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Abstract

Over 200 million malaria cases globally lead to half a million deaths annually. Accurate

malaria diagnosis remains a challenge. Automated imaging processing approaches to

analyze Thick Blood Films (TBF) could provide scalable solutions, for urban healthcare

providers in the holoendemic malaria sub-Saharan region. Although several

approaches have been attempted to identify malaria parasites in TBF, none have

achieved negative and positive predictive performance suitable for clinical use in the

west sub-Saharan region. While malaria parasite object detection remains an interme-

diary step in achieving automatic patient diagnosis, training state-of-the-art deep-

learning object detectors requires the human-expert labor-intensive process of label-

ing a large dataset of digitized TBF. To overcome these challenges and to achieve a

clinically usable system, we show a novel approach. It leverages routine clinical-

microscopy labels from our quality-controlled malaria clinics, to train a Deep Malaria

Convolutional Neural Network classifier (DeepMCNN) for automated malaria diagno-

sis. Our system also provides total Malaria Parasite (MP) and White Blood Cell (WBC)

counts allowing parasitemia estimation in MP/μL, as recommended by the WHO.

Prospective validation of the DeepMCNN achieves sensitivity/specificity of

0.92/0.90 against expert-level malaria diagnosis. Our approach PPV/NPV perfor-

mance is of 0.92/0.90, which is clinically usable in our holoendemic settings in the

densely populated metropolis of Ibadan. It is located within the most populous

African country (Nigeria) and with one of the largest burdens of Plasmodium

falciparum malaria. Our openly available method is of importance for strategies aimed

to scale malaria diagnosis in urban regions where daily assessment of thousands of

specimens is required.
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1 | INTRODUCTION

Plasmodium falciparum malaria remains one of the greatest global

health burdens with over 219 million cases globally in 2017.1 It is a

widely prevalent disease, especially ubiquitous in parts of sub-Saharan

Africa. In 2017 there were approximately 435 000 deaths due to

malaria worldwide, with the African region accounting for 93% of

these deaths, mostly among children.1 Early diagnosis is important for

reducing the mortality rate due to malaria. Although there are a range

of techniques that have been developed for the diagnosis of

malaria,2,3 conventional light microscopy on Giemsa-stained thick and

thin blood films remains the gold standard.1 Techniques such as poly-

merase chain reaction, flow cytometric assay4 and fluorescence-dye

based5 approaches lack a universally standardized methodology, pre-

sent high costs, and require quality control improvement.2 While

some of these approaches have shown promising results indepen-

dently, they require infrastructure (eg, cold chain logistics for

preservation of reagents) which makes them poorly suited for the

resource-constrained sub-Saharan African region. Other methods

based on lateral flow assays, known as malaria rapid diagnostic tests,

are not ubiquitous in all settings, do not provide estimates of para-

sitemia and have not been able to outperform the well-established

TBF clinical microscopy for malaria diagnosis.6

Thick Blood Film (TBF) microscopy remains the internationally

recognized gold standard.1 Thick blood film clinical microscopy

requires a trained human microscopist to visually inspect Giemsa sta-

ined blood films under a light microscope, to identify and count the

P. falciparum parasites. Unfortunately, visual inspection of thick blood

films strongly relies on the availability of trained personnel, and it is

time-consuming and subject to human error caused by fatigue and

cognitive overload in busy clinical-microscopy services. As with other

visual based diagnostic techniques, accuracy depends on individual

technician performance, which makes standardization difficult and

reliability poor.7 A wrong diagnosis of malaria can have negative con-

sequences for patients and for anti-malarial therapy resources. Addi-

tionally, shortcomings in the availability of trained personnel in certain

regions of the world can lead to over-treatment, which subsequently

leads to parasite resistance.

The World Health Organization (WHO) has persistently encouraged

the development of rapid and efficient diagnostic testing that will allow

proper treatment to be given on time. Here we address the problem of

automated diagnosis in color brightfield digitized images of Giemsa-

stained thick blood films captured with a 100x/1.4 N.A. oil-immersion

objective lens. The thick blood film, a concentration technique, is desir-

able for analysis compared to thin blood smears or red-cell monolayers,

because a larger volume of blood is examined, and thus potentially higher

parasite density per image field providing greater sensitivity.

Although a series of classical computational vision and machine

learning approaches have been used to identify various types of

malaria parasites in digitized thin Giemsa-stained blood smears8,9 or

fluorescence-dye based red-cell monolayer,5 only a few have

attempted parasite detection in digitized thick blood films.10,11 More

recently, some studies have attempted to use deep learning

classifiers12-14 to distinguish malaria parasites from staining artifacts,

which remains a challenge.15

Advances in deep learning methods for object detection in natural

images16 offer great potential for malaria parasite detection in blood

films.17 However, training of such object detectors involves an

extremely laborious process. Human experts label ring malaria para-

sites in large numbers of field-of-views from digitized thick blood

films. Moreover, parasite object detection remains an intermediary

step in achieving automatic patient diagnosis, which requires the anal-

ysis of multiple fields-of-view (FoV) of the TBF. The inherent parasite

false positives detected by the computer vision approaches need to

be taken into consideration when establishing such a final diagnosis.

To the best of our knowledge, only one group has attempted to do

this on samples from patients admitted in clinics for malaria test-

ing.12,13 Briefly, their approach consisted in classifying a positive

malaria sample, if the number of parasites detected by a deep learning

model in 300 FoV surpassed a certain empirically determined thresh-

old. Such an approach is likely to misclassify samples with low parasite

counts.

To overcome these challenges and achieve a clinically usable

Positive and Negative Predictive (PPV/NPV) performance, here we

show a novel way to leverage routine clinical-microscopy diagnostic

labels. They are from our quality-controlled malaria clinics, and will

be used to train a Deep Malaria Convolutional Neural Network clas-

sifier (DeepMCNN) suitable for automated malaria diagnosis. We

prospectively validate the DeepMCNN against expert-level diagnosis

and assess its performance across the all-year-round malaria context

of our clinical healthcare settings. This is in the densely populated

metropolis of Ibadan, located within the most populous country of

Africa (Nigeria), with one of the largest burdens of P. falciparum

malaria.

2 | MATERIALS AND METHODS

2.1 | Ethics statement

The internationally recognized ethics committee at the Institute for

Advanced Medical Research and Training (IAMRAT) of the College of

Medicine, University of Ibadan (COMUI) approved this research. It is

on the platform of the Childhood Malaria Research Group (CMRG)

within the academic Department of Pediatrics, University of Ibadan. It

is also at school and Primary Care centers throughout the city of Iba-

dan, with permit numbers: UI/EC/10/0130, UI/EC/19/0110. Parents

and/or guardians of study participants gave informed written consent

in accordance with the World Medical Association ethical principles

for research involving human subjects.

2.2 | Study site

All study participants were recruited under the auspices of the Child-

hood Malaria Research Group (CMRG) at the 850-bed tertiary
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hospital, University College Hospital (UCH) in the city of Ibadan, Nige-

ria, in west sub-Saharan Africa. Ibadan is a densely populated urban

metropolis in Nigeria with about 5-million inhabitants. Malaria trans-

mission and severe disease occur throughout the year. Although

severe malaria syndromes are predominant in children under 5 years,

there is still a large burden of severe disease in children up to 16.18-20

2.3 | Malaria screening

Malaria parasites (MPs) were detected and counted using human-

expert operated microscopy following Giemsa staining of thick and

thin blood films. The criterion for declaring a participant to be

malaria parasite-free was no detectable parasites in 100 high-power

(100x) fields in thick films. We validated the diagnosis outcome by

randomly selecting one in ten thick blood films for independent

review, by local external experienced senior malaria-microscopy

technologists. Parasite density (PD), malaria parasites per microliter

(MPs/μL), are calculated by dividing the number of observed MPs

by the number of counted white blood cells (WBC), and then

multiplied by 8 × 103.15

2.4 | Data acquisition and pre-processing

We captured images using an upright brightfield microscope

(Olympus BX63) fitted with a 100X/1.4 NA objective lens

(MPLAPON100XO), a motorized x-y sample positioning stage (Prior

Scientific) and a color camera (Edge 5.5c, PCO) to capture images of

Giemsa-stained, thick blood smears prepared in our clinics. For each

sample we captured 100 non-overlapping FoV, each covering an area

of 166 μm × 142 μm. Such large numerical aperture object lenses

have limited depth of field. To capture the entire thickness of the

blood film (typically �5 μm) a z-stack of 14 focal planes with a separa-

tion of 0.5 μm was captured for each field. With a camera exposure

time of 5 milliseconds the total acquisition time per sample was

approximately 5 minutes (Figure S1 in Appendix S1). To reduce the

data volume and render images into a form more amenable to annota-

tion, after white balancing, z-stacks were projected onto a single plane

using a wavelet-based Extended Depth of Field (EDoF) algorithm.21

Briefly, each focal plane was decomposed using a 12 level “sym8”

wavelet, and for each level and sub-band the coefficients with the

maximum values were chosen among the 14 decomposed focal

planes. Following a spatial and a sub-band consistency check, the

inverse wavelet transform was applied to the selected coefficients.

2.5 | Parasite and white blood cell detection

We tested the use of deep learning-based object detection methods to

identify both P. falciparum parasites and white-blood-cell (WBC) nuclei

in the digitized EDoF thick blood films images. Current state of the art

deep learning object detectors usually follow two stages: first a sparse

set of region proposals that should contain all foreground objects are

generated while excluding most of the background locations.22 Next,

these proposals are fed to a CNN providing each region with a class

label probability and a refined bounding box.23 Various extensions to

this approach have been proposed.24-26 In contrast, simpler and faster

one-stage detectors27 are applied over a regular, dense sampling of pos-

sible foreground object locations. Among these detectors, RetinaNet28

exceeded the performance of previous two-stage approaches thanks to

a focal loss function aimed to give more attention to difficult examples.

We trained and tested three of these state-of-the-art object detectors:

Faster R-CNN25; R-FCN29; and RetinaNet.28 Our expert microscopists

annotated a total number of 239 EDoF FoV containing 2986 MP and

1272 WBC nuclei (Figure S2 in Appendix S1). Two thirds of the anno-

tated FoV were used to train the object detector models while the rest

was used for evaluation (Figure S2 in Appendix S1). These image fields

were obtained from 13 unique blood films. Geometrical transformations

were applied “on the fly” during training to the image fields to augment

the training dataset. At each iteration the image fields were rotated by a

uniformly random angle between 0° and 270°. Additionally, the

resulting rotated image would be randomly flipped vertically, horizon-

tally or not at all. An example of MP and WBC RetinaNet detections in

a full FoV is shown in Figure S5 in Appendix S1. The dataset is available

at https://doi.org/10.5522/04/12173568 under open licence CC BY-

NC-SA 4.0.

2.6 | Automated diagnosis with negative
adjustment

In this previously suggested approach,12,13,30 only the negative

samples from the training set (Table 1) were used. The trained

RetinaNet parasite detection model described in the previous

section was applied to these samples. Next, the average number

of false positives per 100 image fields meanfp and its SD stdfp were

computed. Further on, a threshold θ computed using the meanfp

and stdfp values was applied to the test samples for diagnosis.

D=
1 if Nmpd > θ

0 otherwise

(
ð1Þ

TABLE 1 DeepMCNN vs NA expert-level diagnostic performance on validation set

Model Sensitivity Specificity Accuracy PPV NPV

NA 0.66 [0.54-0.77] 0.95 [0.86-0.98] 0.79 [0.71-0.86] 0.94 [0.83-0.97] 0.70 [0.62-0.76]

DeepMCNN 0.92 [0.83–0.97] 0.90 [0.80-0.96] 0.91 [0.84-0.95] 0.92 [0.83-0.96] 0.90 [0.80-0.95]

Abbreviations: DeepMCNN, Deep Malaria Convolutional Neural Network; NA, negative adjustment method; NPV, negative predictive value; [95% CI];

PPV, positive predictive value.
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where
Nmpd =number of potentialMPdetected

θ=meanfp + α � stdfp

(

with D the automated diagnostic (malaria positive or negative) and α ɛ

[0,2] a sensitivity parameter. That is, a sample was classified positive if

the number of parasites detected in 100 image fields was larger than

the threshold θ (Figure S4 in Appendix S1).

2.7 | The deep malaria CNN classifier
(DeepMCNN)

Here we propose a novel approach to leverage routine clinical-

microscopy labels from our malaria diagnosis clinics. We trained the

DeepMCNN (Figure 1 and Figure S3 in Appendix S1) classifier as fol-

lows. First, the RetinaNet was applied to each of the 100 FoVs

obtained from each sample from the training set (Table S1 in Appen-

dix S1). Second, stacks of detected MP regions extracted from each

image field are then used together, with the human-expert

clinical-microscopy diagnostic (malaria-positive or malaria-negative)

label, to train the DeepMCNN classifier (Figure 1 and Figure S3 in

Appendix S1).

In more detail, we obtained a variable number of potential malaria

parasites (Np) from each sample 100 FoVs (Figure 1). These were then

cropped from the FoV using a 64 × 64 pixel window corresponding to

4.2 × 4.2 μm which is large enough to encompass a malaria ring para-

site (3 × 3 μm). A VGG-19 model31 was trained to classify these stacks

of potential parasite images as positive or negative. The weights of

the convolutional layers were initialized with weights from a VGG-19

model pre-trained on the ImageNet dataset.32 For each stack of vari-

able images, the Np features vectors corresponding to the input of

the fully connected layers are averaged into one single feature vector

(Figure S3 in Appendix S1). This allows a variable number of potential

parasite images as an input for the MCNN classifier.

Mathematically, the classification problem can be re-formulated

as described in the next paragraph. In general, the outcome of a CNN

classifier can be written as

D= argmax

a

softmaxðM Ið Þ

0
BB@

1
CCA

where D represents the output label and I is the image to be classified.

A batch size of 1 is assumed for simplicity, that is, one input image

F IGURE 1 The Deep Malaria Convolutional Neural Network (DeepMCNN) diagnostic classifier approach architecture. DeepMCNN leverages
routine clinical microscopy human-expert diagnostic labels to provide expert level malaria diagnosis of a thick blood film specimen. EDoF,
extended depth of field; FOV, field of view; MP, malaria parasite; Parasitemia MP/μL, parasitemia in malaria parasites per microliter; WBC, white
blood cell.

886 MANESCU ET AL.



and one output label. So, M is the CNN transformation of the input

image until the softmax layer and can be written as:

M Ið Þ= relu C Ið Þ �W1 + b1ð Þ �W2 + b2

With C Ið Þ the flattened output of the convolutional layers (CNN fea-

ture vector) and Wi and bi the weights corresponding to the fully con-

nected layers. To accommodate a variable number (Np) of input

images corresponding to one single label, M was modified as follows:

M0 I1, I2,…, INp

� �
= relu

1
Np

XNp

i=1

C Iið Þ �W1 + b1

 !
�W2 + b2

This is equivalent to an average pooling of the feature vectors.

Equation (2) becomes:

D= argmax softmax M0ðI1, I2,…, INp

� �� � ð2Þ

Where D is the patient diagnostic (malaria positive or negative) after

inspecting Np potential parasites from 100 FoV. A gradient descent

optimizer with a fixed learning rate of 0.0003 and a cross entropy loss

function were chosen to optimize the CNN weights.

2.8 | Parasitemia estimation

Once a patient sample has been classified as positive, the patient para-

sitemia was estimated in the following manner: Let remp and prmp, rewbc

and prwbc be the recall (or sensitivity) and precision (or positive predic-

tive value) of the object detector for the MP and the WBC respectively

on the test image fields. The patient parasitemia pp (MP/μL) computa-

tion according to the WHO recommendation15 was adjusted:

pp=8000 �mpdetected �prmp

remp
� rewbc
wbcdetected �prwbc:

where mpdetected and wbcdetected represent the number of MP and WBC,

respectively, detected by the object detector. This formula assumes on

average 8000 WBC per μL. The predicted parasitemia was compared to

the parasitemia computed with the human MP/WBC count.

3 | RESULTS

3.1 | Study participants, datasets and annotations

Training and validation data used for DeepMCNN automated patient

diagnosis is described in Table S1 in Appendix S1. Each Thick Blood

Film (TBF) corresponds to an individual with a total of 169 in the

training set and 130 in the validation set. The training set is comprised

of 84 malaria-positive and 85 malaria-negative TBFs, each with

100 EDoF fields of view (Table S1 in Appendix S1). The validation set

contains 60 malaria-positive and 70 malaria-negative TBFs each with

100 EdoF fields of view (Table S1 in Appendix S1). Malaria-positive

thick blood films have a range of parasitemia from 60 to 105 MP/μL.

All the specimens have been collected and prepared at our quality-

controlled malaria clinics and assessed by our expert microscopists

and clinicians.

3.2 | Automated malaria diagnosis with the
deepMCNN classifier

Malaria parasite detection in an individual FoV from a TBF only repre-

sents an intermediate step in achieving patient final malaria diagnosis.

To achieve patient level diagnosis, we proposed and trained (see

methods section) a novel Deep Malaria Convolutional Neural Network

(DeepMCNN). It leverages routine clinical microscopy labels from our

malaria diagnosis clinics, to achieve an automated final diagnosis by

assessing 100 FoVs (Figure 1 and Figure S3 in Appendix S1).

The diagnosis performance of the DeepMCNN on the validation

set is shown in Table 1 and Figure 2. We benchmarked our

DeepMCNN automated diagnostic method to a previously proposed

method referred to as Negative Adjustment30 (NA), as described in

the methods section and Figure S4 in Appendix S1. The NA detection

threshold θ in Equation (1) was estimated at 177 MPs per 100 FoVs

for a specificity on the train set (Table S1 in Appendix S1) of 0.9. Our

DeepMCNN achieves a sensitivity of 0.92; a specificity of 0.90 and an

accuracy of 0.91 on the validation set with PPV/NPV of 0.92/0.90,

outperforming the NA approach (Table 1). The trained DeepMCNN

outputs a higher sensitivity (0.92) than the NA approach (0.66) for a

specificity, equal or higher than 0.9 (Table 1).

To explore the clinical utility of DeepMCNN we calculated PPV

and NPV for malaria prevalence values ranging from zero to one, and

compared to that of NA (Figure 2A). DeepMCNN NPV clearly outper-

forms the NA approach (Figure 2A red-line). Moreover, DeepMCNN

PPV and NPV performance across these prevalence ranges makes it

usable in a wide range of clinical settings.

To evaluate PPV/NPV performance in relation to our Ibadan

holoendemic (all-year-round) setting, we calculated PPV and NPV

using the actual mean monthly prevalence obtained from our large

clinical settings, serving five million inhabitants of the city of Ibadan

in the sub-Sahara (Figure 2B). The mean monthly prevalence data

(Figure 2B dotted line) is calculated from our large database over a

five-year period from 2014 to 2019, and therefore represents an

accurate and current snapshot of the burden of malaria in our clini-

cal settings. DeepMCNN clearly shows NPV of over 0.9 across all

months which is clinically usable in our settings (Figure 2B red-line).

On the contrary, the NA approach falls below 0.9 during the long

Ibadan rainy season (Figure 2B red-line) which hinders its utility in

sub-Saharan settings.

Looking closer at the classification of the positive samples

(Table S2 in Appendix S1), the NA method30 completely misses all the

low parasite count samples (less than 160 MP/μL). However, our

DeepMCNN classifies 0.75 of these as positives, for a diagnostic

specificity ≥0.90 (Table 3). In medium (160 to 1600 MP/μL) and high
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(>1600 MP/μL) parasite densities DeepMCCN has sensitivity greater

than 0.9 also clearly outperforming the NA method (Table S2 in

Appendix S1).

Figure 3A shows that DeepMCCN automated patient diagnosis

is achieved by assessing a median of well above 1000 WBC per

100 FoV, for both malaria positive and malaria negative specimens.

For the vast majority of specimens more than 500 WBCs were

assessed to achieve patient diagnosis and parasite counts

(Figure 3A and Figure S3 in Appendix S1). This is twice the required

WHO sampling protocol for the human expert microscopist. We

F IGURE 2 Deep Malaria
Convolutional Neural Network
validation performance. A, PPV and
NPV performance for DeepMCNN vs
NA method across a range of malaria
prevalence values. B, PPV and NPV
evaluation of DeepMCNN and NA
methods in Ibadan's holoendemic
malaria urban clinical settings.

DeepMCNN, Deep Malaria
Convolutional Neural Network; NA,
negative adjustment method; NPV,
negative predictive value (red line);
PPV, positive predictive value (blue
line); x-pre, actual Ibadan mean
monthly prevalence (2014-2019)
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then compared the estimated DeepMCNN parasitemia (see

methods) against the computed parasitemia, using the manual

count reported by the human-expert microscopist, across a range

of low, mid and high parasitemia (Figure 3B). In patients with high

parasitemia, our approach agrees closely with the human-expert

estimates. In those patients with low and mid parasitemia our

approach overestimates the parasite densities (Figure 3B).

4 | DISCUSSION

Prompt, reliable and accurate malaria diagnosis is a challenge for

healthcare providers servicing large urban metropoles in holoendemic

malaria settings, such as the one presented in this work. Leveraging

both the well-established malaria diagnosis gold-standard, and deep-

learning image processing approaches, could provide automated

scalable solutions amenable to be deployed in these clinical settings.

However, the bottleneck of every deep learning-based approach is the

lack of sufficient annotations. Obtaining a large number of accurate

object-level human-expert annotations of malaria parasites is

extremely time consuming and immensely laborious. To overcome

these challenges and to create a deployable clinically usable automated

diagnosis system, here we show that routine clinical-microscopy

human-expert diagnostic labels could be leveraged to train a Deep

Convolutional Neural Network. It achieves NPV and PPV performance

suitable for clinical services within Ibadan, a densely populated metrop-

olis located in west sub-Sahara Nigeria, where malaria is prevalent

all year.

While some approaches attempt to validate automated detection

of malaria using the polymerase chain reaction (PCR) as reference,33

we evaluated our approach against human-expert Thick Blood Film

microscopy, since it remains the internationally accepted and realiz-

able gold standard in sub-Saharan regions. Similarly, our diagnosis and

parasitemia estimation follows well accepted WHO protocols in the

region. In large urban holoendemic settings such as ours, healthcare

providers often lack the capacity to carry out TBF microscopy every

six hours, once malaria treatment has commenced, which is required

in severe malaria clinical pathways. Our automated approach could

further facilitate the healthcare provider to process follow-up TFB to

support these clinical pathways.

Overall, our DeepMCNN approach provides better accuracy in

terms of diagnosing samples as malaria positive or negative compared

to the NA approach.30 The NA approach classifies a sample as malaria

positive, if the number of detected parasites exceeds a specific

threshold determined empirically on a hold-out set of negative sam-

ples, so that the specificity on that set exceeds 0.9. Our experiments

show that the NA method misdiagnoses samples with low to mid par-

asite densities where the number of overall detections in 100 image

fields is below the decision threshold. In contrast, our DeepMCNN

approach does not have this limitation as it does not rely on a decision

threshold.

From the clinical point of view, it is generally accepted that in any

child with fever, malaria diagnosis is so important that a false-positive

is better than a false-negative. Our DeepMCNN achieves NPV consis-

tently greater than 0.9 across all months in the Ibadan settings render-

ing the system well-suited to provide pediatric clinical pathway

support. This is reinforced by the DeepMCNN PPV performance

observed during Ibadan's lengthy rainy season. Furthermore, its

F IGURE 3 Deep MCNN WBC counts and malaria parasite
density estimation. A,DeepMCNN total number of WBC assessed per
sample 100 field of views. WBC, white blood cell; EDoF, extended
depth of field; FoV, field of view; MP, malaria parasite; MP (+ve),
malaria parasite positive; MP (−ve), malaria parasite negative. Violin-
plot horizontal line = median; violin-plot horizontal dotted-
lines = inter-quartile range. B, Scatterplot of estimates of parasite
densities by human-expert vs DeepMCNN estimates. X-Y axes
parasite densities in MP/μL, parasitemia in malaria parasites per
microliter. R2 = 0.55; 95% CI = [0.48-0.73]
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performance at low parasitemia levels of less than 160 MP/μL is well

suited to handle the adult population in high-transmission West sub-

Saharan regions, whicht are more likely to have low to asymptomatic

parasitemia.

Our DeepMCNN system provides a WBC count which, together

with the MP count estimation, is used to determine a patient's diagno-

sis and parasitemia according to the WHO recommendations. With a

median of more than 1000 WBCs observed, our approach is well

above the recommended 500 WBCs required in low-parasitemia

specimens.

Parasite densities estimates produced by both, human-expert and

deep-learning system have their own drawbacks. The human expert is

subject to cognitive load when counting objects over a large number

of FoV, while the automated approach is limited by the ability of the

object detector to discard staining artifacts. Taking this into account,

our method overestimates parasite density, when compared to the

human-expert, in low and mid parasitemia specimens. However, the

human expert is prone to fatigue and as a consequence their counting

accuracy might fluctuate over time.7 In contrast, our method consis-

tently uses the parasite detection accuracy to adjust the parasite den-

sity estimate. We are of the opinion that this leads to a more robust

estimation of the patient's parasite density.

Patient level human-expert diagnostic labels routinely produced

by our malaria clinical microscopy services are exponentially easier to

obtain than object level labels from digitized blood films. Our study

shows that our strategy does deliver a deep-learning system, that is

capable of handling the burden of malaria disease observed in a large

Plasmodium falciparum holoendemic setting.

Our open data and easily deployable DeepMCNN provide a clini-

cally relevant platform, where other healthcare providers could har-

ness their readily available patient level diagnostic labels, to tailor and

further improve the accuracy of the DeepMCNN classifier for their

clinical pathway settings. In turn, this should increase their quality, all-

owing them to process large number of blood films as required in

large urban holoendemic malaria sub-Saharan settings. Further invest-

ment in research and development is needed to make advances in

deep learning assisted diagnosis accessible in peri-urban and rural

settings.
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