iteration, EP visits all factors once. We denote the mean and covariance

after the kth outer iteration by µk and Ck, and monitor their convergence.

In Figs. 3.1 and 3.2, we show the numerical results for EP convergence for the first ten outer

iterations, each corresponding to one loop over all data points. It is observed from Fig. 3.1 that

the mean µk converges fairly rapidly during the first few iterations, capturing the essential features
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of the mean, and it reaches convergence after five iterations, since the recovered mean is hardly

distinguishable afterwards, cf. Fig. 3.1(b). The plots are further confirmed by the errors of the

iterate relative to the converged iterate (µ∗,C∗). The errors δ µ = µk− µ∗ and δC = Ck−C∗ are

measured by the L2-norm and spectral norm, respectively. Hence, both the mean and covariance

converge rapidly, showing the fast convergence of EP.

0 20 40 60 80 100
-4

-2

0

2

4

6

8

10

12

k = 1

k = 2

k = 3

k = 4

k = 5

0 20 40 60 80 100
-4

-2

0

2

4

6

8

10

12

k = 6

k = 7

k = 8

k = 9

k = 10

(a) µ1 to µ5 (b) µ6 to µ10

Figure 3.1: The convergence of the mean µk by EP after k outer iterations.
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Figure 3.2: The convergence of the mean µ and covariance C after each outer iteration.

3.5.2 Comparison Between EP and the True Posterior

Numerically, the accuracy of EP has found to be excellent in several studies [112, 52], although

there is still no rigorous quantification of the error. We provide an experimental evaluation of its

accuracy by comparing the EP results with the true posterior distribution. The features of the true

posterior distribution p(x|y) are captured by Markov chain Monte Carlo (MCMC) [90, 119], which

is known to be asymptotically exact, and the MAP estimation. To obtain MCMC results, we run a

random walk Metropolis-Hastings sampler with the Gaussian steps. The step size in the Metropolis-

Hastings algorithm is optimised so that the acceptance ratio is close to 0.23 in order to ensure good

convergence of the MCMC chain. The MCMC chain is run for a length of 2×107, and the last 107

samples are used for computing the summarising statistics, e.g., mean and covariance. From Fig.
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3.3, one can observe that there is no periodic patterns in the trace plots, which supports convergence

of the chain. However, the autocorrelations of the sample trajectory decay not very fast, which might

be the result of the improper prior.

To compare the Gaussian approximation by EP and MCMC results, we present the mean, MAP,

covariance and marginal 95% posterior credible intervals. It is observed that both approximations

concentrate in the same region, and the shape and magnitude of the posterior credible intervals

/ covariance are mostly comparable with each other, cf. Figs. 3.4 and 3.5. However, there are

noticeable differences in the mean approximation: the mean by EP is fairly close to being piecewise

constant, which differs from that by MCMC. Theoretically, the MAP estimate with a TV penalty

tends to be piecewise constant, but the posterior mean is not necessarily so. So EP provides an

intermediate approximation between the MAP and posterior mean. In comparison with the MAP,

EP provides not only a point estimate, but also the associated uncertainty using the covariance.

Further, the covariance is clearly diagonal dominant, which suggests the use of a banded covariance

or its Cholesky factor for potentially speeding up the algorithm. The magnitudes of the diagonals

are also largely comparable, even though that by EP are slightly smaller.
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Figure 3.3: Trace plots and autocorrelation of MCMC samples the 30-th and 50-th element.

3.5.3 Medium Size Test

Now we illustrate the feasibility of the approach on larger scale problems. We consider im-

ages of size 128× 128 pixels, i.e., x ∈ R16384. The ground-truth images are the Shepp-Logan
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Figure 3.4: Comparisons of mean and 0.95 posterior credible intervals between EP and MCMC for Phillips
test
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Figure 3.5: Comparisons of mean and covariance of EP and MCMC for Phillips test

phantom, one PET phantom taken from [40] and IRT phantom from the Michigan Image

Reconstruction Toolbox1. The forward map A is given by discrete Radon transforms, and is

generated using MATLAB built-in function radon with 185 projections per angle and three different

angle settings, i.e. [0 : 2 : 179], [0 : 4 : 179] and [0 : 8 : 179], and the corresponding matrix is of size

A ∈ R16650×16384, A ∈ R8325×16384 and A ∈ R4255×16384. The original image, the sinogram (i.e., the

image after Radon transform) and the observed Poisson data are shown in Figs. 3.6, 3.8 and 3.10.

We present reconstructions for the MAP of the posterior distribution p(x|y), where the hyperpa-

rameter µ is taken to be the same for both approaches in order to ensure a fair comparison. The MAP

reconstructions are computed by a limited-memory BFGS algorithm. We measure the accuracy of

the reconstruction x∗ relative the ground truth x† by the standard L2-error ||x∗− x†||2, the structural

similarity (SSIM) index (by MATLAB built-in ssim), and peak signal-to-noise ratio (PSNR) (by

MATLAB built-in psnr with peak value 1). The numerical results are summarised in Tables 3.2, 3.3

and 3.4. The experiments show clearly the feasibility of the proposed approach for handling medium

size images.

It is observed that the estimated mean by the EP is mostly comparable with the MAP estimate

in all three metrics. For both approaches, the reconstruction quality improves steadily as the number

of projection angle increases, for which the data becomes more informative.

1https://web.eecs.umich.edu/˜fessler/code/, last accessed on July 30, 2018.

https://web.eecs.umich.edu/~fessler/code/
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Figure 3.6: The exact image, sinograms and observed data with three different A’s for Shepp-Logan phan-
tom.

0 0.5 1 -1 0 1 0 0.5 1 -1 0 1 0 0.5 1

10
-3

[0
:2

:1
79

]
[0

:4
:1

79
]

[0
:8

:1
79

]

MAP MAP error EP mean EP error EP variance

Figure 3.7: MAP vs EP with anisotropic TV prior for the Shepp-Logan phantom.

3.6 Conclusion
In this work, we have developed an approximate inference procedure for the constrained Poisson

likelihood which arises in emission tomography. The approach is based on expectation propagation

developed in the machine learning community. The detailed derivation of the algorithms, complexity

and their stable implementation are given, for the case of a Laplace type prior. The approach is

illustrated with numerical experiments, which show that it converges rapidly and can deliver results

Table 3.2: Comparisons between EP mean and MAP for the Shepp-Logan phantom.

angle [0:2:179] [0:4:179] [0:8:179]
µ 6e0 4e0 3e0
Method EP MAP EP MAP EP MAP
L2 Error 5.32 5.36 5.64 5.67 6.09 6.11
SSIM 0.74 0.78 0.70 0.75 0.67 0.72
PSNR 18.58 18.53 17.97 17.93 17.29 17.27
CPU time (s) 80187.88 124.44 46031.95 55.55 29274.16 27.23
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Figure 3.8: The exact image, sinograms and observed data with three different A’s for the PET phantom.
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Figure 3.9: MAP vs EP with anisotropic TV prior for the PET phantom.
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Figure 3.10: The exact image, sinograms and observed data with three different A’s for IRT phantom.

Table 3.3: The comparisons between EP mean and MAP for the PET phantom

angle [0:2:179] [0:4:179] [0:8:179]
µ 1.6e0 1.4e0 1.2e0
Method EP MAP EP MAP EP MAP
L2 Error 7.37 7.45 8.55 8.64 8.81 8.87
SSIM 0.72 0.81 0.61 0.75 0.57 0.70
PSNR 19.82 19.79 18.42 18.35 17.35 17.28
CPU time (s) 91263.00 110.05 53863.77 78.69 31537.05 28.20
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Figure 3.11: MAP vs EP with anisotropic TV prior for the IRT phantom.

Table 3.4: The comparisons between EP mean and MAP for the IRT phantom.

angle [0:2:179] [0:4:179] [0:8:179]
µ 1.6e0 1.4e0 1.2e0
Method EP MAP EP MAP EP MAP
L2 Error 2.07 2.07 2.29 2.30 2.89 2.91
SSIM 0.65 0.88 0.65 0.87 0.63 0.84
PSNR 25.87 26.20 25.44 25.62 24.26 24.36
CPU time (s) 82017.89 101.87 57209.36 51.00 29224.76 23.14

comparable with MAP and MCMC, and it can handle medium size images.

There are several avenues for future works. First, it is of enormous interest to analyse the con-

vergence rate and accuracy of EP, and more general approximate inference techniques, e.g., varia-

tional Bayes, which have all achieved great practical successes but largely defied theoretical analysis.

Second, it is important to further extend the flexibility of EP algorithms to more complex posterior

distributions, e.g., lack of projection form. One notable example is isotropic total variation prior that

appears frequently in practical imaging algorithms. This may require introducing an additional layer

of approximation in the spirit of iteratively reweighted least-squares or Monte Carlo computation of

the low-dimensional integrals. Third, many experimental studies show that EP converges very fast,

with convergence reached within five outer iterations for the Poisson model under considerations.

However, the overall O(mn2) computational complexity is still very high for all current implemen-

tations [53], and not directly scalable to really big images. Hence, it is of great interest to accelerate

the algorithms by identifying suitable structures on the problem, e.g., the intrinsic low-rank struc-

ture of the forward map A and the diagonal dominance of the posterior covariance. Moreover, the
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stability of 1 dimensional integration schemes are developed based on empirical observation in the

sense that they could convergence while traditional quadrature rules could not. It is of great interest

to deepen the understanding of and analyse stability.



Chapter 4

Probabilistic Iterative Networks for Inverse

Problems

4.1 Introduction
Machine learning techniques, predominantly deep neural networks (DNNs), have received much

attention for solving inverse problems in recent years, and delivered state-of-the-art reconstruction

performance on many classical inverse problems, including image denoising [142, 143], image de-

blurring [138, 122], super-resolution [37], and challenging practical inverse problems, e.g., low-dose

/ sparse-data computed tomography [74, 28] and magnetic resonance imaging [66]. See the recent

surveys [96, 93, 13] and the long lists of references therein for various important advances on DNNs

for inverse problems and successful practical applications. The most prominent ideas underpinning

these exciting developments include end-to-end processing and unrolling iterative algorithms (gradi-

ent descent, proximal gradient, primal-dual gradient descent, ADMM etc.). Most existing works on

DNN-based inversion aim at providing one point estimate of the unobservable (i.e., the signal / im-

age of interest) for a given observation, by viewing DNNs as deterministic mappings, by exploiting

their extraordinary approximation capability (as well as rich training data). As discussed in Section

1.1, a fully probabilistic treatment for uncertainty quantification (UQ) to assess the reliability of one

specific inverse solution is necessary. This important piece of uncertainty information is not directly

available from most existing DNN-based inversion methods.

The Bayesian framework provides a systematic yet very flexible framework for the challenging

UQ task, and has been the method of choice for UQ of inverse problems [73, 128]. The conven-

tional Bayesian setting often involves explicit likelihood and prior constructions. Recent advances

in Bayesian inference leverage powerful deep generative modelling tools, e.g., Wasserstein genera-

tive adversarial networks (GANs) [12, 4] and variational auto-encoders (VAEs) [80, 126, 141], and

admit implicit priors and noise models. Distinctly, within these frameworks, once the network is

trained (often in an expensive offline stage), generating one sample of the unobservable reduces to

one DNN feedforward propagation, which is computationally very light and for multiple samples, it
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can be run in parallel. Thus, these techniques hold enormous potentials for UQ of inverse problems,

and it is highly desirable to develop analogues for DNN-based techniques. However, the rigorous

UQ of data-driven inversion techniques within a Bayesian framework is still very challenging.

The first challenge stems from high complexity of posterior distributions involving DNNs. Con-

ventionally, in Bayesian inversion, both likelihood and prior are given explicitly (or hierarchically).

The likelihood is derived from the statistical model of the forward observation process, assuming

that the noise statistics and underlying physical principles of the imaging modality are well cali-

brated. Nonetheless, deriving precise likelihoods can be nontrivial, e.g., due to complex corruption

process. Meanwhile, how to stipulate statistically meaningful yet explicit priors is a long-standing

open problem. Samples from commonly adopted priors, e.g. Gaussian, Laplace and total variation,

actually do not resemble natural images at all. Learning based approaches instead model implicitly

these knowledge in a data-driven way from the training data, and thus, the resulting posterior is

intrinsically implicit.

The second challenge is related to the physical laws. One distinct feature of many inverse

problems is the presence of forward maps, when compared with tasks in machine learning. The

forward maps often describe fundamental physical laws, and serve as a part of established prior

knowledge. It is also implicitly encoded in the pair of ground-truth data and observations, and

DNNs can extract it but only in a black-box way, only if given a large volume of training data. Thus

it is important to directly inform DNNs with the physical laws, which may enable using a small

amount of training data.

In this work, we develop a novel computational framework, termed as Probabilistic Iterative

Networks (PIN), for UQ of inverse problems. It employs the conditional variational auto-encoder

(CVAE) loss [126] to gracefully address the challenges. Minimising the CVAE loss is equivalent

to minimising an upper bound of the expected reversed Kullback-Leibler divergence [141]. This

interpretation indicates that the obtained samples are drawn from an approximate posterior distri-

bution. Specifically, the network aggregates the information in the forward map, observation and

samples of a low-dimensional random variable that is conditionally dependent on the observation,

and recurrently refines the (stochastic) reconstructions using the information in the input. The frame-

work has several distinct features: (i) The low-dimensionality of the probabilistic encoder ensures

good scalability of the framework; (ii) The network is flexible in the sense that it allows training

on small-scale datasets while inference on large-scale problems; (iii) The trained network serves as

an efficient sampler from an approximate posterior distribution in the sense of variational inference.

In summary, the framework incorporates forward map(s), handles implicit model constructions, and

is very flexible with training datasets. Thus, it is applicable to a wide range of practical inverse

problems. In Section 4.4, we illustrate these desirable features with experiments on one established

medical imaging modality – positron emission tomography (PET), and confirm that the generated

samples are of very high quality in terms of point estimation and uncertainty quantification, when
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compared with several state-of-the-art benchmarks. To the best of our knowledge, this is the first

flexible DNN-based framework for UQ of general inverse problems.

Now we situate this work in the context of quantifying uncertainty for deep learning-based

inversion techniques. As discussed in Section 1.1, while different kinds of uncertainty are studied

in the literature, we focus on aleatoric uncertainty in this study. Thus, it differs from many exist-

ing Bayesian treatments for neural networks, e.g. Bayesian neural networks (BNNs) for epistemic

uncertainty [55, 21, 48] and prior networks for out-of-distribution inputs [95]. BNNs model the

uncertainty on network weights, and preserve the benefits of Bayesian principles but often at the

expense of compromising performance [104]. To rigorously justify the distribution modelled by

DNNs for aleatoric uncertainty, proper Bayesian interpretations of loss functions used in training

DNNs (in connection with the target posterior) are needed. Recently, Adler and Öktem [4] proposed

a loss function whose minimisation is equivalent to minimising the Wasserstein 1-distance between

the posterior distribution and the approximation under Lipschitz conditions on DNNs, which, how-

ever, are not easy to enforce [57]. In contrast, the CVAE loss used in this work does not impose any

restrictions on DNNs.

The rest of the chapter is organised as follows. In Section 4.2, we describe the problem setting

and notations. Then in Section 4.3, we review auto-encoding variational Bayes and develop the

new approach, i.e., Probability Iterative Networks. In Section 4.4, we showcase the framework with

numerical experiments and in Section 4.5, we conclude the chapter with additional discussions.

4.2 Problem Formulation and Notations
Now we set the stage of this work, i.e., finite-dimensional inverse problems. Let x ∈ Rn be the

unobservable of interest, and y ∈ Rm be the observable (data). Generally, the dimensions of x and

y are different, and vary with the discretisations of the underlying continuous model. The forward

operator A :Rn→Rm linearly maps the unobservable x to an observable y. Its adjoint A ∗ :Rm→Rn

maps an element in Rm back to the unobservable space Rn. For example, in computed tomography

(CT), the forward map A is given by the Radon transform and the adjoint is a dual Radon transform

(a.k.a. backprojection), whereas in electrical impedance tomography, both forward map and adjoint

are described implicitly by differential equations.

In practice, the observation y is a noisy version of the exact data A (x):

y = η(A (x)),

where η(·) denotes a general corruption process by (possibly unknown type) noise, e.g., Gaussian,

Poisson, and Salt and Pepper noise, or the mixtures thereof. In probability, the corruption process

η(·) is encoded by a conditional distribution p∗(y|x). Here the unobservable x is a random variable,

with its prior distribution p∗(x). In the proposed framework, we only require
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(i) we can draw samples from the joint distribution p∗(x,y) := p∗(y|x)p∗(x);

(ii) we can access the forward map A (·) and its adjoint A ∗(·) for each data pair (x,y)

This setting covers a general family of likelihood and prior and generalises the problem settings in

Chapter 2 and Chapter 3. In many inverse problems, the forward maps are accurately described by

established physical theories but the corruption process is not well studied. The setting is especially

suitable for situations where measurements can be acquired but the corruption process is challenging

/ inconvenient to calibrate, and instead, inverse models can learn the process from physically derived

data.

To generate training samples from the joint distribution p∗(x,y), one can collect measurements

for samples of the unobservable x drawn from the prior p∗(x) (i.e., physically derived data), without

explicitly knowing the corruption process η(·). Also it can use simulated data with a known noise

model η(·) using samples from p∗(x). Thus, in the training data tuple {(xi,yi,Ai,A ∗
i )}N

i=1, yi is

generated by Ai(xi) (together with η) and A ∗
i is the adjoint of Ai. The presence of operators A and

A ∗ is an important difference from standard supervised learning in machine learning.

When training DDNs, we input the operators (Ai,A ∗
i ) as partial model knowledge to avoid

overfitting the training data. In practical inverse problems, e.g. medical imaging, labeled training

data are often expensive to acquire in a large volume, if not impossible at all. Thus, it is highly

desirable that the learning based methods can be trained on small datasets and can generalise the

learned knowledge to unseen data. By explicitly building the forward operators into networks, DNNs

directly respect the underlying physical principles, thereby reducing the requisite amount of training

data.

Below we use h(·) to denote a DNN, and use the subscript to distinguish DNNs. Further,

we abuse the subscript for a distribution and a DNN to reparameterise the corresponding random

variable. For example, pθ (x) is a distribution of x and hθ (·) is a DNN to reparameterise x, both with

the parameter θ .

4.3 Probabilistic Iterative Networks
Now we develop the proposed computational framework, Probabilistic Iterative Networks (PIN).

The goal is to learn a map from the observation y to an approximate posterior distribution q(x|y).

The map is modelled with a deep iterative network that recurrently inputs the forward map and

observation and refines the reconstruction samples, and the probabilistic encoder therein enables

generating diverse reconstruction samples. It employs the CVAE loss [126, 135], a conditional

variant of variational autoencoders (VAEs) [80] (see [81] for a detailed introduction), and is trained

using the reparameterisation trick. Below we first describe VAEs, the reparameterisation trick and

the approximate aleatoric uncertainty interpretation with CVAEs [126, 141], and then develop the

proposed framework.
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4.3.1 VAE, Reparameterisation Trick and CVAE

Let p
θ̃
(x|y) be the intractable target distribution of interest, where the vector θ̃ in p

θ̃
(x|y) contains

the parameters of both prior p
θ̃
(x) and likelihood p

θ̃
(y|x), e.g., prior belief strength and noise preci-

sions etc. In practice, the vector θ̃ may be viewed as hyperparameters and estimated from the given

data y simultaneously with the variational parameter φ̃ in the approximation q
φ̃
(x|y), e.g., by EM

type algorithms.

To explore the target p
θ̃
(x|y), variational Bayes is employed, which is a popular posterior ap-

proximation technique in machine learning [134]. It selects the best approximation q
φ̃
(x|y) from

a candidate family Q (parameterised by the vector φ̃ ) by minimising suitable divergence, notably

Kullback-Leibler (KL) divergence [83]. As reviewed in Chapter 1, the KL minimisation is often

transformed into an equivalent evidence lower bound (ELBO) maximisation

max
φ̃

{
L (θ̃ , φ̃ ,y) = Eq

φ̃
(x|y)[log p

θ̃
(y|x)]−DKL(qφ̃

(x|y)||p
θ̃
(x))

}
. (4.1)

Solving the optimisation problem (4.1) requires evaluating the gradient of the functional L

with respect to φ̃ , i.e., ∇
φ̃
Eq

φ̃
(x)[ fθ̃

(x)] for a deterministic function f
θ̃

parameterised by θ̃ . The

challenge lies in the fact that the integral Eq
φ̃
(x)[ fθ̃

(x)] is often not analytically tractable and can

only be evaluated by Monte Carlo methods. The reparameterisation trick [80, 116] (see the review

[101] for other methods and their relative merits) is useful to overcome the challenge. It assumes that

the conditional sampling of x depends on the condition y and an easy-to-sample auxiliary variable z

distributed according to p(z):

x = g
φ̃
(y,z), with z∼ p(z),

where g
φ̃

is a deterministic function and can be modelled by DNNs. Then one obtains the following

Monte Carlo estimator of (4.1): if the KL term is not available analytically,

L A =
1
L

L

∑
`=1

[log p
θ̃
(yi|x(i,`))− logq

φ̃
(x(i,`)|yi)]

and if the KL term is available analytically,

L B =
1
L

L

∑
`=1

[log p
θ̃
(yi|x(i,`))]−DKL(qφ̃

(x|yi)||pθ̃
(x)),

where {x(i,`)}L
`=1 are L samples generated with yi and using the variational encoder q

φ̃
(x|y): {z`}L

`=1

are sampled from p(z), and x(i,`) = g
φ̃
(yi,z`).

There are two neural networks in VAEs, an encoding network with parameter φ̃ and a decoding

network with parameter θ̃ . In practice, VAEs often do not use the encoding network to model the
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parameterisation function g
φ̃

in an end-to-end way. Instead, it takes the observation y and outputs

the coefficients to reparameterise the unobservable x. In particular, for a multivariate Gaussian

q
φ̃
(x|y) = N (x|µ(y),Σ(y)), the decoding network can output the mean µ(y) and Cholesky factor

L(y) of the covariance Σ(y) = L(y)L(y)T . By sampling z from the standard Gaussian distribution

p(z) = N (z|0, I), we can recover samples from q
φ̃
(x|y) = N (x|µ(y),Σ(y)) by

x = µ(y)+L(y)z.

In theory, the decoding network can also output the full parameters to reparameterise the unobserv-

able x. However, in practice, one usually employs an identity variance Gaussian with the mean

being decoding output and leaves the prior distribution as the standard Gaussian. VAE allows per-

forming both variational inference and model selection simultaneously, i.e., with respect to φ̃ and θ̃ ,

respectively. Thus, the actual objective of VAEs is

max
φ̃ ,θ̃
{LVAE(θ̃ , φ̃ ;y) = Eq

φ̃
(x|y)[log p

θ̃
(y|x)]−DKL(qφ̃

(x|y)||p
θ̃
(x))}.

However, a direct application of VAEs to inverse problems is problematic: VAEs are unsuper-

vised and use only noisy observations y (i.e., noisy observations of A (x)) but not the ground-truth

data x in the training. In the context of inverse problems, the use of the ground truth data x help tackle

the intrinsic ill-posedness. To circumvent the issue, we employ the conditional VAEs (CVAEs) loss

[126, 135]:

max
φ ,θ

{
LCVAE(θ ,φ ;x,y) = Eqθ (z|x,y)[log pφ (x|y,z)]−DKL(qθ (z|x,y)||pφ (z|y))

}
. (4.2)

There are three distributions: a teacher encoder qθ (z|x,y), a student encoder pφ1(z|y) and a con-

ditional decoder pφ2(x|y,z). The vector φ = (φ1,φ2) assembles the parameters of pφ1(z|y) and

pφ2(x|y,z). Interestingly, the CVAE loss admits the following approximate inference interpretation

[141].

Proposition 4.3.1. Optimising LCVAE(θ ,φ ;x,y) (expected on the training data distribution) is

equivalent to optimising an upper bound of the expected reversed KL divergence

J∗(p(x|y)) = Ep∗(y)[DKL(p∗(x|y)||p(x|y))].

Proof. See Appendix C.1

Thus, CVAEs indeed learn an optimal map from the observation y to an approximate posterior

p(x|y), in the sense of minimising expected loss of reversed KL divergence. This interpretation

underpins the validity of the procedure for quantifying aleatoric uncertainties.



4.3. Probabilistic Iterative Networks 95

Below, we model the conditional encoder pφ2(x|y,z) by a mean-field Gaussian with variance β I

(β is a hyperparameter). Then the DNN with parameter φ2 only outputs the mean of pφ2(x|y,z), and

on a mini-batch {(xi,yi)}M
i=1, the objective function is given by:

L̂ L
CVAE(φ ,θ) =−

1
2M

M

∑
i=1

1
L

L

∑
`=1
‖xi− x̂(i,`)‖2− β

M

M

∑
i=1

DKL(qθ (z|xi,yi)||pφ1(z|yi)),

where x̂(i,`) is the mean of pφ2(x|yi,zi,`) and {zi,`}L
`=1 are L samples drawn from qθ (z|xi,yi). In

practice, we can reduce the computational complexity by letting L = 1. Note that, for special choices

of qθ (z|x,y) and pφ1(z|y), the KL divergence term may be evaluated analytically, and can be used,

if available. The gradient of the functional L̂ L
CVAE(φ ,θ) is then evaluated by the reparameterisation

trick.

Remark 4.3.1. In VAEs, the approximate posterior of the unobservable x is modelled by qφ (x|y),

whereas in CVAEs, it is modelled by pφ (x|y) =
∫

pφ2(x|y,z)pφ1(z|y)dz. In both VAEs and CVAEs, the

stochasticity of x comes from z: in VAEs, z is independent on the observation y, whereas in CVAEs,

z is dependent on y. Since the distribution of z is learned, it is more flexible than that in VAEs. Thus,

even if pφ2(x|y,z) is chosen to be simple distributions, e.g., Gaussian distributions, pφ1(x|y) can still

model a broad family of distributions for continuous unobservable x due to the presence of pφ1(z|y),

in a manner similar to scale mixture of Gaussians [141].

4.3.2 Probabilistic Iterative Networks (PIN)

A probabilistic modelling framework consists of one learning principle given by a loss function with

proper probabilistic interpretation, and one graphical model describing probabilistic dependency

between variables. In the proposed framework, we employ a CVAE type loss function:

max
φ ,θ

{
LPIN(θ ,φ ;x,y,A ) = Eqθ (z|x,y,A )[log pφ (x|y,z,A )]−DKL(qθ (z|x,y,A )||pφ (z|y))

}
. (4.3)

Its difference from the standard CVAE loss (4.2) is that (4.3) also includes the forward map A and its

adjoint A ∗ as training data. Here A and A ∗ may have different realisations (e.g., corresponding to

different discretisations) with varying dimensions. Nonetheless, it is a deterministic variable: during

the training for one class of inverse problems, the maps are all discretisations of the underlying

continuous operator. Then the modelled approximate posterior pφ (x|y) is given by

pφ (x|y) =
∫

pφ (x|y,z,A )pφ (z|y)dz.

It is summarised by the graphical model in Fig. 4.1(a), where shaded and non-shaded nodes represent

observations and hidden variables, respectively, and solid and dotted arrows denote probabilistic

dependencies and explicit incorporations, respectively. Lying at the core of the framework is a

learning algorithm that can learn a conditional sampler, in a manner similar to a random number
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generator (RNG) for a given distribution. Note that for an RNG, different runs lead to different

samples, but with a fixed random seed, it repeats the path for different runs. The auxiliary (low-

dimensional) latent variable z conditioned on the observation y is an analogue of the random seed in

the RNG, and is introduced into the deterministic iterative process (modelled by an iterative network)

to diversify the reconstruction samples. In particular, for a fixed z, the iteration process inputs the

sample initialisation and applies a recurrent refining step based on suitable sample quality measure

and the information encoded in the auxiliary variable z.

yA

x z

Iterative     
Network

xk-1

ak-1

z

y

A

E

R

xk

ak

Recurrent

(a) graphical model (b) iterative network

Figure 4.1: The graphical model and iterative network of the proposed framework.

Three DNNs are employed to model the distributions in the loss function LPIN(θ ,φ ;x,y,A )

and used for the conditional sampling process, including one for the iterative process, i.e., itera-

tive network, and two for probabilistic encoders, i.e., teacher encoder and student encoder. The

observation y and forward map A constitute their inputs: the observation y is input into the two

probabilistic encoders and also each recurrent of the iterative network; the forward map is also input

into each recurrent of the iterative network and also in one of the probabilistic encoders (i.e., the

teacher encoder) during training. Below we explain how the three networks work separately.

The recurrent component is the (deep) iterative network hφ2(·). See Fig. 4.1(b) for a schematic

illustration, where shaded and nonshaded circles denote variables for updating and fixed variables

during the sampling process, respectively, and shaded and nonshaded rectangles represent functional

input to the network and the iterative network, respectively. During the process of one sampling,

only the values of shaded circles and rectangles change. The network begins with the initial guess

x0 (default: backprojected data A ∗y) and outputs xK after K iterations as the mean of pφ (x|y,z,A ).

At the k-th iteration, the network takes one sample xk−1 to refine and outputs an improved sample

xk. To incorporate the forward map A and the observation y, we employ a functional E(A ,y,xk−1).

In the lens of variational regularisation [67], E(A ,y,xk−1) measures how well xk−1 can explain

the data y. To indicate how well xk−1 fulfils the prior knowledge, e.g., sparsity (in a transformed

domain), we use also the penalty R(xk−1) as a part of the input. For the sample quality measure

E(A ,y,xk−1) and the penalty R(xk−1), we use ||y−A (xk−1)||2 (or its gradient), and ||xk−1||22 or
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|xk−1|TV (total variation semi-norm), respectively. Besides the latest iterate xk−1 and the quality

indicators E and R, the network hφ2(·) also takes a memory variable ak−1 and an auxiliary variable

z. The memory variable ak−1 plays the role of momentum in gradient type methods and is to retain

long-term information between iterations. The auxiliary random variable z is low-dimensional and to

introduce randomness into the iteration procedure. Since both xk−1 and xk belong to the unobservable

space Rn, we adopt CNNs without pooling layers to model the iterative network. Different inputs of

hφ2(·) are concatenated along the channel axis, and the outputs of hφ2(·), i.e. the update δxk (with

xk = xk−1 +δxk) and the updated memory ak, are also concatenated.

Remark 4.3.2. Note that the proposed framework re-uses the observation data y and the maps A

and A ∗ for refinement at each step, and the overall procedure differs greatly from the conventional

deterministic mapping that serves as a post-processing step of back-projection. The latter are end-

to-end mappings that take the backprojected data and output a refinement, whereas PIN employs the

current sample and the quality measures, and decide the refinement strategy accordingly.

Teacher 
Encoder

y

x

A

z
Student 
Encoder

y z

(a) teacher encoder qθ (z|x,y,A ) (b) student encoder pφ1(z|y)

Figure 4.2: Probabilistic encoders in the framework. Shaded nodes denote the random variable.

The framework also involves two encoders of z, i.e., a teacher encoder qθ (z|x,y,A ) and a

student encoder pφ1(z|y), and with the reparameterisation trick, both encoders output coefficients

to reparameterise the random variable z; see Fig. 4.2 for a schematic illustration. The student

encoder pφ1(z|y) takes the observation y, and encodes the observation-based knowledge so as to

inform the iterative network. Given one sample z from pφ1(z|y), the iterative network gives one

refining increment, and the distribution of z contributes to the diversity of the unobservable x. To

help train the student encoder pφ1(z|y), we input the ground truth x and the forward map A into

the teacher encoder qθ (z|x,y,A ). The teacher encoder qθ (z|x,y,A ) is discarded once the training is

finished and only the student encoder pφ2(z|y) is used at the inference stage. The encoders pφ1(z|y)

and qθ (z|x,y,A ) are modelled by two DNNs hφ1(·) and hθ (·), respectively, which reparameterise the

auxiliary variable z. Since the variable z is low-dimensional with a predetermined dimension, CNNs

with reduced mean layers and 1×1 convolutional layers can guarantee the dimension flexibility of

the input y. To input the ground-truth data of x with y into hθ (·) with the dimension flexibility, we
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use the forward map A and concatenate A (x) with y along the channel axis. It is worth noting that

the framework is very flexible with the problem dimension, and one can conduct training (xi,yi) of

different shapes (and the corresponding Ai) .

Now we can state the algorithms for training and inference of PIN, cf. Algorithms 5 and 6,

respectively. In the algorithms, M denotes the mini-batch size, T the maximum number of training

batches, K the number of recurrences of hφ2 for one sample, and (φ̂ , θ̂) the output of the training

(i.e., the learned parameters). There are many possible choices of the stochastic optimiser at line 11

of Algorithm 5, e.g., ADAM, and SGD. We shall employ ADAM in our experiment. The final sam-

ple from the iterative process is regarded as the mean of the conditional distribution pφ (x|y,z,A ).

Thus, given the initial x0, the iteration with different realisations of z leads to diverse samples of

the unobservable x. Since each sample is the mean of some conditional distribution pφ (x|y,z,A )

rather than a direct sample from the target approximate posterior, the summarising statistics should

be transformed into that of the target distribution as follows. The posterior variance contains two

components: one is due to the background (i.e., β I), and the other is due to the sample variance (i.e.,
1
S ∑

S
i=1 xixt

i− Êp(x|y)[x]Êp(x|y)[x]t ).

Proposition 4.3.2. Let the approximate posterior pφ (x|y) =
∫

pφ (x|y,z,A )pφ (z|y)dz be a mixture

of Gaussian distributions, i.e., pφ (x|y,z,A ) = N (x|xK(z),β I), and z be the mixture variable. Then

given samples {zi}S
i=1 of z from pφ (z|y), and the corresponding xK(z), denoted by {xi}S

i=1, the mean

Ep(x|y)[x] and the covariance Covp(x|y)[x] of pφ (x|y) can be estimated by the following unbiased

estimators:

Êp(x|y)[x] =
1
S

S

∑
i=1

xi and Ĉovp(x|y)[x] = β I +
1
S

S

∑
i=1

xixt
i− Êp(x|y)[x]Êp(x|y)[x]

t . (4.4)

Proof. For the mean Ep(x|y)[x], by dentition, there holds

Ep(x|y)[x] =
∫

x
xp(x|y)dx =

∫
x
x
∫

z
pφ (x|y,z,A )pφ (z|y)dzdx

=
∫

z

∫
x
xpφ (x|y,z,A )dxpφ (z|y)dz =

∫
z
xK(z)pφ (z|y)dz.

Thus, 1
S ∑

S
i=1 xi is an unbiased estimator of Ep(x|y)[x]. Similarly, for the covariance Covp(x|y)[x], by

the standard bias variance decomposition,

Covp(x|y)[x] =
∫

xxT p(x|y)dx−Ep(x|y)[x]Ep(x|y)[x]
T
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Now the first term on the right hand side, there holds

∫
xxT p(x|y)dx =

∫
x
xxT

∫
z

pφ (x|y,z,A )pφ (z|y)dzdx =
∫

z

∫
x
xxT pφ (x|y,z,A )dxpφ (z|y)dz

=
∫

z
(Covpφ (x|y,z,A )[x]+Epφ (x|y,z,A )[x]Epφ (x|y,z,A )[x]

T )pφ (z|y)dz

= β I +
∫

z
Epφ (x|y,z,A )[x]Epφ (x|y,z,A )[x]

T pφ (z|y)dz

Consequently, β I + 1
S ∑

S
i=1 xixt

i− Êp(x|y)[x]Êp(x|y)[x]t is an unbiased estimator of Covp(x|y)[x].

Algorithm 5 PIN training

1: Input: Training data {(Ai,xi,yi)}N
i=1, β , T , K, M

2: for t = 1,2, . . . ,T do
3: Randomly select a mini-batch training data {(Ai,xi,yi)}M

i=1;
4: Sample {zi}M

i=1 from {qθ (z|xi,yi)}M
i=1;

5: Initialise {x̂i}M
i=1 with {A ∗(yi)}M

i=1 and {ai}M
i=1 with zeros;

6: for k = 1,2, . . . ,K do
7: Update {x̂i}M

i=1 and {ai}M
i=1 with {hφ2(x̂i,E(Ai,yi, x̂i),R(x̂i),ai,zi)}M

i=1;
8: end for
9: Evaluate the KL divergence {DKL(qθ (z|xi,yi)||pφ1(z|yi))}M

i=1;
10: Compute the objective function L̂ 1

CVAE(φ ,θ);
11: Update the parameters (φ ,θ);
12: end for
13: Output: (φ̂ , θ̂)

Algorithm 6 PIN inference

1: Input: Test data (A ,y), S, K, φ̂ = (φ̂1, φ̂2)
2: for s = 1,2, . . . ,S do
3: Sample zs from pφ1(z|y)
4: Initialise x̂s with A ∗(y) and a with zeros
5: for k = 1,2, . . . ,K do
6: Update x̂s and a with hφ2(x̂s,E(A ,y, x̂s),R(x̂s),a,zs)
7: end for
8: end for
9: Output: {x̂s}S

s=1

10: Evaluate (Êp(x|y)[x], Ĉovp(x|y)[x]) by Eq. (4.4)

Remark 4.3.3. Generative modelling frameworks do not naturally guarantee dimension flexibility,

due to the constraints induced by DNN architectures connecting the variables, and are not flexible

when using only the training data {(xi,yi)}N
i=1. Also recent approaches [4] use the unobservable

and backprojected data pairs {(xi,A ∗
i (yi))}N

i=1, which is potentially at the expense of a loss of

information.

Remark 4.3.4. In the machine learning literature, the idea of learning an algorithm is often referred

to as Learning to Learn (L2L) [10, 29, 46]. It aims at extracting meta knowledge for a class of similar

problems. PIN represents a probabilistic extension of L2L: by introducing an auxiliary variable z,
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it enables the iterative network to output samples from a modelled distribution, thereby extending

L2L to generative modelling. Meanwhile, in L2L, the sample quality measure is the same as the loss

function, whereas in PIN, the objective function is the CAVE loss, which is different from E or R.

That is, PIN does not minimise any deterministic functional E(·)+λR(·), and instead it learns how

to makes use of the information during the training process. In particular, it does not assume any

noise type of observation y by using the measure E(·).

4.4 Numerical Experiments and Discussions
In this part we showcase the proposed computational framework with experiments on positron emis-

sion tomography (PET). It is a pillar of modern diagnostic imaging, allowing noninvasive, sensitive

and specific detection of functional changes in a number of diseases. As reviewed in Chapter 1,

most PET reconstruction algorithms rely on penalised maximum likelihood estimates, using a hand

crafted prior (e.g., total variation and anatomical priors) [111], or more recently learning based ap-

proaches, e.g., unrolled deep iterative networks, have been proposed. While these techniques have

been successful, they lack the capability to provide uncertainty estimates. Thus, it is of much interest

to provide uncertainties to relevant point estimates.

For the experiments, we employ a 3-layer CNN as the iterative network hφ2 and fix K = 10

iterations for each sampling step, cf. Fig. 4.3, and VGG style encoders for both hφ1 and hθ , cf.

Fig. 4.4. We train PIN on a synthetic dataset consisting of elliptical phantoms [3], and test it on

the dataset BrainWeb [30]. Throughout, the training pair (x,y) ∈ R128×128×R30×183, and the for-

ward map is the Radon transform, which is normalised, and different peak values of x are used

to indicate the count level: 1e4 and 1e2 for respectively moderate and low count levels. The ob-

servation y is generated by corrupting the sinogram A x by Poisson noise, i.e., yi ∼ Pois((A x)i).

The hyper-parameter β is tuned in a trial-and-error manner, and fixed at 5e-3 below. The ex-

periments are conducted on a desktop with two Nvidia GeForce 1080 Ti GPUs and Intel i7-

7700K CPU 4.20GHz×8. PIN is trained for T = 1e5 batches, each of which contains 10 ran-

domly generated (x,y) pairs on the fly. The training almost converges after 2e4 batches and it

takes around 11 hours to go over all 1e5 batches. The summarising statistics reported below are

computed from 1000 samples for each observation y generated by the trained PIN. It takes av-

eragely 12.66s to sample 1000 images of size 128× 128 from a trained framework. The imple-

mentation uses the following public deep learning frameworks: Tensorflow [1], Tensorflow

Probability [36], DeepMind Sonnet (https://github.com/deepmind/sonnet)

and ODL (https://github.com/odlgroup/odl), and the source code can be found at

https://github.com/chenzxyz/prob_iterative_net.

Remark 4.4.1. To validate that our framework can be trained on one dimensional setting and used

on different dimensional settings, we only incorporate one realisation (matrix form) of the forward

operator A per training. For example, we fixed the number of angles as 30 and fixed the number

https://github.com/deepmind/sonnet
https://github.com/odlgroup/odl
https://github.com/chenzxyz/prob_iterative_net
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of projection per angle as 183 for training data with x of size 128× 128. Note that for different

realisations of the forward operator, the null space of the matrices can be different. The discus-

sion of the generalisation of one trained framework on test data with operator realisation deviation

is interesting but not of the main focus on this study. As a result, we leave it as possible future

work. Nevertheless, this problem could be mitigated by incorporating various operator realisations

covering different null spaces during single training, due to the flexibility of our framework.

xk−1 z ERak−1

input

3× 3× 32

conv relu

3× 3× 32

conv relu

3× 3× (5 + 1)

conv

relu

ak

output

δxk

Figure 4.3: The layer configuration of the iterative network hφ2 : 3×3×32 denotes convolutional layer with a
kernel size 3×3 and 32 output channels. In the third convolutional layer, 5+1 denotes 5 channels
for memory ak and 1 channel for the update δ k.
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Figure 4.4: The layer configurations of the teacher encoder (top) and student encoder (bottom): (3×3×32)×3
denotes 3 convolutional layers respectively followed by an ReLU layer with a kernel size 3× 3
and 32 output channels. 2 under the brown layer denote average pooling layer with stride size 2.
1×1× (2×6) denotes 1×1 convolutional layer with 12 output channels, i.e. 6 for mean µ and 6
for log (diagonal) variance logΣ.
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4.4.1 Flexibility of PIN

The proposed PIN is very flexible and is applicable to a broad range of inverse problems. In this part,

we illustrate the following distinct features (i) transferability on different datasets and (ii) flexibility

with respect to problem dimension. To see (i), we show several samples from the training dataset,

which consists of elliptical phantoms, and more realistic medical images (BrainWeb) in Fig. 4.5,

for two peak values 1e2 and 1e4. In the low-count case, the backprojection A ∗y is very noisy, and

represents a poor approximation to the ground truth x† and thus it is numerically far more challenging

for image reconstruction than the moderate count case. Visually, the phantoms in the training data

do not resemble real medical images, due to their lack of fine detailed structures. Nonetheless, the

mean of the approximate posterior represents excellent reconstructions on the BrainWeb dataset; see

rows 2–4 of Fig. 4.6 for exemplary results on ten test images from BrainWeb, where the training and

test data have identical dimensions. The posterior variance, computed according to (4.4), captures

the overall shape of phantom, similar to that obtained by expectation propagation [140], and the

overall shape also resembles the difference between the posterior mean and ground truth but with

less detailed structures. This is characteristic of PET reconstructions, where the reconstructed images

often lack very fine details. In summary, PIN can learn high level knowledge from the training data

(less close to realistic medical images) to facilitate the reconstructions, and performs well on test data

(closer to realistic medical images), and the explicit incorporation of the forward operators allows

disentangle the mixture of unobservable and observation spaces so as to avoid overfitting synthetic

training data.

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x)

Figure 4.5: Samples of synthetic training data (row 1–3) and test data from BrainWeb (row 4–6): ground truth
phantoms x†, noisy sinograms y and backprojected data A ∗(y): (i)–(v) and (vi)–(x) refer to low
and moderate count levels, respectively.

Now we illustrate the feature (ii), i.e., dimension flexibility of PIN, with one trained PIN with

the training data (x,y) ∈ R128×128 ×R30×183, peak value of x at 1e4, and test the flexibility by
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test data: (x,y) ∈ R128×128×R30×183

test data: (x,y) ∈ R180×180×R30×257

test data: (x,y) ∈ R128×128×R60×183

10 20 30 50 70 90 100 110 130 150

Figure 4.6: Reconstructions of 10 samples from BrainWeb with peak value 1e4 by PIN. The top row denotes
ground truth phantoms. Rows 2–4, 5–7, and 8–10 are for test data of size (x,y) ∈ R128×128 ×
R30×183, (x,y) ∈ R180×180×R30×257 and (x,y) ∈ R128×128×R60×183, respectively. Within each
block, from top to bottom: posterior mean x̂, the difference x̂− x†, and posterior variance.

varying the dimension of either x or y. First, we fix the number of project angles in the forward

map and increase the dimension of x by using (x,y) ∈ R180×180×R30×257; see rows 5–7 of Fig. 4.6

for the corresponding reconstructions. It is observed that PIN can be trained on a low-dimensional

dataset and still perform well on high-dimensional data. Second, we fix the dimension of x and

increase the number of projections in the forward map using y ∈ R60×183. The reconstructions

in rows 8–10 of Fig. 4.6 show that although the training process has access to only observations
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with more limited-angles, PIN can still give good reconstructions for more informative data. In

either case, the observation on the variance structure remains largely valid. Table 4.1 summarises

the corresponding quantitative results using two standard image quality measures, i.e., PSNR and

SSIM [65], and the table also includes results for the same test images with a peak value 1e2. For

either peak value, the image quality measures improve steadily as the number of projection angle

increases or the dimension of x increases, but the latter has more pronounced effect. Further, the

reconstruction accuracy degrades significantly as the peak value decrease from 1e4 to 1e2, where

the latter is numerically far more challenging.

These features of PIN have important practical implications. First, PIN enables using synthetic

datasets for training, and avoid expensive physically derived labeled training data, which is often

expensive to collect. Second, PIN can be trained efficiently. Although the DNN feedforward prop-

agation is efficient, the training is generally time consuming. One the key influencing factor is the

data size. Our experiments indicate that PIN can be trained on a small dataset and then used on

datasets of larger sizes, thereby reducing the training time. Third, PIN can extract high-level useful

knowledge for image reconstruction, to some extent. Even though it has never seen the larger spec-

trum of projection angles during training, it still performs well on more informative data (i.e., with

more angles). This is possibly due to explicit inclusion of the forward operators and thus the built

model is more comprehensive.

Table 4.1: PSNR and SSIM values for the reconstructions by the trained PIN on ten phantoms with peak value
1e4 (MC) and 1e2 (LC), using different test data sizes. The column index refers to Python style
index of the phantom in the BrainWeb dataset.

index 10 20 30 50 70 90 100 110 130 150

PSNR

(128,30) MC 27.79 27.12 27.16 27.34 25.55 24.92 26.78 27.74 27.94 30.88
LC 22.86 21.97 22.06 22.10 20.77 20.68 21.49 22.21 22.58 26.16

(180,30) MC 29.49 28.92 28.69 29.11 28.14 27.28 28.29 29.29 29.59 33.30
LC 23.59 23.57 23.40 23.54 23.01 22.67 23.19 23.52 24.08 27.62

(128,60) MC 28.68 28.29 28.17 28.54 26.28 26.21 27.99 28.48 28.73 31.21
LC 22.82 22.38 22.46 22.26 20.91 20.92 21.61 22.29 22.58 26.20

SSIM

(128,30) MC 0.92 0.92 0.93 0.92 0.91 0.91 0.93 0.94 0.95 0.98
LC 0.75 0.72 0.75 0.68 0.63 0.71 0.71 0.71 0.75 0.87

(180,30) MC 0.93 0.93 0.93 0.93 0.93 0.92 0.93 0.94 0.96 0.98
LC 0.77 0.75 0.76 0.73 0.72 0.73 0.74 0.73 0.77 0.88

(128,60) MC 0.94 0.95 0.95 0.94 0.93 0.94 0.96 0.96 0.96 0.98
LC 0.76 0.75 0.76 0.69 0.66 0.71 0.72 0.73 0.74 0.87

4.4.2 Comparison with Benchmarks

Now we compare PIN with conventional and deep learning based methods on all 181 phantoms

in the BrainWeb dataset. PIN is compared with the following benchmark methods, i.e., maximum
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likelihood EM (MLEM) [125], maximum a posteriori with total variation prior with nonnegativity

constraint (TV-MAP) [64] and iterative deep neural network (IDNN) [3], and the results are sum-

marised in Table 4.2. MLEM and TV-MAP are two of the most established iterative reconstruction

methods in the PET community, and IDNN is an unrolled iterative method inspired by classical

variational regularisation and exploits DNNs for iterative refinement. For MLEM, we use odl in-

built solver mlem, and for TV-MAP, use the primal dual hybrid gradient method (implemented by

odl.solvers.pdhg). The regularisation parameter for total variation prior is fixed at 2e-1 and

2e0 for the moderate and low count level, respectively, which was determined by a trial-and-error

manner. The comparative results are summarised in Table 4.2, shown with SSIM and PSNR, aver-

aged over all 181 phantoms in the BrainWeb dataset. The results clearly show that PIN can deliver

state-of-the-art point estimates in terms of PSNR and SSIM, especially in the low count case. How-

ever, PIN additionally can provide uncertainty information which is unavailable from benchmark

methods.

Table 4.2: Comparisons between PIN mean and benchmark methods on 181 BrainWeb phantoms at two count
levels: 1e4 (MC) and 1e2 (LC).

MLEM TV-MAP IDNN PIN
MC 0.73/23.20 0.85/28.76 0.92/29.07 0.91/28.01
LC 0.64/21.55 0.62/22.58 0.59/21.68 0.63/23.10

To shed further insight, we evaluate the methods on phantoms with an artificially added tumour

by changing the pixel values to the peak value. We (randomly) choose two phantoms from BrainWeb

dataset (Python style index: 10 and 110). A small tumour of radius 2 and a large tumour of

radius 5 are added into the 10-th phantom and the 110-th phantom, respectively. The corresponding

reconstructions are shown in 4.7. It is observed the tumours can be clearly reconstructed by the

PIN means for both count levels, except the small tumour at low count levels. In the latter case,

none of the methods can reasonably reconstruct the tumour, due to too noise data compared to the

signal strength. The results by PIN, IDNN and GM3 (to be described below) are comparable, at least

visually. The ability of reconstructing tumours further indicates that PIN does not miss out important

features non-present in the training data, as long as the signal is strong, since many machine learning

based methods tend to miss the tumour due to the bias induced by tumour-free training data [100].

Next we compare PIN with the probabilistic approach [85], which reports state-of-the-art per-

formance for aleatoric uncertainty. It employs (non-Bayesian) neural network ensembles to estimate

predictive uncertainty, each network in the ensemble learn similar values close to the training data,

and different ones in regions of the space far from the training data. Thus, the approach lacks rigor-

ous Bayesian interpretation as PIN. To this end, we train a mixture with three multivariate Gaussians

(GM3) without adversarial samples, where the training of each component of the mixture is to fit a

mean network and a variance network using Gaussian log-likelihood to the data [102]. To stabilise

the training procedure, we first train the mean network and then train the variance network. Alterna-
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ground truth MLEM TV-MAP IDNN PIN mean PIN var GM3 mean GM3 var

Figure 4.7: Tumour tests on two BrainWeb phantoms of compared benchmarks and PIN. For each phantom,
the top row is for the low count level and the bottom row is for the moderate count level.

tively, one can train the mean network as a warmup and then train the mean and variance networks

simultaneously, but this procedure usually leads to worse results, and thus we do not present the rel-

evant results. The comparative quantitative results are given in Table 4.3. It is observed that PIN can

provide better point estimates in terms of both SSIM and PSNR, which concurs with Fig. 4.8 in the

low count case, whereas in the moderate count case, GM3 can sometimes deliver better results. This

is consistent with the prevailing empirical observation that Bayesian type deep learning techniques

tend to compromise the accuracy of prediction [104]. In terms of the variance map, that by GM3

contains more structural patterns and in particular resembles more closely the error map.

Table 4.3: PSNR and SSIM values for the reconstructions by the trained PIN and GM3 on ten phantoms with
peak value 1e4 (MC) and 1e2 (LC). The column index refers to Python style index of the phantom
in the BrainWeb dataset.

index 10 20 30 50 70 90 100 110 130 150

PSNR

PIN MC 27.66 27.14 27.25 27.25 25.65 24.98 26.91 27.81 27.96 30.86
LC 22.60 22.09 22.30 22.14 22.87 22.52 21.39 22.22 22.48 25.78

GM3 MC 28.05 27.48 27.43 27.50 26.77 26.83 27.74 29.33 32.57 28.21
LC 21.86 21.35 21.09 20.69 19.32 19.02 19.74 20.61 21.32 23.67

SSIM

PIN MC 0.92 0.92 0.93 0.92 0.91 0.91 0.93 0.94 0.95 0.98
LC 0.74 0.74 0.76 0.67 0.62 0.68 0.71 0.72 0.74 0.86

GM3 MC 0.92 0.92 0.93 0.91 0.92 0.93 0.93 0.95 0.98 0.93
LC 0.72 0.70 0.70 0.62 0.57 0.62 0.65 0.67 0.96 0.80

To shed more insights into the variance by PIN and the probabilistic benchmark GM3, we

show the cross-section plots with marginal 0.95 posterior credible intervals in Fig. 4.9 for both

moderate and low count levels. According to Proposition 4.3.2, the estimated variances by PIN

contains two distinct sources, i.e., sample variance and the variance β of the conditional Gaussians
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PIN

GM3

10 20 30 50 70 90 100 110 130 150

Figure 4.8: Reconstructions of 10 samples from BrainWeb with peak value 1e2. The top row refers to ground
truth phantoms. The 2nd–4th and 5th–7th rows are results by PIN and GM3, respectively, from top
to bottom: posterior mean x̂, posterior mean error, and posterior variance.

pφ (x|y,z,A ) = N (x|xK(z),β I). The latter is uniform across the pixels, and acts as a background.

Thus, we show the HPDs of PIN with full variance (unbiased variance estimated by Ĉovp(x|y)[x])

and the variance without β factor (i.e., Ĉovp(x|y)[x]− β I) contains more structures in the credible

intervals. Further, the overall shape and magnitude of the posterior credible intervals by PIN with

the full variance and GM3 are fairly closely to each other, but there is notable difference in the

cold regions (i.e. zero count): While GM3 still recovers non-zero variances in cold regions, PIN

could provide almost zero variance, upon subtracting the background variance. In addition, poste-

rior credible intervals of PIN without background variance can indicate the contrast of variance to

highlight the pixels where variances of GM3 are also relatively higher. The comparison between the

cross-section plots for low and moderate count cases (i.e., high and low noise levels, respectively)

on the same ground truth phantom indicates that PIN does provide higher uncertainty for higher

noise level, which is intuitively consistent with the underlying statistical background. However, one

should interpret the differences of results with some caution: one common issue with UQ methods is

the calibration of the uncertainty, and most deep learning based methods do not provide out-of-box
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calibrated probabilities [84]. For large-scale inverse problems, e.g., PET, it is nontrivial to calibrate

the uncertainty provided by UQ methods within the setting of implicit prior and likelihood function.

Thus, one should not immediately conclude that the uncertainty recovered by PIN is less accurate

than that GM3 or vice versa.

MC, Phantom 10 LC, Phantom 10

MC, Phantom 90 LC, Phantom 90

PIN-FV PIN-WB GM3-FV PIN-FV PIN-WB GM3-FV

Figure 4.9: Comparison between PIN with full variance (PIN-FV), PIN without background variance (PIN-
WB) and GM3 with full variance (GM3-FV), for BrainWeb phantoms 10 and 90 (size: 128×128)
with the two peak values 1e4 (MC) and 1e2 (LC). Within each block, from left to right: sample
mean and 0.95 credible interval of the 11th (top) and 101-th (bottom) horizontal slice.

4.5 Conclusion
In this work, we have developed a general and flexible probabilistic computational framework,

termed as Probabilistic Iterative Networks, for uncertainty quantification of inverse problems in a

purely data-driven setting. The approach is based on the conditional variational autoencoder loss,

and employs the iterative deep neural network to recurrently refine the samples using the observation

and forward map, seeded by a probabilistic encoder conditioned on the observation. The efficiency

of the framework is underpined by encoding the observations in a low-dimensional latent space, and

the flexibility (with datasets and problem dimensions) is facilitated by allowing explicitly inputting

forward maps and their adjoints. The potentials of the framework have been demonstrated on PET

image reconstruction with both moderate and low count levels, and the approach shows competitive

performance when compared with several deterministic and probabilistic benchmark methods.

There are several avenues for further study. First, the framework is flexible and general, and it is

of interest to apply it to other imaging modalities, e.g., MRI, CT and PET-MRI, especially in the un-

dersampling / low-dose regime, for which there is a great demand on uncertainty quantification due

to lack of information. Such studies will also shed insights into statistical features of the framework.
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Second, theoretically, it is of much interest to analyse the asymptotic of the CVAE loss as an upper

bound of the expected KL divergence. This line of research has been long-standing in variational in-

ference, and often provides theoretical guarantees of the overall inference procedure and guidelines

for constructing efficient approximations. Third, it is imperative to develop scalable benchmarks for

uncertainty quantification of high-dimensional inverse problems. Several deep learning based uncer-

tainty quantifications have been proposed in the machine learning literature, but mostly on different

types of uncertainties or without explicitly elucidating the sources of uncertainties. Further, in this

work we showed the flexibility of the framework by training on synthetic data and testing on more

realistic data. Since the prior information is implicitly encoded into the framework from training

data, the information captured by the framework from training data is not explicitly acquirable. As

a result, it would be of great interest to further analyse the boundary of the information captured by

one training. One possible way to investigate it is to track the performance decay of point estimate

and uncertainty calibration by changing features in the test data in a variable controlling manner.

However, how to measure the calibration of such high dimensional imaging problems with hidden

prior information is also an open problem.





Chapter 5

Conclusions

Inverse problems with Poisson data represent an important class of real world problems and uncer-

tainty quantification of possible unobservables for a given observation is vital to downstream deci-

sion making. However, current approaches mainly focus on point estimates and could not recover

the information of uncertainty. While the Bayesian framework could provide a systematic scheme

to solve this problem, full Bayesian approaches suffer from high computational complexities due to

the curse of dimensionality and thus not scalable for real world problems, e.g., medical imaging.

In this thesis, we reviewed Bayesian inference techniques from the machine learning commu-

nity and discussed their potentials for inverse problems with Poisson data. From the literature review,

we concluded that 1) due to the special characteristics emerging in inverse problems with Poisson

data, vanilla applications of these techniques to our problems is not straightforward and 2) neglect-

ing the special characteristics would lead to inaccurate and inefficient practice of full Bayesian treat-

ments. Aligning with this spirit, we further stressed three distinguishing characteristics, which are

respectively one of the main points addressed in the three main chapters of this thesis.

In the first main chapter, i.e., Chapter 2, we studied variational inference with Gaussian approx-

imations for Poisson data with exponential inverse link function. The studied model is a simplified

version of that of X-ray CT and also referred to as Poisson regression in the statistics literature. We

addressed the low rank structure of forward operators in this work and leveraged it to reduce the

computational complexity of the inference algorithm. Besides the scalability of the algorithm, we

also investigated several theoretical aspects, i.e., existence and uniqueness of the optimal Gaussian

approximation, convergence properties of the algorithms, etc, which are largely missing in the liter-

ature. And we supported discussed theoretical and algorithmic properties by numerical experiments.

In the second main chapter, i.e., Chapter 3, we studied expectation propagation with Gaussian

approximation for Poisson data with linear inverse link function, which is related to the model in

emission tomography. In this work, we addressed how to incorporate the important nonnegativity

property emerging in real world applications into the inference procedure. We showed detailed

derivation of the algorithms, complexity and schemes for stable implementation for the case of a
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Laplace type prior. The scalability is addressed by leveraging the rank 1 projection form in the

factors of the posterior distribution for high dimensional moment evaluations. We showed the fast

convergence, state-of-the-art results and capability to handle two dimensional PET images.

In the last main chapter, i.e., Chapter 4, we built a general and flexible probabilistic framework,

i.e., Probabilistic Iterative Networks. This framework could be used for uncertainty quantification

of inverse problems in a purely data-driven setting and is not limited to Poisson data. We addressed

the incorporation of forward and adjoint operators into deep learning based approaches and achieved

extra scalability of training due to the flexibility of dimensions. Besides, we also addressed the scal-

ability by encoding the observations in a low-dimensional latent space, which could avoid direct

sampling in a high dimensional space. We demonstrated potentials of the framework on PET im-

age reconstructions and competitiveness by comparing with several deterministic and probabilistic

benchmark methods.

To conclude, in this thesis, we studied bespoke Bayesian inference for inverse problems with

Poisson data by taking into consideration vital and specific characteristics emerging in real world

problems. While we conducted the research with the main focus on uncertainty quantification with

scalability, we also investigated many other important aspects, e.g., theoretical understandings, prac-

tical concerns, framework generality. Following the same spectrum of perspectives, we now discuss

several possible avenues for further study:

• The first and one of the most fundamental issues is the quality of the approximate posterior dis-

tributions relative to the true posterior distribution. Although approximate inference methods

have achieved good accuracy on many practical problems, the lack of theoretical guarantees

has been long standing in the literature.

• Second, even though the approximate inference methods could provide accurate approxima-

tions to the true posterior distribution, the quality of the posterior distribution itself may still

suffer from the misspecification of the prior distribution and likelihood function. Frameworks

theoretically and empirically studying the misspecification are needed, which could justify the

calibration of the true posterior distribution.

• Third, many interesting links could be observed between approximate inference and classical

regularisation theory. Especially in the lower bound functionals, the KL term between prior

and approximate posterior acts as an analogue of Tikhonov regulariser. It is thus interesting

to study consistency and convergence rates from the perspective of classical regularisation

theory.

• Fourth, apart from the theoretical analysis of approximation quality, it is also imperative to

develop scalable benchmarks to assess the uncertainty provided by approximate distributions

for high-dimensional inverse problems. While one could employ Monte Carlo methods for
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low dimensional problems, for high dimensional problems, especially in a data-driven setting

where the forward model and prior distribution are implicit, how to build scalable and accurate

benchmarks is highly non-trivial.

• We shed a light in terms of theoretical analysis in the first work, incorporate constraints in

the second work and developed a general framework in the last work. It is very interesting

to investigate how to benefit research of other similar problems in the field. For example,

it is interesting to apply PIN to real world imaging problems, e.g., PET, MRI, CT and their

synergies, especially scenarios where there is a great demand on uncertainty quantification

due to lack of information.

• Moreover, although the full distributions (in an approximated way) are provided with full

Bayesian approaches, it is still an open problem how to make best use of the uncertainty

information. While one promising application is to conduct Bayesian hypothesis test based

on the approximate distribution similar to [115], another interesting direction is to investigate

how to leverage the uncertainty information to enhance downstream research, e.g., image

segmentations of reconstructed images.





Appendix A

Appendix to Chapter 2

A.1 On the Iteration (2.12)
In this appendix, we discuss an interesting property of the iteration (2.12), for the initial guess

C0 =C0. We denote the fixed point map in (2.12) by T , i.e.,

T (C) = (C−1
0 +Atdiag(eAx̄+ 1

2 diag(ACAt ))A)−1.

The next result gives the antimonotonicity of the map T on S +
m , i.e., for C,C̃ ∈S +

m , if 0≤C≤

C̃, then T (C)≥ T (C̃).

Lemma A.1.1. The mapping T is antimonotone.

Proof. Let C,C̃ ∈S +
m . If C≤ C̃, then diag(ACAt)≤ diag(AC̃At) componentwise. The claim follows

from the identity T (C)−T (C̃) = T (C)Atdiag(eAx̄+ 1
2 diag(AC̃At )− eAx̄+ 1

2 diag(ACAt ))AT (C̃)≥ 0.

The next result shows the monotonicity of the sequence {Ck} generated by (2.12).

Lemma A.1.2. For any initial guess C0 ∈ S +
m , the sequence {Ck}k≥0 generated by the iteration

(2.12) has the following properties: (i) Ck ≥ 0 for all k≥ 0; (ii) Ck ≤C0 for all k≥ 0; (iii) If Ck ≥C j

then Ck+1 ≤C j+1; (iv) If Ck ≥C j then Ck+2 ≥C j+2.

Proof. Properties (i) and (ii) are obvious. Properties (iii) and (iv) are direct consequences of the fact

that the map T is antimonotone on S +
m , cf. Lemma A.1.1.

The next result shows that the sequence constitutes two subsequences, each converging to a

fixed point of T 2, which implies either a periodic orbit of period 2 of the map T or a fixed point of

T ,

Theorem A.1.1. With the initial guess C0 =C0, the sequence {Ck}k≥0 generated by iteration (2.12)

converges to a fixed-point of T 2.

Proof. Lemma A.1.2(ii) implies

C2 ≤C0, (A.1)
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so we can use Lemma A.1.2(iv) inductively to argue that {C2k}k≥0 is a decreasing sequence. From

(A.1) and Lemma A.1.2(iii), we deduce C1 ≤C3, which together with Lemma A.1.2(iv) implies that

the sequence {C2k+1}k≥0 is increasing. By the boundedness and monotonicity, both {C2k}k≥0 and

{C2k+1}k≥0 converge, with the limit C∗ and C∗∗, respectively. These are the limits of the fixed point

map T 2.

Remark A.1.1. By Lemma A.1.2, C∗ ≥C∗∗, and if C∗ =C∗∗, the whole sequence converges. Gen-

erally, the interval of matrices [C∗∗,C∗] provides a lower and sharp bounds for the fixed point of the

iteration (2.12) (which is a priori known to be unique and to exist). By repeating the argument in

[41, Theorem 2.2], one may also examine the convergence of the sequence for the initial guess either

C0 <C∗∗ or C0 >C∗.

A.2 Differentiability of the Regularised Solution
In this part, we discuss the differentiability of the regularized solution (x̄α ,Cα) in α . For simplicity,

we omit the subscript α . By differentiating (2.7) in α and chain rule, we obtain (with ˙̄x = dx̄
dα

and

Ċ = dC
dα

):

(AtDA+αC−1
0 ) ˙̄x+ 1

2 AtDdiag(AĊAt) =−C̄−1
0 (x̄−µ0),

(C−1ĊC−1 + 1
2 AtD

1
2 diagdiag(AĊAt)D

1
2 A)+AtD

1
2 diag(A ˙̄x)D

1
2 A =−C̄−1

0 ,
(A.2)

where D = diag(eAx̄+ 1
2 diag(ACAt )) ∈ Rn×n is a diagonal matrix. This constitutes a coupled linear

system for ( ˙̄x,Ċ). The next result gives its unique solvability.

Theorem A.2.1. The sensitivity system (A.2) is uniquely solvable.

Proof. Since the system (A.2) is linear and square, it suffices to show that the homogeneous problem

has only a zero solution. To this end, by eliminating the variable ˙̄x from the second line in (A.2) using

the first line, we obtain the Schur complement for Ċ:

C−1ĊC−1 + 1
2 AtD

1
2 diagdiag(AĊAt)D

1
2 A− 1

2 AtD
1
2 diag(A(AtDA+αC̄−1

0 )−1AtDdiag(AĊAt))D
1
2 A.

For any fixed C, this defines a linear map on Rm×m. Next we show its invertibility. To this end, we

take inner product the map with Ċ, and show its positivity. Clearly, the first term is strictly positive.

Thus it suffices to consider the last two terms. By the cyclic property of trace, with d = diag(D)∈Rn,

we have

(Atdiag(d ◦diag(AĊAt))A,Ċ) = tr(Atdiag(d ◦diag(AĊAt))AĊ)

=(Ddiag(diag(AĊAt)),AĊAt) = (Ddiag(AĊAt),diag(AĊAt)) = (ē, ē),
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where ē = D
1
2 diag(AĊAt) ∈ Rn. Similarly, by letting Ā = D

1
2 A, we have

(AtDdiag(A(AtDA+αC̄−1
0 )−1AtDdiag(AĊAt))A,Ċ)

=(Ddiag(A(AtDA+αC̄−1
0 )−1AtDdiag(AĊAt)),AĊAt)

=(Ā(Āt Ā+αC̄−1
0 )−1Āt ē, ē).

Since In− Ā(Āt Ā+αC̄−1
0 )−1Āt > 0, the associated bilinear form is coercive on S +

m . Thus the Schur

complement is invertible, and the system (A.2) has a unique solution.

Corollary A.2.1. For any rank deficient A, Ċ 6= 0.

Proof. If Ċ = 0, the second equation in (A.2) reduces to AtD
1
2 diag(A ˙̄x)D

1
2 A = −C̄−1

0 . By assump-

tion, A is rank deficient, and thus the left hand side is rank deficient, whereas the right hand side is

of full rank, which leads to a contradiction. Thus we have Ċ 6= 0.

The next result gives a lower-bound for the derivative d
dα

ψ(x̄α ,Cα).

Theorem A.2.2. The functional ψ(x̄α ,Cα) satisfies

d
dα

ψ(x̄α ,Cα)≥ α(C−1
0

˙̄x, ˙̄x)+ 1
2 (C

−1ĊC−1,Ċ).

Proof. By the definition of the functional ψ , we have

d
dα

ψ(x̄α ,Cα) =−(C̄−1
0 (x̄−µ0), ˙̄x)− 1

2 (C̄
−1
0 ,Ċ).

By taking inner product the first equation in (A.2) with ˙̄x, and the second with 1
2Ċ, we get

((AtDA+αC−1
0 ) ˙̄x, ˙̄x)+ 1

2 (A
tDdiag(AĊAt), ˙̄x) =−(C̄−1

0 (x̄−µ0), ˙̄x),

1
2 (C

−1ĊC−1 + 1
2 AtD

1
2 diagdiag(AĊAt)D

1
2 A,Ċ)+ 1

2 (A
tD

1
2 diag(A ˙̄x)D

1
2 A,Ċ) =− 1

2 (C̄
−1
0 ,Ċ).

By the cyclic property of trace and summing these two identities, we obtain

−(C̄−1
0 (x̄−µ0), ˙̄x)− 1

2 (C̄
−1
0 ,Ċ) =(αC−1

0
˙̄x, ˙̄x)+ 1

2 (C
−1ĊC−1,Ċ)

+(AtDA ˙̄x, ˙̄x)+ 1
4 (Ddiag(AĊAt),diag(AĊAt))

+(D
1
2 diag(AĊAt),D

1
2 A ˙̄x).

(A.3)

Meanwhile, by the Cauchy-Schwarz inequality, we have

(D
1
2 diag(AĊAt),D

1
2 A ˙̄x)≥−(D

1
2 A ˙̄x,D

1
2 A ˙̄x)− 1

4 (D
1
2 diag(AĊAt),D

1
2 diag(AĊAt)).

Substituting the preceding inequality into (A.3) yields the desired estimate.
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Corollary A.2.2. The functional ψ(x̄α ,Cα) is strictly increasing in α .

Proof. By Theorem A.2.1, (A.2) is uniquely solvable. Since the right hand side of (A.2) is nonvan-

ishing (by assumption, C0 is nonzero), the solution pair ( ˙̄x,Ċ) to (A.2) is nonzero. Thus, by Theorem

A.2.2, d
dα

ψ(x̄α ,Cα) is strictly positive, i.e., ψ(x̄α ,Cα) is strictly increasing.

Remark A.2.1. For the standard regularised least-squares problem, the solution is distinct for dif-

ferent α , and it never vanishes (except the trivial case y = 0). The proof in Corollary A.2.2 indicates

that an analogous statement holds for the Poisson model (2.2).
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Appendix to Chapter 3

B.1 Parameterising Gaussian Distributions
For a Gaussian distribution N (x|µ,C) with mean µ ∈ Rn and covariance C ∈S n

+, the probability

density π(x|µ,C) is given by

π(x|µ,C) = (2π)−
n
2 |C|−

1
2 e−

1
2 (x−µ)tC−1(x−µ) = eζ+ht x− 1

2 xt Λx,

where the parameters Λ ∈S n
+, h ∈ Rn and ζ ∈ R are respectively given by

Λ =C−1, h = Λµ, and ζ =− 1
2 (n log2π + log |Λ|+µ

t
Λµ).

Thus, the density function π(x|µ,C) is also uniquely defined by Λ and h. In the literature, Λ is often

referred to as the precision matrix and h as the precision mean. And the pair (h,Λ) is called the

natural parameter of a Gaussian distribution.

It is easy to check that the product of k Gaussians {N (x|µk,Ck)}m
k=1 is also a Gaussian

N (x|µ,C) after normalisation, and the mean µ and covariance C of the product are given by

µ =C
m

∑
k=1

C−1
k µk and C =

( m

∑
k=1

C−1
k

)−1
, (B.1)

or equivalently

h =
m

∑
k=1

hk and Λ =
m

∑
k=1

Λk. (B.2)
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Appendix to Chapter 4

C.1 Proof of Proposition 4.3.1

In this section, we show the proof of Proposition 4.3.1 following repeating it.

Proposition C.1.1. Optimising LCVAE(θ ,φ ;x,y) (expected on the training data distribution) is

equivalent to optimising an upper bound of the expected reversed KL divergence

J∗(p(x|y)) = Ep∗(y)[DKL(p∗(x|y)||p(x|y))].

Proof. By the definition of KL divergence and Fubini theorem,

J∗(p(x|y)) = Ep∗(y)KL(p∗(x|y)||p(x|y))

=
∫

p∗(y)
∫

p∗(x|y) log
p∗(x|y)
p(x|y)

dxdy

=
∫

p∗(x,y)[log p∗(x|y)− log p(x|y)]d(x,y)

= Ep∗(x,y)[log p∗(x|y)]+Ep∗(x,y)[− log p(x|y)].

(C.1)

Then by the classical derivation of a lower bound for the logarithm log p(x|y) of the conditional



122 Appendix C. Appendix to Chapter 4

distribution p(x|y),

log p(x|y) =
∫

q(z|x,y) log p(x|y)dz

=
∫

q(z|x,y) log
p(x|y)p(z|x,y)

p(z|x,y)
dz

=
∫

q(z|x,y) log
p(x,z|y)
p(z|x,y)

dz

=
∫

q(z|x,y) log
p(x,z|y)
q(z|x,y)

q(z|x,y)
p(z|x,y)

dz

=
∫

q(z|x,y) log
p(x,z|y)
q(z|x,y)

dz+
∫

q(z|x,y) log
q(z|x,y)
p(z|x,y)

dz

≥
∫

q(z|x,y) log
p(x,z|y)
q(z|x,y)

dz

=
∫

q(z|x,y) log
p(z|y)p(x|y,z)

q(z|x,y)
dz

=
∫

q(z|x,y) log
p(z|y)

q(z|x,y)
dz+

∫
q(z|x,y) log p(x|y,z)dz

=−KL(q(z|x,y)||p(z|y))+Ez∼q(z|x,y)[log p(x|y,z)],

where the inequality is due to the nonnegativity of the Kullback-Leibler divergence. Consequently,

we have

− log p(x|y)≤ KL(q(z|x,y)||p(z|y))+Ez∼q(z|x,y)[− log p(x|y,z)]. (C.2)

Substituting inequity (C.2) into equation (C.1) yields

J∗(p(x|y))≤ Ep∗(x,y)[log p∗(x|y)]+ J.

Since the term Ep∗(x,y)[log p∗(x|y)] is independent of the variational distribution p(x|y) and other

auxiliary distributions introduced with z, minimising J is equivalent to minimising an upper bound

of J∗(p(x|y)).
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[35] G. P. Dehaene and S. Barthelmé. Bounding errors of expectation-propagation. In Advances

in Neural Information Processing Systems, pages 244–252, 2015.

[36] J. V. Dillon, I. Langmore, D. Tran, E. Brevdo, S. Vasudevan, D. Moore, B. Patton, A. Alemi,

M. Hoffman, and R. A. Saurous. Tensorflow distributions. Preprint, arXiv:1711.10604, 2017.

[37] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image

super-resolution. In ECCV 2014: Computer Vision, pages 184–199, 2014.

[38] A. Durmus, E. Moulines, and M. Pereyra. Efficient bayesian computation by proximal

markov chain monte carlo: when langevin meets moreau. SIAM Journal on Imaging Sci-

ences, 11(1):473–506, 2018.



126 Bibliography

[39] P. S. Dwyer. Some applications of matrix derivatives in multivariate analysis. J. Amer. Stat.

Assoc., 62(318):607–625, 1967.

[40] M. J. Ehrhardt, K. Thielemans, L. Pizarro, D. Atkinson, S. Ourselin, B. F. Hutton, and S. R.

Arridge. Joint reconstruction of PET-MRI by exploiting structural similarity. Inverse Prob-

lems, 31(1):015001, 23 pp., 2015.

[41] S. M. El-Sayed and A. C. M. Ran. On an iteration method for solving a class of nonlinear

matrix equations. SIAM J. Matrix Anal. Appl., 23(3):632–645, 2001/02.

[42] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems. Kluwer Aca-

demic, Dordrecht, 1996.
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[56] P. J. Green, K. Łatuszyński, M. Pereyra, and C. P. Robert. Bayesian computation: a sum-

mary of the current state, and samples backwards and forwards. Statistics and Computing,

25(4):835–862, 2015.

[57] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of

wasserstein gans. In Advances in neural information processing systems, pages 5767–5777,

2017.

[58] D. Hafner, D. Tran, A. Irpan, T. Lillicrap, and J. Davidson. Reliable uncertainty estimates in

deep neural networks using noise contrastive priors. arXiv preprint arXiv:1807.09289, 2018.

[59] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decompositions. SIAM Rev., 53(2):217–288,

2011.

[60] P. Hall, J. T. Ormerod, and M. P. Wand. Theory of Gaussian variational approximation for a

Poisson mixed model. Stat. Sinica, 21(1):369–389, 2011.

[61] J. M. Hernández-Lobato, Y. Li, M. Rowland, D. Hernández-Lobato, T. Bui, and R. E. Turner.

Black-box α-divergence minimization. In Proceedings of The 33rd International Conference

on Machine Learning, pages 1511–1520, 2016.

[62] G. E. Hinton and D. Van Camp. Keeping the neural networks simple by minimizing the

description length of the weights. In COLT’93, Proc. 6th Annual Conf. Comput. Learning

Theory, pages 5–13, New York, 1993. ACM.

[63] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. The

Journal of Machine Learning Research, 14(1):1303–1347, 2013.

[64] T. Hohage and F. Werner. Inverse problems with Poisson data: statistical regularization theory,

applications and algorithms. Inverse Problems, 32(9):093001, 56, 2016.



128 Bibliography
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