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Abstract

Histological atlases of the cerebral cortex, such as those made famous by Brodmann and

von Economo, are invaluable for understanding human brain microstructure and its relation-

ship with functional organization in the brain. However, these existing atlases are limited to

small numbers of manually annotated samples from a single cerebral hemisphere, mea-

sured from 2D histological sections. We present the first whole-brain quantitative 3D laminar

atlas of the human cerebral cortex. It was derived from a 3D histological atlas of the human

brain at 20-micrometer isotropic resolution (BigBrain), using a convolutional neural network

to segment, automatically, the cortical layers in both hemispheres. Our approach over-

comes many of the historical challenges with measurement of histological thickness in 2D,

and the resultant laminar atlas provides an unprecedented level of precision and detail. We

utilized this BigBrain cortical atlas to test whether previously reported thickness gradients,

as measured by MRI in sensory and motor processing cortices, were present in a histologi-

cal atlas of cortical thickness and which cortical layers were contributing to these gradients.

Cortical thickness increased across sensory processing hierarchies, primarily driven by lay-

ers III, V, and VI. In contrast, motor-frontal cortices showed the opposite pattern, with

decreases in total and pyramidal layer thickness from motor to frontal association cortices.

These findings illustrate how this laminar atlas will provide a link between single-neuron

morphology, mesoscale cortical layering, macroscopic cortical thickness, and, ultimately,

functional neuroanatomy.
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Introduction

The cerebral cortex has laminar cytoarchitectonic structure that varies depending on cortical

area [1] and cannot readily be resolved using in vivo MRI techniques [2]. Nevertheless, cortical

microstructure underpins the functional, developmental, and pathological signals we can mea-

sure in vivo [3,4]. Thus, bridging the gap between microscale structural measurement and

whole-brain neuroimaging approaches remains an important challenge. To address this, we

sought to create the first whole-brain, 3D, quantitative atlas of cortical and laminar histological

thickness.

Cortical thickness is one widely used marker of both in vivo and ex vivo cortical structure

[5–7]. Early histological studies noted marked interareal thickness differences on postmortem

histological sections [1,8], which have since been replicated [5,9] and extended using in vivo

MRI [10], and alterations in these patterns may be seen in neuropsychiatric illness [11–13].

MRI approaches have demonstrated patterns of cortical thickness relating to functional and

structural hierarchical organization across visual, somatosensory, and auditory cortices of

both macaques and humans [10]. Although classical studies of cortical histology also observed

that primary sensory regions are thinner than their surrounding secondary sensory cortices

[1,8], the thickness gradients identified in MRI extend far beyond neighboring secondary

areas into association cortical areas, whereas such a pattern has not been systematically studied

in postmortem brains. However, MRI thickness is known to be impacted by the degree of cor-

tical myelination [6,14], and cortical myelination exhibits similar gradients, with primary sen-

sory areas being more heavily myelinated than secondary sensory areas [15]. Thus, it remains

unclear whether thickness gradients found in MRI are artefactual, driven by gradient differ-

ences in cortical myelination causing systematic cortical reconstruction errors, or truly repre-

sent the underlying histology.

Creating a cortical layer segmentation of the BigBrain, a 3D histological model of the

human brain [16], offers a solution to these problems and allows us to create a link between

laminar patterns and standard MRI measures. Using this data set, we can determine whether

cortical thickness gradients are evident in measurements made with much greater spatial reso-

lution. It opens the possibility to study whether similar cortical thickness gradients are present

in motor-frontal cortices such as those identified in in vivo neuroimaging [17]. Going beyond

overall cortical thickness, it becomes possible to examine which cortical laminae contribute to

these thickness gradients, enabling better characterization of cortical structure and the poten-

tial to link these macroscale thickness gradients to changes in laminar cortical connectivity in

sensory and motor hierarchies.

Sensory processing hierarchies describe the concept that the cerebral cortex is organized

with gradually changing structural and functional properties from primary sensory areas, to

secondary sensory areas, and, ultimately, higher-order association areas. Multiple measure-

ment modalities converge on similarly ordered patterns, including increasing dendritic arbori-

zation in of pyramidal neurons [18] and electrophysiological characteristics [19], laminar

connectivity patterns of projecting cortical neurons [20–22], laminar differentiation [23,24],

MRI cortical thickness [10], MRI myelination [15], receptor densities [25], and temporal

dynamics [26]. Topographically, hierarchies are organized such that progressively higher corti-

cal areas are located with increasing geodesic distance (the shortest path traversing the cortical

surface) from their primary areas [10,27]. Ordering cortical areas along these gradients pro-

vides a framework for quantifying and understanding the relationships between cortical topol-

ogy, microstructure, and functional specialization.

Carrying out analyses of histological thickness gradients poses several methodological chal-

lenges. First, thickness measurements carried out in 2D are associated with measurement
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artefacts due to oblique slicing [28], and stereological sampling bias as out-plane cortical areas

cannot be included. Second, manual measurement is associated with observer-dependent vari-

ability, estimated to be up to 0.5 mm [8]. Third, because of the labor-intensive nature of histo-

logical analysis, many histological atlases have a small number of sample points, with studies

commonly restricted to measuring around 100 cortical samples [8,29]. These factors hinder

the ability to detect and map potentially subtle cross-cortical variations in cytoarchitecture as

well as overall and laminar thicknesses. BigBrain offers a unique data set to resolve histological

cortical layers comprehensively in 3D, thereby providing a concrete link between microscale

patterns of structure and in vivo markers.

We therefore set out to automate segmentation of cortical layers in 3D in order to charac-

terize patterns of cortical and laminar thickness across visual, somatosensory, auditory, and

motor-frontal cortical areas. To do this, we used a convolutional neural network to segment

profiles of histological intensity sampled between the pial and white matter. Training profiles

were generated from examples of manually segmented layers on cortical regions from 2D his-

tological sections of the BigBrain data set. The trained network was used to segment intensity

profiles derived obliquely through the 3D histological volume and generate mesh segmenta-

tions of 6 cortical layers. These surfaces were used to calculate cortical and laminar thicknesses.

Geodesic surface distance from primary visual, auditory, somatosensory, and motor areas

were calculated and used as a marker of hierarchical progression. Cortical and laminar thick-

ness gradients were calculated for each system.

Results

The automatically identified cortical layers closely follow bands of intensity within the Big-

Brain (Fig 1) and continue to follow the same features beyond the limits of training examples

(Fig 2A).

In the original BigBrain surfaces, as with MRI white matter surfaces, the white surface was

placed at the maximum intensity gradient between gray matter and white matter [30]. By con-

trast, the neural network is trained on examples in which the white boundary has been manu-

ally located according to the presence of cortical neurons. This has caused a systematic shift in

the location of the new white matter surface. On closer inspection, the maximum gradient at

which the original surfaces were placed appears to be at the border between sublayers VIa and

VIb, where the change in neuronal density is sharper than at the boundary between white mat-

ter and layer VI (S4 Fig).

A second feature apparent on visual inspection is segmentation of the layers cannot follow

a single set of rules applied indiscriminately—laminar segmentations vary between cortical

areas. This is most readily apparent at the V1-V2 boundary, where layer IV changes consider-

ably (Fig 2B). Layer IV is particularly broad in V1 and has multiple sublayers creating extra

peaks and troughs in the intensity profiles, whereas in V2, it is much thinner and no longer dif-

ferentiated into sublayers. The transition from a thick layer IV to a thin layer IV occurs pre-

cisely at the boundary between these 2 regions, suggesting that the network is also internally

learning certain areal properties.

Comparison of total and layer thickness maps

On visual inspection, maps of BigBrain cortical thickness are consistent with classical atlases of

histological thickness reported by von Economo and Koskinas (Fig 3B). In particular, the pre-

central gyrus is the thickest part of the cortex, with values over 4.5 mm (when adjusted for

shrinkage in BigBrain) and 3.5 to 4.5 mm in von Economo (area FA). The thickness of the

motor cortex is often underestimated in MRI thickness measurement [31], probably because
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of the high degree of intracortical myelination that affects the gray–white contrast, causing the

white matter surface to be too close to the gray surface, such that cortical thickness is underes-

timated [10,14]. The calcarine sulcus is especially thin on both BigBrain (1.67 to 2.86 mm, 95%

range) and von Economo (1.8 to 2.3 mm, occipital area C [area OC]). This is also consistent

with measurements from Amunts [32] of 1.47 ±. 24 mm (left) and 1.57 ± 0.41 (right). Overall,

regional values from BigBrain were highly correlated with their corresponding values in von

Economo and Koskinas (left hemisphere: r = 0.86, right hemisphere: r = 0.86). In addition,

folding-related differences are clearly visible on the BigBrain, with sulci being thinner than

their neighboring gyri. Vertices located in the medial wall and temporal lobe cuts were masked

for all analyses of cortical thickness, and allocortex was additionally excluded for analyses of

laminar thickness.

Fig 1. Cortical layers in 3D. Six cortical layers segmented on the 3D volume on 3 orthogonal planes: A = coronal, B = axial, C = sagittal. Panel D shows the location of the

sections on the reconstructed pial surface of the 3D BigBrain. (A) The coronal plane is the original plane of sectioning. Within this plane, the axes are centered on an area

of the cortex where layers would be impossible to segment in 2D because the section only shows part of the gyrus, and most layers are not visible because of the oblique

sectioning of the cortex with respect to the gyrus. Underlying data available from ftp://bigbrain.loris.ca.

https://doi.org/10.1371/journal.pbio.3000678.g001

PLOS BIOLOGY BigBrain 3D atlas of cortical layers

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000678 April 3, 2020 4 / 21

ftp://bigbrain.loris.ca
https://doi.org/10.1371/journal.pbio.3000678.g001
https://doi.org/10.1371/journal.pbio.3000678


BigBrain histological thickness values also closely correlated with regional values of MRI

cortical thickness (Fig 3C). Overall regional values were highly correlated (left hemisphere:

r = 0.62, right hemisphere: r = 0.75). Differences may relate to individual variability, age differ-

ences, and modality-specific biases. In a ranking of the differences between measurements,

MRI cortical thickness was thinner than expected for heavily myelinated primary sensory

areas (LBelt, 3b and V1), but thicker than expected for insular and peri-insular regions. This

may be as the cortex is thin but heavily convoluted, with sulci that are fused difficult to resolve

using MRI. Thickness used in the histological and MRI comparisons can be found in S1 Data,

S2 Data.

BigBrain layer thickness maps are also consistent with layer thicknesses from the von Econ-

omo atlas (Fig 4). Layer III is thick in the precentral areas, and particularly thin in the primary

visual cortex. Layers V and VI are thicker in frontal and cingulate cortices, but also thin in the

occipital cortex. Each layer is strongly correlated with the corresponding von Economo mea-

surements except layer II (layer I, left r = 0.50, right r = 0.46; layer II, left r = 0.11, right

Fig 2. Cortical layers (colored lines) intersected on a 2D coronal section of the right occipital cortex with manually segmented layers (superimposed

grayscale masks). (A) The boundaries follow the same contours as delineated by the manually segmented training areas and appear to accurately follow the

layer bounds outside of each training area. (B) At the V1–V2 boundary (marked with arrows), the thickness of layer IV changes dramatically in both manual

and automated segmentations (between green and blue lines), with additional peaks in V1 intensity due to the sublayers of layer IV. As each profile is

individually segmented by the network, without reference to the neighboring profiles, the network is able to apply area-specific rules according to the shape of

the profile, suggesting it might be internally identifying the area from which the profile is extracted as being either V1 or V2. Underlying data available from

ftp://bigbrain.loris.ca.

https://doi.org/10.1371/journal.pbio.3000678.g002
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r = 0.06; layer III, left r = 0.74, right r = 0.72; layer IV, left r = 0.80, right r = 0.76; layer V, left

r = 0.66, right r = 0.66; layer VI, left r = 0.66, right r = 0.60). The reason for the lack of agree-

ment between layer II measurements might arise from known difficulties in distinguishing a

clear boundary between layer II and layer III alongside a low amount of interareal variation in

layer II thickness. Similar challenges exist in identifying layer IV and the layer V–VI bound-

aries in many cortical areas, which may account for some of the discrepancies between the 2

sets of laminar measurements. These difficulties might be reflected in the lower “confidence”

values associated with these areas (S2 Fig).

Nevertheless, despite the challenges associated with manual laminar segmentation and the

fact that measurements were made on different individuals nearly a century apart, there are

high overall correlations between these 2 laminar atlases.

Of additional interest is the clear boundary exhibited by layer IV at the boundary between

V1 and V2 in the occipital cortex. This change in thickness is clear enough to generate an auto-

mated anatomical label for V1 (Figs 2 and 4).

Cortical gradients and processing hierarchies

Cortical thickness was positively correlated with geodesic distance in visual (left, r = 0.57, p =
0, right, r = 0.44, p = 0; von Economo r = 0.72, p = 0.02), somatosensory (left, r = 0.21, p = 0,

right, r = 0.28, p = 0; von Economo r = 0.64, p = 0.12), and auditory cortices (left, r = 0.18, p =
0, right, r = 0.12, p = 0; von Economo r = 0.92, p = 0.01) (Fig 5A–5C). By contrast in the motor

cortex, thickness was negatively correlated with geodesic distance (left, r = −0.36, p = 0, right, r

= −0.25, p = 0; von Economo r = −0.84, p = 0) (Fig 5D). These results are consistent with MRI

thickness findings in sensory gradients but contradictory for the motor-frontal gradient.

Cortical layers did not contribute equally to the total thickness gradient in the visual and

somatosensory cortices (Fig 6A). Layers III and V had the largest contributions to the total

thickness gradient, followed by layer VI, and then II. A similar but less pronounced pattern

was seen within the auditory cortex. In the motor cortex, the inverse was true, with decreases

Fig 3. Comparison of cortical thickness from the BigBrain with von Economo and Koskinas histological measurement and MRI cortical

thickness data from the Human Connectome Project [33]. Thickness values range from 1.8 mm in the calcarine sulcus to 4.5 mm in the precentral

gyrus. (A) Per-vertex cortical thickness values from the BigBrain (displayed on smoothed surfaces, values were smoothed 3 mm FWHM). Thicker

regions of the cortex included the precentral gyrus containing the primary motor cortex. The occipital cortex around the calcarine sulcus was

particularly thin. Also visible are smaller-scale variations in thickness than can only be observed through such high-density measurement. Von

Economo reported thickness measurements from around 50 cortical areas, whereas the thickness of around 1 million vertices has been measured on

BigBrain. (B) Regional BigBrain thickness values were highly correlated with measurements from von Economo and Koskinas. The size of each point is

proportional to the area of the cortical region, and overall correlations were weighted according to these areas. The precentral gyrus, area FA, was the

area of greatest discrepancy where BigBrain provided a lower estimate than von Economo. This might, in part, have been due to averaging of many

vertices across the precentral gyrus in BigBrain, in comparison to a single measurement made by von Economo. (C) Regional BigBrain thickness values

were also highly correlated with MRI cortical thickness values. MRI thickness appears to be overestimated in the insula, where it is thin in both

histological data sets. This may be as the insula is highly convoluted and thus challenging to accurately delineate at lower resolutions. Underlying data

available from S1 Data, S2 Data, and ftp://bigbrain.loris.ca. Area FA, frontal area A; FWHM, full width at half maximum.

https://doi.org/10.1371/journal.pbio.3000678.g003
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in layers III, V, and VI. Changes in the same cortical layers appeared to drive gradients in the

von Economo laminar thickness measurements (Fig 6B), but because of the small number of

recorded samples, the confidence intervals were larger and generally included zero.

Thus, visual, auditory, and somatosensory areas exhibited positive histological thickness

gradients primarily driven by layers III, V, and VI. By contrast, the motor-frontal areas exhib-

ited an inverse gradient, peaking in the motor cortex and driven by the same layers (Fig 6B

and 6C). Underlying data are available from S1 Data and ftp://bigbrain.loris.ca.

Neural network training

In the cross-validation, average per-point accuracy on the test fold was 83% ± 2% prior to post-

processing, indicating that the network was able to learn generalizable layer-specific features

and transfer them to novel cortical areas. The predictions of the model trained on the full data

Fig 4. Comparison of von Economo’s laminar thickness maps (coregistered with and visualized on the BigBrain) with laminar thicknesses of the

BigBrain for left and right hemispheres. BigBrain thickness values were smoothed across the surface with a 3-mm FWHM Gaussian kernel. Layer

thickness values strongly correlated between BigBrain and von Economo for all layers except layer II (see Results). Similarities include the clear changes

in thickness in pre- and postcentral thicknesses of layers III, V, and VI. For layer IV, the most striking feature is the abrupt change in layer IV thickness

at the V1–V2 border. This abrupt change and the unique features of layer IV in V1 lead us to conclude that the neural network may have internally

learned to recognize V1 and apply the appropriate laminar segmentation rules. Underlying data available from S1 Data and ftp://bigbrain.loris.ca.

FWHM, full width at half maximum.

https://doi.org/10.1371/journal.pbio.3000678.g004
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set were used to create a 3D segmentation of the cortical layers in both hemispheres of the Big-

Brain data set (Fig 1).

Confidence results

Layer confidence maps, given by the difference between prediction values (between 0 and 1) of

the highest and second-highest predicted classes for each point, give an approximation of the

Fig 5. Cortical thickness with increasing geodesic distance from the primary area. To aid visualization, locally weighted scatterplot

smoothing lines are fit for each hemisphere. For primary visual, auditory, and somatosensory cortices (A-C), consistent with MRI studies

of cortical thickness, thickness increased with geodesic distance from the primary sensory areas. These trends were also present in the

von Economo data set, where statistical power was limited by the small number of samples. For the motor cortex (D), a negative

relationship was present with thickness decreasing from the primary motor cortex into the frontal cortex in the BigBrain data set and von

Economo. This structural gradient is the inverse of the pattern of myelination and of previously reported MRI frontal thickness gradients

but consistent with patterns of structural type and neuronal density. These findings suggest the presence of distinct but overlapping

structural hierarchies. Underlying data available from S1 Data and ftp://bigbrain.loris.ca.

https://doi.org/10.1371/journal.pbio.3000678.g005

PLOS BIOLOGY BigBrain 3D atlas of cortical layers

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000678 April 3, 2020 8 / 21

ftp://bigbrain.loris.ca
https://doi.org/10.1371/journal.pbio.3000678.g005
https://doi.org/10.1371/journal.pbio.3000678


Fig 6. Gradients of cortical and laminar thickness against geodesic distance from primary areas. (A) Motor-frontal

gradients show an inverse relationship from sensory gradients on both cortical and laminar thicknesses. Increasing

sensory cortical thickness gradients were generally driven by thickness increases in layers III, V, and VI. By contrast,

motor-frontal cortical thickness gradients exhibited decreases in thickness of the same layers. (B) The same trends

were evident in the von Economo data set; however, because of the small number of recorded samples, the confidence
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reliability of laminar segmentations for the cortex where ground truth manual segmentations

have not been carried out (S2 Fig). Throughout the cortex, the network has high confidence

for suprapial and white matter classes. Cortical layers also exhibit consistent confidence maps,

with slightly lower confidence for layer IV. This pattern matches with visual observations that

layer IV is often the most difficult layer to identify.

Resolution results

Downsampling BigBrain to decrease the resolution, from 20 μm down to 1,000 μm, progres-

sively decreased the accuracy of the network on the test folds from 85% to 60% (S3 Fig). How-

ever, at 100 μm (the approximate upper limit for current high-resolution structural MRI),

profiles had sufficient detail to maintain an accuracy of 76%.

Discussion

We automatically segmented the 6 histological layers of the cerebral cortex in the 3D recon-

structed BigBrain. This is the first whole-brain quantitative, laminar atlas with high precision

and the first ever in 3D. Our approach overcomes many historical problems with histological

thickness measurements and provides a higher level of precision and detail than any past lami-

nar atlases. We used this atlas to test for gradients of cortical and laminar thickness within sen-

sory and motor processing hierarchies. Consistent with previous findings using in vivo MRI

[10] and 2D histological measurements [8], visual, somatosensory, and auditory hierarchies

exhibited a gradient of increasing cortical thickness from primary sensory to higher-order

areas. These gradients were primarily driven by layers III, V, VI. By contrast, the motor-frontal

cortices exhibited a decreasing cortical thickness gradient away from the primary motor cortex

towards higher-order frontal areas, which was driven by decreases in these layers. These find-

ings highlight the utility of the BigBrain for linking micro- and macroscale patterns of cortical

organization.

Gradients of thickness are large-scale markers of systematic changes in the cortical histol-

ogy. The volume of the cortex is 80% to 90% neuropil [35–39], of which 60% is axons and den-

drites, and the remainder is synaptic boutons, spines, and glia. As neuronal density does not

tend to correspond with increases in cortical thickness [40,41], and the majority of the cortical

volume is made up of neuropil, increased thickness is most likely to indicate increased intra-

cortical connectivity [7]. At a laminar level, the strongest contributors to the overall thickness

gradients were layers III, V, and VI (Fig 6). Cell morphological studies in macaques have

shown that the cell size and dendritic arborization of layer III and V pyramidal neurons

increase along the visual pathway [18,42,43]. Similarly, afferent axonal patch sizes scale with

pyramidal neuronal arborization [44]. Increases in dendritic arborization, axonal field size,

and number of synapses would all give rise to an increase in the volume of laminar neuropil

and are therefore plausible contributors in the laminar and overall thickness gradients mea-

sured here. Gradients of layer thickness provide us with a mesoscale link between in vivo pat-

terns of MRI cortical thickness and histological changes in the cortical structure. Such links

intervals were larger and generally included zero. (C) Typical neuronal types and morphologies of individual cortical

layers. Cortical thickness gradients in either direction are primarily driven by changes in pyramidal cell layers (in

layers III, V, and VI). (D) Layer thicknesses averaged across vertices in a sliding window of geodesic distance values

from the primary area for the visual, somatosensory, auditory, and motor systems. The motor cortex exhibits the

inverse pattern of change to those observed in sensory gradients. (E) Single-cell morphological studies of pyramidal

neurons in macaque sensory processing pathways reveal increasing dendritic arborization [34] consistent with the

hypothesis that laminar volume changes and ultimately thickness changes represent increases in intracortical

connectivity. Underlying data available from S1 Data and ftp://bigbrain.loris.ca.

https://doi.org/10.1371/journal.pbio.3000678.g006
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help us to understand the neurobiological significance of interindividual, longitudinal, and

neuropathological biomarkers [7].

In contrast to in vivo studies of motor-frontal functional, myelin, and MRI cortical thick-

ness organization, which place the primary motor cortex at the same level as primary sensory

areas [15,17,27], we found that total and laminar motor-frontal thickness gradients were the

inverse of those measured in sensory cortices. This places the motor-frontal cortex in a distinct

hierarchical position. Histologically, the motor cortex was especially thick, and the thickness

decreased with geodesic distance from the primary motor cortex, with layers III, V, and VI fol-

lowing a similar inverse pattern. This finding is consistent with reported trends in other histo-

logical properties, such as laminar structural type [8] and neuronal density [40], as well as the

observation that the motor cortex has large, pyramidal neurons with extensive dendritic arbor-

ization [45,46]. It is also in agreement with the distribution of neurotransmitter receptors. The

molecular architecture as estimated by neurotransmitter receptors also provides evidence that

primary visual and motor cortex are on opposite positions in cortical hierarchy—the acetyl-

cholinergic muscarinic receptor 2 (M2), but also N-methyl-D-aspartate (NMDA), gamma-

aminobutyric acid (GABAA), GABAA/benzodiazepine (BZ), α2, 5-hydroxytryptamine/seroto-

nin (5-HT2), and dopamine (D1) receptors show high densities in the primary sensory areas,

lower densities in association areas, and the primary motor cortex among the lowest [25].

Functionally, these structural differences might be considered in terms of narrow, specific

columnar receptive fields for accurate sensory perception [47] and wider receptive fields [48]

for the coordination of multiple muscle groups [49] in precise motor control. Such microstruc-

tural trends are likely to be a result of matching gradients of genetic expression [50] and may

indirectly relate to other microstructural trends, including the relative somal size and connec-

tivity patterns of pyramidal neurons in layers III and V [22,51]. Thus, there is a coherent

group of cortical histological properties that diverges from patterns of cortical myelination and

functional MRI (fMRI)-derived gradients, establishing the motor cortex at the peak of a gradi-

ent of increasing cortical thickness; layer III, V, and VI thickness; and pyramidal neuronal

arborization, with primary sensory areas at the opposite extreme.

Atlas of cortical layers

The layers we have generated to test gradient-based hypotheses have applications beyond the

scope of this study. Surface-based models of layer structure also create a framework for trans-

lating between microstructural modalities and surface-based neuroimaging. For instance,

layer segmentations can be used to define regions of interest for further detailed analysis and

for associating cortical in vivo and ex vivo data to the common BigBrain template. Further-

more, current approaches to measuring laminar structure and function in vivo rely on prior

models of the cortical layers—for example, signal-source simulation in magnetoencephalogra-

phy (MEG) [52] or for laminar sampling in fMRI [53]. The whole-brain histological models

for areal layer depth provided here, combined with a thorough understanding of how the lay-

ers vary with local cortical morphology [28,54,55], will aid such anatomical models.

Limitations

It is important to acknowledge that the gradients of laminar thickness measured may be

affected by limitations in the BigBrain data set. The first limitation is that the postmortem

brain was damaged during extraction and mounting. In some areas, this resulted in minor

shears. This problem was addressed to some extent through the utilization of nonlinear regis-

tration techniques. Nevertheless, some shifts in cortical tissue between consecutive sections are

present and will affect the accuracy of layer reconstructions. In other areas, the cortex has been
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torn. Spatial smoothing and the large total number of sample points make it unlikely that these

errors are affecting these results. A second limitation is that there is only one BigBrain. Future

work will be necessary to establish the interindividual and age-dependent variability in laminar

structure, either using other histological BigBrains or with complimentary high-resolution

MRI imaging approaches. Finally, at 20-μm resolution, individual neuronal cell bodies cannot

readily be resolved. Future work to generate comprehensive histological atlases with even

higher resolution will offer further insights into the direct links between mesoscale features

presented here and microscale histological properties.

Conclusions

Total cortical thickness and thicknesses for each of the 6 isocortical layers were measured in

the BigBrain to explore the histological drivers of MRI-based thickness gradients. Overall, the

pattern of thickness in the BigBrain is consistent with histological atlases of cortical thickness,

such as that from von Economo and Koskinas [8]. In the visual, somatosensory and auditory

cortices, an increasing gradient of histological cortical thickness was identified and found to be

primarily driven by layers III, V, and VI. In the motor-frontal cortex, the inverse pattern was

found. These findings provide a link between patterns of microstructural change and mor-

phology measurable through MRI and emphasize the importance of testing MRI-based ana-

tomical findings against histological techniques. The laminar atlases provide an invaluable tool

for comparison of histological and macroscale patterns of cortical organization.

Materials and methods

Volumetric data preparation

BigBrain is a 20 × 20 × 20 μm (henceforth described as 20-μm) resolution volumetric recon-

struction of a histologically processed postmortem human brain (male, aged 65), in which sec-

tions were stained for cell bodies [56], imaged, and digitally reconstructed into 3D volume

[16]. It is available for download at ftp://bigbrain.loris.ca and is used as a reference brain of the

Atlases of the Human Brain Project at https://www.humanbrainproject.eu/en/explore-the-

brain/atlases/. In order to run computations on this 1-TB data set, the BigBrain was partitioned

into 125 individual blocks, corresponding to 5 subdivisions in the x, y, and z directions, with

overlap. The overlap of blocks was calculated to be sufficient such that each single cortical col-

umn could be located in a single block, enabling extraction of complete intensity profiles

between pairs of vertices at the edge of blocks without intensity values being altered by bound-

ary effects when the data were smoothed. Blocks were smoothed anisotropically [57], predomi-

nantly along the direction tangential to the cortical surface, to maximize interlaminar intensity

differences while minimizing the effects of intralaminar intensity variations caused by arte-

facts, blood vessels, and individual neuronal arrangement [28]. The degree of anisotropic

smoothing is determined by repeatedly applying the diffusive smoothing algorithm, in which

the degree of smoothing in a given direction is inversely related to the intensity gradient in

that direction [57]. The optimal level of smoothing was previously determined and gave an

effective maximum full width at half maximum (FWHM) of 0.163 mm [28]. For subsequent

analyses, both the raw 20-μm and anisotropically smoothed blocks were used.

Lower-resolution volumes were extracted by subsampling the raw BigBrain 20-μm volume

at 40, 100, 200, 400, and 1,000 μm. Anisotropically smoothed volumes were also generated at

each of these resolutions.
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Profile extraction

Pial and white surfaces originally extracted using a tissue classification of 200 μm were taken as

starting surfaces [30]. Each surface contained an equal number of surface points (“vertices”),

located at corresponding anatomical locations on the 2 surfaces. Prior to intensity profile

extraction, the vertex locations on both surfaces were altered to address several issues. First,

the vectors connecting white and gray vertices were altered in order to improve their approxi-

mation of columnar trajectories and to minimize intersecting streamlines. Second, “pial” and

“white” surfaces were, respectively, expanded beyond the pial boundary and into the white

matter respectively, extending the extracted profiles to contain the whole cortex with addi-

tional padding. This was to enable the network to adjust surface placement of these borders

according to features learned from the manual delineation of these boundaries. To achieve

this, the following steps were taken:

1. For initializing vertex locations, a midsurface was generated that was closer to the pial sur-

face in sulci and closer to the white surface in gyri, weighting the distance vector by the cor-

tical curvature. Thus, to prevent intersections of subsequent vertex vectors, the midsurface

was closer to the surface with the higher curvature.

2. This midsurface was upsampled from 163,842 to 655,362 vertices to increase its resolution.

3. For each vertex, the vector between nearest points on the pial and white surfaces was

calculated.

4. To avoid crossing profiles, which can result in mesh self-intersections, the vector compo-

nents were smoothed across the midsurface with a FWHM of 3 mm (S1 Fig).

5. Profiles were calculated along these vectors from the midsurface, extending the profiles 0.5

mm farther than the minimum distance in the pial or white direction, to ensure the resul-

tant intensity profile captured the full extent of the cortex.

The resulting profiles were less oblique and more likely to be lined up with the cortical col-

umns (S1 Fig).

Extended intensity profiles were then created by sampling voxels at 200 equidistant points

between each pair of vertices from the raw and anisotropically smoothed BigBrain volumes, at

each available resolution. For an extended profile of approximately 4 mm, this gives a distance

of 0.02 mm or 20 μm between points, corresponding to the highest resolution volume avail-

able. To account for the rostrocaudal gradient in staining intensity enabling the network to

better generalize between profiles, profile intensity values were adjusted by regressing between

mean profile intensity and posterior-anterior coordinate in 3D space.

Training data

Manual segmentations of the 6 cortical layers were created on 51 regions of the cortex, distrib-

uted across 13 of the original histological BigBrain sections rescanned at a higher in-plan reso-

lution of 5 μm (Fig 2). These regions were chosen to give a distribution of examples

demonstrating a variety of cytoarchitectures, a variety of rostrocaudal locations, in both gyri

and sulci, from sections where the cortex was sectioned tangentially.

Layers were segmented according to the following criteria. Layer I, the molecular layer, is

relatively cell sparse with few neurons and glia. Layer II, the external granular layer, is a much

denser band of small granular cells. Layer III, the external pyramidal layer, is characterized by

large pyramidal neurons that become more densely packed toward its lower extent. Layer IV,

the internal granular layer (usually referred to simply as the “granular layer”), generally
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contains only granular neurons, bounded at its lower extent by pyramidal neurons of layer V.

Layer V, the internal pyramidal layer, contains large but relatively sparse pyramidal neurons,

whereas layer VI, the multiform layer, has a lower density of pyramidal neurons [1]. Alongside

association areas with such typical neocortical laminar structure, samples from the primary

visual and motor cortices were specifically included as they exhibit unique laminar

characteristics.

Segmentations were verified by expert anatomists: SB, NPG, and KZ. This resolution is suf-

ficient to distinguish individual cell bodies, a prerequisite to analyze their distribution pattern

in cortical layers and to delineate the layers. Averaged across all training examples, layer classes

contributed to profiles as follows: background/cerebrospinal fluid (CSF): 14.6%, layer I: 7.5%,

layer II: 5.6%, layer III: 20.8%, layer IV: 5.5%, layer V: 14.8%, layer VI: 17.8%, white matter:

13.4%. For the cortical layers, these values represent an approximate relative thickness.

Manual segmentations were then coregistered to the full aligned 3D BigBrain space. The

manually drawn layers were used to create corresponding pial and white surfaces. These corti-

cal boundaries were extended beyond layer VI and beyond the pial surface between 0.25 mm

and 0.75 mm so as to match the variability of cortical extent in the test profile data set. Train-

ing profiles were created by sampling raw, smoothed, and manually segmented data, generat-

ing thousands of profiles per sample. Each pixel in the labeled data had a class value of 0 to 7,

in which pixels superficial to the pial surface were set to 0, followed by layers numbered 1 to 6,

and white matter was classed as 7. This 1D profile-based approach greatly expanded the train-

ing data set from 51 labeled 2D samples to over 500,000 profiles. Coregistered manually anno-

tated data are available to download at ftp://bigbrain.loris.ca/BigBrainRelease.2015/Layer_

Segmentation/Manual_Annotations/.

Neural network

A 1D convolutional network for image segmentation was created to enable the identification

of laminar-specific profile features, which can appear at a range of cortical profile depths [28].

The network was created using stacked identical blocks. Each block contained a batch normal-

ization layer to normalize feature distributions between training batches, a rectify nonlinearity

layer used to model neurons, which can have a graded positive activation but no negative

response [58], and a convolutional layer [59]. There was a final convolutional layer with filter

size 1 and 8 feature maps, 1 for each class. The cost function was median class-frequency-

weighted cross-entropy. Class-frequency weighting was added to weigh errors according to

the thickness of the layers so that incorrectly classified points in thinner layers were more

heavily weighted than errors in incorrectly classified thicker layers [60]. Raw and smoothed

profiles were considered as 2 input channels. The network was iteratively trained until the

accuracy did not improve for 50 epochs (all training profiles are seen once per epoch). At this

point, the previous best model was saved and used for subsequent testing on the full data set.

When testing the network, a soft maximum was then applied to detect the most likely layer

class for each point. The output was a matrix of 8 (predicted layers) by 200 (sample points) by

655,362 (vertices on a mesh) by 2 (cortical hemispheres).

For each vertex, a measure of confidence was calculated from these predictions. Per-point

confidence is the difference between the prediction value for the highest predicted class and

the value of the second-highest predicted class. Per class/layer confidence is the mean confi-

dence for all points in that class/layer. The per-vertex summary measure is the mean across all

points in the profile. These measures give an indication of the relative confidence for the

regional and laminar classifications.
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Hyperparameter optimization and cross-validation. Here, a set of 50 experiments with

random hyperparameters was carried out to explore their impact on training accuracy (there

is no consensus method for finding optimum parameters for a neural network). Learning rate,

convolutional filter size, number of layers (blocks), weight decay, and batch size were all var-

ied. In summary, the final network was initialized with 6 layers, filter size = 49, learning

rate = 0.0005, weight decay = 0.001, in which the learning rate determines the amount weights

are updated on each iteration, and weight decay determines the rate at which weights decrease

each iteration (which helps prevent overfitting).

For network cross-validation, the manually labeled areas were subdivided into 10 equally

sized random subsets or folds. Initially, 2 folds were removed from the data set during training,

and network weights were optimized for segmenting samples on one of these folds. This

trained network was then used to predict layers on the final previously unseen test fold from

which the accuracy was calculated. This process was repeated 10 times to generate an estimate

of the network’s ability to segment novel cortical regions. The same process was carried out

using profiles extracted at all available resolutions.

For generating BigBrain layer segmentations, the network was trained on the full training

data set and tested on all intensity profiles.

Shrinkage estimate. Histological processing, including fixation and sectioning, causes

distortion of the tissue that is nonuniform in the x, y, and z directions. Part of this distortion

was corrected in the original reconstruction of the BigBrain [16].

Initial shrinkage of the brain during fixation prior to sectioning was calculated based on the

estimated fresh volume of BigBrain, inferred from the original fresh weight, and the volume

after histological processing. This gave a volume-based (3D) shrinkage factor of 1.931, which

corresponds to an isotropic length-based (1D) shrinkage factor of 1.245.

To estimate the scale of shrinkage in each of the 3 orthogonal directions, the BigBrain vol-

ume was linearly coregistered to a volumetric MRI template derived from a group of older sub-

jects (ADNI) [61]. The transformation matrix gave linear scale factors of 1.15, 1.22, and 1.43 in

the x, y, and z directions, respectively, with a mean of 1.26. The concordance of these measures

of shrinkage suggests that subsequent thickness and length estimates can be adequately cor-

rected for comparison to in vivo measures.

Thus, to approximately compensate for the nonuniform compression of xyz, we trans-

formed the mesh surfaces into MNI space based on the ADNI template. Subsequent thickness

analyses were carried out on the transformed meshes. Such compensation for shrinkage is nec-

essary when analyzing cortical thickness gradients on oblique profiles in 3D over the whole

brain. Nonlinear corregistration was not applied, as this can lead to localized warping and

nonbiological thickness measurements [62].

Surface reconstruction: Postprocessing 1D profiles. One-dimensional classified profiles

were transformed into mesh layer boundary reconstructions as follows. Transitions between

predicted layers were located for each profile and the coordinates of these transitions became

vertex locations for the new layer meshes. For the small number of vertices where the network

failed (less than 1%), vertex locations were interpolated from the neighboring vertices. Surface

indices were smoothed 0.5 mm FWHM across the cortical surface, and 20 iterations of shrink-

age-free mesh smoothing were applied to the output surface [63]. This removed nonbiologi-

cally high-frequency changes in surface curvature, most commonly due to minor, local

misalignment of consecutive 2D coronal sections.

Cortical thickness, layer thickness. Cortical thickness was calculated between pial and

white cortical surfaces, and laminar thicknesses were calculated between adjacent pairs of cor-

tical surfaces.
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Masking. Manual masks were created to remove the medial wall and small numbers of

vertices located in the large cuts in the anterior temporal cortex (caused by the saw during

extraction of the brain from the skull) from subsequent analyses. The allocortex, including

parts of the cingulate and entorhinal cortex that do not have 6 layers, were excluded for com-

parisons of laminar thickness with von Economo measurements.

Surface-based parcellations. For comparison, several existing surface-based parcellations

of human cortical surfaces (von Economo: [8,64]; Glasser: [33]) were coregistered to the Big-

Brain cortical surfaces using an adaptation of the multimodal surface matching approach

[65,66]. These parcellations enabled comparison with histological data from von Economo

and in vivo cortical thickness measurements from the Human Connectome Project.

Gradients and processing hierarchies. Surface labels for the primary visual, auditory,

somatosensory, and motor areas were manually delineated on each hemisphere using morpho-

logical markers and histological characteristics (S5A Fig). For each system, a larger area con-

taining associated cortical regions was manually delineated and can be viewed mapped to the

cortical surface in S5B Fig [10,17,33]. For each vertex within the associated cortical regions,

geodesic distance from the primary sensory labels was calculated (S5B Fig) [10,17,33,67].

Code for all of these analyses is made available at https://github.com/kwagstyl

Supporting information

S1 Fig. Improving streamline trajectories. (A) Streamline vectors were smoothed across the

cortical surface by varying degrees to assess the impact of smoothing on (1) the number of

self-intersections in the pial and white surfaces and (2) the angle between the streamline and

the normal vector on the pial and white surfaces. These optimization curves demonstrate that

a FWHM of around 2 mm drastically decreases the number of self-intersections and oblique-

ness of the streamline vectors relative to the pial and white surfaces. (B) Visualizing streamlines

against a histological section. Streamlines more closely follow visible cortical columnar trajec-

tories after this improvement (blue) relative to before this streamline vector smoothing process

(red). FWHM, full width at half maximum.

(TIF)

S2 Fig. Layer confidence maps. Per-vertex confidence is defined as the difference between the

prediction value for the highest predicted class and the value of the second-highest predicted

class, averaged over the whole profile. This gives an approximation of the reliability of laminar

segmentations for the cortex where ground truth manual segmentations have not been carried

out. Confidence for suprapial and white matter classes was high throughout the cortex, thus

increasing the confidence in overall cortical thickness measures. Layers exhibit relatively con-

sistent confidence maps, with layer IV least confident overall. This pattern matches with visual

observations that layer IV is the most difficult to identify. Regional variations in confidence

can guide the choice of target regions for future extensions to the training data.

(TIF)

S3 Fig. Impact of voxel resolution on overall and layer accuracies. (A) Overall per-point

accuracies on withheld test regions calculated using 10-fold validation. Accuracy decreases

with decreasing resolution. (B) Mean deviation in depth prediction on test folds between pre-

diction and manually defined layers. Pial/layer I and layer I–II boundaries exhibited the small-

est deviations, followed by II/III, with layer III/IV and VI/white boundaries exhibiting larger

deviations.

(TIF)
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S4 Fig. Comparison of white matter surfaces generated by the neural network and by plac-

ing the white surface at the maximum intensity gradient. For visual comparison, the sur-

faces are overlaid on a 2D section, in which manually segmented layers are available. The

maximum intensity gradient white surface (red) was identified on lower-resolution data

(200 μm). Superimposed on the histology in grayscale is a section of cortex in which 6 layers

were manually segmented. The automated blue surface follows the manually delineated gray–

white matter boundary, which is determined by the presence of cortical neurons. By contrast,

the red (maximum gradient) surface follows a feature that is consistently superficial to the

gray–white matter boundary, corresponding to the layer VIa/VIb boundary. This systematic

difference highlights the role of using histological expertise when translating across scales and

fields to ensure consistent definitions. It also raises an important question on the placement of

the white surface in MRI cortical reconstructions, which is placed at the maximum MRI inten-

sity gradient. This gradient is determined predominantly by myelin contrast and therefore

influenced by changes in interregional and longitudinal in cortical myelination. Future cortical

segmentation algorithms need to be developed with close reference to histological definitions

of the gray/white boundary.

(TIF)

S5 Fig. (A) Manually segmented primary visual (blue), primary auditory (black, partially

buried in the lateral sulcus), primary somatosensory (green), and primary motor (yellow)

areas, projected onto a heavily smoothed surface. (B) Manually segmented regions across

which cortical and laminar hierarchical thickness gradients were calculated. (C) Geodesic dis-

tance across the cortical surface from the primary areas.

(TIF)

S1 Data. Cortical and laminar thickness values for von Economo areas and corresponding

BigBrain areas.

(CSV)

S2 Data. Cortical thickness values for MRI data from Human Connectome Project and

from corresponding BigBrain areas.

(CSV)
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Methodology: Konrad Wagstyl, Stéphanie Larocque, Guillem Cucurull, Claude Lepage, Joseph

Paul Cohen, Lindsay B. Lewis, Hannah Spitzer, Adriana Romero, Karl Zilles, Katrin

Amunts, Yoshua Bengio.

Resources: Paul C. Fletcher, Yoshua Bengio.
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37. Braitenberg V, Schüz A. Anatomy of the cortex: statistics and geometry. Springer-Verlag; 1991.

PLOS BIOLOGY BigBrain 3D atlas of cortical layers

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000678 April 3, 2020 19 / 21

https://doi.org/10.1126/science.1235381
https://doi.org/10.1126/science.1235381
http://www.ncbi.nlm.nih.gov/pubmed/23788795
https://doi.org/10.1093/cercor/bhw215
https://doi.org/10.1093/cercor/bhw215
http://www.ncbi.nlm.nih.gov/pubmed/27461122
https://doi.org/10.1093/cercor/8.3.278
https://doi.org/10.1093/cercor/8.3.278
http://www.ncbi.nlm.nih.gov/pubmed/9617923
https://doi.org/10.3389/fnana.2014.00078
http://www.ncbi.nlm.nih.gov/pubmed/25161611
https://doi.org/10.1002/cne.23458
http://www.ncbi.nlm.nih.gov/pubmed/23983048
https://doi.org/10.1093/cercor/1.1.1
http://www.ncbi.nlm.nih.gov/pubmed/1822724
https://doi.org/10.1016/j.tins.2018.06.003
http://www.ncbi.nlm.nih.gov/pubmed/29980393
https://doi.org/10.1002/cne.902520310
http://www.ncbi.nlm.nih.gov/pubmed/3793985
https://doi.org/10.3389/fnana.2017.00078
http://www.ncbi.nlm.nih.gov/pubmed/28970785
https://doi.org/10.1038/nn.3862
http://www.ncbi.nlm.nih.gov/pubmed/25383900
https://doi.org/10.1073/pnas.1608282113
http://www.ncbi.nlm.nih.gov/pubmed/27791099
https://doi.org/10.1093/cercor/bhy074
http://www.ncbi.nlm.nih.gov/pubmed/29901791
http://psycnet.apa.org/psycinfo/1939-02814-000
https://www.researchgate.net/profile/Katrin_Amunts/publication/266156312_BigBrain_initial_tissue_classification_and_surface_extraction/links/543be1580cf2d6698be343b9.pdf
https://www.researchgate.net/profile/Katrin_Amunts/publication/266156312_BigBrain_initial_tissue_classification_and_surface_extraction/links/543be1580cf2d6698be343b9.pdf
https://www.researchgate.net/profile/Katrin_Amunts/publication/266156312_BigBrain_initial_tissue_classification_and_surface_extraction/links/543be1580cf2d6698be343b9.pdf
https://doi.org/10.1523/JNEUROSCI.4753-06.2007
https://doi.org/10.1523/JNEUROSCI.4753-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17287510
https://doi.org/10.1038/nature18933
http://www.ncbi.nlm.nih.gov/pubmed/27437579
https://doi.org/10.1002/(sici)1096-9861(19991206)415:1<33::aid-cne3>3.0.co;2-m
http://www.ncbi.nlm.nih.gov/pubmed/10540356
https://doi.org/10.1002/cne.901040306
http://www.ncbi.nlm.nih.gov/pubmed/13357636
https://doi.org/10.1016/0165-0270(82)90014-0
http://www.ncbi.nlm.nih.gov/pubmed/7121060
https://doi.org/10.1371/journal.pbio.3000678


38. Amunts K, Schleicher A, Zilles K. Cytoarchitecture of the cerebral cortex—more than localization. Neu-

roimage. 2007; 37: 1061–5; discussion 1066–8. https://doi.org/10.1016/j.neuroimage.2007.02.037

PMID: 17870622

39. Chklovskii DB, Schikorski T, Stevens CF. Wiring optimization in cortical circuits. Neuron. 2002; 34:

341–347. https://doi.org/10.1016/s0896-6273(02)00679-7 PMID: 11988166

40. Collins CE, Airey DC, Young NA, Leitch DB, Kaas JH. Neuron densities vary across and within cortical

areas in primates. Proceedings of the National Academy of Sciences. 2010; 107: 15927–15932.

41. la Fougère C, Grant S, Kostikov A, Schirrmacher R, Gravel P, Schipper HM, et al. Where in-vivo imag-

ing meets cytoarchitectonics: the relationship between cortical thickness and neuronal density mea-

sured with high-resolution [18F]flumazenil-PET. Neuroimage. 2011; 56: 951–960. https://doi.org/10.

1016/j.neuroimage.2010.11.015 PMID: 21073964

42. Elston GN, Rosa MG. Pyramidal cells, patches, and cortical columns: a comparative study of infragra-

nular neurons in TEO, TE, and the superior temporal polysensory area of the macaque monkey. J Neu-

rosci. 2000; 20: RC117. https://doi.org/10.1523/JNEUROSCI.20-24-j0003.2000 PMID: 11125016

43. Scholtens LH, Schmidt R, de Reus MA, van den Heuvel MP. Linking macroscale graph analytical orga-

nization to microscale neuroarchitectonics in the macaque connectome. J Neurosci. 2014; 34: 12192–

12205. https://doi.org/10.1523/JNEUROSCI.0752-14.2014 PMID: 25186762

44. Lund JS, Yoshioka T, Levitt JB. Comparison of intrinsic connectivity in different areas of macaque mon-

key cerebral cortex. Cereb Cortex. 1993; 3: 148–162. https://doi.org/10.1093/cercor/3.2.148 PMID:

8490320

45. Cajal SR y. Estudios sobre la corteza cerebral humana. II. Estructura de la corteza motriz del hombre y

mamı́feros superiores. Revista Trimestral Microgáfica. 1899; 4: 117–200.
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